]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/usb/gadget/udc/pch_udc.c
usb: gadget: pch_udc: sort IDs
[karo-tx-linux.git] / drivers / usb / gadget / udc / pch_udc.c
1 /*
2  * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; version 2 of the License.
7  */
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/pci.h>
12 #include <linux/delay.h>
13 #include <linux/errno.h>
14 #include <linux/list.h>
15 #include <linux/interrupt.h>
16 #include <linux/usb/ch9.h>
17 #include <linux/usb/gadget.h>
18 #include <linux/gpio.h>
19 #include <linux/irq.h>
20
21 /* GPIO port for VBUS detecting */
22 static int vbus_gpio_port = -1;         /* GPIO port number (-1:Not used) */
23
24 #define PCH_VBUS_PERIOD         3000    /* VBUS polling period (msec) */
25 #define PCH_VBUS_INTERVAL       10      /* VBUS polling interval (msec) */
26
27 /* Address offset of Registers */
28 #define UDC_EP_REG_SHIFT        0x20    /* Offset to next EP */
29
30 #define UDC_EPCTL_ADDR          0x00    /* Endpoint control */
31 #define UDC_EPSTS_ADDR          0x04    /* Endpoint status */
32 #define UDC_BUFIN_FRAMENUM_ADDR 0x08    /* buffer size in / frame number out */
33 #define UDC_BUFOUT_MAXPKT_ADDR  0x0C    /* buffer size out / maxpkt in */
34 #define UDC_SUBPTR_ADDR         0x10    /* setup buffer pointer */
35 #define UDC_DESPTR_ADDR         0x14    /* Data descriptor pointer */
36 #define UDC_CONFIRM_ADDR        0x18    /* Write/Read confirmation */
37
38 #define UDC_DEVCFG_ADDR         0x400   /* Device configuration */
39 #define UDC_DEVCTL_ADDR         0x404   /* Device control */
40 #define UDC_DEVSTS_ADDR         0x408   /* Device status */
41 #define UDC_DEVIRQSTS_ADDR      0x40C   /* Device irq status */
42 #define UDC_DEVIRQMSK_ADDR      0x410   /* Device irq mask */
43 #define UDC_EPIRQSTS_ADDR       0x414   /* Endpoint irq status */
44 #define UDC_EPIRQMSK_ADDR       0x418   /* Endpoint irq mask */
45 #define UDC_DEVLPM_ADDR         0x41C   /* LPM control / status */
46 #define UDC_CSR_BUSY_ADDR       0x4f0   /* UDC_CSR_BUSY Status register */
47 #define UDC_SRST_ADDR           0x4fc   /* SOFT RESET register */
48 #define UDC_CSR_ADDR            0x500   /* USB_DEVICE endpoint register */
49
50 /* Endpoint control register */
51 /* Bit position */
52 #define UDC_EPCTL_MRXFLUSH              (1 << 12)
53 #define UDC_EPCTL_RRDY                  (1 << 9)
54 #define UDC_EPCTL_CNAK                  (1 << 8)
55 #define UDC_EPCTL_SNAK                  (1 << 7)
56 #define UDC_EPCTL_NAK                   (1 << 6)
57 #define UDC_EPCTL_P                     (1 << 3)
58 #define UDC_EPCTL_F                     (1 << 1)
59 #define UDC_EPCTL_S                     (1 << 0)
60 #define UDC_EPCTL_ET_SHIFT              4
61 /* Mask patern */
62 #define UDC_EPCTL_ET_MASK               0x00000030
63 /* Value for ET field */
64 #define UDC_EPCTL_ET_CONTROL            0
65 #define UDC_EPCTL_ET_ISO                1
66 #define UDC_EPCTL_ET_BULK               2
67 #define UDC_EPCTL_ET_INTERRUPT          3
68
69 /* Endpoint status register */
70 /* Bit position */
71 #define UDC_EPSTS_XFERDONE              (1 << 27)
72 #define UDC_EPSTS_RSS                   (1 << 26)
73 #define UDC_EPSTS_RCS                   (1 << 25)
74 #define UDC_EPSTS_TXEMPTY               (1 << 24)
75 #define UDC_EPSTS_TDC                   (1 << 10)
76 #define UDC_EPSTS_HE                    (1 << 9)
77 #define UDC_EPSTS_MRXFIFO_EMP           (1 << 8)
78 #define UDC_EPSTS_BNA                   (1 << 7)
79 #define UDC_EPSTS_IN                    (1 << 6)
80 #define UDC_EPSTS_OUT_SHIFT             4
81 /* Mask patern */
82 #define UDC_EPSTS_OUT_MASK              0x00000030
83 #define UDC_EPSTS_ALL_CLR_MASK          0x1F0006F0
84 /* Value for OUT field */
85 #define UDC_EPSTS_OUT_SETUP             2
86 #define UDC_EPSTS_OUT_DATA              1
87
88 /* Device configuration register */
89 /* Bit position */
90 #define UDC_DEVCFG_CSR_PRG              (1 << 17)
91 #define UDC_DEVCFG_SP                   (1 << 3)
92 /* SPD Valee */
93 #define UDC_DEVCFG_SPD_HS               0x0
94 #define UDC_DEVCFG_SPD_FS               0x1
95 #define UDC_DEVCFG_SPD_LS               0x2
96
97 /* Device control register */
98 /* Bit position */
99 #define UDC_DEVCTL_THLEN_SHIFT          24
100 #define UDC_DEVCTL_BRLEN_SHIFT          16
101 #define UDC_DEVCTL_CSR_DONE             (1 << 13)
102 #define UDC_DEVCTL_SD                   (1 << 10)
103 #define UDC_DEVCTL_MODE                 (1 << 9)
104 #define UDC_DEVCTL_BREN                 (1 << 8)
105 #define UDC_DEVCTL_THE                  (1 << 7)
106 #define UDC_DEVCTL_DU                   (1 << 4)
107 #define UDC_DEVCTL_TDE                  (1 << 3)
108 #define UDC_DEVCTL_RDE                  (1 << 2)
109 #define UDC_DEVCTL_RES                  (1 << 0)
110
111 /* Device status register */
112 /* Bit position */
113 #define UDC_DEVSTS_TS_SHIFT             18
114 #define UDC_DEVSTS_ENUM_SPEED_SHIFT     13
115 #define UDC_DEVSTS_ALT_SHIFT            8
116 #define UDC_DEVSTS_INTF_SHIFT           4
117 #define UDC_DEVSTS_CFG_SHIFT            0
118 /* Mask patern */
119 #define UDC_DEVSTS_TS_MASK              0xfffc0000
120 #define UDC_DEVSTS_ENUM_SPEED_MASK      0x00006000
121 #define UDC_DEVSTS_ALT_MASK             0x00000f00
122 #define UDC_DEVSTS_INTF_MASK            0x000000f0
123 #define UDC_DEVSTS_CFG_MASK             0x0000000f
124 /* value for maximum speed for SPEED field */
125 #define UDC_DEVSTS_ENUM_SPEED_FULL      1
126 #define UDC_DEVSTS_ENUM_SPEED_HIGH      0
127 #define UDC_DEVSTS_ENUM_SPEED_LOW       2
128 #define UDC_DEVSTS_ENUM_SPEED_FULLX     3
129
130 /* Device irq register */
131 /* Bit position */
132 #define UDC_DEVINT_RWKP                 (1 << 7)
133 #define UDC_DEVINT_ENUM                 (1 << 6)
134 #define UDC_DEVINT_SOF                  (1 << 5)
135 #define UDC_DEVINT_US                   (1 << 4)
136 #define UDC_DEVINT_UR                   (1 << 3)
137 #define UDC_DEVINT_ES                   (1 << 2)
138 #define UDC_DEVINT_SI                   (1 << 1)
139 #define UDC_DEVINT_SC                   (1 << 0)
140 /* Mask patern */
141 #define UDC_DEVINT_MSK                  0x7f
142
143 /* Endpoint irq register */
144 /* Bit position */
145 #define UDC_EPINT_IN_SHIFT              0
146 #define UDC_EPINT_OUT_SHIFT             16
147 #define UDC_EPINT_IN_EP0                (1 << 0)
148 #define UDC_EPINT_OUT_EP0               (1 << 16)
149 /* Mask patern */
150 #define UDC_EPINT_MSK_DISABLE_ALL       0xffffffff
151
152 /* UDC_CSR_BUSY Status register */
153 /* Bit position */
154 #define UDC_CSR_BUSY                    (1 << 0)
155
156 /* SOFT RESET register */
157 /* Bit position */
158 #define UDC_PSRST                       (1 << 1)
159 #define UDC_SRST                        (1 << 0)
160
161 /* USB_DEVICE endpoint register */
162 /* Bit position */
163 #define UDC_CSR_NE_NUM_SHIFT            0
164 #define UDC_CSR_NE_DIR_SHIFT            4
165 #define UDC_CSR_NE_TYPE_SHIFT           5
166 #define UDC_CSR_NE_CFG_SHIFT            7
167 #define UDC_CSR_NE_INTF_SHIFT           11
168 #define UDC_CSR_NE_ALT_SHIFT            15
169 #define UDC_CSR_NE_MAX_PKT_SHIFT        19
170 /* Mask patern */
171 #define UDC_CSR_NE_NUM_MASK             0x0000000f
172 #define UDC_CSR_NE_DIR_MASK             0x00000010
173 #define UDC_CSR_NE_TYPE_MASK            0x00000060
174 #define UDC_CSR_NE_CFG_MASK             0x00000780
175 #define UDC_CSR_NE_INTF_MASK            0x00007800
176 #define UDC_CSR_NE_ALT_MASK             0x00078000
177 #define UDC_CSR_NE_MAX_PKT_MASK         0x3ff80000
178
179 #define PCH_UDC_CSR(ep) (UDC_CSR_ADDR + ep*4)
180 #define PCH_UDC_EPINT(in, num)\
181                 (1 << (num + (in ? UDC_EPINT_IN_SHIFT : UDC_EPINT_OUT_SHIFT)))
182
183 /* Index of endpoint */
184 #define UDC_EP0IN_IDX           0
185 #define UDC_EP0OUT_IDX          1
186 #define UDC_EPIN_IDX(ep)        (ep * 2)
187 #define UDC_EPOUT_IDX(ep)       (ep * 2 + 1)
188 #define PCH_UDC_EP0             0
189 #define PCH_UDC_EP1             1
190 #define PCH_UDC_EP2             2
191 #define PCH_UDC_EP3             3
192
193 /* Number of endpoint */
194 #define PCH_UDC_EP_NUM          32      /* Total number of EPs (16 IN,16 OUT) */
195 #define PCH_UDC_USED_EP_NUM     4       /* EP number of EP's really used */
196 /* Length Value */
197 #define PCH_UDC_BRLEN           0x0F    /* Burst length */
198 #define PCH_UDC_THLEN           0x1F    /* Threshold length */
199 /* Value of EP Buffer Size */
200 #define UDC_EP0IN_BUFF_SIZE     16
201 #define UDC_EPIN_BUFF_SIZE      256
202 #define UDC_EP0OUT_BUFF_SIZE    16
203 #define UDC_EPOUT_BUFF_SIZE     256
204 /* Value of EP maximum packet size */
205 #define UDC_EP0IN_MAX_PKT_SIZE  64
206 #define UDC_EP0OUT_MAX_PKT_SIZE 64
207 #define UDC_BULK_MAX_PKT_SIZE   512
208
209 /* DMA */
210 #define DMA_DIR_RX              1       /* DMA for data receive */
211 #define DMA_DIR_TX              2       /* DMA for data transmit */
212 #define DMA_ADDR_INVALID        (~(dma_addr_t)0)
213 #define UDC_DMA_MAXPACKET       65536   /* maximum packet size for DMA */
214
215 /**
216  * struct pch_udc_data_dma_desc - Structure to hold DMA descriptor information
217  *                                for data
218  * @status:             Status quadlet
219  * @reserved:           Reserved
220  * @dataptr:            Buffer descriptor
221  * @next:               Next descriptor
222  */
223 struct pch_udc_data_dma_desc {
224         u32 status;
225         u32 reserved;
226         u32 dataptr;
227         u32 next;
228 };
229
230 /**
231  * struct pch_udc_stp_dma_desc - Structure to hold DMA descriptor information
232  *                               for control data
233  * @status:     Status
234  * @reserved:   Reserved
235  * @data12:     First setup word
236  * @data34:     Second setup word
237  */
238 struct pch_udc_stp_dma_desc {
239         u32 status;
240         u32 reserved;
241         struct usb_ctrlrequest request;
242 } __attribute((packed));
243
244 /* DMA status definitions */
245 /* Buffer status */
246 #define PCH_UDC_BUFF_STS        0xC0000000
247 #define PCH_UDC_BS_HST_RDY      0x00000000
248 #define PCH_UDC_BS_DMA_BSY      0x40000000
249 #define PCH_UDC_BS_DMA_DONE     0x80000000
250 #define PCH_UDC_BS_HST_BSY      0xC0000000
251 /*  Rx/Tx Status */
252 #define PCH_UDC_RXTX_STS        0x30000000
253 #define PCH_UDC_RTS_SUCC        0x00000000
254 #define PCH_UDC_RTS_DESERR      0x10000000
255 #define PCH_UDC_RTS_BUFERR      0x30000000
256 /* Last Descriptor Indication */
257 #define PCH_UDC_DMA_LAST        0x08000000
258 /* Number of Rx/Tx Bytes Mask */
259 #define PCH_UDC_RXTX_BYTES      0x0000ffff
260
261 /**
262  * struct pch_udc_cfg_data - Structure to hold current configuration
263  *                           and interface information
264  * @cur_cfg:    current configuration in use
265  * @cur_intf:   current interface in use
266  * @cur_alt:    current alt interface in use
267  */
268 struct pch_udc_cfg_data {
269         u16 cur_cfg;
270         u16 cur_intf;
271         u16 cur_alt;
272 };
273
274 /**
275  * struct pch_udc_ep - Structure holding a PCH USB device Endpoint information
276  * @ep:                 embedded ep request
277  * @td_stp_phys:        for setup request
278  * @td_data_phys:       for data request
279  * @td_stp:             for setup request
280  * @td_data:            for data request
281  * @dev:                reference to device struct
282  * @offset_addr:        offset address of ep register
283  * @desc:               for this ep
284  * @queue:              queue for requests
285  * @num:                endpoint number
286  * @in:                 endpoint is IN
287  * @halted:             endpoint halted?
288  * @epsts:              Endpoint status
289  */
290 struct pch_udc_ep {
291         struct usb_ep                   ep;
292         dma_addr_t                      td_stp_phys;
293         dma_addr_t                      td_data_phys;
294         struct pch_udc_stp_dma_desc     *td_stp;
295         struct pch_udc_data_dma_desc    *td_data;
296         struct pch_udc_dev              *dev;
297         unsigned long                   offset_addr;
298         struct list_head                queue;
299         unsigned                        num:5,
300                                         in:1,
301                                         halted:1;
302         unsigned long                   epsts;
303 };
304
305 /**
306  * struct pch_vbus_gpio_data - Structure holding GPIO informaton
307  *                                      for detecting VBUS
308  * @port:               gpio port number
309  * @intr:               gpio interrupt number
310  * @irq_work_fall       Structure for WorkQueue
311  * @irq_work_rise       Structure for WorkQueue
312  */
313 struct pch_vbus_gpio_data {
314         int                     port;
315         int                     intr;
316         struct work_struct      irq_work_fall;
317         struct work_struct      irq_work_rise;
318 };
319
320 /**
321  * struct pch_udc_dev - Structure holding complete information
322  *                      of the PCH USB device
323  * @gadget:             gadget driver data
324  * @driver:             reference to gadget driver bound
325  * @pdev:               reference to the PCI device
326  * @ep:                 array of endpoints
327  * @lock:               protects all state
328  * @stall:              stall requested
329  * @prot_stall:         protcol stall requested
330  * @registered:         driver registered with system
331  * @suspended:          driver in suspended state
332  * @connected:          gadget driver associated
333  * @vbus_session:       required vbus_session state
334  * @set_cfg_not_acked:  pending acknowledgement 4 setup
335  * @waiting_zlp_ack:    pending acknowledgement 4 ZLP
336  * @data_requests:      DMA pool for data requests
337  * @stp_requests:       DMA pool for setup requests
338  * @dma_addr:           DMA pool for received
339  * @setup_data:         Received setup data
340  * @base_addr:          for mapped device memory
341  * @cfg_data:           current cfg, intf, and alt in use
342  * @vbus_gpio:          GPIO informaton for detecting VBUS
343  */
344 struct pch_udc_dev {
345         struct usb_gadget               gadget;
346         struct usb_gadget_driver        *driver;
347         struct pci_dev                  *pdev;
348         struct pch_udc_ep               ep[PCH_UDC_EP_NUM];
349         spinlock_t                      lock; /* protects all state */
350         unsigned
351                         stall:1,
352                         prot_stall:1,
353                         suspended:1,
354                         connected:1,
355                         vbus_session:1,
356                         set_cfg_not_acked:1,
357                         waiting_zlp_ack:1;
358         struct pci_pool         *data_requests;
359         struct pci_pool         *stp_requests;
360         dma_addr_t                      dma_addr;
361         struct usb_ctrlrequest          setup_data;
362         void __iomem                    *base_addr;
363         struct pch_udc_cfg_data         cfg_data;
364         struct pch_vbus_gpio_data       vbus_gpio;
365 };
366 #define to_pch_udc(g)   (container_of((g), struct pch_udc_dev, gadget))
367
368 #define PCH_UDC_PCI_BAR_QUARK_X1000     0
369 #define PCH_UDC_PCI_BAR                 1
370
371 #define PCI_DEVICE_ID_INTEL_QUARK_X1000_UDC     0x0939
372 #define PCI_DEVICE_ID_INTEL_EG20T_UDC           0x8808
373
374 #define PCI_VENDOR_ID_ROHM              0x10DB
375 #define PCI_DEVICE_ID_ML7213_IOH_UDC    0x801D
376 #define PCI_DEVICE_ID_ML7831_IOH_UDC    0x8808
377
378 static const char       ep0_string[] = "ep0in";
379 static DEFINE_SPINLOCK(udc_stall_spinlock);     /* stall spin lock */
380 static bool speed_fs;
381 module_param_named(speed_fs, speed_fs, bool, S_IRUGO);
382 MODULE_PARM_DESC(speed_fs, "true for Full speed operation");
383
384 /**
385  * struct pch_udc_request - Structure holding a PCH USB device request packet
386  * @req:                embedded ep request
387  * @td_data_phys:       phys. address
388  * @td_data:            first dma desc. of chain
389  * @td_data_last:       last dma desc. of chain
390  * @queue:              associated queue
391  * @dma_going:          DMA in progress for request
392  * @dma_mapped:         DMA memory mapped for request
393  * @dma_done:           DMA completed for request
394  * @chain_len:          chain length
395  * @buf:                Buffer memory for align adjustment
396  * @dma:                DMA memory for align adjustment
397  */
398 struct pch_udc_request {
399         struct usb_request              req;
400         dma_addr_t                      td_data_phys;
401         struct pch_udc_data_dma_desc    *td_data;
402         struct pch_udc_data_dma_desc    *td_data_last;
403         struct list_head                queue;
404         unsigned                        dma_going:1,
405                                         dma_mapped:1,
406                                         dma_done:1;
407         unsigned                        chain_len;
408         void                            *buf;
409         dma_addr_t                      dma;
410 };
411
412 static inline u32 pch_udc_readl(struct pch_udc_dev *dev, unsigned long reg)
413 {
414         return ioread32(dev->base_addr + reg);
415 }
416
417 static inline void pch_udc_writel(struct pch_udc_dev *dev,
418                                     unsigned long val, unsigned long reg)
419 {
420         iowrite32(val, dev->base_addr + reg);
421 }
422
423 static inline void pch_udc_bit_set(struct pch_udc_dev *dev,
424                                      unsigned long reg,
425                                      unsigned long bitmask)
426 {
427         pch_udc_writel(dev, pch_udc_readl(dev, reg) | bitmask, reg);
428 }
429
430 static inline void pch_udc_bit_clr(struct pch_udc_dev *dev,
431                                      unsigned long reg,
432                                      unsigned long bitmask)
433 {
434         pch_udc_writel(dev, pch_udc_readl(dev, reg) & ~(bitmask), reg);
435 }
436
437 static inline u32 pch_udc_ep_readl(struct pch_udc_ep *ep, unsigned long reg)
438 {
439         return ioread32(ep->dev->base_addr + ep->offset_addr + reg);
440 }
441
442 static inline void pch_udc_ep_writel(struct pch_udc_ep *ep,
443                                     unsigned long val, unsigned long reg)
444 {
445         iowrite32(val, ep->dev->base_addr + ep->offset_addr + reg);
446 }
447
448 static inline void pch_udc_ep_bit_set(struct pch_udc_ep *ep,
449                                      unsigned long reg,
450                                      unsigned long bitmask)
451 {
452         pch_udc_ep_writel(ep, pch_udc_ep_readl(ep, reg) | bitmask, reg);
453 }
454
455 static inline void pch_udc_ep_bit_clr(struct pch_udc_ep *ep,
456                                      unsigned long reg,
457                                      unsigned long bitmask)
458 {
459         pch_udc_ep_writel(ep, pch_udc_ep_readl(ep, reg) & ~(bitmask), reg);
460 }
461
462 /**
463  * pch_udc_csr_busy() - Wait till idle.
464  * @dev:        Reference to pch_udc_dev structure
465  */
466 static void pch_udc_csr_busy(struct pch_udc_dev *dev)
467 {
468         unsigned int count = 200;
469
470         /* Wait till idle */
471         while ((pch_udc_readl(dev, UDC_CSR_BUSY_ADDR) & UDC_CSR_BUSY)
472                 && --count)
473                 cpu_relax();
474         if (!count)
475                 dev_err(&dev->pdev->dev, "%s: wait error\n", __func__);
476 }
477
478 /**
479  * pch_udc_write_csr() - Write the command and status registers.
480  * @dev:        Reference to pch_udc_dev structure
481  * @val:        value to be written to CSR register
482  * @addr:       address of CSR register
483  */
484 static void pch_udc_write_csr(struct pch_udc_dev *dev, unsigned long val,
485                                unsigned int ep)
486 {
487         unsigned long reg = PCH_UDC_CSR(ep);
488
489         pch_udc_csr_busy(dev);          /* Wait till idle */
490         pch_udc_writel(dev, val, reg);
491         pch_udc_csr_busy(dev);          /* Wait till idle */
492 }
493
494 /**
495  * pch_udc_read_csr() - Read the command and status registers.
496  * @dev:        Reference to pch_udc_dev structure
497  * @addr:       address of CSR register
498  *
499  * Return codes:        content of CSR register
500  */
501 static u32 pch_udc_read_csr(struct pch_udc_dev *dev, unsigned int ep)
502 {
503         unsigned long reg = PCH_UDC_CSR(ep);
504
505         pch_udc_csr_busy(dev);          /* Wait till idle */
506         pch_udc_readl(dev, reg);        /* Dummy read */
507         pch_udc_csr_busy(dev);          /* Wait till idle */
508         return pch_udc_readl(dev, reg);
509 }
510
511 /**
512  * pch_udc_rmt_wakeup() - Initiate for remote wakeup
513  * @dev:        Reference to pch_udc_dev structure
514  */
515 static inline void pch_udc_rmt_wakeup(struct pch_udc_dev *dev)
516 {
517         pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
518         mdelay(1);
519         pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
520 }
521
522 /**
523  * pch_udc_get_frame() - Get the current frame from device status register
524  * @dev:        Reference to pch_udc_dev structure
525  * Retern       current frame
526  */
527 static inline int pch_udc_get_frame(struct pch_udc_dev *dev)
528 {
529         u32 frame = pch_udc_readl(dev, UDC_DEVSTS_ADDR);
530         return (frame & UDC_DEVSTS_TS_MASK) >> UDC_DEVSTS_TS_SHIFT;
531 }
532
533 /**
534  * pch_udc_clear_selfpowered() - Clear the self power control
535  * @dev:        Reference to pch_udc_regs structure
536  */
537 static inline void pch_udc_clear_selfpowered(struct pch_udc_dev *dev)
538 {
539         pch_udc_bit_clr(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_SP);
540 }
541
542 /**
543  * pch_udc_set_selfpowered() - Set the self power control
544  * @dev:        Reference to pch_udc_regs structure
545  */
546 static inline void pch_udc_set_selfpowered(struct pch_udc_dev *dev)
547 {
548         pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_SP);
549 }
550
551 /**
552  * pch_udc_set_disconnect() - Set the disconnect status.
553  * @dev:        Reference to pch_udc_regs structure
554  */
555 static inline void pch_udc_set_disconnect(struct pch_udc_dev *dev)
556 {
557         pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD);
558 }
559
560 /**
561  * pch_udc_clear_disconnect() - Clear the disconnect status.
562  * @dev:        Reference to pch_udc_regs structure
563  */
564 static void pch_udc_clear_disconnect(struct pch_udc_dev *dev)
565 {
566         /* Clear the disconnect */
567         pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
568         pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD);
569         mdelay(1);
570         /* Resume USB signalling */
571         pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
572 }
573
574 /**
575  * pch_udc_reconnect() - This API initializes usb device controller,
576  *                                              and clear the disconnect status.
577  * @dev:                Reference to pch_udc_regs structure
578  */
579 static void pch_udc_init(struct pch_udc_dev *dev);
580 static void pch_udc_reconnect(struct pch_udc_dev *dev)
581 {
582         pch_udc_init(dev);
583
584         /* enable device interrupts */
585         /* pch_udc_enable_interrupts() */
586         pch_udc_bit_clr(dev, UDC_DEVIRQMSK_ADDR,
587                         UDC_DEVINT_UR | UDC_DEVINT_ENUM);
588
589         /* Clear the disconnect */
590         pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
591         pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD);
592         mdelay(1);
593         /* Resume USB signalling */
594         pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
595 }
596
597 /**
598  * pch_udc_vbus_session() - set or clearr the disconnect status.
599  * @dev:        Reference to pch_udc_regs structure
600  * @is_active:  Parameter specifying the action
601  *                0:   indicating VBUS power is ending
602  *                !0:  indicating VBUS power is starting
603  */
604 static inline void pch_udc_vbus_session(struct pch_udc_dev *dev,
605                                           int is_active)
606 {
607         if (is_active) {
608                 pch_udc_reconnect(dev);
609                 dev->vbus_session = 1;
610         } else {
611                 if (dev->driver && dev->driver->disconnect) {
612                         spin_lock(&dev->lock);
613                         dev->driver->disconnect(&dev->gadget);
614                         spin_unlock(&dev->lock);
615                 }
616                 pch_udc_set_disconnect(dev);
617                 dev->vbus_session = 0;
618         }
619 }
620
621 /**
622  * pch_udc_ep_set_stall() - Set the stall of endpoint
623  * @ep:         Reference to structure of type pch_udc_ep_regs
624  */
625 static void pch_udc_ep_set_stall(struct pch_udc_ep *ep)
626 {
627         if (ep->in) {
628                 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_F);
629                 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
630         } else {
631                 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
632         }
633 }
634
635 /**
636  * pch_udc_ep_clear_stall() - Clear the stall of endpoint
637  * @ep:         Reference to structure of type pch_udc_ep_regs
638  */
639 static inline void pch_udc_ep_clear_stall(struct pch_udc_ep *ep)
640 {
641         /* Clear the stall */
642         pch_udc_ep_bit_clr(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
643         /* Clear NAK by writing CNAK */
644         pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_CNAK);
645 }
646
647 /**
648  * pch_udc_ep_set_trfr_type() - Set the transfer type of endpoint
649  * @ep:         Reference to structure of type pch_udc_ep_regs
650  * @type:       Type of endpoint
651  */
652 static inline void pch_udc_ep_set_trfr_type(struct pch_udc_ep *ep,
653                                         u8 type)
654 {
655         pch_udc_ep_writel(ep, ((type << UDC_EPCTL_ET_SHIFT) &
656                                 UDC_EPCTL_ET_MASK), UDC_EPCTL_ADDR);
657 }
658
659 /**
660  * pch_udc_ep_set_bufsz() - Set the maximum packet size for the endpoint
661  * @ep:         Reference to structure of type pch_udc_ep_regs
662  * @buf_size:   The buffer word size
663  */
664 static void pch_udc_ep_set_bufsz(struct pch_udc_ep *ep,
665                                                  u32 buf_size, u32 ep_in)
666 {
667         u32 data;
668         if (ep_in) {
669                 data = pch_udc_ep_readl(ep, UDC_BUFIN_FRAMENUM_ADDR);
670                 data = (data & 0xffff0000) | (buf_size & 0xffff);
671                 pch_udc_ep_writel(ep, data, UDC_BUFIN_FRAMENUM_ADDR);
672         } else {
673                 data = pch_udc_ep_readl(ep, UDC_BUFOUT_MAXPKT_ADDR);
674                 data = (buf_size << 16) | (data & 0xffff);
675                 pch_udc_ep_writel(ep, data, UDC_BUFOUT_MAXPKT_ADDR);
676         }
677 }
678
679 /**
680  * pch_udc_ep_set_maxpkt() - Set the Max packet size for the endpoint
681  * @ep:         Reference to structure of type pch_udc_ep_regs
682  * @pkt_size:   The packet byte size
683  */
684 static void pch_udc_ep_set_maxpkt(struct pch_udc_ep *ep, u32 pkt_size)
685 {
686         u32 data = pch_udc_ep_readl(ep, UDC_BUFOUT_MAXPKT_ADDR);
687         data = (data & 0xffff0000) | (pkt_size & 0xffff);
688         pch_udc_ep_writel(ep, data, UDC_BUFOUT_MAXPKT_ADDR);
689 }
690
691 /**
692  * pch_udc_ep_set_subptr() - Set the Setup buffer pointer for the endpoint
693  * @ep:         Reference to structure of type pch_udc_ep_regs
694  * @addr:       Address of the register
695  */
696 static inline void pch_udc_ep_set_subptr(struct pch_udc_ep *ep, u32 addr)
697 {
698         pch_udc_ep_writel(ep, addr, UDC_SUBPTR_ADDR);
699 }
700
701 /**
702  * pch_udc_ep_set_ddptr() - Set the Data descriptor pointer for the endpoint
703  * @ep:         Reference to structure of type pch_udc_ep_regs
704  * @addr:       Address of the register
705  */
706 static inline void pch_udc_ep_set_ddptr(struct pch_udc_ep *ep, u32 addr)
707 {
708         pch_udc_ep_writel(ep, addr, UDC_DESPTR_ADDR);
709 }
710
711 /**
712  * pch_udc_ep_set_pd() - Set the poll demand bit for the endpoint
713  * @ep:         Reference to structure of type pch_udc_ep_regs
714  */
715 static inline void pch_udc_ep_set_pd(struct pch_udc_ep *ep)
716 {
717         pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_P);
718 }
719
720 /**
721  * pch_udc_ep_set_rrdy() - Set the receive ready bit for the endpoint
722  * @ep:         Reference to structure of type pch_udc_ep_regs
723  */
724 static inline void pch_udc_ep_set_rrdy(struct pch_udc_ep *ep)
725 {
726         pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_RRDY);
727 }
728
729 /**
730  * pch_udc_ep_clear_rrdy() - Clear the receive ready bit for the endpoint
731  * @ep:         Reference to structure of type pch_udc_ep_regs
732  */
733 static inline void pch_udc_ep_clear_rrdy(struct pch_udc_ep *ep)
734 {
735         pch_udc_ep_bit_clr(ep, UDC_EPCTL_ADDR, UDC_EPCTL_RRDY);
736 }
737
738 /**
739  * pch_udc_set_dma() - Set the 'TDE' or RDE bit of device control
740  *                      register depending on the direction specified
741  * @dev:        Reference to structure of type pch_udc_regs
742  * @dir:        whether Tx or Rx
743  *                DMA_DIR_RX: Receive
744  *                DMA_DIR_TX: Transmit
745  */
746 static inline void pch_udc_set_dma(struct pch_udc_dev *dev, int dir)
747 {
748         if (dir == DMA_DIR_RX)
749                 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RDE);
750         else if (dir == DMA_DIR_TX)
751                 pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_TDE);
752 }
753
754 /**
755  * pch_udc_clear_dma() - Clear the 'TDE' or RDE bit of device control
756  *                               register depending on the direction specified
757  * @dev:        Reference to structure of type pch_udc_regs
758  * @dir:        Whether Tx or Rx
759  *                DMA_DIR_RX: Receive
760  *                DMA_DIR_TX: Transmit
761  */
762 static inline void pch_udc_clear_dma(struct pch_udc_dev *dev, int dir)
763 {
764         if (dir == DMA_DIR_RX)
765                 pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RDE);
766         else if (dir == DMA_DIR_TX)
767                 pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_TDE);
768 }
769
770 /**
771  * pch_udc_set_csr_done() - Set the device control register
772  *                              CSR done field (bit 13)
773  * @dev:        reference to structure of type pch_udc_regs
774  */
775 static inline void pch_udc_set_csr_done(struct pch_udc_dev *dev)
776 {
777         pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_CSR_DONE);
778 }
779
780 /**
781  * pch_udc_disable_interrupts() - Disables the specified interrupts
782  * @dev:        Reference to structure of type pch_udc_regs
783  * @mask:       Mask to disable interrupts
784  */
785 static inline void pch_udc_disable_interrupts(struct pch_udc_dev *dev,
786                                             u32 mask)
787 {
788         pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, mask);
789 }
790
791 /**
792  * pch_udc_enable_interrupts() - Enable the specified interrupts
793  * @dev:        Reference to structure of type pch_udc_regs
794  * @mask:       Mask to enable interrupts
795  */
796 static inline void pch_udc_enable_interrupts(struct pch_udc_dev *dev,
797                                            u32 mask)
798 {
799         pch_udc_bit_clr(dev, UDC_DEVIRQMSK_ADDR, mask);
800 }
801
802 /**
803  * pch_udc_disable_ep_interrupts() - Disable endpoint interrupts
804  * @dev:        Reference to structure of type pch_udc_regs
805  * @mask:       Mask to disable interrupts
806  */
807 static inline void pch_udc_disable_ep_interrupts(struct pch_udc_dev *dev,
808                                                 u32 mask)
809 {
810         pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, mask);
811 }
812
813 /**
814  * pch_udc_enable_ep_interrupts() - Enable endpoint interrupts
815  * @dev:        Reference to structure of type pch_udc_regs
816  * @mask:       Mask to enable interrupts
817  */
818 static inline void pch_udc_enable_ep_interrupts(struct pch_udc_dev *dev,
819                                               u32 mask)
820 {
821         pch_udc_bit_clr(dev, UDC_EPIRQMSK_ADDR, mask);
822 }
823
824 /**
825  * pch_udc_read_device_interrupts() - Read the device interrupts
826  * @dev:        Reference to structure of type pch_udc_regs
827  * Retern       The device interrupts
828  */
829 static inline u32 pch_udc_read_device_interrupts(struct pch_udc_dev *dev)
830 {
831         return pch_udc_readl(dev, UDC_DEVIRQSTS_ADDR);
832 }
833
834 /**
835  * pch_udc_write_device_interrupts() - Write device interrupts
836  * @dev:        Reference to structure of type pch_udc_regs
837  * @val:        The value to be written to interrupt register
838  */
839 static inline void pch_udc_write_device_interrupts(struct pch_udc_dev *dev,
840                                                      u32 val)
841 {
842         pch_udc_writel(dev, val, UDC_DEVIRQSTS_ADDR);
843 }
844
845 /**
846  * pch_udc_read_ep_interrupts() - Read the endpoint interrupts
847  * @dev:        Reference to structure of type pch_udc_regs
848  * Retern       The endpoint interrupt
849  */
850 static inline u32 pch_udc_read_ep_interrupts(struct pch_udc_dev *dev)
851 {
852         return pch_udc_readl(dev, UDC_EPIRQSTS_ADDR);
853 }
854
855 /**
856  * pch_udc_write_ep_interrupts() - Clear endpoint interupts
857  * @dev:        Reference to structure of type pch_udc_regs
858  * @val:        The value to be written to interrupt register
859  */
860 static inline void pch_udc_write_ep_interrupts(struct pch_udc_dev *dev,
861                                              u32 val)
862 {
863         pch_udc_writel(dev, val, UDC_EPIRQSTS_ADDR);
864 }
865
866 /**
867  * pch_udc_read_device_status() - Read the device status
868  * @dev:        Reference to structure of type pch_udc_regs
869  * Retern       The device status
870  */
871 static inline u32 pch_udc_read_device_status(struct pch_udc_dev *dev)
872 {
873         return pch_udc_readl(dev, UDC_DEVSTS_ADDR);
874 }
875
876 /**
877  * pch_udc_read_ep_control() - Read the endpoint control
878  * @ep:         Reference to structure of type pch_udc_ep_regs
879  * Retern       The endpoint control register value
880  */
881 static inline u32 pch_udc_read_ep_control(struct pch_udc_ep *ep)
882 {
883         return pch_udc_ep_readl(ep, UDC_EPCTL_ADDR);
884 }
885
886 /**
887  * pch_udc_clear_ep_control() - Clear the endpoint control register
888  * @ep:         Reference to structure of type pch_udc_ep_regs
889  * Retern       The endpoint control register value
890  */
891 static inline void pch_udc_clear_ep_control(struct pch_udc_ep *ep)
892 {
893         return pch_udc_ep_writel(ep, 0, UDC_EPCTL_ADDR);
894 }
895
896 /**
897  * pch_udc_read_ep_status() - Read the endpoint status
898  * @ep:         Reference to structure of type pch_udc_ep_regs
899  * Retern       The endpoint status
900  */
901 static inline u32 pch_udc_read_ep_status(struct pch_udc_ep *ep)
902 {
903         return pch_udc_ep_readl(ep, UDC_EPSTS_ADDR);
904 }
905
906 /**
907  * pch_udc_clear_ep_status() - Clear the endpoint status
908  * @ep:         Reference to structure of type pch_udc_ep_regs
909  * @stat:       Endpoint status
910  */
911 static inline void pch_udc_clear_ep_status(struct pch_udc_ep *ep,
912                                          u32 stat)
913 {
914         return pch_udc_ep_writel(ep, stat, UDC_EPSTS_ADDR);
915 }
916
917 /**
918  * pch_udc_ep_set_nak() - Set the bit 7 (SNAK field)
919  *                              of the endpoint control register
920  * @ep:         Reference to structure of type pch_udc_ep_regs
921  */
922 static inline void pch_udc_ep_set_nak(struct pch_udc_ep *ep)
923 {
924         pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_SNAK);
925 }
926
927 /**
928  * pch_udc_ep_clear_nak() - Set the bit 8 (CNAK field)
929  *                              of the endpoint control register
930  * @ep:         reference to structure of type pch_udc_ep_regs
931  */
932 static void pch_udc_ep_clear_nak(struct pch_udc_ep *ep)
933 {
934         unsigned int loopcnt = 0;
935         struct pch_udc_dev *dev = ep->dev;
936
937         if (!(pch_udc_ep_readl(ep, UDC_EPCTL_ADDR) & UDC_EPCTL_NAK))
938                 return;
939         if (!ep->in) {
940                 loopcnt = 10000;
941                 while (!(pch_udc_read_ep_status(ep) & UDC_EPSTS_MRXFIFO_EMP) &&
942                         --loopcnt)
943                         udelay(5);
944                 if (!loopcnt)
945                         dev_err(&dev->pdev->dev, "%s: RxFIFO not Empty\n",
946                                 __func__);
947         }
948         loopcnt = 10000;
949         while ((pch_udc_read_ep_control(ep) & UDC_EPCTL_NAK) && --loopcnt) {
950                 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_CNAK);
951                 udelay(5);
952         }
953         if (!loopcnt)
954                 dev_err(&dev->pdev->dev, "%s: Clear NAK not set for ep%d%s\n",
955                         __func__, ep->num, (ep->in ? "in" : "out"));
956 }
957
958 /**
959  * pch_udc_ep_fifo_flush() - Flush the endpoint fifo
960  * @ep: reference to structure of type pch_udc_ep_regs
961  * @dir:        direction of endpoint
962  *                0:  endpoint is OUT
963  *                !0: endpoint is IN
964  */
965 static void pch_udc_ep_fifo_flush(struct pch_udc_ep *ep, int dir)
966 {
967         if (dir) {      /* IN ep */
968                 pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_F);
969                 return;
970         }
971 }
972
973 /**
974  * pch_udc_ep_enable() - This api enables endpoint
975  * @regs:       Reference to structure pch_udc_ep_regs
976  * @desc:       endpoint descriptor
977  */
978 static void pch_udc_ep_enable(struct pch_udc_ep *ep,
979                                struct pch_udc_cfg_data *cfg,
980                                const struct usb_endpoint_descriptor *desc)
981 {
982         u32 val = 0;
983         u32 buff_size = 0;
984
985         pch_udc_ep_set_trfr_type(ep, desc->bmAttributes);
986         if (ep->in)
987                 buff_size = UDC_EPIN_BUFF_SIZE;
988         else
989                 buff_size = UDC_EPOUT_BUFF_SIZE;
990         pch_udc_ep_set_bufsz(ep, buff_size, ep->in);
991         pch_udc_ep_set_maxpkt(ep, usb_endpoint_maxp(desc));
992         pch_udc_ep_set_nak(ep);
993         pch_udc_ep_fifo_flush(ep, ep->in);
994         /* Configure the endpoint */
995         val = ep->num << UDC_CSR_NE_NUM_SHIFT | ep->in << UDC_CSR_NE_DIR_SHIFT |
996               ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) <<
997                 UDC_CSR_NE_TYPE_SHIFT) |
998               (cfg->cur_cfg << UDC_CSR_NE_CFG_SHIFT) |
999               (cfg->cur_intf << UDC_CSR_NE_INTF_SHIFT) |
1000               (cfg->cur_alt << UDC_CSR_NE_ALT_SHIFT) |
1001               usb_endpoint_maxp(desc) << UDC_CSR_NE_MAX_PKT_SHIFT;
1002
1003         if (ep->in)
1004                 pch_udc_write_csr(ep->dev, val, UDC_EPIN_IDX(ep->num));
1005         else
1006                 pch_udc_write_csr(ep->dev, val, UDC_EPOUT_IDX(ep->num));
1007 }
1008
1009 /**
1010  * pch_udc_ep_disable() - This api disables endpoint
1011  * @regs:       Reference to structure pch_udc_ep_regs
1012  */
1013 static void pch_udc_ep_disable(struct pch_udc_ep *ep)
1014 {
1015         if (ep->in) {
1016                 /* flush the fifo */
1017                 pch_udc_ep_writel(ep, UDC_EPCTL_F, UDC_EPCTL_ADDR);
1018                 /* set NAK */
1019                 pch_udc_ep_writel(ep, UDC_EPCTL_SNAK, UDC_EPCTL_ADDR);
1020                 pch_udc_ep_bit_set(ep, UDC_EPSTS_ADDR, UDC_EPSTS_IN);
1021         } else {
1022                 /* set NAK */
1023                 pch_udc_ep_writel(ep, UDC_EPCTL_SNAK, UDC_EPCTL_ADDR);
1024         }
1025         /* reset desc pointer */
1026         pch_udc_ep_writel(ep, 0, UDC_DESPTR_ADDR);
1027 }
1028
1029 /**
1030  * pch_udc_wait_ep_stall() - Wait EP stall.
1031  * @dev:        Reference to pch_udc_dev structure
1032  */
1033 static void pch_udc_wait_ep_stall(struct pch_udc_ep *ep)
1034 {
1035         unsigned int count = 10000;
1036
1037         /* Wait till idle */
1038         while ((pch_udc_read_ep_control(ep) & UDC_EPCTL_S) && --count)
1039                 udelay(5);
1040         if (!count)
1041                 dev_err(&ep->dev->pdev->dev, "%s: wait error\n", __func__);
1042 }
1043
1044 /**
1045  * pch_udc_init() - This API initializes usb device controller
1046  * @dev:        Rreference to pch_udc_regs structure
1047  */
1048 static void pch_udc_init(struct pch_udc_dev *dev)
1049 {
1050         if (NULL == dev) {
1051                 pr_err("%s: Invalid address\n", __func__);
1052                 return;
1053         }
1054         /* Soft Reset and Reset PHY */
1055         pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR);
1056         pch_udc_writel(dev, UDC_SRST | UDC_PSRST, UDC_SRST_ADDR);
1057         mdelay(1);
1058         pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR);
1059         pch_udc_writel(dev, 0x00, UDC_SRST_ADDR);
1060         mdelay(1);
1061         /* mask and clear all device interrupts */
1062         pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, UDC_DEVINT_MSK);
1063         pch_udc_bit_set(dev, UDC_DEVIRQSTS_ADDR, UDC_DEVINT_MSK);
1064
1065         /* mask and clear all ep interrupts */
1066         pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
1067         pch_udc_bit_set(dev, UDC_EPIRQSTS_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
1068
1069         /* enable dynamic CSR programmingi, self powered and device speed */
1070         if (speed_fs)
1071                 pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_CSR_PRG |
1072                                 UDC_DEVCFG_SP | UDC_DEVCFG_SPD_FS);
1073         else /* defaul high speed */
1074                 pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_CSR_PRG |
1075                                 UDC_DEVCFG_SP | UDC_DEVCFG_SPD_HS);
1076         pch_udc_bit_set(dev, UDC_DEVCTL_ADDR,
1077                         (PCH_UDC_THLEN << UDC_DEVCTL_THLEN_SHIFT) |
1078                         (PCH_UDC_BRLEN << UDC_DEVCTL_BRLEN_SHIFT) |
1079                         UDC_DEVCTL_MODE | UDC_DEVCTL_BREN |
1080                         UDC_DEVCTL_THE);
1081 }
1082
1083 /**
1084  * pch_udc_exit() - This API exit usb device controller
1085  * @dev:        Reference to pch_udc_regs structure
1086  */
1087 static void pch_udc_exit(struct pch_udc_dev *dev)
1088 {
1089         /* mask all device interrupts */
1090         pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, UDC_DEVINT_MSK);
1091         /* mask all ep interrupts */
1092         pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
1093         /* put device in disconnected state */
1094         pch_udc_set_disconnect(dev);
1095 }
1096
1097 /**
1098  * pch_udc_pcd_get_frame() - This API is invoked to get the current frame number
1099  * @gadget:     Reference to the gadget driver
1100  *
1101  * Return codes:
1102  *      0:              Success
1103  *      -EINVAL:        If the gadget passed is NULL
1104  */
1105 static int pch_udc_pcd_get_frame(struct usb_gadget *gadget)
1106 {
1107         struct pch_udc_dev      *dev;
1108
1109         if (!gadget)
1110                 return -EINVAL;
1111         dev = container_of(gadget, struct pch_udc_dev, gadget);
1112         return pch_udc_get_frame(dev);
1113 }
1114
1115 /**
1116  * pch_udc_pcd_wakeup() - This API is invoked to initiate a remote wakeup
1117  * @gadget:     Reference to the gadget driver
1118  *
1119  * Return codes:
1120  *      0:              Success
1121  *      -EINVAL:        If the gadget passed is NULL
1122  */
1123 static int pch_udc_pcd_wakeup(struct usb_gadget *gadget)
1124 {
1125         struct pch_udc_dev      *dev;
1126         unsigned long           flags;
1127
1128         if (!gadget)
1129                 return -EINVAL;
1130         dev = container_of(gadget, struct pch_udc_dev, gadget);
1131         spin_lock_irqsave(&dev->lock, flags);
1132         pch_udc_rmt_wakeup(dev);
1133         spin_unlock_irqrestore(&dev->lock, flags);
1134         return 0;
1135 }
1136
1137 /**
1138  * pch_udc_pcd_selfpowered() - This API is invoked to specify whether the device
1139  *                              is self powered or not
1140  * @gadget:     Reference to the gadget driver
1141  * @value:      Specifies self powered or not
1142  *
1143  * Return codes:
1144  *      0:              Success
1145  *      -EINVAL:        If the gadget passed is NULL
1146  */
1147 static int pch_udc_pcd_selfpowered(struct usb_gadget *gadget, int value)
1148 {
1149         struct pch_udc_dev      *dev;
1150
1151         if (!gadget)
1152                 return -EINVAL;
1153         gadget->is_selfpowered = (value != 0);
1154         dev = container_of(gadget, struct pch_udc_dev, gadget);
1155         if (value)
1156                 pch_udc_set_selfpowered(dev);
1157         else
1158                 pch_udc_clear_selfpowered(dev);
1159         return 0;
1160 }
1161
1162 /**
1163  * pch_udc_pcd_pullup() - This API is invoked to make the device
1164  *                              visible/invisible to the host
1165  * @gadget:     Reference to the gadget driver
1166  * @is_on:      Specifies whether the pull up is made active or inactive
1167  *
1168  * Return codes:
1169  *      0:              Success
1170  *      -EINVAL:        If the gadget passed is NULL
1171  */
1172 static int pch_udc_pcd_pullup(struct usb_gadget *gadget, int is_on)
1173 {
1174         struct pch_udc_dev      *dev;
1175
1176         if (!gadget)
1177                 return -EINVAL;
1178         dev = container_of(gadget, struct pch_udc_dev, gadget);
1179         if (is_on) {
1180                 pch_udc_reconnect(dev);
1181         } else {
1182                 if (dev->driver && dev->driver->disconnect) {
1183                         spin_lock(&dev->lock);
1184                         dev->driver->disconnect(&dev->gadget);
1185                         spin_unlock(&dev->lock);
1186                 }
1187                 pch_udc_set_disconnect(dev);
1188         }
1189
1190         return 0;
1191 }
1192
1193 /**
1194  * pch_udc_pcd_vbus_session() - This API is used by a driver for an external
1195  *                              transceiver (or GPIO) that
1196  *                              detects a VBUS power session starting/ending
1197  * @gadget:     Reference to the gadget driver
1198  * @is_active:  specifies whether the session is starting or ending
1199  *
1200  * Return codes:
1201  *      0:              Success
1202  *      -EINVAL:        If the gadget passed is NULL
1203  */
1204 static int pch_udc_pcd_vbus_session(struct usb_gadget *gadget, int is_active)
1205 {
1206         struct pch_udc_dev      *dev;
1207
1208         if (!gadget)
1209                 return -EINVAL;
1210         dev = container_of(gadget, struct pch_udc_dev, gadget);
1211         pch_udc_vbus_session(dev, is_active);
1212         return 0;
1213 }
1214
1215 /**
1216  * pch_udc_pcd_vbus_draw() - This API is used by gadget drivers during
1217  *                              SET_CONFIGURATION calls to
1218  *                              specify how much power the device can consume
1219  * @gadget:     Reference to the gadget driver
1220  * @mA:         specifies the current limit in 2mA unit
1221  *
1222  * Return codes:
1223  *      -EINVAL:        If the gadget passed is NULL
1224  *      -EOPNOTSUPP:
1225  */
1226 static int pch_udc_pcd_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
1227 {
1228         return -EOPNOTSUPP;
1229 }
1230
1231 static int pch_udc_start(struct usb_gadget *g,
1232                 struct usb_gadget_driver *driver);
1233 static int pch_udc_stop(struct usb_gadget *g);
1234
1235 static const struct usb_gadget_ops pch_udc_ops = {
1236         .get_frame = pch_udc_pcd_get_frame,
1237         .wakeup = pch_udc_pcd_wakeup,
1238         .set_selfpowered = pch_udc_pcd_selfpowered,
1239         .pullup = pch_udc_pcd_pullup,
1240         .vbus_session = pch_udc_pcd_vbus_session,
1241         .vbus_draw = pch_udc_pcd_vbus_draw,
1242         .udc_start = pch_udc_start,
1243         .udc_stop = pch_udc_stop,
1244 };
1245
1246 /**
1247  * pch_vbus_gpio_get_value() - This API gets value of GPIO port as VBUS status.
1248  * @dev:        Reference to the driver structure
1249  *
1250  * Return value:
1251  *      1: VBUS is high
1252  *      0: VBUS is low
1253  *     -1: It is not enable to detect VBUS using GPIO
1254  */
1255 static int pch_vbus_gpio_get_value(struct pch_udc_dev *dev)
1256 {
1257         int vbus = 0;
1258
1259         if (dev->vbus_gpio.port)
1260                 vbus = gpio_get_value(dev->vbus_gpio.port) ? 1 : 0;
1261         else
1262                 vbus = -1;
1263
1264         return vbus;
1265 }
1266
1267 /**
1268  * pch_vbus_gpio_work_fall() - This API keeps watch on VBUS becoming Low.
1269  *                             If VBUS is Low, disconnect is processed
1270  * @irq_work:   Structure for WorkQueue
1271  *
1272  */
1273 static void pch_vbus_gpio_work_fall(struct work_struct *irq_work)
1274 {
1275         struct pch_vbus_gpio_data *vbus_gpio = container_of(irq_work,
1276                 struct pch_vbus_gpio_data, irq_work_fall);
1277         struct pch_udc_dev *dev =
1278                 container_of(vbus_gpio, struct pch_udc_dev, vbus_gpio);
1279         int vbus_saved = -1;
1280         int vbus;
1281         int count;
1282
1283         if (!dev->vbus_gpio.port)
1284                 return;
1285
1286         for (count = 0; count < (PCH_VBUS_PERIOD / PCH_VBUS_INTERVAL);
1287                 count++) {
1288                 vbus = pch_vbus_gpio_get_value(dev);
1289
1290                 if ((vbus_saved == vbus) && (vbus == 0)) {
1291                         dev_dbg(&dev->pdev->dev, "VBUS fell");
1292                         if (dev->driver
1293                                 && dev->driver->disconnect) {
1294                                 dev->driver->disconnect(
1295                                         &dev->gadget);
1296                         }
1297                         if (dev->vbus_gpio.intr)
1298                                 pch_udc_init(dev);
1299                         else
1300                                 pch_udc_reconnect(dev);
1301                         return;
1302                 }
1303                 vbus_saved = vbus;
1304                 mdelay(PCH_VBUS_INTERVAL);
1305         }
1306 }
1307
1308 /**
1309  * pch_vbus_gpio_work_rise() - This API checks VBUS is High.
1310  *                             If VBUS is High, connect is processed
1311  * @irq_work:   Structure for WorkQueue
1312  *
1313  */
1314 static void pch_vbus_gpio_work_rise(struct work_struct *irq_work)
1315 {
1316         struct pch_vbus_gpio_data *vbus_gpio = container_of(irq_work,
1317                 struct pch_vbus_gpio_data, irq_work_rise);
1318         struct pch_udc_dev *dev =
1319                 container_of(vbus_gpio, struct pch_udc_dev, vbus_gpio);
1320         int vbus;
1321
1322         if (!dev->vbus_gpio.port)
1323                 return;
1324
1325         mdelay(PCH_VBUS_INTERVAL);
1326         vbus = pch_vbus_gpio_get_value(dev);
1327
1328         if (vbus == 1) {
1329                 dev_dbg(&dev->pdev->dev, "VBUS rose");
1330                 pch_udc_reconnect(dev);
1331                 return;
1332         }
1333 }
1334
1335 /**
1336  * pch_vbus_gpio_irq() - IRQ handler for GPIO intrerrupt for changing VBUS
1337  * @irq:        Interrupt request number
1338  * @dev:        Reference to the device structure
1339  *
1340  * Return codes:
1341  *      0: Success
1342  *      -EINVAL: GPIO port is invalid or can't be initialized.
1343  */
1344 static irqreturn_t pch_vbus_gpio_irq(int irq, void *data)
1345 {
1346         struct pch_udc_dev *dev = (struct pch_udc_dev *)data;
1347
1348         if (!dev->vbus_gpio.port || !dev->vbus_gpio.intr)
1349                 return IRQ_NONE;
1350
1351         if (pch_vbus_gpio_get_value(dev))
1352                 schedule_work(&dev->vbus_gpio.irq_work_rise);
1353         else
1354                 schedule_work(&dev->vbus_gpio.irq_work_fall);
1355
1356         return IRQ_HANDLED;
1357 }
1358
1359 /**
1360  * pch_vbus_gpio_init() - This API initializes GPIO port detecting VBUS.
1361  * @dev:        Reference to the driver structure
1362  * @vbus_gpio   Number of GPIO port to detect gpio
1363  *
1364  * Return codes:
1365  *      0: Success
1366  *      -EINVAL: GPIO port is invalid or can't be initialized.
1367  */
1368 static int pch_vbus_gpio_init(struct pch_udc_dev *dev, int vbus_gpio_port)
1369 {
1370         int err;
1371         int irq_num = 0;
1372
1373         dev->vbus_gpio.port = 0;
1374         dev->vbus_gpio.intr = 0;
1375
1376         if (vbus_gpio_port <= -1)
1377                 return -EINVAL;
1378
1379         err = gpio_is_valid(vbus_gpio_port);
1380         if (!err) {
1381                 pr_err("%s: gpio port %d is invalid\n",
1382                         __func__, vbus_gpio_port);
1383                 return -EINVAL;
1384         }
1385
1386         err = gpio_request(vbus_gpio_port, "pch_vbus");
1387         if (err) {
1388                 pr_err("%s: can't request gpio port %d, err: %d\n",
1389                         __func__, vbus_gpio_port, err);
1390                 return -EINVAL;
1391         }
1392
1393         dev->vbus_gpio.port = vbus_gpio_port;
1394         gpio_direction_input(vbus_gpio_port);
1395         INIT_WORK(&dev->vbus_gpio.irq_work_fall, pch_vbus_gpio_work_fall);
1396
1397         irq_num = gpio_to_irq(vbus_gpio_port);
1398         if (irq_num > 0) {
1399                 irq_set_irq_type(irq_num, IRQ_TYPE_EDGE_BOTH);
1400                 err = request_irq(irq_num, pch_vbus_gpio_irq, 0,
1401                         "vbus_detect", dev);
1402                 if (!err) {
1403                         dev->vbus_gpio.intr = irq_num;
1404                         INIT_WORK(&dev->vbus_gpio.irq_work_rise,
1405                                 pch_vbus_gpio_work_rise);
1406                 } else {
1407                         pr_err("%s: can't request irq %d, err: %d\n",
1408                                 __func__, irq_num, err);
1409                 }
1410         }
1411
1412         return 0;
1413 }
1414
1415 /**
1416  * pch_vbus_gpio_free() - This API frees resources of GPIO port
1417  * @dev:        Reference to the driver structure
1418  */
1419 static void pch_vbus_gpio_free(struct pch_udc_dev *dev)
1420 {
1421         if (dev->vbus_gpio.intr)
1422                 free_irq(dev->vbus_gpio.intr, dev);
1423
1424         if (dev->vbus_gpio.port)
1425                 gpio_free(dev->vbus_gpio.port);
1426 }
1427
1428 /**
1429  * complete_req() - This API is invoked from the driver when processing
1430  *                      of a request is complete
1431  * @ep:         Reference to the endpoint structure
1432  * @req:        Reference to the request structure
1433  * @status:     Indicates the success/failure of completion
1434  */
1435 static void complete_req(struct pch_udc_ep *ep, struct pch_udc_request *req,
1436                                                                  int status)
1437         __releases(&dev->lock)
1438         __acquires(&dev->lock)
1439 {
1440         struct pch_udc_dev      *dev;
1441         unsigned halted = ep->halted;
1442
1443         list_del_init(&req->queue);
1444
1445         /* set new status if pending */
1446         if (req->req.status == -EINPROGRESS)
1447                 req->req.status = status;
1448         else
1449                 status = req->req.status;
1450
1451         dev = ep->dev;
1452         if (req->dma_mapped) {
1453                 if (req->dma == DMA_ADDR_INVALID) {
1454                         if (ep->in)
1455                                 dma_unmap_single(&dev->pdev->dev, req->req.dma,
1456                                                  req->req.length,
1457                                                  DMA_TO_DEVICE);
1458                         else
1459                                 dma_unmap_single(&dev->pdev->dev, req->req.dma,
1460                                                  req->req.length,
1461                                                  DMA_FROM_DEVICE);
1462                         req->req.dma = DMA_ADDR_INVALID;
1463                 } else {
1464                         if (ep->in)
1465                                 dma_unmap_single(&dev->pdev->dev, req->dma,
1466                                                  req->req.length,
1467                                                  DMA_TO_DEVICE);
1468                         else {
1469                                 dma_unmap_single(&dev->pdev->dev, req->dma,
1470                                                  req->req.length,
1471                                                  DMA_FROM_DEVICE);
1472                                 memcpy(req->req.buf, req->buf, req->req.length);
1473                         }
1474                         kfree(req->buf);
1475                         req->dma = DMA_ADDR_INVALID;
1476                 }
1477                 req->dma_mapped = 0;
1478         }
1479         ep->halted = 1;
1480         spin_lock(&dev->lock);
1481         if (!ep->in)
1482                 pch_udc_ep_clear_rrdy(ep);
1483         usb_gadget_giveback_request(&ep->ep, &req->req);
1484         spin_unlock(&dev->lock);
1485         ep->halted = halted;
1486 }
1487
1488 /**
1489  * empty_req_queue() - This API empties the request queue of an endpoint
1490  * @ep:         Reference to the endpoint structure
1491  */
1492 static void empty_req_queue(struct pch_udc_ep *ep)
1493 {
1494         struct pch_udc_request  *req;
1495
1496         ep->halted = 1;
1497         while (!list_empty(&ep->queue)) {
1498                 req = list_entry(ep->queue.next, struct pch_udc_request, queue);
1499                 complete_req(ep, req, -ESHUTDOWN);      /* Remove from list */
1500         }
1501 }
1502
1503 /**
1504  * pch_udc_free_dma_chain() - This function frees the DMA chain created
1505  *                              for the request
1506  * @dev         Reference to the driver structure
1507  * @req         Reference to the request to be freed
1508  *
1509  * Return codes:
1510  *      0: Success
1511  */
1512 static void pch_udc_free_dma_chain(struct pch_udc_dev *dev,
1513                                    struct pch_udc_request *req)
1514 {
1515         struct pch_udc_data_dma_desc *td = req->td_data;
1516         unsigned i = req->chain_len;
1517
1518         dma_addr_t addr2;
1519         dma_addr_t addr = (dma_addr_t)td->next;
1520         td->next = 0x00;
1521         for (; i > 1; --i) {
1522                 /* do not free first desc., will be done by free for request */
1523                 td = phys_to_virt(addr);
1524                 addr2 = (dma_addr_t)td->next;
1525                 pci_pool_free(dev->data_requests, td, addr);
1526                 td->next = 0x00;
1527                 addr = addr2;
1528         }
1529         req->chain_len = 1;
1530 }
1531
1532 /**
1533  * pch_udc_create_dma_chain() - This function creates or reinitializes
1534  *                              a DMA chain
1535  * @ep:         Reference to the endpoint structure
1536  * @req:        Reference to the request
1537  * @buf_len:    The buffer length
1538  * @gfp_flags:  Flags to be used while mapping the data buffer
1539  *
1540  * Return codes:
1541  *      0:              success,
1542  *      -ENOMEM:        pci_pool_alloc invocation fails
1543  */
1544 static int pch_udc_create_dma_chain(struct pch_udc_ep *ep,
1545                                     struct pch_udc_request *req,
1546                                     unsigned long buf_len,
1547                                     gfp_t gfp_flags)
1548 {
1549         struct pch_udc_data_dma_desc *td = req->td_data, *last;
1550         unsigned long bytes = req->req.length, i = 0;
1551         dma_addr_t dma_addr;
1552         unsigned len = 1;
1553
1554         if (req->chain_len > 1)
1555                 pch_udc_free_dma_chain(ep->dev, req);
1556
1557         if (req->dma == DMA_ADDR_INVALID)
1558                 td->dataptr = req->req.dma;
1559         else
1560                 td->dataptr = req->dma;
1561
1562         td->status = PCH_UDC_BS_HST_BSY;
1563         for (; ; bytes -= buf_len, ++len) {
1564                 td->status = PCH_UDC_BS_HST_BSY | min(buf_len, bytes);
1565                 if (bytes <= buf_len)
1566                         break;
1567                 last = td;
1568                 td = pci_pool_alloc(ep->dev->data_requests, gfp_flags,
1569                                     &dma_addr);
1570                 if (!td)
1571                         goto nomem;
1572                 i += buf_len;
1573                 td->dataptr = req->td_data->dataptr + i;
1574                 last->next = dma_addr;
1575         }
1576
1577         req->td_data_last = td;
1578         td->status |= PCH_UDC_DMA_LAST;
1579         td->next = req->td_data_phys;
1580         req->chain_len = len;
1581         return 0;
1582
1583 nomem:
1584         if (len > 1) {
1585                 req->chain_len = len;
1586                 pch_udc_free_dma_chain(ep->dev, req);
1587         }
1588         req->chain_len = 1;
1589         return -ENOMEM;
1590 }
1591
1592 /**
1593  * prepare_dma() - This function creates and initializes the DMA chain
1594  *                      for the request
1595  * @ep:         Reference to the endpoint structure
1596  * @req:        Reference to the request
1597  * @gfp:        Flag to be used while mapping the data buffer
1598  *
1599  * Return codes:
1600  *      0:              Success
1601  *      Other 0:        linux error number on failure
1602  */
1603 static int prepare_dma(struct pch_udc_ep *ep, struct pch_udc_request *req,
1604                           gfp_t gfp)
1605 {
1606         int     retval;
1607
1608         /* Allocate and create a DMA chain */
1609         retval = pch_udc_create_dma_chain(ep, req, ep->ep.maxpacket, gfp);
1610         if (retval) {
1611                 pr_err("%s: could not create DMA chain:%d\n", __func__, retval);
1612                 return retval;
1613         }
1614         if (ep->in)
1615                 req->td_data->status = (req->td_data->status &
1616                                 ~PCH_UDC_BUFF_STS) | PCH_UDC_BS_HST_RDY;
1617         return 0;
1618 }
1619
1620 /**
1621  * process_zlp() - This function process zero length packets
1622  *                      from the gadget driver
1623  * @ep:         Reference to the endpoint structure
1624  * @req:        Reference to the request
1625  */
1626 static void process_zlp(struct pch_udc_ep *ep, struct pch_udc_request *req)
1627 {
1628         struct pch_udc_dev      *dev = ep->dev;
1629
1630         /* IN zlp's are handled by hardware */
1631         complete_req(ep, req, 0);
1632
1633         /* if set_config or set_intf is waiting for ack by zlp
1634          * then set CSR_DONE
1635          */
1636         if (dev->set_cfg_not_acked) {
1637                 pch_udc_set_csr_done(dev);
1638                 dev->set_cfg_not_acked = 0;
1639         }
1640         /* setup command is ACK'ed now by zlp */
1641         if (!dev->stall && dev->waiting_zlp_ack) {
1642                 pch_udc_ep_clear_nak(&(dev->ep[UDC_EP0IN_IDX]));
1643                 dev->waiting_zlp_ack = 0;
1644         }
1645 }
1646
1647 /**
1648  * pch_udc_start_rxrequest() - This function starts the receive requirement.
1649  * @ep:         Reference to the endpoint structure
1650  * @req:        Reference to the request structure
1651  */
1652 static void pch_udc_start_rxrequest(struct pch_udc_ep *ep,
1653                                          struct pch_udc_request *req)
1654 {
1655         struct pch_udc_data_dma_desc *td_data;
1656
1657         pch_udc_clear_dma(ep->dev, DMA_DIR_RX);
1658         td_data = req->td_data;
1659         /* Set the status bits for all descriptors */
1660         while (1) {
1661                 td_data->status = (td_data->status & ~PCH_UDC_BUFF_STS) |
1662                                     PCH_UDC_BS_HST_RDY;
1663                 if ((td_data->status & PCH_UDC_DMA_LAST) ==  PCH_UDC_DMA_LAST)
1664                         break;
1665                 td_data = phys_to_virt(td_data->next);
1666         }
1667         /* Write the descriptor pointer */
1668         pch_udc_ep_set_ddptr(ep, req->td_data_phys);
1669         req->dma_going = 1;
1670         pch_udc_enable_ep_interrupts(ep->dev, UDC_EPINT_OUT_EP0 << ep->num);
1671         pch_udc_set_dma(ep->dev, DMA_DIR_RX);
1672         pch_udc_ep_clear_nak(ep);
1673         pch_udc_ep_set_rrdy(ep);
1674 }
1675
1676 /**
1677  * pch_udc_pcd_ep_enable() - This API enables the endpoint. It is called
1678  *                              from gadget driver
1679  * @usbep:      Reference to the USB endpoint structure
1680  * @desc:       Reference to the USB endpoint descriptor structure
1681  *
1682  * Return codes:
1683  *      0:              Success
1684  *      -EINVAL:
1685  *      -ESHUTDOWN:
1686  */
1687 static int pch_udc_pcd_ep_enable(struct usb_ep *usbep,
1688                                     const struct usb_endpoint_descriptor *desc)
1689 {
1690         struct pch_udc_ep       *ep;
1691         struct pch_udc_dev      *dev;
1692         unsigned long           iflags;
1693
1694         if (!usbep || (usbep->name == ep0_string) || !desc ||
1695             (desc->bDescriptorType != USB_DT_ENDPOINT) || !desc->wMaxPacketSize)
1696                 return -EINVAL;
1697
1698         ep = container_of(usbep, struct pch_udc_ep, ep);
1699         dev = ep->dev;
1700         if (!dev->driver || (dev->gadget.speed == USB_SPEED_UNKNOWN))
1701                 return -ESHUTDOWN;
1702         spin_lock_irqsave(&dev->lock, iflags);
1703         ep->ep.desc = desc;
1704         ep->halted = 0;
1705         pch_udc_ep_enable(ep, &ep->dev->cfg_data, desc);
1706         ep->ep.maxpacket = usb_endpoint_maxp(desc);
1707         pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
1708         spin_unlock_irqrestore(&dev->lock, iflags);
1709         return 0;
1710 }
1711
1712 /**
1713  * pch_udc_pcd_ep_disable() - This API disables endpoint and is called
1714  *                              from gadget driver
1715  * @usbep       Reference to the USB endpoint structure
1716  *
1717  * Return codes:
1718  *      0:              Success
1719  *      -EINVAL:
1720  */
1721 static int pch_udc_pcd_ep_disable(struct usb_ep *usbep)
1722 {
1723         struct pch_udc_ep       *ep;
1724         unsigned long   iflags;
1725
1726         if (!usbep)
1727                 return -EINVAL;
1728
1729         ep = container_of(usbep, struct pch_udc_ep, ep);
1730         if ((usbep->name == ep0_string) || !ep->ep.desc)
1731                 return -EINVAL;
1732
1733         spin_lock_irqsave(&ep->dev->lock, iflags);
1734         empty_req_queue(ep);
1735         ep->halted = 1;
1736         pch_udc_ep_disable(ep);
1737         pch_udc_disable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
1738         ep->ep.desc = NULL;
1739         INIT_LIST_HEAD(&ep->queue);
1740         spin_unlock_irqrestore(&ep->dev->lock, iflags);
1741         return 0;
1742 }
1743
1744 /**
1745  * pch_udc_alloc_request() - This function allocates request structure.
1746  *                              It is called by gadget driver
1747  * @usbep:      Reference to the USB endpoint structure
1748  * @gfp:        Flag to be used while allocating memory
1749  *
1750  * Return codes:
1751  *      NULL:                   Failure
1752  *      Allocated address:      Success
1753  */
1754 static struct usb_request *pch_udc_alloc_request(struct usb_ep *usbep,
1755                                                   gfp_t gfp)
1756 {
1757         struct pch_udc_request          *req;
1758         struct pch_udc_ep               *ep;
1759         struct pch_udc_data_dma_desc    *dma_desc;
1760
1761         if (!usbep)
1762                 return NULL;
1763         ep = container_of(usbep, struct pch_udc_ep, ep);
1764         req = kzalloc(sizeof *req, gfp);
1765         if (!req)
1766                 return NULL;
1767         req->req.dma = DMA_ADDR_INVALID;
1768         req->dma = DMA_ADDR_INVALID;
1769         INIT_LIST_HEAD(&req->queue);
1770         if (!ep->dev->dma_addr)
1771                 return &req->req;
1772         /* ep0 in requests are allocated from data pool here */
1773         dma_desc = pci_pool_alloc(ep->dev->data_requests, gfp,
1774                                   &req->td_data_phys);
1775         if (NULL == dma_desc) {
1776                 kfree(req);
1777                 return NULL;
1778         }
1779         /* prevent from using desc. - set HOST BUSY */
1780         dma_desc->status |= PCH_UDC_BS_HST_BSY;
1781         dma_desc->dataptr = cpu_to_le32(DMA_ADDR_INVALID);
1782         req->td_data = dma_desc;
1783         req->td_data_last = dma_desc;
1784         req->chain_len = 1;
1785         return &req->req;
1786 }
1787
1788 /**
1789  * pch_udc_free_request() - This function frees request structure.
1790  *                              It is called by gadget driver
1791  * @usbep:      Reference to the USB endpoint structure
1792  * @usbreq:     Reference to the USB request
1793  */
1794 static void pch_udc_free_request(struct usb_ep *usbep,
1795                                   struct usb_request *usbreq)
1796 {
1797         struct pch_udc_ep       *ep;
1798         struct pch_udc_request  *req;
1799         struct pch_udc_dev      *dev;
1800
1801         if (!usbep || !usbreq)
1802                 return;
1803         ep = container_of(usbep, struct pch_udc_ep, ep);
1804         req = container_of(usbreq, struct pch_udc_request, req);
1805         dev = ep->dev;
1806         if (!list_empty(&req->queue))
1807                 dev_err(&dev->pdev->dev, "%s: %s req=0x%p queue not empty\n",
1808                         __func__, usbep->name, req);
1809         if (req->td_data != NULL) {
1810                 if (req->chain_len > 1)
1811                         pch_udc_free_dma_chain(ep->dev, req);
1812                 pci_pool_free(ep->dev->data_requests, req->td_data,
1813                               req->td_data_phys);
1814         }
1815         kfree(req);
1816 }
1817
1818 /**
1819  * pch_udc_pcd_queue() - This function queues a request packet. It is called
1820  *                      by gadget driver
1821  * @usbep:      Reference to the USB endpoint structure
1822  * @usbreq:     Reference to the USB request
1823  * @gfp:        Flag to be used while mapping the data buffer
1824  *
1825  * Return codes:
1826  *      0:                      Success
1827  *      linux error number:     Failure
1828  */
1829 static int pch_udc_pcd_queue(struct usb_ep *usbep, struct usb_request *usbreq,
1830                                                                  gfp_t gfp)
1831 {
1832         int retval = 0;
1833         struct pch_udc_ep       *ep;
1834         struct pch_udc_dev      *dev;
1835         struct pch_udc_request  *req;
1836         unsigned long   iflags;
1837
1838         if (!usbep || !usbreq || !usbreq->complete || !usbreq->buf)
1839                 return -EINVAL;
1840         ep = container_of(usbep, struct pch_udc_ep, ep);
1841         dev = ep->dev;
1842         if (!ep->ep.desc && ep->num)
1843                 return -EINVAL;
1844         req = container_of(usbreq, struct pch_udc_request, req);
1845         if (!list_empty(&req->queue))
1846                 return -EINVAL;
1847         if (!dev->driver || (dev->gadget.speed == USB_SPEED_UNKNOWN))
1848                 return -ESHUTDOWN;
1849         spin_lock_irqsave(&dev->lock, iflags);
1850         /* map the buffer for dma */
1851         if (usbreq->length &&
1852             ((usbreq->dma == DMA_ADDR_INVALID) || !usbreq->dma)) {
1853                 if (!((unsigned long)(usbreq->buf) & 0x03)) {
1854                         if (ep->in)
1855                                 usbreq->dma = dma_map_single(&dev->pdev->dev,
1856                                                              usbreq->buf,
1857                                                              usbreq->length,
1858                                                              DMA_TO_DEVICE);
1859                         else
1860                                 usbreq->dma = dma_map_single(&dev->pdev->dev,
1861                                                              usbreq->buf,
1862                                                              usbreq->length,
1863                                                              DMA_FROM_DEVICE);
1864                 } else {
1865                         req->buf = kzalloc(usbreq->length, GFP_ATOMIC);
1866                         if (!req->buf) {
1867                                 retval = -ENOMEM;
1868                                 goto probe_end;
1869                         }
1870                         if (ep->in) {
1871                                 memcpy(req->buf, usbreq->buf, usbreq->length);
1872                                 req->dma = dma_map_single(&dev->pdev->dev,
1873                                                           req->buf,
1874                                                           usbreq->length,
1875                                                           DMA_TO_DEVICE);
1876                         } else
1877                                 req->dma = dma_map_single(&dev->pdev->dev,
1878                                                           req->buf,
1879                                                           usbreq->length,
1880                                                           DMA_FROM_DEVICE);
1881                 }
1882                 req->dma_mapped = 1;
1883         }
1884         if (usbreq->length > 0) {
1885                 retval = prepare_dma(ep, req, GFP_ATOMIC);
1886                 if (retval)
1887                         goto probe_end;
1888         }
1889         usbreq->actual = 0;
1890         usbreq->status = -EINPROGRESS;
1891         req->dma_done = 0;
1892         if (list_empty(&ep->queue) && !ep->halted) {
1893                 /* no pending transfer, so start this req */
1894                 if (!usbreq->length) {
1895                         process_zlp(ep, req);
1896                         retval = 0;
1897                         goto probe_end;
1898                 }
1899                 if (!ep->in) {
1900                         pch_udc_start_rxrequest(ep, req);
1901                 } else {
1902                         /*
1903                         * For IN trfr the descriptors will be programmed and
1904                         * P bit will be set when
1905                         * we get an IN token
1906                         */
1907                         pch_udc_wait_ep_stall(ep);
1908                         pch_udc_ep_clear_nak(ep);
1909                         pch_udc_enable_ep_interrupts(ep->dev, (1 << ep->num));
1910                 }
1911         }
1912         /* Now add this request to the ep's pending requests */
1913         if (req != NULL)
1914                 list_add_tail(&req->queue, &ep->queue);
1915
1916 probe_end:
1917         spin_unlock_irqrestore(&dev->lock, iflags);
1918         return retval;
1919 }
1920
1921 /**
1922  * pch_udc_pcd_dequeue() - This function de-queues a request packet.
1923  *                              It is called by gadget driver
1924  * @usbep:      Reference to the USB endpoint structure
1925  * @usbreq:     Reference to the USB request
1926  *
1927  * Return codes:
1928  *      0:                      Success
1929  *      linux error number:     Failure
1930  */
1931 static int pch_udc_pcd_dequeue(struct usb_ep *usbep,
1932                                 struct usb_request *usbreq)
1933 {
1934         struct pch_udc_ep       *ep;
1935         struct pch_udc_request  *req;
1936         unsigned long           flags;
1937         int ret = -EINVAL;
1938
1939         ep = container_of(usbep, struct pch_udc_ep, ep);
1940         if (!usbep || !usbreq || (!ep->ep.desc && ep->num))
1941                 return ret;
1942         req = container_of(usbreq, struct pch_udc_request, req);
1943         spin_lock_irqsave(&ep->dev->lock, flags);
1944         /* make sure it's still queued on this endpoint */
1945         list_for_each_entry(req, &ep->queue, queue) {
1946                 if (&req->req == usbreq) {
1947                         pch_udc_ep_set_nak(ep);
1948                         if (!list_empty(&req->queue))
1949                                 complete_req(ep, req, -ECONNRESET);
1950                         ret = 0;
1951                         break;
1952                 }
1953         }
1954         spin_unlock_irqrestore(&ep->dev->lock, flags);
1955         return ret;
1956 }
1957
1958 /**
1959  * pch_udc_pcd_set_halt() - This function Sets or clear the endpoint halt
1960  *                          feature
1961  * @usbep:      Reference to the USB endpoint structure
1962  * @halt:       Specifies whether to set or clear the feature
1963  *
1964  * Return codes:
1965  *      0:                      Success
1966  *      linux error number:     Failure
1967  */
1968 static int pch_udc_pcd_set_halt(struct usb_ep *usbep, int halt)
1969 {
1970         struct pch_udc_ep       *ep;
1971         unsigned long iflags;
1972         int ret;
1973
1974         if (!usbep)
1975                 return -EINVAL;
1976         ep = container_of(usbep, struct pch_udc_ep, ep);
1977         if (!ep->ep.desc && !ep->num)
1978                 return -EINVAL;
1979         if (!ep->dev->driver || (ep->dev->gadget.speed == USB_SPEED_UNKNOWN))
1980                 return -ESHUTDOWN;
1981         spin_lock_irqsave(&udc_stall_spinlock, iflags);
1982         if (list_empty(&ep->queue)) {
1983                 if (halt) {
1984                         if (ep->num == PCH_UDC_EP0)
1985                                 ep->dev->stall = 1;
1986                         pch_udc_ep_set_stall(ep);
1987                         pch_udc_enable_ep_interrupts(ep->dev,
1988                                                      PCH_UDC_EPINT(ep->in,
1989                                                                    ep->num));
1990                 } else {
1991                         pch_udc_ep_clear_stall(ep);
1992                 }
1993                 ret = 0;
1994         } else {
1995                 ret = -EAGAIN;
1996         }
1997         spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
1998         return ret;
1999 }
2000
2001 /**
2002  * pch_udc_pcd_set_wedge() - This function Sets or clear the endpoint
2003  *                              halt feature
2004  * @usbep:      Reference to the USB endpoint structure
2005  * @halt:       Specifies whether to set or clear the feature
2006  *
2007  * Return codes:
2008  *      0:                      Success
2009  *      linux error number:     Failure
2010  */
2011 static int pch_udc_pcd_set_wedge(struct usb_ep *usbep)
2012 {
2013         struct pch_udc_ep       *ep;
2014         unsigned long iflags;
2015         int ret;
2016
2017         if (!usbep)
2018                 return -EINVAL;
2019         ep = container_of(usbep, struct pch_udc_ep, ep);
2020         if (!ep->ep.desc && !ep->num)
2021                 return -EINVAL;
2022         if (!ep->dev->driver || (ep->dev->gadget.speed == USB_SPEED_UNKNOWN))
2023                 return -ESHUTDOWN;
2024         spin_lock_irqsave(&udc_stall_spinlock, iflags);
2025         if (!list_empty(&ep->queue)) {
2026                 ret = -EAGAIN;
2027         } else {
2028                 if (ep->num == PCH_UDC_EP0)
2029                         ep->dev->stall = 1;
2030                 pch_udc_ep_set_stall(ep);
2031                 pch_udc_enable_ep_interrupts(ep->dev,
2032                                              PCH_UDC_EPINT(ep->in, ep->num));
2033                 ep->dev->prot_stall = 1;
2034                 ret = 0;
2035         }
2036         spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
2037         return ret;
2038 }
2039
2040 /**
2041  * pch_udc_pcd_fifo_flush() - This function Flush the FIFO of specified endpoint
2042  * @usbep:      Reference to the USB endpoint structure
2043  */
2044 static void pch_udc_pcd_fifo_flush(struct usb_ep *usbep)
2045 {
2046         struct pch_udc_ep  *ep;
2047
2048         if (!usbep)
2049                 return;
2050
2051         ep = container_of(usbep, struct pch_udc_ep, ep);
2052         if (ep->ep.desc || !ep->num)
2053                 pch_udc_ep_fifo_flush(ep, ep->in);
2054 }
2055
2056 static const struct usb_ep_ops pch_udc_ep_ops = {
2057         .enable         = pch_udc_pcd_ep_enable,
2058         .disable        = pch_udc_pcd_ep_disable,
2059         .alloc_request  = pch_udc_alloc_request,
2060         .free_request   = pch_udc_free_request,
2061         .queue          = pch_udc_pcd_queue,
2062         .dequeue        = pch_udc_pcd_dequeue,
2063         .set_halt       = pch_udc_pcd_set_halt,
2064         .set_wedge      = pch_udc_pcd_set_wedge,
2065         .fifo_status    = NULL,
2066         .fifo_flush     = pch_udc_pcd_fifo_flush,
2067 };
2068
2069 /**
2070  * pch_udc_init_setup_buff() - This function initializes the SETUP buffer
2071  * @td_stp:     Reference to the SETP buffer structure
2072  */
2073 static void pch_udc_init_setup_buff(struct pch_udc_stp_dma_desc *td_stp)
2074 {
2075         static u32      pky_marker;
2076
2077         if (!td_stp)
2078                 return;
2079         td_stp->reserved = ++pky_marker;
2080         memset(&td_stp->request, 0xFF, sizeof td_stp->request);
2081         td_stp->status = PCH_UDC_BS_HST_RDY;
2082 }
2083
2084 /**
2085  * pch_udc_start_next_txrequest() - This function starts
2086  *                                      the next transmission requirement
2087  * @ep: Reference to the endpoint structure
2088  */
2089 static void pch_udc_start_next_txrequest(struct pch_udc_ep *ep)
2090 {
2091         struct pch_udc_request *req;
2092         struct pch_udc_data_dma_desc *td_data;
2093
2094         if (pch_udc_read_ep_control(ep) & UDC_EPCTL_P)
2095                 return;
2096
2097         if (list_empty(&ep->queue))
2098                 return;
2099
2100         /* next request */
2101         req = list_entry(ep->queue.next, struct pch_udc_request, queue);
2102         if (req->dma_going)
2103                 return;
2104         if (!req->td_data)
2105                 return;
2106         pch_udc_wait_ep_stall(ep);
2107         req->dma_going = 1;
2108         pch_udc_ep_set_ddptr(ep, 0);
2109         td_data = req->td_data;
2110         while (1) {
2111                 td_data->status = (td_data->status & ~PCH_UDC_BUFF_STS) |
2112                                    PCH_UDC_BS_HST_RDY;
2113                 if ((td_data->status & PCH_UDC_DMA_LAST) == PCH_UDC_DMA_LAST)
2114                         break;
2115                 td_data = phys_to_virt(td_data->next);
2116         }
2117         pch_udc_ep_set_ddptr(ep, req->td_data_phys);
2118         pch_udc_set_dma(ep->dev, DMA_DIR_TX);
2119         pch_udc_ep_set_pd(ep);
2120         pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
2121         pch_udc_ep_clear_nak(ep);
2122 }
2123
2124 /**
2125  * pch_udc_complete_transfer() - This function completes a transfer
2126  * @ep:         Reference to the endpoint structure
2127  */
2128 static void pch_udc_complete_transfer(struct pch_udc_ep *ep)
2129 {
2130         struct pch_udc_request *req;
2131         struct pch_udc_dev *dev = ep->dev;
2132
2133         if (list_empty(&ep->queue))
2134                 return;
2135         req = list_entry(ep->queue.next, struct pch_udc_request, queue);
2136         if ((req->td_data_last->status & PCH_UDC_BUFF_STS) !=
2137             PCH_UDC_BS_DMA_DONE)
2138                 return;
2139         if ((req->td_data_last->status & PCH_UDC_RXTX_STS) !=
2140              PCH_UDC_RTS_SUCC) {
2141                 dev_err(&dev->pdev->dev, "Invalid RXTX status (0x%08x) "
2142                         "epstatus=0x%08x\n",
2143                        (req->td_data_last->status & PCH_UDC_RXTX_STS),
2144                        (int)(ep->epsts));
2145                 return;
2146         }
2147
2148         req->req.actual = req->req.length;
2149         req->td_data_last->status = PCH_UDC_BS_HST_BSY | PCH_UDC_DMA_LAST;
2150         req->td_data->status = PCH_UDC_BS_HST_BSY | PCH_UDC_DMA_LAST;
2151         complete_req(ep, req, 0);
2152         req->dma_going = 0;
2153         if (!list_empty(&ep->queue)) {
2154                 pch_udc_wait_ep_stall(ep);
2155                 pch_udc_ep_clear_nak(ep);
2156                 pch_udc_enable_ep_interrupts(ep->dev,
2157                                              PCH_UDC_EPINT(ep->in, ep->num));
2158         } else {
2159                 pch_udc_disable_ep_interrupts(ep->dev,
2160                                               PCH_UDC_EPINT(ep->in, ep->num));
2161         }
2162 }
2163
2164 /**
2165  * pch_udc_complete_receiver() - This function completes a receiver
2166  * @ep:         Reference to the endpoint structure
2167  */
2168 static void pch_udc_complete_receiver(struct pch_udc_ep *ep)
2169 {
2170         struct pch_udc_request *req;
2171         struct pch_udc_dev *dev = ep->dev;
2172         unsigned int count;
2173         struct pch_udc_data_dma_desc *td;
2174         dma_addr_t addr;
2175
2176         if (list_empty(&ep->queue))
2177                 return;
2178         /* next request */
2179         req = list_entry(ep->queue.next, struct pch_udc_request, queue);
2180         pch_udc_clear_dma(ep->dev, DMA_DIR_RX);
2181         pch_udc_ep_set_ddptr(ep, 0);
2182         if ((req->td_data_last->status & PCH_UDC_BUFF_STS) ==
2183             PCH_UDC_BS_DMA_DONE)
2184                 td = req->td_data_last;
2185         else
2186                 td = req->td_data;
2187
2188         while (1) {
2189                 if ((td->status & PCH_UDC_RXTX_STS) != PCH_UDC_RTS_SUCC) {
2190                         dev_err(&dev->pdev->dev, "Invalid RXTX status=0x%08x "
2191                                 "epstatus=0x%08x\n",
2192                                 (req->td_data->status & PCH_UDC_RXTX_STS),
2193                                 (int)(ep->epsts));
2194                         return;
2195                 }
2196                 if ((td->status & PCH_UDC_BUFF_STS) == PCH_UDC_BS_DMA_DONE)
2197                         if (td->status & PCH_UDC_DMA_LAST) {
2198                                 count = td->status & PCH_UDC_RXTX_BYTES;
2199                                 break;
2200                         }
2201                 if (td == req->td_data_last) {
2202                         dev_err(&dev->pdev->dev, "Not complete RX descriptor");
2203                         return;
2204                 }
2205                 addr = (dma_addr_t)td->next;
2206                 td = phys_to_virt(addr);
2207         }
2208         /* on 64k packets the RXBYTES field is zero */
2209         if (!count && (req->req.length == UDC_DMA_MAXPACKET))
2210                 count = UDC_DMA_MAXPACKET;
2211         req->td_data->status |= PCH_UDC_DMA_LAST;
2212         td->status |= PCH_UDC_BS_HST_BSY;
2213
2214         req->dma_going = 0;
2215         req->req.actual = count;
2216         complete_req(ep, req, 0);
2217         /* If there is a new/failed requests try that now */
2218         if (!list_empty(&ep->queue)) {
2219                 req = list_entry(ep->queue.next, struct pch_udc_request, queue);
2220                 pch_udc_start_rxrequest(ep, req);
2221         }
2222 }
2223
2224 /**
2225  * pch_udc_svc_data_in() - This function process endpoint interrupts
2226  *                              for IN endpoints
2227  * @dev:        Reference to the device structure
2228  * @ep_num:     Endpoint that generated the interrupt
2229  */
2230 static void pch_udc_svc_data_in(struct pch_udc_dev *dev, int ep_num)
2231 {
2232         u32     epsts;
2233         struct pch_udc_ep       *ep;
2234
2235         ep = &dev->ep[UDC_EPIN_IDX(ep_num)];
2236         epsts = ep->epsts;
2237         ep->epsts = 0;
2238
2239         if (!(epsts & (UDC_EPSTS_IN | UDC_EPSTS_BNA  | UDC_EPSTS_HE |
2240                        UDC_EPSTS_TDC | UDC_EPSTS_RCS | UDC_EPSTS_TXEMPTY |
2241                        UDC_EPSTS_RSS | UDC_EPSTS_XFERDONE)))
2242                 return;
2243         if ((epsts & UDC_EPSTS_BNA))
2244                 return;
2245         if (epsts & UDC_EPSTS_HE)
2246                 return;
2247         if (epsts & UDC_EPSTS_RSS) {
2248                 pch_udc_ep_set_stall(ep);
2249                 pch_udc_enable_ep_interrupts(ep->dev,
2250                                              PCH_UDC_EPINT(ep->in, ep->num));
2251         }
2252         if (epsts & UDC_EPSTS_RCS) {
2253                 if (!dev->prot_stall) {
2254                         pch_udc_ep_clear_stall(ep);
2255                 } else {
2256                         pch_udc_ep_set_stall(ep);
2257                         pch_udc_enable_ep_interrupts(ep->dev,
2258                                                 PCH_UDC_EPINT(ep->in, ep->num));
2259                 }
2260         }
2261         if (epsts & UDC_EPSTS_TDC)
2262                 pch_udc_complete_transfer(ep);
2263         /* On IN interrupt, provide data if we have any */
2264         if ((epsts & UDC_EPSTS_IN) && !(epsts & UDC_EPSTS_RSS) &&
2265             !(epsts & UDC_EPSTS_TDC) && !(epsts & UDC_EPSTS_TXEMPTY))
2266                 pch_udc_start_next_txrequest(ep);
2267 }
2268
2269 /**
2270  * pch_udc_svc_data_out() - Handles interrupts from OUT endpoint
2271  * @dev:        Reference to the device structure
2272  * @ep_num:     Endpoint that generated the interrupt
2273  */
2274 static void pch_udc_svc_data_out(struct pch_udc_dev *dev, int ep_num)
2275 {
2276         u32                     epsts;
2277         struct pch_udc_ep               *ep;
2278         struct pch_udc_request          *req = NULL;
2279
2280         ep = &dev->ep[UDC_EPOUT_IDX(ep_num)];
2281         epsts = ep->epsts;
2282         ep->epsts = 0;
2283
2284         if ((epsts & UDC_EPSTS_BNA) && (!list_empty(&ep->queue))) {
2285                 /* next request */
2286                 req = list_entry(ep->queue.next, struct pch_udc_request,
2287                                  queue);
2288                 if ((req->td_data_last->status & PCH_UDC_BUFF_STS) !=
2289                      PCH_UDC_BS_DMA_DONE) {
2290                         if (!req->dma_going)
2291                                 pch_udc_start_rxrequest(ep, req);
2292                         return;
2293                 }
2294         }
2295         if (epsts & UDC_EPSTS_HE)
2296                 return;
2297         if (epsts & UDC_EPSTS_RSS) {
2298                 pch_udc_ep_set_stall(ep);
2299                 pch_udc_enable_ep_interrupts(ep->dev,
2300                                              PCH_UDC_EPINT(ep->in, ep->num));
2301         }
2302         if (epsts & UDC_EPSTS_RCS) {
2303                 if (!dev->prot_stall) {
2304                         pch_udc_ep_clear_stall(ep);
2305                 } else {
2306                         pch_udc_ep_set_stall(ep);
2307                         pch_udc_enable_ep_interrupts(ep->dev,
2308                                                 PCH_UDC_EPINT(ep->in, ep->num));
2309                 }
2310         }
2311         if (((epsts & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
2312             UDC_EPSTS_OUT_DATA) {
2313                 if (ep->dev->prot_stall == 1) {
2314                         pch_udc_ep_set_stall(ep);
2315                         pch_udc_enable_ep_interrupts(ep->dev,
2316                                                 PCH_UDC_EPINT(ep->in, ep->num));
2317                 } else {
2318                         pch_udc_complete_receiver(ep);
2319                 }
2320         }
2321         if (list_empty(&ep->queue))
2322                 pch_udc_set_dma(dev, DMA_DIR_RX);
2323 }
2324
2325 /**
2326  * pch_udc_svc_control_in() - Handle Control IN endpoint interrupts
2327  * @dev:        Reference to the device structure
2328  */
2329 static void pch_udc_svc_control_in(struct pch_udc_dev *dev)
2330 {
2331         u32     epsts;
2332         struct pch_udc_ep       *ep;
2333         struct pch_udc_ep       *ep_out;
2334
2335         ep = &dev->ep[UDC_EP0IN_IDX];
2336         ep_out = &dev->ep[UDC_EP0OUT_IDX];
2337         epsts = ep->epsts;
2338         ep->epsts = 0;
2339
2340         if (!(epsts & (UDC_EPSTS_IN | UDC_EPSTS_BNA | UDC_EPSTS_HE |
2341                        UDC_EPSTS_TDC | UDC_EPSTS_RCS | UDC_EPSTS_TXEMPTY |
2342                        UDC_EPSTS_XFERDONE)))
2343                 return;
2344         if ((epsts & UDC_EPSTS_BNA))
2345                 return;
2346         if (epsts & UDC_EPSTS_HE)
2347                 return;
2348         if ((epsts & UDC_EPSTS_TDC) && (!dev->stall)) {
2349                 pch_udc_complete_transfer(ep);
2350                 pch_udc_clear_dma(dev, DMA_DIR_RX);
2351                 ep_out->td_data->status = (ep_out->td_data->status &
2352                                         ~PCH_UDC_BUFF_STS) |
2353                                         PCH_UDC_BS_HST_RDY;
2354                 pch_udc_ep_clear_nak(ep_out);
2355                 pch_udc_set_dma(dev, DMA_DIR_RX);
2356                 pch_udc_ep_set_rrdy(ep_out);
2357         }
2358         /* On IN interrupt, provide data if we have any */
2359         if ((epsts & UDC_EPSTS_IN) && !(epsts & UDC_EPSTS_TDC) &&
2360              !(epsts & UDC_EPSTS_TXEMPTY))
2361                 pch_udc_start_next_txrequest(ep);
2362 }
2363
2364 /**
2365  * pch_udc_svc_control_out() - Routine that handle Control
2366  *                                      OUT endpoint interrupts
2367  * @dev:        Reference to the device structure
2368  */
2369 static void pch_udc_svc_control_out(struct pch_udc_dev *dev)
2370         __releases(&dev->lock)
2371         __acquires(&dev->lock)
2372 {
2373         u32     stat;
2374         int setup_supported;
2375         struct pch_udc_ep       *ep;
2376
2377         ep = &dev->ep[UDC_EP0OUT_IDX];
2378         stat = ep->epsts;
2379         ep->epsts = 0;
2380
2381         /* If setup data */
2382         if (((stat & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
2383             UDC_EPSTS_OUT_SETUP) {
2384                 dev->stall = 0;
2385                 dev->ep[UDC_EP0IN_IDX].halted = 0;
2386                 dev->ep[UDC_EP0OUT_IDX].halted = 0;
2387                 dev->setup_data = ep->td_stp->request;
2388                 pch_udc_init_setup_buff(ep->td_stp);
2389                 pch_udc_clear_dma(dev, DMA_DIR_RX);
2390                 pch_udc_ep_fifo_flush(&(dev->ep[UDC_EP0IN_IDX]),
2391                                       dev->ep[UDC_EP0IN_IDX].in);
2392                 if ((dev->setup_data.bRequestType & USB_DIR_IN))
2393                         dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IDX].ep;
2394                 else /* OUT */
2395                         dev->gadget.ep0 = &ep->ep;
2396                 spin_lock(&dev->lock);
2397                 /* If Mass storage Reset */
2398                 if ((dev->setup_data.bRequestType == 0x21) &&
2399                     (dev->setup_data.bRequest == 0xFF))
2400                         dev->prot_stall = 0;
2401                 /* call gadget with setup data received */
2402                 setup_supported = dev->driver->setup(&dev->gadget,
2403                                                      &dev->setup_data);
2404                 spin_unlock(&dev->lock);
2405
2406                 if (dev->setup_data.bRequestType & USB_DIR_IN) {
2407                         ep->td_data->status = (ep->td_data->status &
2408                                                 ~PCH_UDC_BUFF_STS) |
2409                                                 PCH_UDC_BS_HST_RDY;
2410                         pch_udc_ep_set_ddptr(ep, ep->td_data_phys);
2411                 }
2412                 /* ep0 in returns data on IN phase */
2413                 if (setup_supported >= 0 && setup_supported <
2414                                             UDC_EP0IN_MAX_PKT_SIZE) {
2415                         pch_udc_ep_clear_nak(&(dev->ep[UDC_EP0IN_IDX]));
2416                         /* Gadget would have queued a request when
2417                          * we called the setup */
2418                         if (!(dev->setup_data.bRequestType & USB_DIR_IN)) {
2419                                 pch_udc_set_dma(dev, DMA_DIR_RX);
2420                                 pch_udc_ep_clear_nak(ep);
2421                         }
2422                 } else if (setup_supported < 0) {
2423                         /* if unsupported request, then stall */
2424                         pch_udc_ep_set_stall(&(dev->ep[UDC_EP0IN_IDX]));
2425                         pch_udc_enable_ep_interrupts(ep->dev,
2426                                                 PCH_UDC_EPINT(ep->in, ep->num));
2427                         dev->stall = 0;
2428                         pch_udc_set_dma(dev, DMA_DIR_RX);
2429                 } else {
2430                         dev->waiting_zlp_ack = 1;
2431                 }
2432         } else if ((((stat & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
2433                      UDC_EPSTS_OUT_DATA) && !dev->stall) {
2434                 pch_udc_clear_dma(dev, DMA_DIR_RX);
2435                 pch_udc_ep_set_ddptr(ep, 0);
2436                 if (!list_empty(&ep->queue)) {
2437                         ep->epsts = stat;
2438                         pch_udc_svc_data_out(dev, PCH_UDC_EP0);
2439                 }
2440                 pch_udc_set_dma(dev, DMA_DIR_RX);
2441         }
2442         pch_udc_ep_set_rrdy(ep);
2443 }
2444
2445
2446 /**
2447  * pch_udc_postsvc_epinters() - This function enables end point interrupts
2448  *                              and clears NAK status
2449  * @dev:        Reference to the device structure
2450  * @ep_num:     End point number
2451  */
2452 static void pch_udc_postsvc_epinters(struct pch_udc_dev *dev, int ep_num)
2453 {
2454         struct pch_udc_ep       *ep;
2455         struct pch_udc_request *req;
2456
2457         ep = &dev->ep[UDC_EPIN_IDX(ep_num)];
2458         if (!list_empty(&ep->queue)) {
2459                 req = list_entry(ep->queue.next, struct pch_udc_request, queue);
2460                 pch_udc_enable_ep_interrupts(ep->dev,
2461                                              PCH_UDC_EPINT(ep->in, ep->num));
2462                 pch_udc_ep_clear_nak(ep);
2463         }
2464 }
2465
2466 /**
2467  * pch_udc_read_all_epstatus() - This function read all endpoint status
2468  * @dev:        Reference to the device structure
2469  * @ep_intr:    Status of endpoint interrupt
2470  */
2471 static void pch_udc_read_all_epstatus(struct pch_udc_dev *dev, u32 ep_intr)
2472 {
2473         int i;
2474         struct pch_udc_ep       *ep;
2475
2476         for (i = 0; i < PCH_UDC_USED_EP_NUM; i++) {
2477                 /* IN */
2478                 if (ep_intr & (0x1 << i)) {
2479                         ep = &dev->ep[UDC_EPIN_IDX(i)];
2480                         ep->epsts = pch_udc_read_ep_status(ep);
2481                         pch_udc_clear_ep_status(ep, ep->epsts);
2482                 }
2483                 /* OUT */
2484                 if (ep_intr & (0x10000 << i)) {
2485                         ep = &dev->ep[UDC_EPOUT_IDX(i)];
2486                         ep->epsts = pch_udc_read_ep_status(ep);
2487                         pch_udc_clear_ep_status(ep, ep->epsts);
2488                 }
2489         }
2490 }
2491
2492 /**
2493  * pch_udc_activate_control_ep() - This function enables the control endpoints
2494  *                                      for traffic after a reset
2495  * @dev:        Reference to the device structure
2496  */
2497 static void pch_udc_activate_control_ep(struct pch_udc_dev *dev)
2498 {
2499         struct pch_udc_ep       *ep;
2500         u32 val;
2501
2502         /* Setup the IN endpoint */
2503         ep = &dev->ep[UDC_EP0IN_IDX];
2504         pch_udc_clear_ep_control(ep);
2505         pch_udc_ep_fifo_flush(ep, ep->in);
2506         pch_udc_ep_set_bufsz(ep, UDC_EP0IN_BUFF_SIZE, ep->in);
2507         pch_udc_ep_set_maxpkt(ep, UDC_EP0IN_MAX_PKT_SIZE);
2508         /* Initialize the IN EP Descriptor */
2509         ep->td_data      = NULL;
2510         ep->td_stp       = NULL;
2511         ep->td_data_phys = 0;
2512         ep->td_stp_phys  = 0;
2513
2514         /* Setup the OUT endpoint */
2515         ep = &dev->ep[UDC_EP0OUT_IDX];
2516         pch_udc_clear_ep_control(ep);
2517         pch_udc_ep_fifo_flush(ep, ep->in);
2518         pch_udc_ep_set_bufsz(ep, UDC_EP0OUT_BUFF_SIZE, ep->in);
2519         pch_udc_ep_set_maxpkt(ep, UDC_EP0OUT_MAX_PKT_SIZE);
2520         val = UDC_EP0OUT_MAX_PKT_SIZE << UDC_CSR_NE_MAX_PKT_SHIFT;
2521         pch_udc_write_csr(ep->dev, val, UDC_EP0OUT_IDX);
2522
2523         /* Initialize the SETUP buffer */
2524         pch_udc_init_setup_buff(ep->td_stp);
2525         /* Write the pointer address of dma descriptor */
2526         pch_udc_ep_set_subptr(ep, ep->td_stp_phys);
2527         /* Write the pointer address of Setup descriptor */
2528         pch_udc_ep_set_ddptr(ep, ep->td_data_phys);
2529
2530         /* Initialize the dma descriptor */
2531         ep->td_data->status  = PCH_UDC_DMA_LAST;
2532         ep->td_data->dataptr = dev->dma_addr;
2533         ep->td_data->next    = ep->td_data_phys;
2534
2535         pch_udc_ep_clear_nak(ep);
2536 }
2537
2538
2539 /**
2540  * pch_udc_svc_ur_interrupt() - This function handles a USB reset interrupt
2541  * @dev:        Reference to driver structure
2542  */
2543 static void pch_udc_svc_ur_interrupt(struct pch_udc_dev *dev)
2544 {
2545         struct pch_udc_ep       *ep;
2546         int i;
2547
2548         pch_udc_clear_dma(dev, DMA_DIR_TX);
2549         pch_udc_clear_dma(dev, DMA_DIR_RX);
2550         /* Mask all endpoint interrupts */
2551         pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
2552         /* clear all endpoint interrupts */
2553         pch_udc_write_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
2554
2555         for (i = 0; i < PCH_UDC_EP_NUM; i++) {
2556                 ep = &dev->ep[i];
2557                 pch_udc_clear_ep_status(ep, UDC_EPSTS_ALL_CLR_MASK);
2558                 pch_udc_clear_ep_control(ep);
2559                 pch_udc_ep_set_ddptr(ep, 0);
2560                 pch_udc_write_csr(ep->dev, 0x00, i);
2561         }
2562         dev->stall = 0;
2563         dev->prot_stall = 0;
2564         dev->waiting_zlp_ack = 0;
2565         dev->set_cfg_not_acked = 0;
2566
2567         /* disable ep to empty req queue. Skip the control EP's */
2568         for (i = 0; i < (PCH_UDC_USED_EP_NUM*2); i++) {
2569                 ep = &dev->ep[i];
2570                 pch_udc_ep_set_nak(ep);
2571                 pch_udc_ep_fifo_flush(ep, ep->in);
2572                 /* Complete request queue */
2573                 empty_req_queue(ep);
2574         }
2575         if (dev->driver) {
2576                 spin_lock(&dev->lock);
2577                 usb_gadget_udc_reset(&dev->gadget, dev->driver);
2578                 spin_unlock(&dev->lock);
2579         }
2580 }
2581
2582 /**
2583  * pch_udc_svc_enum_interrupt() - This function handles a USB speed enumeration
2584  *                              done interrupt
2585  * @dev:        Reference to driver structure
2586  */
2587 static void pch_udc_svc_enum_interrupt(struct pch_udc_dev *dev)
2588 {
2589         u32 dev_stat, dev_speed;
2590         u32 speed = USB_SPEED_FULL;
2591
2592         dev_stat = pch_udc_read_device_status(dev);
2593         dev_speed = (dev_stat & UDC_DEVSTS_ENUM_SPEED_MASK) >>
2594                                                  UDC_DEVSTS_ENUM_SPEED_SHIFT;
2595         switch (dev_speed) {
2596         case UDC_DEVSTS_ENUM_SPEED_HIGH:
2597                 speed = USB_SPEED_HIGH;
2598                 break;
2599         case  UDC_DEVSTS_ENUM_SPEED_FULL:
2600                 speed = USB_SPEED_FULL;
2601                 break;
2602         case  UDC_DEVSTS_ENUM_SPEED_LOW:
2603                 speed = USB_SPEED_LOW;
2604                 break;
2605         default:
2606                 BUG();
2607         }
2608         dev->gadget.speed = speed;
2609         pch_udc_activate_control_ep(dev);
2610         pch_udc_enable_ep_interrupts(dev, UDC_EPINT_IN_EP0 | UDC_EPINT_OUT_EP0);
2611         pch_udc_set_dma(dev, DMA_DIR_TX);
2612         pch_udc_set_dma(dev, DMA_DIR_RX);
2613         pch_udc_ep_set_rrdy(&(dev->ep[UDC_EP0OUT_IDX]));
2614
2615         /* enable device interrupts */
2616         pch_udc_enable_interrupts(dev, UDC_DEVINT_UR | UDC_DEVINT_US |
2617                                         UDC_DEVINT_ES | UDC_DEVINT_ENUM |
2618                                         UDC_DEVINT_SI | UDC_DEVINT_SC);
2619 }
2620
2621 /**
2622  * pch_udc_svc_intf_interrupt() - This function handles a set interface
2623  *                                interrupt
2624  * @dev:        Reference to driver structure
2625  */
2626 static void pch_udc_svc_intf_interrupt(struct pch_udc_dev *dev)
2627 {
2628         u32 reg, dev_stat = 0;
2629         int i;
2630
2631         dev_stat = pch_udc_read_device_status(dev);
2632         dev->cfg_data.cur_intf = (dev_stat & UDC_DEVSTS_INTF_MASK) >>
2633                                                          UDC_DEVSTS_INTF_SHIFT;
2634         dev->cfg_data.cur_alt = (dev_stat & UDC_DEVSTS_ALT_MASK) >>
2635                                                          UDC_DEVSTS_ALT_SHIFT;
2636         dev->set_cfg_not_acked = 1;
2637         /* Construct the usb request for gadget driver and inform it */
2638         memset(&dev->setup_data, 0 , sizeof dev->setup_data);
2639         dev->setup_data.bRequest = USB_REQ_SET_INTERFACE;
2640         dev->setup_data.bRequestType = USB_RECIP_INTERFACE;
2641         dev->setup_data.wValue = cpu_to_le16(dev->cfg_data.cur_alt);
2642         dev->setup_data.wIndex = cpu_to_le16(dev->cfg_data.cur_intf);
2643         /* programm the Endpoint Cfg registers */
2644         /* Only one end point cfg register */
2645         reg = pch_udc_read_csr(dev, UDC_EP0OUT_IDX);
2646         reg = (reg & ~UDC_CSR_NE_INTF_MASK) |
2647               (dev->cfg_data.cur_intf << UDC_CSR_NE_INTF_SHIFT);
2648         reg = (reg & ~UDC_CSR_NE_ALT_MASK) |
2649               (dev->cfg_data.cur_alt << UDC_CSR_NE_ALT_SHIFT);
2650         pch_udc_write_csr(dev, reg, UDC_EP0OUT_IDX);
2651         for (i = 0; i < PCH_UDC_USED_EP_NUM * 2; i++) {
2652                 /* clear stall bits */
2653                 pch_udc_ep_clear_stall(&(dev->ep[i]));
2654                 dev->ep[i].halted = 0;
2655         }
2656         dev->stall = 0;
2657         spin_lock(&dev->lock);
2658         dev->driver->setup(&dev->gadget, &dev->setup_data);
2659         spin_unlock(&dev->lock);
2660 }
2661
2662 /**
2663  * pch_udc_svc_cfg_interrupt() - This function handles a set configuration
2664  *                              interrupt
2665  * @dev:        Reference to driver structure
2666  */
2667 static void pch_udc_svc_cfg_interrupt(struct pch_udc_dev *dev)
2668 {
2669         int i;
2670         u32 reg, dev_stat = 0;
2671
2672         dev_stat = pch_udc_read_device_status(dev);
2673         dev->set_cfg_not_acked = 1;
2674         dev->cfg_data.cur_cfg = (dev_stat & UDC_DEVSTS_CFG_MASK) >>
2675                                 UDC_DEVSTS_CFG_SHIFT;
2676         /* make usb request for gadget driver */
2677         memset(&dev->setup_data, 0 , sizeof dev->setup_data);
2678         dev->setup_data.bRequest = USB_REQ_SET_CONFIGURATION;
2679         dev->setup_data.wValue = cpu_to_le16(dev->cfg_data.cur_cfg);
2680         /* program the NE registers */
2681         /* Only one end point cfg register */
2682         reg = pch_udc_read_csr(dev, UDC_EP0OUT_IDX);
2683         reg = (reg & ~UDC_CSR_NE_CFG_MASK) |
2684               (dev->cfg_data.cur_cfg << UDC_CSR_NE_CFG_SHIFT);
2685         pch_udc_write_csr(dev, reg, UDC_EP0OUT_IDX);
2686         for (i = 0; i < PCH_UDC_USED_EP_NUM * 2; i++) {
2687                 /* clear stall bits */
2688                 pch_udc_ep_clear_stall(&(dev->ep[i]));
2689                 dev->ep[i].halted = 0;
2690         }
2691         dev->stall = 0;
2692
2693         /* call gadget zero with setup data received */
2694         spin_lock(&dev->lock);
2695         dev->driver->setup(&dev->gadget, &dev->setup_data);
2696         spin_unlock(&dev->lock);
2697 }
2698
2699 /**
2700  * pch_udc_dev_isr() - This function services device interrupts
2701  *                      by invoking appropriate routines.
2702  * @dev:        Reference to the device structure
2703  * @dev_intr:   The Device interrupt status.
2704  */
2705 static void pch_udc_dev_isr(struct pch_udc_dev *dev, u32 dev_intr)
2706 {
2707         int vbus;
2708
2709         /* USB Reset Interrupt */
2710         if (dev_intr & UDC_DEVINT_UR) {
2711                 pch_udc_svc_ur_interrupt(dev);
2712                 dev_dbg(&dev->pdev->dev, "USB_RESET\n");
2713         }
2714         /* Enumeration Done Interrupt */
2715         if (dev_intr & UDC_DEVINT_ENUM) {
2716                 pch_udc_svc_enum_interrupt(dev);
2717                 dev_dbg(&dev->pdev->dev, "USB_ENUM\n");
2718         }
2719         /* Set Interface Interrupt */
2720         if (dev_intr & UDC_DEVINT_SI)
2721                 pch_udc_svc_intf_interrupt(dev);
2722         /* Set Config Interrupt */
2723         if (dev_intr & UDC_DEVINT_SC)
2724                 pch_udc_svc_cfg_interrupt(dev);
2725         /* USB Suspend interrupt */
2726         if (dev_intr & UDC_DEVINT_US) {
2727                 if (dev->driver
2728                         && dev->driver->suspend) {
2729                         spin_unlock(&dev->lock);
2730                         dev->driver->suspend(&dev->gadget);
2731                         spin_lock(&dev->lock);
2732                 }
2733
2734                 vbus = pch_vbus_gpio_get_value(dev);
2735                 if ((dev->vbus_session == 0)
2736                         && (vbus != 1)) {
2737                         if (dev->driver && dev->driver->disconnect) {
2738                                 spin_unlock(&dev->lock);
2739                                 dev->driver->disconnect(&dev->gadget);
2740                                 spin_lock(&dev->lock);
2741                         }
2742                         pch_udc_reconnect(dev);
2743                 } else if ((dev->vbus_session == 0)
2744                         && (vbus == 1)
2745                         && !dev->vbus_gpio.intr)
2746                         schedule_work(&dev->vbus_gpio.irq_work_fall);
2747
2748                 dev_dbg(&dev->pdev->dev, "USB_SUSPEND\n");
2749         }
2750         /* Clear the SOF interrupt, if enabled */
2751         if (dev_intr & UDC_DEVINT_SOF)
2752                 dev_dbg(&dev->pdev->dev, "SOF\n");
2753         /* ES interrupt, IDLE > 3ms on the USB */
2754         if (dev_intr & UDC_DEVINT_ES)
2755                 dev_dbg(&dev->pdev->dev, "ES\n");
2756         /* RWKP interrupt */
2757         if (dev_intr & UDC_DEVINT_RWKP)
2758                 dev_dbg(&dev->pdev->dev, "RWKP\n");
2759 }
2760
2761 /**
2762  * pch_udc_isr() - This function handles interrupts from the PCH USB Device
2763  * @irq:        Interrupt request number
2764  * @dev:        Reference to the device structure
2765  */
2766 static irqreturn_t pch_udc_isr(int irq, void *pdev)
2767 {
2768         struct pch_udc_dev *dev = (struct pch_udc_dev *) pdev;
2769         u32 dev_intr, ep_intr;
2770         int i;
2771
2772         dev_intr = pch_udc_read_device_interrupts(dev);
2773         ep_intr = pch_udc_read_ep_interrupts(dev);
2774
2775         /* For a hot plug, this find that the controller is hung up. */
2776         if (dev_intr == ep_intr)
2777                 if (dev_intr == pch_udc_readl(dev, UDC_DEVCFG_ADDR)) {
2778                         dev_dbg(&dev->pdev->dev, "UDC: Hung up\n");
2779                         /* The controller is reset */
2780                         pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR);
2781                         return IRQ_HANDLED;
2782                 }
2783         if (dev_intr)
2784                 /* Clear device interrupts */
2785                 pch_udc_write_device_interrupts(dev, dev_intr);
2786         if (ep_intr)
2787                 /* Clear ep interrupts */
2788                 pch_udc_write_ep_interrupts(dev, ep_intr);
2789         if (!dev_intr && !ep_intr)
2790                 return IRQ_NONE;
2791         spin_lock(&dev->lock);
2792         if (dev_intr)
2793                 pch_udc_dev_isr(dev, dev_intr);
2794         if (ep_intr) {
2795                 pch_udc_read_all_epstatus(dev, ep_intr);
2796                 /* Process Control In interrupts, if present */
2797                 if (ep_intr & UDC_EPINT_IN_EP0) {
2798                         pch_udc_svc_control_in(dev);
2799                         pch_udc_postsvc_epinters(dev, 0);
2800                 }
2801                 /* Process Control Out interrupts, if present */
2802                 if (ep_intr & UDC_EPINT_OUT_EP0)
2803                         pch_udc_svc_control_out(dev);
2804                 /* Process data in end point interrupts */
2805                 for (i = 1; i < PCH_UDC_USED_EP_NUM; i++) {
2806                         if (ep_intr & (1 <<  i)) {
2807                                 pch_udc_svc_data_in(dev, i);
2808                                 pch_udc_postsvc_epinters(dev, i);
2809                         }
2810                 }
2811                 /* Process data out end point interrupts */
2812                 for (i = UDC_EPINT_OUT_SHIFT + 1; i < (UDC_EPINT_OUT_SHIFT +
2813                                                  PCH_UDC_USED_EP_NUM); i++)
2814                         if (ep_intr & (1 <<  i))
2815                                 pch_udc_svc_data_out(dev, i -
2816                                                          UDC_EPINT_OUT_SHIFT);
2817         }
2818         spin_unlock(&dev->lock);
2819         return IRQ_HANDLED;
2820 }
2821
2822 /**
2823  * pch_udc_setup_ep0() - This function enables control endpoint for traffic
2824  * @dev:        Reference to the device structure
2825  */
2826 static void pch_udc_setup_ep0(struct pch_udc_dev *dev)
2827 {
2828         /* enable ep0 interrupts */
2829         pch_udc_enable_ep_interrupts(dev, UDC_EPINT_IN_EP0 |
2830                                                 UDC_EPINT_OUT_EP0);
2831         /* enable device interrupts */
2832         pch_udc_enable_interrupts(dev, UDC_DEVINT_UR | UDC_DEVINT_US |
2833                                        UDC_DEVINT_ES | UDC_DEVINT_ENUM |
2834                                        UDC_DEVINT_SI | UDC_DEVINT_SC);
2835 }
2836
2837 /**
2838  * gadget_release() - Free the gadget driver private data
2839  * @pdev        reference to struct pci_dev
2840  */
2841 static void gadget_release(struct device *pdev)
2842 {
2843         struct pch_udc_dev *dev = dev_get_drvdata(pdev);
2844
2845         kfree(dev);
2846 }
2847
2848 /**
2849  * pch_udc_pcd_reinit() - This API initializes the endpoint structures
2850  * @dev:        Reference to the driver structure
2851  */
2852 static void pch_udc_pcd_reinit(struct pch_udc_dev *dev)
2853 {
2854         const char *const ep_string[] = {
2855                 ep0_string, "ep0out", "ep1in", "ep1out", "ep2in", "ep2out",
2856                 "ep3in", "ep3out", "ep4in", "ep4out", "ep5in", "ep5out",
2857                 "ep6in", "ep6out", "ep7in", "ep7out", "ep8in", "ep8out",
2858                 "ep9in", "ep9out", "ep10in", "ep10out", "ep11in", "ep11out",
2859                 "ep12in", "ep12out", "ep13in", "ep13out", "ep14in", "ep14out",
2860                 "ep15in", "ep15out",
2861         };
2862         int i;
2863
2864         dev->gadget.speed = USB_SPEED_UNKNOWN;
2865         INIT_LIST_HEAD(&dev->gadget.ep_list);
2866
2867         /* Initialize the endpoints structures */
2868         memset(dev->ep, 0, sizeof dev->ep);
2869         for (i = 0; i < PCH_UDC_EP_NUM; i++) {
2870                 struct pch_udc_ep *ep = &dev->ep[i];
2871                 ep->dev = dev;
2872                 ep->halted = 1;
2873                 ep->num = i / 2;
2874                 ep->in = ~i & 1;
2875                 ep->ep.name = ep_string[i];
2876                 ep->ep.ops = &pch_udc_ep_ops;
2877                 if (ep->in) {
2878                         ep->offset_addr = ep->num * UDC_EP_REG_SHIFT;
2879                         ep->ep.caps.dir_in = true;
2880                 } else {
2881                         ep->offset_addr = (UDC_EPINT_OUT_SHIFT + ep->num) *
2882                                           UDC_EP_REG_SHIFT;
2883                         ep->ep.caps.dir_out = true;
2884                 }
2885                 if (i == UDC_EP0IN_IDX || i == UDC_EP0OUT_IDX) {
2886                         ep->ep.caps.type_control = true;
2887                 } else {
2888                         ep->ep.caps.type_iso = true;
2889                         ep->ep.caps.type_bulk = true;
2890                         ep->ep.caps.type_int = true;
2891                 }
2892                 /* need to set ep->ep.maxpacket and set Default Configuration?*/
2893                 usb_ep_set_maxpacket_limit(&ep->ep, UDC_BULK_MAX_PKT_SIZE);
2894                 list_add_tail(&ep->ep.ep_list, &dev->gadget.ep_list);
2895                 INIT_LIST_HEAD(&ep->queue);
2896         }
2897         usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0IN_IDX].ep, UDC_EP0IN_MAX_PKT_SIZE);
2898         usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0OUT_IDX].ep, UDC_EP0OUT_MAX_PKT_SIZE);
2899
2900         /* remove ep0 in and out from the list.  They have own pointer */
2901         list_del_init(&dev->ep[UDC_EP0IN_IDX].ep.ep_list);
2902         list_del_init(&dev->ep[UDC_EP0OUT_IDX].ep.ep_list);
2903
2904         dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IDX].ep;
2905         INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
2906 }
2907
2908 /**
2909  * pch_udc_pcd_init() - This API initializes the driver structure
2910  * @dev:        Reference to the driver structure
2911  *
2912  * Return codes:
2913  *      0: Success
2914  */
2915 static int pch_udc_pcd_init(struct pch_udc_dev *dev)
2916 {
2917         pch_udc_init(dev);
2918         pch_udc_pcd_reinit(dev);
2919         pch_vbus_gpio_init(dev, vbus_gpio_port);
2920         return 0;
2921 }
2922
2923 /**
2924  * init_dma_pools() - create dma pools during initialization
2925  * @pdev:       reference to struct pci_dev
2926  */
2927 static int init_dma_pools(struct pch_udc_dev *dev)
2928 {
2929         struct pch_udc_stp_dma_desc     *td_stp;
2930         struct pch_udc_data_dma_desc    *td_data;
2931         void                            *ep0out_buf;
2932
2933         /* DMA setup */
2934         dev->data_requests = pci_pool_create("data_requests", dev->pdev,
2935                 sizeof(struct pch_udc_data_dma_desc), 0, 0);
2936         if (!dev->data_requests) {
2937                 dev_err(&dev->pdev->dev, "%s: can't get request data pool\n",
2938                         __func__);
2939                 return -ENOMEM;
2940         }
2941
2942         /* dma desc for setup data */
2943         dev->stp_requests = pci_pool_create("setup requests", dev->pdev,
2944                 sizeof(struct pch_udc_stp_dma_desc), 0, 0);
2945         if (!dev->stp_requests) {
2946                 dev_err(&dev->pdev->dev, "%s: can't get setup request pool\n",
2947                         __func__);
2948                 return -ENOMEM;
2949         }
2950         /* setup */
2951         td_stp = pci_pool_alloc(dev->stp_requests, GFP_KERNEL,
2952                                 &dev->ep[UDC_EP0OUT_IDX].td_stp_phys);
2953         if (!td_stp) {
2954                 dev_err(&dev->pdev->dev,
2955                         "%s: can't allocate setup dma descriptor\n", __func__);
2956                 return -ENOMEM;
2957         }
2958         dev->ep[UDC_EP0OUT_IDX].td_stp = td_stp;
2959
2960         /* data: 0 packets !? */
2961         td_data = pci_pool_alloc(dev->data_requests, GFP_KERNEL,
2962                                 &dev->ep[UDC_EP0OUT_IDX].td_data_phys);
2963         if (!td_data) {
2964                 dev_err(&dev->pdev->dev,
2965                         "%s: can't allocate data dma descriptor\n", __func__);
2966                 return -ENOMEM;
2967         }
2968         dev->ep[UDC_EP0OUT_IDX].td_data = td_data;
2969         dev->ep[UDC_EP0IN_IDX].td_stp = NULL;
2970         dev->ep[UDC_EP0IN_IDX].td_stp_phys = 0;
2971         dev->ep[UDC_EP0IN_IDX].td_data = NULL;
2972         dev->ep[UDC_EP0IN_IDX].td_data_phys = 0;
2973
2974         ep0out_buf = devm_kzalloc(&dev->pdev->dev, UDC_EP0OUT_BUFF_SIZE * 4,
2975                                   GFP_KERNEL);
2976         if (!ep0out_buf)
2977                 return -ENOMEM;
2978         dev->dma_addr = dma_map_single(&dev->pdev->dev, ep0out_buf,
2979                                        UDC_EP0OUT_BUFF_SIZE * 4,
2980                                        DMA_FROM_DEVICE);
2981         return 0;
2982 }
2983
2984 static int pch_udc_start(struct usb_gadget *g,
2985                 struct usb_gadget_driver *driver)
2986 {
2987         struct pch_udc_dev      *dev = to_pch_udc(g);
2988
2989         driver->driver.bus = NULL;
2990         dev->driver = driver;
2991
2992         /* get ready for ep0 traffic */
2993         pch_udc_setup_ep0(dev);
2994
2995         /* clear SD */
2996         if ((pch_vbus_gpio_get_value(dev) != 0) || !dev->vbus_gpio.intr)
2997                 pch_udc_clear_disconnect(dev);
2998
2999         dev->connected = 1;
3000         return 0;
3001 }
3002
3003 static int pch_udc_stop(struct usb_gadget *g)
3004 {
3005         struct pch_udc_dev      *dev = to_pch_udc(g);
3006
3007         pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
3008
3009         /* Assures that there are no pending requests with this driver */
3010         dev->driver = NULL;
3011         dev->connected = 0;
3012
3013         /* set SD */
3014         pch_udc_set_disconnect(dev);
3015
3016         return 0;
3017 }
3018
3019 static void pch_udc_shutdown(struct pci_dev *pdev)
3020 {
3021         struct pch_udc_dev *dev = pci_get_drvdata(pdev);
3022
3023         pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
3024         pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
3025
3026         /* disable the pullup so the host will think we're gone */
3027         pch_udc_set_disconnect(dev);
3028 }
3029
3030 static void pch_udc_remove(struct pci_dev *pdev)
3031 {
3032         struct pch_udc_dev      *dev = pci_get_drvdata(pdev);
3033
3034         usb_del_gadget_udc(&dev->gadget);
3035
3036         /* gadget driver must not be registered */
3037         if (dev->driver)
3038                 dev_err(&pdev->dev,
3039                         "%s: gadget driver still bound!!!\n", __func__);
3040         /* dma pool cleanup */
3041         if (dev->data_requests)
3042                 pci_pool_destroy(dev->data_requests);
3043
3044         if (dev->stp_requests) {
3045                 /* cleanup DMA desc's for ep0in */
3046                 if (dev->ep[UDC_EP0OUT_IDX].td_stp) {
3047                         pci_pool_free(dev->stp_requests,
3048                                 dev->ep[UDC_EP0OUT_IDX].td_stp,
3049                                 dev->ep[UDC_EP0OUT_IDX].td_stp_phys);
3050                 }
3051                 if (dev->ep[UDC_EP0OUT_IDX].td_data) {
3052                         pci_pool_free(dev->stp_requests,
3053                                 dev->ep[UDC_EP0OUT_IDX].td_data,
3054                                 dev->ep[UDC_EP0OUT_IDX].td_data_phys);
3055                 }
3056                 pci_pool_destroy(dev->stp_requests);
3057         }
3058
3059         if (dev->dma_addr)
3060                 dma_unmap_single(&dev->pdev->dev, dev->dma_addr,
3061                                  UDC_EP0OUT_BUFF_SIZE * 4, DMA_FROM_DEVICE);
3062
3063         pch_vbus_gpio_free(dev);
3064
3065         pch_udc_exit(dev);
3066 }
3067
3068 #ifdef CONFIG_PM_SLEEP
3069 static int pch_udc_suspend(struct device *d)
3070 {
3071         struct pci_dev *pdev = to_pci_dev(d);
3072         struct pch_udc_dev *dev = pci_get_drvdata(pdev);
3073
3074         pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
3075         pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
3076
3077         return 0;
3078 }
3079
3080 static int pch_udc_resume(struct device *d)
3081 {
3082         return 0;
3083 }
3084
3085 static SIMPLE_DEV_PM_OPS(pch_udc_pm, pch_udc_suspend, pch_udc_resume);
3086 #define PCH_UDC_PM_OPS          (&pch_udc_pm)
3087 #else
3088 #define PCH_UDC_PM_OPS          NULL
3089 #endif /* CONFIG_PM_SLEEP */
3090
3091 static int pch_udc_probe(struct pci_dev *pdev,
3092                           const struct pci_device_id *id)
3093 {
3094         int                     bar;
3095         int                     retval;
3096         struct pch_udc_dev      *dev;
3097
3098         /* init */
3099         dev = devm_kzalloc(&pdev->dev, sizeof(*dev), GFP_KERNEL);
3100         if (!dev)
3101                 return -ENOMEM;
3102
3103         /* pci setup */
3104         retval = pcim_enable_device(pdev);
3105         if (retval)
3106                 return retval;
3107
3108         pci_set_drvdata(pdev, dev);
3109
3110         /* Determine BAR based on PCI ID */
3111         if (id->device == PCI_DEVICE_ID_INTEL_QUARK_X1000_UDC)
3112                 bar = PCH_UDC_PCI_BAR_QUARK_X1000;
3113         else
3114                 bar = PCH_UDC_PCI_BAR;
3115
3116         /* PCI resource allocation */
3117         retval = pcim_iomap_regions(pdev, 1 << bar, pci_name(pdev));
3118         if (retval)
3119                 return retval;
3120
3121         dev->base_addr = pcim_iomap_table(pdev)[bar];
3122
3123         /* initialize the hardware */
3124         if (pch_udc_pcd_init(dev))
3125                 return -ENODEV;
3126
3127         pci_enable_msi(pdev);
3128
3129         retval = devm_request_irq(&pdev->dev, pdev->irq, pch_udc_isr,
3130                                   IRQF_SHARED, KBUILD_MODNAME, dev);
3131         if (retval) {
3132                 dev_err(&pdev->dev, "%s: request_irq(%d) fail\n", __func__,
3133                         pdev->irq);
3134                 goto finished;
3135         }
3136
3137         pci_set_master(pdev);
3138         pci_try_set_mwi(pdev);
3139
3140         /* device struct setup */
3141         spin_lock_init(&dev->lock);
3142         dev->pdev = pdev;
3143         dev->gadget.ops = &pch_udc_ops;
3144
3145         retval = init_dma_pools(dev);
3146         if (retval)
3147                 goto finished;
3148
3149         dev->gadget.name = KBUILD_MODNAME;
3150         dev->gadget.max_speed = USB_SPEED_HIGH;
3151
3152         /* Put the device in disconnected state till a driver is bound */
3153         pch_udc_set_disconnect(dev);
3154         retval = usb_add_gadget_udc_release(&pdev->dev, &dev->gadget,
3155                         gadget_release);
3156         if (retval)
3157                 goto finished;
3158         return 0;
3159
3160 finished:
3161         pch_udc_remove(pdev);
3162         return retval;
3163 }
3164
3165 static const struct pci_device_id pch_udc_pcidev_id[] = {
3166         {
3167                 PCI_DEVICE(PCI_VENDOR_ID_INTEL,
3168                            PCI_DEVICE_ID_INTEL_QUARK_X1000_UDC),
3169                 .class = PCI_CLASS_SERIAL_USB_DEVICE,
3170                 .class_mask = 0xffffffff,
3171         },
3172         {
3173                 PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_EG20T_UDC),
3174                 .class = PCI_CLASS_SERIAL_USB_DEVICE,
3175                 .class_mask = 0xffffffff,
3176         },
3177         {
3178                 PCI_DEVICE(PCI_VENDOR_ID_ROHM, PCI_DEVICE_ID_ML7213_IOH_UDC),
3179                 .class = PCI_CLASS_SERIAL_USB_DEVICE,
3180                 .class_mask = 0xffffffff,
3181         },
3182         {
3183                 PCI_DEVICE(PCI_VENDOR_ID_ROHM, PCI_DEVICE_ID_ML7831_IOH_UDC),
3184                 .class = PCI_CLASS_SERIAL_USB_DEVICE,
3185                 .class_mask = 0xffffffff,
3186         },
3187         { 0 },
3188 };
3189
3190 MODULE_DEVICE_TABLE(pci, pch_udc_pcidev_id);
3191
3192 static struct pci_driver pch_udc_driver = {
3193         .name = KBUILD_MODNAME,
3194         .id_table =     pch_udc_pcidev_id,
3195         .probe =        pch_udc_probe,
3196         .remove =       pch_udc_remove,
3197         .shutdown =     pch_udc_shutdown,
3198         .driver = {
3199                 .pm = PCH_UDC_PM_OPS,
3200         },
3201 };
3202
3203 module_pci_driver(pch_udc_driver);
3204
3205 MODULE_DESCRIPTION("Intel EG20T USB Device Controller");
3206 MODULE_AUTHOR("LAPIS Semiconductor, <tomoya-linux@dsn.lapis-semi.com>");
3207 MODULE_LICENSE("GPL");