]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/usb/gadget/f_fs.c
usb: gadget: f_fs: Add flags to descriptors block
[karo-tx-linux.git] / drivers / usb / gadget / f_fs.c
1 /*
2  * f_fs.c -- user mode file system API for USB composite function controllers
3  *
4  * Copyright (C) 2010 Samsung Electronics
5  * Author: Michal Nazarewicz <mina86@mina86.com>
6  *
7  * Based on inode.c (GadgetFS) which was:
8  * Copyright (C) 2003-2004 David Brownell
9  * Copyright (C) 2003 Agilent Technologies
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2 of the License, or
14  * (at your option) any later version.
15  */
16
17
18 /* #define DEBUG */
19 /* #define VERBOSE_DEBUG */
20
21 #include <linux/blkdev.h>
22 #include <linux/pagemap.h>
23 #include <linux/export.h>
24 #include <linux/hid.h>
25 #include <linux/module.h>
26 #include <asm/unaligned.h>
27
28 #include <linux/usb/composite.h>
29 #include <linux/usb/functionfs.h>
30
31 #include <linux/aio.h>
32 #include <linux/mmu_context.h>
33 #include <linux/poll.h>
34
35 #include "u_fs.h"
36 #include "configfs.h"
37
38 #define FUNCTIONFS_MAGIC        0xa647361 /* Chosen by a honest dice roll ;) */
39
40 /* Variable Length Array Macros **********************************************/
41 #define vla_group(groupname) size_t groupname##__next = 0
42 #define vla_group_size(groupname) groupname##__next
43
44 #define vla_item(groupname, type, name, n) \
45         size_t groupname##_##name##__offset = ({                               \
46                 size_t align_mask = __alignof__(type) - 1;                     \
47                 size_t offset = (groupname##__next + align_mask) & ~align_mask;\
48                 size_t size = (n) * sizeof(type);                              \
49                 groupname##__next = offset + size;                             \
50                 offset;                                                        \
51         })
52
53 #define vla_item_with_sz(groupname, type, name, n) \
54         size_t groupname##_##name##__sz = (n) * sizeof(type);                  \
55         size_t groupname##_##name##__offset = ({                               \
56                 size_t align_mask = __alignof__(type) - 1;                     \
57                 size_t offset = (groupname##__next + align_mask) & ~align_mask;\
58                 size_t size = groupname##_##name##__sz;                        \
59                 groupname##__next = offset + size;                             \
60                 offset;                                                        \
61         })
62
63 #define vla_ptr(ptr, groupname, name) \
64         ((void *) ((char *)ptr + groupname##_##name##__offset))
65
66 /* Reference counter handling */
67 static void ffs_data_get(struct ffs_data *ffs);
68 static void ffs_data_put(struct ffs_data *ffs);
69 /* Creates new ffs_data object. */
70 static struct ffs_data *__must_check ffs_data_new(void) __attribute__((malloc));
71
72 /* Opened counter handling. */
73 static void ffs_data_opened(struct ffs_data *ffs);
74 static void ffs_data_closed(struct ffs_data *ffs);
75
76 /* Called with ffs->mutex held; take over ownership of data. */
77 static int __must_check
78 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
79 static int __must_check
80 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
81
82
83 /* The function structure ***************************************************/
84
85 struct ffs_ep;
86
87 struct ffs_function {
88         struct usb_configuration        *conf;
89         struct usb_gadget               *gadget;
90         struct ffs_data                 *ffs;
91
92         struct ffs_ep                   *eps;
93         u8                              eps_revmap[16];
94         short                           *interfaces_nums;
95
96         struct usb_function             function;
97 };
98
99
100 static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
101 {
102         return container_of(f, struct ffs_function, function);
103 }
104
105
106 static inline enum ffs_setup_state
107 ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
108 {
109         return (enum ffs_setup_state)
110                 cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
111 }
112
113
114 static void ffs_func_eps_disable(struct ffs_function *func);
115 static int __must_check ffs_func_eps_enable(struct ffs_function *func);
116
117 static int ffs_func_bind(struct usb_configuration *,
118                          struct usb_function *);
119 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
120 static void ffs_func_disable(struct usb_function *);
121 static int ffs_func_setup(struct usb_function *,
122                           const struct usb_ctrlrequest *);
123 static void ffs_func_suspend(struct usb_function *);
124 static void ffs_func_resume(struct usb_function *);
125
126
127 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
128 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
129
130
131 /* The endpoints structures *************************************************/
132
133 struct ffs_ep {
134         struct usb_ep                   *ep;    /* P: ffs->eps_lock */
135         struct usb_request              *req;   /* P: epfile->mutex */
136
137         /* [0]: full speed, [1]: high speed, [2]: super speed */
138         struct usb_endpoint_descriptor  *descs[3];
139
140         u8                              num;
141
142         int                             status; /* P: epfile->mutex */
143 };
144
145 struct ffs_epfile {
146         /* Protects ep->ep and ep->req. */
147         struct mutex                    mutex;
148         wait_queue_head_t               wait;
149
150         struct ffs_data                 *ffs;
151         struct ffs_ep                   *ep;    /* P: ffs->eps_lock */
152
153         struct dentry                   *dentry;
154
155         char                            name[5];
156
157         unsigned char                   in;     /* P: ffs->eps_lock */
158         unsigned char                   isoc;   /* P: ffs->eps_lock */
159
160         unsigned char                   _pad;
161 };
162
163 /*  ffs_io_data structure ***************************************************/
164
165 struct ffs_io_data {
166         bool aio;
167         bool read;
168
169         struct kiocb *kiocb;
170         const struct iovec *iovec;
171         unsigned long nr_segs;
172         char __user *buf;
173         size_t len;
174
175         struct mm_struct *mm;
176         struct work_struct work;
177
178         struct usb_ep *ep;
179         struct usb_request *req;
180 };
181
182 static int  __must_check ffs_epfiles_create(struct ffs_data *ffs);
183 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
184
185 static struct inode *__must_check
186 ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
187                    const struct file_operations *fops,
188                    struct dentry **dentry_p);
189
190 /* Devices management *******************************************************/
191
192 DEFINE_MUTEX(ffs_lock);
193 EXPORT_SYMBOL(ffs_lock);
194
195 static struct ffs_dev *_ffs_find_dev(const char *name);
196 static struct ffs_dev *_ffs_alloc_dev(void);
197 static int _ffs_name_dev(struct ffs_dev *dev, const char *name);
198 static void _ffs_free_dev(struct ffs_dev *dev);
199 static void *ffs_acquire_dev(const char *dev_name);
200 static void ffs_release_dev(struct ffs_data *ffs_data);
201 static int ffs_ready(struct ffs_data *ffs);
202 static void ffs_closed(struct ffs_data *ffs);
203
204 /* Misc helper functions ****************************************************/
205
206 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
207         __attribute__((warn_unused_result, nonnull));
208 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
209         __attribute__((warn_unused_result, nonnull));
210
211
212 /* Control file aka ep0 *****************************************************/
213
214 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
215 {
216         struct ffs_data *ffs = req->context;
217
218         complete_all(&ffs->ep0req_completion);
219 }
220
221 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
222 {
223         struct usb_request *req = ffs->ep0req;
224         int ret;
225
226         req->zero     = len < le16_to_cpu(ffs->ev.setup.wLength);
227
228         spin_unlock_irq(&ffs->ev.waitq.lock);
229
230         req->buf      = data;
231         req->length   = len;
232
233         /*
234          * UDC layer requires to provide a buffer even for ZLP, but should
235          * not use it at all. Let's provide some poisoned pointer to catch
236          * possible bug in the driver.
237          */
238         if (req->buf == NULL)
239                 req->buf = (void *)0xDEADBABE;
240
241         reinit_completion(&ffs->ep0req_completion);
242
243         ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
244         if (unlikely(ret < 0))
245                 return ret;
246
247         ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
248         if (unlikely(ret)) {
249                 usb_ep_dequeue(ffs->gadget->ep0, req);
250                 return -EINTR;
251         }
252
253         ffs->setup_state = FFS_NO_SETUP;
254         return req->status ? req->status : req->actual;
255 }
256
257 static int __ffs_ep0_stall(struct ffs_data *ffs)
258 {
259         if (ffs->ev.can_stall) {
260                 pr_vdebug("ep0 stall\n");
261                 usb_ep_set_halt(ffs->gadget->ep0);
262                 ffs->setup_state = FFS_NO_SETUP;
263                 return -EL2HLT;
264         } else {
265                 pr_debug("bogus ep0 stall!\n");
266                 return -ESRCH;
267         }
268 }
269
270 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
271                              size_t len, loff_t *ptr)
272 {
273         struct ffs_data *ffs = file->private_data;
274         ssize_t ret;
275         char *data;
276
277         ENTER();
278
279         /* Fast check if setup was canceled */
280         if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
281                 return -EIDRM;
282
283         /* Acquire mutex */
284         ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
285         if (unlikely(ret < 0))
286                 return ret;
287
288         /* Check state */
289         switch (ffs->state) {
290         case FFS_READ_DESCRIPTORS:
291         case FFS_READ_STRINGS:
292                 /* Copy data */
293                 if (unlikely(len < 16)) {
294                         ret = -EINVAL;
295                         break;
296                 }
297
298                 data = ffs_prepare_buffer(buf, len);
299                 if (IS_ERR(data)) {
300                         ret = PTR_ERR(data);
301                         break;
302                 }
303
304                 /* Handle data */
305                 if (ffs->state == FFS_READ_DESCRIPTORS) {
306                         pr_info("read descriptors\n");
307                         ret = __ffs_data_got_descs(ffs, data, len);
308                         if (unlikely(ret < 0))
309                                 break;
310
311                         ffs->state = FFS_READ_STRINGS;
312                         ret = len;
313                 } else {
314                         pr_info("read strings\n");
315                         ret = __ffs_data_got_strings(ffs, data, len);
316                         if (unlikely(ret < 0))
317                                 break;
318
319                         ret = ffs_epfiles_create(ffs);
320                         if (unlikely(ret)) {
321                                 ffs->state = FFS_CLOSING;
322                                 break;
323                         }
324
325                         ffs->state = FFS_ACTIVE;
326                         mutex_unlock(&ffs->mutex);
327
328                         ret = ffs_ready(ffs);
329                         if (unlikely(ret < 0)) {
330                                 ffs->state = FFS_CLOSING;
331                                 return ret;
332                         }
333
334                         set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
335                         return len;
336                 }
337                 break;
338
339         case FFS_ACTIVE:
340                 data = NULL;
341                 /*
342                  * We're called from user space, we can use _irq
343                  * rather then _irqsave
344                  */
345                 spin_lock_irq(&ffs->ev.waitq.lock);
346                 switch (ffs_setup_state_clear_cancelled(ffs)) {
347                 case FFS_SETUP_CANCELLED:
348                         ret = -EIDRM;
349                         goto done_spin;
350
351                 case FFS_NO_SETUP:
352                         ret = -ESRCH;
353                         goto done_spin;
354
355                 case FFS_SETUP_PENDING:
356                         break;
357                 }
358
359                 /* FFS_SETUP_PENDING */
360                 if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
361                         spin_unlock_irq(&ffs->ev.waitq.lock);
362                         ret = __ffs_ep0_stall(ffs);
363                         break;
364                 }
365
366                 /* FFS_SETUP_PENDING and not stall */
367                 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
368
369                 spin_unlock_irq(&ffs->ev.waitq.lock);
370
371                 data = ffs_prepare_buffer(buf, len);
372                 if (IS_ERR(data)) {
373                         ret = PTR_ERR(data);
374                         break;
375                 }
376
377                 spin_lock_irq(&ffs->ev.waitq.lock);
378
379                 /*
380                  * We are guaranteed to be still in FFS_ACTIVE state
381                  * but the state of setup could have changed from
382                  * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
383                  * to check for that.  If that happened we copied data
384                  * from user space in vain but it's unlikely.
385                  *
386                  * For sure we are not in FFS_NO_SETUP since this is
387                  * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
388                  * transition can be performed and it's protected by
389                  * mutex.
390                  */
391                 if (ffs_setup_state_clear_cancelled(ffs) ==
392                     FFS_SETUP_CANCELLED) {
393                         ret = -EIDRM;
394 done_spin:
395                         spin_unlock_irq(&ffs->ev.waitq.lock);
396                 } else {
397                         /* unlocks spinlock */
398                         ret = __ffs_ep0_queue_wait(ffs, data, len);
399                 }
400                 kfree(data);
401                 break;
402
403         default:
404                 ret = -EBADFD;
405                 break;
406         }
407
408         mutex_unlock(&ffs->mutex);
409         return ret;
410 }
411
412 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
413                                      size_t n)
414 {
415         /*
416          * We are holding ffs->ev.waitq.lock and ffs->mutex and we need
417          * to release them.
418          */
419         struct usb_functionfs_event events[n];
420         unsigned i = 0;
421
422         memset(events, 0, sizeof events);
423
424         do {
425                 events[i].type = ffs->ev.types[i];
426                 if (events[i].type == FUNCTIONFS_SETUP) {
427                         events[i].u.setup = ffs->ev.setup;
428                         ffs->setup_state = FFS_SETUP_PENDING;
429                 }
430         } while (++i < n);
431
432         if (n < ffs->ev.count) {
433                 ffs->ev.count -= n;
434                 memmove(ffs->ev.types, ffs->ev.types + n,
435                         ffs->ev.count * sizeof *ffs->ev.types);
436         } else {
437                 ffs->ev.count = 0;
438         }
439
440         spin_unlock_irq(&ffs->ev.waitq.lock);
441         mutex_unlock(&ffs->mutex);
442
443         return unlikely(__copy_to_user(buf, events, sizeof events))
444                 ? -EFAULT : sizeof events;
445 }
446
447 static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
448                             size_t len, loff_t *ptr)
449 {
450         struct ffs_data *ffs = file->private_data;
451         char *data = NULL;
452         size_t n;
453         int ret;
454
455         ENTER();
456
457         /* Fast check if setup was canceled */
458         if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
459                 return -EIDRM;
460
461         /* Acquire mutex */
462         ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
463         if (unlikely(ret < 0))
464                 return ret;
465
466         /* Check state */
467         if (ffs->state != FFS_ACTIVE) {
468                 ret = -EBADFD;
469                 goto done_mutex;
470         }
471
472         /*
473          * We're called from user space, we can use _irq rather then
474          * _irqsave
475          */
476         spin_lock_irq(&ffs->ev.waitq.lock);
477
478         switch (ffs_setup_state_clear_cancelled(ffs)) {
479         case FFS_SETUP_CANCELLED:
480                 ret = -EIDRM;
481                 break;
482
483         case FFS_NO_SETUP:
484                 n = len / sizeof(struct usb_functionfs_event);
485                 if (unlikely(!n)) {
486                         ret = -EINVAL;
487                         break;
488                 }
489
490                 if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
491                         ret = -EAGAIN;
492                         break;
493                 }
494
495                 if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
496                                                         ffs->ev.count)) {
497                         ret = -EINTR;
498                         break;
499                 }
500
501                 return __ffs_ep0_read_events(ffs, buf,
502                                              min(n, (size_t)ffs->ev.count));
503
504         case FFS_SETUP_PENDING:
505                 if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
506                         spin_unlock_irq(&ffs->ev.waitq.lock);
507                         ret = __ffs_ep0_stall(ffs);
508                         goto done_mutex;
509                 }
510
511                 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
512
513                 spin_unlock_irq(&ffs->ev.waitq.lock);
514
515                 if (likely(len)) {
516                         data = kmalloc(len, GFP_KERNEL);
517                         if (unlikely(!data)) {
518                                 ret = -ENOMEM;
519                                 goto done_mutex;
520                         }
521                 }
522
523                 spin_lock_irq(&ffs->ev.waitq.lock);
524
525                 /* See ffs_ep0_write() */
526                 if (ffs_setup_state_clear_cancelled(ffs) ==
527                     FFS_SETUP_CANCELLED) {
528                         ret = -EIDRM;
529                         break;
530                 }
531
532                 /* unlocks spinlock */
533                 ret = __ffs_ep0_queue_wait(ffs, data, len);
534                 if (likely(ret > 0) && unlikely(__copy_to_user(buf, data, len)))
535                         ret = -EFAULT;
536                 goto done_mutex;
537
538         default:
539                 ret = -EBADFD;
540                 break;
541         }
542
543         spin_unlock_irq(&ffs->ev.waitq.lock);
544 done_mutex:
545         mutex_unlock(&ffs->mutex);
546         kfree(data);
547         return ret;
548 }
549
550 static int ffs_ep0_open(struct inode *inode, struct file *file)
551 {
552         struct ffs_data *ffs = inode->i_private;
553
554         ENTER();
555
556         if (unlikely(ffs->state == FFS_CLOSING))
557                 return -EBUSY;
558
559         file->private_data = ffs;
560         ffs_data_opened(ffs);
561
562         return 0;
563 }
564
565 static int ffs_ep0_release(struct inode *inode, struct file *file)
566 {
567         struct ffs_data *ffs = file->private_data;
568
569         ENTER();
570
571         ffs_data_closed(ffs);
572
573         return 0;
574 }
575
576 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
577 {
578         struct ffs_data *ffs = file->private_data;
579         struct usb_gadget *gadget = ffs->gadget;
580         long ret;
581
582         ENTER();
583
584         if (code == FUNCTIONFS_INTERFACE_REVMAP) {
585                 struct ffs_function *func = ffs->func;
586                 ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
587         } else if (gadget && gadget->ops->ioctl) {
588                 ret = gadget->ops->ioctl(gadget, code, value);
589         } else {
590                 ret = -ENOTTY;
591         }
592
593         return ret;
594 }
595
596 static unsigned int ffs_ep0_poll(struct file *file, poll_table *wait)
597 {
598         struct ffs_data *ffs = file->private_data;
599         unsigned int mask = POLLWRNORM;
600         int ret;
601
602         poll_wait(file, &ffs->ev.waitq, wait);
603
604         ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
605         if (unlikely(ret < 0))
606                 return mask;
607
608         switch (ffs->state) {
609         case FFS_READ_DESCRIPTORS:
610         case FFS_READ_STRINGS:
611                 mask |= POLLOUT;
612                 break;
613
614         case FFS_ACTIVE:
615                 switch (ffs->setup_state) {
616                 case FFS_NO_SETUP:
617                         if (ffs->ev.count)
618                                 mask |= POLLIN;
619                         break;
620
621                 case FFS_SETUP_PENDING:
622                 case FFS_SETUP_CANCELLED:
623                         mask |= (POLLIN | POLLOUT);
624                         break;
625                 }
626         case FFS_CLOSING:
627                 break;
628         }
629
630         mutex_unlock(&ffs->mutex);
631
632         return mask;
633 }
634
635 static const struct file_operations ffs_ep0_operations = {
636         .llseek =       no_llseek,
637
638         .open =         ffs_ep0_open,
639         .write =        ffs_ep0_write,
640         .read =         ffs_ep0_read,
641         .release =      ffs_ep0_release,
642         .unlocked_ioctl =       ffs_ep0_ioctl,
643         .poll =         ffs_ep0_poll,
644 };
645
646
647 /* "Normal" endpoints operations ********************************************/
648
649 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
650 {
651         ENTER();
652         if (likely(req->context)) {
653                 struct ffs_ep *ep = _ep->driver_data;
654                 ep->status = req->status ? req->status : req->actual;
655                 complete(req->context);
656         }
657 }
658
659 static void ffs_user_copy_worker(struct work_struct *work)
660 {
661         struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
662                                                    work);
663         int ret = io_data->req->status ? io_data->req->status :
664                                          io_data->req->actual;
665
666         if (io_data->read && ret > 0) {
667                 int i;
668                 size_t pos = 0;
669                 use_mm(io_data->mm);
670                 for (i = 0; i < io_data->nr_segs; i++) {
671                         if (unlikely(copy_to_user(io_data->iovec[i].iov_base,
672                                                  &io_data->buf[pos],
673                                                  io_data->iovec[i].iov_len))) {
674                                 ret = -EFAULT;
675                                 break;
676                         }
677                         pos += io_data->iovec[i].iov_len;
678                 }
679                 unuse_mm(io_data->mm);
680         }
681
682         aio_complete(io_data->kiocb, ret, ret);
683
684         usb_ep_free_request(io_data->ep, io_data->req);
685
686         io_data->kiocb->private = NULL;
687         if (io_data->read)
688                 kfree(io_data->iovec);
689         kfree(io_data->buf);
690         kfree(io_data);
691 }
692
693 static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
694                                          struct usb_request *req)
695 {
696         struct ffs_io_data *io_data = req->context;
697
698         ENTER();
699
700         INIT_WORK(&io_data->work, ffs_user_copy_worker);
701         schedule_work(&io_data->work);
702 }
703
704 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
705 {
706         struct ffs_epfile *epfile = file->private_data;
707         struct usb_gadget *gadget = epfile->ffs->gadget;
708         struct ffs_ep *ep;
709         char *data = NULL;
710         ssize_t ret, data_len;
711         int halt;
712
713         /* Are we still active? */
714         if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) {
715                 ret = -ENODEV;
716                 goto error;
717         }
718
719         /* Wait for endpoint to be enabled */
720         ep = epfile->ep;
721         if (!ep) {
722                 if (file->f_flags & O_NONBLOCK) {
723                         ret = -EAGAIN;
724                         goto error;
725                 }
726
727                 ret = wait_event_interruptible(epfile->wait, (ep = epfile->ep));
728                 if (ret) {
729                         ret = -EINTR;
730                         goto error;
731                 }
732         }
733
734         /* Do we halt? */
735         halt = (!io_data->read == !epfile->in);
736         if (halt && epfile->isoc) {
737                 ret = -EINVAL;
738                 goto error;
739         }
740
741         /* Allocate & copy */
742         if (!halt) {
743                 /*
744                  * Controller may require buffer size to be aligned to
745                  * maxpacketsize of an out endpoint.
746                  */
747                 data_len = io_data->read ?
748                            usb_ep_align_maybe(gadget, ep->ep, io_data->len) :
749                            io_data->len;
750
751                 data = kmalloc(data_len, GFP_KERNEL);
752                 if (unlikely(!data))
753                         return -ENOMEM;
754                 if (io_data->aio && !io_data->read) {
755                         int i;
756                         size_t pos = 0;
757                         for (i = 0; i < io_data->nr_segs; i++) {
758                                 if (unlikely(copy_from_user(&data[pos],
759                                              io_data->iovec[i].iov_base,
760                                              io_data->iovec[i].iov_len))) {
761                                         ret = -EFAULT;
762                                         goto error;
763                                 }
764                                 pos += io_data->iovec[i].iov_len;
765                         }
766                 } else {
767                         if (!io_data->read &&
768                             unlikely(__copy_from_user(data, io_data->buf,
769                                                       io_data->len))) {
770                                 ret = -EFAULT;
771                                 goto error;
772                         }
773                 }
774         }
775
776         /* We will be using request */
777         ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
778         if (unlikely(ret))
779                 goto error;
780
781         spin_lock_irq(&epfile->ffs->eps_lock);
782
783         if (epfile->ep != ep) {
784                 /* In the meantime, endpoint got disabled or changed. */
785                 ret = -ESHUTDOWN;
786                 spin_unlock_irq(&epfile->ffs->eps_lock);
787         } else if (halt) {
788                 /* Halt */
789                 if (likely(epfile->ep == ep) && !WARN_ON(!ep->ep))
790                         usb_ep_set_halt(ep->ep);
791                 spin_unlock_irq(&epfile->ffs->eps_lock);
792                 ret = -EBADMSG;
793         } else {
794                 /* Fire the request */
795                 struct usb_request *req;
796
797                 if (io_data->aio) {
798                         req = usb_ep_alloc_request(ep->ep, GFP_KERNEL);
799                         if (unlikely(!req))
800                                 goto error;
801
802                         req->buf      = data;
803                         req->length   = io_data->len;
804
805                         io_data->buf = data;
806                         io_data->ep = ep->ep;
807                         io_data->req = req;
808
809                         req->context  = io_data;
810                         req->complete = ffs_epfile_async_io_complete;
811
812                         ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
813                         if (unlikely(ret)) {
814                                 usb_ep_free_request(ep->ep, req);
815                                 goto error;
816                         }
817                         ret = -EIOCBQUEUED;
818
819                         spin_unlock_irq(&epfile->ffs->eps_lock);
820                 } else {
821                         DECLARE_COMPLETION_ONSTACK(done);
822
823                         req = ep->req;
824                         req->buf      = data;
825                         req->length   = io_data->len;
826
827                         req->context  = &done;
828                         req->complete = ffs_epfile_io_complete;
829
830                         ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
831
832                         spin_unlock_irq(&epfile->ffs->eps_lock);
833
834                         if (unlikely(ret < 0)) {
835                                 /* nop */
836                         } else if (unlikely(
837                                    wait_for_completion_interruptible(&done))) {
838                                 ret = -EINTR;
839                                 usb_ep_dequeue(ep->ep, req);
840                         } else {
841                         /*
842                          * XXX We may end up silently droping data here.
843                          * Since data_len (i.e. req->length) may be bigger
844                          * than len (after being rounded up to maxpacketsize),
845                          * we may end up with more data then user space has
846                          * space for.
847                          */
848                         ret = ep->status;
849                         if (io_data->read && ret > 0 &&
850                             unlikely(copy_to_user(io_data->buf, data,
851                                                   min_t(size_t, ret,
852                                                   io_data->len))))
853                                 ret = -EFAULT;
854                         }
855                         kfree(data);
856                 }
857         }
858
859         mutex_unlock(&epfile->mutex);
860         return ret;
861 error:
862         kfree(data);
863         return ret;
864 }
865
866 static ssize_t
867 ffs_epfile_write(struct file *file, const char __user *buf, size_t len,
868                  loff_t *ptr)
869 {
870         struct ffs_io_data io_data;
871
872         ENTER();
873
874         io_data.aio = false;
875         io_data.read = false;
876         io_data.buf = (char * __user)buf;
877         io_data.len = len;
878
879         return ffs_epfile_io(file, &io_data);
880 }
881
882 static ssize_t
883 ffs_epfile_read(struct file *file, char __user *buf, size_t len, loff_t *ptr)
884 {
885         struct ffs_io_data io_data;
886
887         ENTER();
888
889         io_data.aio = false;
890         io_data.read = true;
891         io_data.buf = buf;
892         io_data.len = len;
893
894         return ffs_epfile_io(file, &io_data);
895 }
896
897 static int
898 ffs_epfile_open(struct inode *inode, struct file *file)
899 {
900         struct ffs_epfile *epfile = inode->i_private;
901
902         ENTER();
903
904         if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
905                 return -ENODEV;
906
907         file->private_data = epfile;
908         ffs_data_opened(epfile->ffs);
909
910         return 0;
911 }
912
913 static int ffs_aio_cancel(struct kiocb *kiocb)
914 {
915         struct ffs_io_data *io_data = kiocb->private;
916         struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
917         int value;
918
919         ENTER();
920
921         spin_lock_irq(&epfile->ffs->eps_lock);
922
923         if (likely(io_data && io_data->ep && io_data->req))
924                 value = usb_ep_dequeue(io_data->ep, io_data->req);
925         else
926                 value = -EINVAL;
927
928         spin_unlock_irq(&epfile->ffs->eps_lock);
929
930         return value;
931 }
932
933 static ssize_t ffs_epfile_aio_write(struct kiocb *kiocb,
934                                     const struct iovec *iovec,
935                                     unsigned long nr_segs, loff_t loff)
936 {
937         struct ffs_io_data *io_data;
938
939         ENTER();
940
941         io_data = kmalloc(sizeof(*io_data), GFP_KERNEL);
942         if (unlikely(!io_data))
943                 return -ENOMEM;
944
945         io_data->aio = true;
946         io_data->read = false;
947         io_data->kiocb = kiocb;
948         io_data->iovec = iovec;
949         io_data->nr_segs = nr_segs;
950         io_data->len = kiocb->ki_nbytes;
951         io_data->mm = current->mm;
952
953         kiocb->private = io_data;
954
955         kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
956
957         return ffs_epfile_io(kiocb->ki_filp, io_data);
958 }
959
960 static ssize_t ffs_epfile_aio_read(struct kiocb *kiocb,
961                                    const struct iovec *iovec,
962                                    unsigned long nr_segs, loff_t loff)
963 {
964         struct ffs_io_data *io_data;
965         struct iovec *iovec_copy;
966
967         ENTER();
968
969         iovec_copy = kmalloc_array(nr_segs, sizeof(*iovec_copy), GFP_KERNEL);
970         if (unlikely(!iovec_copy))
971                 return -ENOMEM;
972
973         memcpy(iovec_copy, iovec, sizeof(struct iovec)*nr_segs);
974
975         io_data = kmalloc(sizeof(*io_data), GFP_KERNEL);
976         if (unlikely(!io_data)) {
977                 kfree(iovec_copy);
978                 return -ENOMEM;
979         }
980
981         io_data->aio = true;
982         io_data->read = true;
983         io_data->kiocb = kiocb;
984         io_data->iovec = iovec_copy;
985         io_data->nr_segs = nr_segs;
986         io_data->len = kiocb->ki_nbytes;
987         io_data->mm = current->mm;
988
989         kiocb->private = io_data;
990
991         kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
992
993         return ffs_epfile_io(kiocb->ki_filp, io_data);
994 }
995
996 static int
997 ffs_epfile_release(struct inode *inode, struct file *file)
998 {
999         struct ffs_epfile *epfile = inode->i_private;
1000
1001         ENTER();
1002
1003         ffs_data_closed(epfile->ffs);
1004
1005         return 0;
1006 }
1007
1008 static long ffs_epfile_ioctl(struct file *file, unsigned code,
1009                              unsigned long value)
1010 {
1011         struct ffs_epfile *epfile = file->private_data;
1012         int ret;
1013
1014         ENTER();
1015
1016         if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1017                 return -ENODEV;
1018
1019         spin_lock_irq(&epfile->ffs->eps_lock);
1020         if (likely(epfile->ep)) {
1021                 switch (code) {
1022                 case FUNCTIONFS_FIFO_STATUS:
1023                         ret = usb_ep_fifo_status(epfile->ep->ep);
1024                         break;
1025                 case FUNCTIONFS_FIFO_FLUSH:
1026                         usb_ep_fifo_flush(epfile->ep->ep);
1027                         ret = 0;
1028                         break;
1029                 case FUNCTIONFS_CLEAR_HALT:
1030                         ret = usb_ep_clear_halt(epfile->ep->ep);
1031                         break;
1032                 case FUNCTIONFS_ENDPOINT_REVMAP:
1033                         ret = epfile->ep->num;
1034                         break;
1035                 default:
1036                         ret = -ENOTTY;
1037                 }
1038         } else {
1039                 ret = -ENODEV;
1040         }
1041         spin_unlock_irq(&epfile->ffs->eps_lock);
1042
1043         return ret;
1044 }
1045
1046 static const struct file_operations ffs_epfile_operations = {
1047         .llseek =       no_llseek,
1048
1049         .open =         ffs_epfile_open,
1050         .write =        ffs_epfile_write,
1051         .read =         ffs_epfile_read,
1052         .aio_write =    ffs_epfile_aio_write,
1053         .aio_read =     ffs_epfile_aio_read,
1054         .release =      ffs_epfile_release,
1055         .unlocked_ioctl =       ffs_epfile_ioctl,
1056 };
1057
1058
1059 /* File system and super block operations ***********************************/
1060
1061 /*
1062  * Mounting the file system creates a controller file, used first for
1063  * function configuration then later for event monitoring.
1064  */
1065
1066 static struct inode *__must_check
1067 ffs_sb_make_inode(struct super_block *sb, void *data,
1068                   const struct file_operations *fops,
1069                   const struct inode_operations *iops,
1070                   struct ffs_file_perms *perms)
1071 {
1072         struct inode *inode;
1073
1074         ENTER();
1075
1076         inode = new_inode(sb);
1077
1078         if (likely(inode)) {
1079                 struct timespec current_time = CURRENT_TIME;
1080
1081                 inode->i_ino     = get_next_ino();
1082                 inode->i_mode    = perms->mode;
1083                 inode->i_uid     = perms->uid;
1084                 inode->i_gid     = perms->gid;
1085                 inode->i_atime   = current_time;
1086                 inode->i_mtime   = current_time;
1087                 inode->i_ctime   = current_time;
1088                 inode->i_private = data;
1089                 if (fops)
1090                         inode->i_fop = fops;
1091                 if (iops)
1092                         inode->i_op  = iops;
1093         }
1094
1095         return inode;
1096 }
1097
1098 /* Create "regular" file */
1099 static struct inode *ffs_sb_create_file(struct super_block *sb,
1100                                         const char *name, void *data,
1101                                         const struct file_operations *fops,
1102                                         struct dentry **dentry_p)
1103 {
1104         struct ffs_data *ffs = sb->s_fs_info;
1105         struct dentry   *dentry;
1106         struct inode    *inode;
1107
1108         ENTER();
1109
1110         dentry = d_alloc_name(sb->s_root, name);
1111         if (unlikely(!dentry))
1112                 return NULL;
1113
1114         inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1115         if (unlikely(!inode)) {
1116                 dput(dentry);
1117                 return NULL;
1118         }
1119
1120         d_add(dentry, inode);
1121         if (dentry_p)
1122                 *dentry_p = dentry;
1123
1124         return inode;
1125 }
1126
1127 /* Super block */
1128 static const struct super_operations ffs_sb_operations = {
1129         .statfs =       simple_statfs,
1130         .drop_inode =   generic_delete_inode,
1131 };
1132
1133 struct ffs_sb_fill_data {
1134         struct ffs_file_perms perms;
1135         umode_t root_mode;
1136         const char *dev_name;
1137         struct ffs_data *ffs_data;
1138 };
1139
1140 static int ffs_sb_fill(struct super_block *sb, void *_data, int silent)
1141 {
1142         struct ffs_sb_fill_data *data = _data;
1143         struct inode    *inode;
1144         struct ffs_data *ffs = data->ffs_data;
1145
1146         ENTER();
1147
1148         ffs->sb              = sb;
1149         data->ffs_data       = NULL;
1150         sb->s_fs_info        = ffs;
1151         sb->s_blocksize      = PAGE_CACHE_SIZE;
1152         sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1153         sb->s_magic          = FUNCTIONFS_MAGIC;
1154         sb->s_op             = &ffs_sb_operations;
1155         sb->s_time_gran      = 1;
1156
1157         /* Root inode */
1158         data->perms.mode = data->root_mode;
1159         inode = ffs_sb_make_inode(sb, NULL,
1160                                   &simple_dir_operations,
1161                                   &simple_dir_inode_operations,
1162                                   &data->perms);
1163         sb->s_root = d_make_root(inode);
1164         if (unlikely(!sb->s_root))
1165                 return -ENOMEM;
1166
1167         /* EP0 file */
1168         if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs,
1169                                          &ffs_ep0_operations, NULL)))
1170                 return -ENOMEM;
1171
1172         return 0;
1173 }
1174
1175 static int ffs_fs_parse_opts(struct ffs_sb_fill_data *data, char *opts)
1176 {
1177         ENTER();
1178
1179         if (!opts || !*opts)
1180                 return 0;
1181
1182         for (;;) {
1183                 unsigned long value;
1184                 char *eq, *comma;
1185
1186                 /* Option limit */
1187                 comma = strchr(opts, ',');
1188                 if (comma)
1189                         *comma = 0;
1190
1191                 /* Value limit */
1192                 eq = strchr(opts, '=');
1193                 if (unlikely(!eq)) {
1194                         pr_err("'=' missing in %s\n", opts);
1195                         return -EINVAL;
1196                 }
1197                 *eq = 0;
1198
1199                 /* Parse value */
1200                 if (kstrtoul(eq + 1, 0, &value)) {
1201                         pr_err("%s: invalid value: %s\n", opts, eq + 1);
1202                         return -EINVAL;
1203                 }
1204
1205                 /* Interpret option */
1206                 switch (eq - opts) {
1207                 case 5:
1208                         if (!memcmp(opts, "rmode", 5))
1209                                 data->root_mode  = (value & 0555) | S_IFDIR;
1210                         else if (!memcmp(opts, "fmode", 5))
1211                                 data->perms.mode = (value & 0666) | S_IFREG;
1212                         else
1213                                 goto invalid;
1214                         break;
1215
1216                 case 4:
1217                         if (!memcmp(opts, "mode", 4)) {
1218                                 data->root_mode  = (value & 0555) | S_IFDIR;
1219                                 data->perms.mode = (value & 0666) | S_IFREG;
1220                         } else {
1221                                 goto invalid;
1222                         }
1223                         break;
1224
1225                 case 3:
1226                         if (!memcmp(opts, "uid", 3)) {
1227                                 data->perms.uid = make_kuid(current_user_ns(), value);
1228                                 if (!uid_valid(data->perms.uid)) {
1229                                         pr_err("%s: unmapped value: %lu\n", opts, value);
1230                                         return -EINVAL;
1231                                 }
1232                         } else if (!memcmp(opts, "gid", 3)) {
1233                                 data->perms.gid = make_kgid(current_user_ns(), value);
1234                                 if (!gid_valid(data->perms.gid)) {
1235                                         pr_err("%s: unmapped value: %lu\n", opts, value);
1236                                         return -EINVAL;
1237                                 }
1238                         } else {
1239                                 goto invalid;
1240                         }
1241                         break;
1242
1243                 default:
1244 invalid:
1245                         pr_err("%s: invalid option\n", opts);
1246                         return -EINVAL;
1247                 }
1248
1249                 /* Next iteration */
1250                 if (!comma)
1251                         break;
1252                 opts = comma + 1;
1253         }
1254
1255         return 0;
1256 }
1257
1258 /* "mount -t functionfs dev_name /dev/function" ends up here */
1259
1260 static struct dentry *
1261 ffs_fs_mount(struct file_system_type *t, int flags,
1262               const char *dev_name, void *opts)
1263 {
1264         struct ffs_sb_fill_data data = {
1265                 .perms = {
1266                         .mode = S_IFREG | 0600,
1267                         .uid = GLOBAL_ROOT_UID,
1268                         .gid = GLOBAL_ROOT_GID,
1269                 },
1270                 .root_mode = S_IFDIR | 0500,
1271         };
1272         struct dentry *rv;
1273         int ret;
1274         void *ffs_dev;
1275         struct ffs_data *ffs;
1276
1277         ENTER();
1278
1279         ret = ffs_fs_parse_opts(&data, opts);
1280         if (unlikely(ret < 0))
1281                 return ERR_PTR(ret);
1282
1283         ffs = ffs_data_new();
1284         if (unlikely(!ffs))
1285                 return ERR_PTR(-ENOMEM);
1286         ffs->file_perms = data.perms;
1287
1288         ffs->dev_name = kstrdup(dev_name, GFP_KERNEL);
1289         if (unlikely(!ffs->dev_name)) {
1290                 ffs_data_put(ffs);
1291                 return ERR_PTR(-ENOMEM);
1292         }
1293
1294         ffs_dev = ffs_acquire_dev(dev_name);
1295         if (IS_ERR(ffs_dev)) {
1296                 ffs_data_put(ffs);
1297                 return ERR_CAST(ffs_dev);
1298         }
1299         ffs->private_data = ffs_dev;
1300         data.ffs_data = ffs;
1301
1302         rv = mount_nodev(t, flags, &data, ffs_sb_fill);
1303         if (IS_ERR(rv) && data.ffs_data) {
1304                 ffs_release_dev(data.ffs_data);
1305                 ffs_data_put(data.ffs_data);
1306         }
1307         return rv;
1308 }
1309
1310 static void
1311 ffs_fs_kill_sb(struct super_block *sb)
1312 {
1313         ENTER();
1314
1315         kill_litter_super(sb);
1316         if (sb->s_fs_info) {
1317                 ffs_release_dev(sb->s_fs_info);
1318                 ffs_data_put(sb->s_fs_info);
1319         }
1320 }
1321
1322 static struct file_system_type ffs_fs_type = {
1323         .owner          = THIS_MODULE,
1324         .name           = "functionfs",
1325         .mount          = ffs_fs_mount,
1326         .kill_sb        = ffs_fs_kill_sb,
1327 };
1328 MODULE_ALIAS_FS("functionfs");
1329
1330
1331 /* Driver's main init/cleanup functions *************************************/
1332
1333 static int functionfs_init(void)
1334 {
1335         int ret;
1336
1337         ENTER();
1338
1339         ret = register_filesystem(&ffs_fs_type);
1340         if (likely(!ret))
1341                 pr_info("file system registered\n");
1342         else
1343                 pr_err("failed registering file system (%d)\n", ret);
1344
1345         return ret;
1346 }
1347
1348 static void functionfs_cleanup(void)
1349 {
1350         ENTER();
1351
1352         pr_info("unloading\n");
1353         unregister_filesystem(&ffs_fs_type);
1354 }
1355
1356
1357 /* ffs_data and ffs_function construction and destruction code **************/
1358
1359 static void ffs_data_clear(struct ffs_data *ffs);
1360 static void ffs_data_reset(struct ffs_data *ffs);
1361
1362 static void ffs_data_get(struct ffs_data *ffs)
1363 {
1364         ENTER();
1365
1366         atomic_inc(&ffs->ref);
1367 }
1368
1369 static void ffs_data_opened(struct ffs_data *ffs)
1370 {
1371         ENTER();
1372
1373         atomic_inc(&ffs->ref);
1374         atomic_inc(&ffs->opened);
1375 }
1376
1377 static void ffs_data_put(struct ffs_data *ffs)
1378 {
1379         ENTER();
1380
1381         if (unlikely(atomic_dec_and_test(&ffs->ref))) {
1382                 pr_info("%s(): freeing\n", __func__);
1383                 ffs_data_clear(ffs);
1384                 BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1385                        waitqueue_active(&ffs->ep0req_completion.wait));
1386                 kfree(ffs->dev_name);
1387                 kfree(ffs);
1388         }
1389 }
1390
1391 static void ffs_data_closed(struct ffs_data *ffs)
1392 {
1393         ENTER();
1394
1395         if (atomic_dec_and_test(&ffs->opened)) {
1396                 ffs->state = FFS_CLOSING;
1397                 ffs_data_reset(ffs);
1398         }
1399
1400         ffs_data_put(ffs);
1401 }
1402
1403 static struct ffs_data *ffs_data_new(void)
1404 {
1405         struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
1406         if (unlikely(!ffs))
1407                 return NULL;
1408
1409         ENTER();
1410
1411         atomic_set(&ffs->ref, 1);
1412         atomic_set(&ffs->opened, 0);
1413         ffs->state = FFS_READ_DESCRIPTORS;
1414         mutex_init(&ffs->mutex);
1415         spin_lock_init(&ffs->eps_lock);
1416         init_waitqueue_head(&ffs->ev.waitq);
1417         init_completion(&ffs->ep0req_completion);
1418
1419         /* XXX REVISIT need to update it in some places, or do we? */
1420         ffs->ev.can_stall = 1;
1421
1422         return ffs;
1423 }
1424
1425 static void ffs_data_clear(struct ffs_data *ffs)
1426 {
1427         ENTER();
1428
1429         if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags))
1430                 ffs_closed(ffs);
1431
1432         BUG_ON(ffs->gadget);
1433
1434         if (ffs->epfiles)
1435                 ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count);
1436
1437         kfree(ffs->raw_descs_data);
1438         kfree(ffs->raw_strings);
1439         kfree(ffs->stringtabs);
1440 }
1441
1442 static void ffs_data_reset(struct ffs_data *ffs)
1443 {
1444         ENTER();
1445
1446         ffs_data_clear(ffs);
1447
1448         ffs->epfiles = NULL;
1449         ffs->raw_descs_data = NULL;
1450         ffs->raw_descs = NULL;
1451         ffs->raw_strings = NULL;
1452         ffs->stringtabs = NULL;
1453
1454         ffs->raw_descs_length = 0;
1455         ffs->fs_descs_count = 0;
1456         ffs->hs_descs_count = 0;
1457         ffs->ss_descs_count = 0;
1458
1459         ffs->strings_count = 0;
1460         ffs->interfaces_count = 0;
1461         ffs->eps_count = 0;
1462
1463         ffs->ev.count = 0;
1464
1465         ffs->state = FFS_READ_DESCRIPTORS;
1466         ffs->setup_state = FFS_NO_SETUP;
1467         ffs->flags = 0;
1468 }
1469
1470
1471 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
1472 {
1473         struct usb_gadget_strings **lang;
1474         int first_id;
1475
1476         ENTER();
1477
1478         if (WARN_ON(ffs->state != FFS_ACTIVE
1479                  || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
1480                 return -EBADFD;
1481
1482         first_id = usb_string_ids_n(cdev, ffs->strings_count);
1483         if (unlikely(first_id < 0))
1484                 return first_id;
1485
1486         ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
1487         if (unlikely(!ffs->ep0req))
1488                 return -ENOMEM;
1489         ffs->ep0req->complete = ffs_ep0_complete;
1490         ffs->ep0req->context = ffs;
1491
1492         lang = ffs->stringtabs;
1493         for (lang = ffs->stringtabs; *lang; ++lang) {
1494                 struct usb_string *str = (*lang)->strings;
1495                 int id = first_id;
1496                 for (; str->s; ++id, ++str)
1497                         str->id = id;
1498         }
1499
1500         ffs->gadget = cdev->gadget;
1501         ffs_data_get(ffs);
1502         return 0;
1503 }
1504
1505 static void functionfs_unbind(struct ffs_data *ffs)
1506 {
1507         ENTER();
1508
1509         if (!WARN_ON(!ffs->gadget)) {
1510                 usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
1511                 ffs->ep0req = NULL;
1512                 ffs->gadget = NULL;
1513                 clear_bit(FFS_FL_BOUND, &ffs->flags);
1514                 ffs_data_put(ffs);
1515         }
1516 }
1517
1518 static int ffs_epfiles_create(struct ffs_data *ffs)
1519 {
1520         struct ffs_epfile *epfile, *epfiles;
1521         unsigned i, count;
1522
1523         ENTER();
1524
1525         count = ffs->eps_count;
1526         epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1527         if (!epfiles)
1528                 return -ENOMEM;
1529
1530         epfile = epfiles;
1531         for (i = 1; i <= count; ++i, ++epfile) {
1532                 epfile->ffs = ffs;
1533                 mutex_init(&epfile->mutex);
1534                 init_waitqueue_head(&epfile->wait);
1535                 sprintf(epfiles->name, "ep%u",  i);
1536                 if (!unlikely(ffs_sb_create_file(ffs->sb, epfiles->name, epfile,
1537                                                  &ffs_epfile_operations,
1538                                                  &epfile->dentry))) {
1539                         ffs_epfiles_destroy(epfiles, i - 1);
1540                         return -ENOMEM;
1541                 }
1542         }
1543
1544         ffs->epfiles = epfiles;
1545         return 0;
1546 }
1547
1548 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
1549 {
1550         struct ffs_epfile *epfile = epfiles;
1551
1552         ENTER();
1553
1554         for (; count; --count, ++epfile) {
1555                 BUG_ON(mutex_is_locked(&epfile->mutex) ||
1556                        waitqueue_active(&epfile->wait));
1557                 if (epfile->dentry) {
1558                         d_delete(epfile->dentry);
1559                         dput(epfile->dentry);
1560                         epfile->dentry = NULL;
1561                 }
1562         }
1563
1564         kfree(epfiles);
1565 }
1566
1567
1568 static void ffs_func_eps_disable(struct ffs_function *func)
1569 {
1570         struct ffs_ep *ep         = func->eps;
1571         struct ffs_epfile *epfile = func->ffs->epfiles;
1572         unsigned count            = func->ffs->eps_count;
1573         unsigned long flags;
1574
1575         spin_lock_irqsave(&func->ffs->eps_lock, flags);
1576         do {
1577                 /* pending requests get nuked */
1578                 if (likely(ep->ep))
1579                         usb_ep_disable(ep->ep);
1580                 epfile->ep = NULL;
1581
1582                 ++ep;
1583                 ++epfile;
1584         } while (--count);
1585         spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1586 }
1587
1588 static int ffs_func_eps_enable(struct ffs_function *func)
1589 {
1590         struct ffs_data *ffs      = func->ffs;
1591         struct ffs_ep *ep         = func->eps;
1592         struct ffs_epfile *epfile = ffs->epfiles;
1593         unsigned count            = ffs->eps_count;
1594         unsigned long flags;
1595         int ret = 0;
1596
1597         spin_lock_irqsave(&func->ffs->eps_lock, flags);
1598         do {
1599                 struct usb_endpoint_descriptor *ds;
1600                 int desc_idx;
1601
1602                 if (ffs->gadget->speed == USB_SPEED_SUPER)
1603                         desc_idx = 2;
1604                 else if (ffs->gadget->speed == USB_SPEED_HIGH)
1605                         desc_idx = 1;
1606                 else
1607                         desc_idx = 0;
1608
1609                 /* fall-back to lower speed if desc missing for current speed */
1610                 do {
1611                         ds = ep->descs[desc_idx];
1612                 } while (!ds && --desc_idx >= 0);
1613
1614                 if (!ds) {
1615                         ret = -EINVAL;
1616                         break;
1617                 }
1618
1619                 ep->ep->driver_data = ep;
1620                 ep->ep->desc = ds;
1621                 ret = usb_ep_enable(ep->ep);
1622                 if (likely(!ret)) {
1623                         epfile->ep = ep;
1624                         epfile->in = usb_endpoint_dir_in(ds);
1625                         epfile->isoc = usb_endpoint_xfer_isoc(ds);
1626                 } else {
1627                         break;
1628                 }
1629
1630                 wake_up(&epfile->wait);
1631
1632                 ++ep;
1633                 ++epfile;
1634         } while (--count);
1635         spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1636
1637         return ret;
1638 }
1639
1640
1641 /* Parsing and building descriptors and strings *****************************/
1642
1643 /*
1644  * This validates if data pointed by data is a valid USB descriptor as
1645  * well as record how many interfaces, endpoints and strings are
1646  * required by given configuration.  Returns address after the
1647  * descriptor or NULL if data is invalid.
1648  */
1649
1650 enum ffs_entity_type {
1651         FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
1652 };
1653
1654 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
1655                                    u8 *valuep,
1656                                    struct usb_descriptor_header *desc,
1657                                    void *priv);
1658
1659 static int __must_check ffs_do_desc(char *data, unsigned len,
1660                                     ffs_entity_callback entity, void *priv)
1661 {
1662         struct usb_descriptor_header *_ds = (void *)data;
1663         u8 length;
1664         int ret;
1665
1666         ENTER();
1667
1668         /* At least two bytes are required: length and type */
1669         if (len < 2) {
1670                 pr_vdebug("descriptor too short\n");
1671                 return -EINVAL;
1672         }
1673
1674         /* If we have at least as many bytes as the descriptor takes? */
1675         length = _ds->bLength;
1676         if (len < length) {
1677                 pr_vdebug("descriptor longer then available data\n");
1678                 return -EINVAL;
1679         }
1680
1681 #define __entity_check_INTERFACE(val)  1
1682 #define __entity_check_STRING(val)     (val)
1683 #define __entity_check_ENDPOINT(val)   ((val) & USB_ENDPOINT_NUMBER_MASK)
1684 #define __entity(type, val) do {                                        \
1685                 pr_vdebug("entity " #type "(%02x)\n", (val));           \
1686                 if (unlikely(!__entity_check_ ##type(val))) {           \
1687                         pr_vdebug("invalid entity's value\n");          \
1688                         return -EINVAL;                                 \
1689                 }                                                       \
1690                 ret = entity(FFS_ ##type, &val, _ds, priv);             \
1691                 if (unlikely(ret < 0)) {                                \
1692                         pr_debug("entity " #type "(%02x); ret = %d\n",  \
1693                                  (val), ret);                           \
1694                         return ret;                                     \
1695                 }                                                       \
1696         } while (0)
1697
1698         /* Parse descriptor depending on type. */
1699         switch (_ds->bDescriptorType) {
1700         case USB_DT_DEVICE:
1701         case USB_DT_CONFIG:
1702         case USB_DT_STRING:
1703         case USB_DT_DEVICE_QUALIFIER:
1704                 /* function can't have any of those */
1705                 pr_vdebug("descriptor reserved for gadget: %d\n",
1706                       _ds->bDescriptorType);
1707                 return -EINVAL;
1708
1709         case USB_DT_INTERFACE: {
1710                 struct usb_interface_descriptor *ds = (void *)_ds;
1711                 pr_vdebug("interface descriptor\n");
1712                 if (length != sizeof *ds)
1713                         goto inv_length;
1714
1715                 __entity(INTERFACE, ds->bInterfaceNumber);
1716                 if (ds->iInterface)
1717                         __entity(STRING, ds->iInterface);
1718         }
1719                 break;
1720
1721         case USB_DT_ENDPOINT: {
1722                 struct usb_endpoint_descriptor *ds = (void *)_ds;
1723                 pr_vdebug("endpoint descriptor\n");
1724                 if (length != USB_DT_ENDPOINT_SIZE &&
1725                     length != USB_DT_ENDPOINT_AUDIO_SIZE)
1726                         goto inv_length;
1727                 __entity(ENDPOINT, ds->bEndpointAddress);
1728         }
1729                 break;
1730
1731         case HID_DT_HID:
1732                 pr_vdebug("hid descriptor\n");
1733                 if (length != sizeof(struct hid_descriptor))
1734                         goto inv_length;
1735                 break;
1736
1737         case USB_DT_OTG:
1738                 if (length != sizeof(struct usb_otg_descriptor))
1739                         goto inv_length;
1740                 break;
1741
1742         case USB_DT_INTERFACE_ASSOCIATION: {
1743                 struct usb_interface_assoc_descriptor *ds = (void *)_ds;
1744                 pr_vdebug("interface association descriptor\n");
1745                 if (length != sizeof *ds)
1746                         goto inv_length;
1747                 if (ds->iFunction)
1748                         __entity(STRING, ds->iFunction);
1749         }
1750                 break;
1751
1752         case USB_DT_SS_ENDPOINT_COMP:
1753                 pr_vdebug("EP SS companion descriptor\n");
1754                 if (length != sizeof(struct usb_ss_ep_comp_descriptor))
1755                         goto inv_length;
1756                 break;
1757
1758         case USB_DT_OTHER_SPEED_CONFIG:
1759         case USB_DT_INTERFACE_POWER:
1760         case USB_DT_DEBUG:
1761         case USB_DT_SECURITY:
1762         case USB_DT_CS_RADIO_CONTROL:
1763                 /* TODO */
1764                 pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
1765                 return -EINVAL;
1766
1767         default:
1768                 /* We should never be here */
1769                 pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
1770                 return -EINVAL;
1771
1772 inv_length:
1773                 pr_vdebug("invalid length: %d (descriptor %d)\n",
1774                           _ds->bLength, _ds->bDescriptorType);
1775                 return -EINVAL;
1776         }
1777
1778 #undef __entity
1779 #undef __entity_check_DESCRIPTOR
1780 #undef __entity_check_INTERFACE
1781 #undef __entity_check_STRING
1782 #undef __entity_check_ENDPOINT
1783
1784         return length;
1785 }
1786
1787 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
1788                                      ffs_entity_callback entity, void *priv)
1789 {
1790         const unsigned _len = len;
1791         unsigned long num = 0;
1792
1793         ENTER();
1794
1795         for (;;) {
1796                 int ret;
1797
1798                 if (num == count)
1799                         data = NULL;
1800
1801                 /* Record "descriptor" entity */
1802                 ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
1803                 if (unlikely(ret < 0)) {
1804                         pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
1805                                  num, ret);
1806                         return ret;
1807                 }
1808
1809                 if (!data)
1810                         return _len - len;
1811
1812                 ret = ffs_do_desc(data, len, entity, priv);
1813                 if (unlikely(ret < 0)) {
1814                         pr_debug("%s returns %d\n", __func__, ret);
1815                         return ret;
1816                 }
1817
1818                 len -= ret;
1819                 data += ret;
1820                 ++num;
1821         }
1822 }
1823
1824 static int __ffs_data_do_entity(enum ffs_entity_type type,
1825                                 u8 *valuep, struct usb_descriptor_header *desc,
1826                                 void *priv)
1827 {
1828         struct ffs_data *ffs = priv;
1829
1830         ENTER();
1831
1832         switch (type) {
1833         case FFS_DESCRIPTOR:
1834                 break;
1835
1836         case FFS_INTERFACE:
1837                 /*
1838                  * Interfaces are indexed from zero so if we
1839                  * encountered interface "n" then there are at least
1840                  * "n+1" interfaces.
1841                  */
1842                 if (*valuep >= ffs->interfaces_count)
1843                         ffs->interfaces_count = *valuep + 1;
1844                 break;
1845
1846         case FFS_STRING:
1847                 /*
1848                  * Strings are indexed from 1 (0 is magic ;) reserved
1849                  * for languages list or some such)
1850                  */
1851                 if (*valuep > ffs->strings_count)
1852                         ffs->strings_count = *valuep;
1853                 break;
1854
1855         case FFS_ENDPOINT:
1856                 /* Endpoints are indexed from 1 as well. */
1857                 if ((*valuep & USB_ENDPOINT_NUMBER_MASK) > ffs->eps_count)
1858                         ffs->eps_count = (*valuep & USB_ENDPOINT_NUMBER_MASK);
1859                 break;
1860         }
1861
1862         return 0;
1863 }
1864
1865 static int __ffs_data_got_descs(struct ffs_data *ffs,
1866                                 char *const _data, size_t len)
1867 {
1868         char *data = _data, *raw_descs;
1869         unsigned counts[3], flags;
1870         int ret = -EINVAL, i;
1871
1872         ENTER();
1873
1874         if (get_unaligned_le32(data + 4) != len)
1875                 goto error;
1876
1877         switch (get_unaligned_le32(data)) {
1878         case FUNCTIONFS_DESCRIPTORS_MAGIC:
1879                 flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
1880                 data += 8;
1881                 len  -= 8;
1882                 break;
1883         case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
1884                 flags = get_unaligned_le32(data + 8);
1885                 if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
1886                               FUNCTIONFS_HAS_HS_DESC |
1887                               FUNCTIONFS_HAS_SS_DESC)) {
1888                         ret = -ENOSYS;
1889                         goto error;
1890                 }
1891                 data += 12;
1892                 len  -= 12;
1893                 break;
1894         default:
1895                 goto error;
1896         }
1897
1898         /* Read fs_count, hs_count and ss_count (if present) */
1899         for (i = 0; i < 3; ++i) {
1900                 if (!(flags & (1 << i))) {
1901                         counts[i] = 0;
1902                 } else if (len < 4) {
1903                         goto error;
1904                 } else {
1905                         counts[i] = get_unaligned_le32(data);
1906                         data += 4;
1907                         len  -= 4;
1908                 }
1909         }
1910
1911         /* Read descriptors */
1912         raw_descs = data;
1913         for (i = 0; i < 3; ++i) {
1914                 if (!counts[i])
1915                         continue;
1916                 ret = ffs_do_descs(counts[i], data, len,
1917                                    __ffs_data_do_entity, ffs);
1918                 if (ret < 0)
1919                         goto error;
1920                 data += ret;
1921                 len  -= ret;
1922         }
1923
1924         if (raw_descs == data || len) {
1925                 ret = -EINVAL;
1926                 goto error;
1927         }
1928
1929         ffs->raw_descs_data     = _data;
1930         ffs->raw_descs          = raw_descs;
1931         ffs->raw_descs_length   = data - raw_descs;
1932         ffs->fs_descs_count     = counts[0];
1933         ffs->hs_descs_count     = counts[1];
1934         ffs->ss_descs_count     = counts[2];
1935
1936         return 0;
1937
1938 error:
1939         kfree(_data);
1940         return ret;
1941 }
1942
1943 static int __ffs_data_got_strings(struct ffs_data *ffs,
1944                                   char *const _data, size_t len)
1945 {
1946         u32 str_count, needed_count, lang_count;
1947         struct usb_gadget_strings **stringtabs, *t;
1948         struct usb_string *strings, *s;
1949         const char *data = _data;
1950
1951         ENTER();
1952
1953         if (unlikely(get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
1954                      get_unaligned_le32(data + 4) != len))
1955                 goto error;
1956         str_count  = get_unaligned_le32(data + 8);
1957         lang_count = get_unaligned_le32(data + 12);
1958
1959         /* if one is zero the other must be zero */
1960         if (unlikely(!str_count != !lang_count))
1961                 goto error;
1962
1963         /* Do we have at least as many strings as descriptors need? */
1964         needed_count = ffs->strings_count;
1965         if (unlikely(str_count < needed_count))
1966                 goto error;
1967
1968         /*
1969          * If we don't need any strings just return and free all
1970          * memory.
1971          */
1972         if (!needed_count) {
1973                 kfree(_data);
1974                 return 0;
1975         }
1976
1977         /* Allocate everything in one chunk so there's less maintenance. */
1978         {
1979                 unsigned i = 0;
1980                 vla_group(d);
1981                 vla_item(d, struct usb_gadget_strings *, stringtabs,
1982                         lang_count + 1);
1983                 vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
1984                 vla_item(d, struct usb_string, strings,
1985                         lang_count*(needed_count+1));
1986
1987                 char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
1988
1989                 if (unlikely(!vlabuf)) {
1990                         kfree(_data);
1991                         return -ENOMEM;
1992                 }
1993
1994                 /* Initialize the VLA pointers */
1995                 stringtabs = vla_ptr(vlabuf, d, stringtabs);
1996                 t = vla_ptr(vlabuf, d, stringtab);
1997                 i = lang_count;
1998                 do {
1999                         *stringtabs++ = t++;
2000                 } while (--i);
2001                 *stringtabs = NULL;
2002
2003                 /* stringtabs = vlabuf = d_stringtabs for later kfree */
2004                 stringtabs = vla_ptr(vlabuf, d, stringtabs);
2005                 t = vla_ptr(vlabuf, d, stringtab);
2006                 s = vla_ptr(vlabuf, d, strings);
2007                 strings = s;
2008         }
2009
2010         /* For each language */
2011         data += 16;
2012         len -= 16;
2013
2014         do { /* lang_count > 0 so we can use do-while */
2015                 unsigned needed = needed_count;
2016
2017                 if (unlikely(len < 3))
2018                         goto error_free;
2019                 t->language = get_unaligned_le16(data);
2020                 t->strings  = s;
2021                 ++t;
2022
2023                 data += 2;
2024                 len -= 2;
2025
2026                 /* For each string */
2027                 do { /* str_count > 0 so we can use do-while */
2028                         size_t length = strnlen(data, len);
2029
2030                         if (unlikely(length == len))
2031                                 goto error_free;
2032
2033                         /*
2034                          * User may provide more strings then we need,
2035                          * if that's the case we simply ignore the
2036                          * rest
2037                          */
2038                         if (likely(needed)) {
2039                                 /*
2040                                  * s->id will be set while adding
2041                                  * function to configuration so for
2042                                  * now just leave garbage here.
2043                                  */
2044                                 s->s = data;
2045                                 --needed;
2046                                 ++s;
2047                         }
2048
2049                         data += length + 1;
2050                         len -= length + 1;
2051                 } while (--str_count);
2052
2053                 s->id = 0;   /* terminator */
2054                 s->s = NULL;
2055                 ++s;
2056
2057         } while (--lang_count);
2058
2059         /* Some garbage left? */
2060         if (unlikely(len))
2061                 goto error_free;
2062
2063         /* Done! */
2064         ffs->stringtabs = stringtabs;
2065         ffs->raw_strings = _data;
2066
2067         return 0;
2068
2069 error_free:
2070         kfree(stringtabs);
2071 error:
2072         kfree(_data);
2073         return -EINVAL;
2074 }
2075
2076
2077 /* Events handling and management *******************************************/
2078
2079 static void __ffs_event_add(struct ffs_data *ffs,
2080                             enum usb_functionfs_event_type type)
2081 {
2082         enum usb_functionfs_event_type rem_type1, rem_type2 = type;
2083         int neg = 0;
2084
2085         /*
2086          * Abort any unhandled setup
2087          *
2088          * We do not need to worry about some cmpxchg() changing value
2089          * of ffs->setup_state without holding the lock because when
2090          * state is FFS_SETUP_PENDING cmpxchg() in several places in
2091          * the source does nothing.
2092          */
2093         if (ffs->setup_state == FFS_SETUP_PENDING)
2094                 ffs->setup_state = FFS_SETUP_CANCELLED;
2095
2096         switch (type) {
2097         case FUNCTIONFS_RESUME:
2098                 rem_type2 = FUNCTIONFS_SUSPEND;
2099                 /* FALL THROUGH */
2100         case FUNCTIONFS_SUSPEND:
2101         case FUNCTIONFS_SETUP:
2102                 rem_type1 = type;
2103                 /* Discard all similar events */
2104                 break;
2105
2106         case FUNCTIONFS_BIND:
2107         case FUNCTIONFS_UNBIND:
2108         case FUNCTIONFS_DISABLE:
2109         case FUNCTIONFS_ENABLE:
2110                 /* Discard everything other then power management. */
2111                 rem_type1 = FUNCTIONFS_SUSPEND;
2112                 rem_type2 = FUNCTIONFS_RESUME;
2113                 neg = 1;
2114                 break;
2115
2116         default:
2117                 BUG();
2118         }
2119
2120         {
2121                 u8 *ev  = ffs->ev.types, *out = ev;
2122                 unsigned n = ffs->ev.count;
2123                 for (; n; --n, ++ev)
2124                         if ((*ev == rem_type1 || *ev == rem_type2) == neg)
2125                                 *out++ = *ev;
2126                         else
2127                                 pr_vdebug("purging event %d\n", *ev);
2128                 ffs->ev.count = out - ffs->ev.types;
2129         }
2130
2131         pr_vdebug("adding event %d\n", type);
2132         ffs->ev.types[ffs->ev.count++] = type;
2133         wake_up_locked(&ffs->ev.waitq);
2134 }
2135
2136 static void ffs_event_add(struct ffs_data *ffs,
2137                           enum usb_functionfs_event_type type)
2138 {
2139         unsigned long flags;
2140         spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
2141         __ffs_event_add(ffs, type);
2142         spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
2143 }
2144
2145
2146 /* Bind/unbind USB function hooks *******************************************/
2147
2148 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
2149                                     struct usb_descriptor_header *desc,
2150                                     void *priv)
2151 {
2152         struct usb_endpoint_descriptor *ds = (void *)desc;
2153         struct ffs_function *func = priv;
2154         struct ffs_ep *ffs_ep;
2155         unsigned ep_desc_id, idx;
2156         static const char *speed_names[] = { "full", "high", "super" };
2157
2158         if (type != FFS_DESCRIPTOR)
2159                 return 0;
2160
2161         /*
2162          * If ss_descriptors is not NULL, we are reading super speed
2163          * descriptors; if hs_descriptors is not NULL, we are reading high
2164          * speed descriptors; otherwise, we are reading full speed
2165          * descriptors.
2166          */
2167         if (func->function.ss_descriptors) {
2168                 ep_desc_id = 2;
2169                 func->function.ss_descriptors[(long)valuep] = desc;
2170         } else if (func->function.hs_descriptors) {
2171                 ep_desc_id = 1;
2172                 func->function.hs_descriptors[(long)valuep] = desc;
2173         } else {
2174                 ep_desc_id = 0;
2175                 func->function.fs_descriptors[(long)valuep]    = desc;
2176         }
2177
2178         if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
2179                 return 0;
2180
2181         idx = (ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK) - 1;
2182         ffs_ep = func->eps + idx;
2183
2184         if (unlikely(ffs_ep->descs[ep_desc_id])) {
2185                 pr_err("two %sspeed descriptors for EP %d\n",
2186                           speed_names[ep_desc_id],
2187                           ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2188                 return -EINVAL;
2189         }
2190         ffs_ep->descs[ep_desc_id] = ds;
2191
2192         ffs_dump_mem(": Original  ep desc", ds, ds->bLength);
2193         if (ffs_ep->ep) {
2194                 ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
2195                 if (!ds->wMaxPacketSize)
2196                         ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
2197         } else {
2198                 struct usb_request *req;
2199                 struct usb_ep *ep;
2200
2201                 pr_vdebug("autoconfig\n");
2202                 ep = usb_ep_autoconfig(func->gadget, ds);
2203                 if (unlikely(!ep))
2204                         return -ENOTSUPP;
2205                 ep->driver_data = func->eps + idx;
2206
2207                 req = usb_ep_alloc_request(ep, GFP_KERNEL);
2208                 if (unlikely(!req))
2209                         return -ENOMEM;
2210
2211                 ffs_ep->ep  = ep;
2212                 ffs_ep->req = req;
2213                 func->eps_revmap[ds->bEndpointAddress &
2214                                  USB_ENDPOINT_NUMBER_MASK] = idx + 1;
2215         }
2216         ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
2217
2218         return 0;
2219 }
2220
2221 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
2222                                    struct usb_descriptor_header *desc,
2223                                    void *priv)
2224 {
2225         struct ffs_function *func = priv;
2226         unsigned idx;
2227         u8 newValue;
2228
2229         switch (type) {
2230         default:
2231         case FFS_DESCRIPTOR:
2232                 /* Handled in previous pass by __ffs_func_bind_do_descs() */
2233                 return 0;
2234
2235         case FFS_INTERFACE:
2236                 idx = *valuep;
2237                 if (func->interfaces_nums[idx] < 0) {
2238                         int id = usb_interface_id(func->conf, &func->function);
2239                         if (unlikely(id < 0))
2240                                 return id;
2241                         func->interfaces_nums[idx] = id;
2242                 }
2243                 newValue = func->interfaces_nums[idx];
2244                 break;
2245
2246         case FFS_STRING:
2247                 /* String' IDs are allocated when fsf_data is bound to cdev */
2248                 newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
2249                 break;
2250
2251         case FFS_ENDPOINT:
2252                 /*
2253                  * USB_DT_ENDPOINT are handled in
2254                  * __ffs_func_bind_do_descs().
2255                  */
2256                 if (desc->bDescriptorType == USB_DT_ENDPOINT)
2257                         return 0;
2258
2259                 idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
2260                 if (unlikely(!func->eps[idx].ep))
2261                         return -EINVAL;
2262
2263                 {
2264                         struct usb_endpoint_descriptor **descs;
2265                         descs = func->eps[idx].descs;
2266                         newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
2267                 }
2268                 break;
2269         }
2270
2271         pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2272         *valuep = newValue;
2273         return 0;
2274 }
2275
2276 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
2277                                                 struct usb_configuration *c)
2278 {
2279         struct ffs_function *func = ffs_func_from_usb(f);
2280         struct f_fs_opts *ffs_opts =
2281                 container_of(f->fi, struct f_fs_opts, func_inst);
2282         int ret;
2283
2284         ENTER();
2285
2286         /*
2287          * Legacy gadget triggers binding in functionfs_ready_callback,
2288          * which already uses locking; taking the same lock here would
2289          * cause a deadlock.
2290          *
2291          * Configfs-enabled gadgets however do need ffs_dev_lock.
2292          */
2293         if (!ffs_opts->no_configfs)
2294                 ffs_dev_lock();
2295         ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
2296         func->ffs = ffs_opts->dev->ffs_data;
2297         if (!ffs_opts->no_configfs)
2298                 ffs_dev_unlock();
2299         if (ret)
2300                 return ERR_PTR(ret);
2301
2302         func->conf = c;
2303         func->gadget = c->cdev->gadget;
2304
2305         ffs_data_get(func->ffs);
2306
2307         /*
2308          * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
2309          * configurations are bound in sequence with list_for_each_entry,
2310          * in each configuration its functions are bound in sequence
2311          * with list_for_each_entry, so we assume no race condition
2312          * with regard to ffs_opts->bound access
2313          */
2314         if (!ffs_opts->refcnt) {
2315                 ret = functionfs_bind(func->ffs, c->cdev);
2316                 if (ret)
2317                         return ERR_PTR(ret);
2318         }
2319         ffs_opts->refcnt++;
2320         func->function.strings = func->ffs->stringtabs;
2321
2322         return ffs_opts;
2323 }
2324
2325 static int _ffs_func_bind(struct usb_configuration *c,
2326                           struct usb_function *f)
2327 {
2328         struct ffs_function *func = ffs_func_from_usb(f);
2329         struct ffs_data *ffs = func->ffs;
2330
2331         const int full = !!func->ffs->fs_descs_count;
2332         const int high = gadget_is_dualspeed(func->gadget) &&
2333                 func->ffs->hs_descs_count;
2334         const int super = gadget_is_superspeed(func->gadget) &&
2335                 func->ffs->ss_descs_count;
2336
2337         int fs_len, hs_len, ret;
2338
2339         /* Make it a single chunk, less management later on */
2340         vla_group(d);
2341         vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
2342         vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
2343                 full ? ffs->fs_descs_count + 1 : 0);
2344         vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
2345                 high ? ffs->hs_descs_count + 1 : 0);
2346         vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
2347                 super ? ffs->ss_descs_count + 1 : 0);
2348         vla_item_with_sz(d, short, inums, ffs->interfaces_count);
2349         vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
2350         char *vlabuf;
2351
2352         ENTER();
2353
2354         /* Has descriptors only for speeds gadget does not support */
2355         if (unlikely(!(full | high | super)))
2356                 return -ENOTSUPP;
2357
2358         /* Allocate a single chunk, less management later on */
2359         vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
2360         if (unlikely(!vlabuf))
2361                 return -ENOMEM;
2362
2363         /* Zero */
2364         memset(vla_ptr(vlabuf, d, eps), 0, d_eps__sz);
2365         /* Copy descriptors  */
2366         memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
2367                ffs->raw_descs_length);
2368
2369         memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
2370         for (ret = ffs->eps_count; ret; --ret) {
2371                 struct ffs_ep *ptr;
2372
2373                 ptr = vla_ptr(vlabuf, d, eps);
2374                 ptr[ret].num = -1;
2375         }
2376
2377         /* Save pointers
2378          * d_eps == vlabuf, func->eps used to kfree vlabuf later
2379         */
2380         func->eps             = vla_ptr(vlabuf, d, eps);
2381         func->interfaces_nums = vla_ptr(vlabuf, d, inums);
2382
2383         /*
2384          * Go through all the endpoint descriptors and allocate
2385          * endpoints first, so that later we can rewrite the endpoint
2386          * numbers without worrying that it may be described later on.
2387          */
2388         if (likely(full)) {
2389                 func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
2390                 fs_len = ffs_do_descs(ffs->fs_descs_count,
2391                                       vla_ptr(vlabuf, d, raw_descs),
2392                                       d_raw_descs__sz,
2393                                       __ffs_func_bind_do_descs, func);
2394                 if (unlikely(fs_len < 0)) {
2395                         ret = fs_len;
2396                         goto error;
2397                 }
2398         } else {
2399                 fs_len = 0;
2400         }
2401
2402         if (likely(high)) {
2403                 func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
2404                 hs_len = ffs_do_descs(ffs->hs_descs_count,
2405                                       vla_ptr(vlabuf, d, raw_descs) + fs_len,
2406                                       d_raw_descs__sz - fs_len,
2407                                       __ffs_func_bind_do_descs, func);
2408                 if (unlikely(hs_len < 0)) {
2409                         ret = hs_len;
2410                         goto error;
2411                 }
2412         } else {
2413                 hs_len = 0;
2414         }
2415
2416         if (likely(super)) {
2417                 func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs);
2418                 ret = ffs_do_descs(ffs->ss_descs_count,
2419                                 vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
2420                                 d_raw_descs__sz - fs_len - hs_len,
2421                                 __ffs_func_bind_do_descs, func);
2422                 if (unlikely(ret < 0))
2423                         goto error;
2424         }
2425
2426         /*
2427          * Now handle interface numbers allocation and interface and
2428          * endpoint numbers rewriting.  We can do that in one go
2429          * now.
2430          */
2431         ret = ffs_do_descs(ffs->fs_descs_count +
2432                            (high ? ffs->hs_descs_count : 0) +
2433                            (super ? ffs->ss_descs_count : 0),
2434                            vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
2435                            __ffs_func_bind_do_nums, func);
2436         if (unlikely(ret < 0))
2437                 goto error;
2438
2439         /* And we're done */
2440         ffs_event_add(ffs, FUNCTIONFS_BIND);
2441         return 0;
2442
2443 error:
2444         /* XXX Do we need to release all claimed endpoints here? */
2445         return ret;
2446 }
2447
2448 static int ffs_func_bind(struct usb_configuration *c,
2449                          struct usb_function *f)
2450 {
2451         struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
2452
2453         if (IS_ERR(ffs_opts))
2454                 return PTR_ERR(ffs_opts);
2455
2456         return _ffs_func_bind(c, f);
2457 }
2458
2459
2460 /* Other USB function hooks *************************************************/
2461
2462 static int ffs_func_set_alt(struct usb_function *f,
2463                             unsigned interface, unsigned alt)
2464 {
2465         struct ffs_function *func = ffs_func_from_usb(f);
2466         struct ffs_data *ffs = func->ffs;
2467         int ret = 0, intf;
2468
2469         if (alt != (unsigned)-1) {
2470                 intf = ffs_func_revmap_intf(func, interface);
2471                 if (unlikely(intf < 0))
2472                         return intf;
2473         }
2474
2475         if (ffs->func)
2476                 ffs_func_eps_disable(ffs->func);
2477
2478         if (ffs->state != FFS_ACTIVE)
2479                 return -ENODEV;
2480
2481         if (alt == (unsigned)-1) {
2482                 ffs->func = NULL;
2483                 ffs_event_add(ffs, FUNCTIONFS_DISABLE);
2484                 return 0;
2485         }
2486
2487         ffs->func = func;
2488         ret = ffs_func_eps_enable(func);
2489         if (likely(ret >= 0))
2490                 ffs_event_add(ffs, FUNCTIONFS_ENABLE);
2491         return ret;
2492 }
2493
2494 static void ffs_func_disable(struct usb_function *f)
2495 {
2496         ffs_func_set_alt(f, 0, (unsigned)-1);
2497 }
2498
2499 static int ffs_func_setup(struct usb_function *f,
2500                           const struct usb_ctrlrequest *creq)
2501 {
2502         struct ffs_function *func = ffs_func_from_usb(f);
2503         struct ffs_data *ffs = func->ffs;
2504         unsigned long flags;
2505         int ret;
2506
2507         ENTER();
2508
2509         pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
2510         pr_vdebug("creq->bRequest     = %02x\n", creq->bRequest);
2511         pr_vdebug("creq->wValue       = %04x\n", le16_to_cpu(creq->wValue));
2512         pr_vdebug("creq->wIndex       = %04x\n", le16_to_cpu(creq->wIndex));
2513         pr_vdebug("creq->wLength      = %04x\n", le16_to_cpu(creq->wLength));
2514
2515         /*
2516          * Most requests directed to interface go through here
2517          * (notable exceptions are set/get interface) so we need to
2518          * handle them.  All other either handled by composite or
2519          * passed to usb_configuration->setup() (if one is set).  No
2520          * matter, we will handle requests directed to endpoint here
2521          * as well (as it's straightforward) but what to do with any
2522          * other request?
2523          */
2524         if (ffs->state != FFS_ACTIVE)
2525                 return -ENODEV;
2526
2527         switch (creq->bRequestType & USB_RECIP_MASK) {
2528         case USB_RECIP_INTERFACE:
2529                 ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
2530                 if (unlikely(ret < 0))
2531                         return ret;
2532                 break;
2533
2534         case USB_RECIP_ENDPOINT:
2535                 ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
2536                 if (unlikely(ret < 0))
2537                         return ret;
2538                 break;
2539
2540         default:
2541                 return -EOPNOTSUPP;
2542         }
2543
2544         spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
2545         ffs->ev.setup = *creq;
2546         ffs->ev.setup.wIndex = cpu_to_le16(ret);
2547         __ffs_event_add(ffs, FUNCTIONFS_SETUP);
2548         spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
2549
2550         return 0;
2551 }
2552
2553 static void ffs_func_suspend(struct usb_function *f)
2554 {
2555         ENTER();
2556         ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
2557 }
2558
2559 static void ffs_func_resume(struct usb_function *f)
2560 {
2561         ENTER();
2562         ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
2563 }
2564
2565
2566 /* Endpoint and interface numbers reverse mapping ***************************/
2567
2568 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
2569 {
2570         num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
2571         return num ? num : -EDOM;
2572 }
2573
2574 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
2575 {
2576         short *nums = func->interfaces_nums;
2577         unsigned count = func->ffs->interfaces_count;
2578
2579         for (; count; --count, ++nums) {
2580                 if (*nums >= 0 && *nums == intf)
2581                         return nums - func->interfaces_nums;
2582         }
2583
2584         return -EDOM;
2585 }
2586
2587
2588 /* Devices management *******************************************************/
2589
2590 static LIST_HEAD(ffs_devices);
2591
2592 static struct ffs_dev *_ffs_do_find_dev(const char *name)
2593 {
2594         struct ffs_dev *dev;
2595
2596         list_for_each_entry(dev, &ffs_devices, entry) {
2597                 if (!dev->name || !name)
2598                         continue;
2599                 if (strcmp(dev->name, name) == 0)
2600                         return dev;
2601         }
2602
2603         return NULL;
2604 }
2605
2606 /*
2607  * ffs_lock must be taken by the caller of this function
2608  */
2609 static struct ffs_dev *_ffs_get_single_dev(void)
2610 {
2611         struct ffs_dev *dev;
2612
2613         if (list_is_singular(&ffs_devices)) {
2614                 dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
2615                 if (dev->single)
2616                         return dev;
2617         }
2618
2619         return NULL;
2620 }
2621
2622 /*
2623  * ffs_lock must be taken by the caller of this function
2624  */
2625 static struct ffs_dev *_ffs_find_dev(const char *name)
2626 {
2627         struct ffs_dev *dev;
2628
2629         dev = _ffs_get_single_dev();
2630         if (dev)
2631                 return dev;
2632
2633         return _ffs_do_find_dev(name);
2634 }
2635
2636 /* Configfs support *********************************************************/
2637
2638 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
2639 {
2640         return container_of(to_config_group(item), struct f_fs_opts,
2641                             func_inst.group);
2642 }
2643
2644 static void ffs_attr_release(struct config_item *item)
2645 {
2646         struct f_fs_opts *opts = to_ffs_opts(item);
2647
2648         usb_put_function_instance(&opts->func_inst);
2649 }
2650
2651 static struct configfs_item_operations ffs_item_ops = {
2652         .release        = ffs_attr_release,
2653 };
2654
2655 static struct config_item_type ffs_func_type = {
2656         .ct_item_ops    = &ffs_item_ops,
2657         .ct_owner       = THIS_MODULE,
2658 };
2659
2660
2661 /* Function registration interface ******************************************/
2662
2663 static void ffs_free_inst(struct usb_function_instance *f)
2664 {
2665         struct f_fs_opts *opts;
2666
2667         opts = to_f_fs_opts(f);
2668         ffs_dev_lock();
2669         _ffs_free_dev(opts->dev);
2670         ffs_dev_unlock();
2671         kfree(opts);
2672 }
2673
2674 #define MAX_INST_NAME_LEN       40
2675
2676 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
2677 {
2678         struct f_fs_opts *opts;
2679         char *ptr;
2680         const char *tmp;
2681         int name_len, ret;
2682
2683         name_len = strlen(name) + 1;
2684         if (name_len > MAX_INST_NAME_LEN)
2685                 return -ENAMETOOLONG;
2686
2687         ptr = kstrndup(name, name_len, GFP_KERNEL);
2688         if (!ptr)
2689                 return -ENOMEM;
2690
2691         opts = to_f_fs_opts(fi);
2692         tmp = NULL;
2693
2694         ffs_dev_lock();
2695
2696         tmp = opts->dev->name_allocated ? opts->dev->name : NULL;
2697         ret = _ffs_name_dev(opts->dev, ptr);
2698         if (ret) {
2699                 kfree(ptr);
2700                 ffs_dev_unlock();
2701                 return ret;
2702         }
2703         opts->dev->name_allocated = true;
2704
2705         ffs_dev_unlock();
2706
2707         kfree(tmp);
2708
2709         return 0;
2710 }
2711
2712 static struct usb_function_instance *ffs_alloc_inst(void)
2713 {
2714         struct f_fs_opts *opts;
2715         struct ffs_dev *dev;
2716
2717         opts = kzalloc(sizeof(*opts), GFP_KERNEL);
2718         if (!opts)
2719                 return ERR_PTR(-ENOMEM);
2720
2721         opts->func_inst.set_inst_name = ffs_set_inst_name;
2722         opts->func_inst.free_func_inst = ffs_free_inst;
2723         ffs_dev_lock();
2724         dev = _ffs_alloc_dev();
2725         ffs_dev_unlock();
2726         if (IS_ERR(dev)) {
2727                 kfree(opts);
2728                 return ERR_CAST(dev);
2729         }
2730         opts->dev = dev;
2731         dev->opts = opts;
2732
2733         config_group_init_type_name(&opts->func_inst.group, "",
2734                                     &ffs_func_type);
2735         return &opts->func_inst;
2736 }
2737
2738 static void ffs_free(struct usb_function *f)
2739 {
2740         kfree(ffs_func_from_usb(f));
2741 }
2742
2743 static void ffs_func_unbind(struct usb_configuration *c,
2744                             struct usb_function *f)
2745 {
2746         struct ffs_function *func = ffs_func_from_usb(f);
2747         struct ffs_data *ffs = func->ffs;
2748         struct f_fs_opts *opts =
2749                 container_of(f->fi, struct f_fs_opts, func_inst);
2750         struct ffs_ep *ep = func->eps;
2751         unsigned count = ffs->eps_count;
2752         unsigned long flags;
2753
2754         ENTER();
2755         if (ffs->func == func) {
2756                 ffs_func_eps_disable(func);
2757                 ffs->func = NULL;
2758         }
2759
2760         if (!--opts->refcnt)
2761                 functionfs_unbind(ffs);
2762
2763         /* cleanup after autoconfig */
2764         spin_lock_irqsave(&func->ffs->eps_lock, flags);
2765         do {
2766                 if (ep->ep && ep->req)
2767                         usb_ep_free_request(ep->ep, ep->req);
2768                 ep->req = NULL;
2769                 ++ep;
2770         } while (--count);
2771         spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
2772         kfree(func->eps);
2773         func->eps = NULL;
2774         /*
2775          * eps, descriptors and interfaces_nums are allocated in the
2776          * same chunk so only one free is required.
2777          */
2778         func->function.fs_descriptors = NULL;
2779         func->function.hs_descriptors = NULL;
2780         func->function.ss_descriptors = NULL;
2781         func->interfaces_nums = NULL;
2782
2783         ffs_event_add(ffs, FUNCTIONFS_UNBIND);
2784 }
2785
2786 static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
2787 {
2788         struct ffs_function *func;
2789
2790         ENTER();
2791
2792         func = kzalloc(sizeof(*func), GFP_KERNEL);
2793         if (unlikely(!func))
2794                 return ERR_PTR(-ENOMEM);
2795
2796         func->function.name    = "Function FS Gadget";
2797
2798         func->function.bind    = ffs_func_bind;
2799         func->function.unbind  = ffs_func_unbind;
2800         func->function.set_alt = ffs_func_set_alt;
2801         func->function.disable = ffs_func_disable;
2802         func->function.setup   = ffs_func_setup;
2803         func->function.suspend = ffs_func_suspend;
2804         func->function.resume  = ffs_func_resume;
2805         func->function.free_func = ffs_free;
2806
2807         return &func->function;
2808 }
2809
2810 /*
2811  * ffs_lock must be taken by the caller of this function
2812  */
2813 static struct ffs_dev *_ffs_alloc_dev(void)
2814 {
2815         struct ffs_dev *dev;
2816         int ret;
2817
2818         if (_ffs_get_single_dev())
2819                         return ERR_PTR(-EBUSY);
2820
2821         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2822         if (!dev)
2823                 return ERR_PTR(-ENOMEM);
2824
2825         if (list_empty(&ffs_devices)) {
2826                 ret = functionfs_init();
2827                 if (ret) {
2828                         kfree(dev);
2829                         return ERR_PTR(ret);
2830                 }
2831         }
2832
2833         list_add(&dev->entry, &ffs_devices);
2834
2835         return dev;
2836 }
2837
2838 /*
2839  * ffs_lock must be taken by the caller of this function
2840  * The caller is responsible for "name" being available whenever f_fs needs it
2841  */
2842 static int _ffs_name_dev(struct ffs_dev *dev, const char *name)
2843 {
2844         struct ffs_dev *existing;
2845
2846         existing = _ffs_do_find_dev(name);
2847         if (existing)
2848                 return -EBUSY;
2849
2850         dev->name = name;
2851
2852         return 0;
2853 }
2854
2855 /*
2856  * The caller is responsible for "name" being available whenever f_fs needs it
2857  */
2858 int ffs_name_dev(struct ffs_dev *dev, const char *name)
2859 {
2860         int ret;
2861
2862         ffs_dev_lock();
2863         ret = _ffs_name_dev(dev, name);
2864         ffs_dev_unlock();
2865
2866         return ret;
2867 }
2868 EXPORT_SYMBOL(ffs_name_dev);
2869
2870 int ffs_single_dev(struct ffs_dev *dev)
2871 {
2872         int ret;
2873
2874         ret = 0;
2875         ffs_dev_lock();
2876
2877         if (!list_is_singular(&ffs_devices))
2878                 ret = -EBUSY;
2879         else
2880                 dev->single = true;
2881
2882         ffs_dev_unlock();
2883         return ret;
2884 }
2885 EXPORT_SYMBOL(ffs_single_dev);
2886
2887 /*
2888  * ffs_lock must be taken by the caller of this function
2889  */
2890 static void _ffs_free_dev(struct ffs_dev *dev)
2891 {
2892         list_del(&dev->entry);
2893         if (dev->name_allocated)
2894                 kfree(dev->name);
2895         kfree(dev);
2896         if (list_empty(&ffs_devices))
2897                 functionfs_cleanup();
2898 }
2899
2900 static void *ffs_acquire_dev(const char *dev_name)
2901 {
2902         struct ffs_dev *ffs_dev;
2903
2904         ENTER();
2905         ffs_dev_lock();
2906
2907         ffs_dev = _ffs_find_dev(dev_name);
2908         if (!ffs_dev)
2909                 ffs_dev = ERR_PTR(-ENODEV);
2910         else if (ffs_dev->mounted)
2911                 ffs_dev = ERR_PTR(-EBUSY);
2912         else if (ffs_dev->ffs_acquire_dev_callback &&
2913             ffs_dev->ffs_acquire_dev_callback(ffs_dev))
2914                 ffs_dev = ERR_PTR(-ENODEV);
2915         else
2916                 ffs_dev->mounted = true;
2917
2918         ffs_dev_unlock();
2919         return ffs_dev;
2920 }
2921
2922 static void ffs_release_dev(struct ffs_data *ffs_data)
2923 {
2924         struct ffs_dev *ffs_dev;
2925
2926         ENTER();
2927         ffs_dev_lock();
2928
2929         ffs_dev = ffs_data->private_data;
2930         if (ffs_dev) {
2931                 ffs_dev->mounted = false;
2932
2933                 if (ffs_dev->ffs_release_dev_callback)
2934                         ffs_dev->ffs_release_dev_callback(ffs_dev);
2935         }
2936
2937         ffs_dev_unlock();
2938 }
2939
2940 static int ffs_ready(struct ffs_data *ffs)
2941 {
2942         struct ffs_dev *ffs_obj;
2943         int ret = 0;
2944
2945         ENTER();
2946         ffs_dev_lock();
2947
2948         ffs_obj = ffs->private_data;
2949         if (!ffs_obj) {
2950                 ret = -EINVAL;
2951                 goto done;
2952         }
2953         if (WARN_ON(ffs_obj->desc_ready)) {
2954                 ret = -EBUSY;
2955                 goto done;
2956         }
2957
2958         ffs_obj->desc_ready = true;
2959         ffs_obj->ffs_data = ffs;
2960
2961         if (ffs_obj->ffs_ready_callback)
2962                 ret = ffs_obj->ffs_ready_callback(ffs);
2963
2964 done:
2965         ffs_dev_unlock();
2966         return ret;
2967 }
2968
2969 static void ffs_closed(struct ffs_data *ffs)
2970 {
2971         struct ffs_dev *ffs_obj;
2972
2973         ENTER();
2974         ffs_dev_lock();
2975
2976         ffs_obj = ffs->private_data;
2977         if (!ffs_obj)
2978                 goto done;
2979
2980         ffs_obj->desc_ready = false;
2981
2982         if (ffs_obj->ffs_closed_callback)
2983                 ffs_obj->ffs_closed_callback(ffs);
2984
2985         if (!ffs_obj->opts || ffs_obj->opts->no_configfs
2986             || !ffs_obj->opts->func_inst.group.cg_item.ci_parent)
2987                 goto done;
2988
2989         unregister_gadget_item(ffs_obj->opts->
2990                                func_inst.group.cg_item.ci_parent->ci_parent);
2991 done:
2992         ffs_dev_unlock();
2993 }
2994
2995 /* Misc helper functions ****************************************************/
2996
2997 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
2998 {
2999         return nonblock
3000                 ? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN
3001                 : mutex_lock_interruptible(mutex);
3002 }
3003
3004 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3005 {
3006         char *data;
3007
3008         if (unlikely(!len))
3009                 return NULL;
3010
3011         data = kmalloc(len, GFP_KERNEL);
3012         if (unlikely(!data))
3013                 return ERR_PTR(-ENOMEM);
3014
3015         if (unlikely(__copy_from_user(data, buf, len))) {
3016                 kfree(data);
3017                 return ERR_PTR(-EFAULT);
3018         }
3019
3020         pr_vdebug("Buffer from user space:\n");
3021         ffs_dump_mem("", data, len);
3022
3023         return data;
3024 }
3025
3026 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
3027 MODULE_LICENSE("GPL");
3028 MODULE_AUTHOR("Michal Nazarewicz");