]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - drivers/usb/host/xhci.c
Merge branch 'fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/davej/cpufreq
[karo-tx-linux.git] / drivers / usb / host / xhci.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29
30 #include "xhci.h"
31
32 #define DRIVER_AUTHOR "Sarah Sharp"
33 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
34
35 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
36 static int link_quirk;
37 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
38 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
39
40 /* TODO: copied from ehci-hcd.c - can this be refactored? */
41 /*
42  * handshake - spin reading hc until handshake completes or fails
43  * @ptr: address of hc register to be read
44  * @mask: bits to look at in result of read
45  * @done: value of those bits when handshake succeeds
46  * @usec: timeout in microseconds
47  *
48  * Returns negative errno, or zero on success
49  *
50  * Success happens when the "mask" bits have the specified value (hardware
51  * handshake done).  There are two failure modes:  "usec" have passed (major
52  * hardware flakeout), or the register reads as all-ones (hardware removed).
53  */
54 static int handshake(struct xhci_hcd *xhci, void __iomem *ptr,
55                       u32 mask, u32 done, int usec)
56 {
57         u32     result;
58
59         do {
60                 result = xhci_readl(xhci, ptr);
61                 if (result == ~(u32)0)          /* card removed */
62                         return -ENODEV;
63                 result &= mask;
64                 if (result == done)
65                         return 0;
66                 udelay(1);
67                 usec--;
68         } while (usec > 0);
69         return -ETIMEDOUT;
70 }
71
72 /*
73  * Disable interrupts and begin the xHCI halting process.
74  */
75 void xhci_quiesce(struct xhci_hcd *xhci)
76 {
77         u32 halted;
78         u32 cmd;
79         u32 mask;
80
81         mask = ~(XHCI_IRQS);
82         halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
83         if (!halted)
84                 mask &= ~CMD_RUN;
85
86         cmd = xhci_readl(xhci, &xhci->op_regs->command);
87         cmd &= mask;
88         xhci_writel(xhci, cmd, &xhci->op_regs->command);
89 }
90
91 /*
92  * Force HC into halt state.
93  *
94  * Disable any IRQs and clear the run/stop bit.
95  * HC will complete any current and actively pipelined transactions, and
96  * should halt within 16 ms of the run/stop bit being cleared.
97  * Read HC Halted bit in the status register to see when the HC is finished.
98  */
99 int xhci_halt(struct xhci_hcd *xhci)
100 {
101         int ret;
102         xhci_dbg(xhci, "// Halt the HC\n");
103         xhci_quiesce(xhci);
104
105         ret = handshake(xhci, &xhci->op_regs->status,
106                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
107         if (!ret)
108                 xhci->xhc_state |= XHCI_STATE_HALTED;
109         return ret;
110 }
111
112 /*
113  * Set the run bit and wait for the host to be running.
114  */
115 static int xhci_start(struct xhci_hcd *xhci)
116 {
117         u32 temp;
118         int ret;
119
120         temp = xhci_readl(xhci, &xhci->op_regs->command);
121         temp |= (CMD_RUN);
122         xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
123                         temp);
124         xhci_writel(xhci, temp, &xhci->op_regs->command);
125
126         /*
127          * Wait for the HCHalted Status bit to be 0 to indicate the host is
128          * running.
129          */
130         ret = handshake(xhci, &xhci->op_regs->status,
131                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
132         if (ret == -ETIMEDOUT)
133                 xhci_err(xhci, "Host took too long to start, "
134                                 "waited %u microseconds.\n",
135                                 XHCI_MAX_HALT_USEC);
136         if (!ret)
137                 xhci->xhc_state &= ~XHCI_STATE_HALTED;
138         return ret;
139 }
140
141 /*
142  * Reset a halted HC.
143  *
144  * This resets pipelines, timers, counters, state machines, etc.
145  * Transactions will be terminated immediately, and operational registers
146  * will be set to their defaults.
147  */
148 int xhci_reset(struct xhci_hcd *xhci)
149 {
150         u32 command;
151         u32 state;
152         int ret;
153
154         state = xhci_readl(xhci, &xhci->op_regs->status);
155         if ((state & STS_HALT) == 0) {
156                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
157                 return 0;
158         }
159
160         xhci_dbg(xhci, "// Reset the HC\n");
161         command = xhci_readl(xhci, &xhci->op_regs->command);
162         command |= CMD_RESET;
163         xhci_writel(xhci, command, &xhci->op_regs->command);
164
165         ret = handshake(xhci, &xhci->op_regs->command,
166                         CMD_RESET, 0, 250 * 1000);
167         if (ret)
168                 return ret;
169
170         xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
171         /*
172          * xHCI cannot write to any doorbells or operational registers other
173          * than status until the "Controller Not Ready" flag is cleared.
174          */
175         return handshake(xhci, &xhci->op_regs->status, STS_CNR, 0, 250 * 1000);
176 }
177
178 #ifdef CONFIG_PCI
179 static int xhci_free_msi(struct xhci_hcd *xhci)
180 {
181         int i;
182
183         if (!xhci->msix_entries)
184                 return -EINVAL;
185
186         for (i = 0; i < xhci->msix_count; i++)
187                 if (xhci->msix_entries[i].vector)
188                         free_irq(xhci->msix_entries[i].vector,
189                                         xhci_to_hcd(xhci));
190         return 0;
191 }
192
193 /*
194  * Set up MSI
195  */
196 static int xhci_setup_msi(struct xhci_hcd *xhci)
197 {
198         int ret;
199         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
200
201         ret = pci_enable_msi(pdev);
202         if (ret) {
203                 xhci_dbg(xhci, "failed to allocate MSI entry\n");
204                 return ret;
205         }
206
207         ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq,
208                                 0, "xhci_hcd", xhci_to_hcd(xhci));
209         if (ret) {
210                 xhci_dbg(xhci, "disable MSI interrupt\n");
211                 pci_disable_msi(pdev);
212         }
213
214         return ret;
215 }
216
217 /*
218  * Free IRQs
219  * free all IRQs request
220  */
221 static void xhci_free_irq(struct xhci_hcd *xhci)
222 {
223         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
224         int ret;
225
226         /* return if using legacy interrupt */
227         if (xhci_to_hcd(xhci)->irq > 0)
228                 return;
229
230         ret = xhci_free_msi(xhci);
231         if (!ret)
232                 return;
233         if (pdev->irq > 0)
234                 free_irq(pdev->irq, xhci_to_hcd(xhci));
235
236         return;
237 }
238
239 /*
240  * Set up MSI-X
241  */
242 static int xhci_setup_msix(struct xhci_hcd *xhci)
243 {
244         int i, ret = 0;
245         struct usb_hcd *hcd = xhci_to_hcd(xhci);
246         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
247
248         /*
249          * calculate number of msi-x vectors supported.
250          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
251          *   with max number of interrupters based on the xhci HCSPARAMS1.
252          * - num_online_cpus: maximum msi-x vectors per CPUs core.
253          *   Add additional 1 vector to ensure always available interrupt.
254          */
255         xhci->msix_count = min(num_online_cpus() + 1,
256                                 HCS_MAX_INTRS(xhci->hcs_params1));
257
258         xhci->msix_entries =
259                 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
260                                 GFP_KERNEL);
261         if (!xhci->msix_entries) {
262                 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
263                 return -ENOMEM;
264         }
265
266         for (i = 0; i < xhci->msix_count; i++) {
267                 xhci->msix_entries[i].entry = i;
268                 xhci->msix_entries[i].vector = 0;
269         }
270
271         ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
272         if (ret) {
273                 xhci_dbg(xhci, "Failed to enable MSI-X\n");
274                 goto free_entries;
275         }
276
277         for (i = 0; i < xhci->msix_count; i++) {
278                 ret = request_irq(xhci->msix_entries[i].vector,
279                                 (irq_handler_t)xhci_msi_irq,
280                                 0, "xhci_hcd", xhci_to_hcd(xhci));
281                 if (ret)
282                         goto disable_msix;
283         }
284
285         hcd->msix_enabled = 1;
286         return ret;
287
288 disable_msix:
289         xhci_dbg(xhci, "disable MSI-X interrupt\n");
290         xhci_free_irq(xhci);
291         pci_disable_msix(pdev);
292 free_entries:
293         kfree(xhci->msix_entries);
294         xhci->msix_entries = NULL;
295         return ret;
296 }
297
298 /* Free any IRQs and disable MSI-X */
299 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
300 {
301         struct usb_hcd *hcd = xhci_to_hcd(xhci);
302         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
303
304         xhci_free_irq(xhci);
305
306         if (xhci->msix_entries) {
307                 pci_disable_msix(pdev);
308                 kfree(xhci->msix_entries);
309                 xhci->msix_entries = NULL;
310         } else {
311                 pci_disable_msi(pdev);
312         }
313
314         hcd->msix_enabled = 0;
315         return;
316 }
317
318 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
319 {
320         int i;
321
322         if (xhci->msix_entries) {
323                 for (i = 0; i < xhci->msix_count; i++)
324                         synchronize_irq(xhci->msix_entries[i].vector);
325         }
326 }
327
328 static int xhci_try_enable_msi(struct usb_hcd *hcd)
329 {
330         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
331         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
332         int ret;
333
334         /*
335          * Some Fresco Logic host controllers advertise MSI, but fail to
336          * generate interrupts.  Don't even try to enable MSI.
337          */
338         if (xhci->quirks & XHCI_BROKEN_MSI)
339                 return 0;
340
341         /* unregister the legacy interrupt */
342         if (hcd->irq)
343                 free_irq(hcd->irq, hcd);
344         hcd->irq = 0;
345
346         ret = xhci_setup_msix(xhci);
347         if (ret)
348                 /* fall back to msi*/
349                 ret = xhci_setup_msi(xhci);
350
351         if (!ret)
352                 /* hcd->irq is 0, we have MSI */
353                 return 0;
354
355         if (!pdev->irq) {
356                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
357                 return -EINVAL;
358         }
359
360         /* fall back to legacy interrupt*/
361         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
362                         hcd->irq_descr, hcd);
363         if (ret) {
364                 xhci_err(xhci, "request interrupt %d failed\n",
365                                 pdev->irq);
366                 return ret;
367         }
368         hcd->irq = pdev->irq;
369         return 0;
370 }
371
372 #else
373
374 static int xhci_try_enable_msi(struct usb_hcd *hcd)
375 {
376         return 0;
377 }
378
379 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
380 {
381 }
382
383 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
384 {
385 }
386
387 #endif
388
389 /*
390  * Initialize memory for HCD and xHC (one-time init).
391  *
392  * Program the PAGESIZE register, initialize the device context array, create
393  * device contexts (?), set up a command ring segment (or two?), create event
394  * ring (one for now).
395  */
396 int xhci_init(struct usb_hcd *hcd)
397 {
398         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
399         int retval = 0;
400
401         xhci_dbg(xhci, "xhci_init\n");
402         spin_lock_init(&xhci->lock);
403         if (xhci->hci_version == 0x95 && link_quirk) {
404                 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
405                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
406         } else {
407                 xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
408         }
409         retval = xhci_mem_init(xhci, GFP_KERNEL);
410         xhci_dbg(xhci, "Finished xhci_init\n");
411
412         return retval;
413 }
414
415 /*-------------------------------------------------------------------------*/
416
417
418 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
419 static void xhci_event_ring_work(unsigned long arg)
420 {
421         unsigned long flags;
422         int temp;
423         u64 temp_64;
424         struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
425         int i, j;
426
427         xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
428
429         spin_lock_irqsave(&xhci->lock, flags);
430         temp = xhci_readl(xhci, &xhci->op_regs->status);
431         xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
432         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
433                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
434                 xhci_dbg(xhci, "HW died, polling stopped.\n");
435                 spin_unlock_irqrestore(&xhci->lock, flags);
436                 return;
437         }
438
439         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
440         xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
441         xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
442         xhci->error_bitmask = 0;
443         xhci_dbg(xhci, "Event ring:\n");
444         xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
445         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
446         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
447         temp_64 &= ~ERST_PTR_MASK;
448         xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
449         xhci_dbg(xhci, "Command ring:\n");
450         xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
451         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
452         xhci_dbg_cmd_ptrs(xhci);
453         for (i = 0; i < MAX_HC_SLOTS; ++i) {
454                 if (!xhci->devs[i])
455                         continue;
456                 for (j = 0; j < 31; ++j) {
457                         xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
458                 }
459         }
460         spin_unlock_irqrestore(&xhci->lock, flags);
461
462         if (!xhci->zombie)
463                 mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
464         else
465                 xhci_dbg(xhci, "Quit polling the event ring.\n");
466 }
467 #endif
468
469 static int xhci_run_finished(struct xhci_hcd *xhci)
470 {
471         if (xhci_start(xhci)) {
472                 xhci_halt(xhci);
473                 return -ENODEV;
474         }
475         xhci->shared_hcd->state = HC_STATE_RUNNING;
476
477         if (xhci->quirks & XHCI_NEC_HOST)
478                 xhci_ring_cmd_db(xhci);
479
480         xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
481         return 0;
482 }
483
484 /*
485  * Start the HC after it was halted.
486  *
487  * This function is called by the USB core when the HC driver is added.
488  * Its opposite is xhci_stop().
489  *
490  * xhci_init() must be called once before this function can be called.
491  * Reset the HC, enable device slot contexts, program DCBAAP, and
492  * set command ring pointer and event ring pointer.
493  *
494  * Setup MSI-X vectors and enable interrupts.
495  */
496 int xhci_run(struct usb_hcd *hcd)
497 {
498         u32 temp;
499         u64 temp_64;
500         int ret;
501         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
502
503         /* Start the xHCI host controller running only after the USB 2.0 roothub
504          * is setup.
505          */
506
507         hcd->uses_new_polling = 1;
508         if (!usb_hcd_is_primary_hcd(hcd))
509                 return xhci_run_finished(xhci);
510
511         xhci_dbg(xhci, "xhci_run\n");
512
513         ret = xhci_try_enable_msi(hcd);
514         if (ret)
515                 return ret;
516
517 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
518         init_timer(&xhci->event_ring_timer);
519         xhci->event_ring_timer.data = (unsigned long) xhci;
520         xhci->event_ring_timer.function = xhci_event_ring_work;
521         /* Poll the event ring */
522         xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
523         xhci->zombie = 0;
524         xhci_dbg(xhci, "Setting event ring polling timer\n");
525         add_timer(&xhci->event_ring_timer);
526 #endif
527
528         xhci_dbg(xhci, "Command ring memory map follows:\n");
529         xhci_debug_ring(xhci, xhci->cmd_ring);
530         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
531         xhci_dbg_cmd_ptrs(xhci);
532
533         xhci_dbg(xhci, "ERST memory map follows:\n");
534         xhci_dbg_erst(xhci, &xhci->erst);
535         xhci_dbg(xhci, "Event ring:\n");
536         xhci_debug_ring(xhci, xhci->event_ring);
537         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
538         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
539         temp_64 &= ~ERST_PTR_MASK;
540         xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
541
542         xhci_dbg(xhci, "// Set the interrupt modulation register\n");
543         temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
544         temp &= ~ER_IRQ_INTERVAL_MASK;
545         temp |= (u32) 160;
546         xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
547
548         /* Set the HCD state before we enable the irqs */
549         temp = xhci_readl(xhci, &xhci->op_regs->command);
550         temp |= (CMD_EIE);
551         xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
552                         temp);
553         xhci_writel(xhci, temp, &xhci->op_regs->command);
554
555         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
556         xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
557                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
558         xhci_writel(xhci, ER_IRQ_ENABLE(temp),
559                         &xhci->ir_set->irq_pending);
560         xhci_print_ir_set(xhci, 0);
561
562         if (xhci->quirks & XHCI_NEC_HOST)
563                 xhci_queue_vendor_command(xhci, 0, 0, 0,
564                                 TRB_TYPE(TRB_NEC_GET_FW));
565
566         xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
567         return 0;
568 }
569
570 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
571 {
572         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
573
574         spin_lock_irq(&xhci->lock);
575         xhci_halt(xhci);
576
577         /* The shared_hcd is going to be deallocated shortly (the USB core only
578          * calls this function when allocation fails in usb_add_hcd(), or
579          * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
580          */
581         xhci->shared_hcd = NULL;
582         spin_unlock_irq(&xhci->lock);
583 }
584
585 /*
586  * Stop xHCI driver.
587  *
588  * This function is called by the USB core when the HC driver is removed.
589  * Its opposite is xhci_run().
590  *
591  * Disable device contexts, disable IRQs, and quiesce the HC.
592  * Reset the HC, finish any completed transactions, and cleanup memory.
593  */
594 void xhci_stop(struct usb_hcd *hcd)
595 {
596         u32 temp;
597         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
598
599         if (!usb_hcd_is_primary_hcd(hcd)) {
600                 xhci_only_stop_hcd(xhci->shared_hcd);
601                 return;
602         }
603
604         spin_lock_irq(&xhci->lock);
605         /* Make sure the xHC is halted for a USB3 roothub
606          * (xhci_stop() could be called as part of failed init).
607          */
608         xhci_halt(xhci);
609         xhci_reset(xhci);
610         spin_unlock_irq(&xhci->lock);
611
612         xhci_cleanup_msix(xhci);
613
614 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
615         /* Tell the event ring poll function not to reschedule */
616         xhci->zombie = 1;
617         del_timer_sync(&xhci->event_ring_timer);
618 #endif
619
620         if (xhci->quirks & XHCI_AMD_PLL_FIX)
621                 usb_amd_dev_put();
622
623         xhci_dbg(xhci, "// Disabling event ring interrupts\n");
624         temp = xhci_readl(xhci, &xhci->op_regs->status);
625         xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
626         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
627         xhci_writel(xhci, ER_IRQ_DISABLE(temp),
628                         &xhci->ir_set->irq_pending);
629         xhci_print_ir_set(xhci, 0);
630
631         xhci_dbg(xhci, "cleaning up memory\n");
632         xhci_mem_cleanup(xhci);
633         xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
634                     xhci_readl(xhci, &xhci->op_regs->status));
635 }
636
637 /*
638  * Shutdown HC (not bus-specific)
639  *
640  * This is called when the machine is rebooting or halting.  We assume that the
641  * machine will be powered off, and the HC's internal state will be reset.
642  * Don't bother to free memory.
643  *
644  * This will only ever be called with the main usb_hcd (the USB3 roothub).
645  */
646 void xhci_shutdown(struct usb_hcd *hcd)
647 {
648         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
649
650         spin_lock_irq(&xhci->lock);
651         xhci_halt(xhci);
652         spin_unlock_irq(&xhci->lock);
653
654         xhci_cleanup_msix(xhci);
655
656         xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
657                     xhci_readl(xhci, &xhci->op_regs->status));
658 }
659
660 #ifdef CONFIG_PM
661 static void xhci_save_registers(struct xhci_hcd *xhci)
662 {
663         xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
664         xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
665         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
666         xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
667         xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
668         xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
669         xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
670         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
671         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
672 }
673
674 static void xhci_restore_registers(struct xhci_hcd *xhci)
675 {
676         xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
677         xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
678         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
679         xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
680         xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
681         xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
682         xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
683         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
684 }
685
686 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
687 {
688         u64     val_64;
689
690         /* step 2: initialize command ring buffer */
691         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
692         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
693                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
694                                       xhci->cmd_ring->dequeue) &
695                  (u64) ~CMD_RING_RSVD_BITS) |
696                 xhci->cmd_ring->cycle_state;
697         xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
698                         (long unsigned long) val_64);
699         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
700 }
701
702 /*
703  * The whole command ring must be cleared to zero when we suspend the host.
704  *
705  * The host doesn't save the command ring pointer in the suspend well, so we
706  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
707  * aligned, because of the reserved bits in the command ring dequeue pointer
708  * register.  Therefore, we can't just set the dequeue pointer back in the
709  * middle of the ring (TRBs are 16-byte aligned).
710  */
711 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
712 {
713         struct xhci_ring *ring;
714         struct xhci_segment *seg;
715
716         ring = xhci->cmd_ring;
717         seg = ring->deq_seg;
718         do {
719                 memset(seg->trbs, 0,
720                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
721                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
722                         cpu_to_le32(~TRB_CYCLE);
723                 seg = seg->next;
724         } while (seg != ring->deq_seg);
725
726         /* Reset the software enqueue and dequeue pointers */
727         ring->deq_seg = ring->first_seg;
728         ring->dequeue = ring->first_seg->trbs;
729         ring->enq_seg = ring->deq_seg;
730         ring->enqueue = ring->dequeue;
731
732         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
733         /*
734          * Ring is now zeroed, so the HW should look for change of ownership
735          * when the cycle bit is set to 1.
736          */
737         ring->cycle_state = 1;
738
739         /*
740          * Reset the hardware dequeue pointer.
741          * Yes, this will need to be re-written after resume, but we're paranoid
742          * and want to make sure the hardware doesn't access bogus memory
743          * because, say, the BIOS or an SMI started the host without changing
744          * the command ring pointers.
745          */
746         xhci_set_cmd_ring_deq(xhci);
747 }
748
749 /*
750  * Stop HC (not bus-specific)
751  *
752  * This is called when the machine transition into S3/S4 mode.
753  *
754  */
755 int xhci_suspend(struct xhci_hcd *xhci)
756 {
757         int                     rc = 0;
758         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
759         u32                     command;
760
761         spin_lock_irq(&xhci->lock);
762         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
763         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
764         /* step 1: stop endpoint */
765         /* skipped assuming that port suspend has done */
766
767         /* step 2: clear Run/Stop bit */
768         command = xhci_readl(xhci, &xhci->op_regs->command);
769         command &= ~CMD_RUN;
770         xhci_writel(xhci, command, &xhci->op_regs->command);
771         if (handshake(xhci, &xhci->op_regs->status,
772                       STS_HALT, STS_HALT, 100*100)) {
773                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
774                 spin_unlock_irq(&xhci->lock);
775                 return -ETIMEDOUT;
776         }
777         xhci_clear_command_ring(xhci);
778
779         /* step 3: save registers */
780         xhci_save_registers(xhci);
781
782         /* step 4: set CSS flag */
783         command = xhci_readl(xhci, &xhci->op_regs->command);
784         command |= CMD_CSS;
785         xhci_writel(xhci, command, &xhci->op_regs->command);
786         if (handshake(xhci, &xhci->op_regs->status, STS_SAVE, 0, 10*100)) {
787                 xhci_warn(xhci, "WARN: xHC CMD_CSS timeout\n");
788                 spin_unlock_irq(&xhci->lock);
789                 return -ETIMEDOUT;
790         }
791         spin_unlock_irq(&xhci->lock);
792
793         /* step 5: remove core well power */
794         /* synchronize irq when using MSI-X */
795         xhci_msix_sync_irqs(xhci);
796
797         return rc;
798 }
799
800 /*
801  * start xHC (not bus-specific)
802  *
803  * This is called when the machine transition from S3/S4 mode.
804  *
805  */
806 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
807 {
808         u32                     command, temp = 0;
809         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
810         struct usb_hcd          *secondary_hcd;
811         int                     retval = 0;
812
813         /* Wait a bit if either of the roothubs need to settle from the
814          * transition into bus suspend.
815          */
816         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
817                         time_before(jiffies,
818                                 xhci->bus_state[1].next_statechange))
819                 msleep(100);
820
821         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
822         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
823
824         spin_lock_irq(&xhci->lock);
825         if (xhci->quirks & XHCI_RESET_ON_RESUME)
826                 hibernated = true;
827
828         if (!hibernated) {
829                 /* step 1: restore register */
830                 xhci_restore_registers(xhci);
831                 /* step 2: initialize command ring buffer */
832                 xhci_set_cmd_ring_deq(xhci);
833                 /* step 3: restore state and start state*/
834                 /* step 3: set CRS flag */
835                 command = xhci_readl(xhci, &xhci->op_regs->command);
836                 command |= CMD_CRS;
837                 xhci_writel(xhci, command, &xhci->op_regs->command);
838                 if (handshake(xhci, &xhci->op_regs->status,
839                               STS_RESTORE, 0, 10*100)) {
840                         xhci_dbg(xhci, "WARN: xHC CMD_CSS timeout\n");
841                         spin_unlock_irq(&xhci->lock);
842                         return -ETIMEDOUT;
843                 }
844                 temp = xhci_readl(xhci, &xhci->op_regs->status);
845         }
846
847         /* If restore operation fails, re-initialize the HC during resume */
848         if ((temp & STS_SRE) || hibernated) {
849                 /* Let the USB core know _both_ roothubs lost power. */
850                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
851                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
852
853                 xhci_dbg(xhci, "Stop HCD\n");
854                 xhci_halt(xhci);
855                 xhci_reset(xhci);
856                 spin_unlock_irq(&xhci->lock);
857                 xhci_cleanup_msix(xhci);
858
859 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
860                 /* Tell the event ring poll function not to reschedule */
861                 xhci->zombie = 1;
862                 del_timer_sync(&xhci->event_ring_timer);
863 #endif
864
865                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
866                 temp = xhci_readl(xhci, &xhci->op_regs->status);
867                 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
868                 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
869                 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
870                                 &xhci->ir_set->irq_pending);
871                 xhci_print_ir_set(xhci, 0);
872
873                 xhci_dbg(xhci, "cleaning up memory\n");
874                 xhci_mem_cleanup(xhci);
875                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
876                             xhci_readl(xhci, &xhci->op_regs->status));
877
878                 /* USB core calls the PCI reinit and start functions twice:
879                  * first with the primary HCD, and then with the secondary HCD.
880                  * If we don't do the same, the host will never be started.
881                  */
882                 if (!usb_hcd_is_primary_hcd(hcd))
883                         secondary_hcd = hcd;
884                 else
885                         secondary_hcd = xhci->shared_hcd;
886
887                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
888                 retval = xhci_init(hcd->primary_hcd);
889                 if (retval)
890                         return retval;
891                 xhci_dbg(xhci, "Start the primary HCD\n");
892                 retval = xhci_run(hcd->primary_hcd);
893                 if (!retval) {
894                         xhci_dbg(xhci, "Start the secondary HCD\n");
895                         retval = xhci_run(secondary_hcd);
896                 }
897                 hcd->state = HC_STATE_SUSPENDED;
898                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
899                 goto done;
900         }
901
902         /* step 4: set Run/Stop bit */
903         command = xhci_readl(xhci, &xhci->op_regs->command);
904         command |= CMD_RUN;
905         xhci_writel(xhci, command, &xhci->op_regs->command);
906         handshake(xhci, &xhci->op_regs->status, STS_HALT,
907                   0, 250 * 1000);
908
909         /* step 5: walk topology and initialize portsc,
910          * portpmsc and portli
911          */
912         /* this is done in bus_resume */
913
914         /* step 6: restart each of the previously
915          * Running endpoints by ringing their doorbells
916          */
917
918         spin_unlock_irq(&xhci->lock);
919
920  done:
921         if (retval == 0) {
922                 usb_hcd_resume_root_hub(hcd);
923                 usb_hcd_resume_root_hub(xhci->shared_hcd);
924         }
925         return retval;
926 }
927 #endif  /* CONFIG_PM */
928
929 /*-------------------------------------------------------------------------*/
930
931 /**
932  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
933  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
934  * value to right shift 1 for the bitmask.
935  *
936  * Index  = (epnum * 2) + direction - 1,
937  * where direction = 0 for OUT, 1 for IN.
938  * For control endpoints, the IN index is used (OUT index is unused), so
939  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
940  */
941 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
942 {
943         unsigned int index;
944         if (usb_endpoint_xfer_control(desc))
945                 index = (unsigned int) (usb_endpoint_num(desc)*2);
946         else
947                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
948                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
949         return index;
950 }
951
952 /* Find the flag for this endpoint (for use in the control context).  Use the
953  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
954  * bit 1, etc.
955  */
956 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
957 {
958         return 1 << (xhci_get_endpoint_index(desc) + 1);
959 }
960
961 /* Find the flag for this endpoint (for use in the control context).  Use the
962  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
963  * bit 1, etc.
964  */
965 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
966 {
967         return 1 << (ep_index + 1);
968 }
969
970 /* Compute the last valid endpoint context index.  Basically, this is the
971  * endpoint index plus one.  For slot contexts with more than valid endpoint,
972  * we find the most significant bit set in the added contexts flags.
973  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
974  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
975  */
976 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
977 {
978         return fls(added_ctxs) - 1;
979 }
980
981 /* Returns 1 if the arguments are OK;
982  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
983  */
984 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
985                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
986                 const char *func) {
987         struct xhci_hcd *xhci;
988         struct xhci_virt_device *virt_dev;
989
990         if (!hcd || (check_ep && !ep) || !udev) {
991                 printk(KERN_DEBUG "xHCI %s called with invalid args\n",
992                                 func);
993                 return -EINVAL;
994         }
995         if (!udev->parent) {
996                 printk(KERN_DEBUG "xHCI %s called for root hub\n",
997                                 func);
998                 return 0;
999         }
1000
1001         xhci = hcd_to_xhci(hcd);
1002         if (xhci->xhc_state & XHCI_STATE_HALTED)
1003                 return -ENODEV;
1004
1005         if (check_virt_dev) {
1006                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1007                         printk(KERN_DEBUG "xHCI %s called with unaddressed "
1008                                                 "device\n", func);
1009                         return -EINVAL;
1010                 }
1011
1012                 virt_dev = xhci->devs[udev->slot_id];
1013                 if (virt_dev->udev != udev) {
1014                         printk(KERN_DEBUG "xHCI %s called with udev and "
1015                                           "virt_dev does not match\n", func);
1016                         return -EINVAL;
1017                 }
1018         }
1019
1020         return 1;
1021 }
1022
1023 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1024                 struct usb_device *udev, struct xhci_command *command,
1025                 bool ctx_change, bool must_succeed);
1026
1027 /*
1028  * Full speed devices may have a max packet size greater than 8 bytes, but the
1029  * USB core doesn't know that until it reads the first 8 bytes of the
1030  * descriptor.  If the usb_device's max packet size changes after that point,
1031  * we need to issue an evaluate context command and wait on it.
1032  */
1033 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1034                 unsigned int ep_index, struct urb *urb)
1035 {
1036         struct xhci_container_ctx *in_ctx;
1037         struct xhci_container_ctx *out_ctx;
1038         struct xhci_input_control_ctx *ctrl_ctx;
1039         struct xhci_ep_ctx *ep_ctx;
1040         int max_packet_size;
1041         int hw_max_packet_size;
1042         int ret = 0;
1043
1044         out_ctx = xhci->devs[slot_id]->out_ctx;
1045         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1046         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1047         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1048         if (hw_max_packet_size != max_packet_size) {
1049                 xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
1050                 xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
1051                                 max_packet_size);
1052                 xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
1053                                 hw_max_packet_size);
1054                 xhci_dbg(xhci, "Issuing evaluate context command.\n");
1055
1056                 /* Set up the modified control endpoint 0 */
1057                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1058                                 xhci->devs[slot_id]->out_ctx, ep_index);
1059                 in_ctx = xhci->devs[slot_id]->in_ctx;
1060                 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1061                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1062                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1063
1064                 /* Set up the input context flags for the command */
1065                 /* FIXME: This won't work if a non-default control endpoint
1066                  * changes max packet sizes.
1067                  */
1068                 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1069                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1070                 ctrl_ctx->drop_flags = 0;
1071
1072                 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1073                 xhci_dbg_ctx(xhci, in_ctx, ep_index);
1074                 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1075                 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1076
1077                 ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1078                                 true, false);
1079
1080                 /* Clean up the input context for later use by bandwidth
1081                  * functions.
1082                  */
1083                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1084         }
1085         return ret;
1086 }
1087
1088 /*
1089  * non-error returns are a promise to giveback() the urb later
1090  * we drop ownership so next owner (or urb unlink) can get it
1091  */
1092 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1093 {
1094         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1095         struct xhci_td *buffer;
1096         unsigned long flags;
1097         int ret = 0;
1098         unsigned int slot_id, ep_index;
1099         struct urb_priv *urb_priv;
1100         int size, i;
1101
1102         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1103                                         true, true, __func__) <= 0)
1104                 return -EINVAL;
1105
1106         slot_id = urb->dev->slot_id;
1107         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1108
1109         if (!HCD_HW_ACCESSIBLE(hcd)) {
1110                 if (!in_interrupt())
1111                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1112                 ret = -ESHUTDOWN;
1113                 goto exit;
1114         }
1115
1116         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1117                 size = urb->number_of_packets;
1118         else
1119                 size = 1;
1120
1121         urb_priv = kzalloc(sizeof(struct urb_priv) +
1122                                   size * sizeof(struct xhci_td *), mem_flags);
1123         if (!urb_priv)
1124                 return -ENOMEM;
1125
1126         buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1127         if (!buffer) {
1128                 kfree(urb_priv);
1129                 return -ENOMEM;
1130         }
1131
1132         for (i = 0; i < size; i++) {
1133                 urb_priv->td[i] = buffer;
1134                 buffer++;
1135         }
1136
1137         urb_priv->length = size;
1138         urb_priv->td_cnt = 0;
1139         urb->hcpriv = urb_priv;
1140
1141         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1142                 /* Check to see if the max packet size for the default control
1143                  * endpoint changed during FS device enumeration
1144                  */
1145                 if (urb->dev->speed == USB_SPEED_FULL) {
1146                         ret = xhci_check_maxpacket(xhci, slot_id,
1147                                         ep_index, urb);
1148                         if (ret < 0) {
1149                                 xhci_urb_free_priv(xhci, urb_priv);
1150                                 urb->hcpriv = NULL;
1151                                 return ret;
1152                         }
1153                 }
1154
1155                 /* We have a spinlock and interrupts disabled, so we must pass
1156                  * atomic context to this function, which may allocate memory.
1157                  */
1158                 spin_lock_irqsave(&xhci->lock, flags);
1159                 if (xhci->xhc_state & XHCI_STATE_DYING)
1160                         goto dying;
1161                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1162                                 slot_id, ep_index);
1163                 if (ret)
1164                         goto free_priv;
1165                 spin_unlock_irqrestore(&xhci->lock, flags);
1166         } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1167                 spin_lock_irqsave(&xhci->lock, flags);
1168                 if (xhci->xhc_state & XHCI_STATE_DYING)
1169                         goto dying;
1170                 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1171                                 EP_GETTING_STREAMS) {
1172                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1173                                         "is transitioning to using streams.\n");
1174                         ret = -EINVAL;
1175                 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1176                                 EP_GETTING_NO_STREAMS) {
1177                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1178                                         "is transitioning to "
1179                                         "not having streams.\n");
1180                         ret = -EINVAL;
1181                 } else {
1182                         ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1183                                         slot_id, ep_index);
1184                 }
1185                 if (ret)
1186                         goto free_priv;
1187                 spin_unlock_irqrestore(&xhci->lock, flags);
1188         } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1189                 spin_lock_irqsave(&xhci->lock, flags);
1190                 if (xhci->xhc_state & XHCI_STATE_DYING)
1191                         goto dying;
1192                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1193                                 slot_id, ep_index);
1194                 if (ret)
1195                         goto free_priv;
1196                 spin_unlock_irqrestore(&xhci->lock, flags);
1197         } else {
1198                 spin_lock_irqsave(&xhci->lock, flags);
1199                 if (xhci->xhc_state & XHCI_STATE_DYING)
1200                         goto dying;
1201                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1202                                 slot_id, ep_index);
1203                 if (ret)
1204                         goto free_priv;
1205                 spin_unlock_irqrestore(&xhci->lock, flags);
1206         }
1207 exit:
1208         return ret;
1209 dying:
1210         xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1211                         "non-responsive xHCI host.\n",
1212                         urb->ep->desc.bEndpointAddress, urb);
1213         ret = -ESHUTDOWN;
1214 free_priv:
1215         xhci_urb_free_priv(xhci, urb_priv);
1216         urb->hcpriv = NULL;
1217         spin_unlock_irqrestore(&xhci->lock, flags);
1218         return ret;
1219 }
1220
1221 /* Get the right ring for the given URB.
1222  * If the endpoint supports streams, boundary check the URB's stream ID.
1223  * If the endpoint doesn't support streams, return the singular endpoint ring.
1224  */
1225 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1226                 struct urb *urb)
1227 {
1228         unsigned int slot_id;
1229         unsigned int ep_index;
1230         unsigned int stream_id;
1231         struct xhci_virt_ep *ep;
1232
1233         slot_id = urb->dev->slot_id;
1234         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1235         stream_id = urb->stream_id;
1236         ep = &xhci->devs[slot_id]->eps[ep_index];
1237         /* Common case: no streams */
1238         if (!(ep->ep_state & EP_HAS_STREAMS))
1239                 return ep->ring;
1240
1241         if (stream_id == 0) {
1242                 xhci_warn(xhci,
1243                                 "WARN: Slot ID %u, ep index %u has streams, "
1244                                 "but URB has no stream ID.\n",
1245                                 slot_id, ep_index);
1246                 return NULL;
1247         }
1248
1249         if (stream_id < ep->stream_info->num_streams)
1250                 return ep->stream_info->stream_rings[stream_id];
1251
1252         xhci_warn(xhci,
1253                         "WARN: Slot ID %u, ep index %u has "
1254                         "stream IDs 1 to %u allocated, "
1255                         "but stream ID %u is requested.\n",
1256                         slot_id, ep_index,
1257                         ep->stream_info->num_streams - 1,
1258                         stream_id);
1259         return NULL;
1260 }
1261
1262 /*
1263  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1264  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1265  * should pick up where it left off in the TD, unless a Set Transfer Ring
1266  * Dequeue Pointer is issued.
1267  *
1268  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1269  * the ring.  Since the ring is a contiguous structure, they can't be physically
1270  * removed.  Instead, there are two options:
1271  *
1272  *  1) If the HC is in the middle of processing the URB to be canceled, we
1273  *     simply move the ring's dequeue pointer past those TRBs using the Set
1274  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1275  *     when drivers timeout on the last submitted URB and attempt to cancel.
1276  *
1277  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1278  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1279  *     HC will need to invalidate the any TRBs it has cached after the stop
1280  *     endpoint command, as noted in the xHCI 0.95 errata.
1281  *
1282  *  3) The TD may have completed by the time the Stop Endpoint Command
1283  *     completes, so software needs to handle that case too.
1284  *
1285  * This function should protect against the TD enqueueing code ringing the
1286  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1287  * It also needs to account for multiple cancellations on happening at the same
1288  * time for the same endpoint.
1289  *
1290  * Note that this function can be called in any context, or so says
1291  * usb_hcd_unlink_urb()
1292  */
1293 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1294 {
1295         unsigned long flags;
1296         int ret, i;
1297         u32 temp;
1298         struct xhci_hcd *xhci;
1299         struct urb_priv *urb_priv;
1300         struct xhci_td *td;
1301         unsigned int ep_index;
1302         struct xhci_ring *ep_ring;
1303         struct xhci_virt_ep *ep;
1304
1305         xhci = hcd_to_xhci(hcd);
1306         spin_lock_irqsave(&xhci->lock, flags);
1307         /* Make sure the URB hasn't completed or been unlinked already */
1308         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1309         if (ret || !urb->hcpriv)
1310                 goto done;
1311         temp = xhci_readl(xhci, &xhci->op_regs->status);
1312         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1313                 xhci_dbg(xhci, "HW died, freeing TD.\n");
1314                 urb_priv = urb->hcpriv;
1315                 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1316                         td = urb_priv->td[i];
1317                         if (!list_empty(&td->td_list))
1318                                 list_del_init(&td->td_list);
1319                         if (!list_empty(&td->cancelled_td_list))
1320                                 list_del_init(&td->cancelled_td_list);
1321                 }
1322
1323                 usb_hcd_unlink_urb_from_ep(hcd, urb);
1324                 spin_unlock_irqrestore(&xhci->lock, flags);
1325                 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1326                 xhci_urb_free_priv(xhci, urb_priv);
1327                 return ret;
1328         }
1329         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1330                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
1331                 xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
1332                                 "non-responsive xHCI host.\n",
1333                                 urb->ep->desc.bEndpointAddress, urb);
1334                 /* Let the stop endpoint command watchdog timer (which set this
1335                  * state) finish cleaning up the endpoint TD lists.  We must
1336                  * have caught it in the middle of dropping a lock and giving
1337                  * back an URB.
1338                  */
1339                 goto done;
1340         }
1341
1342         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1343         ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1344         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1345         if (!ep_ring) {
1346                 ret = -EINVAL;
1347                 goto done;
1348         }
1349
1350         urb_priv = urb->hcpriv;
1351         i = urb_priv->td_cnt;
1352         if (i < urb_priv->length)
1353                 xhci_dbg(xhci, "Cancel URB %p, dev %s, ep 0x%x, "
1354                                 "starting at offset 0x%llx\n",
1355                                 urb, urb->dev->devpath,
1356                                 urb->ep->desc.bEndpointAddress,
1357                                 (unsigned long long) xhci_trb_virt_to_dma(
1358                                         urb_priv->td[i]->start_seg,
1359                                         urb_priv->td[i]->first_trb));
1360
1361         for (; i < urb_priv->length; i++) {
1362                 td = urb_priv->td[i];
1363                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1364         }
1365
1366         /* Queue a stop endpoint command, but only if this is
1367          * the first cancellation to be handled.
1368          */
1369         if (!(ep->ep_state & EP_HALT_PENDING)) {
1370                 ep->ep_state |= EP_HALT_PENDING;
1371                 ep->stop_cmds_pending++;
1372                 ep->stop_cmd_timer.expires = jiffies +
1373                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1374                 add_timer(&ep->stop_cmd_timer);
1375                 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1376                 xhci_ring_cmd_db(xhci);
1377         }
1378 done:
1379         spin_unlock_irqrestore(&xhci->lock, flags);
1380         return ret;
1381 }
1382
1383 /* Drop an endpoint from a new bandwidth configuration for this device.
1384  * Only one call to this function is allowed per endpoint before
1385  * check_bandwidth() or reset_bandwidth() must be called.
1386  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1387  * add the endpoint to the schedule with possibly new parameters denoted by a
1388  * different endpoint descriptor in usb_host_endpoint.
1389  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1390  * not allowed.
1391  *
1392  * The USB core will not allow URBs to be queued to an endpoint that is being
1393  * disabled, so there's no need for mutual exclusion to protect
1394  * the xhci->devs[slot_id] structure.
1395  */
1396 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1397                 struct usb_host_endpoint *ep)
1398 {
1399         struct xhci_hcd *xhci;
1400         struct xhci_container_ctx *in_ctx, *out_ctx;
1401         struct xhci_input_control_ctx *ctrl_ctx;
1402         struct xhci_slot_ctx *slot_ctx;
1403         unsigned int last_ctx;
1404         unsigned int ep_index;
1405         struct xhci_ep_ctx *ep_ctx;
1406         u32 drop_flag;
1407         u32 new_add_flags, new_drop_flags, new_slot_info;
1408         int ret;
1409
1410         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1411         if (ret <= 0)
1412                 return ret;
1413         xhci = hcd_to_xhci(hcd);
1414         if (xhci->xhc_state & XHCI_STATE_DYING)
1415                 return -ENODEV;
1416
1417         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1418         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1419         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1420                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1421                                 __func__, drop_flag);
1422                 return 0;
1423         }
1424
1425         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1426         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1427         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1428         ep_index = xhci_get_endpoint_index(&ep->desc);
1429         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1430         /* If the HC already knows the endpoint is disabled,
1431          * or the HCD has noted it is disabled, ignore this request
1432          */
1433         if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1434              cpu_to_le32(EP_STATE_DISABLED)) ||
1435             le32_to_cpu(ctrl_ctx->drop_flags) &
1436             xhci_get_endpoint_flag(&ep->desc)) {
1437                 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1438                                 __func__, ep);
1439                 return 0;
1440         }
1441
1442         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1443         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1444
1445         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1446         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1447
1448         last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1449         slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1450         /* Update the last valid endpoint context, if we deleted the last one */
1451         if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1452             LAST_CTX(last_ctx)) {
1453                 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1454                 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1455         }
1456         new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1457
1458         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1459
1460         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1461                         (unsigned int) ep->desc.bEndpointAddress,
1462                         udev->slot_id,
1463                         (unsigned int) new_drop_flags,
1464                         (unsigned int) new_add_flags,
1465                         (unsigned int) new_slot_info);
1466         return 0;
1467 }
1468
1469 /* Add an endpoint to a new possible bandwidth configuration for this device.
1470  * Only one call to this function is allowed per endpoint before
1471  * check_bandwidth() or reset_bandwidth() must be called.
1472  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1473  * add the endpoint to the schedule with possibly new parameters denoted by a
1474  * different endpoint descriptor in usb_host_endpoint.
1475  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1476  * not allowed.
1477  *
1478  * The USB core will not allow URBs to be queued to an endpoint until the
1479  * configuration or alt setting is installed in the device, so there's no need
1480  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1481  */
1482 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1483                 struct usb_host_endpoint *ep)
1484 {
1485         struct xhci_hcd *xhci;
1486         struct xhci_container_ctx *in_ctx, *out_ctx;
1487         unsigned int ep_index;
1488         struct xhci_ep_ctx *ep_ctx;
1489         struct xhci_slot_ctx *slot_ctx;
1490         struct xhci_input_control_ctx *ctrl_ctx;
1491         u32 added_ctxs;
1492         unsigned int last_ctx;
1493         u32 new_add_flags, new_drop_flags, new_slot_info;
1494         struct xhci_virt_device *virt_dev;
1495         int ret = 0;
1496
1497         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1498         if (ret <= 0) {
1499                 /* So we won't queue a reset ep command for a root hub */
1500                 ep->hcpriv = NULL;
1501                 return ret;
1502         }
1503         xhci = hcd_to_xhci(hcd);
1504         if (xhci->xhc_state & XHCI_STATE_DYING)
1505                 return -ENODEV;
1506
1507         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1508         last_ctx = xhci_last_valid_endpoint(added_ctxs);
1509         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1510                 /* FIXME when we have to issue an evaluate endpoint command to
1511                  * deal with ep0 max packet size changing once we get the
1512                  * descriptors
1513                  */
1514                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1515                                 __func__, added_ctxs);
1516                 return 0;
1517         }
1518
1519         virt_dev = xhci->devs[udev->slot_id];
1520         in_ctx = virt_dev->in_ctx;
1521         out_ctx = virt_dev->out_ctx;
1522         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1523         ep_index = xhci_get_endpoint_index(&ep->desc);
1524         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1525
1526         /* If this endpoint is already in use, and the upper layers are trying
1527          * to add it again without dropping it, reject the addition.
1528          */
1529         if (virt_dev->eps[ep_index].ring &&
1530                         !(le32_to_cpu(ctrl_ctx->drop_flags) &
1531                                 xhci_get_endpoint_flag(&ep->desc))) {
1532                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1533                                 "without dropping it.\n",
1534                                 (unsigned int) ep->desc.bEndpointAddress);
1535                 return -EINVAL;
1536         }
1537
1538         /* If the HCD has already noted the endpoint is enabled,
1539          * ignore this request.
1540          */
1541         if (le32_to_cpu(ctrl_ctx->add_flags) &
1542             xhci_get_endpoint_flag(&ep->desc)) {
1543                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1544                                 __func__, ep);
1545                 return 0;
1546         }
1547
1548         /*
1549          * Configuration and alternate setting changes must be done in
1550          * process context, not interrupt context (or so documenation
1551          * for usb_set_interface() and usb_set_configuration() claim).
1552          */
1553         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1554                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1555                                 __func__, ep->desc.bEndpointAddress);
1556                 return -ENOMEM;
1557         }
1558
1559         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1560         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1561
1562         /* If xhci_endpoint_disable() was called for this endpoint, but the
1563          * xHC hasn't been notified yet through the check_bandwidth() call,
1564          * this re-adds a new state for the endpoint from the new endpoint
1565          * descriptors.  We must drop and re-add this endpoint, so we leave the
1566          * drop flags alone.
1567          */
1568         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1569
1570         slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1571         /* Update the last valid endpoint context, if we just added one past */
1572         if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1573             LAST_CTX(last_ctx)) {
1574                 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1575                 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1576         }
1577         new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1578
1579         /* Store the usb_device pointer for later use */
1580         ep->hcpriv = udev;
1581
1582         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1583                         (unsigned int) ep->desc.bEndpointAddress,
1584                         udev->slot_id,
1585                         (unsigned int) new_drop_flags,
1586                         (unsigned int) new_add_flags,
1587                         (unsigned int) new_slot_info);
1588         return 0;
1589 }
1590
1591 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1592 {
1593         struct xhci_input_control_ctx *ctrl_ctx;
1594         struct xhci_ep_ctx *ep_ctx;
1595         struct xhci_slot_ctx *slot_ctx;
1596         int i;
1597
1598         /* When a device's add flag and drop flag are zero, any subsequent
1599          * configure endpoint command will leave that endpoint's state
1600          * untouched.  Make sure we don't leave any old state in the input
1601          * endpoint contexts.
1602          */
1603         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1604         ctrl_ctx->drop_flags = 0;
1605         ctrl_ctx->add_flags = 0;
1606         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1607         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1608         /* Endpoint 0 is always valid */
1609         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1610         for (i = 1; i < 31; ++i) {
1611                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1612                 ep_ctx->ep_info = 0;
1613                 ep_ctx->ep_info2 = 0;
1614                 ep_ctx->deq = 0;
1615                 ep_ctx->tx_info = 0;
1616         }
1617 }
1618
1619 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1620                 struct usb_device *udev, u32 *cmd_status)
1621 {
1622         int ret;
1623
1624         switch (*cmd_status) {
1625         case COMP_ENOMEM:
1626                 dev_warn(&udev->dev, "Not enough host controller resources "
1627                                 "for new device state.\n");
1628                 ret = -ENOMEM;
1629                 /* FIXME: can we allocate more resources for the HC? */
1630                 break;
1631         case COMP_BW_ERR:
1632         case COMP_2ND_BW_ERR:
1633                 dev_warn(&udev->dev, "Not enough bandwidth "
1634                                 "for new device state.\n");
1635                 ret = -ENOSPC;
1636                 /* FIXME: can we go back to the old state? */
1637                 break;
1638         case COMP_TRB_ERR:
1639                 /* the HCD set up something wrong */
1640                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1641                                 "add flag = 1, "
1642                                 "and endpoint is not disabled.\n");
1643                 ret = -EINVAL;
1644                 break;
1645         case COMP_DEV_ERR:
1646                 dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1647                                 "configure command.\n");
1648                 ret = -ENODEV;
1649                 break;
1650         case COMP_SUCCESS:
1651                 dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
1652                 ret = 0;
1653                 break;
1654         default:
1655                 xhci_err(xhci, "ERROR: unexpected command completion "
1656                                 "code 0x%x.\n", *cmd_status);
1657                 ret = -EINVAL;
1658                 break;
1659         }
1660         return ret;
1661 }
1662
1663 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1664                 struct usb_device *udev, u32 *cmd_status)
1665 {
1666         int ret;
1667         struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1668
1669         switch (*cmd_status) {
1670         case COMP_EINVAL:
1671                 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1672                                 "context command.\n");
1673                 ret = -EINVAL;
1674                 break;
1675         case COMP_EBADSLT:
1676                 dev_warn(&udev->dev, "WARN: slot not enabled for"
1677                                 "evaluate context command.\n");
1678         case COMP_CTX_STATE:
1679                 dev_warn(&udev->dev, "WARN: invalid context state for "
1680                                 "evaluate context command.\n");
1681                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1682                 ret = -EINVAL;
1683                 break;
1684         case COMP_DEV_ERR:
1685                 dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1686                                 "context command.\n");
1687                 ret = -ENODEV;
1688                 break;
1689         case COMP_MEL_ERR:
1690                 /* Max Exit Latency too large error */
1691                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1692                 ret = -EINVAL;
1693                 break;
1694         case COMP_SUCCESS:
1695                 dev_dbg(&udev->dev, "Successful evaluate context command\n");
1696                 ret = 0;
1697                 break;
1698         default:
1699                 xhci_err(xhci, "ERROR: unexpected command completion "
1700                                 "code 0x%x.\n", *cmd_status);
1701                 ret = -EINVAL;
1702                 break;
1703         }
1704         return ret;
1705 }
1706
1707 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1708                 struct xhci_container_ctx *in_ctx)
1709 {
1710         struct xhci_input_control_ctx *ctrl_ctx;
1711         u32 valid_add_flags;
1712         u32 valid_drop_flags;
1713
1714         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1715         /* Ignore the slot flag (bit 0), and the default control endpoint flag
1716          * (bit 1).  The default control endpoint is added during the Address
1717          * Device command and is never removed until the slot is disabled.
1718          */
1719         valid_add_flags = ctrl_ctx->add_flags >> 2;
1720         valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1721
1722         /* Use hweight32 to count the number of ones in the add flags, or
1723          * number of endpoints added.  Don't count endpoints that are changed
1724          * (both added and dropped).
1725          */
1726         return hweight32(valid_add_flags) -
1727                 hweight32(valid_add_flags & valid_drop_flags);
1728 }
1729
1730 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1731                 struct xhci_container_ctx *in_ctx)
1732 {
1733         struct xhci_input_control_ctx *ctrl_ctx;
1734         u32 valid_add_flags;
1735         u32 valid_drop_flags;
1736
1737         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1738         valid_add_flags = ctrl_ctx->add_flags >> 2;
1739         valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1740
1741         return hweight32(valid_drop_flags) -
1742                 hweight32(valid_add_flags & valid_drop_flags);
1743 }
1744
1745 /*
1746  * We need to reserve the new number of endpoints before the configure endpoint
1747  * command completes.  We can't subtract the dropped endpoints from the number
1748  * of active endpoints until the command completes because we can oversubscribe
1749  * the host in this case:
1750  *
1751  *  - the first configure endpoint command drops more endpoints than it adds
1752  *  - a second configure endpoint command that adds more endpoints is queued
1753  *  - the first configure endpoint command fails, so the config is unchanged
1754  *  - the second command may succeed, even though there isn't enough resources
1755  *
1756  * Must be called with xhci->lock held.
1757  */
1758 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1759                 struct xhci_container_ctx *in_ctx)
1760 {
1761         u32 added_eps;
1762
1763         added_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1764         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1765                 xhci_dbg(xhci, "Not enough ep ctxs: "
1766                                 "%u active, need to add %u, limit is %u.\n",
1767                                 xhci->num_active_eps, added_eps,
1768                                 xhci->limit_active_eps);
1769                 return -ENOMEM;
1770         }
1771         xhci->num_active_eps += added_eps;
1772         xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps,
1773                         xhci->num_active_eps);
1774         return 0;
1775 }
1776
1777 /*
1778  * The configure endpoint was failed by the xHC for some other reason, so we
1779  * need to revert the resources that failed configuration would have used.
1780  *
1781  * Must be called with xhci->lock held.
1782  */
1783 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1784                 struct xhci_container_ctx *in_ctx)
1785 {
1786         u32 num_failed_eps;
1787
1788         num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1789         xhci->num_active_eps -= num_failed_eps;
1790         xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n",
1791                         num_failed_eps,
1792                         xhci->num_active_eps);
1793 }
1794
1795 /*
1796  * Now that the command has completed, clean up the active endpoint count by
1797  * subtracting out the endpoints that were dropped (but not changed).
1798  *
1799  * Must be called with xhci->lock held.
1800  */
1801 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1802                 struct xhci_container_ctx *in_ctx)
1803 {
1804         u32 num_dropped_eps;
1805
1806         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx);
1807         xhci->num_active_eps -= num_dropped_eps;
1808         if (num_dropped_eps)
1809                 xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n",
1810                                 num_dropped_eps,
1811                                 xhci->num_active_eps);
1812 }
1813
1814 unsigned int xhci_get_block_size(struct usb_device *udev)
1815 {
1816         switch (udev->speed) {
1817         case USB_SPEED_LOW:
1818         case USB_SPEED_FULL:
1819                 return FS_BLOCK;
1820         case USB_SPEED_HIGH:
1821                 return HS_BLOCK;
1822         case USB_SPEED_SUPER:
1823                 return SS_BLOCK;
1824         case USB_SPEED_UNKNOWN:
1825         case USB_SPEED_WIRELESS:
1826         default:
1827                 /* Should never happen */
1828                 return 1;
1829         }
1830 }
1831
1832 unsigned int xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
1833 {
1834         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
1835                 return LS_OVERHEAD;
1836         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
1837                 return FS_OVERHEAD;
1838         return HS_OVERHEAD;
1839 }
1840
1841 /* If we are changing a LS/FS device under a HS hub,
1842  * make sure (if we are activating a new TT) that the HS bus has enough
1843  * bandwidth for this new TT.
1844  */
1845 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
1846                 struct xhci_virt_device *virt_dev,
1847                 int old_active_eps)
1848 {
1849         struct xhci_interval_bw_table *bw_table;
1850         struct xhci_tt_bw_info *tt_info;
1851
1852         /* Find the bandwidth table for the root port this TT is attached to. */
1853         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
1854         tt_info = virt_dev->tt_info;
1855         /* If this TT already had active endpoints, the bandwidth for this TT
1856          * has already been added.  Removing all periodic endpoints (and thus
1857          * making the TT enactive) will only decrease the bandwidth used.
1858          */
1859         if (old_active_eps)
1860                 return 0;
1861         if (old_active_eps == 0 && tt_info->active_eps != 0) {
1862                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
1863                         return -ENOMEM;
1864                 return 0;
1865         }
1866         /* Not sure why we would have no new active endpoints...
1867          *
1868          * Maybe because of an Evaluate Context change for a hub update or a
1869          * control endpoint 0 max packet size change?
1870          * FIXME: skip the bandwidth calculation in that case.
1871          */
1872         return 0;
1873 }
1874
1875 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
1876                 struct xhci_virt_device *virt_dev)
1877 {
1878         unsigned int bw_reserved;
1879
1880         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
1881         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
1882                 return -ENOMEM;
1883
1884         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
1885         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
1886                 return -ENOMEM;
1887
1888         return 0;
1889 }
1890
1891 /*
1892  * This algorithm is a very conservative estimate of the worst-case scheduling
1893  * scenario for any one interval.  The hardware dynamically schedules the
1894  * packets, so we can't tell which microframe could be the limiting factor in
1895  * the bandwidth scheduling.  This only takes into account periodic endpoints.
1896  *
1897  * Obviously, we can't solve an NP complete problem to find the minimum worst
1898  * case scenario.  Instead, we come up with an estimate that is no less than
1899  * the worst case bandwidth used for any one microframe, but may be an
1900  * over-estimate.
1901  *
1902  * We walk the requirements for each endpoint by interval, starting with the
1903  * smallest interval, and place packets in the schedule where there is only one
1904  * possible way to schedule packets for that interval.  In order to simplify
1905  * this algorithm, we record the largest max packet size for each interval, and
1906  * assume all packets will be that size.
1907  *
1908  * For interval 0, we obviously must schedule all packets for each interval.
1909  * The bandwidth for interval 0 is just the amount of data to be transmitted
1910  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
1911  * the number of packets).
1912  *
1913  * For interval 1, we have two possible microframes to schedule those packets
1914  * in.  For this algorithm, if we can schedule the same number of packets for
1915  * each possible scheduling opportunity (each microframe), we will do so.  The
1916  * remaining number of packets will be saved to be transmitted in the gaps in
1917  * the next interval's scheduling sequence.
1918  *
1919  * As we move those remaining packets to be scheduled with interval 2 packets,
1920  * we have to double the number of remaining packets to transmit.  This is
1921  * because the intervals are actually powers of 2, and we would be transmitting
1922  * the previous interval's packets twice in this interval.  We also have to be
1923  * sure that when we look at the largest max packet size for this interval, we
1924  * also look at the largest max packet size for the remaining packets and take
1925  * the greater of the two.
1926  *
1927  * The algorithm continues to evenly distribute packets in each scheduling
1928  * opportunity, and push the remaining packets out, until we get to the last
1929  * interval.  Then those packets and their associated overhead are just added
1930  * to the bandwidth used.
1931  */
1932 static int xhci_check_bw_table(struct xhci_hcd *xhci,
1933                 struct xhci_virt_device *virt_dev,
1934                 int old_active_eps)
1935 {
1936         unsigned int bw_reserved;
1937         unsigned int max_bandwidth;
1938         unsigned int bw_used;
1939         unsigned int block_size;
1940         struct xhci_interval_bw_table *bw_table;
1941         unsigned int packet_size = 0;
1942         unsigned int overhead = 0;
1943         unsigned int packets_transmitted = 0;
1944         unsigned int packets_remaining = 0;
1945         unsigned int i;
1946
1947         if (virt_dev->udev->speed == USB_SPEED_SUPER)
1948                 return xhci_check_ss_bw(xhci, virt_dev);
1949
1950         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
1951                 max_bandwidth = HS_BW_LIMIT;
1952                 /* Convert percent of bus BW reserved to blocks reserved */
1953                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
1954         } else {
1955                 max_bandwidth = FS_BW_LIMIT;
1956                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
1957         }
1958
1959         bw_table = virt_dev->bw_table;
1960         /* We need to translate the max packet size and max ESIT payloads into
1961          * the units the hardware uses.
1962          */
1963         block_size = xhci_get_block_size(virt_dev->udev);
1964
1965         /* If we are manipulating a LS/FS device under a HS hub, double check
1966          * that the HS bus has enough bandwidth if we are activing a new TT.
1967          */
1968         if (virt_dev->tt_info) {
1969                 xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
1970                                 virt_dev->real_port);
1971                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
1972                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
1973                                         "newly activated TT.\n");
1974                         return -ENOMEM;
1975                 }
1976                 xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n",
1977                                 virt_dev->tt_info->slot_id,
1978                                 virt_dev->tt_info->ttport);
1979         } else {
1980                 xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
1981                                 virt_dev->real_port);
1982         }
1983
1984         /* Add in how much bandwidth will be used for interval zero, or the
1985          * rounded max ESIT payload + number of packets * largest overhead.
1986          */
1987         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
1988                 bw_table->interval_bw[0].num_packets *
1989                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
1990
1991         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
1992                 unsigned int bw_added;
1993                 unsigned int largest_mps;
1994                 unsigned int interval_overhead;
1995
1996                 /*
1997                  * How many packets could we transmit in this interval?
1998                  * If packets didn't fit in the previous interval, we will need
1999                  * to transmit that many packets twice within this interval.
2000                  */
2001                 packets_remaining = 2 * packets_remaining +
2002                         bw_table->interval_bw[i].num_packets;
2003
2004                 /* Find the largest max packet size of this or the previous
2005                  * interval.
2006                  */
2007                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2008                         largest_mps = 0;
2009                 else {
2010                         struct xhci_virt_ep *virt_ep;
2011                         struct list_head *ep_entry;
2012
2013                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2014                         virt_ep = list_entry(ep_entry,
2015                                         struct xhci_virt_ep, bw_endpoint_list);
2016                         /* Convert to blocks, rounding up */
2017                         largest_mps = DIV_ROUND_UP(
2018                                         virt_ep->bw_info.max_packet_size,
2019                                         block_size);
2020                 }
2021                 if (largest_mps > packet_size)
2022                         packet_size = largest_mps;
2023
2024                 /* Use the larger overhead of this or the previous interval. */
2025                 interval_overhead = xhci_get_largest_overhead(
2026                                 &bw_table->interval_bw[i]);
2027                 if (interval_overhead > overhead)
2028                         overhead = interval_overhead;
2029
2030                 /* How many packets can we evenly distribute across
2031                  * (1 << (i + 1)) possible scheduling opportunities?
2032                  */
2033                 packets_transmitted = packets_remaining >> (i + 1);
2034
2035                 /* Add in the bandwidth used for those scheduled packets */
2036                 bw_added = packets_transmitted * (overhead + packet_size);
2037
2038                 /* How many packets do we have remaining to transmit? */
2039                 packets_remaining = packets_remaining % (1 << (i + 1));
2040
2041                 /* What largest max packet size should those packets have? */
2042                 /* If we've transmitted all packets, don't carry over the
2043                  * largest packet size.
2044                  */
2045                 if (packets_remaining == 0) {
2046                         packet_size = 0;
2047                         overhead = 0;
2048                 } else if (packets_transmitted > 0) {
2049                         /* Otherwise if we do have remaining packets, and we've
2050                          * scheduled some packets in this interval, take the
2051                          * largest max packet size from endpoints with this
2052                          * interval.
2053                          */
2054                         packet_size = largest_mps;
2055                         overhead = interval_overhead;
2056                 }
2057                 /* Otherwise carry over packet_size and overhead from the last
2058                  * time we had a remainder.
2059                  */
2060                 bw_used += bw_added;
2061                 if (bw_used > max_bandwidth) {
2062                         xhci_warn(xhci, "Not enough bandwidth. "
2063                                         "Proposed: %u, Max: %u\n",
2064                                 bw_used, max_bandwidth);
2065                         return -ENOMEM;
2066                 }
2067         }
2068         /*
2069          * Ok, we know we have some packets left over after even-handedly
2070          * scheduling interval 15.  We don't know which microframes they will
2071          * fit into, so we over-schedule and say they will be scheduled every
2072          * microframe.
2073          */
2074         if (packets_remaining > 0)
2075                 bw_used += overhead + packet_size;
2076
2077         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2078                 unsigned int port_index = virt_dev->real_port - 1;
2079
2080                 /* OK, we're manipulating a HS device attached to a
2081                  * root port bandwidth domain.  Include the number of active TTs
2082                  * in the bandwidth used.
2083                  */
2084                 bw_used += TT_HS_OVERHEAD *
2085                         xhci->rh_bw[port_index].num_active_tts;
2086         }
2087
2088         xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2089                 "Available: %u " "percent\n",
2090                 bw_used, max_bandwidth, bw_reserved,
2091                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2092                 max_bandwidth);
2093
2094         bw_used += bw_reserved;
2095         if (bw_used > max_bandwidth) {
2096                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2097                                 bw_used, max_bandwidth);
2098                 return -ENOMEM;
2099         }
2100
2101         bw_table->bw_used = bw_used;
2102         return 0;
2103 }
2104
2105 static bool xhci_is_async_ep(unsigned int ep_type)
2106 {
2107         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2108                                         ep_type != ISOC_IN_EP &&
2109                                         ep_type != INT_IN_EP);
2110 }
2111
2112 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2113 {
2114         return (ep_type == ISOC_IN_EP || ep_type != INT_IN_EP);
2115 }
2116
2117 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2118 {
2119         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2120
2121         if (ep_bw->ep_interval == 0)
2122                 return SS_OVERHEAD_BURST +
2123                         (ep_bw->mult * ep_bw->num_packets *
2124                                         (SS_OVERHEAD + mps));
2125         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2126                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2127                                 1 << ep_bw->ep_interval);
2128
2129 }
2130
2131 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2132                 struct xhci_bw_info *ep_bw,
2133                 struct xhci_interval_bw_table *bw_table,
2134                 struct usb_device *udev,
2135                 struct xhci_virt_ep *virt_ep,
2136                 struct xhci_tt_bw_info *tt_info)
2137 {
2138         struct xhci_interval_bw *interval_bw;
2139         int normalized_interval;
2140
2141         if (xhci_is_async_ep(ep_bw->type))
2142                 return;
2143
2144         if (udev->speed == USB_SPEED_SUPER) {
2145                 if (xhci_is_sync_in_ep(ep_bw->type))
2146                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2147                                 xhci_get_ss_bw_consumed(ep_bw);
2148                 else
2149                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2150                                 xhci_get_ss_bw_consumed(ep_bw);
2151                 return;
2152         }
2153
2154         /* SuperSpeed endpoints never get added to intervals in the table, so
2155          * this check is only valid for HS/FS/LS devices.
2156          */
2157         if (list_empty(&virt_ep->bw_endpoint_list))
2158                 return;
2159         /* For LS/FS devices, we need to translate the interval expressed in
2160          * microframes to frames.
2161          */
2162         if (udev->speed == USB_SPEED_HIGH)
2163                 normalized_interval = ep_bw->ep_interval;
2164         else
2165                 normalized_interval = ep_bw->ep_interval - 3;
2166
2167         if (normalized_interval == 0)
2168                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2169         interval_bw = &bw_table->interval_bw[normalized_interval];
2170         interval_bw->num_packets -= ep_bw->num_packets;
2171         switch (udev->speed) {
2172         case USB_SPEED_LOW:
2173                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2174                 break;
2175         case USB_SPEED_FULL:
2176                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2177                 break;
2178         case USB_SPEED_HIGH:
2179                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2180                 break;
2181         case USB_SPEED_SUPER:
2182         case USB_SPEED_UNKNOWN:
2183         case USB_SPEED_WIRELESS:
2184                 /* Should never happen because only LS/FS/HS endpoints will get
2185                  * added to the endpoint list.
2186                  */
2187                 return;
2188         }
2189         if (tt_info)
2190                 tt_info->active_eps -= 1;
2191         list_del_init(&virt_ep->bw_endpoint_list);
2192 }
2193
2194 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2195                 struct xhci_bw_info *ep_bw,
2196                 struct xhci_interval_bw_table *bw_table,
2197                 struct usb_device *udev,
2198                 struct xhci_virt_ep *virt_ep,
2199                 struct xhci_tt_bw_info *tt_info)
2200 {
2201         struct xhci_interval_bw *interval_bw;
2202         struct xhci_virt_ep *smaller_ep;
2203         int normalized_interval;
2204
2205         if (xhci_is_async_ep(ep_bw->type))
2206                 return;
2207
2208         if (udev->speed == USB_SPEED_SUPER) {
2209                 if (xhci_is_sync_in_ep(ep_bw->type))
2210                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2211                                 xhci_get_ss_bw_consumed(ep_bw);
2212                 else
2213                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2214                                 xhci_get_ss_bw_consumed(ep_bw);
2215                 return;
2216         }
2217
2218         /* For LS/FS devices, we need to translate the interval expressed in
2219          * microframes to frames.
2220          */
2221         if (udev->speed == USB_SPEED_HIGH)
2222                 normalized_interval = ep_bw->ep_interval;
2223         else
2224                 normalized_interval = ep_bw->ep_interval - 3;
2225
2226         if (normalized_interval == 0)
2227                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2228         interval_bw = &bw_table->interval_bw[normalized_interval];
2229         interval_bw->num_packets += ep_bw->num_packets;
2230         switch (udev->speed) {
2231         case USB_SPEED_LOW:
2232                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2233                 break;
2234         case USB_SPEED_FULL:
2235                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2236                 break;
2237         case USB_SPEED_HIGH:
2238                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2239                 break;
2240         case USB_SPEED_SUPER:
2241         case USB_SPEED_UNKNOWN:
2242         case USB_SPEED_WIRELESS:
2243                 /* Should never happen because only LS/FS/HS endpoints will get
2244                  * added to the endpoint list.
2245                  */
2246                 return;
2247         }
2248
2249         if (tt_info)
2250                 tt_info->active_eps += 1;
2251         /* Insert the endpoint into the list, largest max packet size first. */
2252         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2253                         bw_endpoint_list) {
2254                 if (ep_bw->max_packet_size >=
2255                                 smaller_ep->bw_info.max_packet_size) {
2256                         /* Add the new ep before the smaller endpoint */
2257                         list_add_tail(&virt_ep->bw_endpoint_list,
2258                                         &smaller_ep->bw_endpoint_list);
2259                         return;
2260                 }
2261         }
2262         /* Add the new endpoint at the end of the list. */
2263         list_add_tail(&virt_ep->bw_endpoint_list,
2264                         &interval_bw->endpoints);
2265 }
2266
2267 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2268                 struct xhci_virt_device *virt_dev,
2269                 int old_active_eps)
2270 {
2271         struct xhci_root_port_bw_info *rh_bw_info;
2272         if (!virt_dev->tt_info)
2273                 return;
2274
2275         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2276         if (old_active_eps == 0 &&
2277                                 virt_dev->tt_info->active_eps != 0) {
2278                 rh_bw_info->num_active_tts += 1;
2279                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2280         } else if (old_active_eps != 0 &&
2281                                 virt_dev->tt_info->active_eps == 0) {
2282                 rh_bw_info->num_active_tts -= 1;
2283                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2284         }
2285 }
2286
2287 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2288                 struct xhci_virt_device *virt_dev,
2289                 struct xhci_container_ctx *in_ctx)
2290 {
2291         struct xhci_bw_info ep_bw_info[31];
2292         int i;
2293         struct xhci_input_control_ctx *ctrl_ctx;
2294         int old_active_eps = 0;
2295
2296         if (virt_dev->tt_info)
2297                 old_active_eps = virt_dev->tt_info->active_eps;
2298
2299         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2300
2301         for (i = 0; i < 31; i++) {
2302                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2303                         continue;
2304
2305                 /* Make a copy of the BW info in case we need to revert this */
2306                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2307                                 sizeof(ep_bw_info[i]));
2308                 /* Drop the endpoint from the interval table if the endpoint is
2309                  * being dropped or changed.
2310                  */
2311                 if (EP_IS_DROPPED(ctrl_ctx, i))
2312                         xhci_drop_ep_from_interval_table(xhci,
2313                                         &virt_dev->eps[i].bw_info,
2314                                         virt_dev->bw_table,
2315                                         virt_dev->udev,
2316                                         &virt_dev->eps[i],
2317                                         virt_dev->tt_info);
2318         }
2319         /* Overwrite the information stored in the endpoints' bw_info */
2320         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2321         for (i = 0; i < 31; i++) {
2322                 /* Add any changed or added endpoints to the interval table */
2323                 if (EP_IS_ADDED(ctrl_ctx, i))
2324                         xhci_add_ep_to_interval_table(xhci,
2325                                         &virt_dev->eps[i].bw_info,
2326                                         virt_dev->bw_table,
2327                                         virt_dev->udev,
2328                                         &virt_dev->eps[i],
2329                                         virt_dev->tt_info);
2330         }
2331
2332         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2333                 /* Ok, this fits in the bandwidth we have.
2334                  * Update the number of active TTs.
2335                  */
2336                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2337                 return 0;
2338         }
2339
2340         /* We don't have enough bandwidth for this, revert the stored info. */
2341         for (i = 0; i < 31; i++) {
2342                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2343                         continue;
2344
2345                 /* Drop the new copies of any added or changed endpoints from
2346                  * the interval table.
2347                  */
2348                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2349                         xhci_drop_ep_from_interval_table(xhci,
2350                                         &virt_dev->eps[i].bw_info,
2351                                         virt_dev->bw_table,
2352                                         virt_dev->udev,
2353                                         &virt_dev->eps[i],
2354                                         virt_dev->tt_info);
2355                 }
2356                 /* Revert the endpoint back to its old information */
2357                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2358                                 sizeof(ep_bw_info[i]));
2359                 /* Add any changed or dropped endpoints back into the table */
2360                 if (EP_IS_DROPPED(ctrl_ctx, i))
2361                         xhci_add_ep_to_interval_table(xhci,
2362                                         &virt_dev->eps[i].bw_info,
2363                                         virt_dev->bw_table,
2364                                         virt_dev->udev,
2365                                         &virt_dev->eps[i],
2366                                         virt_dev->tt_info);
2367         }
2368         return -ENOMEM;
2369 }
2370
2371
2372 /* Issue a configure endpoint command or evaluate context command
2373  * and wait for it to finish.
2374  */
2375 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2376                 struct usb_device *udev,
2377                 struct xhci_command *command,
2378                 bool ctx_change, bool must_succeed)
2379 {
2380         int ret;
2381         int timeleft;
2382         unsigned long flags;
2383         struct xhci_container_ctx *in_ctx;
2384         struct completion *cmd_completion;
2385         u32 *cmd_status;
2386         struct xhci_virt_device *virt_dev;
2387
2388         spin_lock_irqsave(&xhci->lock, flags);
2389         virt_dev = xhci->devs[udev->slot_id];
2390
2391         if (command)
2392                 in_ctx = command->in_ctx;
2393         else
2394                 in_ctx = virt_dev->in_ctx;
2395
2396         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2397                         xhci_reserve_host_resources(xhci, in_ctx)) {
2398                 spin_unlock_irqrestore(&xhci->lock, flags);
2399                 xhci_warn(xhci, "Not enough host resources, "
2400                                 "active endpoint contexts = %u\n",
2401                                 xhci->num_active_eps);
2402                 return -ENOMEM;
2403         }
2404         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2405                         xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2406                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2407                         xhci_free_host_resources(xhci, in_ctx);
2408                 spin_unlock_irqrestore(&xhci->lock, flags);
2409                 xhci_warn(xhci, "Not enough bandwidth\n");
2410                 return -ENOMEM;
2411         }
2412
2413         if (command) {
2414                 cmd_completion = command->completion;
2415                 cmd_status = &command->status;
2416                 command->command_trb = xhci->cmd_ring->enqueue;
2417
2418                 /* Enqueue pointer can be left pointing to the link TRB,
2419                  * we must handle that
2420                  */
2421                 if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
2422                         command->command_trb =
2423                                 xhci->cmd_ring->enq_seg->next->trbs;
2424
2425                 list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2426         } else {
2427                 cmd_completion = &virt_dev->cmd_completion;
2428                 cmd_status = &virt_dev->cmd_status;
2429         }
2430         init_completion(cmd_completion);
2431
2432         if (!ctx_change)
2433                 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
2434                                 udev->slot_id, must_succeed);
2435         else
2436                 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
2437                                 udev->slot_id);
2438         if (ret < 0) {
2439                 if (command)
2440                         list_del(&command->cmd_list);
2441                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2442                         xhci_free_host_resources(xhci, in_ctx);
2443                 spin_unlock_irqrestore(&xhci->lock, flags);
2444                 xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
2445                 return -ENOMEM;
2446         }
2447         xhci_ring_cmd_db(xhci);
2448         spin_unlock_irqrestore(&xhci->lock, flags);
2449
2450         /* Wait for the configure endpoint command to complete */
2451         timeleft = wait_for_completion_interruptible_timeout(
2452                         cmd_completion,
2453                         USB_CTRL_SET_TIMEOUT);
2454         if (timeleft <= 0) {
2455                 xhci_warn(xhci, "%s while waiting for %s command\n",
2456                                 timeleft == 0 ? "Timeout" : "Signal",
2457                                 ctx_change == 0 ?
2458                                         "configure endpoint" :
2459                                         "evaluate context");
2460                 /* FIXME cancel the configure endpoint command */
2461                 return -ETIME;
2462         }
2463
2464         if (!ctx_change)
2465                 ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
2466         else
2467                 ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
2468
2469         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2470                 spin_lock_irqsave(&xhci->lock, flags);
2471                 /* If the command failed, remove the reserved resources.
2472                  * Otherwise, clean up the estimate to include dropped eps.
2473                  */
2474                 if (ret)
2475                         xhci_free_host_resources(xhci, in_ctx);
2476                 else
2477                         xhci_finish_resource_reservation(xhci, in_ctx);
2478                 spin_unlock_irqrestore(&xhci->lock, flags);
2479         }
2480         return ret;
2481 }
2482
2483 /* Called after one or more calls to xhci_add_endpoint() or
2484  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2485  * to call xhci_reset_bandwidth().
2486  *
2487  * Since we are in the middle of changing either configuration or
2488  * installing a new alt setting, the USB core won't allow URBs to be
2489  * enqueued for any endpoint on the old config or interface.  Nothing
2490  * else should be touching the xhci->devs[slot_id] structure, so we
2491  * don't need to take the xhci->lock for manipulating that.
2492  */
2493 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2494 {
2495         int i;
2496         int ret = 0;
2497         struct xhci_hcd *xhci;
2498         struct xhci_virt_device *virt_dev;
2499         struct xhci_input_control_ctx *ctrl_ctx;
2500         struct xhci_slot_ctx *slot_ctx;
2501
2502         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2503         if (ret <= 0)
2504                 return ret;
2505         xhci = hcd_to_xhci(hcd);
2506         if (xhci->xhc_state & XHCI_STATE_DYING)
2507                 return -ENODEV;
2508
2509         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2510         virt_dev = xhci->devs[udev->slot_id];
2511
2512         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2513         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2514         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2515         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2516         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2517
2518         /* Don't issue the command if there's no endpoints to update. */
2519         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2520                         ctrl_ctx->drop_flags == 0)
2521                 return 0;
2522
2523         xhci_dbg(xhci, "New Input Control Context:\n");
2524         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2525         xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2526                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2527
2528         ret = xhci_configure_endpoint(xhci, udev, NULL,
2529                         false, false);
2530         if (ret) {
2531                 /* Callee should call reset_bandwidth() */
2532                 return ret;
2533         }
2534
2535         xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2536         xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2537                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2538
2539         /* Free any rings that were dropped, but not changed. */
2540         for (i = 1; i < 31; ++i) {
2541                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2542                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
2543                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2544         }
2545         xhci_zero_in_ctx(xhci, virt_dev);
2546         /*
2547          * Install any rings for completely new endpoints or changed endpoints,
2548          * and free or cache any old rings from changed endpoints.
2549          */
2550         for (i = 1; i < 31; ++i) {
2551                 if (!virt_dev->eps[i].new_ring)
2552                         continue;
2553                 /* Only cache or free the old ring if it exists.
2554                  * It may not if this is the first add of an endpoint.
2555                  */
2556                 if (virt_dev->eps[i].ring) {
2557                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2558                 }
2559                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2560                 virt_dev->eps[i].new_ring = NULL;
2561         }
2562
2563         return ret;
2564 }
2565
2566 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2567 {
2568         struct xhci_hcd *xhci;
2569         struct xhci_virt_device *virt_dev;
2570         int i, ret;
2571
2572         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2573         if (ret <= 0)
2574                 return;
2575         xhci = hcd_to_xhci(hcd);
2576
2577         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2578         virt_dev = xhci->devs[udev->slot_id];
2579         /* Free any rings allocated for added endpoints */
2580         for (i = 0; i < 31; ++i) {
2581                 if (virt_dev->eps[i].new_ring) {
2582                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2583                         virt_dev->eps[i].new_ring = NULL;
2584                 }
2585         }
2586         xhci_zero_in_ctx(xhci, virt_dev);
2587 }
2588
2589 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2590                 struct xhci_container_ctx *in_ctx,
2591                 struct xhci_container_ctx *out_ctx,
2592                 u32 add_flags, u32 drop_flags)
2593 {
2594         struct xhci_input_control_ctx *ctrl_ctx;
2595         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2596         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2597         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2598         xhci_slot_copy(xhci, in_ctx, out_ctx);
2599         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2600
2601         xhci_dbg(xhci, "Input Context:\n");
2602         xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2603 }
2604
2605 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2606                 unsigned int slot_id, unsigned int ep_index,
2607                 struct xhci_dequeue_state *deq_state)
2608 {
2609         struct xhci_container_ctx *in_ctx;
2610         struct xhci_ep_ctx *ep_ctx;
2611         u32 added_ctxs;
2612         dma_addr_t addr;
2613
2614         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2615                         xhci->devs[slot_id]->out_ctx, ep_index);
2616         in_ctx = xhci->devs[slot_id]->in_ctx;
2617         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2618         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2619                         deq_state->new_deq_ptr);
2620         if (addr == 0) {
2621                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2622                                 "reset ep command\n");
2623                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2624                                 deq_state->new_deq_seg,
2625                                 deq_state->new_deq_ptr);
2626                 return;
2627         }
2628         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2629
2630         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2631         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2632                         xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
2633 }
2634
2635 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2636                 struct usb_device *udev, unsigned int ep_index)
2637 {
2638         struct xhci_dequeue_state deq_state;
2639         struct xhci_virt_ep *ep;
2640
2641         xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
2642         ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2643         /* We need to move the HW's dequeue pointer past this TD,
2644          * or it will attempt to resend it on the next doorbell ring.
2645          */
2646         xhci_find_new_dequeue_state(xhci, udev->slot_id,
2647                         ep_index, ep->stopped_stream, ep->stopped_td,
2648                         &deq_state);
2649
2650         /* HW with the reset endpoint quirk will use the saved dequeue state to
2651          * issue a configure endpoint command later.
2652          */
2653         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2654                 xhci_dbg(xhci, "Queueing new dequeue state\n");
2655                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2656                                 ep_index, ep->stopped_stream, &deq_state);
2657         } else {
2658                 /* Better hope no one uses the input context between now and the
2659                  * reset endpoint completion!
2660                  * XXX: No idea how this hardware will react when stream rings
2661                  * are enabled.
2662                  */
2663                 xhci_dbg(xhci, "Setting up input context for "
2664                                 "configure endpoint command\n");
2665                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2666                                 ep_index, &deq_state);
2667         }
2668 }
2669
2670 /* Deal with stalled endpoints.  The core should have sent the control message
2671  * to clear the halt condition.  However, we need to make the xHCI hardware
2672  * reset its sequence number, since a device will expect a sequence number of
2673  * zero after the halt condition is cleared.
2674  * Context: in_interrupt
2675  */
2676 void xhci_endpoint_reset(struct usb_hcd *hcd,
2677                 struct usb_host_endpoint *ep)
2678 {
2679         struct xhci_hcd *xhci;
2680         struct usb_device *udev;
2681         unsigned int ep_index;
2682         unsigned long flags;
2683         int ret;
2684         struct xhci_virt_ep *virt_ep;
2685
2686         xhci = hcd_to_xhci(hcd);
2687         udev = (struct usb_device *) ep->hcpriv;
2688         /* Called with a root hub endpoint (or an endpoint that wasn't added
2689          * with xhci_add_endpoint()
2690          */
2691         if (!ep->hcpriv)
2692                 return;
2693         ep_index = xhci_get_endpoint_index(&ep->desc);
2694         virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2695         if (!virt_ep->stopped_td) {
2696                 xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
2697                                 ep->desc.bEndpointAddress);
2698                 return;
2699         }
2700         if (usb_endpoint_xfer_control(&ep->desc)) {
2701                 xhci_dbg(xhci, "Control endpoint stall already handled.\n");
2702                 return;
2703         }
2704
2705         xhci_dbg(xhci, "Queueing reset endpoint command\n");
2706         spin_lock_irqsave(&xhci->lock, flags);
2707         ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2708         /*
2709          * Can't change the ring dequeue pointer until it's transitioned to the
2710          * stopped state, which is only upon a successful reset endpoint
2711          * command.  Better hope that last command worked!
2712          */
2713         if (!ret) {
2714                 xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2715                 kfree(virt_ep->stopped_td);
2716                 xhci_ring_cmd_db(xhci);
2717         }
2718         virt_ep->stopped_td = NULL;
2719         virt_ep->stopped_trb = NULL;
2720         virt_ep->stopped_stream = 0;
2721         spin_unlock_irqrestore(&xhci->lock, flags);
2722
2723         if (ret)
2724                 xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2725 }
2726
2727 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2728                 struct usb_device *udev, struct usb_host_endpoint *ep,
2729                 unsigned int slot_id)
2730 {
2731         int ret;
2732         unsigned int ep_index;
2733         unsigned int ep_state;
2734
2735         if (!ep)
2736                 return -EINVAL;
2737         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2738         if (ret <= 0)
2739                 return -EINVAL;
2740         if (ep->ss_ep_comp.bmAttributes == 0) {
2741                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2742                                 " descriptor for ep 0x%x does not support streams\n",
2743                                 ep->desc.bEndpointAddress);
2744                 return -EINVAL;
2745         }
2746
2747         ep_index = xhci_get_endpoint_index(&ep->desc);
2748         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2749         if (ep_state & EP_HAS_STREAMS ||
2750                         ep_state & EP_GETTING_STREAMS) {
2751                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2752                                 "already has streams set up.\n",
2753                                 ep->desc.bEndpointAddress);
2754                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2755                                 "dynamic stream context array reallocation.\n");
2756                 return -EINVAL;
2757         }
2758         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2759                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2760                                 "endpoint 0x%x; URBs are pending.\n",
2761                                 ep->desc.bEndpointAddress);
2762                 return -EINVAL;
2763         }
2764         return 0;
2765 }
2766
2767 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2768                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
2769 {
2770         unsigned int max_streams;
2771
2772         /* The stream context array size must be a power of two */
2773         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
2774         /*
2775          * Find out how many primary stream array entries the host controller
2776          * supports.  Later we may use secondary stream arrays (similar to 2nd
2777          * level page entries), but that's an optional feature for xHCI host
2778          * controllers. xHCs must support at least 4 stream IDs.
2779          */
2780         max_streams = HCC_MAX_PSA(xhci->hcc_params);
2781         if (*num_stream_ctxs > max_streams) {
2782                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2783                                 max_streams);
2784                 *num_stream_ctxs = max_streams;
2785                 *num_streams = max_streams;
2786         }
2787 }
2788
2789 /* Returns an error code if one of the endpoint already has streams.
2790  * This does not change any data structures, it only checks and gathers
2791  * information.
2792  */
2793 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2794                 struct usb_device *udev,
2795                 struct usb_host_endpoint **eps, unsigned int num_eps,
2796                 unsigned int *num_streams, u32 *changed_ep_bitmask)
2797 {
2798         unsigned int max_streams;
2799         unsigned int endpoint_flag;
2800         int i;
2801         int ret;
2802
2803         for (i = 0; i < num_eps; i++) {
2804                 ret = xhci_check_streams_endpoint(xhci, udev,
2805                                 eps[i], udev->slot_id);
2806                 if (ret < 0)
2807                         return ret;
2808
2809                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
2810                 if (max_streams < (*num_streams - 1)) {
2811                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2812                                         eps[i]->desc.bEndpointAddress,
2813                                         max_streams);
2814                         *num_streams = max_streams+1;
2815                 }
2816
2817                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
2818                 if (*changed_ep_bitmask & endpoint_flag)
2819                         return -EINVAL;
2820                 *changed_ep_bitmask |= endpoint_flag;
2821         }
2822         return 0;
2823 }
2824
2825 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
2826                 struct usb_device *udev,
2827                 struct usb_host_endpoint **eps, unsigned int num_eps)
2828 {
2829         u32 changed_ep_bitmask = 0;
2830         unsigned int slot_id;
2831         unsigned int ep_index;
2832         unsigned int ep_state;
2833         int i;
2834
2835         slot_id = udev->slot_id;
2836         if (!xhci->devs[slot_id])
2837                 return 0;
2838
2839         for (i = 0; i < num_eps; i++) {
2840                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2841                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2842                 /* Are streams already being freed for the endpoint? */
2843                 if (ep_state & EP_GETTING_NO_STREAMS) {
2844                         xhci_warn(xhci, "WARN Can't disable streams for "
2845                                         "endpoint 0x%x\n, "
2846                                         "streams are being disabled already.",
2847                                         eps[i]->desc.bEndpointAddress);
2848                         return 0;
2849                 }
2850                 /* Are there actually any streams to free? */
2851                 if (!(ep_state & EP_HAS_STREAMS) &&
2852                                 !(ep_state & EP_GETTING_STREAMS)) {
2853                         xhci_warn(xhci, "WARN Can't disable streams for "
2854                                         "endpoint 0x%x\n, "
2855                                         "streams are already disabled!",
2856                                         eps[i]->desc.bEndpointAddress);
2857                         xhci_warn(xhci, "WARN xhci_free_streams() called "
2858                                         "with non-streams endpoint\n");
2859                         return 0;
2860                 }
2861                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
2862         }
2863         return changed_ep_bitmask;
2864 }
2865
2866 /*
2867  * The USB device drivers use this function (though the HCD interface in USB
2868  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
2869  * coordinate mass storage command queueing across multiple endpoints (basically
2870  * a stream ID == a task ID).
2871  *
2872  * Setting up streams involves allocating the same size stream context array
2873  * for each endpoint and issuing a configure endpoint command for all endpoints.
2874  *
2875  * Don't allow the call to succeed if one endpoint only supports one stream
2876  * (which means it doesn't support streams at all).
2877  *
2878  * Drivers may get less stream IDs than they asked for, if the host controller
2879  * hardware or endpoints claim they can't support the number of requested
2880  * stream IDs.
2881  */
2882 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
2883                 struct usb_host_endpoint **eps, unsigned int num_eps,
2884                 unsigned int num_streams, gfp_t mem_flags)
2885 {
2886         int i, ret;
2887         struct xhci_hcd *xhci;
2888         struct xhci_virt_device *vdev;
2889         struct xhci_command *config_cmd;
2890         unsigned int ep_index;
2891         unsigned int num_stream_ctxs;
2892         unsigned long flags;
2893         u32 changed_ep_bitmask = 0;
2894
2895         if (!eps)
2896                 return -EINVAL;
2897
2898         /* Add one to the number of streams requested to account for
2899          * stream 0 that is reserved for xHCI usage.
2900          */
2901         num_streams += 1;
2902         xhci = hcd_to_xhci(hcd);
2903         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
2904                         num_streams);
2905
2906         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
2907         if (!config_cmd) {
2908                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
2909                 return -ENOMEM;
2910         }
2911
2912         /* Check to make sure all endpoints are not already configured for
2913          * streams.  While we're at it, find the maximum number of streams that
2914          * all the endpoints will support and check for duplicate endpoints.
2915          */
2916         spin_lock_irqsave(&xhci->lock, flags);
2917         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
2918                         num_eps, &num_streams, &changed_ep_bitmask);
2919         if (ret < 0) {
2920                 xhci_free_command(xhci, config_cmd);
2921                 spin_unlock_irqrestore(&xhci->lock, flags);
2922                 return ret;
2923         }
2924         if (num_streams <= 1) {
2925                 xhci_warn(xhci, "WARN: endpoints can't handle "
2926                                 "more than one stream.\n");
2927                 xhci_free_command(xhci, config_cmd);
2928                 spin_unlock_irqrestore(&xhci->lock, flags);
2929                 return -EINVAL;
2930         }
2931         vdev = xhci->devs[udev->slot_id];
2932         /* Mark each endpoint as being in transition, so
2933          * xhci_urb_enqueue() will reject all URBs.
2934          */
2935         for (i = 0; i < num_eps; i++) {
2936                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2937                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
2938         }
2939         spin_unlock_irqrestore(&xhci->lock, flags);
2940
2941         /* Setup internal data structures and allocate HW data structures for
2942          * streams (but don't install the HW structures in the input context
2943          * until we're sure all memory allocation succeeded).
2944          */
2945         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
2946         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
2947                         num_stream_ctxs, num_streams);
2948
2949         for (i = 0; i < num_eps; i++) {
2950                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2951                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
2952                                 num_stream_ctxs,
2953                                 num_streams, mem_flags);
2954                 if (!vdev->eps[ep_index].stream_info)
2955                         goto cleanup;
2956                 /* Set maxPstreams in endpoint context and update deq ptr to
2957                  * point to stream context array. FIXME
2958                  */
2959         }
2960
2961         /* Set up the input context for a configure endpoint command. */
2962         for (i = 0; i < num_eps; i++) {
2963                 struct xhci_ep_ctx *ep_ctx;
2964
2965                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2966                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
2967
2968                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
2969                                 vdev->out_ctx, ep_index);
2970                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
2971                                 vdev->eps[ep_index].stream_info);
2972         }
2973         /* Tell the HW to drop its old copy of the endpoint context info
2974          * and add the updated copy from the input context.
2975          */
2976         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
2977                         vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
2978
2979         /* Issue and wait for the configure endpoint command */
2980         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
2981                         false, false);
2982
2983         /* xHC rejected the configure endpoint command for some reason, so we
2984          * leave the old ring intact and free our internal streams data
2985          * structure.
2986          */
2987         if (ret < 0)
2988                 goto cleanup;
2989
2990         spin_lock_irqsave(&xhci->lock, flags);
2991         for (i = 0; i < num_eps; i++) {
2992                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2993                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
2994                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
2995                          udev->slot_id, ep_index);
2996                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
2997         }
2998         xhci_free_command(xhci, config_cmd);
2999         spin_unlock_irqrestore(&xhci->lock, flags);
3000
3001         /* Subtract 1 for stream 0, which drivers can't use */
3002         return num_streams - 1;
3003
3004 cleanup:
3005         /* If it didn't work, free the streams! */
3006         for (i = 0; i < num_eps; i++) {
3007                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3008                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3009                 vdev->eps[ep_index].stream_info = NULL;
3010                 /* FIXME Unset maxPstreams in endpoint context and
3011                  * update deq ptr to point to normal string ring.
3012                  */
3013                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3014                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3015                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3016         }
3017         xhci_free_command(xhci, config_cmd);
3018         return -ENOMEM;
3019 }
3020
3021 /* Transition the endpoint from using streams to being a "normal" endpoint
3022  * without streams.
3023  *
3024  * Modify the endpoint context state, submit a configure endpoint command,
3025  * and free all endpoint rings for streams if that completes successfully.
3026  */
3027 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3028                 struct usb_host_endpoint **eps, unsigned int num_eps,
3029                 gfp_t mem_flags)
3030 {
3031         int i, ret;
3032         struct xhci_hcd *xhci;
3033         struct xhci_virt_device *vdev;
3034         struct xhci_command *command;
3035         unsigned int ep_index;
3036         unsigned long flags;
3037         u32 changed_ep_bitmask;
3038
3039         xhci = hcd_to_xhci(hcd);
3040         vdev = xhci->devs[udev->slot_id];
3041
3042         /* Set up a configure endpoint command to remove the streams rings */
3043         spin_lock_irqsave(&xhci->lock, flags);
3044         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3045                         udev, eps, num_eps);
3046         if (changed_ep_bitmask == 0) {
3047                 spin_unlock_irqrestore(&xhci->lock, flags);
3048                 return -EINVAL;
3049         }
3050
3051         /* Use the xhci_command structure from the first endpoint.  We may have
3052          * allocated too many, but the driver may call xhci_free_streams() for
3053          * each endpoint it grouped into one call to xhci_alloc_streams().
3054          */
3055         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3056         command = vdev->eps[ep_index].stream_info->free_streams_command;
3057         for (i = 0; i < num_eps; i++) {
3058                 struct xhci_ep_ctx *ep_ctx;
3059
3060                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3061                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3062                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3063                         EP_GETTING_NO_STREAMS;
3064
3065                 xhci_endpoint_copy(xhci, command->in_ctx,
3066                                 vdev->out_ctx, ep_index);
3067                 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3068                                 &vdev->eps[ep_index]);
3069         }
3070         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3071                         vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3072         spin_unlock_irqrestore(&xhci->lock, flags);
3073
3074         /* Issue and wait for the configure endpoint command,
3075          * which must succeed.
3076          */
3077         ret = xhci_configure_endpoint(xhci, udev, command,
3078                         false, true);
3079
3080         /* xHC rejected the configure endpoint command for some reason, so we
3081          * leave the streams rings intact.
3082          */
3083         if (ret < 0)
3084                 return ret;
3085
3086         spin_lock_irqsave(&xhci->lock, flags);
3087         for (i = 0; i < num_eps; i++) {
3088                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3089                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3090                 vdev->eps[ep_index].stream_info = NULL;
3091                 /* FIXME Unset maxPstreams in endpoint context and
3092                  * update deq ptr to point to normal string ring.
3093                  */
3094                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3095                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3096         }
3097         spin_unlock_irqrestore(&xhci->lock, flags);
3098
3099         return 0;
3100 }
3101
3102 /*
3103  * Deletes endpoint resources for endpoints that were active before a Reset
3104  * Device command, or a Disable Slot command.  The Reset Device command leaves
3105  * the control endpoint intact, whereas the Disable Slot command deletes it.
3106  *
3107  * Must be called with xhci->lock held.
3108  */
3109 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3110         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3111 {
3112         int i;
3113         unsigned int num_dropped_eps = 0;
3114         unsigned int drop_flags = 0;
3115
3116         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3117                 if (virt_dev->eps[i].ring) {
3118                         drop_flags |= 1 << i;
3119                         num_dropped_eps++;
3120                 }
3121         }
3122         xhci->num_active_eps -= num_dropped_eps;
3123         if (num_dropped_eps)
3124                 xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, "
3125                                 "%u now active.\n",
3126                                 num_dropped_eps, drop_flags,
3127                                 xhci->num_active_eps);
3128 }
3129
3130 /*
3131  * This submits a Reset Device Command, which will set the device state to 0,
3132  * set the device address to 0, and disable all the endpoints except the default
3133  * control endpoint.  The USB core should come back and call
3134  * xhci_address_device(), and then re-set up the configuration.  If this is
3135  * called because of a usb_reset_and_verify_device(), then the old alternate
3136  * settings will be re-installed through the normal bandwidth allocation
3137  * functions.
3138  *
3139  * Wait for the Reset Device command to finish.  Remove all structures
3140  * associated with the endpoints that were disabled.  Clear the input device
3141  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3142  *
3143  * If the virt_dev to be reset does not exist or does not match the udev,
3144  * it means the device is lost, possibly due to the xHC restore error and
3145  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3146  * re-allocate the device.
3147  */
3148 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3149 {
3150         int ret, i;
3151         unsigned long flags;
3152         struct xhci_hcd *xhci;
3153         unsigned int slot_id;
3154         struct xhci_virt_device *virt_dev;
3155         struct xhci_command *reset_device_cmd;
3156         int timeleft;
3157         int last_freed_endpoint;
3158         struct xhci_slot_ctx *slot_ctx;
3159         int old_active_eps = 0;
3160
3161         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3162         if (ret <= 0)
3163                 return ret;
3164         xhci = hcd_to_xhci(hcd);
3165         slot_id = udev->slot_id;
3166         virt_dev = xhci->devs[slot_id];
3167         if (!virt_dev) {
3168                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3169                                 "not exist. Re-allocate the device\n", slot_id);
3170                 ret = xhci_alloc_dev(hcd, udev);
3171                 if (ret == 1)
3172                         return 0;
3173                 else
3174                         return -EINVAL;
3175         }
3176
3177         if (virt_dev->udev != udev) {
3178                 /* If the virt_dev and the udev does not match, this virt_dev
3179                  * may belong to another udev.
3180                  * Re-allocate the device.
3181                  */
3182                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3183                                 "not match the udev. Re-allocate the device\n",
3184                                 slot_id);
3185                 ret = xhci_alloc_dev(hcd, udev);
3186                 if (ret == 1)
3187                         return 0;
3188                 else
3189                         return -EINVAL;
3190         }
3191
3192         /* If device is not setup, there is no point in resetting it */
3193         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3194         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3195                                                 SLOT_STATE_DISABLED)
3196                 return 0;
3197
3198         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3199         /* Allocate the command structure that holds the struct completion.
3200          * Assume we're in process context, since the normal device reset
3201          * process has to wait for the device anyway.  Storage devices are
3202          * reset as part of error handling, so use GFP_NOIO instead of
3203          * GFP_KERNEL.
3204          */
3205         reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3206         if (!reset_device_cmd) {
3207                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3208                 return -ENOMEM;
3209         }
3210
3211         /* Attempt to submit the Reset Device command to the command ring */
3212         spin_lock_irqsave(&xhci->lock, flags);
3213         reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
3214
3215         /* Enqueue pointer can be left pointing to the link TRB,
3216          * we must handle that
3217          */
3218         if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control))
3219                 reset_device_cmd->command_trb =
3220                         xhci->cmd_ring->enq_seg->next->trbs;
3221
3222         list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3223         ret = xhci_queue_reset_device(xhci, slot_id);
3224         if (ret) {
3225                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3226                 list_del(&reset_device_cmd->cmd_list);
3227                 spin_unlock_irqrestore(&xhci->lock, flags);
3228                 goto command_cleanup;
3229         }
3230         xhci_ring_cmd_db(xhci);
3231         spin_unlock_irqrestore(&xhci->lock, flags);
3232
3233         /* Wait for the Reset Device command to finish */
3234         timeleft = wait_for_completion_interruptible_timeout(
3235                         reset_device_cmd->completion,
3236                         USB_CTRL_SET_TIMEOUT);
3237         if (timeleft <= 0) {
3238                 xhci_warn(xhci, "%s while waiting for reset device command\n",
3239                                 timeleft == 0 ? "Timeout" : "Signal");
3240                 spin_lock_irqsave(&xhci->lock, flags);
3241                 /* The timeout might have raced with the event ring handler, so
3242                  * only delete from the list if the item isn't poisoned.
3243                  */
3244                 if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3245                         list_del(&reset_device_cmd->cmd_list);
3246                 spin_unlock_irqrestore(&xhci->lock, flags);
3247                 ret = -ETIME;
3248                 goto command_cleanup;
3249         }
3250
3251         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3252          * unless we tried to reset a slot ID that wasn't enabled,
3253          * or the device wasn't in the addressed or configured state.
3254          */
3255         ret = reset_device_cmd->status;
3256         switch (ret) {
3257         case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3258         case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3259                 xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
3260                                 slot_id,
3261                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3262                 xhci_info(xhci, "Not freeing device rings.\n");
3263                 /* Don't treat this as an error.  May change my mind later. */
3264                 ret = 0;
3265                 goto command_cleanup;
3266         case COMP_SUCCESS:
3267                 xhci_dbg(xhci, "Successful reset device command.\n");
3268                 break;
3269         default:
3270                 if (xhci_is_vendor_info_code(xhci, ret))
3271                         break;
3272                 xhci_warn(xhci, "Unknown completion code %u for "
3273                                 "reset device command.\n", ret);
3274                 ret = -EINVAL;
3275                 goto command_cleanup;
3276         }
3277
3278         /* Free up host controller endpoint resources */
3279         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3280                 spin_lock_irqsave(&xhci->lock, flags);
3281                 /* Don't delete the default control endpoint resources */
3282                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3283                 spin_unlock_irqrestore(&xhci->lock, flags);
3284         }
3285
3286         /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3287         last_freed_endpoint = 1;
3288         for (i = 1; i < 31; ++i) {
3289                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3290
3291                 if (ep->ep_state & EP_HAS_STREAMS) {
3292                         xhci_free_stream_info(xhci, ep->stream_info);
3293                         ep->stream_info = NULL;
3294                         ep->ep_state &= ~EP_HAS_STREAMS;
3295                 }
3296
3297                 if (ep->ring) {
3298                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3299                         last_freed_endpoint = i;
3300                 }
3301                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3302                         xhci_drop_ep_from_interval_table(xhci,
3303                                         &virt_dev->eps[i].bw_info,
3304                                         virt_dev->bw_table,
3305                                         udev,
3306                                         &virt_dev->eps[i],
3307                                         virt_dev->tt_info);
3308                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3309         }
3310         /* If necessary, update the number of active TTs on this root port */
3311         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3312
3313         xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3314         xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3315         ret = 0;
3316
3317 command_cleanup:
3318         xhci_free_command(xhci, reset_device_cmd);
3319         return ret;
3320 }
3321
3322 /*
3323  * At this point, the struct usb_device is about to go away, the device has
3324  * disconnected, and all traffic has been stopped and the endpoints have been
3325  * disabled.  Free any HC data structures associated with that device.
3326  */
3327 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3328 {
3329         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3330         struct xhci_virt_device *virt_dev;
3331         unsigned long flags;
3332         u32 state;
3333         int i, ret;
3334
3335         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3336         /* If the host is halted due to driver unload, we still need to free the
3337          * device.
3338          */
3339         if (ret <= 0 && ret != -ENODEV)
3340                 return;
3341
3342         virt_dev = xhci->devs[udev->slot_id];
3343
3344         /* Stop any wayward timer functions (which may grab the lock) */
3345         for (i = 0; i < 31; ++i) {
3346                 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3347                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3348         }
3349
3350         if (udev->usb2_hw_lpm_enabled) {
3351                 xhci_set_usb2_hardware_lpm(hcd, udev, 0);
3352                 udev->usb2_hw_lpm_enabled = 0;
3353         }
3354
3355         spin_lock_irqsave(&xhci->lock, flags);
3356         /* Don't disable the slot if the host controller is dead. */
3357         state = xhci_readl(xhci, &xhci->op_regs->status);
3358         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3359                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3360                 xhci_free_virt_device(xhci, udev->slot_id);
3361                 spin_unlock_irqrestore(&xhci->lock, flags);
3362                 return;
3363         }
3364
3365         if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
3366                 spin_unlock_irqrestore(&xhci->lock, flags);
3367                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3368                 return;
3369         }
3370         xhci_ring_cmd_db(xhci);
3371         spin_unlock_irqrestore(&xhci->lock, flags);
3372         /*
3373          * Event command completion handler will free any data structures
3374          * associated with the slot.  XXX Can free sleep?
3375          */
3376 }
3377
3378 /*
3379  * Checks if we have enough host controller resources for the default control
3380  * endpoint.
3381  *
3382  * Must be called with xhci->lock held.
3383  */
3384 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3385 {
3386         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3387                 xhci_dbg(xhci, "Not enough ep ctxs: "
3388                                 "%u active, need to add 1, limit is %u.\n",
3389                                 xhci->num_active_eps, xhci->limit_active_eps);
3390                 return -ENOMEM;
3391         }
3392         xhci->num_active_eps += 1;
3393         xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n",
3394                         xhci->num_active_eps);
3395         return 0;
3396 }
3397
3398
3399 /*
3400  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3401  * timed out, or allocating memory failed.  Returns 1 on success.
3402  */
3403 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3404 {
3405         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3406         unsigned long flags;
3407         int timeleft;
3408         int ret;
3409
3410         spin_lock_irqsave(&xhci->lock, flags);
3411         ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3412         if (ret) {
3413                 spin_unlock_irqrestore(&xhci->lock, flags);
3414                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3415                 return 0;
3416         }
3417         xhci_ring_cmd_db(xhci);
3418         spin_unlock_irqrestore(&xhci->lock, flags);
3419
3420         /* XXX: how much time for xHC slot assignment? */
3421         timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3422                         USB_CTRL_SET_TIMEOUT);
3423         if (timeleft <= 0) {
3424                 xhci_warn(xhci, "%s while waiting for a slot\n",
3425                                 timeleft == 0 ? "Timeout" : "Signal");
3426                 /* FIXME cancel the enable slot request */
3427                 return 0;
3428         }
3429
3430         if (!xhci->slot_id) {
3431                 xhci_err(xhci, "Error while assigning device slot ID\n");
3432                 return 0;
3433         }
3434
3435         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3436                 spin_lock_irqsave(&xhci->lock, flags);
3437                 ret = xhci_reserve_host_control_ep_resources(xhci);
3438                 if (ret) {
3439                         spin_unlock_irqrestore(&xhci->lock, flags);
3440                         xhci_warn(xhci, "Not enough host resources, "
3441                                         "active endpoint contexts = %u\n",
3442                                         xhci->num_active_eps);
3443                         goto disable_slot;
3444                 }
3445                 spin_unlock_irqrestore(&xhci->lock, flags);
3446         }
3447         /* Use GFP_NOIO, since this function can be called from
3448          * xhci_discover_or_reset_device(), which may be called as part of
3449          * mass storage driver error handling.
3450          */
3451         if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3452                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3453                 goto disable_slot;
3454         }
3455         udev->slot_id = xhci->slot_id;
3456         /* Is this a LS or FS device under a HS hub? */
3457         /* Hub or peripherial? */
3458         return 1;
3459
3460 disable_slot:
3461         /* Disable slot, if we can do it without mem alloc */
3462         spin_lock_irqsave(&xhci->lock, flags);
3463         if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3464                 xhci_ring_cmd_db(xhci);
3465         spin_unlock_irqrestore(&xhci->lock, flags);
3466         return 0;
3467 }
3468
3469 /*
3470  * Issue an Address Device command (which will issue a SetAddress request to
3471  * the device).
3472  * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3473  * we should only issue and wait on one address command at the same time.
3474  *
3475  * We add one to the device address issued by the hardware because the USB core
3476  * uses address 1 for the root hubs (even though they're not really devices).
3477  */
3478 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3479 {
3480         unsigned long flags;
3481         int timeleft;
3482         struct xhci_virt_device *virt_dev;
3483         int ret = 0;
3484         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3485         struct xhci_slot_ctx *slot_ctx;
3486         struct xhci_input_control_ctx *ctrl_ctx;
3487         u64 temp_64;
3488
3489         if (!udev->slot_id) {
3490                 xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
3491                 return -EINVAL;
3492         }
3493
3494         virt_dev = xhci->devs[udev->slot_id];
3495
3496         if (WARN_ON(!virt_dev)) {
3497                 /*
3498                  * In plug/unplug torture test with an NEC controller,
3499                  * a zero-dereference was observed once due to virt_dev = 0.
3500                  * Print useful debug rather than crash if it is observed again!
3501                  */
3502                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3503                         udev->slot_id);
3504                 return -EINVAL;
3505         }
3506
3507         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3508         /*
3509          * If this is the first Set Address since device plug-in or
3510          * virt_device realloaction after a resume with an xHCI power loss,
3511          * then set up the slot context.
3512          */
3513         if (!slot_ctx->dev_info)
3514                 xhci_setup_addressable_virt_dev(xhci, udev);
3515         /* Otherwise, update the control endpoint ring enqueue pointer. */
3516         else
3517                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3518         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3519         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3520         ctrl_ctx->drop_flags = 0;
3521
3522         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3523         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3524
3525         spin_lock_irqsave(&xhci->lock, flags);
3526         ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3527                                         udev->slot_id);
3528         if (ret) {
3529                 spin_unlock_irqrestore(&xhci->lock, flags);
3530                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3531                 return ret;
3532         }
3533         xhci_ring_cmd_db(xhci);
3534         spin_unlock_irqrestore(&xhci->lock, flags);
3535
3536         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3537         timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3538                         USB_CTRL_SET_TIMEOUT);
3539         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3540          * the SetAddress() "recovery interval" required by USB and aborting the
3541          * command on a timeout.
3542          */
3543         if (timeleft <= 0) {
3544                 xhci_warn(xhci, "%s while waiting for address device command\n",
3545                                 timeleft == 0 ? "Timeout" : "Signal");
3546                 /* FIXME cancel the address device command */
3547                 return -ETIME;
3548         }
3549
3550         switch (virt_dev->cmd_status) {
3551         case COMP_CTX_STATE:
3552         case COMP_EBADSLT:
3553                 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
3554                                 udev->slot_id);
3555                 ret = -EINVAL;
3556                 break;
3557         case COMP_TX_ERR:
3558                 dev_warn(&udev->dev, "Device not responding to set address.\n");
3559                 ret = -EPROTO;
3560                 break;
3561         case COMP_DEV_ERR:
3562                 dev_warn(&udev->dev, "ERROR: Incompatible device for address "
3563                                 "device command.\n");
3564                 ret = -ENODEV;
3565                 break;
3566         case COMP_SUCCESS:
3567                 xhci_dbg(xhci, "Successful Address Device command\n");
3568                 break;
3569         default:
3570                 xhci_err(xhci, "ERROR: unexpected command completion "
3571                                 "code 0x%x.\n", virt_dev->cmd_status);
3572                 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3573                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3574                 ret = -EINVAL;
3575                 break;
3576         }
3577         if (ret) {
3578                 return ret;
3579         }
3580         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3581         xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
3582         xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
3583                  udev->slot_id,
3584                  &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3585                  (unsigned long long)
3586                  le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3587         xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
3588                         (unsigned long long)virt_dev->out_ctx->dma);
3589         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3590         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3591         xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3592         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3593         /*
3594          * USB core uses address 1 for the roothubs, so we add one to the
3595          * address given back to us by the HC.
3596          */
3597         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3598         /* Use kernel assigned address for devices; store xHC assigned
3599          * address locally. */
3600         virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
3601                 + 1;
3602         /* Zero the input context control for later use */
3603         ctrl_ctx->add_flags = 0;
3604         ctrl_ctx->drop_flags = 0;
3605
3606         xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
3607
3608         return 0;
3609 }
3610
3611 #ifdef CONFIG_USB_SUSPEND
3612
3613 /* BESL to HIRD Encoding array for USB2 LPM */
3614 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3615         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3616
3617 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
3618 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
3619                                         struct usb_device *udev)
3620 {
3621         int u2del, besl, besl_host;
3622         int besl_device = 0;
3623         u32 field;
3624
3625         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3626         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
3627
3628         if (field & USB_BESL_SUPPORT) {
3629                 for (besl_host = 0; besl_host < 16; besl_host++) {
3630                         if (xhci_besl_encoding[besl_host] >= u2del)
3631                                 break;
3632                 }
3633                 /* Use baseline BESL value as default */
3634                 if (field & USB_BESL_BASELINE_VALID)
3635                         besl_device = USB_GET_BESL_BASELINE(field);
3636                 else if (field & USB_BESL_DEEP_VALID)
3637                         besl_device = USB_GET_BESL_DEEP(field);
3638         } else {
3639                 if (u2del <= 50)
3640                         besl_host = 0;
3641                 else
3642                         besl_host = (u2del - 51) / 75 + 1;
3643         }
3644
3645         besl = besl_host + besl_device;
3646         if (besl > 15)
3647                 besl = 15;
3648
3649         return besl;
3650 }
3651
3652 static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd,
3653                                         struct usb_device *udev)
3654 {
3655         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3656         struct dev_info *dev_info;
3657         __le32 __iomem  **port_array;
3658         __le32 __iomem  *addr, *pm_addr;
3659         u32             temp, dev_id;
3660         unsigned int    port_num;
3661         unsigned long   flags;
3662         int             hird;
3663         int             ret;
3664
3665         if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
3666                         !udev->lpm_capable)
3667                 return -EINVAL;
3668
3669         /* we only support lpm for non-hub device connected to root hub yet */
3670         if (!udev->parent || udev->parent->parent ||
3671                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3672                 return -EINVAL;
3673
3674         spin_lock_irqsave(&xhci->lock, flags);
3675
3676         /* Look for devices in lpm_failed_devs list */
3677         dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 |
3678                         le16_to_cpu(udev->descriptor.idProduct);
3679         list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) {
3680                 if (dev_info->dev_id == dev_id) {
3681                         ret = -EINVAL;
3682                         goto finish;
3683                 }
3684         }
3685
3686         port_array = xhci->usb2_ports;
3687         port_num = udev->portnum - 1;
3688
3689         if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) {
3690                 xhci_dbg(xhci, "invalid port number %d\n", udev->portnum);
3691                 ret = -EINVAL;
3692                 goto finish;
3693         }
3694
3695         /*
3696          * Test USB 2.0 software LPM.
3697          * FIXME: some xHCI 1.0 hosts may implement a new register to set up
3698          * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1
3699          * in the June 2011 errata release.
3700          */
3701         xhci_dbg(xhci, "test port %d software LPM\n", port_num);
3702         /*
3703          * Set L1 Device Slot and HIRD/BESL.
3704          * Check device's USB 2.0 extension descriptor to determine whether
3705          * HIRD or BESL shoule be used. See USB2.0 LPM errata.
3706          */
3707         pm_addr = port_array[port_num] + 1;
3708         hird = xhci_calculate_hird_besl(xhci, udev);
3709         temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird);
3710         xhci_writel(xhci, temp, pm_addr);
3711
3712         /* Set port link state to U2(L1) */
3713         addr = port_array[port_num];
3714         xhci_set_link_state(xhci, port_array, port_num, XDEV_U2);
3715
3716         /* wait for ACK */
3717         spin_unlock_irqrestore(&xhci->lock, flags);
3718         msleep(10);
3719         spin_lock_irqsave(&xhci->lock, flags);
3720
3721         /* Check L1 Status */
3722         ret = handshake(xhci, pm_addr, PORT_L1S_MASK, PORT_L1S_SUCCESS, 125);
3723         if (ret != -ETIMEDOUT) {
3724                 /* enter L1 successfully */
3725                 temp = xhci_readl(xhci, addr);
3726                 xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n",
3727                                 port_num, temp);
3728                 ret = 0;
3729         } else {
3730                 temp = xhci_readl(xhci, pm_addr);
3731                 xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n",
3732                                 port_num, temp & PORT_L1S_MASK);
3733                 ret = -EINVAL;
3734         }
3735
3736         /* Resume the port */
3737         xhci_set_link_state(xhci, port_array, port_num, XDEV_U0);
3738
3739         spin_unlock_irqrestore(&xhci->lock, flags);
3740         msleep(10);
3741         spin_lock_irqsave(&xhci->lock, flags);
3742
3743         /* Clear PLC */
3744         xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC);
3745
3746         /* Check PORTSC to make sure the device is in the right state */
3747         if (!ret) {
3748                 temp = xhci_readl(xhci, addr);
3749                 xhci_dbg(xhci, "resumed port %d status 0x%x\n", port_num, temp);
3750                 if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) ||
3751                                 (temp & PORT_PLS_MASK) != XDEV_U0) {
3752                         xhci_dbg(xhci, "port L1 resume fail\n");
3753                         ret = -EINVAL;
3754                 }
3755         }
3756
3757         if (ret) {
3758                 /* Insert dev to lpm_failed_devs list */
3759                 xhci_warn(xhci, "device LPM test failed, may disconnect and "
3760                                 "re-enumerate\n");
3761                 dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC);
3762                 if (!dev_info) {
3763                         ret = -ENOMEM;
3764                         goto finish;
3765                 }
3766                 dev_info->dev_id = dev_id;
3767                 INIT_LIST_HEAD(&dev_info->list);
3768                 list_add(&dev_info->list, &xhci->lpm_failed_devs);
3769         } else {
3770                 xhci_ring_device(xhci, udev->slot_id);
3771         }
3772
3773 finish:
3774         spin_unlock_irqrestore(&xhci->lock, flags);
3775         return ret;
3776 }
3777
3778 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
3779                         struct usb_device *udev, int enable)
3780 {
3781         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3782         __le32 __iomem  **port_array;
3783         __le32 __iomem  *pm_addr;
3784         u32             temp;
3785         unsigned int    port_num;
3786         unsigned long   flags;
3787         int             hird;
3788
3789         if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
3790                         !udev->lpm_capable)
3791                 return -EPERM;
3792
3793         if (!udev->parent || udev->parent->parent ||
3794                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3795                 return -EPERM;
3796
3797         if (udev->usb2_hw_lpm_capable != 1)
3798                 return -EPERM;
3799
3800         spin_lock_irqsave(&xhci->lock, flags);
3801
3802         port_array = xhci->usb2_ports;
3803         port_num = udev->portnum - 1;
3804         pm_addr = port_array[port_num] + 1;
3805         temp = xhci_readl(xhci, pm_addr);
3806
3807         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
3808                         enable ? "enable" : "disable", port_num);
3809
3810         hird = xhci_calculate_hird_besl(xhci, udev);
3811
3812         if (enable) {
3813                 temp &= ~PORT_HIRD_MASK;
3814                 temp |= PORT_HIRD(hird) | PORT_RWE;
3815                 xhci_writel(xhci, temp, pm_addr);
3816                 temp = xhci_readl(xhci, pm_addr);
3817                 temp |= PORT_HLE;
3818                 xhci_writel(xhci, temp, pm_addr);
3819         } else {
3820                 temp &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK);
3821                 xhci_writel(xhci, temp, pm_addr);
3822         }
3823
3824         spin_unlock_irqrestore(&xhci->lock, flags);
3825         return 0;
3826 }
3827
3828 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
3829 {
3830         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3831         int             ret;
3832
3833         ret = xhci_usb2_software_lpm_test(hcd, udev);
3834         if (!ret) {
3835                 xhci_dbg(xhci, "software LPM test succeed\n");
3836                 if (xhci->hw_lpm_support == 1) {
3837                         udev->usb2_hw_lpm_capable = 1;
3838                         ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1);
3839                         if (!ret)
3840                                 udev->usb2_hw_lpm_enabled = 1;
3841                 }
3842         }
3843
3844         return 0;
3845 }
3846
3847 #else
3848
3849 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
3850                                 struct usb_device *udev, int enable)
3851 {
3852         return 0;
3853 }
3854
3855 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
3856 {
3857         return 0;
3858 }
3859
3860 #endif /* CONFIG_USB_SUSPEND */
3861
3862 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
3863  * internal data structures for the device.
3864  */
3865 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
3866                         struct usb_tt *tt, gfp_t mem_flags)
3867 {
3868         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3869         struct xhci_virt_device *vdev;
3870         struct xhci_command *config_cmd;
3871         struct xhci_input_control_ctx *ctrl_ctx;
3872         struct xhci_slot_ctx *slot_ctx;
3873         unsigned long flags;
3874         unsigned think_time;
3875         int ret;
3876
3877         /* Ignore root hubs */
3878         if (!hdev->parent)
3879                 return 0;
3880
3881         vdev = xhci->devs[hdev->slot_id];
3882         if (!vdev) {
3883                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
3884                 return -EINVAL;
3885         }
3886         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3887         if (!config_cmd) {
3888                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3889                 return -ENOMEM;
3890         }
3891
3892         spin_lock_irqsave(&xhci->lock, flags);
3893         if (hdev->speed == USB_SPEED_HIGH &&
3894                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
3895                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
3896                 xhci_free_command(xhci, config_cmd);
3897                 spin_unlock_irqrestore(&xhci->lock, flags);
3898                 return -ENOMEM;
3899         }
3900
3901         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
3902         ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
3903         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3904         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
3905         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
3906         if (tt->multi)
3907                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
3908         if (xhci->hci_version > 0x95) {
3909                 xhci_dbg(xhci, "xHCI version %x needs hub "
3910                                 "TT think time and number of ports\n",
3911                                 (unsigned int) xhci->hci_version);
3912                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
3913                 /* Set TT think time - convert from ns to FS bit times.
3914                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
3915                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
3916                  *
3917                  * xHCI 1.0: this field shall be 0 if the device is not a
3918                  * High-spped hub.
3919                  */
3920                 think_time = tt->think_time;
3921                 if (think_time != 0)
3922                         think_time = (think_time / 666) - 1;
3923                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
3924                         slot_ctx->tt_info |=
3925                                 cpu_to_le32(TT_THINK_TIME(think_time));
3926         } else {
3927                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
3928                                 "TT think time or number of ports\n",
3929                                 (unsigned int) xhci->hci_version);
3930         }
3931         slot_ctx->dev_state = 0;
3932         spin_unlock_irqrestore(&xhci->lock, flags);
3933
3934         xhci_dbg(xhci, "Set up %s for hub device.\n",
3935                         (xhci->hci_version > 0x95) ?
3936                         "configure endpoint" : "evaluate context");
3937         xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
3938         xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
3939
3940         /* Issue and wait for the configure endpoint or
3941          * evaluate context command.
3942          */
3943         if (xhci->hci_version > 0x95)
3944                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
3945                                 false, false);
3946         else
3947                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
3948                                 true, false);
3949
3950         xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
3951         xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
3952
3953         xhci_free_command(xhci, config_cmd);
3954         return ret;
3955 }
3956
3957 int xhci_get_frame(struct usb_hcd *hcd)
3958 {
3959         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3960         /* EHCI mods by the periodic size.  Why? */
3961         return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
3962 }
3963
3964 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
3965 {
3966         struct xhci_hcd         *xhci;
3967         struct device           *dev = hcd->self.controller;
3968         int                     retval;
3969         u32                     temp;
3970
3971         /* Accept arbitrarily long scatter-gather lists */
3972         hcd->self.sg_tablesize = ~0;
3973
3974         if (usb_hcd_is_primary_hcd(hcd)) {
3975                 xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
3976                 if (!xhci)
3977                         return -ENOMEM;
3978                 *((struct xhci_hcd **) hcd->hcd_priv) = xhci;
3979                 xhci->main_hcd = hcd;
3980                 /* Mark the first roothub as being USB 2.0.
3981                  * The xHCI driver will register the USB 3.0 roothub.
3982                  */
3983                 hcd->speed = HCD_USB2;
3984                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
3985                 /*
3986                  * USB 2.0 roothub under xHCI has an integrated TT,
3987                  * (rate matching hub) as opposed to having an OHCI/UHCI
3988                  * companion controller.
3989                  */
3990                 hcd->has_tt = 1;
3991         } else {
3992                 /* xHCI private pointer was set in xhci_pci_probe for the second
3993                  * registered roothub.
3994                  */
3995                 xhci = hcd_to_xhci(hcd);
3996                 temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
3997                 if (HCC_64BIT_ADDR(temp)) {
3998                         xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
3999                         dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4000                 } else {
4001                         dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4002                 }
4003                 return 0;
4004         }
4005
4006         xhci->cap_regs = hcd->regs;
4007         xhci->op_regs = hcd->regs +
4008                 HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase));
4009         xhci->run_regs = hcd->regs +
4010                 (xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4011         /* Cache read-only capability registers */
4012         xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1);
4013         xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2);
4014         xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3);
4015         xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase);
4016         xhci->hci_version = HC_VERSION(xhci->hcc_params);
4017         xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4018         xhci_print_registers(xhci);
4019
4020         get_quirks(dev, xhci);
4021
4022         /* Make sure the HC is halted. */
4023         retval = xhci_halt(xhci);
4024         if (retval)
4025                 goto error;
4026
4027         xhci_dbg(xhci, "Resetting HCD\n");
4028         /* Reset the internal HC memory state and registers. */
4029         retval = xhci_reset(xhci);
4030         if (retval)
4031                 goto error;
4032         xhci_dbg(xhci, "Reset complete\n");
4033
4034         temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4035         if (HCC_64BIT_ADDR(temp)) {
4036                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4037                 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4038         } else {
4039                 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4040         }
4041
4042         xhci_dbg(xhci, "Calling HCD init\n");
4043         /* Initialize HCD and host controller data structures. */
4044         retval = xhci_init(hcd);
4045         if (retval)
4046                 goto error;
4047         xhci_dbg(xhci, "Called HCD init\n");
4048         return 0;
4049 error:
4050         kfree(xhci);
4051         return retval;
4052 }
4053
4054 MODULE_DESCRIPTION(DRIVER_DESC);
4055 MODULE_AUTHOR(DRIVER_AUTHOR);
4056 MODULE_LICENSE("GPL");
4057
4058 static int __init xhci_hcd_init(void)
4059 {
4060         int retval;
4061
4062         retval = xhci_register_pci();
4063         if (retval < 0) {
4064                 printk(KERN_DEBUG "Problem registering PCI driver.");
4065                 return retval;
4066         }
4067         retval = xhci_register_plat();
4068         if (retval < 0) {
4069                 printk(KERN_DEBUG "Problem registering platform driver.");
4070                 goto unreg_pci;
4071         }
4072         /*
4073          * Check the compiler generated sizes of structures that must be laid
4074          * out in specific ways for hardware access.
4075          */
4076         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4077         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4078         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4079         /* xhci_device_control has eight fields, and also
4080          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4081          */
4082         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4083         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4084         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4085         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4086         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4087         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4088         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4089         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4090         return 0;
4091 unreg_pci:
4092         xhci_unregister_pci();
4093         return retval;
4094 }
4095 module_init(xhci_hcd_init);
4096
4097 static void __exit xhci_hcd_cleanup(void)
4098 {
4099         xhci_unregister_pci();
4100         xhci_unregister_plat();
4101 }
4102 module_exit(xhci_hcd_cleanup);