]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/btrfs/backref.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris...
[karo-tx-linux.git] / fs / btrfs / backref.c
1 /*
2  * Copyright (C) 2011 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/vmalloc.h>
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "backref.h"
23 #include "ulist.h"
24 #include "transaction.h"
25 #include "delayed-ref.h"
26 #include "locking.h"
27
28 struct extent_inode_elem {
29         u64 inum;
30         u64 offset;
31         struct extent_inode_elem *next;
32 };
33
34 static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
35                                 struct btrfs_file_extent_item *fi,
36                                 u64 extent_item_pos,
37                                 struct extent_inode_elem **eie)
38 {
39         u64 data_offset;
40         u64 data_len;
41         struct extent_inode_elem *e;
42
43         data_offset = btrfs_file_extent_offset(eb, fi);
44         data_len = btrfs_file_extent_num_bytes(eb, fi);
45
46         if (extent_item_pos < data_offset ||
47             extent_item_pos >= data_offset + data_len)
48                 return 1;
49
50         e = kmalloc(sizeof(*e), GFP_NOFS);
51         if (!e)
52                 return -ENOMEM;
53
54         e->next = *eie;
55         e->inum = key->objectid;
56         e->offset = key->offset + (extent_item_pos - data_offset);
57         *eie = e;
58
59         return 0;
60 }
61
62 static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
63                                 u64 extent_item_pos,
64                                 struct extent_inode_elem **eie)
65 {
66         u64 disk_byte;
67         struct btrfs_key key;
68         struct btrfs_file_extent_item *fi;
69         int slot;
70         int nritems;
71         int extent_type;
72         int ret;
73
74         /*
75          * from the shared data ref, we only have the leaf but we need
76          * the key. thus, we must look into all items and see that we
77          * find one (some) with a reference to our extent item.
78          */
79         nritems = btrfs_header_nritems(eb);
80         for (slot = 0; slot < nritems; ++slot) {
81                 btrfs_item_key_to_cpu(eb, &key, slot);
82                 if (key.type != BTRFS_EXTENT_DATA_KEY)
83                         continue;
84                 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
85                 extent_type = btrfs_file_extent_type(eb, fi);
86                 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
87                         continue;
88                 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
89                 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
90                 if (disk_byte != wanted_disk_byte)
91                         continue;
92
93                 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
94                 if (ret < 0)
95                         return ret;
96         }
97
98         return 0;
99 }
100
101 /*
102  * this structure records all encountered refs on the way up to the root
103  */
104 struct __prelim_ref {
105         struct list_head list;
106         u64 root_id;
107         struct btrfs_key key_for_search;
108         int level;
109         int count;
110         struct extent_inode_elem *inode_list;
111         u64 parent;
112         u64 wanted_disk_byte;
113 };
114
115 /*
116  * the rules for all callers of this function are:
117  * - obtaining the parent is the goal
118  * - if you add a key, you must know that it is a correct key
119  * - if you cannot add the parent or a correct key, then we will look into the
120  *   block later to set a correct key
121  *
122  * delayed refs
123  * ============
124  *        backref type | shared | indirect | shared | indirect
125  * information         |   tree |     tree |   data |     data
126  * --------------------+--------+----------+--------+----------
127  *      parent logical |    y   |     -    |    -   |     -
128  *      key to resolve |    -   |     y    |    y   |     y
129  *  tree block logical |    -   |     -    |    -   |     -
130  *  root for resolving |    y   |     y    |    y   |     y
131  *
132  * - column 1:       we've the parent -> done
133  * - column 2, 3, 4: we use the key to find the parent
134  *
135  * on disk refs (inline or keyed)
136  * ==============================
137  *        backref type | shared | indirect | shared | indirect
138  * information         |   tree |     tree |   data |     data
139  * --------------------+--------+----------+--------+----------
140  *      parent logical |    y   |     -    |    y   |     -
141  *      key to resolve |    -   |     -    |    -   |     y
142  *  tree block logical |    y   |     y    |    y   |     y
143  *  root for resolving |    -   |     y    |    y   |     y
144  *
145  * - column 1, 3: we've the parent -> done
146  * - column 2:    we take the first key from the block to find the parent
147  *                (see __add_missing_keys)
148  * - column 4:    we use the key to find the parent
149  *
150  * additional information that's available but not required to find the parent
151  * block might help in merging entries to gain some speed.
152  */
153
154 static int __add_prelim_ref(struct list_head *head, u64 root_id,
155                             struct btrfs_key *key, int level,
156                             u64 parent, u64 wanted_disk_byte, int count)
157 {
158         struct __prelim_ref *ref;
159
160         /* in case we're adding delayed refs, we're holding the refs spinlock */
161         ref = kmalloc(sizeof(*ref), GFP_ATOMIC);
162         if (!ref)
163                 return -ENOMEM;
164
165         ref->root_id = root_id;
166         if (key)
167                 ref->key_for_search = *key;
168         else
169                 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
170
171         ref->inode_list = NULL;
172         ref->level = level;
173         ref->count = count;
174         ref->parent = parent;
175         ref->wanted_disk_byte = wanted_disk_byte;
176         list_add_tail(&ref->list, head);
177
178         return 0;
179 }
180
181 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
182                                 struct ulist *parents, int level,
183                                 struct btrfs_key *key_for_search, u64 time_seq,
184                                 u64 wanted_disk_byte,
185                                 const u64 *extent_item_pos)
186 {
187         int ret = 0;
188         int slot;
189         struct extent_buffer *eb;
190         struct btrfs_key key;
191         struct btrfs_file_extent_item *fi;
192         struct extent_inode_elem *eie = NULL;
193         u64 disk_byte;
194
195         if (level != 0) {
196                 eb = path->nodes[level];
197                 ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
198                 if (ret < 0)
199                         return ret;
200                 return 0;
201         }
202
203         /*
204          * We normally enter this function with the path already pointing to
205          * the first item to check. But sometimes, we may enter it with
206          * slot==nritems. In that case, go to the next leaf before we continue.
207          */
208         if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
209                 ret = btrfs_next_old_leaf(root, path, time_seq);
210
211         while (!ret) {
212                 eb = path->nodes[0];
213                 slot = path->slots[0];
214
215                 btrfs_item_key_to_cpu(eb, &key, slot);
216
217                 if (key.objectid != key_for_search->objectid ||
218                     key.type != BTRFS_EXTENT_DATA_KEY)
219                         break;
220
221                 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
222                 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
223
224                 if (disk_byte == wanted_disk_byte) {
225                         eie = NULL;
226                         if (extent_item_pos) {
227                                 ret = check_extent_in_eb(&key, eb, fi,
228                                                 *extent_item_pos,
229                                                 &eie);
230                                 if (ret < 0)
231                                         break;
232                         }
233                         if (!ret) {
234                                 ret = ulist_add(parents, eb->start,
235                                                 (uintptr_t)eie, GFP_NOFS);
236                                 if (ret < 0)
237                                         break;
238                                 if (!extent_item_pos) {
239                                         ret = btrfs_next_old_leaf(root, path,
240                                                         time_seq);
241                                         continue;
242                                 }
243                         }
244                 }
245                 ret = btrfs_next_old_item(root, path, time_seq);
246         }
247
248         if (ret > 0)
249                 ret = 0;
250         return ret;
251 }
252
253 /*
254  * resolve an indirect backref in the form (root_id, key, level)
255  * to a logical address
256  */
257 static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
258                                         int search_commit_root,
259                                         u64 time_seq,
260                                         struct __prelim_ref *ref,
261                                         struct ulist *parents,
262                                         const u64 *extent_item_pos)
263 {
264         struct btrfs_path *path;
265         struct btrfs_root *root;
266         struct btrfs_key root_key;
267         struct extent_buffer *eb;
268         int ret = 0;
269         int root_level;
270         int level = ref->level;
271
272         path = btrfs_alloc_path();
273         if (!path)
274                 return -ENOMEM;
275         path->search_commit_root = !!search_commit_root;
276
277         root_key.objectid = ref->root_id;
278         root_key.type = BTRFS_ROOT_ITEM_KEY;
279         root_key.offset = (u64)-1;
280         root = btrfs_read_fs_root_no_name(fs_info, &root_key);
281         if (IS_ERR(root)) {
282                 ret = PTR_ERR(root);
283                 goto out;
284         }
285
286         root_level = btrfs_old_root_level(root, time_seq);
287
288         if (root_level + 1 == level)
289                 goto out;
290
291         path->lowest_level = level;
292         ret = btrfs_search_old_slot(root, &ref->key_for_search, path, time_seq);
293         pr_debug("search slot in root %llu (level %d, ref count %d) returned "
294                  "%d for key (%llu %u %llu)\n",
295                  (unsigned long long)ref->root_id, level, ref->count, ret,
296                  (unsigned long long)ref->key_for_search.objectid,
297                  ref->key_for_search.type,
298                  (unsigned long long)ref->key_for_search.offset);
299         if (ret < 0)
300                 goto out;
301
302         eb = path->nodes[level];
303         while (!eb) {
304                 if (!level) {
305                         WARN_ON(1);
306                         ret = 1;
307                         goto out;
308                 }
309                 level--;
310                 eb = path->nodes[level];
311         }
312
313         ret = add_all_parents(root, path, parents, level, &ref->key_for_search,
314                                 time_seq, ref->wanted_disk_byte,
315                                 extent_item_pos);
316 out:
317         btrfs_free_path(path);
318         return ret;
319 }
320
321 /*
322  * resolve all indirect backrefs from the list
323  */
324 static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
325                                    int search_commit_root, u64 time_seq,
326                                    struct list_head *head,
327                                    const u64 *extent_item_pos)
328 {
329         int err;
330         int ret = 0;
331         struct __prelim_ref *ref;
332         struct __prelim_ref *ref_safe;
333         struct __prelim_ref *new_ref;
334         struct ulist *parents;
335         struct ulist_node *node;
336         struct ulist_iterator uiter;
337
338         parents = ulist_alloc(GFP_NOFS);
339         if (!parents)
340                 return -ENOMEM;
341
342         /*
343          * _safe allows us to insert directly after the current item without
344          * iterating over the newly inserted items.
345          * we're also allowed to re-assign ref during iteration.
346          */
347         list_for_each_entry_safe(ref, ref_safe, head, list) {
348                 if (ref->parent)        /* already direct */
349                         continue;
350                 if (ref->count == 0)
351                         continue;
352                 err = __resolve_indirect_ref(fs_info, search_commit_root,
353                                              time_seq, ref, parents,
354                                              extent_item_pos);
355                 if (err)
356                         continue;
357
358                 /* we put the first parent into the ref at hand */
359                 ULIST_ITER_INIT(&uiter);
360                 node = ulist_next(parents, &uiter);
361                 ref->parent = node ? node->val : 0;
362                 ref->inode_list = node ?
363                         (struct extent_inode_elem *)(uintptr_t)node->aux : 0;
364
365                 /* additional parents require new refs being added here */
366                 while ((node = ulist_next(parents, &uiter))) {
367                         new_ref = kmalloc(sizeof(*new_ref), GFP_NOFS);
368                         if (!new_ref) {
369                                 ret = -ENOMEM;
370                                 break;
371                         }
372                         memcpy(new_ref, ref, sizeof(*ref));
373                         new_ref->parent = node->val;
374                         new_ref->inode_list = (struct extent_inode_elem *)
375                                                         (uintptr_t)node->aux;
376                         list_add(&new_ref->list, &ref->list);
377                 }
378                 ulist_reinit(parents);
379         }
380
381         ulist_free(parents);
382         return ret;
383 }
384
385 static inline int ref_for_same_block(struct __prelim_ref *ref1,
386                                      struct __prelim_ref *ref2)
387 {
388         if (ref1->level != ref2->level)
389                 return 0;
390         if (ref1->root_id != ref2->root_id)
391                 return 0;
392         if (ref1->key_for_search.type != ref2->key_for_search.type)
393                 return 0;
394         if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
395                 return 0;
396         if (ref1->key_for_search.offset != ref2->key_for_search.offset)
397                 return 0;
398         if (ref1->parent != ref2->parent)
399                 return 0;
400
401         return 1;
402 }
403
404 /*
405  * read tree blocks and add keys where required.
406  */
407 static int __add_missing_keys(struct btrfs_fs_info *fs_info,
408                               struct list_head *head)
409 {
410         struct list_head *pos;
411         struct extent_buffer *eb;
412
413         list_for_each(pos, head) {
414                 struct __prelim_ref *ref;
415                 ref = list_entry(pos, struct __prelim_ref, list);
416
417                 if (ref->parent)
418                         continue;
419                 if (ref->key_for_search.type)
420                         continue;
421                 BUG_ON(!ref->wanted_disk_byte);
422                 eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
423                                      fs_info->tree_root->leafsize, 0);
424                 BUG_ON(!eb);
425                 btrfs_tree_read_lock(eb);
426                 if (btrfs_header_level(eb) == 0)
427                         btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
428                 else
429                         btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
430                 btrfs_tree_read_unlock(eb);
431                 free_extent_buffer(eb);
432         }
433         return 0;
434 }
435
436 /*
437  * merge two lists of backrefs and adjust counts accordingly
438  *
439  * mode = 1: merge identical keys, if key is set
440  *    FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
441  *           additionally, we could even add a key range for the blocks we
442  *           looked into to merge even more (-> replace unresolved refs by those
443  *           having a parent).
444  * mode = 2: merge identical parents
445  */
446 static int __merge_refs(struct list_head *head, int mode)
447 {
448         struct list_head *pos1;
449
450         list_for_each(pos1, head) {
451                 struct list_head *n2;
452                 struct list_head *pos2;
453                 struct __prelim_ref *ref1;
454
455                 ref1 = list_entry(pos1, struct __prelim_ref, list);
456
457                 for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
458                      pos2 = n2, n2 = pos2->next) {
459                         struct __prelim_ref *ref2;
460                         struct __prelim_ref *xchg;
461                         struct extent_inode_elem *eie;
462
463                         ref2 = list_entry(pos2, struct __prelim_ref, list);
464
465                         if (mode == 1) {
466                                 if (!ref_for_same_block(ref1, ref2))
467                                         continue;
468                                 if (!ref1->parent && ref2->parent) {
469                                         xchg = ref1;
470                                         ref1 = ref2;
471                                         ref2 = xchg;
472                                 }
473                         } else {
474                                 if (ref1->parent != ref2->parent)
475                                         continue;
476                         }
477
478                         eie = ref1->inode_list;
479                         while (eie && eie->next)
480                                 eie = eie->next;
481                         if (eie)
482                                 eie->next = ref2->inode_list;
483                         else
484                                 ref1->inode_list = ref2->inode_list;
485                         ref1->count += ref2->count;
486
487                         list_del(&ref2->list);
488                         kfree(ref2);
489                 }
490
491         }
492         return 0;
493 }
494
495 /*
496  * add all currently queued delayed refs from this head whose seq nr is
497  * smaller or equal that seq to the list
498  */
499 static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
500                               struct list_head *prefs)
501 {
502         struct btrfs_delayed_extent_op *extent_op = head->extent_op;
503         struct rb_node *n = &head->node.rb_node;
504         struct btrfs_key key;
505         struct btrfs_key op_key = {0};
506         int sgn;
507         int ret = 0;
508
509         if (extent_op && extent_op->update_key)
510                 btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
511
512         while ((n = rb_prev(n))) {
513                 struct btrfs_delayed_ref_node *node;
514                 node = rb_entry(n, struct btrfs_delayed_ref_node,
515                                 rb_node);
516                 if (node->bytenr != head->node.bytenr)
517                         break;
518                 WARN_ON(node->is_head);
519
520                 if (node->seq > seq)
521                         continue;
522
523                 switch (node->action) {
524                 case BTRFS_ADD_DELAYED_EXTENT:
525                 case BTRFS_UPDATE_DELAYED_HEAD:
526                         WARN_ON(1);
527                         continue;
528                 case BTRFS_ADD_DELAYED_REF:
529                         sgn = 1;
530                         break;
531                 case BTRFS_DROP_DELAYED_REF:
532                         sgn = -1;
533                         break;
534                 default:
535                         BUG_ON(1);
536                 }
537                 switch (node->type) {
538                 case BTRFS_TREE_BLOCK_REF_KEY: {
539                         struct btrfs_delayed_tree_ref *ref;
540
541                         ref = btrfs_delayed_node_to_tree_ref(node);
542                         ret = __add_prelim_ref(prefs, ref->root, &op_key,
543                                                ref->level + 1, 0, node->bytenr,
544                                                node->ref_mod * sgn);
545                         break;
546                 }
547                 case BTRFS_SHARED_BLOCK_REF_KEY: {
548                         struct btrfs_delayed_tree_ref *ref;
549
550                         ref = btrfs_delayed_node_to_tree_ref(node);
551                         ret = __add_prelim_ref(prefs, ref->root, NULL,
552                                                ref->level + 1, ref->parent,
553                                                node->bytenr,
554                                                node->ref_mod * sgn);
555                         break;
556                 }
557                 case BTRFS_EXTENT_DATA_REF_KEY: {
558                         struct btrfs_delayed_data_ref *ref;
559                         ref = btrfs_delayed_node_to_data_ref(node);
560
561                         key.objectid = ref->objectid;
562                         key.type = BTRFS_EXTENT_DATA_KEY;
563                         key.offset = ref->offset;
564                         ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
565                                                node->bytenr,
566                                                node->ref_mod * sgn);
567                         break;
568                 }
569                 case BTRFS_SHARED_DATA_REF_KEY: {
570                         struct btrfs_delayed_data_ref *ref;
571
572                         ref = btrfs_delayed_node_to_data_ref(node);
573
574                         key.objectid = ref->objectid;
575                         key.type = BTRFS_EXTENT_DATA_KEY;
576                         key.offset = ref->offset;
577                         ret = __add_prelim_ref(prefs, ref->root, &key, 0,
578                                                ref->parent, node->bytenr,
579                                                node->ref_mod * sgn);
580                         break;
581                 }
582                 default:
583                         WARN_ON(1);
584                 }
585                 BUG_ON(ret);
586         }
587
588         return 0;
589 }
590
591 /*
592  * add all inline backrefs for bytenr to the list
593  */
594 static int __add_inline_refs(struct btrfs_fs_info *fs_info,
595                              struct btrfs_path *path, u64 bytenr,
596                              int *info_level, struct list_head *prefs)
597 {
598         int ret = 0;
599         int slot;
600         struct extent_buffer *leaf;
601         struct btrfs_key key;
602         unsigned long ptr;
603         unsigned long end;
604         struct btrfs_extent_item *ei;
605         u64 flags;
606         u64 item_size;
607
608         /*
609          * enumerate all inline refs
610          */
611         leaf = path->nodes[0];
612         slot = path->slots[0];
613
614         item_size = btrfs_item_size_nr(leaf, slot);
615         BUG_ON(item_size < sizeof(*ei));
616
617         ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
618         flags = btrfs_extent_flags(leaf, ei);
619
620         ptr = (unsigned long)(ei + 1);
621         end = (unsigned long)ei + item_size;
622
623         if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
624                 struct btrfs_tree_block_info *info;
625
626                 info = (struct btrfs_tree_block_info *)ptr;
627                 *info_level = btrfs_tree_block_level(leaf, info);
628                 ptr += sizeof(struct btrfs_tree_block_info);
629                 BUG_ON(ptr > end);
630         } else {
631                 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
632         }
633
634         while (ptr < end) {
635                 struct btrfs_extent_inline_ref *iref;
636                 u64 offset;
637                 int type;
638
639                 iref = (struct btrfs_extent_inline_ref *)ptr;
640                 type = btrfs_extent_inline_ref_type(leaf, iref);
641                 offset = btrfs_extent_inline_ref_offset(leaf, iref);
642
643                 switch (type) {
644                 case BTRFS_SHARED_BLOCK_REF_KEY:
645                         ret = __add_prelim_ref(prefs, 0, NULL,
646                                                 *info_level + 1, offset,
647                                                 bytenr, 1);
648                         break;
649                 case BTRFS_SHARED_DATA_REF_KEY: {
650                         struct btrfs_shared_data_ref *sdref;
651                         int count;
652
653                         sdref = (struct btrfs_shared_data_ref *)(iref + 1);
654                         count = btrfs_shared_data_ref_count(leaf, sdref);
655                         ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
656                                                bytenr, count);
657                         break;
658                 }
659                 case BTRFS_TREE_BLOCK_REF_KEY:
660                         ret = __add_prelim_ref(prefs, offset, NULL,
661                                                *info_level + 1, 0,
662                                                bytenr, 1);
663                         break;
664                 case BTRFS_EXTENT_DATA_REF_KEY: {
665                         struct btrfs_extent_data_ref *dref;
666                         int count;
667                         u64 root;
668
669                         dref = (struct btrfs_extent_data_ref *)(&iref->offset);
670                         count = btrfs_extent_data_ref_count(leaf, dref);
671                         key.objectid = btrfs_extent_data_ref_objectid(leaf,
672                                                                       dref);
673                         key.type = BTRFS_EXTENT_DATA_KEY;
674                         key.offset = btrfs_extent_data_ref_offset(leaf, dref);
675                         root = btrfs_extent_data_ref_root(leaf, dref);
676                         ret = __add_prelim_ref(prefs, root, &key, 0, 0,
677                                                bytenr, count);
678                         break;
679                 }
680                 default:
681                         WARN_ON(1);
682                 }
683                 BUG_ON(ret);
684                 ptr += btrfs_extent_inline_ref_size(type);
685         }
686
687         return 0;
688 }
689
690 /*
691  * add all non-inline backrefs for bytenr to the list
692  */
693 static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
694                             struct btrfs_path *path, u64 bytenr,
695                             int info_level, struct list_head *prefs)
696 {
697         struct btrfs_root *extent_root = fs_info->extent_root;
698         int ret;
699         int slot;
700         struct extent_buffer *leaf;
701         struct btrfs_key key;
702
703         while (1) {
704                 ret = btrfs_next_item(extent_root, path);
705                 if (ret < 0)
706                         break;
707                 if (ret) {
708                         ret = 0;
709                         break;
710                 }
711
712                 slot = path->slots[0];
713                 leaf = path->nodes[0];
714                 btrfs_item_key_to_cpu(leaf, &key, slot);
715
716                 if (key.objectid != bytenr)
717                         break;
718                 if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
719                         continue;
720                 if (key.type > BTRFS_SHARED_DATA_REF_KEY)
721                         break;
722
723                 switch (key.type) {
724                 case BTRFS_SHARED_BLOCK_REF_KEY:
725                         ret = __add_prelim_ref(prefs, 0, NULL,
726                                                 info_level + 1, key.offset,
727                                                 bytenr, 1);
728                         break;
729                 case BTRFS_SHARED_DATA_REF_KEY: {
730                         struct btrfs_shared_data_ref *sdref;
731                         int count;
732
733                         sdref = btrfs_item_ptr(leaf, slot,
734                                               struct btrfs_shared_data_ref);
735                         count = btrfs_shared_data_ref_count(leaf, sdref);
736                         ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
737                                                 bytenr, count);
738                         break;
739                 }
740                 case BTRFS_TREE_BLOCK_REF_KEY:
741                         ret = __add_prelim_ref(prefs, key.offset, NULL,
742                                                info_level + 1, 0,
743                                                bytenr, 1);
744                         break;
745                 case BTRFS_EXTENT_DATA_REF_KEY: {
746                         struct btrfs_extent_data_ref *dref;
747                         int count;
748                         u64 root;
749
750                         dref = btrfs_item_ptr(leaf, slot,
751                                               struct btrfs_extent_data_ref);
752                         count = btrfs_extent_data_ref_count(leaf, dref);
753                         key.objectid = btrfs_extent_data_ref_objectid(leaf,
754                                                                       dref);
755                         key.type = BTRFS_EXTENT_DATA_KEY;
756                         key.offset = btrfs_extent_data_ref_offset(leaf, dref);
757                         root = btrfs_extent_data_ref_root(leaf, dref);
758                         ret = __add_prelim_ref(prefs, root, &key, 0, 0,
759                                                bytenr, count);
760                         break;
761                 }
762                 default:
763                         WARN_ON(1);
764                 }
765                 BUG_ON(ret);
766         }
767
768         return ret;
769 }
770
771 /*
772  * this adds all existing backrefs (inline backrefs, backrefs and delayed
773  * refs) for the given bytenr to the refs list, merges duplicates and resolves
774  * indirect refs to their parent bytenr.
775  * When roots are found, they're added to the roots list
776  *
777  * FIXME some caching might speed things up
778  */
779 static int find_parent_nodes(struct btrfs_trans_handle *trans,
780                              struct btrfs_fs_info *fs_info, u64 bytenr,
781                              u64 time_seq, struct ulist *refs,
782                              struct ulist *roots, const u64 *extent_item_pos)
783 {
784         struct btrfs_key key;
785         struct btrfs_path *path;
786         struct btrfs_delayed_ref_root *delayed_refs = NULL;
787         struct btrfs_delayed_ref_head *head;
788         int info_level = 0;
789         int ret;
790         int search_commit_root = (trans == BTRFS_BACKREF_SEARCH_COMMIT_ROOT);
791         struct list_head prefs_delayed;
792         struct list_head prefs;
793         struct __prelim_ref *ref;
794
795         INIT_LIST_HEAD(&prefs);
796         INIT_LIST_HEAD(&prefs_delayed);
797
798         key.objectid = bytenr;
799         key.type = BTRFS_EXTENT_ITEM_KEY;
800         key.offset = (u64)-1;
801
802         path = btrfs_alloc_path();
803         if (!path)
804                 return -ENOMEM;
805         path->search_commit_root = !!search_commit_root;
806
807         /*
808          * grab both a lock on the path and a lock on the delayed ref head.
809          * We need both to get a consistent picture of how the refs look
810          * at a specified point in time
811          */
812 again:
813         head = NULL;
814
815         ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
816         if (ret < 0)
817                 goto out;
818         BUG_ON(ret == 0);
819
820         if (trans != BTRFS_BACKREF_SEARCH_COMMIT_ROOT) {
821                 /*
822                  * look if there are updates for this ref queued and lock the
823                  * head
824                  */
825                 delayed_refs = &trans->transaction->delayed_refs;
826                 spin_lock(&delayed_refs->lock);
827                 head = btrfs_find_delayed_ref_head(trans, bytenr);
828                 if (head) {
829                         if (!mutex_trylock(&head->mutex)) {
830                                 atomic_inc(&head->node.refs);
831                                 spin_unlock(&delayed_refs->lock);
832
833                                 btrfs_release_path(path);
834
835                                 /*
836                                  * Mutex was contended, block until it's
837                                  * released and try again
838                                  */
839                                 mutex_lock(&head->mutex);
840                                 mutex_unlock(&head->mutex);
841                                 btrfs_put_delayed_ref(&head->node);
842                                 goto again;
843                         }
844                         ret = __add_delayed_refs(head, time_seq,
845                                                  &prefs_delayed);
846                         mutex_unlock(&head->mutex);
847                         if (ret) {
848                                 spin_unlock(&delayed_refs->lock);
849                                 goto out;
850                         }
851                 }
852                 spin_unlock(&delayed_refs->lock);
853         }
854
855         if (path->slots[0]) {
856                 struct extent_buffer *leaf;
857                 int slot;
858
859                 path->slots[0]--;
860                 leaf = path->nodes[0];
861                 slot = path->slots[0];
862                 btrfs_item_key_to_cpu(leaf, &key, slot);
863                 if (key.objectid == bytenr &&
864                     key.type == BTRFS_EXTENT_ITEM_KEY) {
865                         ret = __add_inline_refs(fs_info, path, bytenr,
866                                                 &info_level, &prefs);
867                         if (ret)
868                                 goto out;
869                         ret = __add_keyed_refs(fs_info, path, bytenr,
870                                                info_level, &prefs);
871                         if (ret)
872                                 goto out;
873                 }
874         }
875         btrfs_release_path(path);
876
877         list_splice_init(&prefs_delayed, &prefs);
878
879         ret = __add_missing_keys(fs_info, &prefs);
880         if (ret)
881                 goto out;
882
883         ret = __merge_refs(&prefs, 1);
884         if (ret)
885                 goto out;
886
887         ret = __resolve_indirect_refs(fs_info, search_commit_root, time_seq,
888                                       &prefs, extent_item_pos);
889         if (ret)
890                 goto out;
891
892         ret = __merge_refs(&prefs, 2);
893         if (ret)
894                 goto out;
895
896         while (!list_empty(&prefs)) {
897                 ref = list_first_entry(&prefs, struct __prelim_ref, list);
898                 list_del(&ref->list);
899                 WARN_ON(ref->count < 0);
900                 if (ref->count && ref->root_id && ref->parent == 0) {
901                         /* no parent == root of tree */
902                         ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
903                         BUG_ON(ret < 0);
904                 }
905                 if (ref->count && ref->parent) {
906                         struct extent_inode_elem *eie = NULL;
907                         if (extent_item_pos && !ref->inode_list) {
908                                 u32 bsz;
909                                 struct extent_buffer *eb;
910                                 bsz = btrfs_level_size(fs_info->extent_root,
911                                                         info_level);
912                                 eb = read_tree_block(fs_info->extent_root,
913                                                            ref->parent, bsz, 0);
914                                 BUG_ON(!eb);
915                                 ret = find_extent_in_eb(eb, bytenr,
916                                                         *extent_item_pos, &eie);
917                                 ref->inode_list = eie;
918                                 free_extent_buffer(eb);
919                         }
920                         ret = ulist_add_merge(refs, ref->parent,
921                                               (uintptr_t)ref->inode_list,
922                                               (u64 *)&eie, GFP_NOFS);
923                         if (!ret && extent_item_pos) {
924                                 /*
925                                  * we've recorded that parent, so we must extend
926                                  * its inode list here
927                                  */
928                                 BUG_ON(!eie);
929                                 while (eie->next)
930                                         eie = eie->next;
931                                 eie->next = ref->inode_list;
932                         }
933                         BUG_ON(ret < 0);
934                 }
935                 kfree(ref);
936         }
937
938 out:
939         btrfs_free_path(path);
940         while (!list_empty(&prefs)) {
941                 ref = list_first_entry(&prefs, struct __prelim_ref, list);
942                 list_del(&ref->list);
943                 kfree(ref);
944         }
945         while (!list_empty(&prefs_delayed)) {
946                 ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
947                                        list);
948                 list_del(&ref->list);
949                 kfree(ref);
950         }
951
952         return ret;
953 }
954
955 static void free_leaf_list(struct ulist *blocks)
956 {
957         struct ulist_node *node = NULL;
958         struct extent_inode_elem *eie;
959         struct extent_inode_elem *eie_next;
960         struct ulist_iterator uiter;
961
962         ULIST_ITER_INIT(&uiter);
963         while ((node = ulist_next(blocks, &uiter))) {
964                 if (!node->aux)
965                         continue;
966                 eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
967                 for (; eie; eie = eie_next) {
968                         eie_next = eie->next;
969                         kfree(eie);
970                 }
971                 node->aux = 0;
972         }
973
974         ulist_free(blocks);
975 }
976
977 /*
978  * Finds all leafs with a reference to the specified combination of bytenr and
979  * offset. key_list_head will point to a list of corresponding keys (caller must
980  * free each list element). The leafs will be stored in the leafs ulist, which
981  * must be freed with ulist_free.
982  *
983  * returns 0 on success, <0 on error
984  */
985 static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
986                                 struct btrfs_fs_info *fs_info, u64 bytenr,
987                                 u64 time_seq, struct ulist **leafs,
988                                 const u64 *extent_item_pos)
989 {
990         struct ulist *tmp;
991         int ret;
992
993         tmp = ulist_alloc(GFP_NOFS);
994         if (!tmp)
995                 return -ENOMEM;
996         *leafs = ulist_alloc(GFP_NOFS);
997         if (!*leafs) {
998                 ulist_free(tmp);
999                 return -ENOMEM;
1000         }
1001
1002         ret = find_parent_nodes(trans, fs_info, bytenr,
1003                                 time_seq, *leafs, tmp, extent_item_pos);
1004         ulist_free(tmp);
1005
1006         if (ret < 0 && ret != -ENOENT) {
1007                 free_leaf_list(*leafs);
1008                 return ret;
1009         }
1010
1011         return 0;
1012 }
1013
1014 /*
1015  * walk all backrefs for a given extent to find all roots that reference this
1016  * extent. Walking a backref means finding all extents that reference this
1017  * extent and in turn walk the backrefs of those, too. Naturally this is a
1018  * recursive process, but here it is implemented in an iterative fashion: We
1019  * find all referencing extents for the extent in question and put them on a
1020  * list. In turn, we find all referencing extents for those, further appending
1021  * to the list. The way we iterate the list allows adding more elements after
1022  * the current while iterating. The process stops when we reach the end of the
1023  * list. Found roots are added to the roots list.
1024  *
1025  * returns 0 on success, < 0 on error.
1026  */
1027 int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1028                                 struct btrfs_fs_info *fs_info, u64 bytenr,
1029                                 u64 time_seq, struct ulist **roots)
1030 {
1031         struct ulist *tmp;
1032         struct ulist_node *node = NULL;
1033         struct ulist_iterator uiter;
1034         int ret;
1035
1036         tmp = ulist_alloc(GFP_NOFS);
1037         if (!tmp)
1038                 return -ENOMEM;
1039         *roots = ulist_alloc(GFP_NOFS);
1040         if (!*roots) {
1041                 ulist_free(tmp);
1042                 return -ENOMEM;
1043         }
1044
1045         ULIST_ITER_INIT(&uiter);
1046         while (1) {
1047                 ret = find_parent_nodes(trans, fs_info, bytenr,
1048                                         time_seq, tmp, *roots, NULL);
1049                 if (ret < 0 && ret != -ENOENT) {
1050                         ulist_free(tmp);
1051                         ulist_free(*roots);
1052                         return ret;
1053                 }
1054                 node = ulist_next(tmp, &uiter);
1055                 if (!node)
1056                         break;
1057                 bytenr = node->val;
1058         }
1059
1060         ulist_free(tmp);
1061         return 0;
1062 }
1063
1064
1065 static int __inode_info(u64 inum, u64 ioff, u8 key_type,
1066                         struct btrfs_root *fs_root, struct btrfs_path *path,
1067                         struct btrfs_key *found_key)
1068 {
1069         int ret;
1070         struct btrfs_key key;
1071         struct extent_buffer *eb;
1072
1073         key.type = key_type;
1074         key.objectid = inum;
1075         key.offset = ioff;
1076
1077         ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1078         if (ret < 0)
1079                 return ret;
1080
1081         eb = path->nodes[0];
1082         if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1083                 ret = btrfs_next_leaf(fs_root, path);
1084                 if (ret)
1085                         return ret;
1086                 eb = path->nodes[0];
1087         }
1088
1089         btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1090         if (found_key->type != key.type || found_key->objectid != key.objectid)
1091                 return 1;
1092
1093         return 0;
1094 }
1095
1096 /*
1097  * this makes the path point to (inum INODE_ITEM ioff)
1098  */
1099 int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
1100                         struct btrfs_path *path)
1101 {
1102         struct btrfs_key key;
1103         return __inode_info(inum, ioff, BTRFS_INODE_ITEM_KEY, fs_root, path,
1104                                 &key);
1105 }
1106
1107 static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
1108                                 struct btrfs_path *path,
1109                                 struct btrfs_key *found_key)
1110 {
1111         return __inode_info(inum, ioff, BTRFS_INODE_REF_KEY, fs_root, path,
1112                                 found_key);
1113 }
1114
1115 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1116                           u64 start_off, struct btrfs_path *path,
1117                           struct btrfs_inode_extref **ret_extref,
1118                           u64 *found_off)
1119 {
1120         int ret, slot;
1121         struct btrfs_key key;
1122         struct btrfs_key found_key;
1123         struct btrfs_inode_extref *extref;
1124         struct extent_buffer *leaf;
1125         unsigned long ptr;
1126
1127         key.objectid = inode_objectid;
1128         btrfs_set_key_type(&key, BTRFS_INODE_EXTREF_KEY);
1129         key.offset = start_off;
1130
1131         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1132         if (ret < 0)
1133                 return ret;
1134
1135         while (1) {
1136                 leaf = path->nodes[0];
1137                 slot = path->slots[0];
1138                 if (slot >= btrfs_header_nritems(leaf)) {
1139                         /*
1140                          * If the item at offset is not found,
1141                          * btrfs_search_slot will point us to the slot
1142                          * where it should be inserted. In our case
1143                          * that will be the slot directly before the
1144                          * next INODE_REF_KEY_V2 item. In the case
1145                          * that we're pointing to the last slot in a
1146                          * leaf, we must move one leaf over.
1147                          */
1148                         ret = btrfs_next_leaf(root, path);
1149                         if (ret) {
1150                                 if (ret >= 1)
1151                                         ret = -ENOENT;
1152                                 break;
1153                         }
1154                         continue;
1155                 }
1156
1157                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1158
1159                 /*
1160                  * Check that we're still looking at an extended ref key for
1161                  * this particular objectid. If we have different
1162                  * objectid or type then there are no more to be found
1163                  * in the tree and we can exit.
1164                  */
1165                 ret = -ENOENT;
1166                 if (found_key.objectid != inode_objectid)
1167                         break;
1168                 if (btrfs_key_type(&found_key) != BTRFS_INODE_EXTREF_KEY)
1169                         break;
1170
1171                 ret = 0;
1172                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1173                 extref = (struct btrfs_inode_extref *)ptr;
1174                 *ret_extref = extref;
1175                 if (found_off)
1176                         *found_off = found_key.offset;
1177                 break;
1178         }
1179
1180         return ret;
1181 }
1182
1183 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1184                         u32 name_len, unsigned long name_off,
1185                         struct extent_buffer *eb_in, u64 parent,
1186                         char *dest, u32 size)
1187 {
1188         int slot;
1189         u64 next_inum;
1190         int ret;
1191         s64 bytes_left = ((s64)size) - 1;
1192         struct extent_buffer *eb = eb_in;
1193         struct btrfs_key found_key;
1194         int leave_spinning = path->leave_spinning;
1195         struct btrfs_inode_ref *iref;
1196
1197         if (bytes_left >= 0)
1198                 dest[bytes_left] = '\0';
1199
1200         path->leave_spinning = 1;
1201         while (1) {
1202                 bytes_left -= name_len;
1203                 if (bytes_left >= 0)
1204                         read_extent_buffer(eb, dest + bytes_left,
1205                                            name_off, name_len);
1206                 if (eb != eb_in) {
1207                         btrfs_tree_read_unlock_blocking(eb);
1208                         free_extent_buffer(eb);
1209                 }
1210                 ret = inode_ref_info(parent, 0, fs_root, path, &found_key);
1211                 if (ret > 0)
1212                         ret = -ENOENT;
1213                 if (ret)
1214                         break;
1215
1216                 next_inum = found_key.offset;
1217
1218                 /* regular exit ahead */
1219                 if (parent == next_inum)
1220                         break;
1221
1222                 slot = path->slots[0];
1223                 eb = path->nodes[0];
1224                 /* make sure we can use eb after releasing the path */
1225                 if (eb != eb_in) {
1226                         atomic_inc(&eb->refs);
1227                         btrfs_tree_read_lock(eb);
1228                         btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1229                 }
1230                 btrfs_release_path(path);
1231                 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1232
1233                 name_len = btrfs_inode_ref_name_len(eb, iref);
1234                 name_off = (unsigned long)(iref + 1);
1235
1236                 parent = next_inum;
1237                 --bytes_left;
1238                 if (bytes_left >= 0)
1239                         dest[bytes_left] = '/';
1240         }
1241
1242         btrfs_release_path(path);
1243         path->leave_spinning = leave_spinning;
1244
1245         if (ret)
1246                 return ERR_PTR(ret);
1247
1248         return dest + bytes_left;
1249 }
1250
1251 /*
1252  * this iterates to turn a btrfs_inode_ref into a full filesystem path. elements
1253  * of the path are separated by '/' and the path is guaranteed to be
1254  * 0-terminated. the path is only given within the current file system.
1255  * Therefore, it never starts with a '/'. the caller is responsible to provide
1256  * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1257  * the start point of the resulting string is returned. this pointer is within
1258  * dest, normally.
1259  * in case the path buffer would overflow, the pointer is decremented further
1260  * as if output was written to the buffer, though no more output is actually
1261  * generated. that way, the caller can determine how much space would be
1262  * required for the path to fit into the buffer. in that case, the returned
1263  * value will be smaller than dest. callers must check this!
1264  */
1265 char *btrfs_iref_to_path(struct btrfs_root *fs_root,
1266                          struct btrfs_path *path,
1267                          struct btrfs_inode_ref *iref,
1268                          struct extent_buffer *eb_in, u64 parent,
1269                          char *dest, u32 size)
1270 {
1271         return btrfs_ref_to_path(fs_root, path,
1272                                  btrfs_inode_ref_name_len(eb_in, iref),
1273                                  (unsigned long)(iref + 1),
1274                                  eb_in, parent, dest, size);
1275 }
1276
1277 /*
1278  * this makes the path point to (logical EXTENT_ITEM *)
1279  * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1280  * tree blocks and <0 on error.
1281  */
1282 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1283                         struct btrfs_path *path, struct btrfs_key *found_key,
1284                         u64 *flags_ret)
1285 {
1286         int ret;
1287         u64 flags;
1288         u32 item_size;
1289         struct extent_buffer *eb;
1290         struct btrfs_extent_item *ei;
1291         struct btrfs_key key;
1292
1293         key.type = BTRFS_EXTENT_ITEM_KEY;
1294         key.objectid = logical;
1295         key.offset = (u64)-1;
1296
1297         ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1298         if (ret < 0)
1299                 return ret;
1300         ret = btrfs_previous_item(fs_info->extent_root, path,
1301                                         0, BTRFS_EXTENT_ITEM_KEY);
1302         if (ret < 0)
1303                 return ret;
1304
1305         btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1306         if (found_key->type != BTRFS_EXTENT_ITEM_KEY ||
1307             found_key->objectid > logical ||
1308             found_key->objectid + found_key->offset <= logical) {
1309                 pr_debug("logical %llu is not within any extent\n",
1310                          (unsigned long long)logical);
1311                 return -ENOENT;
1312         }
1313
1314         eb = path->nodes[0];
1315         item_size = btrfs_item_size_nr(eb, path->slots[0]);
1316         BUG_ON(item_size < sizeof(*ei));
1317
1318         ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1319         flags = btrfs_extent_flags(eb, ei);
1320
1321         pr_debug("logical %llu is at position %llu within the extent (%llu "
1322                  "EXTENT_ITEM %llu) flags %#llx size %u\n",
1323                  (unsigned long long)logical,
1324                  (unsigned long long)(logical - found_key->objectid),
1325                  (unsigned long long)found_key->objectid,
1326                  (unsigned long long)found_key->offset,
1327                  (unsigned long long)flags, item_size);
1328
1329         WARN_ON(!flags_ret);
1330         if (flags_ret) {
1331                 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1332                         *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1333                 else if (flags & BTRFS_EXTENT_FLAG_DATA)
1334                         *flags_ret = BTRFS_EXTENT_FLAG_DATA;
1335                 else
1336                         BUG_ON(1);
1337                 return 0;
1338         }
1339
1340         return -EIO;
1341 }
1342
1343 /*
1344  * helper function to iterate extent inline refs. ptr must point to a 0 value
1345  * for the first call and may be modified. it is used to track state.
1346  * if more refs exist, 0 is returned and the next call to
1347  * __get_extent_inline_ref must pass the modified ptr parameter to get the
1348  * next ref. after the last ref was processed, 1 is returned.
1349  * returns <0 on error
1350  */
1351 static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
1352                                 struct btrfs_extent_item *ei, u32 item_size,
1353                                 struct btrfs_extent_inline_ref **out_eiref,
1354                                 int *out_type)
1355 {
1356         unsigned long end;
1357         u64 flags;
1358         struct btrfs_tree_block_info *info;
1359
1360         if (!*ptr) {
1361                 /* first call */
1362                 flags = btrfs_extent_flags(eb, ei);
1363                 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1364                         info = (struct btrfs_tree_block_info *)(ei + 1);
1365                         *out_eiref =
1366                                 (struct btrfs_extent_inline_ref *)(info + 1);
1367                 } else {
1368                         *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1369                 }
1370                 *ptr = (unsigned long)*out_eiref;
1371                 if ((void *)*ptr >= (void *)ei + item_size)
1372                         return -ENOENT;
1373         }
1374
1375         end = (unsigned long)ei + item_size;
1376         *out_eiref = (struct btrfs_extent_inline_ref *)*ptr;
1377         *out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
1378
1379         *ptr += btrfs_extent_inline_ref_size(*out_type);
1380         WARN_ON(*ptr > end);
1381         if (*ptr == end)
1382                 return 1; /* last */
1383
1384         return 0;
1385 }
1386
1387 /*
1388  * reads the tree block backref for an extent. tree level and root are returned
1389  * through out_level and out_root. ptr must point to a 0 value for the first
1390  * call and may be modified (see __get_extent_inline_ref comment).
1391  * returns 0 if data was provided, 1 if there was no more data to provide or
1392  * <0 on error.
1393  */
1394 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1395                                 struct btrfs_extent_item *ei, u32 item_size,
1396                                 u64 *out_root, u8 *out_level)
1397 {
1398         int ret;
1399         int type;
1400         struct btrfs_tree_block_info *info;
1401         struct btrfs_extent_inline_ref *eiref;
1402
1403         if (*ptr == (unsigned long)-1)
1404                 return 1;
1405
1406         while (1) {
1407                 ret = __get_extent_inline_ref(ptr, eb, ei, item_size,
1408                                                 &eiref, &type);
1409                 if (ret < 0)
1410                         return ret;
1411
1412                 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1413                     type == BTRFS_SHARED_BLOCK_REF_KEY)
1414                         break;
1415
1416                 if (ret == 1)
1417                         return 1;
1418         }
1419
1420         /* we can treat both ref types equally here */
1421         info = (struct btrfs_tree_block_info *)(ei + 1);
1422         *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1423         *out_level = btrfs_tree_block_level(eb, info);
1424
1425         if (ret == 1)
1426                 *ptr = (unsigned long)-1;
1427
1428         return 0;
1429 }
1430
1431 static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
1432                                 u64 root, u64 extent_item_objectid,
1433                                 iterate_extent_inodes_t *iterate, void *ctx)
1434 {
1435         struct extent_inode_elem *eie;
1436         int ret = 0;
1437
1438         for (eie = inode_list; eie; eie = eie->next) {
1439                 pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
1440                          "root %llu\n", extent_item_objectid,
1441                          eie->inum, eie->offset, root);
1442                 ret = iterate(eie->inum, eie->offset, root, ctx);
1443                 if (ret) {
1444                         pr_debug("stopping iteration for %llu due to ret=%d\n",
1445                                  extent_item_objectid, ret);
1446                         break;
1447                 }
1448         }
1449
1450         return ret;
1451 }
1452
1453 /*
1454  * calls iterate() for every inode that references the extent identified by
1455  * the given parameters.
1456  * when the iterator function returns a non-zero value, iteration stops.
1457  */
1458 int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1459                                 u64 extent_item_objectid, u64 extent_item_pos,
1460                                 int search_commit_root,
1461                                 iterate_extent_inodes_t *iterate, void *ctx)
1462 {
1463         int ret;
1464         struct list_head data_refs = LIST_HEAD_INIT(data_refs);
1465         struct list_head shared_refs = LIST_HEAD_INIT(shared_refs);
1466         struct btrfs_trans_handle *trans;
1467         struct ulist *refs = NULL;
1468         struct ulist *roots = NULL;
1469         struct ulist_node *ref_node = NULL;
1470         struct ulist_node *root_node = NULL;
1471         struct seq_list tree_mod_seq_elem = {};
1472         struct ulist_iterator ref_uiter;
1473         struct ulist_iterator root_uiter;
1474
1475         pr_debug("resolving all inodes for extent %llu\n",
1476                         extent_item_objectid);
1477
1478         if (search_commit_root) {
1479                 trans = BTRFS_BACKREF_SEARCH_COMMIT_ROOT;
1480         } else {
1481                 trans = btrfs_join_transaction(fs_info->extent_root);
1482                 if (IS_ERR(trans))
1483                         return PTR_ERR(trans);
1484                 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1485         }
1486
1487         ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1488                                    tree_mod_seq_elem.seq, &refs,
1489                                    &extent_item_pos);
1490         if (ret)
1491                 goto out;
1492
1493         ULIST_ITER_INIT(&ref_uiter);
1494         while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1495                 ret = btrfs_find_all_roots(trans, fs_info, ref_node->val,
1496                                            tree_mod_seq_elem.seq, &roots);
1497                 if (ret)
1498                         break;
1499                 ULIST_ITER_INIT(&root_uiter);
1500                 while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1501                         pr_debug("root %llu references leaf %llu, data list "
1502                                  "%#llx\n", root_node->val, ref_node->val,
1503                                  (long long)ref_node->aux);
1504                         ret = iterate_leaf_refs((struct extent_inode_elem *)
1505                                                 (uintptr_t)ref_node->aux,
1506                                                 root_node->val,
1507                                                 extent_item_objectid,
1508                                                 iterate, ctx);
1509                 }
1510                 ulist_free(roots);
1511                 roots = NULL;
1512         }
1513
1514         free_leaf_list(refs);
1515         ulist_free(roots);
1516 out:
1517         if (!search_commit_root) {
1518                 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1519                 btrfs_end_transaction(trans, fs_info->extent_root);
1520         }
1521
1522         return ret;
1523 }
1524
1525 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
1526                                 struct btrfs_path *path,
1527                                 iterate_extent_inodes_t *iterate, void *ctx)
1528 {
1529         int ret;
1530         u64 extent_item_pos;
1531         u64 flags = 0;
1532         struct btrfs_key found_key;
1533         int search_commit_root = path->search_commit_root;
1534
1535         ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
1536         btrfs_release_path(path);
1537         if (ret < 0)
1538                 return ret;
1539         if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1540                 return -EINVAL;
1541
1542         extent_item_pos = logical - found_key.objectid;
1543         ret = iterate_extent_inodes(fs_info, found_key.objectid,
1544                                         extent_item_pos, search_commit_root,
1545                                         iterate, ctx);
1546
1547         return ret;
1548 }
1549
1550 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
1551                               struct extent_buffer *eb, void *ctx);
1552
1553 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
1554                               struct btrfs_path *path,
1555                               iterate_irefs_t *iterate, void *ctx)
1556 {
1557         int ret = 0;
1558         int slot;
1559         u32 cur;
1560         u32 len;
1561         u32 name_len;
1562         u64 parent = 0;
1563         int found = 0;
1564         struct extent_buffer *eb;
1565         struct btrfs_item *item;
1566         struct btrfs_inode_ref *iref;
1567         struct btrfs_key found_key;
1568
1569         while (!ret) {
1570                 path->leave_spinning = 1;
1571                 ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path,
1572                                      &found_key);
1573                 if (ret < 0)
1574                         break;
1575                 if (ret) {
1576                         ret = found ? 0 : -ENOENT;
1577                         break;
1578                 }
1579                 ++found;
1580
1581                 parent = found_key.offset;
1582                 slot = path->slots[0];
1583                 eb = path->nodes[0];
1584                 /* make sure we can use eb after releasing the path */
1585                 atomic_inc(&eb->refs);
1586                 btrfs_tree_read_lock(eb);
1587                 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1588                 btrfs_release_path(path);
1589
1590                 item = btrfs_item_nr(eb, slot);
1591                 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1592
1593                 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
1594                         name_len = btrfs_inode_ref_name_len(eb, iref);
1595                         /* path must be released before calling iterate()! */
1596                         pr_debug("following ref at offset %u for inode %llu in "
1597                                  "tree %llu\n", cur,
1598                                  (unsigned long long)found_key.objectid,
1599                                  (unsigned long long)fs_root->objectid);
1600                         ret = iterate(parent, name_len,
1601                                       (unsigned long)(iref + 1), eb, ctx);
1602                         if (ret)
1603                                 break;
1604                         len = sizeof(*iref) + name_len;
1605                         iref = (struct btrfs_inode_ref *)((char *)iref + len);
1606                 }
1607                 btrfs_tree_read_unlock_blocking(eb);
1608                 free_extent_buffer(eb);
1609         }
1610
1611         btrfs_release_path(path);
1612
1613         return ret;
1614 }
1615
1616 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
1617                                  struct btrfs_path *path,
1618                                  iterate_irefs_t *iterate, void *ctx)
1619 {
1620         int ret;
1621         int slot;
1622         u64 offset = 0;
1623         u64 parent;
1624         int found = 0;
1625         struct extent_buffer *eb;
1626         struct btrfs_inode_extref *extref;
1627         struct extent_buffer *leaf;
1628         u32 item_size;
1629         u32 cur_offset;
1630         unsigned long ptr;
1631
1632         while (1) {
1633                 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
1634                                             &offset);
1635                 if (ret < 0)
1636                         break;
1637                 if (ret) {
1638                         ret = found ? 0 : -ENOENT;
1639                         break;
1640                 }
1641                 ++found;
1642
1643                 slot = path->slots[0];
1644                 eb = path->nodes[0];
1645                 /* make sure we can use eb after releasing the path */
1646                 atomic_inc(&eb->refs);
1647
1648                 btrfs_tree_read_lock(eb);
1649                 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1650                 btrfs_release_path(path);
1651
1652                 leaf = path->nodes[0];
1653                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1654                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1655                 cur_offset = 0;
1656
1657                 while (cur_offset < item_size) {
1658                         u32 name_len;
1659
1660                         extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
1661                         parent = btrfs_inode_extref_parent(eb, extref);
1662                         name_len = btrfs_inode_extref_name_len(eb, extref);
1663                         ret = iterate(parent, name_len,
1664                                       (unsigned long)&extref->name, eb, ctx);
1665                         if (ret)
1666                                 break;
1667
1668                         cur_offset += btrfs_inode_extref_name_len(leaf, extref);
1669                         cur_offset += sizeof(*extref);
1670                 }
1671                 btrfs_tree_read_unlock_blocking(eb);
1672                 free_extent_buffer(eb);
1673
1674                 offset++;
1675         }
1676
1677         btrfs_release_path(path);
1678
1679         return ret;
1680 }
1681
1682 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
1683                          struct btrfs_path *path, iterate_irefs_t *iterate,
1684                          void *ctx)
1685 {
1686         int ret;
1687         int found_refs = 0;
1688
1689         ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
1690         if (!ret)
1691                 ++found_refs;
1692         else if (ret != -ENOENT)
1693                 return ret;
1694
1695         ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
1696         if (ret == -ENOENT && found_refs)
1697                 return 0;
1698
1699         return ret;
1700 }
1701
1702 /*
1703  * returns 0 if the path could be dumped (probably truncated)
1704  * returns <0 in case of an error
1705  */
1706 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
1707                          struct extent_buffer *eb, void *ctx)
1708 {
1709         struct inode_fs_paths *ipath = ctx;
1710         char *fspath;
1711         char *fspath_min;
1712         int i = ipath->fspath->elem_cnt;
1713         const int s_ptr = sizeof(char *);
1714         u32 bytes_left;
1715
1716         bytes_left = ipath->fspath->bytes_left > s_ptr ?
1717                                         ipath->fspath->bytes_left - s_ptr : 0;
1718
1719         fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
1720         fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
1721                                    name_off, eb, inum, fspath_min, bytes_left);
1722         if (IS_ERR(fspath))
1723                 return PTR_ERR(fspath);
1724
1725         if (fspath > fspath_min) {
1726                 ipath->fspath->val[i] = (u64)(unsigned long)fspath;
1727                 ++ipath->fspath->elem_cnt;
1728                 ipath->fspath->bytes_left = fspath - fspath_min;
1729         } else {
1730                 ++ipath->fspath->elem_missed;
1731                 ipath->fspath->bytes_missing += fspath_min - fspath;
1732                 ipath->fspath->bytes_left = 0;
1733         }
1734
1735         return 0;
1736 }
1737
1738 /*
1739  * this dumps all file system paths to the inode into the ipath struct, provided
1740  * is has been created large enough. each path is zero-terminated and accessed
1741  * from ipath->fspath->val[i].
1742  * when it returns, there are ipath->fspath->elem_cnt number of paths available
1743  * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
1744  * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
1745  * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
1746  * have been needed to return all paths.
1747  */
1748 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
1749 {
1750         return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
1751                              inode_to_path, ipath);
1752 }
1753
1754 struct btrfs_data_container *init_data_container(u32 total_bytes)
1755 {
1756         struct btrfs_data_container *data;
1757         size_t alloc_bytes;
1758
1759         alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
1760         data = vmalloc(alloc_bytes);
1761         if (!data)
1762                 return ERR_PTR(-ENOMEM);
1763
1764         if (total_bytes >= sizeof(*data)) {
1765                 data->bytes_left = total_bytes - sizeof(*data);
1766                 data->bytes_missing = 0;
1767         } else {
1768                 data->bytes_missing = sizeof(*data) - total_bytes;
1769                 data->bytes_left = 0;
1770         }
1771
1772         data->elem_cnt = 0;
1773         data->elem_missed = 0;
1774
1775         return data;
1776 }
1777
1778 /*
1779  * allocates space to return multiple file system paths for an inode.
1780  * total_bytes to allocate are passed, note that space usable for actual path
1781  * information will be total_bytes - sizeof(struct inode_fs_paths).
1782  * the returned pointer must be freed with free_ipath() in the end.
1783  */
1784 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
1785                                         struct btrfs_path *path)
1786 {
1787         struct inode_fs_paths *ifp;
1788         struct btrfs_data_container *fspath;
1789
1790         fspath = init_data_container(total_bytes);
1791         if (IS_ERR(fspath))
1792                 return (void *)fspath;
1793
1794         ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
1795         if (!ifp) {
1796                 kfree(fspath);
1797                 return ERR_PTR(-ENOMEM);
1798         }
1799
1800         ifp->btrfs_path = path;
1801         ifp->fspath = fspath;
1802         ifp->fs_root = fs_root;
1803
1804         return ifp;
1805 }
1806
1807 void free_ipath(struct inode_fs_paths *ipath)
1808 {
1809         if (!ipath)
1810                 return;
1811         vfree(ipath->fspath);
1812         kfree(ipath);
1813 }