]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/btrfs/ctree.c
Btrfs: return value of btrfs_read_buffer is checked correctly
[karo-tx-linux.git] / fs / btrfs / ctree.c
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include "ctree.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 #include "print-tree.h"
25 #include "locking.h"
26
27 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
28                       *root, struct btrfs_path *path, int level);
29 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
30                       *root, struct btrfs_key *ins_key,
31                       struct btrfs_path *path, int data_size, int extend);
32 static int push_node_left(struct btrfs_trans_handle *trans,
33                           struct btrfs_root *root, struct extent_buffer *dst,
34                           struct extent_buffer *src, int empty);
35 static int balance_node_right(struct btrfs_trans_handle *trans,
36                               struct btrfs_root *root,
37                               struct extent_buffer *dst_buf,
38                               struct extent_buffer *src_buf);
39 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
40                    struct btrfs_path *path, int level, int slot);
41
42 struct btrfs_path *btrfs_alloc_path(void)
43 {
44         struct btrfs_path *path;
45         path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
46         return path;
47 }
48
49 /*
50  * set all locked nodes in the path to blocking locks.  This should
51  * be done before scheduling
52  */
53 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
54 {
55         int i;
56         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
57                 if (!p->nodes[i] || !p->locks[i])
58                         continue;
59                 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
60                 if (p->locks[i] == BTRFS_READ_LOCK)
61                         p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
62                 else if (p->locks[i] == BTRFS_WRITE_LOCK)
63                         p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
64         }
65 }
66
67 /*
68  * reset all the locked nodes in the patch to spinning locks.
69  *
70  * held is used to keep lockdep happy, when lockdep is enabled
71  * we set held to a blocking lock before we go around and
72  * retake all the spinlocks in the path.  You can safely use NULL
73  * for held
74  */
75 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
76                                         struct extent_buffer *held, int held_rw)
77 {
78         int i;
79
80 #ifdef CONFIG_DEBUG_LOCK_ALLOC
81         /* lockdep really cares that we take all of these spinlocks
82          * in the right order.  If any of the locks in the path are not
83          * currently blocking, it is going to complain.  So, make really
84          * really sure by forcing the path to blocking before we clear
85          * the path blocking.
86          */
87         if (held) {
88                 btrfs_set_lock_blocking_rw(held, held_rw);
89                 if (held_rw == BTRFS_WRITE_LOCK)
90                         held_rw = BTRFS_WRITE_LOCK_BLOCKING;
91                 else if (held_rw == BTRFS_READ_LOCK)
92                         held_rw = BTRFS_READ_LOCK_BLOCKING;
93         }
94         btrfs_set_path_blocking(p);
95 #endif
96
97         for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
98                 if (p->nodes[i] && p->locks[i]) {
99                         btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
100                         if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
101                                 p->locks[i] = BTRFS_WRITE_LOCK;
102                         else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
103                                 p->locks[i] = BTRFS_READ_LOCK;
104                 }
105         }
106
107 #ifdef CONFIG_DEBUG_LOCK_ALLOC
108         if (held)
109                 btrfs_clear_lock_blocking_rw(held, held_rw);
110 #endif
111 }
112
113 /* this also releases the path */
114 void btrfs_free_path(struct btrfs_path *p)
115 {
116         if (!p)
117                 return;
118         btrfs_release_path(p);
119         kmem_cache_free(btrfs_path_cachep, p);
120 }
121
122 /*
123  * path release drops references on the extent buffers in the path
124  * and it drops any locks held by this path
125  *
126  * It is safe to call this on paths that no locks or extent buffers held.
127  */
128 noinline void btrfs_release_path(struct btrfs_path *p)
129 {
130         int i;
131
132         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
133                 p->slots[i] = 0;
134                 if (!p->nodes[i])
135                         continue;
136                 if (p->locks[i]) {
137                         btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
138                         p->locks[i] = 0;
139                 }
140                 free_extent_buffer(p->nodes[i]);
141                 p->nodes[i] = NULL;
142         }
143 }
144
145 /*
146  * safely gets a reference on the root node of a tree.  A lock
147  * is not taken, so a concurrent writer may put a different node
148  * at the root of the tree.  See btrfs_lock_root_node for the
149  * looping required.
150  *
151  * The extent buffer returned by this has a reference taken, so
152  * it won't disappear.  It may stop being the root of the tree
153  * at any time because there are no locks held.
154  */
155 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
156 {
157         struct extent_buffer *eb;
158
159         while (1) {
160                 rcu_read_lock();
161                 eb = rcu_dereference(root->node);
162
163                 /*
164                  * RCU really hurts here, we could free up the root node because
165                  * it was cow'ed but we may not get the new root node yet so do
166                  * the inc_not_zero dance and if it doesn't work then
167                  * synchronize_rcu and try again.
168                  */
169                 if (atomic_inc_not_zero(&eb->refs)) {
170                         rcu_read_unlock();
171                         break;
172                 }
173                 rcu_read_unlock();
174                 synchronize_rcu();
175         }
176         return eb;
177 }
178
179 /* loop around taking references on and locking the root node of the
180  * tree until you end up with a lock on the root.  A locked buffer
181  * is returned, with a reference held.
182  */
183 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
184 {
185         struct extent_buffer *eb;
186
187         while (1) {
188                 eb = btrfs_root_node(root);
189                 btrfs_tree_lock(eb);
190                 if (eb == root->node)
191                         break;
192                 btrfs_tree_unlock(eb);
193                 free_extent_buffer(eb);
194         }
195         return eb;
196 }
197
198 /* loop around taking references on and locking the root node of the
199  * tree until you end up with a lock on the root.  A locked buffer
200  * is returned, with a reference held.
201  */
202 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
203 {
204         struct extent_buffer *eb;
205
206         while (1) {
207                 eb = btrfs_root_node(root);
208                 btrfs_tree_read_lock(eb);
209                 if (eb == root->node)
210                         break;
211                 btrfs_tree_read_unlock(eb);
212                 free_extent_buffer(eb);
213         }
214         return eb;
215 }
216
217 /* cowonly root (everything not a reference counted cow subvolume), just get
218  * put onto a simple dirty list.  transaction.c walks this to make sure they
219  * get properly updated on disk.
220  */
221 static void add_root_to_dirty_list(struct btrfs_root *root)
222 {
223         spin_lock(&root->fs_info->trans_lock);
224         if (root->track_dirty && list_empty(&root->dirty_list)) {
225                 list_add(&root->dirty_list,
226                          &root->fs_info->dirty_cowonly_roots);
227         }
228         spin_unlock(&root->fs_info->trans_lock);
229 }
230
231 /*
232  * used by snapshot creation to make a copy of a root for a tree with
233  * a given objectid.  The buffer with the new root node is returned in
234  * cow_ret, and this func returns zero on success or a negative error code.
235  */
236 int btrfs_copy_root(struct btrfs_trans_handle *trans,
237                       struct btrfs_root *root,
238                       struct extent_buffer *buf,
239                       struct extent_buffer **cow_ret, u64 new_root_objectid)
240 {
241         struct extent_buffer *cow;
242         int ret = 0;
243         int level;
244         struct btrfs_disk_key disk_key;
245
246         WARN_ON(root->ref_cows && trans->transid !=
247                 root->fs_info->running_transaction->transid);
248         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
249
250         level = btrfs_header_level(buf);
251         if (level == 0)
252                 btrfs_item_key(buf, &disk_key, 0);
253         else
254                 btrfs_node_key(buf, &disk_key, 0);
255
256         cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
257                                      new_root_objectid, &disk_key, level,
258                                      buf->start, 0, 1);
259         if (IS_ERR(cow))
260                 return PTR_ERR(cow);
261
262         copy_extent_buffer(cow, buf, 0, 0, cow->len);
263         btrfs_set_header_bytenr(cow, cow->start);
264         btrfs_set_header_generation(cow, trans->transid);
265         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
266         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
267                                      BTRFS_HEADER_FLAG_RELOC);
268         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
269                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
270         else
271                 btrfs_set_header_owner(cow, new_root_objectid);
272
273         write_extent_buffer(cow, root->fs_info->fsid,
274                             (unsigned long)btrfs_header_fsid(cow),
275                             BTRFS_FSID_SIZE);
276
277         WARN_ON(btrfs_header_generation(buf) > trans->transid);
278         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
279                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
280         else
281                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
282
283         if (ret)
284                 return ret;
285
286         btrfs_mark_buffer_dirty(cow);
287         *cow_ret = cow;
288         return 0;
289 }
290
291 /*
292  * check if the tree block can be shared by multiple trees
293  */
294 int btrfs_block_can_be_shared(struct btrfs_root *root,
295                               struct extent_buffer *buf)
296 {
297         /*
298          * Tree blocks not in refernece counted trees and tree roots
299          * are never shared. If a block was allocated after the last
300          * snapshot and the block was not allocated by tree relocation,
301          * we know the block is not shared.
302          */
303         if (root->ref_cows &&
304             buf != root->node && buf != root->commit_root &&
305             (btrfs_header_generation(buf) <=
306              btrfs_root_last_snapshot(&root->root_item) ||
307              btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
308                 return 1;
309 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
310         if (root->ref_cows &&
311             btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
312                 return 1;
313 #endif
314         return 0;
315 }
316
317 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
318                                        struct btrfs_root *root,
319                                        struct extent_buffer *buf,
320                                        struct extent_buffer *cow,
321                                        int *last_ref)
322 {
323         u64 refs;
324         u64 owner;
325         u64 flags;
326         u64 new_flags = 0;
327         int ret;
328
329         /*
330          * Backrefs update rules:
331          *
332          * Always use full backrefs for extent pointers in tree block
333          * allocated by tree relocation.
334          *
335          * If a shared tree block is no longer referenced by its owner
336          * tree (btrfs_header_owner(buf) == root->root_key.objectid),
337          * use full backrefs for extent pointers in tree block.
338          *
339          * If a tree block is been relocating
340          * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
341          * use full backrefs for extent pointers in tree block.
342          * The reason for this is some operations (such as drop tree)
343          * are only allowed for blocks use full backrefs.
344          */
345
346         if (btrfs_block_can_be_shared(root, buf)) {
347                 ret = btrfs_lookup_extent_info(trans, root, buf->start,
348                                                buf->len, &refs, &flags);
349                 if (ret)
350                         return ret;
351                 if (refs == 0) {
352                         ret = -EROFS;
353                         btrfs_std_error(root->fs_info, ret);
354                         return ret;
355                 }
356         } else {
357                 refs = 1;
358                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
359                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
360                         flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
361                 else
362                         flags = 0;
363         }
364
365         owner = btrfs_header_owner(buf);
366         BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
367                !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
368
369         if (refs > 1) {
370                 if ((owner == root->root_key.objectid ||
371                      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
372                     !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
373                         ret = btrfs_inc_ref(trans, root, buf, 1, 1);
374                         BUG_ON(ret); /* -ENOMEM */
375
376                         if (root->root_key.objectid ==
377                             BTRFS_TREE_RELOC_OBJECTID) {
378                                 ret = btrfs_dec_ref(trans, root, buf, 0, 1);
379                                 BUG_ON(ret); /* -ENOMEM */
380                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
381                                 BUG_ON(ret); /* -ENOMEM */
382                         }
383                         new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
384                 } else {
385
386                         if (root->root_key.objectid ==
387                             BTRFS_TREE_RELOC_OBJECTID)
388                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
389                         else
390                                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
391                         BUG_ON(ret); /* -ENOMEM */
392                 }
393                 if (new_flags != 0) {
394                         ret = btrfs_set_disk_extent_flags(trans, root,
395                                                           buf->start,
396                                                           buf->len,
397                                                           new_flags, 0);
398                         if (ret)
399                                 return ret;
400                 }
401         } else {
402                 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
403                         if (root->root_key.objectid ==
404                             BTRFS_TREE_RELOC_OBJECTID)
405                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
406                         else
407                                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
408                         BUG_ON(ret); /* -ENOMEM */
409                         ret = btrfs_dec_ref(trans, root, buf, 1, 1);
410                         BUG_ON(ret); /* -ENOMEM */
411                 }
412                 clean_tree_block(trans, root, buf);
413                 *last_ref = 1;
414         }
415         return 0;
416 }
417
418 /*
419  * does the dirty work in cow of a single block.  The parent block (if
420  * supplied) is updated to point to the new cow copy.  The new buffer is marked
421  * dirty and returned locked.  If you modify the block it needs to be marked
422  * dirty again.
423  *
424  * search_start -- an allocation hint for the new block
425  *
426  * empty_size -- a hint that you plan on doing more cow.  This is the size in
427  * bytes the allocator should try to find free next to the block it returns.
428  * This is just a hint and may be ignored by the allocator.
429  */
430 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
431                              struct btrfs_root *root,
432                              struct extent_buffer *buf,
433                              struct extent_buffer *parent, int parent_slot,
434                              struct extent_buffer **cow_ret,
435                              u64 search_start, u64 empty_size)
436 {
437         struct btrfs_disk_key disk_key;
438         struct extent_buffer *cow;
439         int level, ret;
440         int last_ref = 0;
441         int unlock_orig = 0;
442         u64 parent_start;
443
444         if (*cow_ret == buf)
445                 unlock_orig = 1;
446
447         btrfs_assert_tree_locked(buf);
448
449         WARN_ON(root->ref_cows && trans->transid !=
450                 root->fs_info->running_transaction->transid);
451         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
452
453         level = btrfs_header_level(buf);
454
455         if (level == 0)
456                 btrfs_item_key(buf, &disk_key, 0);
457         else
458                 btrfs_node_key(buf, &disk_key, 0);
459
460         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
461                 if (parent)
462                         parent_start = parent->start;
463                 else
464                         parent_start = 0;
465         } else
466                 parent_start = 0;
467
468         cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
469                                      root->root_key.objectid, &disk_key,
470                                      level, search_start, empty_size, 1);
471         if (IS_ERR(cow))
472                 return PTR_ERR(cow);
473
474         /* cow is set to blocking by btrfs_init_new_buffer */
475
476         copy_extent_buffer(cow, buf, 0, 0, cow->len);
477         btrfs_set_header_bytenr(cow, cow->start);
478         btrfs_set_header_generation(cow, trans->transid);
479         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
480         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
481                                      BTRFS_HEADER_FLAG_RELOC);
482         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
483                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
484         else
485                 btrfs_set_header_owner(cow, root->root_key.objectid);
486
487         write_extent_buffer(cow, root->fs_info->fsid,
488                             (unsigned long)btrfs_header_fsid(cow),
489                             BTRFS_FSID_SIZE);
490
491         ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
492         if (ret) {
493                 btrfs_abort_transaction(trans, root, ret);
494                 return ret;
495         }
496
497         if (root->ref_cows)
498                 btrfs_reloc_cow_block(trans, root, buf, cow);
499
500         if (buf == root->node) {
501                 WARN_ON(parent && parent != buf);
502                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
503                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
504                         parent_start = buf->start;
505                 else
506                         parent_start = 0;
507
508                 extent_buffer_get(cow);
509                 rcu_assign_pointer(root->node, cow);
510
511                 btrfs_free_tree_block(trans, root, buf, parent_start,
512                                       last_ref, 1);
513                 free_extent_buffer(buf);
514                 add_root_to_dirty_list(root);
515         } else {
516                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
517                         parent_start = parent->start;
518                 else
519                         parent_start = 0;
520
521                 WARN_ON(trans->transid != btrfs_header_generation(parent));
522                 btrfs_set_node_blockptr(parent, parent_slot,
523                                         cow->start);
524                 btrfs_set_node_ptr_generation(parent, parent_slot,
525                                               trans->transid);
526                 btrfs_mark_buffer_dirty(parent);
527                 btrfs_free_tree_block(trans, root, buf, parent_start,
528                                       last_ref, 1);
529         }
530         if (unlock_orig)
531                 btrfs_tree_unlock(buf);
532         free_extent_buffer_stale(buf);
533         btrfs_mark_buffer_dirty(cow);
534         *cow_ret = cow;
535         return 0;
536 }
537
538 static inline int should_cow_block(struct btrfs_trans_handle *trans,
539                                    struct btrfs_root *root,
540                                    struct extent_buffer *buf)
541 {
542         /* ensure we can see the force_cow */
543         smp_rmb();
544
545         /*
546          * We do not need to cow a block if
547          * 1) this block is not created or changed in this transaction;
548          * 2) this block does not belong to TREE_RELOC tree;
549          * 3) the root is not forced COW.
550          *
551          * What is forced COW:
552          *    when we create snapshot during commiting the transaction,
553          *    after we've finished coping src root, we must COW the shared
554          *    block to ensure the metadata consistency.
555          */
556         if (btrfs_header_generation(buf) == trans->transid &&
557             !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
558             !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
559               btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
560             !root->force_cow)
561                 return 0;
562         return 1;
563 }
564
565 /*
566  * cows a single block, see __btrfs_cow_block for the real work.
567  * This version of it has extra checks so that a block isn't cow'd more than
568  * once per transaction, as long as it hasn't been written yet
569  */
570 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
571                     struct btrfs_root *root, struct extent_buffer *buf,
572                     struct extent_buffer *parent, int parent_slot,
573                     struct extent_buffer **cow_ret)
574 {
575         u64 search_start;
576         int ret;
577
578         if (trans->transaction != root->fs_info->running_transaction) {
579                 printk(KERN_CRIT "trans %llu running %llu\n",
580                        (unsigned long long)trans->transid,
581                        (unsigned long long)
582                        root->fs_info->running_transaction->transid);
583                 WARN_ON(1);
584         }
585         if (trans->transid != root->fs_info->generation) {
586                 printk(KERN_CRIT "trans %llu running %llu\n",
587                        (unsigned long long)trans->transid,
588                        (unsigned long long)root->fs_info->generation);
589                 WARN_ON(1);
590         }
591
592         if (!should_cow_block(trans, root, buf)) {
593                 *cow_ret = buf;
594                 return 0;
595         }
596
597         search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
598
599         if (parent)
600                 btrfs_set_lock_blocking(parent);
601         btrfs_set_lock_blocking(buf);
602
603         ret = __btrfs_cow_block(trans, root, buf, parent,
604                                  parent_slot, cow_ret, search_start, 0);
605
606         trace_btrfs_cow_block(root, buf, *cow_ret);
607
608         return ret;
609 }
610
611 /*
612  * helper function for defrag to decide if two blocks pointed to by a
613  * node are actually close by
614  */
615 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
616 {
617         if (blocknr < other && other - (blocknr + blocksize) < 32768)
618                 return 1;
619         if (blocknr > other && blocknr - (other + blocksize) < 32768)
620                 return 1;
621         return 0;
622 }
623
624 /*
625  * compare two keys in a memcmp fashion
626  */
627 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
628 {
629         struct btrfs_key k1;
630
631         btrfs_disk_key_to_cpu(&k1, disk);
632
633         return btrfs_comp_cpu_keys(&k1, k2);
634 }
635
636 /*
637  * same as comp_keys only with two btrfs_key's
638  */
639 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
640 {
641         if (k1->objectid > k2->objectid)
642                 return 1;
643         if (k1->objectid < k2->objectid)
644                 return -1;
645         if (k1->type > k2->type)
646                 return 1;
647         if (k1->type < k2->type)
648                 return -1;
649         if (k1->offset > k2->offset)
650                 return 1;
651         if (k1->offset < k2->offset)
652                 return -1;
653         return 0;
654 }
655
656 /*
657  * this is used by the defrag code to go through all the
658  * leaves pointed to by a node and reallocate them so that
659  * disk order is close to key order
660  */
661 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
662                        struct btrfs_root *root, struct extent_buffer *parent,
663                        int start_slot, int cache_only, u64 *last_ret,
664                        struct btrfs_key *progress)
665 {
666         struct extent_buffer *cur;
667         u64 blocknr;
668         u64 gen;
669         u64 search_start = *last_ret;
670         u64 last_block = 0;
671         u64 other;
672         u32 parent_nritems;
673         int end_slot;
674         int i;
675         int err = 0;
676         int parent_level;
677         int uptodate;
678         u32 blocksize;
679         int progress_passed = 0;
680         struct btrfs_disk_key disk_key;
681
682         parent_level = btrfs_header_level(parent);
683         if (cache_only && parent_level != 1)
684                 return 0;
685
686         if (trans->transaction != root->fs_info->running_transaction)
687                 WARN_ON(1);
688         if (trans->transid != root->fs_info->generation)
689                 WARN_ON(1);
690
691         parent_nritems = btrfs_header_nritems(parent);
692         blocksize = btrfs_level_size(root, parent_level - 1);
693         end_slot = parent_nritems;
694
695         if (parent_nritems == 1)
696                 return 0;
697
698         btrfs_set_lock_blocking(parent);
699
700         for (i = start_slot; i < end_slot; i++) {
701                 int close = 1;
702
703                 btrfs_node_key(parent, &disk_key, i);
704                 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
705                         continue;
706
707                 progress_passed = 1;
708                 blocknr = btrfs_node_blockptr(parent, i);
709                 gen = btrfs_node_ptr_generation(parent, i);
710                 if (last_block == 0)
711                         last_block = blocknr;
712
713                 if (i > 0) {
714                         other = btrfs_node_blockptr(parent, i - 1);
715                         close = close_blocks(blocknr, other, blocksize);
716                 }
717                 if (!close && i < end_slot - 2) {
718                         other = btrfs_node_blockptr(parent, i + 1);
719                         close = close_blocks(blocknr, other, blocksize);
720                 }
721                 if (close) {
722                         last_block = blocknr;
723                         continue;
724                 }
725
726                 cur = btrfs_find_tree_block(root, blocknr, blocksize);
727                 if (cur)
728                         uptodate = btrfs_buffer_uptodate(cur, gen, 0);
729                 else
730                         uptodate = 0;
731                 if (!cur || !uptodate) {
732                         if (cache_only) {
733                                 free_extent_buffer(cur);
734                                 continue;
735                         }
736                         if (!cur) {
737                                 cur = read_tree_block(root, blocknr,
738                                                          blocksize, gen);
739                                 if (!cur)
740                                         return -EIO;
741                         } else if (!uptodate) {
742                                 err = btrfs_read_buffer(cur, gen);
743                                 if (err) {
744                                         free_extent_buffer(cur);
745                                         return err;
746                                 }
747                         }
748                 }
749                 if (search_start == 0)
750                         search_start = last_block;
751
752                 btrfs_tree_lock(cur);
753                 btrfs_set_lock_blocking(cur);
754                 err = __btrfs_cow_block(trans, root, cur, parent, i,
755                                         &cur, search_start,
756                                         min(16 * blocksize,
757                                             (end_slot - i) * blocksize));
758                 if (err) {
759                         btrfs_tree_unlock(cur);
760                         free_extent_buffer(cur);
761                         break;
762                 }
763                 search_start = cur->start;
764                 last_block = cur->start;
765                 *last_ret = search_start;
766                 btrfs_tree_unlock(cur);
767                 free_extent_buffer(cur);
768         }
769         return err;
770 }
771
772 /*
773  * The leaf data grows from end-to-front in the node.
774  * this returns the address of the start of the last item,
775  * which is the stop of the leaf data stack
776  */
777 static inline unsigned int leaf_data_end(struct btrfs_root *root,
778                                          struct extent_buffer *leaf)
779 {
780         u32 nr = btrfs_header_nritems(leaf);
781         if (nr == 0)
782                 return BTRFS_LEAF_DATA_SIZE(root);
783         return btrfs_item_offset_nr(leaf, nr - 1);
784 }
785
786
787 /*
788  * search for key in the extent_buffer.  The items start at offset p,
789  * and they are item_size apart.  There are 'max' items in p.
790  *
791  * the slot in the array is returned via slot, and it points to
792  * the place where you would insert key if it is not found in
793  * the array.
794  *
795  * slot may point to max if the key is bigger than all of the keys
796  */
797 static noinline int generic_bin_search(struct extent_buffer *eb,
798                                        unsigned long p,
799                                        int item_size, struct btrfs_key *key,
800                                        int max, int *slot)
801 {
802         int low = 0;
803         int high = max;
804         int mid;
805         int ret;
806         struct btrfs_disk_key *tmp = NULL;
807         struct btrfs_disk_key unaligned;
808         unsigned long offset;
809         char *kaddr = NULL;
810         unsigned long map_start = 0;
811         unsigned long map_len = 0;
812         int err;
813
814         while (low < high) {
815                 mid = (low + high) / 2;
816                 offset = p + mid * item_size;
817
818                 if (!kaddr || offset < map_start ||
819                     (offset + sizeof(struct btrfs_disk_key)) >
820                     map_start + map_len) {
821
822                         err = map_private_extent_buffer(eb, offset,
823                                                 sizeof(struct btrfs_disk_key),
824                                                 &kaddr, &map_start, &map_len);
825
826                         if (!err) {
827                                 tmp = (struct btrfs_disk_key *)(kaddr + offset -
828                                                         map_start);
829                         } else {
830                                 read_extent_buffer(eb, &unaligned,
831                                                    offset, sizeof(unaligned));
832                                 tmp = &unaligned;
833                         }
834
835                 } else {
836                         tmp = (struct btrfs_disk_key *)(kaddr + offset -
837                                                         map_start);
838                 }
839                 ret = comp_keys(tmp, key);
840
841                 if (ret < 0)
842                         low = mid + 1;
843                 else if (ret > 0)
844                         high = mid;
845                 else {
846                         *slot = mid;
847                         return 0;
848                 }
849         }
850         *slot = low;
851         return 1;
852 }
853
854 /*
855  * simple bin_search frontend that does the right thing for
856  * leaves vs nodes
857  */
858 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
859                       int level, int *slot)
860 {
861         if (level == 0)
862                 return generic_bin_search(eb,
863                                           offsetof(struct btrfs_leaf, items),
864                                           sizeof(struct btrfs_item),
865                                           key, btrfs_header_nritems(eb),
866                                           slot);
867         else
868                 return generic_bin_search(eb,
869                                           offsetof(struct btrfs_node, ptrs),
870                                           sizeof(struct btrfs_key_ptr),
871                                           key, btrfs_header_nritems(eb),
872                                           slot);
873 }
874
875 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
876                      int level, int *slot)
877 {
878         return bin_search(eb, key, level, slot);
879 }
880
881 static void root_add_used(struct btrfs_root *root, u32 size)
882 {
883         spin_lock(&root->accounting_lock);
884         btrfs_set_root_used(&root->root_item,
885                             btrfs_root_used(&root->root_item) + size);
886         spin_unlock(&root->accounting_lock);
887 }
888
889 static void root_sub_used(struct btrfs_root *root, u32 size)
890 {
891         spin_lock(&root->accounting_lock);
892         btrfs_set_root_used(&root->root_item,
893                             btrfs_root_used(&root->root_item) - size);
894         spin_unlock(&root->accounting_lock);
895 }
896
897 /* given a node and slot number, this reads the blocks it points to.  The
898  * extent buffer is returned with a reference taken (but unlocked).
899  * NULL is returned on error.
900  */
901 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
902                                    struct extent_buffer *parent, int slot)
903 {
904         int level = btrfs_header_level(parent);
905         if (slot < 0)
906                 return NULL;
907         if (slot >= btrfs_header_nritems(parent))
908                 return NULL;
909
910         BUG_ON(level == 0);
911
912         return read_tree_block(root, btrfs_node_blockptr(parent, slot),
913                        btrfs_level_size(root, level - 1),
914                        btrfs_node_ptr_generation(parent, slot));
915 }
916
917 /*
918  * node level balancing, used to make sure nodes are in proper order for
919  * item deletion.  We balance from the top down, so we have to make sure
920  * that a deletion won't leave an node completely empty later on.
921  */
922 static noinline int balance_level(struct btrfs_trans_handle *trans,
923                          struct btrfs_root *root,
924                          struct btrfs_path *path, int level)
925 {
926         struct extent_buffer *right = NULL;
927         struct extent_buffer *mid;
928         struct extent_buffer *left = NULL;
929         struct extent_buffer *parent = NULL;
930         int ret = 0;
931         int wret;
932         int pslot;
933         int orig_slot = path->slots[level];
934         u64 orig_ptr;
935
936         if (level == 0)
937                 return 0;
938
939         mid = path->nodes[level];
940
941         WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
942                 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
943         WARN_ON(btrfs_header_generation(mid) != trans->transid);
944
945         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
946
947         if (level < BTRFS_MAX_LEVEL - 1) {
948                 parent = path->nodes[level + 1];
949                 pslot = path->slots[level + 1];
950         }
951
952         /*
953          * deal with the case where there is only one pointer in the root
954          * by promoting the node below to a root
955          */
956         if (!parent) {
957                 struct extent_buffer *child;
958
959                 if (btrfs_header_nritems(mid) != 1)
960                         return 0;
961
962                 /* promote the child to a root */
963                 child = read_node_slot(root, mid, 0);
964                 if (!child) {
965                         ret = -EROFS;
966                         btrfs_std_error(root->fs_info, ret);
967                         goto enospc;
968                 }
969
970                 btrfs_tree_lock(child);
971                 btrfs_set_lock_blocking(child);
972                 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
973                 if (ret) {
974                         btrfs_tree_unlock(child);
975                         free_extent_buffer(child);
976                         goto enospc;
977                 }
978
979                 rcu_assign_pointer(root->node, child);
980
981                 add_root_to_dirty_list(root);
982                 btrfs_tree_unlock(child);
983
984                 path->locks[level] = 0;
985                 path->nodes[level] = NULL;
986                 clean_tree_block(trans, root, mid);
987                 btrfs_tree_unlock(mid);
988                 /* once for the path */
989                 free_extent_buffer(mid);
990
991                 root_sub_used(root, mid->len);
992                 btrfs_free_tree_block(trans, root, mid, 0, 1, 0);
993                 /* once for the root ptr */
994                 free_extent_buffer_stale(mid);
995                 return 0;
996         }
997         if (btrfs_header_nritems(mid) >
998             BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
999                 return 0;
1000
1001         btrfs_header_nritems(mid);
1002
1003         left = read_node_slot(root, parent, pslot - 1);
1004         if (left) {
1005                 btrfs_tree_lock(left);
1006                 btrfs_set_lock_blocking(left);
1007                 wret = btrfs_cow_block(trans, root, left,
1008                                        parent, pslot - 1, &left);
1009                 if (wret) {
1010                         ret = wret;
1011                         goto enospc;
1012                 }
1013         }
1014         right = read_node_slot(root, parent, pslot + 1);
1015         if (right) {
1016                 btrfs_tree_lock(right);
1017                 btrfs_set_lock_blocking(right);
1018                 wret = btrfs_cow_block(trans, root, right,
1019                                        parent, pslot + 1, &right);
1020                 if (wret) {
1021                         ret = wret;
1022                         goto enospc;
1023                 }
1024         }
1025
1026         /* first, try to make some room in the middle buffer */
1027         if (left) {
1028                 orig_slot += btrfs_header_nritems(left);
1029                 wret = push_node_left(trans, root, left, mid, 1);
1030                 if (wret < 0)
1031                         ret = wret;
1032                 btrfs_header_nritems(mid);
1033         }
1034
1035         /*
1036          * then try to empty the right most buffer into the middle
1037          */
1038         if (right) {
1039                 wret = push_node_left(trans, root, mid, right, 1);
1040                 if (wret < 0 && wret != -ENOSPC)
1041                         ret = wret;
1042                 if (btrfs_header_nritems(right) == 0) {
1043                         clean_tree_block(trans, root, right);
1044                         btrfs_tree_unlock(right);
1045                         del_ptr(trans, root, path, level + 1, pslot + 1);
1046                         root_sub_used(root, right->len);
1047                         btrfs_free_tree_block(trans, root, right, 0, 1, 0);
1048                         free_extent_buffer_stale(right);
1049                         right = NULL;
1050                 } else {
1051                         struct btrfs_disk_key right_key;
1052                         btrfs_node_key(right, &right_key, 0);
1053                         btrfs_set_node_key(parent, &right_key, pslot + 1);
1054                         btrfs_mark_buffer_dirty(parent);
1055                 }
1056         }
1057         if (btrfs_header_nritems(mid) == 1) {
1058                 /*
1059                  * we're not allowed to leave a node with one item in the
1060                  * tree during a delete.  A deletion from lower in the tree
1061                  * could try to delete the only pointer in this node.
1062                  * So, pull some keys from the left.
1063                  * There has to be a left pointer at this point because
1064                  * otherwise we would have pulled some pointers from the
1065                  * right
1066                  */
1067                 if (!left) {
1068                         ret = -EROFS;
1069                         btrfs_std_error(root->fs_info, ret);
1070                         goto enospc;
1071                 }
1072                 wret = balance_node_right(trans, root, mid, left);
1073                 if (wret < 0) {
1074                         ret = wret;
1075                         goto enospc;
1076                 }
1077                 if (wret == 1) {
1078                         wret = push_node_left(trans, root, left, mid, 1);
1079                         if (wret < 0)
1080                                 ret = wret;
1081                 }
1082                 BUG_ON(wret == 1);
1083         }
1084         if (btrfs_header_nritems(mid) == 0) {
1085                 clean_tree_block(trans, root, mid);
1086                 btrfs_tree_unlock(mid);
1087                 del_ptr(trans, root, path, level + 1, pslot);
1088                 root_sub_used(root, mid->len);
1089                 btrfs_free_tree_block(trans, root, mid, 0, 1, 0);
1090                 free_extent_buffer_stale(mid);
1091                 mid = NULL;
1092         } else {
1093                 /* update the parent key to reflect our changes */
1094                 struct btrfs_disk_key mid_key;
1095                 btrfs_node_key(mid, &mid_key, 0);
1096                 btrfs_set_node_key(parent, &mid_key, pslot);
1097                 btrfs_mark_buffer_dirty(parent);
1098         }
1099
1100         /* update the path */
1101         if (left) {
1102                 if (btrfs_header_nritems(left) > orig_slot) {
1103                         extent_buffer_get(left);
1104                         /* left was locked after cow */
1105                         path->nodes[level] = left;
1106                         path->slots[level + 1] -= 1;
1107                         path->slots[level] = orig_slot;
1108                         if (mid) {
1109                                 btrfs_tree_unlock(mid);
1110                                 free_extent_buffer(mid);
1111                         }
1112                 } else {
1113                         orig_slot -= btrfs_header_nritems(left);
1114                         path->slots[level] = orig_slot;
1115                 }
1116         }
1117         /* double check we haven't messed things up */
1118         if (orig_ptr !=
1119             btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1120                 BUG();
1121 enospc:
1122         if (right) {
1123                 btrfs_tree_unlock(right);
1124                 free_extent_buffer(right);
1125         }
1126         if (left) {
1127                 if (path->nodes[level] != left)
1128                         btrfs_tree_unlock(left);
1129                 free_extent_buffer(left);
1130         }
1131         return ret;
1132 }
1133
1134 /* Node balancing for insertion.  Here we only split or push nodes around
1135  * when they are completely full.  This is also done top down, so we
1136  * have to be pessimistic.
1137  */
1138 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1139                                           struct btrfs_root *root,
1140                                           struct btrfs_path *path, int level)
1141 {
1142         struct extent_buffer *right = NULL;
1143         struct extent_buffer *mid;
1144         struct extent_buffer *left = NULL;
1145         struct extent_buffer *parent = NULL;
1146         int ret = 0;
1147         int wret;
1148         int pslot;
1149         int orig_slot = path->slots[level];
1150
1151         if (level == 0)
1152                 return 1;
1153
1154         mid = path->nodes[level];
1155         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1156
1157         if (level < BTRFS_MAX_LEVEL - 1) {
1158                 parent = path->nodes[level + 1];
1159                 pslot = path->slots[level + 1];
1160         }
1161
1162         if (!parent)
1163                 return 1;
1164
1165         left = read_node_slot(root, parent, pslot - 1);
1166
1167         /* first, try to make some room in the middle buffer */
1168         if (left) {
1169                 u32 left_nr;
1170
1171                 btrfs_tree_lock(left);
1172                 btrfs_set_lock_blocking(left);
1173
1174                 left_nr = btrfs_header_nritems(left);
1175                 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1176                         wret = 1;
1177                 } else {
1178                         ret = btrfs_cow_block(trans, root, left, parent,
1179                                               pslot - 1, &left);
1180                         if (ret)
1181                                 wret = 1;
1182                         else {
1183                                 wret = push_node_left(trans, root,
1184                                                       left, mid, 0);
1185                         }
1186                 }
1187                 if (wret < 0)
1188                         ret = wret;
1189                 if (wret == 0) {
1190                         struct btrfs_disk_key disk_key;
1191                         orig_slot += left_nr;
1192                         btrfs_node_key(mid, &disk_key, 0);
1193                         btrfs_set_node_key(parent, &disk_key, pslot);
1194                         btrfs_mark_buffer_dirty(parent);
1195                         if (btrfs_header_nritems(left) > orig_slot) {
1196                                 path->nodes[level] = left;
1197                                 path->slots[level + 1] -= 1;
1198                                 path->slots[level] = orig_slot;
1199                                 btrfs_tree_unlock(mid);
1200                                 free_extent_buffer(mid);
1201                         } else {
1202                                 orig_slot -=
1203                                         btrfs_header_nritems(left);
1204                                 path->slots[level] = orig_slot;
1205                                 btrfs_tree_unlock(left);
1206                                 free_extent_buffer(left);
1207                         }
1208                         return 0;
1209                 }
1210                 btrfs_tree_unlock(left);
1211                 free_extent_buffer(left);
1212         }
1213         right = read_node_slot(root, parent, pslot + 1);
1214
1215         /*
1216          * then try to empty the right most buffer into the middle
1217          */
1218         if (right) {
1219                 u32 right_nr;
1220
1221                 btrfs_tree_lock(right);
1222                 btrfs_set_lock_blocking(right);
1223
1224                 right_nr = btrfs_header_nritems(right);
1225                 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1226                         wret = 1;
1227                 } else {
1228                         ret = btrfs_cow_block(trans, root, right,
1229                                               parent, pslot + 1,
1230                                               &right);
1231                         if (ret)
1232                                 wret = 1;
1233                         else {
1234                                 wret = balance_node_right(trans, root,
1235                                                           right, mid);
1236                         }
1237                 }
1238                 if (wret < 0)
1239                         ret = wret;
1240                 if (wret == 0) {
1241                         struct btrfs_disk_key disk_key;
1242
1243                         btrfs_node_key(right, &disk_key, 0);
1244                         btrfs_set_node_key(parent, &disk_key, pslot + 1);
1245                         btrfs_mark_buffer_dirty(parent);
1246
1247                         if (btrfs_header_nritems(mid) <= orig_slot) {
1248                                 path->nodes[level] = right;
1249                                 path->slots[level + 1] += 1;
1250                                 path->slots[level] = orig_slot -
1251                                         btrfs_header_nritems(mid);
1252                                 btrfs_tree_unlock(mid);
1253                                 free_extent_buffer(mid);
1254                         } else {
1255                                 btrfs_tree_unlock(right);
1256                                 free_extent_buffer(right);
1257                         }
1258                         return 0;
1259                 }
1260                 btrfs_tree_unlock(right);
1261                 free_extent_buffer(right);
1262         }
1263         return 1;
1264 }
1265
1266 /*
1267  * readahead one full node of leaves, finding things that are close
1268  * to the block in 'slot', and triggering ra on them.
1269  */
1270 static void reada_for_search(struct btrfs_root *root,
1271                              struct btrfs_path *path,
1272                              int level, int slot, u64 objectid)
1273 {
1274         struct extent_buffer *node;
1275         struct btrfs_disk_key disk_key;
1276         u32 nritems;
1277         u64 search;
1278         u64 target;
1279         u64 nread = 0;
1280         u64 gen;
1281         int direction = path->reada;
1282         struct extent_buffer *eb;
1283         u32 nr;
1284         u32 blocksize;
1285         u32 nscan = 0;
1286
1287         if (level != 1)
1288                 return;
1289
1290         if (!path->nodes[level])
1291                 return;
1292
1293         node = path->nodes[level];
1294
1295         search = btrfs_node_blockptr(node, slot);
1296         blocksize = btrfs_level_size(root, level - 1);
1297         eb = btrfs_find_tree_block(root, search, blocksize);
1298         if (eb) {
1299                 free_extent_buffer(eb);
1300                 return;
1301         }
1302
1303         target = search;
1304
1305         nritems = btrfs_header_nritems(node);
1306         nr = slot;
1307
1308         while (1) {
1309                 if (direction < 0) {
1310                         if (nr == 0)
1311                                 break;
1312                         nr--;
1313                 } else if (direction > 0) {
1314                         nr++;
1315                         if (nr >= nritems)
1316                                 break;
1317                 }
1318                 if (path->reada < 0 && objectid) {
1319                         btrfs_node_key(node, &disk_key, nr);
1320                         if (btrfs_disk_key_objectid(&disk_key) != objectid)
1321                                 break;
1322                 }
1323                 search = btrfs_node_blockptr(node, nr);
1324                 if ((search <= target && target - search <= 65536) ||
1325                     (search > target && search - target <= 65536)) {
1326                         gen = btrfs_node_ptr_generation(node, nr);
1327                         readahead_tree_block(root, search, blocksize, gen);
1328                         nread += blocksize;
1329                 }
1330                 nscan++;
1331                 if ((nread > 65536 || nscan > 32))
1332                         break;
1333         }
1334 }
1335
1336 /*
1337  * returns -EAGAIN if it had to drop the path, or zero if everything was in
1338  * cache
1339  */
1340 static noinline int reada_for_balance(struct btrfs_root *root,
1341                                       struct btrfs_path *path, int level)
1342 {
1343         int slot;
1344         int nritems;
1345         struct extent_buffer *parent;
1346         struct extent_buffer *eb;
1347         u64 gen;
1348         u64 block1 = 0;
1349         u64 block2 = 0;
1350         int ret = 0;
1351         int blocksize;
1352
1353         parent = path->nodes[level + 1];
1354         if (!parent)
1355                 return 0;
1356
1357         nritems = btrfs_header_nritems(parent);
1358         slot = path->slots[level + 1];
1359         blocksize = btrfs_level_size(root, level);
1360
1361         if (slot > 0) {
1362                 block1 = btrfs_node_blockptr(parent, slot - 1);
1363                 gen = btrfs_node_ptr_generation(parent, slot - 1);
1364                 eb = btrfs_find_tree_block(root, block1, blocksize);
1365                 /*
1366                  * if we get -eagain from btrfs_buffer_uptodate, we
1367                  * don't want to return eagain here.  That will loop
1368                  * forever
1369                  */
1370                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
1371                         block1 = 0;
1372                 free_extent_buffer(eb);
1373         }
1374         if (slot + 1 < nritems) {
1375                 block2 = btrfs_node_blockptr(parent, slot + 1);
1376                 gen = btrfs_node_ptr_generation(parent, slot + 1);
1377                 eb = btrfs_find_tree_block(root, block2, blocksize);
1378                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
1379                         block2 = 0;
1380                 free_extent_buffer(eb);
1381         }
1382         if (block1 || block2) {
1383                 ret = -EAGAIN;
1384
1385                 /* release the whole path */
1386                 btrfs_release_path(path);
1387
1388                 /* read the blocks */
1389                 if (block1)
1390                         readahead_tree_block(root, block1, blocksize, 0);
1391                 if (block2)
1392                         readahead_tree_block(root, block2, blocksize, 0);
1393
1394                 if (block1) {
1395                         eb = read_tree_block(root, block1, blocksize, 0);
1396                         free_extent_buffer(eb);
1397                 }
1398                 if (block2) {
1399                         eb = read_tree_block(root, block2, blocksize, 0);
1400                         free_extent_buffer(eb);
1401                 }
1402         }
1403         return ret;
1404 }
1405
1406
1407 /*
1408  * when we walk down the tree, it is usually safe to unlock the higher layers
1409  * in the tree.  The exceptions are when our path goes through slot 0, because
1410  * operations on the tree might require changing key pointers higher up in the
1411  * tree.
1412  *
1413  * callers might also have set path->keep_locks, which tells this code to keep
1414  * the lock if the path points to the last slot in the block.  This is part of
1415  * walking through the tree, and selecting the next slot in the higher block.
1416  *
1417  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1418  * if lowest_unlock is 1, level 0 won't be unlocked
1419  */
1420 static noinline void unlock_up(struct btrfs_path *path, int level,
1421                                int lowest_unlock, int min_write_lock_level,
1422                                int *write_lock_level)
1423 {
1424         int i;
1425         int skip_level = level;
1426         int no_skips = 0;
1427         struct extent_buffer *t;
1428
1429         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1430                 if (!path->nodes[i])
1431                         break;
1432                 if (!path->locks[i])
1433                         break;
1434                 if (!no_skips && path->slots[i] == 0) {
1435                         skip_level = i + 1;
1436                         continue;
1437                 }
1438                 if (!no_skips && path->keep_locks) {
1439                         u32 nritems;
1440                         t = path->nodes[i];
1441                         nritems = btrfs_header_nritems(t);
1442                         if (nritems < 1 || path->slots[i] >= nritems - 1) {
1443                                 skip_level = i + 1;
1444                                 continue;
1445                         }
1446                 }
1447                 if (skip_level < i && i >= lowest_unlock)
1448                         no_skips = 1;
1449
1450                 t = path->nodes[i];
1451                 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
1452                         btrfs_tree_unlock_rw(t, path->locks[i]);
1453                         path->locks[i] = 0;
1454                         if (write_lock_level &&
1455                             i > min_write_lock_level &&
1456                             i <= *write_lock_level) {
1457                                 *write_lock_level = i - 1;
1458                         }
1459                 }
1460         }
1461 }
1462
1463 /*
1464  * This releases any locks held in the path starting at level and
1465  * going all the way up to the root.
1466  *
1467  * btrfs_search_slot will keep the lock held on higher nodes in a few
1468  * corner cases, such as COW of the block at slot zero in the node.  This
1469  * ignores those rules, and it should only be called when there are no
1470  * more updates to be done higher up in the tree.
1471  */
1472 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
1473 {
1474         int i;
1475
1476         if (path->keep_locks)
1477                 return;
1478
1479         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1480                 if (!path->nodes[i])
1481                         continue;
1482                 if (!path->locks[i])
1483                         continue;
1484                 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
1485                 path->locks[i] = 0;
1486         }
1487 }
1488
1489 /*
1490  * helper function for btrfs_search_slot.  The goal is to find a block
1491  * in cache without setting the path to blocking.  If we find the block
1492  * we return zero and the path is unchanged.
1493  *
1494  * If we can't find the block, we set the path blocking and do some
1495  * reada.  -EAGAIN is returned and the search must be repeated.
1496  */
1497 static int
1498 read_block_for_search(struct btrfs_trans_handle *trans,
1499                        struct btrfs_root *root, struct btrfs_path *p,
1500                        struct extent_buffer **eb_ret, int level, int slot,
1501                        struct btrfs_key *key)
1502 {
1503         u64 blocknr;
1504         u64 gen;
1505         u32 blocksize;
1506         struct extent_buffer *b = *eb_ret;
1507         struct extent_buffer *tmp;
1508         int ret;
1509
1510         blocknr = btrfs_node_blockptr(b, slot);
1511         gen = btrfs_node_ptr_generation(b, slot);
1512         blocksize = btrfs_level_size(root, level - 1);
1513
1514         tmp = btrfs_find_tree_block(root, blocknr, blocksize);
1515         if (tmp) {
1516                 /* first we do an atomic uptodate check */
1517                 if (btrfs_buffer_uptodate(tmp, 0, 1) > 0) {
1518                         if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
1519                                 /*
1520                                  * we found an up to date block without
1521                                  * sleeping, return
1522                                  * right away
1523                                  */
1524                                 *eb_ret = tmp;
1525                                 return 0;
1526                         }
1527                         /* the pages were up to date, but we failed
1528                          * the generation number check.  Do a full
1529                          * read for the generation number that is correct.
1530                          * We must do this without dropping locks so
1531                          * we can trust our generation number
1532                          */
1533                         free_extent_buffer(tmp);
1534                         btrfs_set_path_blocking(p);
1535
1536                         /* now we're allowed to do a blocking uptodate check */
1537                         tmp = read_tree_block(root, blocknr, blocksize, gen);
1538                         if (tmp && btrfs_buffer_uptodate(tmp, gen, 0) > 0) {
1539                                 *eb_ret = tmp;
1540                                 return 0;
1541                         }
1542                         free_extent_buffer(tmp);
1543                         btrfs_release_path(p);
1544                         return -EIO;
1545                 }
1546         }
1547
1548         /*
1549          * reduce lock contention at high levels
1550          * of the btree by dropping locks before
1551          * we read.  Don't release the lock on the current
1552          * level because we need to walk this node to figure
1553          * out which blocks to read.
1554          */
1555         btrfs_unlock_up_safe(p, level + 1);
1556         btrfs_set_path_blocking(p);
1557
1558         free_extent_buffer(tmp);
1559         if (p->reada)
1560                 reada_for_search(root, p, level, slot, key->objectid);
1561
1562         btrfs_release_path(p);
1563
1564         ret = -EAGAIN;
1565         tmp = read_tree_block(root, blocknr, blocksize, 0);
1566         if (tmp) {
1567                 /*
1568                  * If the read above didn't mark this buffer up to date,
1569                  * it will never end up being up to date.  Set ret to EIO now
1570                  * and give up so that our caller doesn't loop forever
1571                  * on our EAGAINs.
1572                  */
1573                 if (!btrfs_buffer_uptodate(tmp, 0, 0))
1574                         ret = -EIO;
1575                 free_extent_buffer(tmp);
1576         }
1577         return ret;
1578 }
1579
1580 /*
1581  * helper function for btrfs_search_slot.  This does all of the checks
1582  * for node-level blocks and does any balancing required based on
1583  * the ins_len.
1584  *
1585  * If no extra work was required, zero is returned.  If we had to
1586  * drop the path, -EAGAIN is returned and btrfs_search_slot must
1587  * start over
1588  */
1589 static int
1590 setup_nodes_for_search(struct btrfs_trans_handle *trans,
1591                        struct btrfs_root *root, struct btrfs_path *p,
1592                        struct extent_buffer *b, int level, int ins_len,
1593                        int *write_lock_level)
1594 {
1595         int ret;
1596         if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1597             BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
1598                 int sret;
1599
1600                 if (*write_lock_level < level + 1) {
1601                         *write_lock_level = level + 1;
1602                         btrfs_release_path(p);
1603                         goto again;
1604                 }
1605
1606                 sret = reada_for_balance(root, p, level);
1607                 if (sret)
1608                         goto again;
1609
1610                 btrfs_set_path_blocking(p);
1611                 sret = split_node(trans, root, p, level);
1612                 btrfs_clear_path_blocking(p, NULL, 0);
1613
1614                 BUG_ON(sret > 0);
1615                 if (sret) {
1616                         ret = sret;
1617                         goto done;
1618                 }
1619                 b = p->nodes[level];
1620         } else if (ins_len < 0 && btrfs_header_nritems(b) <
1621                    BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
1622                 int sret;
1623
1624                 if (*write_lock_level < level + 1) {
1625                         *write_lock_level = level + 1;
1626                         btrfs_release_path(p);
1627                         goto again;
1628                 }
1629
1630                 sret = reada_for_balance(root, p, level);
1631                 if (sret)
1632                         goto again;
1633
1634                 btrfs_set_path_blocking(p);
1635                 sret = balance_level(trans, root, p, level);
1636                 btrfs_clear_path_blocking(p, NULL, 0);
1637
1638                 if (sret) {
1639                         ret = sret;
1640                         goto done;
1641                 }
1642                 b = p->nodes[level];
1643                 if (!b) {
1644                         btrfs_release_path(p);
1645                         goto again;
1646                 }
1647                 BUG_ON(btrfs_header_nritems(b) == 1);
1648         }
1649         return 0;
1650
1651 again:
1652         ret = -EAGAIN;
1653 done:
1654         return ret;
1655 }
1656
1657 /*
1658  * look for key in the tree.  path is filled in with nodes along the way
1659  * if key is found, we return zero and you can find the item in the leaf
1660  * level of the path (level 0)
1661  *
1662  * If the key isn't found, the path points to the slot where it should
1663  * be inserted, and 1 is returned.  If there are other errors during the
1664  * search a negative error number is returned.
1665  *
1666  * if ins_len > 0, nodes and leaves will be split as we walk down the
1667  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
1668  * possible)
1669  */
1670 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
1671                       *root, struct btrfs_key *key, struct btrfs_path *p, int
1672                       ins_len, int cow)
1673 {
1674         struct extent_buffer *b;
1675         int slot;
1676         int ret;
1677         int err;
1678         int level;
1679         int lowest_unlock = 1;
1680         int root_lock;
1681         /* everything at write_lock_level or lower must be write locked */
1682         int write_lock_level = 0;
1683         u8 lowest_level = 0;
1684         int min_write_lock_level;
1685
1686         lowest_level = p->lowest_level;
1687         WARN_ON(lowest_level && ins_len > 0);
1688         WARN_ON(p->nodes[0] != NULL);
1689
1690         if (ins_len < 0) {
1691                 lowest_unlock = 2;
1692
1693                 /* when we are removing items, we might have to go up to level
1694                  * two as we update tree pointers  Make sure we keep write
1695                  * for those levels as well
1696                  */
1697                 write_lock_level = 2;
1698         } else if (ins_len > 0) {
1699                 /*
1700                  * for inserting items, make sure we have a write lock on
1701                  * level 1 so we can update keys
1702                  */
1703                 write_lock_level = 1;
1704         }
1705
1706         if (!cow)
1707                 write_lock_level = -1;
1708
1709         if (cow && (p->keep_locks || p->lowest_level))
1710                 write_lock_level = BTRFS_MAX_LEVEL;
1711
1712         min_write_lock_level = write_lock_level;
1713
1714 again:
1715         /*
1716          * we try very hard to do read locks on the root
1717          */
1718         root_lock = BTRFS_READ_LOCK;
1719         level = 0;
1720         if (p->search_commit_root) {
1721                 /*
1722                  * the commit roots are read only
1723                  * so we always do read locks
1724                  */
1725                 b = root->commit_root;
1726                 extent_buffer_get(b);
1727                 level = btrfs_header_level(b);
1728                 if (!p->skip_locking)
1729                         btrfs_tree_read_lock(b);
1730         } else {
1731                 if (p->skip_locking) {
1732                         b = btrfs_root_node(root);
1733                         level = btrfs_header_level(b);
1734                 } else {
1735                         /* we don't know the level of the root node
1736                          * until we actually have it read locked
1737                          */
1738                         b = btrfs_read_lock_root_node(root);
1739                         level = btrfs_header_level(b);
1740                         if (level <= write_lock_level) {
1741                                 /* whoops, must trade for write lock */
1742                                 btrfs_tree_read_unlock(b);
1743                                 free_extent_buffer(b);
1744                                 b = btrfs_lock_root_node(root);
1745                                 root_lock = BTRFS_WRITE_LOCK;
1746
1747                                 /* the level might have changed, check again */
1748                                 level = btrfs_header_level(b);
1749                         }
1750                 }
1751         }
1752         p->nodes[level] = b;
1753         if (!p->skip_locking)
1754                 p->locks[level] = root_lock;
1755
1756         while (b) {
1757                 level = btrfs_header_level(b);
1758
1759                 /*
1760                  * setup the path here so we can release it under lock
1761                  * contention with the cow code
1762                  */
1763                 if (cow) {
1764                         /*
1765                          * if we don't really need to cow this block
1766                          * then we don't want to set the path blocking,
1767                          * so we test it here
1768                          */
1769                         if (!should_cow_block(trans, root, b))
1770                                 goto cow_done;
1771
1772                         btrfs_set_path_blocking(p);
1773
1774                         /*
1775                          * must have write locks on this node and the
1776                          * parent
1777                          */
1778                         if (level + 1 > write_lock_level) {
1779                                 write_lock_level = level + 1;
1780                                 btrfs_release_path(p);
1781                                 goto again;
1782                         }
1783
1784                         err = btrfs_cow_block(trans, root, b,
1785                                               p->nodes[level + 1],
1786                                               p->slots[level + 1], &b);
1787                         if (err) {
1788                                 ret = err;
1789                                 goto done;
1790                         }
1791                 }
1792 cow_done:
1793                 BUG_ON(!cow && ins_len);
1794
1795                 p->nodes[level] = b;
1796                 btrfs_clear_path_blocking(p, NULL, 0);
1797
1798                 /*
1799                  * we have a lock on b and as long as we aren't changing
1800                  * the tree, there is no way to for the items in b to change.
1801                  * It is safe to drop the lock on our parent before we
1802                  * go through the expensive btree search on b.
1803                  *
1804                  * If cow is true, then we might be changing slot zero,
1805                  * which may require changing the parent.  So, we can't
1806                  * drop the lock until after we know which slot we're
1807                  * operating on.
1808                  */
1809                 if (!cow)
1810                         btrfs_unlock_up_safe(p, level + 1);
1811
1812                 ret = bin_search(b, key, level, &slot);
1813
1814                 if (level != 0) {
1815                         int dec = 0;
1816                         if (ret && slot > 0) {
1817                                 dec = 1;
1818                                 slot -= 1;
1819                         }
1820                         p->slots[level] = slot;
1821                         err = setup_nodes_for_search(trans, root, p, b, level,
1822                                              ins_len, &write_lock_level);
1823                         if (err == -EAGAIN)
1824                                 goto again;
1825                         if (err) {
1826                                 ret = err;
1827                                 goto done;
1828                         }
1829                         b = p->nodes[level];
1830                         slot = p->slots[level];
1831
1832                         /*
1833                          * slot 0 is special, if we change the key
1834                          * we have to update the parent pointer
1835                          * which means we must have a write lock
1836                          * on the parent
1837                          */
1838                         if (slot == 0 && cow &&
1839                             write_lock_level < level + 1) {
1840                                 write_lock_level = level + 1;
1841                                 btrfs_release_path(p);
1842                                 goto again;
1843                         }
1844
1845                         unlock_up(p, level, lowest_unlock,
1846                                   min_write_lock_level, &write_lock_level);
1847
1848                         if (level == lowest_level) {
1849                                 if (dec)
1850                                         p->slots[level]++;
1851                                 goto done;
1852                         }
1853
1854                         err = read_block_for_search(trans, root, p,
1855                                                     &b, level, slot, key);
1856                         if (err == -EAGAIN)
1857                                 goto again;
1858                         if (err) {
1859                                 ret = err;
1860                                 goto done;
1861                         }
1862
1863                         if (!p->skip_locking) {
1864                                 level = btrfs_header_level(b);
1865                                 if (level <= write_lock_level) {
1866                                         err = btrfs_try_tree_write_lock(b);
1867                                         if (!err) {
1868                                                 btrfs_set_path_blocking(p);
1869                                                 btrfs_tree_lock(b);
1870                                                 btrfs_clear_path_blocking(p, b,
1871                                                                   BTRFS_WRITE_LOCK);
1872                                         }
1873                                         p->locks[level] = BTRFS_WRITE_LOCK;
1874                                 } else {
1875                                         err = btrfs_try_tree_read_lock(b);
1876                                         if (!err) {
1877                                                 btrfs_set_path_blocking(p);
1878                                                 btrfs_tree_read_lock(b);
1879                                                 btrfs_clear_path_blocking(p, b,
1880                                                                   BTRFS_READ_LOCK);
1881                                         }
1882                                         p->locks[level] = BTRFS_READ_LOCK;
1883                                 }
1884                                 p->nodes[level] = b;
1885                         }
1886                 } else {
1887                         p->slots[level] = slot;
1888                         if (ins_len > 0 &&
1889                             btrfs_leaf_free_space(root, b) < ins_len) {
1890                                 if (write_lock_level < 1) {
1891                                         write_lock_level = 1;
1892                                         btrfs_release_path(p);
1893                                         goto again;
1894                                 }
1895
1896                                 btrfs_set_path_blocking(p);
1897                                 err = split_leaf(trans, root, key,
1898                                                  p, ins_len, ret == 0);
1899                                 btrfs_clear_path_blocking(p, NULL, 0);
1900
1901                                 BUG_ON(err > 0);
1902                                 if (err) {
1903                                         ret = err;
1904                                         goto done;
1905                                 }
1906                         }
1907                         if (!p->search_for_split)
1908                                 unlock_up(p, level, lowest_unlock,
1909                                           min_write_lock_level, &write_lock_level);
1910                         goto done;
1911                 }
1912         }
1913         ret = 1;
1914 done:
1915         /*
1916          * we don't really know what they plan on doing with the path
1917          * from here on, so for now just mark it as blocking
1918          */
1919         if (!p->leave_spinning)
1920                 btrfs_set_path_blocking(p);
1921         if (ret < 0)
1922                 btrfs_release_path(p);
1923         return ret;
1924 }
1925
1926 /*
1927  * adjust the pointers going up the tree, starting at level
1928  * making sure the right key of each node is points to 'key'.
1929  * This is used after shifting pointers to the left, so it stops
1930  * fixing up pointers when a given leaf/node is not in slot 0 of the
1931  * higher levels
1932  *
1933  */
1934 static void fixup_low_keys(struct btrfs_trans_handle *trans,
1935                            struct btrfs_root *root, struct btrfs_path *path,
1936                            struct btrfs_disk_key *key, int level)
1937 {
1938         int i;
1939         struct extent_buffer *t;
1940
1941         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1942                 int tslot = path->slots[i];
1943                 if (!path->nodes[i])
1944                         break;
1945                 t = path->nodes[i];
1946                 btrfs_set_node_key(t, key, tslot);
1947                 btrfs_mark_buffer_dirty(path->nodes[i]);
1948                 if (tslot != 0)
1949                         break;
1950         }
1951 }
1952
1953 /*
1954  * update item key.
1955  *
1956  * This function isn't completely safe. It's the caller's responsibility
1957  * that the new key won't break the order
1958  */
1959 void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
1960                              struct btrfs_root *root, struct btrfs_path *path,
1961                              struct btrfs_key *new_key)
1962 {
1963         struct btrfs_disk_key disk_key;
1964         struct extent_buffer *eb;
1965         int slot;
1966
1967         eb = path->nodes[0];
1968         slot = path->slots[0];
1969         if (slot > 0) {
1970                 btrfs_item_key(eb, &disk_key, slot - 1);
1971                 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
1972         }
1973         if (slot < btrfs_header_nritems(eb) - 1) {
1974                 btrfs_item_key(eb, &disk_key, slot + 1);
1975                 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
1976         }
1977
1978         btrfs_cpu_key_to_disk(&disk_key, new_key);
1979         btrfs_set_item_key(eb, &disk_key, slot);
1980         btrfs_mark_buffer_dirty(eb);
1981         if (slot == 0)
1982                 fixup_low_keys(trans, root, path, &disk_key, 1);
1983 }
1984
1985 /*
1986  * try to push data from one node into the next node left in the
1987  * tree.
1988  *
1989  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
1990  * error, and > 0 if there was no room in the left hand block.
1991  */
1992 static int push_node_left(struct btrfs_trans_handle *trans,
1993                           struct btrfs_root *root, struct extent_buffer *dst,
1994                           struct extent_buffer *src, int empty)
1995 {
1996         int push_items = 0;
1997         int src_nritems;
1998         int dst_nritems;
1999         int ret = 0;
2000
2001         src_nritems = btrfs_header_nritems(src);
2002         dst_nritems = btrfs_header_nritems(dst);
2003         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2004         WARN_ON(btrfs_header_generation(src) != trans->transid);
2005         WARN_ON(btrfs_header_generation(dst) != trans->transid);
2006
2007         if (!empty && src_nritems <= 8)
2008                 return 1;
2009
2010         if (push_items <= 0)
2011                 return 1;
2012
2013         if (empty) {
2014                 push_items = min(src_nritems, push_items);
2015                 if (push_items < src_nritems) {
2016                         /* leave at least 8 pointers in the node if
2017                          * we aren't going to empty it
2018                          */
2019                         if (src_nritems - push_items < 8) {
2020                                 if (push_items <= 8)
2021                                         return 1;
2022                                 push_items -= 8;
2023                         }
2024                 }
2025         } else
2026                 push_items = min(src_nritems - 8, push_items);
2027
2028         copy_extent_buffer(dst, src,
2029                            btrfs_node_key_ptr_offset(dst_nritems),
2030                            btrfs_node_key_ptr_offset(0),
2031                            push_items * sizeof(struct btrfs_key_ptr));
2032
2033         if (push_items < src_nritems) {
2034                 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
2035                                       btrfs_node_key_ptr_offset(push_items),
2036                                       (src_nritems - push_items) *
2037                                       sizeof(struct btrfs_key_ptr));
2038         }
2039         btrfs_set_header_nritems(src, src_nritems - push_items);
2040         btrfs_set_header_nritems(dst, dst_nritems + push_items);
2041         btrfs_mark_buffer_dirty(src);
2042         btrfs_mark_buffer_dirty(dst);
2043
2044         return ret;
2045 }
2046
2047 /*
2048  * try to push data from one node into the next node right in the
2049  * tree.
2050  *
2051  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2052  * error, and > 0 if there was no room in the right hand block.
2053  *
2054  * this will  only push up to 1/2 the contents of the left node over
2055  */
2056 static int balance_node_right(struct btrfs_trans_handle *trans,
2057                               struct btrfs_root *root,
2058                               struct extent_buffer *dst,
2059                               struct extent_buffer *src)
2060 {
2061         int push_items = 0;
2062         int max_push;
2063         int src_nritems;
2064         int dst_nritems;
2065         int ret = 0;
2066
2067         WARN_ON(btrfs_header_generation(src) != trans->transid);
2068         WARN_ON(btrfs_header_generation(dst) != trans->transid);
2069
2070         src_nritems = btrfs_header_nritems(src);
2071         dst_nritems = btrfs_header_nritems(dst);
2072         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2073         if (push_items <= 0)
2074                 return 1;
2075
2076         if (src_nritems < 4)
2077                 return 1;
2078
2079         max_push = src_nritems / 2 + 1;
2080         /* don't try to empty the node */
2081         if (max_push >= src_nritems)
2082                 return 1;
2083
2084         if (max_push < push_items)
2085                 push_items = max_push;
2086
2087         memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
2088                                       btrfs_node_key_ptr_offset(0),
2089                                       (dst_nritems) *
2090                                       sizeof(struct btrfs_key_ptr));
2091
2092         copy_extent_buffer(dst, src,
2093                            btrfs_node_key_ptr_offset(0),
2094                            btrfs_node_key_ptr_offset(src_nritems - push_items),
2095                            push_items * sizeof(struct btrfs_key_ptr));
2096
2097         btrfs_set_header_nritems(src, src_nritems - push_items);
2098         btrfs_set_header_nritems(dst, dst_nritems + push_items);
2099
2100         btrfs_mark_buffer_dirty(src);
2101         btrfs_mark_buffer_dirty(dst);
2102
2103         return ret;
2104 }
2105
2106 /*
2107  * helper function to insert a new root level in the tree.
2108  * A new node is allocated, and a single item is inserted to
2109  * point to the existing root
2110  *
2111  * returns zero on success or < 0 on failure.
2112  */
2113 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2114                            struct btrfs_root *root,
2115                            struct btrfs_path *path, int level)
2116 {
2117         u64 lower_gen;
2118         struct extent_buffer *lower;
2119         struct extent_buffer *c;
2120         struct extent_buffer *old;
2121         struct btrfs_disk_key lower_key;
2122
2123         BUG_ON(path->nodes[level]);
2124         BUG_ON(path->nodes[level-1] != root->node);
2125
2126         lower = path->nodes[level-1];
2127         if (level == 1)
2128                 btrfs_item_key(lower, &lower_key, 0);
2129         else
2130                 btrfs_node_key(lower, &lower_key, 0);
2131
2132         c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2133                                    root->root_key.objectid, &lower_key,
2134                                    level, root->node->start, 0, 0);
2135         if (IS_ERR(c))
2136                 return PTR_ERR(c);
2137
2138         root_add_used(root, root->nodesize);
2139
2140         memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
2141         btrfs_set_header_nritems(c, 1);
2142         btrfs_set_header_level(c, level);
2143         btrfs_set_header_bytenr(c, c->start);
2144         btrfs_set_header_generation(c, trans->transid);
2145         btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
2146         btrfs_set_header_owner(c, root->root_key.objectid);
2147
2148         write_extent_buffer(c, root->fs_info->fsid,
2149                             (unsigned long)btrfs_header_fsid(c),
2150                             BTRFS_FSID_SIZE);
2151
2152         write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
2153                             (unsigned long)btrfs_header_chunk_tree_uuid(c),
2154                             BTRFS_UUID_SIZE);
2155
2156         btrfs_set_node_key(c, &lower_key, 0);
2157         btrfs_set_node_blockptr(c, 0, lower->start);
2158         lower_gen = btrfs_header_generation(lower);
2159         WARN_ON(lower_gen != trans->transid);
2160
2161         btrfs_set_node_ptr_generation(c, 0, lower_gen);
2162
2163         btrfs_mark_buffer_dirty(c);
2164
2165         old = root->node;
2166         rcu_assign_pointer(root->node, c);
2167
2168         /* the super has an extra ref to root->node */
2169         free_extent_buffer(old);
2170
2171         add_root_to_dirty_list(root);
2172         extent_buffer_get(c);
2173         path->nodes[level] = c;
2174         path->locks[level] = BTRFS_WRITE_LOCK;
2175         path->slots[level] = 0;
2176         return 0;
2177 }
2178
2179 /*
2180  * worker function to insert a single pointer in a node.
2181  * the node should have enough room for the pointer already
2182  *
2183  * slot and level indicate where you want the key to go, and
2184  * blocknr is the block the key points to.
2185  */
2186 static void insert_ptr(struct btrfs_trans_handle *trans,
2187                        struct btrfs_root *root, struct btrfs_path *path,
2188                        struct btrfs_disk_key *key, u64 bytenr,
2189                        int slot, int level)
2190 {
2191         struct extent_buffer *lower;
2192         int nritems;
2193
2194         BUG_ON(!path->nodes[level]);
2195         btrfs_assert_tree_locked(path->nodes[level]);
2196         lower = path->nodes[level];
2197         nritems = btrfs_header_nritems(lower);
2198         BUG_ON(slot > nritems);
2199         BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
2200         if (slot != nritems) {
2201                 memmove_extent_buffer(lower,
2202                               btrfs_node_key_ptr_offset(slot + 1),
2203                               btrfs_node_key_ptr_offset(slot),
2204                               (nritems - slot) * sizeof(struct btrfs_key_ptr));
2205         }
2206         btrfs_set_node_key(lower, key, slot);
2207         btrfs_set_node_blockptr(lower, slot, bytenr);
2208         WARN_ON(trans->transid == 0);
2209         btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2210         btrfs_set_header_nritems(lower, nritems + 1);
2211         btrfs_mark_buffer_dirty(lower);
2212 }
2213
2214 /*
2215  * split the node at the specified level in path in two.
2216  * The path is corrected to point to the appropriate node after the split
2217  *
2218  * Before splitting this tries to make some room in the node by pushing
2219  * left and right, if either one works, it returns right away.
2220  *
2221  * returns 0 on success and < 0 on failure
2222  */
2223 static noinline int split_node(struct btrfs_trans_handle *trans,
2224                                struct btrfs_root *root,
2225                                struct btrfs_path *path, int level)
2226 {
2227         struct extent_buffer *c;
2228         struct extent_buffer *split;
2229         struct btrfs_disk_key disk_key;
2230         int mid;
2231         int ret;
2232         u32 c_nritems;
2233
2234         c = path->nodes[level];
2235         WARN_ON(btrfs_header_generation(c) != trans->transid);
2236         if (c == root->node) {
2237                 /* trying to split the root, lets make a new one */
2238                 ret = insert_new_root(trans, root, path, level + 1);
2239                 if (ret)
2240                         return ret;
2241         } else {
2242                 ret = push_nodes_for_insert(trans, root, path, level);
2243                 c = path->nodes[level];
2244                 if (!ret && btrfs_header_nritems(c) <
2245                     BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
2246                         return 0;
2247                 if (ret < 0)
2248                         return ret;
2249         }
2250
2251         c_nritems = btrfs_header_nritems(c);
2252         mid = (c_nritems + 1) / 2;
2253         btrfs_node_key(c, &disk_key, mid);
2254
2255         split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2256                                         root->root_key.objectid,
2257                                         &disk_key, level, c->start, 0, 0);
2258         if (IS_ERR(split))
2259                 return PTR_ERR(split);
2260
2261         root_add_used(root, root->nodesize);
2262
2263         memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
2264         btrfs_set_header_level(split, btrfs_header_level(c));
2265         btrfs_set_header_bytenr(split, split->start);
2266         btrfs_set_header_generation(split, trans->transid);
2267         btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
2268         btrfs_set_header_owner(split, root->root_key.objectid);
2269         write_extent_buffer(split, root->fs_info->fsid,
2270                             (unsigned long)btrfs_header_fsid(split),
2271                             BTRFS_FSID_SIZE);
2272         write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
2273                             (unsigned long)btrfs_header_chunk_tree_uuid(split),
2274                             BTRFS_UUID_SIZE);
2275
2276
2277         copy_extent_buffer(split, c,
2278                            btrfs_node_key_ptr_offset(0),
2279                            btrfs_node_key_ptr_offset(mid),
2280                            (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2281         btrfs_set_header_nritems(split, c_nritems - mid);
2282         btrfs_set_header_nritems(c, mid);
2283         ret = 0;
2284
2285         btrfs_mark_buffer_dirty(c);
2286         btrfs_mark_buffer_dirty(split);
2287
2288         insert_ptr(trans, root, path, &disk_key, split->start,
2289                    path->slots[level + 1] + 1, level + 1);
2290
2291         if (path->slots[level] >= mid) {
2292                 path->slots[level] -= mid;
2293                 btrfs_tree_unlock(c);
2294                 free_extent_buffer(c);
2295                 path->nodes[level] = split;
2296                 path->slots[level + 1] += 1;
2297         } else {
2298                 btrfs_tree_unlock(split);
2299                 free_extent_buffer(split);
2300         }
2301         return ret;
2302 }
2303
2304 /*
2305  * how many bytes are required to store the items in a leaf.  start
2306  * and nr indicate which items in the leaf to check.  This totals up the
2307  * space used both by the item structs and the item data
2308  */
2309 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
2310 {
2311         int data_len;
2312         int nritems = btrfs_header_nritems(l);
2313         int end = min(nritems, start + nr) - 1;
2314
2315         if (!nr)
2316                 return 0;
2317         data_len = btrfs_item_end_nr(l, start);
2318         data_len = data_len - btrfs_item_offset_nr(l, end);
2319         data_len += sizeof(struct btrfs_item) * nr;
2320         WARN_ON(data_len < 0);
2321         return data_len;
2322 }
2323
2324 /*
2325  * The space between the end of the leaf items and
2326  * the start of the leaf data.  IOW, how much room
2327  * the leaf has left for both items and data
2328  */
2329 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
2330                                    struct extent_buffer *leaf)
2331 {
2332         int nritems = btrfs_header_nritems(leaf);
2333         int ret;
2334         ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
2335         if (ret < 0) {
2336                 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
2337                        "used %d nritems %d\n",
2338                        ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
2339                        leaf_space_used(leaf, 0, nritems), nritems);
2340         }
2341         return ret;
2342 }
2343
2344 /*
2345  * min slot controls the lowest index we're willing to push to the
2346  * right.  We'll push up to and including min_slot, but no lower
2347  */
2348 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
2349                                       struct btrfs_root *root,
2350                                       struct btrfs_path *path,
2351                                       int data_size, int empty,
2352                                       struct extent_buffer *right,
2353                                       int free_space, u32 left_nritems,
2354                                       u32 min_slot)
2355 {
2356         struct extent_buffer *left = path->nodes[0];
2357         struct extent_buffer *upper = path->nodes[1];
2358         struct btrfs_map_token token;
2359         struct btrfs_disk_key disk_key;
2360         int slot;
2361         u32 i;
2362         int push_space = 0;
2363         int push_items = 0;
2364         struct btrfs_item *item;
2365         u32 nr;
2366         u32 right_nritems;
2367         u32 data_end;
2368         u32 this_item_size;
2369
2370         btrfs_init_map_token(&token);
2371
2372         if (empty)
2373                 nr = 0;
2374         else
2375                 nr = max_t(u32, 1, min_slot);
2376
2377         if (path->slots[0] >= left_nritems)
2378                 push_space += data_size;
2379
2380         slot = path->slots[1];
2381         i = left_nritems - 1;
2382         while (i >= nr) {
2383                 item = btrfs_item_nr(left, i);
2384
2385                 if (!empty && push_items > 0) {
2386                         if (path->slots[0] > i)
2387                                 break;
2388                         if (path->slots[0] == i) {
2389                                 int space = btrfs_leaf_free_space(root, left);
2390                                 if (space + push_space * 2 > free_space)
2391                                         break;
2392                         }
2393                 }
2394
2395                 if (path->slots[0] == i)
2396                         push_space += data_size;
2397
2398                 this_item_size = btrfs_item_size(left, item);
2399                 if (this_item_size + sizeof(*item) + push_space > free_space)
2400                         break;
2401
2402                 push_items++;
2403                 push_space += this_item_size + sizeof(*item);
2404                 if (i == 0)
2405                         break;
2406                 i--;
2407         }
2408
2409         if (push_items == 0)
2410                 goto out_unlock;
2411
2412         if (!empty && push_items == left_nritems)
2413                 WARN_ON(1);
2414
2415         /* push left to right */
2416         right_nritems = btrfs_header_nritems(right);
2417
2418         push_space = btrfs_item_end_nr(left, left_nritems - push_items);
2419         push_space -= leaf_data_end(root, left);
2420
2421         /* make room in the right data area */
2422         data_end = leaf_data_end(root, right);
2423         memmove_extent_buffer(right,
2424                               btrfs_leaf_data(right) + data_end - push_space,
2425                               btrfs_leaf_data(right) + data_end,
2426                               BTRFS_LEAF_DATA_SIZE(root) - data_end);
2427
2428         /* copy from the left data area */
2429         copy_extent_buffer(right, left, btrfs_leaf_data(right) +
2430                      BTRFS_LEAF_DATA_SIZE(root) - push_space,
2431                      btrfs_leaf_data(left) + leaf_data_end(root, left),
2432                      push_space);
2433
2434         memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
2435                               btrfs_item_nr_offset(0),
2436                               right_nritems * sizeof(struct btrfs_item));
2437
2438         /* copy the items from left to right */
2439         copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
2440                    btrfs_item_nr_offset(left_nritems - push_items),
2441                    push_items * sizeof(struct btrfs_item));
2442
2443         /* update the item pointers */
2444         right_nritems += push_items;
2445         btrfs_set_header_nritems(right, right_nritems);
2446         push_space = BTRFS_LEAF_DATA_SIZE(root);
2447         for (i = 0; i < right_nritems; i++) {
2448                 item = btrfs_item_nr(right, i);
2449                 push_space -= btrfs_token_item_size(right, item, &token);
2450                 btrfs_set_token_item_offset(right, item, push_space, &token);
2451         }
2452
2453         left_nritems -= push_items;
2454         btrfs_set_header_nritems(left, left_nritems);
2455
2456         if (left_nritems)
2457                 btrfs_mark_buffer_dirty(left);
2458         else
2459                 clean_tree_block(trans, root, left);
2460
2461         btrfs_mark_buffer_dirty(right);
2462
2463         btrfs_item_key(right, &disk_key, 0);
2464         btrfs_set_node_key(upper, &disk_key, slot + 1);
2465         btrfs_mark_buffer_dirty(upper);
2466
2467         /* then fixup the leaf pointer in the path */
2468         if (path->slots[0] >= left_nritems) {
2469                 path->slots[0] -= left_nritems;
2470                 if (btrfs_header_nritems(path->nodes[0]) == 0)
2471                         clean_tree_block(trans, root, path->nodes[0]);
2472                 btrfs_tree_unlock(path->nodes[0]);
2473                 free_extent_buffer(path->nodes[0]);
2474                 path->nodes[0] = right;
2475                 path->slots[1] += 1;
2476         } else {
2477                 btrfs_tree_unlock(right);
2478                 free_extent_buffer(right);
2479         }
2480         return 0;
2481
2482 out_unlock:
2483         btrfs_tree_unlock(right);
2484         free_extent_buffer(right);
2485         return 1;
2486 }
2487
2488 /*
2489  * push some data in the path leaf to the right, trying to free up at
2490  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2491  *
2492  * returns 1 if the push failed because the other node didn't have enough
2493  * room, 0 if everything worked out and < 0 if there were major errors.
2494  *
2495  * this will push starting from min_slot to the end of the leaf.  It won't
2496  * push any slot lower than min_slot
2497  */
2498 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
2499                            *root, struct btrfs_path *path,
2500                            int min_data_size, int data_size,
2501                            int empty, u32 min_slot)
2502 {
2503         struct extent_buffer *left = path->nodes[0];
2504         struct extent_buffer *right;
2505         struct extent_buffer *upper;
2506         int slot;
2507         int free_space;
2508         u32 left_nritems;
2509         int ret;
2510
2511         if (!path->nodes[1])
2512                 return 1;
2513
2514         slot = path->slots[1];
2515         upper = path->nodes[1];
2516         if (slot >= btrfs_header_nritems(upper) - 1)
2517                 return 1;
2518
2519         btrfs_assert_tree_locked(path->nodes[1]);
2520
2521         right = read_node_slot(root, upper, slot + 1);
2522         if (right == NULL)
2523                 return 1;
2524
2525         btrfs_tree_lock(right);
2526         btrfs_set_lock_blocking(right);
2527
2528         free_space = btrfs_leaf_free_space(root, right);
2529         if (free_space < data_size)
2530                 goto out_unlock;
2531
2532         /* cow and double check */
2533         ret = btrfs_cow_block(trans, root, right, upper,
2534                               slot + 1, &right);
2535         if (ret)
2536                 goto out_unlock;
2537
2538         free_space = btrfs_leaf_free_space(root, right);
2539         if (free_space < data_size)
2540                 goto out_unlock;
2541
2542         left_nritems = btrfs_header_nritems(left);
2543         if (left_nritems == 0)
2544                 goto out_unlock;
2545
2546         return __push_leaf_right(trans, root, path, min_data_size, empty,
2547                                 right, free_space, left_nritems, min_slot);
2548 out_unlock:
2549         btrfs_tree_unlock(right);
2550         free_extent_buffer(right);
2551         return 1;
2552 }
2553
2554 /*
2555  * push some data in the path leaf to the left, trying to free up at
2556  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2557  *
2558  * max_slot can put a limit on how far into the leaf we'll push items.  The
2559  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
2560  * items
2561  */
2562 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
2563                                      struct btrfs_root *root,
2564                                      struct btrfs_path *path, int data_size,
2565                                      int empty, struct extent_buffer *left,
2566                                      int free_space, u32 right_nritems,
2567                                      u32 max_slot)
2568 {
2569         struct btrfs_disk_key disk_key;
2570         struct extent_buffer *right = path->nodes[0];
2571         int i;
2572         int push_space = 0;
2573         int push_items = 0;
2574         struct btrfs_item *item;
2575         u32 old_left_nritems;
2576         u32 nr;
2577         int ret = 0;
2578         u32 this_item_size;
2579         u32 old_left_item_size;
2580         struct btrfs_map_token token;
2581
2582         btrfs_init_map_token(&token);
2583
2584         if (empty)
2585                 nr = min(right_nritems, max_slot);
2586         else
2587                 nr = min(right_nritems - 1, max_slot);
2588
2589         for (i = 0; i < nr; i++) {
2590                 item = btrfs_item_nr(right, i);
2591
2592                 if (!empty && push_items > 0) {
2593                         if (path->slots[0] < i)
2594                                 break;
2595                         if (path->slots[0] == i) {
2596                                 int space = btrfs_leaf_free_space(root, right);
2597                                 if (space + push_space * 2 > free_space)
2598                                         break;
2599                         }
2600                 }
2601
2602                 if (path->slots[0] == i)
2603                         push_space += data_size;
2604
2605                 this_item_size = btrfs_item_size(right, item);
2606                 if (this_item_size + sizeof(*item) + push_space > free_space)
2607                         break;
2608
2609                 push_items++;
2610                 push_space += this_item_size + sizeof(*item);
2611         }
2612
2613         if (push_items == 0) {
2614                 ret = 1;
2615                 goto out;
2616         }
2617         if (!empty && push_items == btrfs_header_nritems(right))
2618                 WARN_ON(1);
2619
2620         /* push data from right to left */
2621         copy_extent_buffer(left, right,
2622                            btrfs_item_nr_offset(btrfs_header_nritems(left)),
2623                            btrfs_item_nr_offset(0),
2624                            push_items * sizeof(struct btrfs_item));
2625
2626         push_space = BTRFS_LEAF_DATA_SIZE(root) -
2627                      btrfs_item_offset_nr(right, push_items - 1);
2628
2629         copy_extent_buffer(left, right, btrfs_leaf_data(left) +
2630                      leaf_data_end(root, left) - push_space,
2631                      btrfs_leaf_data(right) +
2632                      btrfs_item_offset_nr(right, push_items - 1),
2633                      push_space);
2634         old_left_nritems = btrfs_header_nritems(left);
2635         BUG_ON(old_left_nritems <= 0);
2636
2637         old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
2638         for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
2639                 u32 ioff;
2640
2641                 item = btrfs_item_nr(left, i);
2642
2643                 ioff = btrfs_token_item_offset(left, item, &token);
2644                 btrfs_set_token_item_offset(left, item,
2645                       ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
2646                       &token);
2647         }
2648         btrfs_set_header_nritems(left, old_left_nritems + push_items);
2649
2650         /* fixup right node */
2651         if (push_items > right_nritems) {
2652                 printk(KERN_CRIT "push items %d nr %u\n", push_items,
2653                        right_nritems);
2654                 WARN_ON(1);
2655         }
2656
2657         if (push_items < right_nritems) {
2658                 push_space = btrfs_item_offset_nr(right, push_items - 1) -
2659                                                   leaf_data_end(root, right);
2660                 memmove_extent_buffer(right, btrfs_leaf_data(right) +
2661                                       BTRFS_LEAF_DATA_SIZE(root) - push_space,
2662                                       btrfs_leaf_data(right) +
2663                                       leaf_data_end(root, right), push_space);
2664
2665                 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
2666                               btrfs_item_nr_offset(push_items),
2667                              (btrfs_header_nritems(right) - push_items) *
2668                              sizeof(struct btrfs_item));
2669         }
2670         right_nritems -= push_items;
2671         btrfs_set_header_nritems(right, right_nritems);
2672         push_space = BTRFS_LEAF_DATA_SIZE(root);
2673         for (i = 0; i < right_nritems; i++) {
2674                 item = btrfs_item_nr(right, i);
2675
2676                 push_space = push_space - btrfs_token_item_size(right,
2677                                                                 item, &token);
2678                 btrfs_set_token_item_offset(right, item, push_space, &token);
2679         }
2680
2681         btrfs_mark_buffer_dirty(left);
2682         if (right_nritems)
2683                 btrfs_mark_buffer_dirty(right);
2684         else
2685                 clean_tree_block(trans, root, right);
2686
2687         btrfs_item_key(right, &disk_key, 0);
2688         fixup_low_keys(trans, root, path, &disk_key, 1);
2689
2690         /* then fixup the leaf pointer in the path */
2691         if (path->slots[0] < push_items) {
2692                 path->slots[0] += old_left_nritems;
2693                 btrfs_tree_unlock(path->nodes[0]);
2694                 free_extent_buffer(path->nodes[0]);
2695                 path->nodes[0] = left;
2696                 path->slots[1] -= 1;
2697         } else {
2698                 btrfs_tree_unlock(left);
2699                 free_extent_buffer(left);
2700                 path->slots[0] -= push_items;
2701         }
2702         BUG_ON(path->slots[0] < 0);
2703         return ret;
2704 out:
2705         btrfs_tree_unlock(left);
2706         free_extent_buffer(left);
2707         return ret;
2708 }
2709
2710 /*
2711  * push some data in the path leaf to the left, trying to free up at
2712  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2713  *
2714  * max_slot can put a limit on how far into the leaf we'll push items.  The
2715  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
2716  * items
2717  */
2718 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
2719                           *root, struct btrfs_path *path, int min_data_size,
2720                           int data_size, int empty, u32 max_slot)
2721 {
2722         struct extent_buffer *right = path->nodes[0];
2723         struct extent_buffer *left;
2724         int slot;
2725         int free_space;
2726         u32 right_nritems;
2727         int ret = 0;
2728
2729         slot = path->slots[1];
2730         if (slot == 0)
2731                 return 1;
2732         if (!path->nodes[1])
2733                 return 1;
2734
2735         right_nritems = btrfs_header_nritems(right);
2736         if (right_nritems == 0)
2737                 return 1;
2738
2739         btrfs_assert_tree_locked(path->nodes[1]);
2740
2741         left = read_node_slot(root, path->nodes[1], slot - 1);
2742         if (left == NULL)
2743                 return 1;
2744
2745         btrfs_tree_lock(left);
2746         btrfs_set_lock_blocking(left);
2747
2748         free_space = btrfs_leaf_free_space(root, left);
2749         if (free_space < data_size) {
2750                 ret = 1;
2751                 goto out;
2752         }
2753
2754         /* cow and double check */
2755         ret = btrfs_cow_block(trans, root, left,
2756                               path->nodes[1], slot - 1, &left);
2757         if (ret) {
2758                 /* we hit -ENOSPC, but it isn't fatal here */
2759                 if (ret == -ENOSPC)
2760                         ret = 1;
2761                 goto out;
2762         }
2763
2764         free_space = btrfs_leaf_free_space(root, left);
2765         if (free_space < data_size) {
2766                 ret = 1;
2767                 goto out;
2768         }
2769
2770         return __push_leaf_left(trans, root, path, min_data_size,
2771                                empty, left, free_space, right_nritems,
2772                                max_slot);
2773 out:
2774         btrfs_tree_unlock(left);
2775         free_extent_buffer(left);
2776         return ret;
2777 }
2778
2779 /*
2780  * split the path's leaf in two, making sure there is at least data_size
2781  * available for the resulting leaf level of the path.
2782  */
2783 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
2784                                     struct btrfs_root *root,
2785                                     struct btrfs_path *path,
2786                                     struct extent_buffer *l,
2787                                     struct extent_buffer *right,
2788                                     int slot, int mid, int nritems)
2789 {
2790         int data_copy_size;
2791         int rt_data_off;
2792         int i;
2793         struct btrfs_disk_key disk_key;
2794         struct btrfs_map_token token;
2795
2796         btrfs_init_map_token(&token);
2797
2798         nritems = nritems - mid;
2799         btrfs_set_header_nritems(right, nritems);
2800         data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
2801
2802         copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
2803                            btrfs_item_nr_offset(mid),
2804                            nritems * sizeof(struct btrfs_item));
2805
2806         copy_extent_buffer(right, l,
2807                      btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
2808                      data_copy_size, btrfs_leaf_data(l) +
2809                      leaf_data_end(root, l), data_copy_size);
2810
2811         rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
2812                       btrfs_item_end_nr(l, mid);
2813
2814         for (i = 0; i < nritems; i++) {
2815                 struct btrfs_item *item = btrfs_item_nr(right, i);
2816                 u32 ioff;
2817
2818                 ioff = btrfs_token_item_offset(right, item, &token);
2819                 btrfs_set_token_item_offset(right, item,
2820                                             ioff + rt_data_off, &token);
2821         }
2822
2823         btrfs_set_header_nritems(l, mid);
2824         btrfs_item_key(right, &disk_key, 0);
2825         insert_ptr(trans, root, path, &disk_key, right->start,
2826                    path->slots[1] + 1, 1);
2827
2828         btrfs_mark_buffer_dirty(right);
2829         btrfs_mark_buffer_dirty(l);
2830         BUG_ON(path->slots[0] != slot);
2831
2832         if (mid <= slot) {
2833                 btrfs_tree_unlock(path->nodes[0]);
2834                 free_extent_buffer(path->nodes[0]);
2835                 path->nodes[0] = right;
2836                 path->slots[0] -= mid;
2837                 path->slots[1] += 1;
2838         } else {
2839                 btrfs_tree_unlock(right);
2840                 free_extent_buffer(right);
2841         }
2842
2843         BUG_ON(path->slots[0] < 0);
2844 }
2845
2846 /*
2847  * double splits happen when we need to insert a big item in the middle
2848  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
2849  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
2850  *          A                 B                 C
2851  *
2852  * We avoid this by trying to push the items on either side of our target
2853  * into the adjacent leaves.  If all goes well we can avoid the double split
2854  * completely.
2855  */
2856 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
2857                                           struct btrfs_root *root,
2858                                           struct btrfs_path *path,
2859                                           int data_size)
2860 {
2861         int ret;
2862         int progress = 0;
2863         int slot;
2864         u32 nritems;
2865
2866         slot = path->slots[0];
2867
2868         /*
2869          * try to push all the items after our slot into the
2870          * right leaf
2871          */
2872         ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
2873         if (ret < 0)
2874                 return ret;
2875
2876         if (ret == 0)
2877                 progress++;
2878
2879         nritems = btrfs_header_nritems(path->nodes[0]);
2880         /*
2881          * our goal is to get our slot at the start or end of a leaf.  If
2882          * we've done so we're done
2883          */
2884         if (path->slots[0] == 0 || path->slots[0] == nritems)
2885                 return 0;
2886
2887         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
2888                 return 0;
2889
2890         /* try to push all the items before our slot into the next leaf */
2891         slot = path->slots[0];
2892         ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
2893         if (ret < 0)
2894                 return ret;
2895
2896         if (ret == 0)
2897                 progress++;
2898
2899         if (progress)
2900                 return 0;
2901         return 1;
2902 }
2903
2904 /*
2905  * split the path's leaf in two, making sure there is at least data_size
2906  * available for the resulting leaf level of the path.
2907  *
2908  * returns 0 if all went well and < 0 on failure.
2909  */
2910 static noinline int split_leaf(struct btrfs_trans_handle *trans,
2911                                struct btrfs_root *root,
2912                                struct btrfs_key *ins_key,
2913                                struct btrfs_path *path, int data_size,
2914                                int extend)
2915 {
2916         struct btrfs_disk_key disk_key;
2917         struct extent_buffer *l;
2918         u32 nritems;
2919         int mid;
2920         int slot;
2921         struct extent_buffer *right;
2922         int ret = 0;
2923         int wret;
2924         int split;
2925         int num_doubles = 0;
2926         int tried_avoid_double = 0;
2927
2928         l = path->nodes[0];
2929         slot = path->slots[0];
2930         if (extend && data_size + btrfs_item_size_nr(l, slot) +
2931             sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
2932                 return -EOVERFLOW;
2933
2934         /* first try to make some room by pushing left and right */
2935         if (data_size) {
2936                 wret = push_leaf_right(trans, root, path, data_size,
2937                                        data_size, 0, 0);
2938                 if (wret < 0)
2939                         return wret;
2940                 if (wret) {
2941                         wret = push_leaf_left(trans, root, path, data_size,
2942                                               data_size, 0, (u32)-1);
2943                         if (wret < 0)
2944                                 return wret;
2945                 }
2946                 l = path->nodes[0];
2947
2948                 /* did the pushes work? */
2949                 if (btrfs_leaf_free_space(root, l) >= data_size)
2950                         return 0;
2951         }
2952
2953         if (!path->nodes[1]) {
2954                 ret = insert_new_root(trans, root, path, 1);
2955                 if (ret)
2956                         return ret;
2957         }
2958 again:
2959         split = 1;
2960         l = path->nodes[0];
2961         slot = path->slots[0];
2962         nritems = btrfs_header_nritems(l);
2963         mid = (nritems + 1) / 2;
2964
2965         if (mid <= slot) {
2966                 if (nritems == 1 ||
2967                     leaf_space_used(l, mid, nritems - mid) + data_size >
2968                         BTRFS_LEAF_DATA_SIZE(root)) {
2969                         if (slot >= nritems) {
2970                                 split = 0;
2971                         } else {
2972                                 mid = slot;
2973                                 if (mid != nritems &&
2974                                     leaf_space_used(l, mid, nritems - mid) +
2975                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2976                                         if (data_size && !tried_avoid_double)
2977                                                 goto push_for_double;
2978                                         split = 2;
2979                                 }
2980                         }
2981                 }
2982         } else {
2983                 if (leaf_space_used(l, 0, mid) + data_size >
2984                         BTRFS_LEAF_DATA_SIZE(root)) {
2985                         if (!extend && data_size && slot == 0) {
2986                                 split = 0;
2987                         } else if ((extend || !data_size) && slot == 0) {
2988                                 mid = 1;
2989                         } else {
2990                                 mid = slot;
2991                                 if (mid != nritems &&
2992                                     leaf_space_used(l, mid, nritems - mid) +
2993                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2994                                         if (data_size && !tried_avoid_double)
2995                                                 goto push_for_double;
2996                                         split = 2 ;
2997                                 }
2998                         }
2999                 }
3000         }
3001
3002         if (split == 0)
3003                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
3004         else
3005                 btrfs_item_key(l, &disk_key, mid);
3006
3007         right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
3008                                         root->root_key.objectid,
3009                                         &disk_key, 0, l->start, 0, 0);
3010         if (IS_ERR(right))
3011                 return PTR_ERR(right);
3012
3013         root_add_used(root, root->leafsize);
3014
3015         memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
3016         btrfs_set_header_bytenr(right, right->start);
3017         btrfs_set_header_generation(right, trans->transid);
3018         btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
3019         btrfs_set_header_owner(right, root->root_key.objectid);
3020         btrfs_set_header_level(right, 0);
3021         write_extent_buffer(right, root->fs_info->fsid,
3022                             (unsigned long)btrfs_header_fsid(right),
3023                             BTRFS_FSID_SIZE);
3024
3025         write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
3026                             (unsigned long)btrfs_header_chunk_tree_uuid(right),
3027                             BTRFS_UUID_SIZE);
3028
3029         if (split == 0) {
3030                 if (mid <= slot) {
3031                         btrfs_set_header_nritems(right, 0);
3032                         insert_ptr(trans, root, path, &disk_key, right->start,
3033                                    path->slots[1] + 1, 1);
3034                         btrfs_tree_unlock(path->nodes[0]);
3035                         free_extent_buffer(path->nodes[0]);
3036                         path->nodes[0] = right;
3037                         path->slots[0] = 0;
3038                         path->slots[1] += 1;
3039                 } else {
3040                         btrfs_set_header_nritems(right, 0);
3041                         insert_ptr(trans, root, path, &disk_key, right->start,
3042                                           path->slots[1], 1);
3043                         btrfs_tree_unlock(path->nodes[0]);
3044                         free_extent_buffer(path->nodes[0]);
3045                         path->nodes[0] = right;
3046                         path->slots[0] = 0;
3047                         if (path->slots[1] == 0)
3048                                 fixup_low_keys(trans, root, path,
3049                                                &disk_key, 1);
3050                 }
3051                 btrfs_mark_buffer_dirty(right);
3052                 return ret;
3053         }
3054
3055         copy_for_split(trans, root, path, l, right, slot, mid, nritems);
3056
3057         if (split == 2) {
3058                 BUG_ON(num_doubles != 0);
3059                 num_doubles++;
3060                 goto again;
3061         }
3062
3063         return 0;
3064
3065 push_for_double:
3066         push_for_double_split(trans, root, path, data_size);
3067         tried_avoid_double = 1;
3068         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3069                 return 0;
3070         goto again;
3071 }
3072
3073 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3074                                          struct btrfs_root *root,
3075                                          struct btrfs_path *path, int ins_len)
3076 {
3077         struct btrfs_key key;
3078         struct extent_buffer *leaf;
3079         struct btrfs_file_extent_item *fi;
3080         u64 extent_len = 0;
3081         u32 item_size;
3082         int ret;
3083
3084         leaf = path->nodes[0];
3085         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3086
3087         BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3088                key.type != BTRFS_EXTENT_CSUM_KEY);
3089
3090         if (btrfs_leaf_free_space(root, leaf) >= ins_len)
3091                 return 0;
3092
3093         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3094         if (key.type == BTRFS_EXTENT_DATA_KEY) {
3095                 fi = btrfs_item_ptr(leaf, path->slots[0],
3096                                     struct btrfs_file_extent_item);
3097                 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3098         }
3099         btrfs_release_path(path);
3100
3101         path->keep_locks = 1;
3102         path->search_for_split = 1;
3103         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3104         path->search_for_split = 0;
3105         if (ret < 0)
3106                 goto err;
3107
3108         ret = -EAGAIN;
3109         leaf = path->nodes[0];
3110         /* if our item isn't there or got smaller, return now */
3111         if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
3112                 goto err;
3113
3114         /* the leaf has  changed, it now has room.  return now */
3115         if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
3116                 goto err;
3117
3118         if (key.type == BTRFS_EXTENT_DATA_KEY) {
3119                 fi = btrfs_item_ptr(leaf, path->slots[0],
3120                                     struct btrfs_file_extent_item);
3121                 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3122                         goto err;
3123         }
3124
3125         btrfs_set_path_blocking(path);
3126         ret = split_leaf(trans, root, &key, path, ins_len, 1);
3127         if (ret)
3128                 goto err;
3129
3130         path->keep_locks = 0;
3131         btrfs_unlock_up_safe(path, 1);
3132         return 0;
3133 err:
3134         path->keep_locks = 0;
3135         return ret;
3136 }
3137
3138 static noinline int split_item(struct btrfs_trans_handle *trans,
3139                                struct btrfs_root *root,
3140                                struct btrfs_path *path,
3141                                struct btrfs_key *new_key,
3142                                unsigned long split_offset)
3143 {
3144         struct extent_buffer *leaf;
3145         struct btrfs_item *item;
3146         struct btrfs_item *new_item;
3147         int slot;
3148         char *buf;
3149         u32 nritems;
3150         u32 item_size;
3151         u32 orig_offset;
3152         struct btrfs_disk_key disk_key;
3153
3154         leaf = path->nodes[0];
3155         BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
3156
3157         btrfs_set_path_blocking(path);
3158
3159         item = btrfs_item_nr(leaf, path->slots[0]);
3160         orig_offset = btrfs_item_offset(leaf, item);
3161         item_size = btrfs_item_size(leaf, item);
3162
3163         buf = kmalloc(item_size, GFP_NOFS);
3164         if (!buf)
3165                 return -ENOMEM;
3166
3167         read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3168                             path->slots[0]), item_size);
3169
3170         slot = path->slots[0] + 1;
3171         nritems = btrfs_header_nritems(leaf);
3172         if (slot != nritems) {
3173                 /* shift the items */
3174                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
3175                                 btrfs_item_nr_offset(slot),
3176                                 (nritems - slot) * sizeof(struct btrfs_item));
3177         }
3178
3179         btrfs_cpu_key_to_disk(&disk_key, new_key);
3180         btrfs_set_item_key(leaf, &disk_key, slot);
3181
3182         new_item = btrfs_item_nr(leaf, slot);
3183
3184         btrfs_set_item_offset(leaf, new_item, orig_offset);
3185         btrfs_set_item_size(leaf, new_item, item_size - split_offset);
3186
3187         btrfs_set_item_offset(leaf, item,
3188                               orig_offset + item_size - split_offset);
3189         btrfs_set_item_size(leaf, item, split_offset);
3190
3191         btrfs_set_header_nritems(leaf, nritems + 1);
3192
3193         /* write the data for the start of the original item */
3194         write_extent_buffer(leaf, buf,
3195                             btrfs_item_ptr_offset(leaf, path->slots[0]),
3196                             split_offset);
3197
3198         /* write the data for the new item */
3199         write_extent_buffer(leaf, buf + split_offset,
3200                             btrfs_item_ptr_offset(leaf, slot),
3201                             item_size - split_offset);
3202         btrfs_mark_buffer_dirty(leaf);
3203
3204         BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
3205         kfree(buf);
3206         return 0;
3207 }
3208
3209 /*
3210  * This function splits a single item into two items,
3211  * giving 'new_key' to the new item and splitting the
3212  * old one at split_offset (from the start of the item).
3213  *
3214  * The path may be released by this operation.  After
3215  * the split, the path is pointing to the old item.  The
3216  * new item is going to be in the same node as the old one.
3217  *
3218  * Note, the item being split must be smaller enough to live alone on
3219  * a tree block with room for one extra struct btrfs_item
3220  *
3221  * This allows us to split the item in place, keeping a lock on the
3222  * leaf the entire time.
3223  */
3224 int btrfs_split_item(struct btrfs_trans_handle *trans,
3225                      struct btrfs_root *root,
3226                      struct btrfs_path *path,
3227                      struct btrfs_key *new_key,
3228                      unsigned long split_offset)
3229 {
3230         int ret;
3231         ret = setup_leaf_for_split(trans, root, path,
3232                                    sizeof(struct btrfs_item));
3233         if (ret)
3234                 return ret;
3235
3236         ret = split_item(trans, root, path, new_key, split_offset);
3237         return ret;
3238 }
3239
3240 /*
3241  * This function duplicate a item, giving 'new_key' to the new item.
3242  * It guarantees both items live in the same tree leaf and the new item
3243  * is contiguous with the original item.
3244  *
3245  * This allows us to split file extent in place, keeping a lock on the
3246  * leaf the entire time.
3247  */
3248 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
3249                          struct btrfs_root *root,
3250                          struct btrfs_path *path,
3251                          struct btrfs_key *new_key)
3252 {
3253         struct extent_buffer *leaf;
3254         int ret;
3255         u32 item_size;
3256
3257         leaf = path->nodes[0];
3258         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3259         ret = setup_leaf_for_split(trans, root, path,
3260                                    item_size + sizeof(struct btrfs_item));
3261         if (ret)
3262                 return ret;
3263
3264         path->slots[0]++;
3265         setup_items_for_insert(trans, root, path, new_key, &item_size,
3266                                item_size, item_size +
3267                                sizeof(struct btrfs_item), 1);
3268         leaf = path->nodes[0];
3269         memcpy_extent_buffer(leaf,
3270                              btrfs_item_ptr_offset(leaf, path->slots[0]),
3271                              btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
3272                              item_size);
3273         return 0;
3274 }
3275
3276 /*
3277  * make the item pointed to by the path smaller.  new_size indicates
3278  * how small to make it, and from_end tells us if we just chop bytes
3279  * off the end of the item or if we shift the item to chop bytes off
3280  * the front.
3281  */
3282 void btrfs_truncate_item(struct btrfs_trans_handle *trans,
3283                          struct btrfs_root *root,
3284                          struct btrfs_path *path,
3285                          u32 new_size, int from_end)
3286 {
3287         int slot;
3288         struct extent_buffer *leaf;
3289         struct btrfs_item *item;
3290         u32 nritems;
3291         unsigned int data_end;
3292         unsigned int old_data_start;
3293         unsigned int old_size;
3294         unsigned int size_diff;
3295         int i;
3296         struct btrfs_map_token token;
3297
3298         btrfs_init_map_token(&token);
3299
3300         leaf = path->nodes[0];
3301         slot = path->slots[0];
3302
3303         old_size = btrfs_item_size_nr(leaf, slot);
3304         if (old_size == new_size)
3305                 return;
3306
3307         nritems = btrfs_header_nritems(leaf);
3308         data_end = leaf_data_end(root, leaf);
3309
3310         old_data_start = btrfs_item_offset_nr(leaf, slot);
3311
3312         size_diff = old_size - new_size;
3313
3314         BUG_ON(slot < 0);
3315         BUG_ON(slot >= nritems);
3316
3317         /*
3318          * item0..itemN ... dataN.offset..dataN.size .. data0.size
3319          */
3320         /* first correct the data pointers */
3321         for (i = slot; i < nritems; i++) {
3322                 u32 ioff;
3323                 item = btrfs_item_nr(leaf, i);
3324
3325                 ioff = btrfs_token_item_offset(leaf, item, &token);
3326                 btrfs_set_token_item_offset(leaf, item,
3327                                             ioff + size_diff, &token);
3328         }
3329
3330         /* shift the data */
3331         if (from_end) {
3332                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3333                               data_end + size_diff, btrfs_leaf_data(leaf) +
3334                               data_end, old_data_start + new_size - data_end);
3335         } else {
3336                 struct btrfs_disk_key disk_key;
3337                 u64 offset;
3338
3339                 btrfs_item_key(leaf, &disk_key, slot);
3340
3341                 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3342                         unsigned long ptr;
3343                         struct btrfs_file_extent_item *fi;
3344
3345                         fi = btrfs_item_ptr(leaf, slot,
3346                                             struct btrfs_file_extent_item);
3347                         fi = (struct btrfs_file_extent_item *)(
3348                              (unsigned long)fi - size_diff);
3349
3350                         if (btrfs_file_extent_type(leaf, fi) ==
3351                             BTRFS_FILE_EXTENT_INLINE) {
3352                                 ptr = btrfs_item_ptr_offset(leaf, slot);
3353                                 memmove_extent_buffer(leaf, ptr,
3354                                       (unsigned long)fi,
3355                                       offsetof(struct btrfs_file_extent_item,
3356                                                  disk_bytenr));
3357                         }
3358                 }
3359
3360                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3361                               data_end + size_diff, btrfs_leaf_data(leaf) +
3362                               data_end, old_data_start - data_end);
3363
3364                 offset = btrfs_disk_key_offset(&disk_key);
3365                 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3366                 btrfs_set_item_key(leaf, &disk_key, slot);
3367                 if (slot == 0)
3368                         fixup_low_keys(trans, root, path, &disk_key, 1);
3369         }
3370
3371         item = btrfs_item_nr(leaf, slot);
3372         btrfs_set_item_size(leaf, item, new_size);
3373         btrfs_mark_buffer_dirty(leaf);
3374
3375         if (btrfs_leaf_free_space(root, leaf) < 0) {
3376                 btrfs_print_leaf(root, leaf);
3377                 BUG();
3378         }
3379 }
3380
3381 /*
3382  * make the item pointed to by the path bigger, data_size is the new size.
3383  */
3384 void btrfs_extend_item(struct btrfs_trans_handle *trans,
3385                        struct btrfs_root *root, struct btrfs_path *path,
3386                        u32 data_size)
3387 {
3388         int slot;
3389         struct extent_buffer *leaf;
3390         struct btrfs_item *item;
3391         u32 nritems;
3392         unsigned int data_end;
3393         unsigned int old_data;
3394         unsigned int old_size;
3395         int i;
3396         struct btrfs_map_token token;
3397
3398         btrfs_init_map_token(&token);
3399
3400         leaf = path->nodes[0];
3401
3402         nritems = btrfs_header_nritems(leaf);
3403         data_end = leaf_data_end(root, leaf);
3404
3405         if (btrfs_leaf_free_space(root, leaf) < data_size) {
3406                 btrfs_print_leaf(root, leaf);
3407                 BUG();
3408         }
3409         slot = path->slots[0];
3410         old_data = btrfs_item_end_nr(leaf, slot);
3411
3412         BUG_ON(slot < 0);
3413         if (slot >= nritems) {
3414                 btrfs_print_leaf(root, leaf);
3415                 printk(KERN_CRIT "slot %d too large, nritems %d\n",
3416                        slot, nritems);
3417                 BUG_ON(1);
3418         }
3419
3420         /*
3421          * item0..itemN ... dataN.offset..dataN.size .. data0.size
3422          */
3423         /* first correct the data pointers */
3424         for (i = slot; i < nritems; i++) {
3425                 u32 ioff;
3426                 item = btrfs_item_nr(leaf, i);
3427
3428                 ioff = btrfs_token_item_offset(leaf, item, &token);
3429                 btrfs_set_token_item_offset(leaf, item,
3430                                             ioff - data_size, &token);
3431         }
3432
3433         /* shift the data */
3434         memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3435                       data_end - data_size, btrfs_leaf_data(leaf) +
3436                       data_end, old_data - data_end);
3437
3438         data_end = old_data;
3439         old_size = btrfs_item_size_nr(leaf, slot);
3440         item = btrfs_item_nr(leaf, slot);
3441         btrfs_set_item_size(leaf, item, old_size + data_size);
3442         btrfs_mark_buffer_dirty(leaf);
3443
3444         if (btrfs_leaf_free_space(root, leaf) < 0) {
3445                 btrfs_print_leaf(root, leaf);
3446                 BUG();
3447         }
3448 }
3449
3450 /*
3451  * Given a key and some data, insert items into the tree.
3452  * This does all the path init required, making room in the tree if needed.
3453  * Returns the number of keys that were inserted.
3454  */
3455 int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
3456                             struct btrfs_root *root,
3457                             struct btrfs_path *path,
3458                             struct btrfs_key *cpu_key, u32 *data_size,
3459                             int nr)
3460 {
3461         struct extent_buffer *leaf;
3462         struct btrfs_item *item;
3463         int ret = 0;
3464         int slot;
3465         int i;
3466         u32 nritems;
3467         u32 total_data = 0;
3468         u32 total_size = 0;
3469         unsigned int data_end;
3470         struct btrfs_disk_key disk_key;
3471         struct btrfs_key found_key;
3472         struct btrfs_map_token token;
3473
3474         btrfs_init_map_token(&token);
3475
3476         for (i = 0; i < nr; i++) {
3477                 if (total_size + data_size[i] + sizeof(struct btrfs_item) >
3478                     BTRFS_LEAF_DATA_SIZE(root)) {
3479                         break;
3480                         nr = i;
3481                 }
3482                 total_data += data_size[i];
3483                 total_size += data_size[i] + sizeof(struct btrfs_item);
3484         }
3485         BUG_ON(nr == 0);
3486
3487         ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3488         if (ret == 0)
3489                 return -EEXIST;
3490         if (ret < 0)
3491                 goto out;
3492
3493         leaf = path->nodes[0];
3494
3495         nritems = btrfs_header_nritems(leaf);
3496         data_end = leaf_data_end(root, leaf);
3497
3498         if (btrfs_leaf_free_space(root, leaf) < total_size) {
3499                 for (i = nr; i >= 0; i--) {
3500                         total_data -= data_size[i];
3501                         total_size -= data_size[i] + sizeof(struct btrfs_item);
3502                         if (total_size < btrfs_leaf_free_space(root, leaf))
3503                                 break;
3504                 }
3505                 nr = i;
3506         }
3507
3508         slot = path->slots[0];
3509         BUG_ON(slot < 0);
3510
3511         if (slot != nritems) {
3512                 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3513
3514                 item = btrfs_item_nr(leaf, slot);
3515                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3516
3517                 /* figure out how many keys we can insert in here */
3518                 total_data = data_size[0];
3519                 for (i = 1; i < nr; i++) {
3520                         if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0)
3521                                 break;
3522                         total_data += data_size[i];
3523                 }
3524                 nr = i;
3525
3526                 if (old_data < data_end) {
3527                         btrfs_print_leaf(root, leaf);
3528                         printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3529                                slot, old_data, data_end);
3530                         BUG_ON(1);
3531                 }
3532                 /*
3533                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
3534                  */
3535                 /* first correct the data pointers */
3536                 for (i = slot; i < nritems; i++) {
3537                         u32 ioff;
3538
3539                         item = btrfs_item_nr(leaf, i);
3540                         ioff = btrfs_token_item_offset(leaf, item, &token);
3541                         btrfs_set_token_item_offset(leaf, item,
3542                                                     ioff - total_data, &token);
3543                 }
3544                 /* shift the items */
3545                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3546                               btrfs_item_nr_offset(slot),
3547                               (nritems - slot) * sizeof(struct btrfs_item));
3548
3549                 /* shift the data */
3550                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3551                               data_end - total_data, btrfs_leaf_data(leaf) +
3552                               data_end, old_data - data_end);
3553                 data_end = old_data;
3554         } else {
3555                 /*
3556                  * this sucks but it has to be done, if we are inserting at
3557                  * the end of the leaf only insert 1 of the items, since we
3558                  * have no way of knowing whats on the next leaf and we'd have
3559                  * to drop our current locks to figure it out
3560                  */
3561                 nr = 1;
3562         }
3563
3564         /* setup the item for the new data */
3565         for (i = 0; i < nr; i++) {
3566                 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3567                 btrfs_set_item_key(leaf, &disk_key, slot + i);
3568                 item = btrfs_item_nr(leaf, slot + i);
3569                 btrfs_set_token_item_offset(leaf, item,
3570                                             data_end - data_size[i], &token);
3571                 data_end -= data_size[i];
3572                 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
3573         }
3574         btrfs_set_header_nritems(leaf, nritems + nr);
3575         btrfs_mark_buffer_dirty(leaf);
3576
3577         ret = 0;
3578         if (slot == 0) {
3579                 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3580                 fixup_low_keys(trans, root, path, &disk_key, 1);
3581         }
3582
3583         if (btrfs_leaf_free_space(root, leaf) < 0) {
3584                 btrfs_print_leaf(root, leaf);
3585                 BUG();
3586         }
3587 out:
3588         if (!ret)
3589                 ret = nr;
3590         return ret;
3591 }
3592
3593 /*
3594  * this is a helper for btrfs_insert_empty_items, the main goal here is
3595  * to save stack depth by doing the bulk of the work in a function
3596  * that doesn't call btrfs_search_slot
3597  */
3598 void setup_items_for_insert(struct btrfs_trans_handle *trans,
3599                             struct btrfs_root *root, struct btrfs_path *path,
3600                             struct btrfs_key *cpu_key, u32 *data_size,
3601                             u32 total_data, u32 total_size, int nr)
3602 {
3603         struct btrfs_item *item;
3604         int i;
3605         u32 nritems;
3606         unsigned int data_end;
3607         struct btrfs_disk_key disk_key;
3608         struct extent_buffer *leaf;
3609         int slot;
3610         struct btrfs_map_token token;
3611
3612         btrfs_init_map_token(&token);
3613
3614         leaf = path->nodes[0];
3615         slot = path->slots[0];
3616
3617         nritems = btrfs_header_nritems(leaf);
3618         data_end = leaf_data_end(root, leaf);
3619
3620         if (btrfs_leaf_free_space(root, leaf) < total_size) {
3621                 btrfs_print_leaf(root, leaf);
3622                 printk(KERN_CRIT "not enough freespace need %u have %d\n",
3623                        total_size, btrfs_leaf_free_space(root, leaf));
3624                 BUG();
3625         }
3626
3627         if (slot != nritems) {
3628                 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3629
3630                 if (old_data < data_end) {
3631                         btrfs_print_leaf(root, leaf);
3632                         printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3633                                slot, old_data, data_end);
3634                         BUG_ON(1);
3635                 }
3636                 /*
3637                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
3638                  */
3639                 /* first correct the data pointers */
3640                 for (i = slot; i < nritems; i++) {
3641                         u32 ioff;
3642
3643                         item = btrfs_item_nr(leaf, i);
3644                         ioff = btrfs_token_item_offset(leaf, item, &token);
3645                         btrfs_set_token_item_offset(leaf, item,
3646                                                     ioff - total_data, &token);
3647                 }
3648                 /* shift the items */
3649                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3650                               btrfs_item_nr_offset(slot),
3651                               (nritems - slot) * sizeof(struct btrfs_item));
3652
3653                 /* shift the data */
3654                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3655                               data_end - total_data, btrfs_leaf_data(leaf) +
3656                               data_end, old_data - data_end);
3657                 data_end = old_data;
3658         }
3659
3660         /* setup the item for the new data */
3661         for (i = 0; i < nr; i++) {
3662                 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3663                 btrfs_set_item_key(leaf, &disk_key, slot + i);
3664                 item = btrfs_item_nr(leaf, slot + i);
3665                 btrfs_set_token_item_offset(leaf, item,
3666                                             data_end - data_size[i], &token);
3667                 data_end -= data_size[i];
3668                 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
3669         }
3670
3671         btrfs_set_header_nritems(leaf, nritems + nr);
3672
3673         if (slot == 0) {
3674                 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3675                 fixup_low_keys(trans, root, path, &disk_key, 1);
3676         }
3677         btrfs_unlock_up_safe(path, 1);
3678         btrfs_mark_buffer_dirty(leaf);
3679
3680         if (btrfs_leaf_free_space(root, leaf) < 0) {
3681                 btrfs_print_leaf(root, leaf);
3682                 BUG();
3683         }
3684 }
3685
3686 /*
3687  * Given a key and some data, insert items into the tree.
3688  * This does all the path init required, making room in the tree if needed.
3689  */
3690 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3691                             struct btrfs_root *root,
3692                             struct btrfs_path *path,
3693                             struct btrfs_key *cpu_key, u32 *data_size,
3694                             int nr)
3695 {
3696         int ret = 0;
3697         int slot;
3698         int i;
3699         u32 total_size = 0;
3700         u32 total_data = 0;
3701
3702         for (i = 0; i < nr; i++)
3703                 total_data += data_size[i];
3704
3705         total_size = total_data + (nr * sizeof(struct btrfs_item));
3706         ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3707         if (ret == 0)
3708                 return -EEXIST;
3709         if (ret < 0)
3710                 return ret;
3711
3712         slot = path->slots[0];
3713         BUG_ON(slot < 0);
3714
3715         setup_items_for_insert(trans, root, path, cpu_key, data_size,
3716                                total_data, total_size, nr);
3717         return 0;
3718 }
3719
3720 /*
3721  * Given a key and some data, insert an item into the tree.
3722  * This does all the path init required, making room in the tree if needed.
3723  */
3724 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
3725                       *root, struct btrfs_key *cpu_key, void *data, u32
3726                       data_size)
3727 {
3728         int ret = 0;
3729         struct btrfs_path *path;
3730         struct extent_buffer *leaf;
3731         unsigned long ptr;
3732
3733         path = btrfs_alloc_path();
3734         if (!path)
3735                 return -ENOMEM;
3736         ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
3737         if (!ret) {
3738                 leaf = path->nodes[0];
3739                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3740                 write_extent_buffer(leaf, data, ptr, data_size);
3741                 btrfs_mark_buffer_dirty(leaf);
3742         }
3743         btrfs_free_path(path);
3744         return ret;
3745 }
3746
3747 /*
3748  * delete the pointer from a given node.
3749  *
3750  * the tree should have been previously balanced so the deletion does not
3751  * empty a node.
3752  */
3753 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3754                     struct btrfs_path *path, int level, int slot)
3755 {
3756         struct extent_buffer *parent = path->nodes[level];
3757         u32 nritems;
3758
3759         nritems = btrfs_header_nritems(parent);
3760         if (slot != nritems - 1) {
3761                 memmove_extent_buffer(parent,
3762                               btrfs_node_key_ptr_offset(slot),
3763                               btrfs_node_key_ptr_offset(slot + 1),
3764                               sizeof(struct btrfs_key_ptr) *
3765                               (nritems - slot - 1));
3766         }
3767         nritems--;
3768         btrfs_set_header_nritems(parent, nritems);
3769         if (nritems == 0 && parent == root->node) {
3770                 BUG_ON(btrfs_header_level(root->node) != 1);
3771                 /* just turn the root into a leaf and break */
3772                 btrfs_set_header_level(root->node, 0);
3773         } else if (slot == 0) {
3774                 struct btrfs_disk_key disk_key;
3775
3776                 btrfs_node_key(parent, &disk_key, 0);
3777                 fixup_low_keys(trans, root, path, &disk_key, level + 1);
3778         }
3779         btrfs_mark_buffer_dirty(parent);
3780 }
3781
3782 /*
3783  * a helper function to delete the leaf pointed to by path->slots[1] and
3784  * path->nodes[1].
3785  *
3786  * This deletes the pointer in path->nodes[1] and frees the leaf
3787  * block extent.  zero is returned if it all worked out, < 0 otherwise.
3788  *
3789  * The path must have already been setup for deleting the leaf, including
3790  * all the proper balancing.  path->nodes[1] must be locked.
3791  */
3792 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
3793                                     struct btrfs_root *root,
3794                                     struct btrfs_path *path,
3795                                     struct extent_buffer *leaf)
3796 {
3797         WARN_ON(btrfs_header_generation(leaf) != trans->transid);
3798         del_ptr(trans, root, path, 1, path->slots[1]);
3799
3800         /*
3801          * btrfs_free_extent is expensive, we want to make sure we
3802          * aren't holding any locks when we call it
3803          */
3804         btrfs_unlock_up_safe(path, 0);
3805
3806         root_sub_used(root, leaf->len);
3807
3808         extent_buffer_get(leaf);
3809         btrfs_free_tree_block(trans, root, leaf, 0, 1, 0);
3810         free_extent_buffer_stale(leaf);
3811 }
3812 /*
3813  * delete the item at the leaf level in path.  If that empties
3814  * the leaf, remove it from the tree
3815  */
3816 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3817                     struct btrfs_path *path, int slot, int nr)
3818 {
3819         struct extent_buffer *leaf;
3820         struct btrfs_item *item;
3821         int last_off;
3822         int dsize = 0;
3823         int ret = 0;
3824         int wret;
3825         int i;
3826         u32 nritems;
3827         struct btrfs_map_token token;
3828
3829         btrfs_init_map_token(&token);
3830
3831         leaf = path->nodes[0];
3832         last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
3833
3834         for (i = 0; i < nr; i++)
3835                 dsize += btrfs_item_size_nr(leaf, slot + i);
3836
3837         nritems = btrfs_header_nritems(leaf);
3838
3839         if (slot + nr != nritems) {
3840                 int data_end = leaf_data_end(root, leaf);
3841
3842                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3843                               data_end + dsize,
3844                               btrfs_leaf_data(leaf) + data_end,
3845                               last_off - data_end);
3846
3847                 for (i = slot + nr; i < nritems; i++) {
3848                         u32 ioff;
3849
3850                         item = btrfs_item_nr(leaf, i);
3851                         ioff = btrfs_token_item_offset(leaf, item, &token);
3852                         btrfs_set_token_item_offset(leaf, item,
3853                                                     ioff + dsize, &token);
3854                 }
3855
3856                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
3857                               btrfs_item_nr_offset(slot + nr),
3858                               sizeof(struct btrfs_item) *
3859                               (nritems - slot - nr));
3860         }
3861         btrfs_set_header_nritems(leaf, nritems - nr);
3862         nritems -= nr;
3863
3864         /* delete the leaf if we've emptied it */
3865         if (nritems == 0) {
3866                 if (leaf == root->node) {
3867                         btrfs_set_header_level(leaf, 0);
3868                 } else {
3869                         btrfs_set_path_blocking(path);
3870                         clean_tree_block(trans, root, leaf);
3871                         btrfs_del_leaf(trans, root, path, leaf);
3872                 }
3873         } else {
3874                 int used = leaf_space_used(leaf, 0, nritems);
3875                 if (slot == 0) {
3876                         struct btrfs_disk_key disk_key;
3877
3878                         btrfs_item_key(leaf, &disk_key, 0);
3879                         fixup_low_keys(trans, root, path, &disk_key, 1);
3880                 }
3881
3882                 /* delete the leaf if it is mostly empty */
3883                 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
3884                         /* push_leaf_left fixes the path.
3885                          * make sure the path still points to our leaf
3886                          * for possible call to del_ptr below
3887                          */
3888                         slot = path->slots[1];
3889                         extent_buffer_get(leaf);
3890
3891                         btrfs_set_path_blocking(path);
3892                         wret = push_leaf_left(trans, root, path, 1, 1,
3893                                               1, (u32)-1);
3894                         if (wret < 0 && wret != -ENOSPC)
3895                                 ret = wret;
3896
3897                         if (path->nodes[0] == leaf &&
3898                             btrfs_header_nritems(leaf)) {
3899                                 wret = push_leaf_right(trans, root, path, 1,
3900                                                        1, 1, 0);
3901                                 if (wret < 0 && wret != -ENOSPC)
3902                                         ret = wret;
3903                         }
3904
3905                         if (btrfs_header_nritems(leaf) == 0) {
3906                                 path->slots[1] = slot;
3907                                 btrfs_del_leaf(trans, root, path, leaf);
3908                                 free_extent_buffer(leaf);
3909                                 ret = 0;
3910                         } else {
3911                                 /* if we're still in the path, make sure
3912                                  * we're dirty.  Otherwise, one of the
3913                                  * push_leaf functions must have already
3914                                  * dirtied this buffer
3915                                  */
3916                                 if (path->nodes[0] == leaf)
3917                                         btrfs_mark_buffer_dirty(leaf);
3918                                 free_extent_buffer(leaf);
3919                         }
3920                 } else {
3921                         btrfs_mark_buffer_dirty(leaf);
3922                 }
3923         }
3924         return ret;
3925 }
3926
3927 /*
3928  * search the tree again to find a leaf with lesser keys
3929  * returns 0 if it found something or 1 if there are no lesser leaves.
3930  * returns < 0 on io errors.
3931  *
3932  * This may release the path, and so you may lose any locks held at the
3933  * time you call it.
3934  */
3935 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
3936 {
3937         struct btrfs_key key;
3938         struct btrfs_disk_key found_key;
3939         int ret;
3940
3941         btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
3942
3943         if (key.offset > 0)
3944                 key.offset--;
3945         else if (key.type > 0)
3946                 key.type--;
3947         else if (key.objectid > 0)
3948                 key.objectid--;
3949         else
3950                 return 1;
3951
3952         btrfs_release_path(path);
3953         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3954         if (ret < 0)
3955                 return ret;
3956         btrfs_item_key(path->nodes[0], &found_key, 0);
3957         ret = comp_keys(&found_key, &key);
3958         if (ret < 0)
3959                 return 0;
3960         return 1;
3961 }
3962
3963 /*
3964  * A helper function to walk down the tree starting at min_key, and looking
3965  * for nodes or leaves that are either in cache or have a minimum
3966  * transaction id.  This is used by the btree defrag code, and tree logging
3967  *
3968  * This does not cow, but it does stuff the starting key it finds back
3969  * into min_key, so you can call btrfs_search_slot with cow=1 on the
3970  * key and get a writable path.
3971  *
3972  * This does lock as it descends, and path->keep_locks should be set
3973  * to 1 by the caller.
3974  *
3975  * This honors path->lowest_level to prevent descent past a given level
3976  * of the tree.
3977  *
3978  * min_trans indicates the oldest transaction that you are interested
3979  * in walking through.  Any nodes or leaves older than min_trans are
3980  * skipped over (without reading them).
3981  *
3982  * returns zero if something useful was found, < 0 on error and 1 if there
3983  * was nothing in the tree that matched the search criteria.
3984  */
3985 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
3986                          struct btrfs_key *max_key,
3987                          struct btrfs_path *path, int cache_only,
3988                          u64 min_trans)
3989 {
3990         struct extent_buffer *cur;
3991         struct btrfs_key found_key;
3992         int slot;
3993         int sret;
3994         u32 nritems;
3995         int level;
3996         int ret = 1;
3997
3998         WARN_ON(!path->keep_locks);
3999 again:
4000         cur = btrfs_read_lock_root_node(root);
4001         level = btrfs_header_level(cur);
4002         WARN_ON(path->nodes[level]);
4003         path->nodes[level] = cur;
4004         path->locks[level] = BTRFS_READ_LOCK;
4005
4006         if (btrfs_header_generation(cur) < min_trans) {
4007                 ret = 1;
4008                 goto out;
4009         }
4010         while (1) {
4011                 nritems = btrfs_header_nritems(cur);
4012                 level = btrfs_header_level(cur);
4013                 sret = bin_search(cur, min_key, level, &slot);
4014
4015                 /* at the lowest level, we're done, setup the path and exit */
4016                 if (level == path->lowest_level) {
4017                         if (slot >= nritems)
4018                                 goto find_next_key;
4019                         ret = 0;
4020                         path->slots[level] = slot;
4021                         btrfs_item_key_to_cpu(cur, &found_key, slot);
4022                         goto out;
4023                 }
4024                 if (sret && slot > 0)
4025                         slot--;
4026                 /*
4027                  * check this node pointer against the cache_only and
4028                  * min_trans parameters.  If it isn't in cache or is too
4029                  * old, skip to the next one.
4030                  */
4031                 while (slot < nritems) {
4032                         u64 blockptr;
4033                         u64 gen;
4034                         struct extent_buffer *tmp;
4035                         struct btrfs_disk_key disk_key;
4036
4037                         blockptr = btrfs_node_blockptr(cur, slot);
4038                         gen = btrfs_node_ptr_generation(cur, slot);
4039                         if (gen < min_trans) {
4040                                 slot++;
4041                                 continue;
4042                         }
4043                         if (!cache_only)
4044                                 break;
4045
4046                         if (max_key) {
4047                                 btrfs_node_key(cur, &disk_key, slot);
4048                                 if (comp_keys(&disk_key, max_key) >= 0) {
4049                                         ret = 1;
4050                                         goto out;
4051                                 }
4052                         }
4053
4054                         tmp = btrfs_find_tree_block(root, blockptr,
4055                                             btrfs_level_size(root, level - 1));
4056
4057                         if (tmp && btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
4058                                 free_extent_buffer(tmp);
4059                                 break;
4060                         }
4061                         if (tmp)
4062                                 free_extent_buffer(tmp);
4063                         slot++;
4064                 }
4065 find_next_key:
4066                 /*
4067                  * we didn't find a candidate key in this node, walk forward
4068                  * and find another one
4069                  */
4070                 if (slot >= nritems) {
4071                         path->slots[level] = slot;
4072                         btrfs_set_path_blocking(path);
4073                         sret = btrfs_find_next_key(root, path, min_key, level,
4074                                                   cache_only, min_trans);
4075                         if (sret == 0) {
4076                                 btrfs_release_path(path);
4077                                 goto again;
4078                         } else {
4079                                 goto out;
4080                         }
4081                 }
4082                 /* save our key for returning back */
4083                 btrfs_node_key_to_cpu(cur, &found_key, slot);
4084                 path->slots[level] = slot;
4085                 if (level == path->lowest_level) {
4086                         ret = 0;
4087                         unlock_up(path, level, 1, 0, NULL);
4088                         goto out;
4089                 }
4090                 btrfs_set_path_blocking(path);
4091                 cur = read_node_slot(root, cur, slot);
4092                 BUG_ON(!cur); /* -ENOMEM */
4093
4094                 btrfs_tree_read_lock(cur);
4095
4096                 path->locks[level - 1] = BTRFS_READ_LOCK;
4097                 path->nodes[level - 1] = cur;
4098                 unlock_up(path, level, 1, 0, NULL);
4099                 btrfs_clear_path_blocking(path, NULL, 0);
4100         }
4101 out:
4102         if (ret == 0)
4103                 memcpy(min_key, &found_key, sizeof(found_key));
4104         btrfs_set_path_blocking(path);
4105         return ret;
4106 }
4107
4108 /*
4109  * this is similar to btrfs_next_leaf, but does not try to preserve
4110  * and fixup the path.  It looks for and returns the next key in the
4111  * tree based on the current path and the cache_only and min_trans
4112  * parameters.
4113  *
4114  * 0 is returned if another key is found, < 0 if there are any errors
4115  * and 1 is returned if there are no higher keys in the tree
4116  *
4117  * path->keep_locks should be set to 1 on the search made before
4118  * calling this function.
4119  */
4120 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4121                         struct btrfs_key *key, int level,
4122                         int cache_only, u64 min_trans)
4123 {
4124         int slot;
4125         struct extent_buffer *c;
4126
4127         WARN_ON(!path->keep_locks);
4128         while (level < BTRFS_MAX_LEVEL) {
4129                 if (!path->nodes[level])
4130                         return 1;
4131
4132                 slot = path->slots[level] + 1;
4133                 c = path->nodes[level];
4134 next:
4135                 if (slot >= btrfs_header_nritems(c)) {
4136                         int ret;
4137                         int orig_lowest;
4138                         struct btrfs_key cur_key;
4139                         if (level + 1 >= BTRFS_MAX_LEVEL ||
4140                             !path->nodes[level + 1])
4141                                 return 1;
4142
4143                         if (path->locks[level + 1]) {
4144                                 level++;
4145                                 continue;
4146                         }
4147
4148                         slot = btrfs_header_nritems(c) - 1;
4149                         if (level == 0)
4150                                 btrfs_item_key_to_cpu(c, &cur_key, slot);
4151                         else
4152                                 btrfs_node_key_to_cpu(c, &cur_key, slot);
4153
4154                         orig_lowest = path->lowest_level;
4155                         btrfs_release_path(path);
4156                         path->lowest_level = level;
4157                         ret = btrfs_search_slot(NULL, root, &cur_key, path,
4158                                                 0, 0);
4159                         path->lowest_level = orig_lowest;
4160                         if (ret < 0)
4161                                 return ret;
4162
4163                         c = path->nodes[level];
4164                         slot = path->slots[level];
4165                         if (ret == 0)
4166                                 slot++;
4167                         goto next;
4168                 }
4169
4170                 if (level == 0)
4171                         btrfs_item_key_to_cpu(c, key, slot);
4172                 else {
4173                         u64 blockptr = btrfs_node_blockptr(c, slot);
4174                         u64 gen = btrfs_node_ptr_generation(c, slot);
4175
4176                         if (cache_only) {
4177                                 struct extent_buffer *cur;
4178                                 cur = btrfs_find_tree_block(root, blockptr,
4179                                             btrfs_level_size(root, level - 1));
4180                                 if (!cur ||
4181                                     btrfs_buffer_uptodate(cur, gen, 1) <= 0) {
4182                                         slot++;
4183                                         if (cur)
4184                                                 free_extent_buffer(cur);
4185                                         goto next;
4186                                 }
4187                                 free_extent_buffer(cur);
4188                         }
4189                         if (gen < min_trans) {
4190                                 slot++;
4191                                 goto next;
4192                         }
4193                         btrfs_node_key_to_cpu(c, key, slot);
4194                 }
4195                 return 0;
4196         }
4197         return 1;
4198 }
4199
4200 /*
4201  * search the tree again to find a leaf with greater keys
4202  * returns 0 if it found something or 1 if there are no greater leaves.
4203  * returns < 0 on io errors.
4204  */
4205 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
4206 {
4207         int slot;
4208         int level;
4209         struct extent_buffer *c;
4210         struct extent_buffer *next;
4211         struct btrfs_key key;
4212         u32 nritems;
4213         int ret;
4214         int old_spinning = path->leave_spinning;
4215         int next_rw_lock = 0;
4216
4217         nritems = btrfs_header_nritems(path->nodes[0]);
4218         if (nritems == 0)
4219                 return 1;
4220
4221         btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4222 again:
4223         level = 1;
4224         next = NULL;
4225         next_rw_lock = 0;
4226         btrfs_release_path(path);
4227
4228         path->keep_locks = 1;
4229         path->leave_spinning = 1;
4230
4231         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4232         path->keep_locks = 0;
4233
4234         if (ret < 0)
4235                 return ret;
4236
4237         nritems = btrfs_header_nritems(path->nodes[0]);
4238         /*
4239          * by releasing the path above we dropped all our locks.  A balance
4240          * could have added more items next to the key that used to be
4241          * at the very end of the block.  So, check again here and
4242          * advance the path if there are now more items available.
4243          */
4244         if (nritems > 0 && path->slots[0] < nritems - 1) {
4245                 if (ret == 0)
4246                         path->slots[0]++;
4247                 ret = 0;
4248                 goto done;
4249         }
4250
4251         while (level < BTRFS_MAX_LEVEL) {
4252                 if (!path->nodes[level]) {
4253                         ret = 1;
4254                         goto done;
4255                 }
4256
4257                 slot = path->slots[level] + 1;
4258                 c = path->nodes[level];
4259                 if (slot >= btrfs_header_nritems(c)) {
4260                         level++;
4261                         if (level == BTRFS_MAX_LEVEL) {
4262                                 ret = 1;
4263                                 goto done;
4264                         }
4265                         continue;
4266                 }
4267
4268                 if (next) {
4269                         btrfs_tree_unlock_rw(next, next_rw_lock);
4270                         free_extent_buffer(next);
4271                 }
4272
4273                 next = c;
4274                 next_rw_lock = path->locks[level];
4275                 ret = read_block_for_search(NULL, root, path, &next, level,
4276                                             slot, &key);
4277                 if (ret == -EAGAIN)
4278                         goto again;
4279
4280                 if (ret < 0) {
4281                         btrfs_release_path(path);
4282                         goto done;
4283                 }
4284
4285                 if (!path->skip_locking) {
4286                         ret = btrfs_try_tree_read_lock(next);
4287                         if (!ret) {
4288                                 btrfs_set_path_blocking(path);
4289                                 btrfs_tree_read_lock(next);
4290                                 btrfs_clear_path_blocking(path, next,
4291                                                           BTRFS_READ_LOCK);
4292                         }
4293                         next_rw_lock = BTRFS_READ_LOCK;
4294                 }
4295                 break;
4296         }
4297         path->slots[level] = slot;
4298         while (1) {
4299                 level--;
4300                 c = path->nodes[level];
4301                 if (path->locks[level])
4302                         btrfs_tree_unlock_rw(c, path->locks[level]);
4303
4304                 free_extent_buffer(c);
4305                 path->nodes[level] = next;
4306                 path->slots[level] = 0;
4307                 if (!path->skip_locking)
4308                         path->locks[level] = next_rw_lock;
4309                 if (!level)
4310                         break;
4311
4312                 ret = read_block_for_search(NULL, root, path, &next, level,
4313                                             0, &key);
4314                 if (ret == -EAGAIN)
4315                         goto again;
4316
4317                 if (ret < 0) {
4318                         btrfs_release_path(path);
4319                         goto done;
4320                 }
4321
4322                 if (!path->skip_locking) {
4323                         ret = btrfs_try_tree_read_lock(next);
4324                         if (!ret) {
4325                                 btrfs_set_path_blocking(path);
4326                                 btrfs_tree_read_lock(next);
4327                                 btrfs_clear_path_blocking(path, next,
4328                                                           BTRFS_READ_LOCK);
4329                         }
4330                         next_rw_lock = BTRFS_READ_LOCK;
4331                 }
4332         }
4333         ret = 0;
4334 done:
4335         unlock_up(path, 0, 1, 0, NULL);
4336         path->leave_spinning = old_spinning;
4337         if (!old_spinning)
4338                 btrfs_set_path_blocking(path);
4339
4340         return ret;
4341 }
4342
4343 /*
4344  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4345  * searching until it gets past min_objectid or finds an item of 'type'
4346  *
4347  * returns 0 if something is found, 1 if nothing was found and < 0 on error
4348  */
4349 int btrfs_previous_item(struct btrfs_root *root,
4350                         struct btrfs_path *path, u64 min_objectid,
4351                         int type)
4352 {
4353         struct btrfs_key found_key;
4354         struct extent_buffer *leaf;
4355         u32 nritems;
4356         int ret;
4357
4358         while (1) {
4359                 if (path->slots[0] == 0) {
4360                         btrfs_set_path_blocking(path);
4361                         ret = btrfs_prev_leaf(root, path);
4362                         if (ret != 0)
4363                                 return ret;
4364                 } else {
4365                         path->slots[0]--;
4366                 }
4367                 leaf = path->nodes[0];
4368                 nritems = btrfs_header_nritems(leaf);
4369                 if (nritems == 0)
4370                         return 1;
4371                 if (path->slots[0] == nritems)
4372                         path->slots[0]--;
4373
4374                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4375                 if (found_key.objectid < min_objectid)
4376                         break;
4377                 if (found_key.type == type)
4378                         return 0;
4379                 if (found_key.objectid == min_objectid &&
4380                     found_key.type < type)
4381                         break;
4382         }
4383         return 1;
4384 }