]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/btrfs/backref.c
Btrfs: use larger limit for translation of logical to inode
[karo-tx-linux.git] / fs / btrfs / backref.c
1 /*
2  * Copyright (C) 2011 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/vmalloc.h>
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "backref.h"
23 #include "ulist.h"
24 #include "transaction.h"
25 #include "delayed-ref.h"
26 #include "locking.h"
27
28 struct extent_inode_elem {
29         u64 inum;
30         u64 offset;
31         struct extent_inode_elem *next;
32 };
33
34 static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
35                                 struct btrfs_file_extent_item *fi,
36                                 u64 extent_item_pos,
37                                 struct extent_inode_elem **eie)
38 {
39         u64 data_offset;
40         u64 data_len;
41         struct extent_inode_elem *e;
42
43         data_offset = btrfs_file_extent_offset(eb, fi);
44         data_len = btrfs_file_extent_num_bytes(eb, fi);
45
46         if (extent_item_pos < data_offset ||
47             extent_item_pos >= data_offset + data_len)
48                 return 1;
49
50         e = kmalloc(sizeof(*e), GFP_NOFS);
51         if (!e)
52                 return -ENOMEM;
53
54         e->next = *eie;
55         e->inum = key->objectid;
56         e->offset = key->offset + (extent_item_pos - data_offset);
57         *eie = e;
58
59         return 0;
60 }
61
62 static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
63                                 u64 extent_item_pos,
64                                 struct extent_inode_elem **eie)
65 {
66         u64 disk_byte;
67         struct btrfs_key key;
68         struct btrfs_file_extent_item *fi;
69         int slot;
70         int nritems;
71         int extent_type;
72         int ret;
73
74         /*
75          * from the shared data ref, we only have the leaf but we need
76          * the key. thus, we must look into all items and see that we
77          * find one (some) with a reference to our extent item.
78          */
79         nritems = btrfs_header_nritems(eb);
80         for (slot = 0; slot < nritems; ++slot) {
81                 btrfs_item_key_to_cpu(eb, &key, slot);
82                 if (key.type != BTRFS_EXTENT_DATA_KEY)
83                         continue;
84                 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
85                 extent_type = btrfs_file_extent_type(eb, fi);
86                 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
87                         continue;
88                 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
89                 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
90                 if (disk_byte != wanted_disk_byte)
91                         continue;
92
93                 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
94                 if (ret < 0)
95                         return ret;
96         }
97
98         return 0;
99 }
100
101 /*
102  * this structure records all encountered refs on the way up to the root
103  */
104 struct __prelim_ref {
105         struct list_head list;
106         u64 root_id;
107         struct btrfs_key key_for_search;
108         int level;
109         int count;
110         struct extent_inode_elem *inode_list;
111         u64 parent;
112         u64 wanted_disk_byte;
113 };
114
115 /*
116  * the rules for all callers of this function are:
117  * - obtaining the parent is the goal
118  * - if you add a key, you must know that it is a correct key
119  * - if you cannot add the parent or a correct key, then we will look into the
120  *   block later to set a correct key
121  *
122  * delayed refs
123  * ============
124  *        backref type | shared | indirect | shared | indirect
125  * information         |   tree |     tree |   data |     data
126  * --------------------+--------+----------+--------+----------
127  *      parent logical |    y   |     -    |    -   |     -
128  *      key to resolve |    -   |     y    |    y   |     y
129  *  tree block logical |    -   |     -    |    -   |     -
130  *  root for resolving |    y   |     y    |    y   |     y
131  *
132  * - column 1:       we've the parent -> done
133  * - column 2, 3, 4: we use the key to find the parent
134  *
135  * on disk refs (inline or keyed)
136  * ==============================
137  *        backref type | shared | indirect | shared | indirect
138  * information         |   tree |     tree |   data |     data
139  * --------------------+--------+----------+--------+----------
140  *      parent logical |    y   |     -    |    y   |     -
141  *      key to resolve |    -   |     -    |    -   |     y
142  *  tree block logical |    y   |     y    |    y   |     y
143  *  root for resolving |    -   |     y    |    y   |     y
144  *
145  * - column 1, 3: we've the parent -> done
146  * - column 2:    we take the first key from the block to find the parent
147  *                (see __add_missing_keys)
148  * - column 4:    we use the key to find the parent
149  *
150  * additional information that's available but not required to find the parent
151  * block might help in merging entries to gain some speed.
152  */
153
154 static int __add_prelim_ref(struct list_head *head, u64 root_id,
155                             struct btrfs_key *key, int level,
156                             u64 parent, u64 wanted_disk_byte, int count)
157 {
158         struct __prelim_ref *ref;
159
160         /* in case we're adding delayed refs, we're holding the refs spinlock */
161         ref = kmalloc(sizeof(*ref), GFP_ATOMIC);
162         if (!ref)
163                 return -ENOMEM;
164
165         ref->root_id = root_id;
166         if (key)
167                 ref->key_for_search = *key;
168         else
169                 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
170
171         ref->inode_list = NULL;
172         ref->level = level;
173         ref->count = count;
174         ref->parent = parent;
175         ref->wanted_disk_byte = wanted_disk_byte;
176         list_add_tail(&ref->list, head);
177
178         return 0;
179 }
180
181 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
182                                 struct ulist *parents, int level,
183                                 struct btrfs_key *key_for_search, u64 time_seq,
184                                 u64 wanted_disk_byte,
185                                 const u64 *extent_item_pos)
186 {
187         int ret = 0;
188         int slot;
189         struct extent_buffer *eb;
190         struct btrfs_key key;
191         struct btrfs_file_extent_item *fi;
192         struct extent_inode_elem *eie = NULL;
193         u64 disk_byte;
194
195         if (level != 0) {
196                 eb = path->nodes[level];
197                 ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
198                 if (ret < 0)
199                         return ret;
200                 return 0;
201         }
202
203         /*
204          * We normally enter this function with the path already pointing to
205          * the first item to check. But sometimes, we may enter it with
206          * slot==nritems. In that case, go to the next leaf before we continue.
207          */
208         if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
209                 ret = btrfs_next_old_leaf(root, path, time_seq);
210
211         while (!ret) {
212                 eb = path->nodes[0];
213                 slot = path->slots[0];
214
215                 btrfs_item_key_to_cpu(eb, &key, slot);
216
217                 if (key.objectid != key_for_search->objectid ||
218                     key.type != BTRFS_EXTENT_DATA_KEY)
219                         break;
220
221                 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
222                 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
223
224                 if (disk_byte == wanted_disk_byte) {
225                         eie = NULL;
226                         if (extent_item_pos) {
227                                 ret = check_extent_in_eb(&key, eb, fi,
228                                                 *extent_item_pos,
229                                                 &eie);
230                                 if (ret < 0)
231                                         break;
232                         }
233                         if (!ret) {
234                                 ret = ulist_add(parents, eb->start,
235                                                 (uintptr_t)eie, GFP_NOFS);
236                                 if (ret < 0)
237                                         break;
238                                 if (!extent_item_pos) {
239                                         ret = btrfs_next_old_leaf(root, path,
240                                                         time_seq);
241                                         continue;
242                                 }
243                         }
244                 }
245                 ret = btrfs_next_old_item(root, path, time_seq);
246         }
247
248         if (ret > 0)
249                 ret = 0;
250         return ret;
251 }
252
253 /*
254  * resolve an indirect backref in the form (root_id, key, level)
255  * to a logical address
256  */
257 static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
258                                         int search_commit_root,
259                                         u64 time_seq,
260                                         struct __prelim_ref *ref,
261                                         struct ulist *parents,
262                                         const u64 *extent_item_pos)
263 {
264         struct btrfs_path *path;
265         struct btrfs_root *root;
266         struct btrfs_key root_key;
267         struct extent_buffer *eb;
268         int ret = 0;
269         int root_level;
270         int level = ref->level;
271
272         path = btrfs_alloc_path();
273         if (!path)
274                 return -ENOMEM;
275         path->search_commit_root = !!search_commit_root;
276
277         root_key.objectid = ref->root_id;
278         root_key.type = BTRFS_ROOT_ITEM_KEY;
279         root_key.offset = (u64)-1;
280         root = btrfs_read_fs_root_no_name(fs_info, &root_key);
281         if (IS_ERR(root)) {
282                 ret = PTR_ERR(root);
283                 goto out;
284         }
285
286         rcu_read_lock();
287         root_level = btrfs_header_level(root->node);
288         rcu_read_unlock();
289
290         if (root_level + 1 == level)
291                 goto out;
292
293         path->lowest_level = level;
294         ret = btrfs_search_old_slot(root, &ref->key_for_search, path, time_seq);
295         pr_debug("search slot in root %llu (level %d, ref count %d) returned "
296                  "%d for key (%llu %u %llu)\n",
297                  (unsigned long long)ref->root_id, level, ref->count, ret,
298                  (unsigned long long)ref->key_for_search.objectid,
299                  ref->key_for_search.type,
300                  (unsigned long long)ref->key_for_search.offset);
301         if (ret < 0)
302                 goto out;
303
304         eb = path->nodes[level];
305         while (!eb) {
306                 if (!level) {
307                         WARN_ON(1);
308                         ret = 1;
309                         goto out;
310                 }
311                 level--;
312                 eb = path->nodes[level];
313         }
314
315         ret = add_all_parents(root, path, parents, level, &ref->key_for_search,
316                                 time_seq, ref->wanted_disk_byte,
317                                 extent_item_pos);
318 out:
319         btrfs_free_path(path);
320         return ret;
321 }
322
323 /*
324  * resolve all indirect backrefs from the list
325  */
326 static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
327                                    int search_commit_root, u64 time_seq,
328                                    struct list_head *head,
329                                    const u64 *extent_item_pos)
330 {
331         int err;
332         int ret = 0;
333         struct __prelim_ref *ref;
334         struct __prelim_ref *ref_safe;
335         struct __prelim_ref *new_ref;
336         struct ulist *parents;
337         struct ulist_node *node;
338         struct ulist_iterator uiter;
339
340         parents = ulist_alloc(GFP_NOFS);
341         if (!parents)
342                 return -ENOMEM;
343
344         /*
345          * _safe allows us to insert directly after the current item without
346          * iterating over the newly inserted items.
347          * we're also allowed to re-assign ref during iteration.
348          */
349         list_for_each_entry_safe(ref, ref_safe, head, list) {
350                 if (ref->parent)        /* already direct */
351                         continue;
352                 if (ref->count == 0)
353                         continue;
354                 err = __resolve_indirect_ref(fs_info, search_commit_root,
355                                              time_seq, ref, parents,
356                                              extent_item_pos);
357                 if (err) {
358                         if (ret == 0)
359                                 ret = err;
360                         continue;
361                 }
362
363                 /* we put the first parent into the ref at hand */
364                 ULIST_ITER_INIT(&uiter);
365                 node = ulist_next(parents, &uiter);
366                 ref->parent = node ? node->val : 0;
367                 ref->inode_list = node ?
368                         (struct extent_inode_elem *)(uintptr_t)node->aux : 0;
369
370                 /* additional parents require new refs being added here */
371                 while ((node = ulist_next(parents, &uiter))) {
372                         new_ref = kmalloc(sizeof(*new_ref), GFP_NOFS);
373                         if (!new_ref) {
374                                 ret = -ENOMEM;
375                                 break;
376                         }
377                         memcpy(new_ref, ref, sizeof(*ref));
378                         new_ref->parent = node->val;
379                         new_ref->inode_list = (struct extent_inode_elem *)
380                                                         (uintptr_t)node->aux;
381                         list_add(&new_ref->list, &ref->list);
382                 }
383                 ulist_reinit(parents);
384         }
385
386         ulist_free(parents);
387         return ret;
388 }
389
390 static inline int ref_for_same_block(struct __prelim_ref *ref1,
391                                      struct __prelim_ref *ref2)
392 {
393         if (ref1->level != ref2->level)
394                 return 0;
395         if (ref1->root_id != ref2->root_id)
396                 return 0;
397         if (ref1->key_for_search.type != ref2->key_for_search.type)
398                 return 0;
399         if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
400                 return 0;
401         if (ref1->key_for_search.offset != ref2->key_for_search.offset)
402                 return 0;
403         if (ref1->parent != ref2->parent)
404                 return 0;
405
406         return 1;
407 }
408
409 /*
410  * read tree blocks and add keys where required.
411  */
412 static int __add_missing_keys(struct btrfs_fs_info *fs_info,
413                               struct list_head *head)
414 {
415         struct list_head *pos;
416         struct extent_buffer *eb;
417
418         list_for_each(pos, head) {
419                 struct __prelim_ref *ref;
420                 ref = list_entry(pos, struct __prelim_ref, list);
421
422                 if (ref->parent)
423                         continue;
424                 if (ref->key_for_search.type)
425                         continue;
426                 BUG_ON(!ref->wanted_disk_byte);
427                 eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
428                                      fs_info->tree_root->leafsize, 0);
429                 BUG_ON(!eb);
430                 btrfs_tree_read_lock(eb);
431                 if (btrfs_header_level(eb) == 0)
432                         btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
433                 else
434                         btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
435                 btrfs_tree_read_unlock(eb);
436                 free_extent_buffer(eb);
437         }
438         return 0;
439 }
440
441 /*
442  * merge two lists of backrefs and adjust counts accordingly
443  *
444  * mode = 1: merge identical keys, if key is set
445  *    FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
446  *           additionally, we could even add a key range for the blocks we
447  *           looked into to merge even more (-> replace unresolved refs by those
448  *           having a parent).
449  * mode = 2: merge identical parents
450  */
451 static int __merge_refs(struct list_head *head, int mode)
452 {
453         struct list_head *pos1;
454
455         list_for_each(pos1, head) {
456                 struct list_head *n2;
457                 struct list_head *pos2;
458                 struct __prelim_ref *ref1;
459
460                 ref1 = list_entry(pos1, struct __prelim_ref, list);
461
462                 for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
463                      pos2 = n2, n2 = pos2->next) {
464                         struct __prelim_ref *ref2;
465                         struct __prelim_ref *xchg;
466
467                         ref2 = list_entry(pos2, struct __prelim_ref, list);
468
469                         if (mode == 1) {
470                                 if (!ref_for_same_block(ref1, ref2))
471                                         continue;
472                                 if (!ref1->parent && ref2->parent) {
473                                         xchg = ref1;
474                                         ref1 = ref2;
475                                         ref2 = xchg;
476                                 }
477                                 ref1->count += ref2->count;
478                         } else {
479                                 if (ref1->parent != ref2->parent)
480                                         continue;
481                                 ref1->count += ref2->count;
482                         }
483                         list_del(&ref2->list);
484                         kfree(ref2);
485                 }
486
487         }
488         return 0;
489 }
490
491 /*
492  * add all currently queued delayed refs from this head whose seq nr is
493  * smaller or equal that seq to the list
494  */
495 static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
496                               struct list_head *prefs)
497 {
498         struct btrfs_delayed_extent_op *extent_op = head->extent_op;
499         struct rb_node *n = &head->node.rb_node;
500         struct btrfs_key key;
501         struct btrfs_key op_key = {0};
502         int sgn;
503         int ret = 0;
504
505         if (extent_op && extent_op->update_key)
506                 btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
507
508         while ((n = rb_prev(n))) {
509                 struct btrfs_delayed_ref_node *node;
510                 node = rb_entry(n, struct btrfs_delayed_ref_node,
511                                 rb_node);
512                 if (node->bytenr != head->node.bytenr)
513                         break;
514                 WARN_ON(node->is_head);
515
516                 if (node->seq > seq)
517                         continue;
518
519                 switch (node->action) {
520                 case BTRFS_ADD_DELAYED_EXTENT:
521                 case BTRFS_UPDATE_DELAYED_HEAD:
522                         WARN_ON(1);
523                         continue;
524                 case BTRFS_ADD_DELAYED_REF:
525                         sgn = 1;
526                         break;
527                 case BTRFS_DROP_DELAYED_REF:
528                         sgn = -1;
529                         break;
530                 default:
531                         BUG_ON(1);
532                 }
533                 switch (node->type) {
534                 case BTRFS_TREE_BLOCK_REF_KEY: {
535                         struct btrfs_delayed_tree_ref *ref;
536
537                         ref = btrfs_delayed_node_to_tree_ref(node);
538                         ret = __add_prelim_ref(prefs, ref->root, &op_key,
539                                                ref->level + 1, 0, node->bytenr,
540                                                node->ref_mod * sgn);
541                         break;
542                 }
543                 case BTRFS_SHARED_BLOCK_REF_KEY: {
544                         struct btrfs_delayed_tree_ref *ref;
545
546                         ref = btrfs_delayed_node_to_tree_ref(node);
547                         ret = __add_prelim_ref(prefs, ref->root, NULL,
548                                                ref->level + 1, ref->parent,
549                                                node->bytenr,
550                                                node->ref_mod * sgn);
551                         break;
552                 }
553                 case BTRFS_EXTENT_DATA_REF_KEY: {
554                         struct btrfs_delayed_data_ref *ref;
555                         ref = btrfs_delayed_node_to_data_ref(node);
556
557                         key.objectid = ref->objectid;
558                         key.type = BTRFS_EXTENT_DATA_KEY;
559                         key.offset = ref->offset;
560                         ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
561                                                node->bytenr,
562                                                node->ref_mod * sgn);
563                         break;
564                 }
565                 case BTRFS_SHARED_DATA_REF_KEY: {
566                         struct btrfs_delayed_data_ref *ref;
567
568                         ref = btrfs_delayed_node_to_data_ref(node);
569
570                         key.objectid = ref->objectid;
571                         key.type = BTRFS_EXTENT_DATA_KEY;
572                         key.offset = ref->offset;
573                         ret = __add_prelim_ref(prefs, ref->root, &key, 0,
574                                                ref->parent, node->bytenr,
575                                                node->ref_mod * sgn);
576                         break;
577                 }
578                 default:
579                         WARN_ON(1);
580                 }
581                 BUG_ON(ret);
582         }
583
584         return 0;
585 }
586
587 /*
588  * add all inline backrefs for bytenr to the list
589  */
590 static int __add_inline_refs(struct btrfs_fs_info *fs_info,
591                              struct btrfs_path *path, u64 bytenr,
592                              int *info_level, struct list_head *prefs)
593 {
594         int ret = 0;
595         int slot;
596         struct extent_buffer *leaf;
597         struct btrfs_key key;
598         unsigned long ptr;
599         unsigned long end;
600         struct btrfs_extent_item *ei;
601         u64 flags;
602         u64 item_size;
603
604         /*
605          * enumerate all inline refs
606          */
607         leaf = path->nodes[0];
608         slot = path->slots[0];
609
610         item_size = btrfs_item_size_nr(leaf, slot);
611         BUG_ON(item_size < sizeof(*ei));
612
613         ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
614         flags = btrfs_extent_flags(leaf, ei);
615
616         ptr = (unsigned long)(ei + 1);
617         end = (unsigned long)ei + item_size;
618
619         if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
620                 struct btrfs_tree_block_info *info;
621
622                 info = (struct btrfs_tree_block_info *)ptr;
623                 *info_level = btrfs_tree_block_level(leaf, info);
624                 ptr += sizeof(struct btrfs_tree_block_info);
625                 BUG_ON(ptr > end);
626         } else {
627                 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
628         }
629
630         while (ptr < end) {
631                 struct btrfs_extent_inline_ref *iref;
632                 u64 offset;
633                 int type;
634
635                 iref = (struct btrfs_extent_inline_ref *)ptr;
636                 type = btrfs_extent_inline_ref_type(leaf, iref);
637                 offset = btrfs_extent_inline_ref_offset(leaf, iref);
638
639                 switch (type) {
640                 case BTRFS_SHARED_BLOCK_REF_KEY:
641                         ret = __add_prelim_ref(prefs, 0, NULL,
642                                                 *info_level + 1, offset,
643                                                 bytenr, 1);
644                         break;
645                 case BTRFS_SHARED_DATA_REF_KEY: {
646                         struct btrfs_shared_data_ref *sdref;
647                         int count;
648
649                         sdref = (struct btrfs_shared_data_ref *)(iref + 1);
650                         count = btrfs_shared_data_ref_count(leaf, sdref);
651                         ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
652                                                bytenr, count);
653                         break;
654                 }
655                 case BTRFS_TREE_BLOCK_REF_KEY:
656                         ret = __add_prelim_ref(prefs, offset, NULL,
657                                                *info_level + 1, 0,
658                                                bytenr, 1);
659                         break;
660                 case BTRFS_EXTENT_DATA_REF_KEY: {
661                         struct btrfs_extent_data_ref *dref;
662                         int count;
663                         u64 root;
664
665                         dref = (struct btrfs_extent_data_ref *)(&iref->offset);
666                         count = btrfs_extent_data_ref_count(leaf, dref);
667                         key.objectid = btrfs_extent_data_ref_objectid(leaf,
668                                                                       dref);
669                         key.type = BTRFS_EXTENT_DATA_KEY;
670                         key.offset = btrfs_extent_data_ref_offset(leaf, dref);
671                         root = btrfs_extent_data_ref_root(leaf, dref);
672                         ret = __add_prelim_ref(prefs, root, &key, 0, 0,
673                                                bytenr, count);
674                         break;
675                 }
676                 default:
677                         WARN_ON(1);
678                 }
679                 BUG_ON(ret);
680                 ptr += btrfs_extent_inline_ref_size(type);
681         }
682
683         return 0;
684 }
685
686 /*
687  * add all non-inline backrefs for bytenr to the list
688  */
689 static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
690                             struct btrfs_path *path, u64 bytenr,
691                             int info_level, struct list_head *prefs)
692 {
693         struct btrfs_root *extent_root = fs_info->extent_root;
694         int ret;
695         int slot;
696         struct extent_buffer *leaf;
697         struct btrfs_key key;
698
699         while (1) {
700                 ret = btrfs_next_item(extent_root, path);
701                 if (ret < 0)
702                         break;
703                 if (ret) {
704                         ret = 0;
705                         break;
706                 }
707
708                 slot = path->slots[0];
709                 leaf = path->nodes[0];
710                 btrfs_item_key_to_cpu(leaf, &key, slot);
711
712                 if (key.objectid != bytenr)
713                         break;
714                 if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
715                         continue;
716                 if (key.type > BTRFS_SHARED_DATA_REF_KEY)
717                         break;
718
719                 switch (key.type) {
720                 case BTRFS_SHARED_BLOCK_REF_KEY:
721                         ret = __add_prelim_ref(prefs, 0, NULL,
722                                                 info_level + 1, key.offset,
723                                                 bytenr, 1);
724                         break;
725                 case BTRFS_SHARED_DATA_REF_KEY: {
726                         struct btrfs_shared_data_ref *sdref;
727                         int count;
728
729                         sdref = btrfs_item_ptr(leaf, slot,
730                                               struct btrfs_shared_data_ref);
731                         count = btrfs_shared_data_ref_count(leaf, sdref);
732                         ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
733                                                 bytenr, count);
734                         break;
735                 }
736                 case BTRFS_TREE_BLOCK_REF_KEY:
737                         ret = __add_prelim_ref(prefs, key.offset, NULL,
738                                                info_level + 1, 0,
739                                                bytenr, 1);
740                         break;
741                 case BTRFS_EXTENT_DATA_REF_KEY: {
742                         struct btrfs_extent_data_ref *dref;
743                         int count;
744                         u64 root;
745
746                         dref = btrfs_item_ptr(leaf, slot,
747                                               struct btrfs_extent_data_ref);
748                         count = btrfs_extent_data_ref_count(leaf, dref);
749                         key.objectid = btrfs_extent_data_ref_objectid(leaf,
750                                                                       dref);
751                         key.type = BTRFS_EXTENT_DATA_KEY;
752                         key.offset = btrfs_extent_data_ref_offset(leaf, dref);
753                         root = btrfs_extent_data_ref_root(leaf, dref);
754                         ret = __add_prelim_ref(prefs, root, &key, 0, 0,
755                                                bytenr, count);
756                         break;
757                 }
758                 default:
759                         WARN_ON(1);
760                 }
761                 BUG_ON(ret);
762         }
763
764         return ret;
765 }
766
767 /*
768  * this adds all existing backrefs (inline backrefs, backrefs and delayed
769  * refs) for the given bytenr to the refs list, merges duplicates and resolves
770  * indirect refs to their parent bytenr.
771  * When roots are found, they're added to the roots list
772  *
773  * FIXME some caching might speed things up
774  */
775 static int find_parent_nodes(struct btrfs_trans_handle *trans,
776                              struct btrfs_fs_info *fs_info, u64 bytenr,
777                              u64 time_seq, struct ulist *refs,
778                              struct ulist *roots, const u64 *extent_item_pos)
779 {
780         struct btrfs_key key;
781         struct btrfs_path *path;
782         struct btrfs_delayed_ref_root *delayed_refs = NULL;
783         struct btrfs_delayed_ref_head *head;
784         int info_level = 0;
785         int ret;
786         int search_commit_root = (trans == BTRFS_BACKREF_SEARCH_COMMIT_ROOT);
787         struct list_head prefs_delayed;
788         struct list_head prefs;
789         struct __prelim_ref *ref;
790
791         INIT_LIST_HEAD(&prefs);
792         INIT_LIST_HEAD(&prefs_delayed);
793
794         key.objectid = bytenr;
795         key.type = BTRFS_EXTENT_ITEM_KEY;
796         key.offset = (u64)-1;
797
798         path = btrfs_alloc_path();
799         if (!path)
800                 return -ENOMEM;
801         path->search_commit_root = !!search_commit_root;
802
803         /*
804          * grab both a lock on the path and a lock on the delayed ref head.
805          * We need both to get a consistent picture of how the refs look
806          * at a specified point in time
807          */
808 again:
809         head = NULL;
810
811         ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
812         if (ret < 0)
813                 goto out;
814         BUG_ON(ret == 0);
815
816         if (trans != BTRFS_BACKREF_SEARCH_COMMIT_ROOT) {
817                 /*
818                  * look if there are updates for this ref queued and lock the
819                  * head
820                  */
821                 delayed_refs = &trans->transaction->delayed_refs;
822                 spin_lock(&delayed_refs->lock);
823                 head = btrfs_find_delayed_ref_head(trans, bytenr);
824                 if (head) {
825                         if (!mutex_trylock(&head->mutex)) {
826                                 atomic_inc(&head->node.refs);
827                                 spin_unlock(&delayed_refs->lock);
828
829                                 btrfs_release_path(path);
830
831                                 /*
832                                  * Mutex was contended, block until it's
833                                  * released and try again
834                                  */
835                                 mutex_lock(&head->mutex);
836                                 mutex_unlock(&head->mutex);
837                                 btrfs_put_delayed_ref(&head->node);
838                                 goto again;
839                         }
840                         ret = __add_delayed_refs(head, time_seq,
841                                                  &prefs_delayed);
842                         mutex_unlock(&head->mutex);
843                         if (ret) {
844                                 spin_unlock(&delayed_refs->lock);
845                                 goto out;
846                         }
847                 }
848                 spin_unlock(&delayed_refs->lock);
849         }
850
851         if (path->slots[0]) {
852                 struct extent_buffer *leaf;
853                 int slot;
854
855                 path->slots[0]--;
856                 leaf = path->nodes[0];
857                 slot = path->slots[0];
858                 btrfs_item_key_to_cpu(leaf, &key, slot);
859                 if (key.objectid == bytenr &&
860                     key.type == BTRFS_EXTENT_ITEM_KEY) {
861                         ret = __add_inline_refs(fs_info, path, bytenr,
862                                                 &info_level, &prefs);
863                         if (ret)
864                                 goto out;
865                         ret = __add_keyed_refs(fs_info, path, bytenr,
866                                                info_level, &prefs);
867                         if (ret)
868                                 goto out;
869                 }
870         }
871         btrfs_release_path(path);
872
873         list_splice_init(&prefs_delayed, &prefs);
874
875         ret = __add_missing_keys(fs_info, &prefs);
876         if (ret)
877                 goto out;
878
879         ret = __merge_refs(&prefs, 1);
880         if (ret)
881                 goto out;
882
883         ret = __resolve_indirect_refs(fs_info, search_commit_root, time_seq,
884                                       &prefs, extent_item_pos);
885         if (ret)
886                 goto out;
887
888         ret = __merge_refs(&prefs, 2);
889         if (ret)
890                 goto out;
891
892         while (!list_empty(&prefs)) {
893                 ref = list_first_entry(&prefs, struct __prelim_ref, list);
894                 list_del(&ref->list);
895                 if (ref->count < 0)
896                         WARN_ON(1);
897                 if (ref->count && ref->root_id && ref->parent == 0) {
898                         /* no parent == root of tree */
899                         ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
900                         BUG_ON(ret < 0);
901                 }
902                 if (ref->count && ref->parent) {
903                         struct extent_inode_elem *eie = NULL;
904                         if (extent_item_pos && !ref->inode_list) {
905                                 u32 bsz;
906                                 struct extent_buffer *eb;
907                                 bsz = btrfs_level_size(fs_info->extent_root,
908                                                         info_level);
909                                 eb = read_tree_block(fs_info->extent_root,
910                                                            ref->parent, bsz, 0);
911                                 BUG_ON(!eb);
912                                 ret = find_extent_in_eb(eb, bytenr,
913                                                         *extent_item_pos, &eie);
914                                 ref->inode_list = eie;
915                                 free_extent_buffer(eb);
916                         }
917                         ret = ulist_add_merge(refs, ref->parent,
918                                               (uintptr_t)ref->inode_list,
919                                               (u64 *)&eie, GFP_NOFS);
920                         if (!ret && extent_item_pos) {
921                                 /*
922                                  * we've recorded that parent, so we must extend
923                                  * its inode list here
924                                  */
925                                 BUG_ON(!eie);
926                                 while (eie->next)
927                                         eie = eie->next;
928                                 eie->next = ref->inode_list;
929                         }
930                         BUG_ON(ret < 0);
931                 }
932                 kfree(ref);
933         }
934
935 out:
936         btrfs_free_path(path);
937         while (!list_empty(&prefs)) {
938                 ref = list_first_entry(&prefs, struct __prelim_ref, list);
939                 list_del(&ref->list);
940                 kfree(ref);
941         }
942         while (!list_empty(&prefs_delayed)) {
943                 ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
944                                        list);
945                 list_del(&ref->list);
946                 kfree(ref);
947         }
948
949         return ret;
950 }
951
952 static void free_leaf_list(struct ulist *blocks)
953 {
954         struct ulist_node *node = NULL;
955         struct extent_inode_elem *eie;
956         struct extent_inode_elem *eie_next;
957         struct ulist_iterator uiter;
958
959         ULIST_ITER_INIT(&uiter);
960         while ((node = ulist_next(blocks, &uiter))) {
961                 if (!node->aux)
962                         continue;
963                 eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
964                 for (; eie; eie = eie_next) {
965                         eie_next = eie->next;
966                         kfree(eie);
967                 }
968                 node->aux = 0;
969         }
970
971         ulist_free(blocks);
972 }
973
974 /*
975  * Finds all leafs with a reference to the specified combination of bytenr and
976  * offset. key_list_head will point to a list of corresponding keys (caller must
977  * free each list element). The leafs will be stored in the leafs ulist, which
978  * must be freed with ulist_free.
979  *
980  * returns 0 on success, <0 on error
981  */
982 static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
983                                 struct btrfs_fs_info *fs_info, u64 bytenr,
984                                 u64 time_seq, struct ulist **leafs,
985                                 const u64 *extent_item_pos)
986 {
987         struct ulist *tmp;
988         int ret;
989
990         tmp = ulist_alloc(GFP_NOFS);
991         if (!tmp)
992                 return -ENOMEM;
993         *leafs = ulist_alloc(GFP_NOFS);
994         if (!*leafs) {
995                 ulist_free(tmp);
996                 return -ENOMEM;
997         }
998
999         ret = find_parent_nodes(trans, fs_info, bytenr,
1000                                 time_seq, *leafs, tmp, extent_item_pos);
1001         ulist_free(tmp);
1002
1003         if (ret < 0 && ret != -ENOENT) {
1004                 free_leaf_list(*leafs);
1005                 return ret;
1006         }
1007
1008         return 0;
1009 }
1010
1011 /*
1012  * walk all backrefs for a given extent to find all roots that reference this
1013  * extent. Walking a backref means finding all extents that reference this
1014  * extent and in turn walk the backrefs of those, too. Naturally this is a
1015  * recursive process, but here it is implemented in an iterative fashion: We
1016  * find all referencing extents for the extent in question and put them on a
1017  * list. In turn, we find all referencing extents for those, further appending
1018  * to the list. The way we iterate the list allows adding more elements after
1019  * the current while iterating. The process stops when we reach the end of the
1020  * list. Found roots are added to the roots list.
1021  *
1022  * returns 0 on success, < 0 on error.
1023  */
1024 int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1025                                 struct btrfs_fs_info *fs_info, u64 bytenr,
1026                                 u64 time_seq, struct ulist **roots)
1027 {
1028         struct ulist *tmp;
1029         struct ulist_node *node = NULL;
1030         struct ulist_iterator uiter;
1031         int ret;
1032
1033         tmp = ulist_alloc(GFP_NOFS);
1034         if (!tmp)
1035                 return -ENOMEM;
1036         *roots = ulist_alloc(GFP_NOFS);
1037         if (!*roots) {
1038                 ulist_free(tmp);
1039                 return -ENOMEM;
1040         }
1041
1042         ULIST_ITER_INIT(&uiter);
1043         while (1) {
1044                 ret = find_parent_nodes(trans, fs_info, bytenr,
1045                                         time_seq, tmp, *roots, NULL);
1046                 if (ret < 0 && ret != -ENOENT) {
1047                         ulist_free(tmp);
1048                         ulist_free(*roots);
1049                         return ret;
1050                 }
1051                 node = ulist_next(tmp, &uiter);
1052                 if (!node)
1053                         break;
1054                 bytenr = node->val;
1055         }
1056
1057         ulist_free(tmp);
1058         return 0;
1059 }
1060
1061
1062 static int __inode_info(u64 inum, u64 ioff, u8 key_type,
1063                         struct btrfs_root *fs_root, struct btrfs_path *path,
1064                         struct btrfs_key *found_key)
1065 {
1066         int ret;
1067         struct btrfs_key key;
1068         struct extent_buffer *eb;
1069
1070         key.type = key_type;
1071         key.objectid = inum;
1072         key.offset = ioff;
1073
1074         ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1075         if (ret < 0)
1076                 return ret;
1077
1078         eb = path->nodes[0];
1079         if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1080                 ret = btrfs_next_leaf(fs_root, path);
1081                 if (ret)
1082                         return ret;
1083                 eb = path->nodes[0];
1084         }
1085
1086         btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1087         if (found_key->type != key.type || found_key->objectid != key.objectid)
1088                 return 1;
1089
1090         return 0;
1091 }
1092
1093 /*
1094  * this makes the path point to (inum INODE_ITEM ioff)
1095  */
1096 int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
1097                         struct btrfs_path *path)
1098 {
1099         struct btrfs_key key;
1100         return __inode_info(inum, ioff, BTRFS_INODE_ITEM_KEY, fs_root, path,
1101                                 &key);
1102 }
1103
1104 static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
1105                                 struct btrfs_path *path,
1106                                 struct btrfs_key *found_key)
1107 {
1108         return __inode_info(inum, ioff, BTRFS_INODE_REF_KEY, fs_root, path,
1109                                 found_key);
1110 }
1111
1112 /*
1113  * this iterates to turn a btrfs_inode_ref into a full filesystem path. elements
1114  * of the path are separated by '/' and the path is guaranteed to be
1115  * 0-terminated. the path is only given within the current file system.
1116  * Therefore, it never starts with a '/'. the caller is responsible to provide
1117  * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1118  * the start point of the resulting string is returned. this pointer is within
1119  * dest, normally.
1120  * in case the path buffer would overflow, the pointer is decremented further
1121  * as if output was written to the buffer, though no more output is actually
1122  * generated. that way, the caller can determine how much space would be
1123  * required for the path to fit into the buffer. in that case, the returned
1124  * value will be smaller than dest. callers must check this!
1125  */
1126 char *btrfs_iref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1127                          struct btrfs_inode_ref *iref,
1128                          struct extent_buffer *eb_in, u64 parent,
1129                          char *dest, u32 size)
1130 {
1131         u32 len;
1132         int slot;
1133         u64 next_inum;
1134         int ret;
1135         s64 bytes_left = size - 1;
1136         struct extent_buffer *eb = eb_in;
1137         struct btrfs_key found_key;
1138         int leave_spinning = path->leave_spinning;
1139
1140         if (bytes_left >= 0)
1141                 dest[bytes_left] = '\0';
1142
1143         path->leave_spinning = 1;
1144         while (1) {
1145                 len = btrfs_inode_ref_name_len(eb, iref);
1146                 bytes_left -= len;
1147                 if (bytes_left >= 0)
1148                         read_extent_buffer(eb, dest + bytes_left,
1149                                                 (unsigned long)(iref + 1), len);
1150                 if (eb != eb_in) {
1151                         btrfs_tree_read_unlock_blocking(eb);
1152                         free_extent_buffer(eb);
1153                 }
1154                 ret = inode_ref_info(parent, 0, fs_root, path, &found_key);
1155                 if (ret > 0)
1156                         ret = -ENOENT;
1157                 if (ret)
1158                         break;
1159                 next_inum = found_key.offset;
1160
1161                 /* regular exit ahead */
1162                 if (parent == next_inum)
1163                         break;
1164
1165                 slot = path->slots[0];
1166                 eb = path->nodes[0];
1167                 /* make sure we can use eb after releasing the path */
1168                 if (eb != eb_in) {
1169                         atomic_inc(&eb->refs);
1170                         btrfs_tree_read_lock(eb);
1171                         btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1172                 }
1173                 btrfs_release_path(path);
1174
1175                 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1176                 parent = next_inum;
1177                 --bytes_left;
1178                 if (bytes_left >= 0)
1179                         dest[bytes_left] = '/';
1180         }
1181
1182         btrfs_release_path(path);
1183         path->leave_spinning = leave_spinning;
1184
1185         if (ret)
1186                 return ERR_PTR(ret);
1187
1188         return dest + bytes_left;
1189 }
1190
1191 /*
1192  * this makes the path point to (logical EXTENT_ITEM *)
1193  * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1194  * tree blocks and <0 on error.
1195  */
1196 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1197                         struct btrfs_path *path, struct btrfs_key *found_key,
1198                         u64 *flags_ret)
1199 {
1200         int ret;
1201         u64 flags;
1202         u32 item_size;
1203         struct extent_buffer *eb;
1204         struct btrfs_extent_item *ei;
1205         struct btrfs_key key;
1206
1207         key.type = BTRFS_EXTENT_ITEM_KEY;
1208         key.objectid = logical;
1209         key.offset = (u64)-1;
1210
1211         ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1212         if (ret < 0)
1213                 return ret;
1214         ret = btrfs_previous_item(fs_info->extent_root, path,
1215                                         0, BTRFS_EXTENT_ITEM_KEY);
1216         if (ret < 0)
1217                 return ret;
1218
1219         btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1220         if (found_key->type != BTRFS_EXTENT_ITEM_KEY ||
1221             found_key->objectid > logical ||
1222             found_key->objectid + found_key->offset <= logical) {
1223                 pr_debug("logical %llu is not within any extent\n",
1224                          (unsigned long long)logical);
1225                 return -ENOENT;
1226         }
1227
1228         eb = path->nodes[0];
1229         item_size = btrfs_item_size_nr(eb, path->slots[0]);
1230         BUG_ON(item_size < sizeof(*ei));
1231
1232         ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1233         flags = btrfs_extent_flags(eb, ei);
1234
1235         pr_debug("logical %llu is at position %llu within the extent (%llu "
1236                  "EXTENT_ITEM %llu) flags %#llx size %u\n",
1237                  (unsigned long long)logical,
1238                  (unsigned long long)(logical - found_key->objectid),
1239                  (unsigned long long)found_key->objectid,
1240                  (unsigned long long)found_key->offset,
1241                  (unsigned long long)flags, item_size);
1242
1243         WARN_ON(!flags_ret);
1244         if (flags_ret) {
1245                 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1246                         *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1247                 else if (flags & BTRFS_EXTENT_FLAG_DATA)
1248                         *flags_ret = BTRFS_EXTENT_FLAG_DATA;
1249                 else
1250                         BUG_ON(1);
1251                 return 0;
1252         }
1253
1254         return -EIO;
1255 }
1256
1257 /*
1258  * helper function to iterate extent inline refs. ptr must point to a 0 value
1259  * for the first call and may be modified. it is used to track state.
1260  * if more refs exist, 0 is returned and the next call to
1261  * __get_extent_inline_ref must pass the modified ptr parameter to get the
1262  * next ref. after the last ref was processed, 1 is returned.
1263  * returns <0 on error
1264  */
1265 static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
1266                                 struct btrfs_extent_item *ei, u32 item_size,
1267                                 struct btrfs_extent_inline_ref **out_eiref,
1268                                 int *out_type)
1269 {
1270         unsigned long end;
1271         u64 flags;
1272         struct btrfs_tree_block_info *info;
1273
1274         if (!*ptr) {
1275                 /* first call */
1276                 flags = btrfs_extent_flags(eb, ei);
1277                 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1278                         info = (struct btrfs_tree_block_info *)(ei + 1);
1279                         *out_eiref =
1280                                 (struct btrfs_extent_inline_ref *)(info + 1);
1281                 } else {
1282                         *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1283                 }
1284                 *ptr = (unsigned long)*out_eiref;
1285                 if ((void *)*ptr >= (void *)ei + item_size)
1286                         return -ENOENT;
1287         }
1288
1289         end = (unsigned long)ei + item_size;
1290         *out_eiref = (struct btrfs_extent_inline_ref *)*ptr;
1291         *out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
1292
1293         *ptr += btrfs_extent_inline_ref_size(*out_type);
1294         WARN_ON(*ptr > end);
1295         if (*ptr == end)
1296                 return 1; /* last */
1297
1298         return 0;
1299 }
1300
1301 /*
1302  * reads the tree block backref for an extent. tree level and root are returned
1303  * through out_level and out_root. ptr must point to a 0 value for the first
1304  * call and may be modified (see __get_extent_inline_ref comment).
1305  * returns 0 if data was provided, 1 if there was no more data to provide or
1306  * <0 on error.
1307  */
1308 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1309                                 struct btrfs_extent_item *ei, u32 item_size,
1310                                 u64 *out_root, u8 *out_level)
1311 {
1312         int ret;
1313         int type;
1314         struct btrfs_tree_block_info *info;
1315         struct btrfs_extent_inline_ref *eiref;
1316
1317         if (*ptr == (unsigned long)-1)
1318                 return 1;
1319
1320         while (1) {
1321                 ret = __get_extent_inline_ref(ptr, eb, ei, item_size,
1322                                                 &eiref, &type);
1323                 if (ret < 0)
1324                         return ret;
1325
1326                 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1327                     type == BTRFS_SHARED_BLOCK_REF_KEY)
1328                         break;
1329
1330                 if (ret == 1)
1331                         return 1;
1332         }
1333
1334         /* we can treat both ref types equally here */
1335         info = (struct btrfs_tree_block_info *)(ei + 1);
1336         *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1337         *out_level = btrfs_tree_block_level(eb, info);
1338
1339         if (ret == 1)
1340                 *ptr = (unsigned long)-1;
1341
1342         return 0;
1343 }
1344
1345 static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
1346                                 u64 root, u64 extent_item_objectid,
1347                                 iterate_extent_inodes_t *iterate, void *ctx)
1348 {
1349         struct extent_inode_elem *eie;
1350         int ret = 0;
1351
1352         for (eie = inode_list; eie; eie = eie->next) {
1353                 pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
1354                          "root %llu\n", extent_item_objectid,
1355                          eie->inum, eie->offset, root);
1356                 ret = iterate(eie->inum, eie->offset, root, ctx);
1357                 if (ret) {
1358                         pr_debug("stopping iteration for %llu due to ret=%d\n",
1359                                  extent_item_objectid, ret);
1360                         break;
1361                 }
1362         }
1363
1364         return ret;
1365 }
1366
1367 /*
1368  * calls iterate() for every inode that references the extent identified by
1369  * the given parameters.
1370  * when the iterator function returns a non-zero value, iteration stops.
1371  */
1372 int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1373                                 u64 extent_item_objectid, u64 extent_item_pos,
1374                                 int search_commit_root,
1375                                 iterate_extent_inodes_t *iterate, void *ctx)
1376 {
1377         int ret;
1378         struct list_head data_refs = LIST_HEAD_INIT(data_refs);
1379         struct list_head shared_refs = LIST_HEAD_INIT(shared_refs);
1380         struct btrfs_trans_handle *trans;
1381         struct ulist *refs = NULL;
1382         struct ulist *roots = NULL;
1383         struct ulist_node *ref_node = NULL;
1384         struct ulist_node *root_node = NULL;
1385         struct seq_list tree_mod_seq_elem = {};
1386         struct ulist_iterator ref_uiter;
1387         struct ulist_iterator root_uiter;
1388
1389         pr_debug("resolving all inodes for extent %llu\n",
1390                         extent_item_objectid);
1391
1392         if (search_commit_root) {
1393                 trans = BTRFS_BACKREF_SEARCH_COMMIT_ROOT;
1394         } else {
1395                 trans = btrfs_join_transaction(fs_info->extent_root);
1396                 if (IS_ERR(trans))
1397                         return PTR_ERR(trans);
1398                 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1399         }
1400
1401         ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1402                                    tree_mod_seq_elem.seq, &refs,
1403                                    &extent_item_pos);
1404         if (ret)
1405                 goto out;
1406
1407         ULIST_ITER_INIT(&ref_uiter);
1408         while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1409                 ret = btrfs_find_all_roots(trans, fs_info, ref_node->val,
1410                                            tree_mod_seq_elem.seq, &roots);
1411                 if (ret)
1412                         break;
1413                 ULIST_ITER_INIT(&root_uiter);
1414                 while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1415                         pr_debug("root %llu references leaf %llu, data list "
1416                                  "%#llx\n", root_node->val, ref_node->val,
1417                                  (long long)ref_node->aux);
1418                         ret = iterate_leaf_refs((struct extent_inode_elem *)
1419                                                 (uintptr_t)ref_node->aux,
1420                                                 root_node->val,
1421                                                 extent_item_objectid,
1422                                                 iterate, ctx);
1423                 }
1424                 ulist_free(roots);
1425                 roots = NULL;
1426         }
1427
1428         free_leaf_list(refs);
1429         ulist_free(roots);
1430 out:
1431         if (!search_commit_root) {
1432                 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1433                 btrfs_end_transaction(trans, fs_info->extent_root);
1434         }
1435
1436         return ret;
1437 }
1438
1439 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
1440                                 struct btrfs_path *path,
1441                                 iterate_extent_inodes_t *iterate, void *ctx)
1442 {
1443         int ret;
1444         u64 extent_item_pos;
1445         u64 flags = 0;
1446         struct btrfs_key found_key;
1447         int search_commit_root = path->search_commit_root;
1448
1449         ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
1450         btrfs_release_path(path);
1451         if (ret < 0)
1452                 return ret;
1453         if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1454                 return -EINVAL;
1455
1456         extent_item_pos = logical - found_key.objectid;
1457         ret = iterate_extent_inodes(fs_info, found_key.objectid,
1458                                         extent_item_pos, search_commit_root,
1459                                         iterate, ctx);
1460
1461         return ret;
1462 }
1463
1464 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
1465                                 struct btrfs_path *path,
1466                                 iterate_irefs_t *iterate, void *ctx)
1467 {
1468         int ret = 0;
1469         int slot;
1470         u32 cur;
1471         u32 len;
1472         u32 name_len;
1473         u64 parent = 0;
1474         int found = 0;
1475         struct extent_buffer *eb;
1476         struct btrfs_item *item;
1477         struct btrfs_inode_ref *iref;
1478         struct btrfs_key found_key;
1479
1480         while (!ret) {
1481                 path->leave_spinning = 1;
1482                 ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path,
1483                                         &found_key);
1484                 if (ret < 0)
1485                         break;
1486                 if (ret) {
1487                         ret = found ? 0 : -ENOENT;
1488                         break;
1489                 }
1490                 ++found;
1491
1492                 parent = found_key.offset;
1493                 slot = path->slots[0];
1494                 eb = path->nodes[0];
1495                 /* make sure we can use eb after releasing the path */
1496                 atomic_inc(&eb->refs);
1497                 btrfs_tree_read_lock(eb);
1498                 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1499                 btrfs_release_path(path);
1500
1501                 item = btrfs_item_nr(eb, slot);
1502                 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1503
1504                 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
1505                         name_len = btrfs_inode_ref_name_len(eb, iref);
1506                         /* path must be released before calling iterate()! */
1507                         pr_debug("following ref at offset %u for inode %llu in "
1508                                  "tree %llu\n", cur,
1509                                  (unsigned long long)found_key.objectid,
1510                                  (unsigned long long)fs_root->objectid);
1511                         ret = iterate(parent, iref, eb, ctx);
1512                         if (ret)
1513                                 break;
1514                         len = sizeof(*iref) + name_len;
1515                         iref = (struct btrfs_inode_ref *)((char *)iref + len);
1516                 }
1517                 btrfs_tree_read_unlock_blocking(eb);
1518                 free_extent_buffer(eb);
1519         }
1520
1521         btrfs_release_path(path);
1522
1523         return ret;
1524 }
1525
1526 /*
1527  * returns 0 if the path could be dumped (probably truncated)
1528  * returns <0 in case of an error
1529  */
1530 static int inode_to_path(u64 inum, struct btrfs_inode_ref *iref,
1531                                 struct extent_buffer *eb, void *ctx)
1532 {
1533         struct inode_fs_paths *ipath = ctx;
1534         char *fspath;
1535         char *fspath_min;
1536         int i = ipath->fspath->elem_cnt;
1537         const int s_ptr = sizeof(char *);
1538         u32 bytes_left;
1539
1540         bytes_left = ipath->fspath->bytes_left > s_ptr ?
1541                                         ipath->fspath->bytes_left - s_ptr : 0;
1542
1543         fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
1544         fspath = btrfs_iref_to_path(ipath->fs_root, ipath->btrfs_path, iref, eb,
1545                                 inum, fspath_min, bytes_left);
1546         if (IS_ERR(fspath))
1547                 return PTR_ERR(fspath);
1548
1549         if (fspath > fspath_min) {
1550                 pr_debug("path resolved: %s\n", fspath);
1551                 ipath->fspath->val[i] = (u64)(unsigned long)fspath;
1552                 ++ipath->fspath->elem_cnt;
1553                 ipath->fspath->bytes_left = fspath - fspath_min;
1554         } else {
1555                 pr_debug("missed path, not enough space. missing bytes: %lu, "
1556                          "constructed so far: %s\n",
1557                          (unsigned long)(fspath_min - fspath), fspath_min);
1558                 ++ipath->fspath->elem_missed;
1559                 ipath->fspath->bytes_missing += fspath_min - fspath;
1560                 ipath->fspath->bytes_left = 0;
1561         }
1562
1563         return 0;
1564 }
1565
1566 /*
1567  * this dumps all file system paths to the inode into the ipath struct, provided
1568  * is has been created large enough. each path is zero-terminated and accessed
1569  * from ipath->fspath->val[i].
1570  * when it returns, there are ipath->fspath->elem_cnt number of paths available
1571  * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
1572  * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
1573  * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
1574  * have been needed to return all paths.
1575  */
1576 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
1577 {
1578         return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
1579                                 inode_to_path, ipath);
1580 }
1581
1582 struct btrfs_data_container *init_data_container(u32 total_bytes)
1583 {
1584         struct btrfs_data_container *data;
1585         size_t alloc_bytes;
1586
1587         alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
1588         data = vmalloc(alloc_bytes);
1589         if (!data)
1590                 return ERR_PTR(-ENOMEM);
1591
1592         if (total_bytes >= sizeof(*data)) {
1593                 data->bytes_left = total_bytes - sizeof(*data);
1594                 data->bytes_missing = 0;
1595         } else {
1596                 data->bytes_missing = sizeof(*data) - total_bytes;
1597                 data->bytes_left = 0;
1598         }
1599
1600         data->elem_cnt = 0;
1601         data->elem_missed = 0;
1602
1603         return data;
1604 }
1605
1606 /*
1607  * allocates space to return multiple file system paths for an inode.
1608  * total_bytes to allocate are passed, note that space usable for actual path
1609  * information will be total_bytes - sizeof(struct inode_fs_paths).
1610  * the returned pointer must be freed with free_ipath() in the end.
1611  */
1612 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
1613                                         struct btrfs_path *path)
1614 {
1615         struct inode_fs_paths *ifp;
1616         struct btrfs_data_container *fspath;
1617
1618         fspath = init_data_container(total_bytes);
1619         if (IS_ERR(fspath))
1620                 return (void *)fspath;
1621
1622         ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
1623         if (!ifp) {
1624                 kfree(fspath);
1625                 return ERR_PTR(-ENOMEM);
1626         }
1627
1628         ifp->btrfs_path = path;
1629         ifp->fspath = fspath;
1630         ifp->fs_root = fs_root;
1631
1632         return ifp;
1633 }
1634
1635 void free_ipath(struct inode_fs_paths *ipath)
1636 {
1637         if (!ipath)
1638                 return;
1639         vfree(ipath->fspath);
1640         kfree(ipath);
1641 }