]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/btrfs/ctree.c
Btrfs: add btrfs_search_old_slot
[karo-tx-linux.git] / fs / btrfs / ctree.c
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "print-tree.h"
26 #include "locking.h"
27
28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
29                       *root, struct btrfs_path *path, int level);
30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
31                       *root, struct btrfs_key *ins_key,
32                       struct btrfs_path *path, int data_size, int extend);
33 static int push_node_left(struct btrfs_trans_handle *trans,
34                           struct btrfs_root *root, struct extent_buffer *dst,
35                           struct extent_buffer *src, int empty);
36 static int balance_node_right(struct btrfs_trans_handle *trans,
37                               struct btrfs_root *root,
38                               struct extent_buffer *dst_buf,
39                               struct extent_buffer *src_buf);
40 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
41                     struct btrfs_path *path, int level, int slot,
42                     int tree_mod_log);
43 static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
44                                  struct extent_buffer *eb);
45 struct extent_buffer *read_old_tree_block(struct btrfs_root *root, u64 bytenr,
46                                           u32 blocksize, u64 parent_transid,
47                                           u64 time_seq);
48 struct extent_buffer *btrfs_find_old_tree_block(struct btrfs_root *root,
49                                                 u64 bytenr, u32 blocksize,
50                                                 u64 time_seq);
51
52 struct btrfs_path *btrfs_alloc_path(void)
53 {
54         struct btrfs_path *path;
55         path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
56         return path;
57 }
58
59 /*
60  * set all locked nodes in the path to blocking locks.  This should
61  * be done before scheduling
62  */
63 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
64 {
65         int i;
66         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
67                 if (!p->nodes[i] || !p->locks[i])
68                         continue;
69                 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
70                 if (p->locks[i] == BTRFS_READ_LOCK)
71                         p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
72                 else if (p->locks[i] == BTRFS_WRITE_LOCK)
73                         p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
74         }
75 }
76
77 /*
78  * reset all the locked nodes in the patch to spinning locks.
79  *
80  * held is used to keep lockdep happy, when lockdep is enabled
81  * we set held to a blocking lock before we go around and
82  * retake all the spinlocks in the path.  You can safely use NULL
83  * for held
84  */
85 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
86                                         struct extent_buffer *held, int held_rw)
87 {
88         int i;
89
90 #ifdef CONFIG_DEBUG_LOCK_ALLOC
91         /* lockdep really cares that we take all of these spinlocks
92          * in the right order.  If any of the locks in the path are not
93          * currently blocking, it is going to complain.  So, make really
94          * really sure by forcing the path to blocking before we clear
95          * the path blocking.
96          */
97         if (held) {
98                 btrfs_set_lock_blocking_rw(held, held_rw);
99                 if (held_rw == BTRFS_WRITE_LOCK)
100                         held_rw = BTRFS_WRITE_LOCK_BLOCKING;
101                 else if (held_rw == BTRFS_READ_LOCK)
102                         held_rw = BTRFS_READ_LOCK_BLOCKING;
103         }
104         btrfs_set_path_blocking(p);
105 #endif
106
107         for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
108                 if (p->nodes[i] && p->locks[i]) {
109                         btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
110                         if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
111                                 p->locks[i] = BTRFS_WRITE_LOCK;
112                         else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
113                                 p->locks[i] = BTRFS_READ_LOCK;
114                 }
115         }
116
117 #ifdef CONFIG_DEBUG_LOCK_ALLOC
118         if (held)
119                 btrfs_clear_lock_blocking_rw(held, held_rw);
120 #endif
121 }
122
123 /* this also releases the path */
124 void btrfs_free_path(struct btrfs_path *p)
125 {
126         if (!p)
127                 return;
128         btrfs_release_path(p);
129         kmem_cache_free(btrfs_path_cachep, p);
130 }
131
132 /*
133  * path release drops references on the extent buffers in the path
134  * and it drops any locks held by this path
135  *
136  * It is safe to call this on paths that no locks or extent buffers held.
137  */
138 noinline void btrfs_release_path(struct btrfs_path *p)
139 {
140         int i;
141
142         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
143                 p->slots[i] = 0;
144                 if (!p->nodes[i])
145                         continue;
146                 if (p->locks[i]) {
147                         btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
148                         p->locks[i] = 0;
149                 }
150                 free_extent_buffer(p->nodes[i]);
151                 p->nodes[i] = NULL;
152         }
153 }
154
155 /*
156  * safely gets a reference on the root node of a tree.  A lock
157  * is not taken, so a concurrent writer may put a different node
158  * at the root of the tree.  See btrfs_lock_root_node for the
159  * looping required.
160  *
161  * The extent buffer returned by this has a reference taken, so
162  * it won't disappear.  It may stop being the root of the tree
163  * at any time because there are no locks held.
164  */
165 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
166 {
167         struct extent_buffer *eb;
168
169         while (1) {
170                 rcu_read_lock();
171                 eb = rcu_dereference(root->node);
172
173                 /*
174                  * RCU really hurts here, we could free up the root node because
175                  * it was cow'ed but we may not get the new root node yet so do
176                  * the inc_not_zero dance and if it doesn't work then
177                  * synchronize_rcu and try again.
178                  */
179                 if (atomic_inc_not_zero(&eb->refs)) {
180                         rcu_read_unlock();
181                         break;
182                 }
183                 rcu_read_unlock();
184                 synchronize_rcu();
185         }
186         return eb;
187 }
188
189 /* loop around taking references on and locking the root node of the
190  * tree until you end up with a lock on the root.  A locked buffer
191  * is returned, with a reference held.
192  */
193 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
194 {
195         struct extent_buffer *eb;
196
197         while (1) {
198                 eb = btrfs_root_node(root);
199                 btrfs_tree_lock(eb);
200                 if (eb == root->node)
201                         break;
202                 btrfs_tree_unlock(eb);
203                 free_extent_buffer(eb);
204         }
205         return eb;
206 }
207
208 /* loop around taking references on and locking the root node of the
209  * tree until you end up with a lock on the root.  A locked buffer
210  * is returned, with a reference held.
211  */
212 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
213 {
214         struct extent_buffer *eb;
215
216         while (1) {
217                 eb = btrfs_root_node(root);
218                 btrfs_tree_read_lock(eb);
219                 if (eb == root->node)
220                         break;
221                 btrfs_tree_read_unlock(eb);
222                 free_extent_buffer(eb);
223         }
224         return eb;
225 }
226
227 /* cowonly root (everything not a reference counted cow subvolume), just get
228  * put onto a simple dirty list.  transaction.c walks this to make sure they
229  * get properly updated on disk.
230  */
231 static void add_root_to_dirty_list(struct btrfs_root *root)
232 {
233         spin_lock(&root->fs_info->trans_lock);
234         if (root->track_dirty && list_empty(&root->dirty_list)) {
235                 list_add(&root->dirty_list,
236                          &root->fs_info->dirty_cowonly_roots);
237         }
238         spin_unlock(&root->fs_info->trans_lock);
239 }
240
241 /*
242  * used by snapshot creation to make a copy of a root for a tree with
243  * a given objectid.  The buffer with the new root node is returned in
244  * cow_ret, and this func returns zero on success or a negative error code.
245  */
246 int btrfs_copy_root(struct btrfs_trans_handle *trans,
247                       struct btrfs_root *root,
248                       struct extent_buffer *buf,
249                       struct extent_buffer **cow_ret, u64 new_root_objectid)
250 {
251         struct extent_buffer *cow;
252         int ret = 0;
253         int level;
254         struct btrfs_disk_key disk_key;
255
256         WARN_ON(root->ref_cows && trans->transid !=
257                 root->fs_info->running_transaction->transid);
258         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
259
260         level = btrfs_header_level(buf);
261         if (level == 0)
262                 btrfs_item_key(buf, &disk_key, 0);
263         else
264                 btrfs_node_key(buf, &disk_key, 0);
265
266         cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
267                                      new_root_objectid, &disk_key, level,
268                                      buf->start, 0);
269         if (IS_ERR(cow))
270                 return PTR_ERR(cow);
271
272         copy_extent_buffer(cow, buf, 0, 0, cow->len);
273         btrfs_set_header_bytenr(cow, cow->start);
274         btrfs_set_header_generation(cow, trans->transid);
275         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
276         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
277                                      BTRFS_HEADER_FLAG_RELOC);
278         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
279                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
280         else
281                 btrfs_set_header_owner(cow, new_root_objectid);
282
283         write_extent_buffer(cow, root->fs_info->fsid,
284                             (unsigned long)btrfs_header_fsid(cow),
285                             BTRFS_FSID_SIZE);
286
287         WARN_ON(btrfs_header_generation(buf) > trans->transid);
288         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
289                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
290         else
291                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
292
293         if (ret)
294                 return ret;
295
296         btrfs_mark_buffer_dirty(cow);
297         *cow_ret = cow;
298         return 0;
299 }
300
301 enum mod_log_op {
302         MOD_LOG_KEY_REPLACE,
303         MOD_LOG_KEY_ADD,
304         MOD_LOG_KEY_REMOVE,
305         MOD_LOG_KEY_REMOVE_WHILE_FREEING,
306         MOD_LOG_KEY_REMOVE_WHILE_MOVING,
307         MOD_LOG_MOVE_KEYS,
308         MOD_LOG_ROOT_REPLACE,
309 };
310
311 struct tree_mod_move {
312         int dst_slot;
313         int nr_items;
314 };
315
316 struct tree_mod_root {
317         u64 logical;
318         u8 level;
319 };
320
321 struct tree_mod_elem {
322         struct rb_node node;
323         u64 index;              /* shifted logical */
324         struct seq_list elem;
325         enum mod_log_op op;
326
327         /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
328         int slot;
329
330         /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
331         u64 generation;
332
333         /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
334         struct btrfs_disk_key key;
335         u64 blockptr;
336
337         /* this is used for op == MOD_LOG_MOVE_KEYS */
338         struct tree_mod_move move;
339
340         /* this is used for op == MOD_LOG_ROOT_REPLACE */
341         struct tree_mod_root old_root;
342 };
343
344 static inline void
345 __get_tree_mod_seq(struct btrfs_fs_info *fs_info, struct seq_list *elem)
346 {
347         elem->seq = atomic_inc_return(&fs_info->tree_mod_seq);
348         list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
349 }
350
351 void btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
352                             struct seq_list *elem)
353 {
354         elem->flags = 1;
355         spin_lock(&fs_info->tree_mod_seq_lock);
356         __get_tree_mod_seq(fs_info, elem);
357         spin_unlock(&fs_info->tree_mod_seq_lock);
358 }
359
360 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
361                             struct seq_list *elem)
362 {
363         struct rb_root *tm_root;
364         struct rb_node *node;
365         struct rb_node *next;
366         struct seq_list *cur_elem;
367         struct tree_mod_elem *tm;
368         u64 min_seq = (u64)-1;
369         u64 seq_putting = elem->seq;
370
371         if (!seq_putting)
372                 return;
373
374         BUG_ON(!(elem->flags & 1));
375         spin_lock(&fs_info->tree_mod_seq_lock);
376         list_del(&elem->list);
377
378         list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
379                 if ((cur_elem->flags & 1) && cur_elem->seq < min_seq) {
380                         if (seq_putting > cur_elem->seq) {
381                                 /*
382                                  * blocker with lower sequence number exists, we
383                                  * cannot remove anything from the log
384                                  */
385                                 goto out;
386                         }
387                         min_seq = cur_elem->seq;
388                 }
389         }
390
391         /*
392          * anything that's lower than the lowest existing (read: blocked)
393          * sequence number can be removed from the tree.
394          */
395         write_lock(&fs_info->tree_mod_log_lock);
396         tm_root = &fs_info->tree_mod_log;
397         for (node = rb_first(tm_root); node; node = next) {
398                 next = rb_next(node);
399                 tm = container_of(node, struct tree_mod_elem, node);
400                 if (tm->elem.seq > min_seq)
401                         continue;
402                 rb_erase(node, tm_root);
403                 list_del(&tm->elem.list);
404                 kfree(tm);
405         }
406         write_unlock(&fs_info->tree_mod_log_lock);
407 out:
408         spin_unlock(&fs_info->tree_mod_seq_lock);
409 }
410
411 /*
412  * key order of the log:
413  *       index -> sequence
414  *
415  * the index is the shifted logical of the *new* root node for root replace
416  * operations, or the shifted logical of the affected block for all other
417  * operations.
418  */
419 static noinline int
420 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
421 {
422         struct rb_root *tm_root;
423         struct rb_node **new;
424         struct rb_node *parent = NULL;
425         struct tree_mod_elem *cur;
426         int ret = 0;
427
428         BUG_ON(!tm || !tm->elem.seq);
429
430         write_lock(&fs_info->tree_mod_log_lock);
431         tm_root = &fs_info->tree_mod_log;
432         new = &tm_root->rb_node;
433         while (*new) {
434                 cur = container_of(*new, struct tree_mod_elem, node);
435                 parent = *new;
436                 if (cur->index < tm->index)
437                         new = &((*new)->rb_left);
438                 else if (cur->index > tm->index)
439                         new = &((*new)->rb_right);
440                 else if (cur->elem.seq < tm->elem.seq)
441                         new = &((*new)->rb_left);
442                 else if (cur->elem.seq > tm->elem.seq)
443                         new = &((*new)->rb_right);
444                 else {
445                         kfree(tm);
446                         ret = -EEXIST;
447                         goto unlock;
448                 }
449         }
450
451         rb_link_node(&tm->node, parent, new);
452         rb_insert_color(&tm->node, tm_root);
453 unlock:
454         write_unlock(&fs_info->tree_mod_log_lock);
455         return ret;
456 }
457
458 int tree_mod_alloc(struct btrfs_fs_info *fs_info, gfp_t flags,
459                    struct tree_mod_elem **tm_ret)
460 {
461         struct tree_mod_elem *tm;
462         u64 seq = 0;
463
464         smp_mb();
465         if (list_empty(&fs_info->tree_mod_seq_list))
466                 return 0;
467
468         tm = *tm_ret = kzalloc(sizeof(*tm), flags);
469         if (!tm)
470                 return -ENOMEM;
471
472         __get_tree_mod_seq(fs_info, &tm->elem);
473         seq = tm->elem.seq;
474         tm->elem.flags = 0;
475
476         return seq;
477 }
478
479 static noinline int
480 tree_mod_log_insert_key_mask(struct btrfs_fs_info *fs_info,
481                              struct extent_buffer *eb, int slot,
482                              enum mod_log_op op, gfp_t flags)
483 {
484         struct tree_mod_elem *tm;
485         int ret;
486
487         ret = tree_mod_alloc(fs_info, flags, &tm);
488         if (ret <= 0)
489                 return ret;
490
491         tm->index = eb->start >> PAGE_CACHE_SHIFT;
492         if (op != MOD_LOG_KEY_ADD) {
493                 btrfs_node_key(eb, &tm->key, slot);
494                 tm->blockptr = btrfs_node_blockptr(eb, slot);
495         }
496         tm->op = op;
497         tm->slot = slot;
498         tm->generation = btrfs_node_ptr_generation(eb, slot);
499
500         return __tree_mod_log_insert(fs_info, tm);
501 }
502
503 static noinline int
504 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
505                         int slot, enum mod_log_op op)
506 {
507         return tree_mod_log_insert_key_mask(fs_info, eb, slot, op, GFP_NOFS);
508 }
509
510 static noinline int
511 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
512                          struct extent_buffer *eb, int dst_slot, int src_slot,
513                          int nr_items, gfp_t flags)
514 {
515         struct tree_mod_elem *tm;
516         int ret;
517         int i;
518
519         ret = tree_mod_alloc(fs_info, flags, &tm);
520         if (ret <= 0)
521                 return ret;
522
523         for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
524                 ret = tree_mod_log_insert_key(fs_info, eb, i + dst_slot,
525                                               MOD_LOG_KEY_REMOVE_WHILE_MOVING);
526                 BUG_ON(ret < 0);
527         }
528
529         tm->index = eb->start >> PAGE_CACHE_SHIFT;
530         tm->slot = src_slot;
531         tm->move.dst_slot = dst_slot;
532         tm->move.nr_items = nr_items;
533         tm->op = MOD_LOG_MOVE_KEYS;
534
535         return __tree_mod_log_insert(fs_info, tm);
536 }
537
538 static noinline int
539 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
540                          struct extent_buffer *old_root,
541                          struct extent_buffer *new_root, gfp_t flags)
542 {
543         struct tree_mod_elem *tm;
544         int ret;
545
546         ret = tree_mod_alloc(fs_info, flags, &tm);
547         if (ret <= 0)
548                 return ret;
549
550         tm->index = new_root->start >> PAGE_CACHE_SHIFT;
551         tm->old_root.logical = old_root->start;
552         tm->old_root.level = btrfs_header_level(old_root);
553         tm->generation = btrfs_header_generation(old_root);
554         tm->op = MOD_LOG_ROOT_REPLACE;
555
556         return __tree_mod_log_insert(fs_info, tm);
557 }
558
559 static struct tree_mod_elem *
560 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
561                       int smallest)
562 {
563         struct rb_root *tm_root;
564         struct rb_node *node;
565         struct tree_mod_elem *cur = NULL;
566         struct tree_mod_elem *found = NULL;
567         u64 index = start >> PAGE_CACHE_SHIFT;
568
569         read_lock(&fs_info->tree_mod_log_lock);
570         tm_root = &fs_info->tree_mod_log;
571         node = tm_root->rb_node;
572         while (node) {
573                 cur = container_of(node, struct tree_mod_elem, node);
574                 if (cur->index < index) {
575                         node = node->rb_left;
576                 } else if (cur->index > index) {
577                         node = node->rb_right;
578                 } else if (cur->elem.seq < min_seq) {
579                         node = node->rb_left;
580                 } else if (!smallest) {
581                         /* we want the node with the highest seq */
582                         if (found)
583                                 BUG_ON(found->elem.seq > cur->elem.seq);
584                         found = cur;
585                         node = node->rb_left;
586                 } else if (cur->elem.seq > min_seq) {
587                         /* we want the node with the smallest seq */
588                         if (found)
589                                 BUG_ON(found->elem.seq < cur->elem.seq);
590                         found = cur;
591                         node = node->rb_right;
592                 } else {
593                         found = cur;
594                         break;
595                 }
596         }
597         read_unlock(&fs_info->tree_mod_log_lock);
598
599         return found;
600 }
601
602 /*
603  * this returns the element from the log with the smallest time sequence
604  * value that's in the log (the oldest log item). any element with a time
605  * sequence lower than min_seq will be ignored.
606  */
607 static struct tree_mod_elem *
608 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
609                            u64 min_seq)
610 {
611         return __tree_mod_log_search(fs_info, start, min_seq, 1);
612 }
613
614 /*
615  * this returns the element from the log with the largest time sequence
616  * value that's in the log (the most recent log item). any element with
617  * a time sequence lower than min_seq will be ignored.
618  */
619 static struct tree_mod_elem *
620 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
621 {
622         return __tree_mod_log_search(fs_info, start, min_seq, 0);
623 }
624
625 static inline void
626 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
627                      struct extent_buffer *src, unsigned long dst_offset,
628                      unsigned long src_offset, int nr_items)
629 {
630         int ret;
631         int i;
632
633         smp_mb();
634         if (list_empty(&fs_info->tree_mod_seq_list))
635                 return;
636
637         if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
638                 return;
639
640         /* speed this up by single seq for all operations? */
641         for (i = 0; i < nr_items; i++) {
642                 ret = tree_mod_log_insert_key(fs_info, src, i + src_offset,
643                                               MOD_LOG_KEY_REMOVE);
644                 BUG_ON(ret < 0);
645                 ret = tree_mod_log_insert_key(fs_info, dst, i + dst_offset,
646                                               MOD_LOG_KEY_ADD);
647                 BUG_ON(ret < 0);
648         }
649 }
650
651 static inline void
652 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
653                      int dst_offset, int src_offset, int nr_items)
654 {
655         int ret;
656         ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
657                                        nr_items, GFP_NOFS);
658         BUG_ON(ret < 0);
659 }
660
661 static inline void
662 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
663                           struct extent_buffer *eb,
664                           struct btrfs_disk_key *disk_key, int slot, int atomic)
665 {
666         int ret;
667
668         ret = tree_mod_log_insert_key_mask(fs_info, eb, slot,
669                                            MOD_LOG_KEY_REPLACE,
670                                            atomic ? GFP_ATOMIC : GFP_NOFS);
671         BUG_ON(ret < 0);
672 }
673
674 static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
675                                  struct extent_buffer *eb)
676 {
677         int i;
678         int ret;
679         u32 nritems;
680
681         smp_mb();
682         if (list_empty(&fs_info->tree_mod_seq_list))
683                 return;
684
685         if (btrfs_header_level(eb) == 0)
686                 return;
687
688         nritems = btrfs_header_nritems(eb);
689         for (i = nritems - 1; i >= 0; i--) {
690                 ret = tree_mod_log_insert_key(fs_info, eb, i,
691                                               MOD_LOG_KEY_REMOVE_WHILE_FREEING);
692                 BUG_ON(ret < 0);
693         }
694 }
695
696 static inline void
697 tree_mod_log_set_root_pointer(struct btrfs_root *root,
698                               struct extent_buffer *new_root_node)
699 {
700         int ret;
701         tree_mod_log_free_eb(root->fs_info, root->node);
702         ret = tree_mod_log_insert_root(root->fs_info, root->node,
703                                        new_root_node, GFP_NOFS);
704         BUG_ON(ret < 0);
705 }
706
707 /*
708  * check if the tree block can be shared by multiple trees
709  */
710 int btrfs_block_can_be_shared(struct btrfs_root *root,
711                               struct extent_buffer *buf)
712 {
713         /*
714          * Tree blocks not in refernece counted trees and tree roots
715          * are never shared. If a block was allocated after the last
716          * snapshot and the block was not allocated by tree relocation,
717          * we know the block is not shared.
718          */
719         if (root->ref_cows &&
720             buf != root->node && buf != root->commit_root &&
721             (btrfs_header_generation(buf) <=
722              btrfs_root_last_snapshot(&root->root_item) ||
723              btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
724                 return 1;
725 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
726         if (root->ref_cows &&
727             btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
728                 return 1;
729 #endif
730         return 0;
731 }
732
733 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
734                                        struct btrfs_root *root,
735                                        struct extent_buffer *buf,
736                                        struct extent_buffer *cow,
737                                        int *last_ref)
738 {
739         u64 refs;
740         u64 owner;
741         u64 flags;
742         u64 new_flags = 0;
743         int ret;
744
745         /*
746          * Backrefs update rules:
747          *
748          * Always use full backrefs for extent pointers in tree block
749          * allocated by tree relocation.
750          *
751          * If a shared tree block is no longer referenced by its owner
752          * tree (btrfs_header_owner(buf) == root->root_key.objectid),
753          * use full backrefs for extent pointers in tree block.
754          *
755          * If a tree block is been relocating
756          * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
757          * use full backrefs for extent pointers in tree block.
758          * The reason for this is some operations (such as drop tree)
759          * are only allowed for blocks use full backrefs.
760          */
761
762         if (btrfs_block_can_be_shared(root, buf)) {
763                 ret = btrfs_lookup_extent_info(trans, root, buf->start,
764                                                buf->len, &refs, &flags);
765                 if (ret)
766                         return ret;
767                 if (refs == 0) {
768                         ret = -EROFS;
769                         btrfs_std_error(root->fs_info, ret);
770                         return ret;
771                 }
772         } else {
773                 refs = 1;
774                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
775                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
776                         flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
777                 else
778                         flags = 0;
779         }
780
781         owner = btrfs_header_owner(buf);
782         BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
783                !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
784
785         if (refs > 1) {
786                 if ((owner == root->root_key.objectid ||
787                      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
788                     !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
789                         ret = btrfs_inc_ref(trans, root, buf, 1, 1);
790                         BUG_ON(ret); /* -ENOMEM */
791
792                         if (root->root_key.objectid ==
793                             BTRFS_TREE_RELOC_OBJECTID) {
794                                 ret = btrfs_dec_ref(trans, root, buf, 0, 1);
795                                 BUG_ON(ret); /* -ENOMEM */
796                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
797                                 BUG_ON(ret); /* -ENOMEM */
798                         }
799                         new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
800                 } else {
801
802                         if (root->root_key.objectid ==
803                             BTRFS_TREE_RELOC_OBJECTID)
804                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
805                         else
806                                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
807                         BUG_ON(ret); /* -ENOMEM */
808                 }
809                 if (new_flags != 0) {
810                         ret = btrfs_set_disk_extent_flags(trans, root,
811                                                           buf->start,
812                                                           buf->len,
813                                                           new_flags, 0);
814                         if (ret)
815                                 return ret;
816                 }
817         } else {
818                 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
819                         if (root->root_key.objectid ==
820                             BTRFS_TREE_RELOC_OBJECTID)
821                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
822                         else
823                                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
824                         BUG_ON(ret); /* -ENOMEM */
825                         ret = btrfs_dec_ref(trans, root, buf, 1, 1);
826                         BUG_ON(ret); /* -ENOMEM */
827                 }
828                 /*
829                  * don't log freeing in case we're freeing the root node, this
830                  * is done by tree_mod_log_set_root_pointer later
831                  */
832                 if (buf != root->node && btrfs_header_level(buf) != 0)
833                         tree_mod_log_free_eb(root->fs_info, buf);
834                 clean_tree_block(trans, root, buf);
835                 *last_ref = 1;
836         }
837         return 0;
838 }
839
840 /*
841  * does the dirty work in cow of a single block.  The parent block (if
842  * supplied) is updated to point to the new cow copy.  The new buffer is marked
843  * dirty and returned locked.  If you modify the block it needs to be marked
844  * dirty again.
845  *
846  * search_start -- an allocation hint for the new block
847  *
848  * empty_size -- a hint that you plan on doing more cow.  This is the size in
849  * bytes the allocator should try to find free next to the block it returns.
850  * This is just a hint and may be ignored by the allocator.
851  */
852 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
853                              struct btrfs_root *root,
854                              struct extent_buffer *buf,
855                              struct extent_buffer *parent, int parent_slot,
856                              struct extent_buffer **cow_ret,
857                              u64 search_start, u64 empty_size)
858 {
859         struct btrfs_disk_key disk_key;
860         struct extent_buffer *cow;
861         int level, ret;
862         int last_ref = 0;
863         int unlock_orig = 0;
864         u64 parent_start;
865
866         if (*cow_ret == buf)
867                 unlock_orig = 1;
868
869         btrfs_assert_tree_locked(buf);
870
871         WARN_ON(root->ref_cows && trans->transid !=
872                 root->fs_info->running_transaction->transid);
873         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
874
875         level = btrfs_header_level(buf);
876
877         if (level == 0)
878                 btrfs_item_key(buf, &disk_key, 0);
879         else
880                 btrfs_node_key(buf, &disk_key, 0);
881
882         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
883                 if (parent)
884                         parent_start = parent->start;
885                 else
886                         parent_start = 0;
887         } else
888                 parent_start = 0;
889
890         cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
891                                      root->root_key.objectid, &disk_key,
892                                      level, search_start, empty_size);
893         if (IS_ERR(cow))
894                 return PTR_ERR(cow);
895
896         /* cow is set to blocking by btrfs_init_new_buffer */
897
898         copy_extent_buffer(cow, buf, 0, 0, cow->len);
899         btrfs_set_header_bytenr(cow, cow->start);
900         btrfs_set_header_generation(cow, trans->transid);
901         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
902         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
903                                      BTRFS_HEADER_FLAG_RELOC);
904         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
905                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
906         else
907                 btrfs_set_header_owner(cow, root->root_key.objectid);
908
909         write_extent_buffer(cow, root->fs_info->fsid,
910                             (unsigned long)btrfs_header_fsid(cow),
911                             BTRFS_FSID_SIZE);
912
913         ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
914         if (ret) {
915                 btrfs_abort_transaction(trans, root, ret);
916                 return ret;
917         }
918
919         if (root->ref_cows)
920                 btrfs_reloc_cow_block(trans, root, buf, cow);
921
922         if (buf == root->node) {
923                 WARN_ON(parent && parent != buf);
924                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
925                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
926                         parent_start = buf->start;
927                 else
928                         parent_start = 0;
929
930                 extent_buffer_get(cow);
931                 tree_mod_log_set_root_pointer(root, cow);
932                 rcu_assign_pointer(root->node, cow);
933
934                 btrfs_free_tree_block(trans, root, buf, parent_start,
935                                       last_ref);
936                 free_extent_buffer(buf);
937                 add_root_to_dirty_list(root);
938         } else {
939                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
940                         parent_start = parent->start;
941                 else
942                         parent_start = 0;
943
944                 WARN_ON(trans->transid != btrfs_header_generation(parent));
945                 tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
946                                         MOD_LOG_KEY_REPLACE);
947                 btrfs_set_node_blockptr(parent, parent_slot,
948                                         cow->start);
949                 btrfs_set_node_ptr_generation(parent, parent_slot,
950                                               trans->transid);
951                 btrfs_mark_buffer_dirty(parent);
952                 btrfs_free_tree_block(trans, root, buf, parent_start,
953                                       last_ref);
954         }
955         if (unlock_orig)
956                 btrfs_tree_unlock(buf);
957         free_extent_buffer_stale(buf);
958         btrfs_mark_buffer_dirty(cow);
959         *cow_ret = cow;
960         return 0;
961 }
962
963 /*
964  * returns the logical address of the oldest predecessor of the given root.
965  * entries older than time_seq are ignored.
966  */
967 static struct tree_mod_elem *
968 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
969                            struct btrfs_root *root, u64 time_seq)
970 {
971         struct tree_mod_elem *tm;
972         struct tree_mod_elem *found = NULL;
973         u64 root_logical = root->node->start;
974         int looped = 0;
975
976         if (!time_seq)
977                 return 0;
978
979         /*
980          * the very last operation that's logged for a root is the replacement
981          * operation (if it is replaced at all). this has the index of the *new*
982          * root, making it the very first operation that's logged for this root.
983          */
984         while (1) {
985                 tm = tree_mod_log_search_oldest(fs_info, root_logical,
986                                                 time_seq);
987                 if (!looped && !tm)
988                         return 0;
989                 /*
990                  * we must have key remove operations in the log before the
991                  * replace operation.
992                  */
993                 BUG_ON(!tm);
994
995                 if (tm->op != MOD_LOG_ROOT_REPLACE)
996                         break;
997
998                 found = tm;
999                 root_logical = tm->old_root.logical;
1000                 BUG_ON(root_logical == root->node->start);
1001                 looped = 1;
1002         }
1003
1004         return found;
1005 }
1006
1007 /*
1008  * tm is a pointer to the first operation to rewind within eb. then, all
1009  * previous operations will be rewinded (until we reach something older than
1010  * time_seq).
1011  */
1012 static void
1013 __tree_mod_log_rewind(struct extent_buffer *eb, u64 time_seq,
1014                       struct tree_mod_elem *first_tm)
1015 {
1016         u32 n;
1017         struct rb_node *next;
1018         struct tree_mod_elem *tm = first_tm;
1019         unsigned long o_dst;
1020         unsigned long o_src;
1021         unsigned long p_size = sizeof(struct btrfs_key_ptr);
1022
1023         n = btrfs_header_nritems(eb);
1024         while (tm && tm->elem.seq >= time_seq) {
1025                 /*
1026                  * all the operations are recorded with the operator used for
1027                  * the modification. as we're going backwards, we do the
1028                  * opposite of each operation here.
1029                  */
1030                 switch (tm->op) {
1031                 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1032                         BUG_ON(tm->slot < n);
1033                 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1034                 case MOD_LOG_KEY_REMOVE:
1035                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1036                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1037                         btrfs_set_node_ptr_generation(eb, tm->slot,
1038                                                       tm->generation);
1039                         n++;
1040                         break;
1041                 case MOD_LOG_KEY_REPLACE:
1042                         BUG_ON(tm->slot >= n);
1043                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1044                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1045                         btrfs_set_node_ptr_generation(eb, tm->slot,
1046                                                       tm->generation);
1047                         break;
1048                 case MOD_LOG_KEY_ADD:
1049                         if (tm->slot != n - 1) {
1050                                 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1051                                 o_src = btrfs_node_key_ptr_offset(tm->slot + 1);
1052                                 memmove_extent_buffer(eb, o_dst, o_src, p_size);
1053                         }
1054                         n--;
1055                         break;
1056                 case MOD_LOG_MOVE_KEYS:
1057                         memmove_extent_buffer(eb, tm->slot, tm->move.dst_slot,
1058                                               tm->move.nr_items * p_size);
1059                         break;
1060                 case MOD_LOG_ROOT_REPLACE:
1061                         /*
1062                          * this operation is special. for roots, this must be
1063                          * handled explicitly before rewinding.
1064                          * for non-roots, this operation may exist if the node
1065                          * was a root: root A -> child B; then A gets empty and
1066                          * B is promoted to the new root. in the mod log, we'll
1067                          * have a root-replace operation for B, a tree block
1068                          * that is no root. we simply ignore that operation.
1069                          */
1070                         break;
1071                 }
1072                 next = rb_next(&tm->node);
1073                 if (!next)
1074                         break;
1075                 tm = container_of(next, struct tree_mod_elem, node);
1076                 if (tm->index != first_tm->index)
1077                         break;
1078         }
1079         btrfs_set_header_nritems(eb, n);
1080 }
1081
1082 static struct extent_buffer *
1083 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1084                     u64 time_seq)
1085 {
1086         struct extent_buffer *eb_rewin;
1087         struct tree_mod_elem *tm;
1088
1089         if (!time_seq)
1090                 return eb;
1091
1092         if (btrfs_header_level(eb) == 0)
1093                 return eb;
1094
1095         tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1096         if (!tm)
1097                 return eb;
1098
1099         if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1100                 BUG_ON(tm->slot != 0);
1101                 eb_rewin = alloc_dummy_extent_buffer(eb->start,
1102                                                 fs_info->tree_root->nodesize);
1103                 BUG_ON(!eb_rewin);
1104                 btrfs_set_header_bytenr(eb_rewin, eb->start);
1105                 btrfs_set_header_backref_rev(eb_rewin,
1106                                              btrfs_header_backref_rev(eb));
1107                 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1108         } else {
1109                 eb_rewin = btrfs_clone_extent_buffer(eb);
1110                 BUG_ON(!eb_rewin);
1111         }
1112
1113         extent_buffer_get(eb_rewin);
1114         free_extent_buffer(eb);
1115
1116         __tree_mod_log_rewind(eb_rewin, time_seq, tm);
1117
1118         return eb_rewin;
1119 }
1120
1121 static inline struct extent_buffer *
1122 get_old_root(struct btrfs_root *root, u64 time_seq)
1123 {
1124         struct tree_mod_elem *tm;
1125         struct extent_buffer *eb;
1126         struct tree_mod_root *old_root;
1127         u64 old_generation;
1128
1129         tm = __tree_mod_log_oldest_root(root->fs_info, root, time_seq);
1130         if (!tm)
1131                 return root->node;
1132
1133         old_root = &tm->old_root;
1134         old_generation = tm->generation;
1135
1136         tm = tree_mod_log_search(root->fs_info, old_root->logical, time_seq);
1137         /*
1138          * there was an item in the log when __tree_mod_log_oldest_root
1139          * returned. this one must not go away, because the time_seq passed to
1140          * us must be blocking its removal.
1141          */
1142         BUG_ON(!tm);
1143
1144         if (old_root->logical == root->node->start) {
1145                 /* there are logged operations for the current root */
1146                 eb = btrfs_clone_extent_buffer(root->node);
1147         } else {
1148                 /* there's a root replace operation for the current root */
1149                 eb = alloc_dummy_extent_buffer(tm->index << PAGE_CACHE_SHIFT,
1150                                                root->nodesize);
1151                 btrfs_set_header_bytenr(eb, eb->start);
1152                 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1153                 btrfs_set_header_owner(eb, root->root_key.objectid);
1154         }
1155         if (!eb)
1156                 return NULL;
1157         btrfs_set_header_level(eb, old_root->level);
1158         btrfs_set_header_generation(eb, old_generation);
1159         __tree_mod_log_rewind(eb, time_seq, tm);
1160
1161         return eb;
1162 }
1163
1164 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1165                                    struct btrfs_root *root,
1166                                    struct extent_buffer *buf)
1167 {
1168         /* ensure we can see the force_cow */
1169         smp_rmb();
1170
1171         /*
1172          * We do not need to cow a block if
1173          * 1) this block is not created or changed in this transaction;
1174          * 2) this block does not belong to TREE_RELOC tree;
1175          * 3) the root is not forced COW.
1176          *
1177          * What is forced COW:
1178          *    when we create snapshot during commiting the transaction,
1179          *    after we've finished coping src root, we must COW the shared
1180          *    block to ensure the metadata consistency.
1181          */
1182         if (btrfs_header_generation(buf) == trans->transid &&
1183             !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1184             !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1185               btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1186             !root->force_cow)
1187                 return 0;
1188         return 1;
1189 }
1190
1191 /*
1192  * cows a single block, see __btrfs_cow_block for the real work.
1193  * This version of it has extra checks so that a block isn't cow'd more than
1194  * once per transaction, as long as it hasn't been written yet
1195  */
1196 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1197                     struct btrfs_root *root, struct extent_buffer *buf,
1198                     struct extent_buffer *parent, int parent_slot,
1199                     struct extent_buffer **cow_ret)
1200 {
1201         u64 search_start;
1202         int ret;
1203
1204         if (trans->transaction != root->fs_info->running_transaction) {
1205                 printk(KERN_CRIT "trans %llu running %llu\n",
1206                        (unsigned long long)trans->transid,
1207                        (unsigned long long)
1208                        root->fs_info->running_transaction->transid);
1209                 WARN_ON(1);
1210         }
1211         if (trans->transid != root->fs_info->generation) {
1212                 printk(KERN_CRIT "trans %llu running %llu\n",
1213                        (unsigned long long)trans->transid,
1214                        (unsigned long long)root->fs_info->generation);
1215                 WARN_ON(1);
1216         }
1217
1218         if (!should_cow_block(trans, root, buf)) {
1219                 *cow_ret = buf;
1220                 return 0;
1221         }
1222
1223         search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
1224
1225         if (parent)
1226                 btrfs_set_lock_blocking(parent);
1227         btrfs_set_lock_blocking(buf);
1228
1229         ret = __btrfs_cow_block(trans, root, buf, parent,
1230                                  parent_slot, cow_ret, search_start, 0);
1231
1232         trace_btrfs_cow_block(root, buf, *cow_ret);
1233
1234         return ret;
1235 }
1236
1237 /*
1238  * helper function for defrag to decide if two blocks pointed to by a
1239  * node are actually close by
1240  */
1241 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1242 {
1243         if (blocknr < other && other - (blocknr + blocksize) < 32768)
1244                 return 1;
1245         if (blocknr > other && blocknr - (other + blocksize) < 32768)
1246                 return 1;
1247         return 0;
1248 }
1249
1250 /*
1251  * compare two keys in a memcmp fashion
1252  */
1253 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1254 {
1255         struct btrfs_key k1;
1256
1257         btrfs_disk_key_to_cpu(&k1, disk);
1258
1259         return btrfs_comp_cpu_keys(&k1, k2);
1260 }
1261
1262 /*
1263  * same as comp_keys only with two btrfs_key's
1264  */
1265 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1266 {
1267         if (k1->objectid > k2->objectid)
1268                 return 1;
1269         if (k1->objectid < k2->objectid)
1270                 return -1;
1271         if (k1->type > k2->type)
1272                 return 1;
1273         if (k1->type < k2->type)
1274                 return -1;
1275         if (k1->offset > k2->offset)
1276                 return 1;
1277         if (k1->offset < k2->offset)
1278                 return -1;
1279         return 0;
1280 }
1281
1282 /*
1283  * this is used by the defrag code to go through all the
1284  * leaves pointed to by a node and reallocate them so that
1285  * disk order is close to key order
1286  */
1287 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1288                        struct btrfs_root *root, struct extent_buffer *parent,
1289                        int start_slot, int cache_only, u64 *last_ret,
1290                        struct btrfs_key *progress)
1291 {
1292         struct extent_buffer *cur;
1293         u64 blocknr;
1294         u64 gen;
1295         u64 search_start = *last_ret;
1296         u64 last_block = 0;
1297         u64 other;
1298         u32 parent_nritems;
1299         int end_slot;
1300         int i;
1301         int err = 0;
1302         int parent_level;
1303         int uptodate;
1304         u32 blocksize;
1305         int progress_passed = 0;
1306         struct btrfs_disk_key disk_key;
1307
1308         parent_level = btrfs_header_level(parent);
1309         if (cache_only && parent_level != 1)
1310                 return 0;
1311
1312         if (trans->transaction != root->fs_info->running_transaction)
1313                 WARN_ON(1);
1314         if (trans->transid != root->fs_info->generation)
1315                 WARN_ON(1);
1316
1317         parent_nritems = btrfs_header_nritems(parent);
1318         blocksize = btrfs_level_size(root, parent_level - 1);
1319         end_slot = parent_nritems;
1320
1321         if (parent_nritems == 1)
1322                 return 0;
1323
1324         btrfs_set_lock_blocking(parent);
1325
1326         for (i = start_slot; i < end_slot; i++) {
1327                 int close = 1;
1328
1329                 btrfs_node_key(parent, &disk_key, i);
1330                 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1331                         continue;
1332
1333                 progress_passed = 1;
1334                 blocknr = btrfs_node_blockptr(parent, i);
1335                 gen = btrfs_node_ptr_generation(parent, i);
1336                 if (last_block == 0)
1337                         last_block = blocknr;
1338
1339                 if (i > 0) {
1340                         other = btrfs_node_blockptr(parent, i - 1);
1341                         close = close_blocks(blocknr, other, blocksize);
1342                 }
1343                 if (!close && i < end_slot - 2) {
1344                         other = btrfs_node_blockptr(parent, i + 1);
1345                         close = close_blocks(blocknr, other, blocksize);
1346                 }
1347                 if (close) {
1348                         last_block = blocknr;
1349                         continue;
1350                 }
1351
1352                 cur = btrfs_find_tree_block(root, blocknr, blocksize);
1353                 if (cur)
1354                         uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1355                 else
1356                         uptodate = 0;
1357                 if (!cur || !uptodate) {
1358                         if (cache_only) {
1359                                 free_extent_buffer(cur);
1360                                 continue;
1361                         }
1362                         if (!cur) {
1363                                 cur = read_tree_block(root, blocknr,
1364                                                          blocksize, gen);
1365                                 if (!cur)
1366                                         return -EIO;
1367                         } else if (!uptodate) {
1368                                 btrfs_read_buffer(cur, gen);
1369                         }
1370                 }
1371                 if (search_start == 0)
1372                         search_start = last_block;
1373
1374                 btrfs_tree_lock(cur);
1375                 btrfs_set_lock_blocking(cur);
1376                 err = __btrfs_cow_block(trans, root, cur, parent, i,
1377                                         &cur, search_start,
1378                                         min(16 * blocksize,
1379                                             (end_slot - i) * blocksize));
1380                 if (err) {
1381                         btrfs_tree_unlock(cur);
1382                         free_extent_buffer(cur);
1383                         break;
1384                 }
1385                 search_start = cur->start;
1386                 last_block = cur->start;
1387                 *last_ret = search_start;
1388                 btrfs_tree_unlock(cur);
1389                 free_extent_buffer(cur);
1390         }
1391         return err;
1392 }
1393
1394 /*
1395  * The leaf data grows from end-to-front in the node.
1396  * this returns the address of the start of the last item,
1397  * which is the stop of the leaf data stack
1398  */
1399 static inline unsigned int leaf_data_end(struct btrfs_root *root,
1400                                          struct extent_buffer *leaf)
1401 {
1402         u32 nr = btrfs_header_nritems(leaf);
1403         if (nr == 0)
1404                 return BTRFS_LEAF_DATA_SIZE(root);
1405         return btrfs_item_offset_nr(leaf, nr - 1);
1406 }
1407
1408
1409 /*
1410  * search for key in the extent_buffer.  The items start at offset p,
1411  * and they are item_size apart.  There are 'max' items in p.
1412  *
1413  * the slot in the array is returned via slot, and it points to
1414  * the place where you would insert key if it is not found in
1415  * the array.
1416  *
1417  * slot may point to max if the key is bigger than all of the keys
1418  */
1419 static noinline int generic_bin_search(struct extent_buffer *eb,
1420                                        unsigned long p,
1421                                        int item_size, struct btrfs_key *key,
1422                                        int max, int *slot)
1423 {
1424         int low = 0;
1425         int high = max;
1426         int mid;
1427         int ret;
1428         struct btrfs_disk_key *tmp = NULL;
1429         struct btrfs_disk_key unaligned;
1430         unsigned long offset;
1431         char *kaddr = NULL;
1432         unsigned long map_start = 0;
1433         unsigned long map_len = 0;
1434         int err;
1435
1436         while (low < high) {
1437                 mid = (low + high) / 2;
1438                 offset = p + mid * item_size;
1439
1440                 if (!kaddr || offset < map_start ||
1441                     (offset + sizeof(struct btrfs_disk_key)) >
1442                     map_start + map_len) {
1443
1444                         err = map_private_extent_buffer(eb, offset,
1445                                                 sizeof(struct btrfs_disk_key),
1446                                                 &kaddr, &map_start, &map_len);
1447
1448                         if (!err) {
1449                                 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1450                                                         map_start);
1451                         } else {
1452                                 read_extent_buffer(eb, &unaligned,
1453                                                    offset, sizeof(unaligned));
1454                                 tmp = &unaligned;
1455                         }
1456
1457                 } else {
1458                         tmp = (struct btrfs_disk_key *)(kaddr + offset -
1459                                                         map_start);
1460                 }
1461                 ret = comp_keys(tmp, key);
1462
1463                 if (ret < 0)
1464                         low = mid + 1;
1465                 else if (ret > 0)
1466                         high = mid;
1467                 else {
1468                         *slot = mid;
1469                         return 0;
1470                 }
1471         }
1472         *slot = low;
1473         return 1;
1474 }
1475
1476 /*
1477  * simple bin_search frontend that does the right thing for
1478  * leaves vs nodes
1479  */
1480 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1481                       int level, int *slot)
1482 {
1483         if (level == 0) {
1484                 return generic_bin_search(eb,
1485                                           offsetof(struct btrfs_leaf, items),
1486                                           sizeof(struct btrfs_item),
1487                                           key, btrfs_header_nritems(eb),
1488                                           slot);
1489         } else {
1490                 return generic_bin_search(eb,
1491                                           offsetof(struct btrfs_node, ptrs),
1492                                           sizeof(struct btrfs_key_ptr),
1493                                           key, btrfs_header_nritems(eb),
1494                                           slot);
1495         }
1496         return -1;
1497 }
1498
1499 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1500                      int level, int *slot)
1501 {
1502         return bin_search(eb, key, level, slot);
1503 }
1504
1505 static void root_add_used(struct btrfs_root *root, u32 size)
1506 {
1507         spin_lock(&root->accounting_lock);
1508         btrfs_set_root_used(&root->root_item,
1509                             btrfs_root_used(&root->root_item) + size);
1510         spin_unlock(&root->accounting_lock);
1511 }
1512
1513 static void root_sub_used(struct btrfs_root *root, u32 size)
1514 {
1515         spin_lock(&root->accounting_lock);
1516         btrfs_set_root_used(&root->root_item,
1517                             btrfs_root_used(&root->root_item) - size);
1518         spin_unlock(&root->accounting_lock);
1519 }
1520
1521 /* given a node and slot number, this reads the blocks it points to.  The
1522  * extent buffer is returned with a reference taken (but unlocked).
1523  * NULL is returned on error.
1524  */
1525 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1526                                    struct extent_buffer *parent, int slot)
1527 {
1528         int level = btrfs_header_level(parent);
1529         if (slot < 0)
1530                 return NULL;
1531         if (slot >= btrfs_header_nritems(parent))
1532                 return NULL;
1533
1534         BUG_ON(level == 0);
1535
1536         return read_tree_block(root, btrfs_node_blockptr(parent, slot),
1537                        btrfs_level_size(root, level - 1),
1538                        btrfs_node_ptr_generation(parent, slot));
1539 }
1540
1541 /*
1542  * node level balancing, used to make sure nodes are in proper order for
1543  * item deletion.  We balance from the top down, so we have to make sure
1544  * that a deletion won't leave an node completely empty later on.
1545  */
1546 static noinline int balance_level(struct btrfs_trans_handle *trans,
1547                          struct btrfs_root *root,
1548                          struct btrfs_path *path, int level)
1549 {
1550         struct extent_buffer *right = NULL;
1551         struct extent_buffer *mid;
1552         struct extent_buffer *left = NULL;
1553         struct extent_buffer *parent = NULL;
1554         int ret = 0;
1555         int wret;
1556         int pslot;
1557         int orig_slot = path->slots[level];
1558         u64 orig_ptr;
1559
1560         if (level == 0)
1561                 return 0;
1562
1563         mid = path->nodes[level];
1564
1565         WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1566                 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1567         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1568
1569         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1570
1571         if (level < BTRFS_MAX_LEVEL - 1) {
1572                 parent = path->nodes[level + 1];
1573                 pslot = path->slots[level + 1];
1574         }
1575
1576         /*
1577          * deal with the case where there is only one pointer in the root
1578          * by promoting the node below to a root
1579          */
1580         if (!parent) {
1581                 struct extent_buffer *child;
1582
1583                 if (btrfs_header_nritems(mid) != 1)
1584                         return 0;
1585
1586                 /* promote the child to a root */
1587                 child = read_node_slot(root, mid, 0);
1588                 if (!child) {
1589                         ret = -EROFS;
1590                         btrfs_std_error(root->fs_info, ret);
1591                         goto enospc;
1592                 }
1593
1594                 btrfs_tree_lock(child);
1595                 btrfs_set_lock_blocking(child);
1596                 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1597                 if (ret) {
1598                         btrfs_tree_unlock(child);
1599                         free_extent_buffer(child);
1600                         goto enospc;
1601                 }
1602
1603                 tree_mod_log_set_root_pointer(root, child);
1604                 rcu_assign_pointer(root->node, child);
1605
1606                 add_root_to_dirty_list(root);
1607                 btrfs_tree_unlock(child);
1608
1609                 path->locks[level] = 0;
1610                 path->nodes[level] = NULL;
1611                 clean_tree_block(trans, root, mid);
1612                 btrfs_tree_unlock(mid);
1613                 /* once for the path */
1614                 free_extent_buffer(mid);
1615
1616                 root_sub_used(root, mid->len);
1617                 btrfs_free_tree_block(trans, root, mid, 0, 1);
1618                 /* once for the root ptr */
1619                 free_extent_buffer_stale(mid);
1620                 return 0;
1621         }
1622         if (btrfs_header_nritems(mid) >
1623             BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1624                 return 0;
1625
1626         btrfs_header_nritems(mid);
1627
1628         left = read_node_slot(root, parent, pslot - 1);
1629         if (left) {
1630                 btrfs_tree_lock(left);
1631                 btrfs_set_lock_blocking(left);
1632                 wret = btrfs_cow_block(trans, root, left,
1633                                        parent, pslot - 1, &left);
1634                 if (wret) {
1635                         ret = wret;
1636                         goto enospc;
1637                 }
1638         }
1639         right = read_node_slot(root, parent, pslot + 1);
1640         if (right) {
1641                 btrfs_tree_lock(right);
1642                 btrfs_set_lock_blocking(right);
1643                 wret = btrfs_cow_block(trans, root, right,
1644                                        parent, pslot + 1, &right);
1645                 if (wret) {
1646                         ret = wret;
1647                         goto enospc;
1648                 }
1649         }
1650
1651         /* first, try to make some room in the middle buffer */
1652         if (left) {
1653                 orig_slot += btrfs_header_nritems(left);
1654                 wret = push_node_left(trans, root, left, mid, 1);
1655                 if (wret < 0)
1656                         ret = wret;
1657                 btrfs_header_nritems(mid);
1658         }
1659
1660         /*
1661          * then try to empty the right most buffer into the middle
1662          */
1663         if (right) {
1664                 wret = push_node_left(trans, root, mid, right, 1);
1665                 if (wret < 0 && wret != -ENOSPC)
1666                         ret = wret;
1667                 if (btrfs_header_nritems(right) == 0) {
1668                         clean_tree_block(trans, root, right);
1669                         btrfs_tree_unlock(right);
1670                         del_ptr(trans, root, path, level + 1, pslot + 1, 1);
1671                         root_sub_used(root, right->len);
1672                         btrfs_free_tree_block(trans, root, right, 0, 1);
1673                         free_extent_buffer_stale(right);
1674                         right = NULL;
1675                 } else {
1676                         struct btrfs_disk_key right_key;
1677                         btrfs_node_key(right, &right_key, 0);
1678                         tree_mod_log_set_node_key(root->fs_info, parent,
1679                                                   &right_key, pslot + 1, 0);
1680                         btrfs_set_node_key(parent, &right_key, pslot + 1);
1681                         btrfs_mark_buffer_dirty(parent);
1682                 }
1683         }
1684         if (btrfs_header_nritems(mid) == 1) {
1685                 /*
1686                  * we're not allowed to leave a node with one item in the
1687                  * tree during a delete.  A deletion from lower in the tree
1688                  * could try to delete the only pointer in this node.
1689                  * So, pull some keys from the left.
1690                  * There has to be a left pointer at this point because
1691                  * otherwise we would have pulled some pointers from the
1692                  * right
1693                  */
1694                 if (!left) {
1695                         ret = -EROFS;
1696                         btrfs_std_error(root->fs_info, ret);
1697                         goto enospc;
1698                 }
1699                 wret = balance_node_right(trans, root, mid, left);
1700                 if (wret < 0) {
1701                         ret = wret;
1702                         goto enospc;
1703                 }
1704                 if (wret == 1) {
1705                         wret = push_node_left(trans, root, left, mid, 1);
1706                         if (wret < 0)
1707                                 ret = wret;
1708                 }
1709                 BUG_ON(wret == 1);
1710         }
1711         if (btrfs_header_nritems(mid) == 0) {
1712                 clean_tree_block(trans, root, mid);
1713                 btrfs_tree_unlock(mid);
1714                 del_ptr(trans, root, path, level + 1, pslot, 1);
1715                 root_sub_used(root, mid->len);
1716                 btrfs_free_tree_block(trans, root, mid, 0, 1);
1717                 free_extent_buffer_stale(mid);
1718                 mid = NULL;
1719         } else {
1720                 /* update the parent key to reflect our changes */
1721                 struct btrfs_disk_key mid_key;
1722                 btrfs_node_key(mid, &mid_key, 0);
1723                 tree_mod_log_set_node_key(root->fs_info, parent, &mid_key,
1724                                           pslot, 0);
1725                 btrfs_set_node_key(parent, &mid_key, pslot);
1726                 btrfs_mark_buffer_dirty(parent);
1727         }
1728
1729         /* update the path */
1730         if (left) {
1731                 if (btrfs_header_nritems(left) > orig_slot) {
1732                         extent_buffer_get(left);
1733                         /* left was locked after cow */
1734                         path->nodes[level] = left;
1735                         path->slots[level + 1] -= 1;
1736                         path->slots[level] = orig_slot;
1737                         if (mid) {
1738                                 btrfs_tree_unlock(mid);
1739                                 free_extent_buffer(mid);
1740                         }
1741                 } else {
1742                         orig_slot -= btrfs_header_nritems(left);
1743                         path->slots[level] = orig_slot;
1744                 }
1745         }
1746         /* double check we haven't messed things up */
1747         if (orig_ptr !=
1748             btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1749                 BUG();
1750 enospc:
1751         if (right) {
1752                 btrfs_tree_unlock(right);
1753                 free_extent_buffer(right);
1754         }
1755         if (left) {
1756                 if (path->nodes[level] != left)
1757                         btrfs_tree_unlock(left);
1758                 free_extent_buffer(left);
1759         }
1760         return ret;
1761 }
1762
1763 /* Node balancing for insertion.  Here we only split or push nodes around
1764  * when they are completely full.  This is also done top down, so we
1765  * have to be pessimistic.
1766  */
1767 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1768                                           struct btrfs_root *root,
1769                                           struct btrfs_path *path, int level)
1770 {
1771         struct extent_buffer *right = NULL;
1772         struct extent_buffer *mid;
1773         struct extent_buffer *left = NULL;
1774         struct extent_buffer *parent = NULL;
1775         int ret = 0;
1776         int wret;
1777         int pslot;
1778         int orig_slot = path->slots[level];
1779
1780         if (level == 0)
1781                 return 1;
1782
1783         mid = path->nodes[level];
1784         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1785
1786         if (level < BTRFS_MAX_LEVEL - 1) {
1787                 parent = path->nodes[level + 1];
1788                 pslot = path->slots[level + 1];
1789         }
1790
1791         if (!parent)
1792                 return 1;
1793
1794         left = read_node_slot(root, parent, pslot - 1);
1795
1796         /* first, try to make some room in the middle buffer */
1797         if (left) {
1798                 u32 left_nr;
1799
1800                 btrfs_tree_lock(left);
1801                 btrfs_set_lock_blocking(left);
1802
1803                 left_nr = btrfs_header_nritems(left);
1804                 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1805                         wret = 1;
1806                 } else {
1807                         ret = btrfs_cow_block(trans, root, left, parent,
1808                                               pslot - 1, &left);
1809                         if (ret)
1810                                 wret = 1;
1811                         else {
1812                                 wret = push_node_left(trans, root,
1813                                                       left, mid, 0);
1814                         }
1815                 }
1816                 if (wret < 0)
1817                         ret = wret;
1818                 if (wret == 0) {
1819                         struct btrfs_disk_key disk_key;
1820                         orig_slot += left_nr;
1821                         btrfs_node_key(mid, &disk_key, 0);
1822                         tree_mod_log_set_node_key(root->fs_info, parent,
1823                                                   &disk_key, pslot, 0);
1824                         btrfs_set_node_key(parent, &disk_key, pslot);
1825                         btrfs_mark_buffer_dirty(parent);
1826                         if (btrfs_header_nritems(left) > orig_slot) {
1827                                 path->nodes[level] = left;
1828                                 path->slots[level + 1] -= 1;
1829                                 path->slots[level] = orig_slot;
1830                                 btrfs_tree_unlock(mid);
1831                                 free_extent_buffer(mid);
1832                         } else {
1833                                 orig_slot -=
1834                                         btrfs_header_nritems(left);
1835                                 path->slots[level] = orig_slot;
1836                                 btrfs_tree_unlock(left);
1837                                 free_extent_buffer(left);
1838                         }
1839                         return 0;
1840                 }
1841                 btrfs_tree_unlock(left);
1842                 free_extent_buffer(left);
1843         }
1844         right = read_node_slot(root, parent, pslot + 1);
1845
1846         /*
1847          * then try to empty the right most buffer into the middle
1848          */
1849         if (right) {
1850                 u32 right_nr;
1851
1852                 btrfs_tree_lock(right);
1853                 btrfs_set_lock_blocking(right);
1854
1855                 right_nr = btrfs_header_nritems(right);
1856                 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1857                         wret = 1;
1858                 } else {
1859                         ret = btrfs_cow_block(trans, root, right,
1860                                               parent, pslot + 1,
1861                                               &right);
1862                         if (ret)
1863                                 wret = 1;
1864                         else {
1865                                 wret = balance_node_right(trans, root,
1866                                                           right, mid);
1867                         }
1868                 }
1869                 if (wret < 0)
1870                         ret = wret;
1871                 if (wret == 0) {
1872                         struct btrfs_disk_key disk_key;
1873
1874                         btrfs_node_key(right, &disk_key, 0);
1875                         tree_mod_log_set_node_key(root->fs_info, parent,
1876                                                   &disk_key, pslot + 1, 0);
1877                         btrfs_set_node_key(parent, &disk_key, pslot + 1);
1878                         btrfs_mark_buffer_dirty(parent);
1879
1880                         if (btrfs_header_nritems(mid) <= orig_slot) {
1881                                 path->nodes[level] = right;
1882                                 path->slots[level + 1] += 1;
1883                                 path->slots[level] = orig_slot -
1884                                         btrfs_header_nritems(mid);
1885                                 btrfs_tree_unlock(mid);
1886                                 free_extent_buffer(mid);
1887                         } else {
1888                                 btrfs_tree_unlock(right);
1889                                 free_extent_buffer(right);
1890                         }
1891                         return 0;
1892                 }
1893                 btrfs_tree_unlock(right);
1894                 free_extent_buffer(right);
1895         }
1896         return 1;
1897 }
1898
1899 /*
1900  * readahead one full node of leaves, finding things that are close
1901  * to the block in 'slot', and triggering ra on them.
1902  */
1903 static void reada_for_search(struct btrfs_root *root,
1904                              struct btrfs_path *path,
1905                              int level, int slot, u64 objectid)
1906 {
1907         struct extent_buffer *node;
1908         struct btrfs_disk_key disk_key;
1909         u32 nritems;
1910         u64 search;
1911         u64 target;
1912         u64 nread = 0;
1913         u64 gen;
1914         int direction = path->reada;
1915         struct extent_buffer *eb;
1916         u32 nr;
1917         u32 blocksize;
1918         u32 nscan = 0;
1919
1920         if (level != 1)
1921                 return;
1922
1923         if (!path->nodes[level])
1924                 return;
1925
1926         node = path->nodes[level];
1927
1928         search = btrfs_node_blockptr(node, slot);
1929         blocksize = btrfs_level_size(root, level - 1);
1930         eb = btrfs_find_tree_block(root, search, blocksize);
1931         if (eb) {
1932                 free_extent_buffer(eb);
1933                 return;
1934         }
1935
1936         target = search;
1937
1938         nritems = btrfs_header_nritems(node);
1939         nr = slot;
1940
1941         while (1) {
1942                 if (direction < 0) {
1943                         if (nr == 0)
1944                                 break;
1945                         nr--;
1946                 } else if (direction > 0) {
1947                         nr++;
1948                         if (nr >= nritems)
1949                                 break;
1950                 }
1951                 if (path->reada < 0 && objectid) {
1952                         btrfs_node_key(node, &disk_key, nr);
1953                         if (btrfs_disk_key_objectid(&disk_key) != objectid)
1954                                 break;
1955                 }
1956                 search = btrfs_node_blockptr(node, nr);
1957                 if ((search <= target && target - search <= 65536) ||
1958                     (search > target && search - target <= 65536)) {
1959                         gen = btrfs_node_ptr_generation(node, nr);
1960                         readahead_tree_block(root, search, blocksize, gen);
1961                         nread += blocksize;
1962                 }
1963                 nscan++;
1964                 if ((nread > 65536 || nscan > 32))
1965                         break;
1966         }
1967 }
1968
1969 /*
1970  * returns -EAGAIN if it had to drop the path, or zero if everything was in
1971  * cache
1972  */
1973 static noinline int reada_for_balance(struct btrfs_root *root,
1974                                       struct btrfs_path *path, int level)
1975 {
1976         int slot;
1977         int nritems;
1978         struct extent_buffer *parent;
1979         struct extent_buffer *eb;
1980         u64 gen;
1981         u64 block1 = 0;
1982         u64 block2 = 0;
1983         int ret = 0;
1984         int blocksize;
1985
1986         parent = path->nodes[level + 1];
1987         if (!parent)
1988                 return 0;
1989
1990         nritems = btrfs_header_nritems(parent);
1991         slot = path->slots[level + 1];
1992         blocksize = btrfs_level_size(root, level);
1993
1994         if (slot > 0) {
1995                 block1 = btrfs_node_blockptr(parent, slot - 1);
1996                 gen = btrfs_node_ptr_generation(parent, slot - 1);
1997                 eb = btrfs_find_tree_block(root, block1, blocksize);
1998                 /*
1999                  * if we get -eagain from btrfs_buffer_uptodate, we
2000                  * don't want to return eagain here.  That will loop
2001                  * forever
2002                  */
2003                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2004                         block1 = 0;
2005                 free_extent_buffer(eb);
2006         }
2007         if (slot + 1 < nritems) {
2008                 block2 = btrfs_node_blockptr(parent, slot + 1);
2009                 gen = btrfs_node_ptr_generation(parent, slot + 1);
2010                 eb = btrfs_find_tree_block(root, block2, blocksize);
2011                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2012                         block2 = 0;
2013                 free_extent_buffer(eb);
2014         }
2015         if (block1 || block2) {
2016                 ret = -EAGAIN;
2017
2018                 /* release the whole path */
2019                 btrfs_release_path(path);
2020
2021                 /* read the blocks */
2022                 if (block1)
2023                         readahead_tree_block(root, block1, blocksize, 0);
2024                 if (block2)
2025                         readahead_tree_block(root, block2, blocksize, 0);
2026
2027                 if (block1) {
2028                         eb = read_tree_block(root, block1, blocksize, 0);
2029                         free_extent_buffer(eb);
2030                 }
2031                 if (block2) {
2032                         eb = read_tree_block(root, block2, blocksize, 0);
2033                         free_extent_buffer(eb);
2034                 }
2035         }
2036         return ret;
2037 }
2038
2039
2040 /*
2041  * when we walk down the tree, it is usually safe to unlock the higher layers
2042  * in the tree.  The exceptions are when our path goes through slot 0, because
2043  * operations on the tree might require changing key pointers higher up in the
2044  * tree.
2045  *
2046  * callers might also have set path->keep_locks, which tells this code to keep
2047  * the lock if the path points to the last slot in the block.  This is part of
2048  * walking through the tree, and selecting the next slot in the higher block.
2049  *
2050  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2051  * if lowest_unlock is 1, level 0 won't be unlocked
2052  */
2053 static noinline void unlock_up(struct btrfs_path *path, int level,
2054                                int lowest_unlock, int min_write_lock_level,
2055                                int *write_lock_level)
2056 {
2057         int i;
2058         int skip_level = level;
2059         int no_skips = 0;
2060         struct extent_buffer *t;
2061
2062         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2063                 if (!path->nodes[i])
2064                         break;
2065                 if (!path->locks[i])
2066                         break;
2067                 if (!no_skips && path->slots[i] == 0) {
2068                         skip_level = i + 1;
2069                         continue;
2070                 }
2071                 if (!no_skips && path->keep_locks) {
2072                         u32 nritems;
2073                         t = path->nodes[i];
2074                         nritems = btrfs_header_nritems(t);
2075                         if (nritems < 1 || path->slots[i] >= nritems - 1) {
2076                                 skip_level = i + 1;
2077                                 continue;
2078                         }
2079                 }
2080                 if (skip_level < i && i >= lowest_unlock)
2081                         no_skips = 1;
2082
2083                 t = path->nodes[i];
2084                 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2085                         btrfs_tree_unlock_rw(t, path->locks[i]);
2086                         path->locks[i] = 0;
2087                         if (write_lock_level &&
2088                             i > min_write_lock_level &&
2089                             i <= *write_lock_level) {
2090                                 *write_lock_level = i - 1;
2091                         }
2092                 }
2093         }
2094 }
2095
2096 /*
2097  * This releases any locks held in the path starting at level and
2098  * going all the way up to the root.
2099  *
2100  * btrfs_search_slot will keep the lock held on higher nodes in a few
2101  * corner cases, such as COW of the block at slot zero in the node.  This
2102  * ignores those rules, and it should only be called when there are no
2103  * more updates to be done higher up in the tree.
2104  */
2105 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2106 {
2107         int i;
2108
2109         if (path->keep_locks)
2110                 return;
2111
2112         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2113                 if (!path->nodes[i])
2114                         continue;
2115                 if (!path->locks[i])
2116                         continue;
2117                 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2118                 path->locks[i] = 0;
2119         }
2120 }
2121
2122 /*
2123  * helper function for btrfs_search_slot.  The goal is to find a block
2124  * in cache without setting the path to blocking.  If we find the block
2125  * we return zero and the path is unchanged.
2126  *
2127  * If we can't find the block, we set the path blocking and do some
2128  * reada.  -EAGAIN is returned and the search must be repeated.
2129  */
2130 static int
2131 read_block_for_search(struct btrfs_trans_handle *trans,
2132                        struct btrfs_root *root, struct btrfs_path *p,
2133                        struct extent_buffer **eb_ret, int level, int slot,
2134                        struct btrfs_key *key, u64 time_seq)
2135 {
2136         u64 blocknr;
2137         u64 gen;
2138         u32 blocksize;
2139         struct extent_buffer *b = *eb_ret;
2140         struct extent_buffer *tmp;
2141         int ret;
2142
2143         blocknr = btrfs_node_blockptr(b, slot);
2144         gen = btrfs_node_ptr_generation(b, slot);
2145         blocksize = btrfs_level_size(root, level - 1);
2146
2147         tmp = btrfs_find_tree_block(root, blocknr, blocksize);
2148         if (tmp) {
2149                 /* first we do an atomic uptodate check */
2150                 if (btrfs_buffer_uptodate(tmp, 0, 1) > 0) {
2151                         if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2152                                 /*
2153                                  * we found an up to date block without
2154                                  * sleeping, return
2155                                  * right away
2156                                  */
2157                                 *eb_ret = tmp;
2158                                 return 0;
2159                         }
2160                         /* the pages were up to date, but we failed
2161                          * the generation number check.  Do a full
2162                          * read for the generation number that is correct.
2163                          * We must do this without dropping locks so
2164                          * we can trust our generation number
2165                          */
2166                         free_extent_buffer(tmp);
2167                         btrfs_set_path_blocking(p);
2168
2169                         /* now we're allowed to do a blocking uptodate check */
2170                         tmp = read_tree_block(root, blocknr, blocksize, gen);
2171                         if (tmp && btrfs_buffer_uptodate(tmp, gen, 0) > 0) {
2172                                 *eb_ret = tmp;
2173                                 return 0;
2174                         }
2175                         free_extent_buffer(tmp);
2176                         btrfs_release_path(p);
2177                         return -EIO;
2178                 }
2179         }
2180
2181         /*
2182          * reduce lock contention at high levels
2183          * of the btree by dropping locks before
2184          * we read.  Don't release the lock on the current
2185          * level because we need to walk this node to figure
2186          * out which blocks to read.
2187          */
2188         btrfs_unlock_up_safe(p, level + 1);
2189         btrfs_set_path_blocking(p);
2190
2191         free_extent_buffer(tmp);
2192         if (p->reada)
2193                 reada_for_search(root, p, level, slot, key->objectid);
2194
2195         btrfs_release_path(p);
2196
2197         ret = -EAGAIN;
2198         tmp = read_tree_block(root, blocknr, blocksize, 0);
2199         if (tmp) {
2200                 /*
2201                  * If the read above didn't mark this buffer up to date,
2202                  * it will never end up being up to date.  Set ret to EIO now
2203                  * and give up so that our caller doesn't loop forever
2204                  * on our EAGAINs.
2205                  */
2206                 if (!btrfs_buffer_uptodate(tmp, 0, 0))
2207                         ret = -EIO;
2208                 free_extent_buffer(tmp);
2209         }
2210         return ret;
2211 }
2212
2213 /*
2214  * helper function for btrfs_search_slot.  This does all of the checks
2215  * for node-level blocks and does any balancing required based on
2216  * the ins_len.
2217  *
2218  * If no extra work was required, zero is returned.  If we had to
2219  * drop the path, -EAGAIN is returned and btrfs_search_slot must
2220  * start over
2221  */
2222 static int
2223 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2224                        struct btrfs_root *root, struct btrfs_path *p,
2225                        struct extent_buffer *b, int level, int ins_len,
2226                        int *write_lock_level)
2227 {
2228         int ret;
2229         if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2230             BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2231                 int sret;
2232
2233                 if (*write_lock_level < level + 1) {
2234                         *write_lock_level = level + 1;
2235                         btrfs_release_path(p);
2236                         goto again;
2237                 }
2238
2239                 sret = reada_for_balance(root, p, level);
2240                 if (sret)
2241                         goto again;
2242
2243                 btrfs_set_path_blocking(p);
2244                 sret = split_node(trans, root, p, level);
2245                 btrfs_clear_path_blocking(p, NULL, 0);
2246
2247                 BUG_ON(sret > 0);
2248                 if (sret) {
2249                         ret = sret;
2250                         goto done;
2251                 }
2252                 b = p->nodes[level];
2253         } else if (ins_len < 0 && btrfs_header_nritems(b) <
2254                    BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2255                 int sret;
2256
2257                 if (*write_lock_level < level + 1) {
2258                         *write_lock_level = level + 1;
2259                         btrfs_release_path(p);
2260                         goto again;
2261                 }
2262
2263                 sret = reada_for_balance(root, p, level);
2264                 if (sret)
2265                         goto again;
2266
2267                 btrfs_set_path_blocking(p);
2268                 sret = balance_level(trans, root, p, level);
2269                 btrfs_clear_path_blocking(p, NULL, 0);
2270
2271                 if (sret) {
2272                         ret = sret;
2273                         goto done;
2274                 }
2275                 b = p->nodes[level];
2276                 if (!b) {
2277                         btrfs_release_path(p);
2278                         goto again;
2279                 }
2280                 BUG_ON(btrfs_header_nritems(b) == 1);
2281         }
2282         return 0;
2283
2284 again:
2285         ret = -EAGAIN;
2286 done:
2287         return ret;
2288 }
2289
2290 /*
2291  * look for key in the tree.  path is filled in with nodes along the way
2292  * if key is found, we return zero and you can find the item in the leaf
2293  * level of the path (level 0)
2294  *
2295  * If the key isn't found, the path points to the slot where it should
2296  * be inserted, and 1 is returned.  If there are other errors during the
2297  * search a negative error number is returned.
2298  *
2299  * if ins_len > 0, nodes and leaves will be split as we walk down the
2300  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
2301  * possible)
2302  */
2303 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2304                       *root, struct btrfs_key *key, struct btrfs_path *p, int
2305                       ins_len, int cow)
2306 {
2307         struct extent_buffer *b;
2308         int slot;
2309         int ret;
2310         int err;
2311         int level;
2312         int lowest_unlock = 1;
2313         int root_lock;
2314         /* everything at write_lock_level or lower must be write locked */
2315         int write_lock_level = 0;
2316         u8 lowest_level = 0;
2317         int min_write_lock_level;
2318
2319         lowest_level = p->lowest_level;
2320         WARN_ON(lowest_level && ins_len > 0);
2321         WARN_ON(p->nodes[0] != NULL);
2322
2323         if (ins_len < 0) {
2324                 lowest_unlock = 2;
2325
2326                 /* when we are removing items, we might have to go up to level
2327                  * two as we update tree pointers  Make sure we keep write
2328                  * for those levels as well
2329                  */
2330                 write_lock_level = 2;
2331         } else if (ins_len > 0) {
2332                 /*
2333                  * for inserting items, make sure we have a write lock on
2334                  * level 1 so we can update keys
2335                  */
2336                 write_lock_level = 1;
2337         }
2338
2339         if (!cow)
2340                 write_lock_level = -1;
2341
2342         if (cow && (p->keep_locks || p->lowest_level))
2343                 write_lock_level = BTRFS_MAX_LEVEL;
2344
2345         min_write_lock_level = write_lock_level;
2346
2347 again:
2348         /*
2349          * we try very hard to do read locks on the root
2350          */
2351         root_lock = BTRFS_READ_LOCK;
2352         level = 0;
2353         if (p->search_commit_root) {
2354                 /*
2355                  * the commit roots are read only
2356                  * so we always do read locks
2357                  */
2358                 b = root->commit_root;
2359                 extent_buffer_get(b);
2360                 level = btrfs_header_level(b);
2361                 if (!p->skip_locking)
2362                         btrfs_tree_read_lock(b);
2363         } else {
2364                 if (p->skip_locking) {
2365                         b = btrfs_root_node(root);
2366                         level = btrfs_header_level(b);
2367                 } else {
2368                         /* we don't know the level of the root node
2369                          * until we actually have it read locked
2370                          */
2371                         b = btrfs_read_lock_root_node(root);
2372                         level = btrfs_header_level(b);
2373                         if (level <= write_lock_level) {
2374                                 /* whoops, must trade for write lock */
2375                                 btrfs_tree_read_unlock(b);
2376                                 free_extent_buffer(b);
2377                                 b = btrfs_lock_root_node(root);
2378                                 root_lock = BTRFS_WRITE_LOCK;
2379
2380                                 /* the level might have changed, check again */
2381                                 level = btrfs_header_level(b);
2382                         }
2383                 }
2384         }
2385         p->nodes[level] = b;
2386         if (!p->skip_locking)
2387                 p->locks[level] = root_lock;
2388
2389         while (b) {
2390                 level = btrfs_header_level(b);
2391
2392                 /*
2393                  * setup the path here so we can release it under lock
2394                  * contention with the cow code
2395                  */
2396                 if (cow) {
2397                         /*
2398                          * if we don't really need to cow this block
2399                          * then we don't want to set the path blocking,
2400                          * so we test it here
2401                          */
2402                         if (!should_cow_block(trans, root, b))
2403                                 goto cow_done;
2404
2405                         btrfs_set_path_blocking(p);
2406
2407                         /*
2408                          * must have write locks on this node and the
2409                          * parent
2410                          */
2411                         if (level + 1 > write_lock_level) {
2412                                 write_lock_level = level + 1;
2413                                 btrfs_release_path(p);
2414                                 goto again;
2415                         }
2416
2417                         err = btrfs_cow_block(trans, root, b,
2418                                               p->nodes[level + 1],
2419                                               p->slots[level + 1], &b);
2420                         if (err) {
2421                                 ret = err;
2422                                 goto done;
2423                         }
2424                 }
2425 cow_done:
2426                 BUG_ON(!cow && ins_len);
2427
2428                 p->nodes[level] = b;
2429                 btrfs_clear_path_blocking(p, NULL, 0);
2430
2431                 /*
2432                  * we have a lock on b and as long as we aren't changing
2433                  * the tree, there is no way to for the items in b to change.
2434                  * It is safe to drop the lock on our parent before we
2435                  * go through the expensive btree search on b.
2436                  *
2437                  * If cow is true, then we might be changing slot zero,
2438                  * which may require changing the parent.  So, we can't
2439                  * drop the lock until after we know which slot we're
2440                  * operating on.
2441                  */
2442                 if (!cow)
2443                         btrfs_unlock_up_safe(p, level + 1);
2444
2445                 ret = bin_search(b, key, level, &slot);
2446
2447                 if (level != 0) {
2448                         int dec = 0;
2449                         if (ret && slot > 0) {
2450                                 dec = 1;
2451                                 slot -= 1;
2452                         }
2453                         p->slots[level] = slot;
2454                         err = setup_nodes_for_search(trans, root, p, b, level,
2455                                              ins_len, &write_lock_level);
2456                         if (err == -EAGAIN)
2457                                 goto again;
2458                         if (err) {
2459                                 ret = err;
2460                                 goto done;
2461                         }
2462                         b = p->nodes[level];
2463                         slot = p->slots[level];
2464
2465                         /*
2466                          * slot 0 is special, if we change the key
2467                          * we have to update the parent pointer
2468                          * which means we must have a write lock
2469                          * on the parent
2470                          */
2471                         if (slot == 0 && cow &&
2472                             write_lock_level < level + 1) {
2473                                 write_lock_level = level + 1;
2474                                 btrfs_release_path(p);
2475                                 goto again;
2476                         }
2477
2478                         unlock_up(p, level, lowest_unlock,
2479                                   min_write_lock_level, &write_lock_level);
2480
2481                         if (level == lowest_level) {
2482                                 if (dec)
2483                                         p->slots[level]++;
2484                                 goto done;
2485                         }
2486
2487                         err = read_block_for_search(trans, root, p,
2488                                                     &b, level, slot, key, 0);
2489                         if (err == -EAGAIN)
2490                                 goto again;
2491                         if (err) {
2492                                 ret = err;
2493                                 goto done;
2494                         }
2495
2496                         if (!p->skip_locking) {
2497                                 level = btrfs_header_level(b);
2498                                 if (level <= write_lock_level) {
2499                                         err = btrfs_try_tree_write_lock(b);
2500                                         if (!err) {
2501                                                 btrfs_set_path_blocking(p);
2502                                                 btrfs_tree_lock(b);
2503                                                 btrfs_clear_path_blocking(p, b,
2504                                                                   BTRFS_WRITE_LOCK);
2505                                         }
2506                                         p->locks[level] = BTRFS_WRITE_LOCK;
2507                                 } else {
2508                                         err = btrfs_try_tree_read_lock(b);
2509                                         if (!err) {
2510                                                 btrfs_set_path_blocking(p);
2511                                                 btrfs_tree_read_lock(b);
2512                                                 btrfs_clear_path_blocking(p, b,
2513                                                                   BTRFS_READ_LOCK);
2514                                         }
2515                                         p->locks[level] = BTRFS_READ_LOCK;
2516                                 }
2517                                 p->nodes[level] = b;
2518                         }
2519                 } else {
2520                         p->slots[level] = slot;
2521                         if (ins_len > 0 &&
2522                             btrfs_leaf_free_space(root, b) < ins_len) {
2523                                 if (write_lock_level < 1) {
2524                                         write_lock_level = 1;
2525                                         btrfs_release_path(p);
2526                                         goto again;
2527                                 }
2528
2529                                 btrfs_set_path_blocking(p);
2530                                 err = split_leaf(trans, root, key,
2531                                                  p, ins_len, ret == 0);
2532                                 btrfs_clear_path_blocking(p, NULL, 0);
2533
2534                                 BUG_ON(err > 0);
2535                                 if (err) {
2536                                         ret = err;
2537                                         goto done;
2538                                 }
2539                         }
2540                         if (!p->search_for_split)
2541                                 unlock_up(p, level, lowest_unlock,
2542                                           min_write_lock_level, &write_lock_level);
2543                         goto done;
2544                 }
2545         }
2546         ret = 1;
2547 done:
2548         /*
2549          * we don't really know what they plan on doing with the path
2550          * from here on, so for now just mark it as blocking
2551          */
2552         if (!p->leave_spinning)
2553                 btrfs_set_path_blocking(p);
2554         if (ret < 0)
2555                 btrfs_release_path(p);
2556         return ret;
2557 }
2558
2559 /*
2560  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2561  * current state of the tree together with the operations recorded in the tree
2562  * modification log to search for the key in a previous version of this tree, as
2563  * denoted by the time_seq parameter.
2564  *
2565  * Naturally, there is no support for insert, delete or cow operations.
2566  *
2567  * The resulting path and return value will be set up as if we called
2568  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2569  */
2570 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2571                           struct btrfs_path *p, u64 time_seq)
2572 {
2573         struct extent_buffer *b;
2574         int slot;
2575         int ret;
2576         int err;
2577         int level;
2578         int lowest_unlock = 1;
2579         u8 lowest_level = 0;
2580
2581         lowest_level = p->lowest_level;
2582         WARN_ON(p->nodes[0] != NULL);
2583
2584         if (p->search_commit_root) {
2585                 BUG_ON(time_seq);
2586                 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2587         }
2588
2589 again:
2590         level = 0;
2591         b = get_old_root(root, time_seq);
2592         extent_buffer_get(b);
2593         level = btrfs_header_level(b);
2594         btrfs_tree_read_lock(b);
2595         p->locks[level] = BTRFS_READ_LOCK;
2596
2597         while (b) {
2598                 level = btrfs_header_level(b);
2599                 p->nodes[level] = b;
2600                 btrfs_clear_path_blocking(p, NULL, 0);
2601
2602                 /*
2603                  * we have a lock on b and as long as we aren't changing
2604                  * the tree, there is no way to for the items in b to change.
2605                  * It is safe to drop the lock on our parent before we
2606                  * go through the expensive btree search on b.
2607                  */
2608                 btrfs_unlock_up_safe(p, level + 1);
2609
2610                 ret = bin_search(b, key, level, &slot);
2611
2612                 if (level != 0) {
2613                         int dec = 0;
2614                         if (ret && slot > 0) {
2615                                 dec = 1;
2616                                 slot -= 1;
2617                         }
2618                         p->slots[level] = slot;
2619                         unlock_up(p, level, lowest_unlock, 0, NULL);
2620
2621                         if (level == lowest_level) {
2622                                 if (dec)
2623                                         p->slots[level]++;
2624                                 goto done;
2625                         }
2626
2627                         err = read_block_for_search(NULL, root, p, &b, level,
2628                                                     slot, key, time_seq);
2629                         if (err == -EAGAIN)
2630                                 goto again;
2631                         if (err) {
2632                                 ret = err;
2633                                 goto done;
2634                         }
2635
2636                         level = btrfs_header_level(b);
2637                         err = btrfs_try_tree_read_lock(b);
2638                         if (!err) {
2639                                 btrfs_set_path_blocking(p);
2640                                 btrfs_tree_read_lock(b);
2641                                 btrfs_clear_path_blocking(p, b,
2642                                                           BTRFS_READ_LOCK);
2643                         }
2644                         p->locks[level] = BTRFS_READ_LOCK;
2645                         p->nodes[level] = b;
2646                         b = tree_mod_log_rewind(root->fs_info, b, time_seq);
2647                         if (b != p->nodes[level]) {
2648                                 btrfs_tree_unlock_rw(p->nodes[level],
2649                                                      p->locks[level]);
2650                                 p->locks[level] = 0;
2651                                 p->nodes[level] = b;
2652                         }
2653                 } else {
2654                         p->slots[level] = slot;
2655                         unlock_up(p, level, lowest_unlock, 0, NULL);
2656                         goto done;
2657                 }
2658         }
2659         ret = 1;
2660 done:
2661         if (!p->leave_spinning)
2662                 btrfs_set_path_blocking(p);
2663         if (ret < 0)
2664                 btrfs_release_path(p);
2665
2666         return ret;
2667 }
2668
2669 /*
2670  * adjust the pointers going up the tree, starting at level
2671  * making sure the right key of each node is points to 'key'.
2672  * This is used after shifting pointers to the left, so it stops
2673  * fixing up pointers when a given leaf/node is not in slot 0 of the
2674  * higher levels
2675  *
2676  */
2677 static void fixup_low_keys(struct btrfs_trans_handle *trans,
2678                            struct btrfs_root *root, struct btrfs_path *path,
2679                            struct btrfs_disk_key *key, int level)
2680 {
2681         int i;
2682         struct extent_buffer *t;
2683
2684         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2685                 int tslot = path->slots[i];
2686                 if (!path->nodes[i])
2687                         break;
2688                 t = path->nodes[i];
2689                 tree_mod_log_set_node_key(root->fs_info, t, key, tslot, 1);
2690                 btrfs_set_node_key(t, key, tslot);
2691                 btrfs_mark_buffer_dirty(path->nodes[i]);
2692                 if (tslot != 0)
2693                         break;
2694         }
2695 }
2696
2697 /*
2698  * update item key.
2699  *
2700  * This function isn't completely safe. It's the caller's responsibility
2701  * that the new key won't break the order
2702  */
2703 void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
2704                              struct btrfs_root *root, struct btrfs_path *path,
2705                              struct btrfs_key *new_key)
2706 {
2707         struct btrfs_disk_key disk_key;
2708         struct extent_buffer *eb;
2709         int slot;
2710
2711         eb = path->nodes[0];
2712         slot = path->slots[0];
2713         if (slot > 0) {
2714                 btrfs_item_key(eb, &disk_key, slot - 1);
2715                 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
2716         }
2717         if (slot < btrfs_header_nritems(eb) - 1) {
2718                 btrfs_item_key(eb, &disk_key, slot + 1);
2719                 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
2720         }
2721
2722         btrfs_cpu_key_to_disk(&disk_key, new_key);
2723         btrfs_set_item_key(eb, &disk_key, slot);
2724         btrfs_mark_buffer_dirty(eb);
2725         if (slot == 0)
2726                 fixup_low_keys(trans, root, path, &disk_key, 1);
2727 }
2728
2729 /*
2730  * try to push data from one node into the next node left in the
2731  * tree.
2732  *
2733  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2734  * error, and > 0 if there was no room in the left hand block.
2735  */
2736 static int push_node_left(struct btrfs_trans_handle *trans,
2737                           struct btrfs_root *root, struct extent_buffer *dst,
2738                           struct extent_buffer *src, int empty)
2739 {
2740         int push_items = 0;
2741         int src_nritems;
2742         int dst_nritems;
2743         int ret = 0;
2744
2745         src_nritems = btrfs_header_nritems(src);
2746         dst_nritems = btrfs_header_nritems(dst);
2747         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2748         WARN_ON(btrfs_header_generation(src) != trans->transid);
2749         WARN_ON(btrfs_header_generation(dst) != trans->transid);
2750
2751         if (!empty && src_nritems <= 8)
2752                 return 1;
2753
2754         if (push_items <= 0)
2755                 return 1;
2756
2757         if (empty) {
2758                 push_items = min(src_nritems, push_items);
2759                 if (push_items < src_nritems) {
2760                         /* leave at least 8 pointers in the node if
2761                          * we aren't going to empty it
2762                          */
2763                         if (src_nritems - push_items < 8) {
2764                                 if (push_items <= 8)
2765                                         return 1;
2766                                 push_items -= 8;
2767                         }
2768                 }
2769         } else
2770                 push_items = min(src_nritems - 8, push_items);
2771
2772         tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
2773                              push_items);
2774         copy_extent_buffer(dst, src,
2775                            btrfs_node_key_ptr_offset(dst_nritems),
2776                            btrfs_node_key_ptr_offset(0),
2777                            push_items * sizeof(struct btrfs_key_ptr));
2778
2779         if (push_items < src_nritems) {
2780                 tree_mod_log_eb_move(root->fs_info, src, 0, push_items,
2781                                      src_nritems - push_items);
2782                 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
2783                                       btrfs_node_key_ptr_offset(push_items),
2784                                       (src_nritems - push_items) *
2785                                       sizeof(struct btrfs_key_ptr));
2786         }
2787         btrfs_set_header_nritems(src, src_nritems - push_items);
2788         btrfs_set_header_nritems(dst, dst_nritems + push_items);
2789         btrfs_mark_buffer_dirty(src);
2790         btrfs_mark_buffer_dirty(dst);
2791
2792         return ret;
2793 }
2794
2795 /*
2796  * try to push data from one node into the next node right in the
2797  * tree.
2798  *
2799  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2800  * error, and > 0 if there was no room in the right hand block.
2801  *
2802  * this will  only push up to 1/2 the contents of the left node over
2803  */
2804 static int balance_node_right(struct btrfs_trans_handle *trans,
2805                               struct btrfs_root *root,
2806                               struct extent_buffer *dst,
2807                               struct extent_buffer *src)
2808 {
2809         int push_items = 0;
2810         int max_push;
2811         int src_nritems;
2812         int dst_nritems;
2813         int ret = 0;
2814
2815         WARN_ON(btrfs_header_generation(src) != trans->transid);
2816         WARN_ON(btrfs_header_generation(dst) != trans->transid);
2817
2818         src_nritems = btrfs_header_nritems(src);
2819         dst_nritems = btrfs_header_nritems(dst);
2820         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2821         if (push_items <= 0)
2822                 return 1;
2823
2824         if (src_nritems < 4)
2825                 return 1;
2826
2827         max_push = src_nritems / 2 + 1;
2828         /* don't try to empty the node */
2829         if (max_push >= src_nritems)
2830                 return 1;
2831
2832         if (max_push < push_items)
2833                 push_items = max_push;
2834
2835         tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
2836         memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
2837                                       btrfs_node_key_ptr_offset(0),
2838                                       (dst_nritems) *
2839                                       sizeof(struct btrfs_key_ptr));
2840
2841         tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
2842                              src_nritems - push_items, push_items);
2843         copy_extent_buffer(dst, src,
2844                            btrfs_node_key_ptr_offset(0),
2845                            btrfs_node_key_ptr_offset(src_nritems - push_items),
2846                            push_items * sizeof(struct btrfs_key_ptr));
2847
2848         btrfs_set_header_nritems(src, src_nritems - push_items);
2849         btrfs_set_header_nritems(dst, dst_nritems + push_items);
2850
2851         btrfs_mark_buffer_dirty(src);
2852         btrfs_mark_buffer_dirty(dst);
2853
2854         return ret;
2855 }
2856
2857 /*
2858  * helper function to insert a new root level in the tree.
2859  * A new node is allocated, and a single item is inserted to
2860  * point to the existing root
2861  *
2862  * returns zero on success or < 0 on failure.
2863  */
2864 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2865                            struct btrfs_root *root,
2866                            struct btrfs_path *path, int level)
2867 {
2868         u64 lower_gen;
2869         struct extent_buffer *lower;
2870         struct extent_buffer *c;
2871         struct extent_buffer *old;
2872         struct btrfs_disk_key lower_key;
2873
2874         BUG_ON(path->nodes[level]);
2875         BUG_ON(path->nodes[level-1] != root->node);
2876
2877         lower = path->nodes[level-1];
2878         if (level == 1)
2879                 btrfs_item_key(lower, &lower_key, 0);
2880         else
2881                 btrfs_node_key(lower, &lower_key, 0);
2882
2883         c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2884                                    root->root_key.objectid, &lower_key,
2885                                    level, root->node->start, 0);
2886         if (IS_ERR(c))
2887                 return PTR_ERR(c);
2888
2889         root_add_used(root, root->nodesize);
2890
2891         memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
2892         btrfs_set_header_nritems(c, 1);
2893         btrfs_set_header_level(c, level);
2894         btrfs_set_header_bytenr(c, c->start);
2895         btrfs_set_header_generation(c, trans->transid);
2896         btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
2897         btrfs_set_header_owner(c, root->root_key.objectid);
2898
2899         write_extent_buffer(c, root->fs_info->fsid,
2900                             (unsigned long)btrfs_header_fsid(c),
2901                             BTRFS_FSID_SIZE);
2902
2903         write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
2904                             (unsigned long)btrfs_header_chunk_tree_uuid(c),
2905                             BTRFS_UUID_SIZE);
2906
2907         btrfs_set_node_key(c, &lower_key, 0);
2908         btrfs_set_node_blockptr(c, 0, lower->start);
2909         lower_gen = btrfs_header_generation(lower);
2910         WARN_ON(lower_gen != trans->transid);
2911
2912         btrfs_set_node_ptr_generation(c, 0, lower_gen);
2913
2914         btrfs_mark_buffer_dirty(c);
2915
2916         old = root->node;
2917         tree_mod_log_set_root_pointer(root, c);
2918         rcu_assign_pointer(root->node, c);
2919
2920         /* the super has an extra ref to root->node */
2921         free_extent_buffer(old);
2922
2923         add_root_to_dirty_list(root);
2924         extent_buffer_get(c);
2925         path->nodes[level] = c;
2926         path->locks[level] = BTRFS_WRITE_LOCK;
2927         path->slots[level] = 0;
2928         return 0;
2929 }
2930
2931 /*
2932  * worker function to insert a single pointer in a node.
2933  * the node should have enough room for the pointer already
2934  *
2935  * slot and level indicate where you want the key to go, and
2936  * blocknr is the block the key points to.
2937  */
2938 static void insert_ptr(struct btrfs_trans_handle *trans,
2939                        struct btrfs_root *root, struct btrfs_path *path,
2940                        struct btrfs_disk_key *key, u64 bytenr,
2941                        int slot, int level, int tree_mod_log)
2942 {
2943         struct extent_buffer *lower;
2944         int nritems;
2945         int ret;
2946
2947         BUG_ON(!path->nodes[level]);
2948         btrfs_assert_tree_locked(path->nodes[level]);
2949         lower = path->nodes[level];
2950         nritems = btrfs_header_nritems(lower);
2951         BUG_ON(slot > nritems);
2952         BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
2953         if (slot != nritems) {
2954                 if (tree_mod_log && level)
2955                         tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
2956                                              slot, nritems - slot);
2957                 memmove_extent_buffer(lower,
2958                               btrfs_node_key_ptr_offset(slot + 1),
2959                               btrfs_node_key_ptr_offset(slot),
2960                               (nritems - slot) * sizeof(struct btrfs_key_ptr));
2961         }
2962         if (tree_mod_log && level) {
2963                 ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
2964                                               MOD_LOG_KEY_ADD);
2965                 BUG_ON(ret < 0);
2966         }
2967         btrfs_set_node_key(lower, key, slot);
2968         btrfs_set_node_blockptr(lower, slot, bytenr);
2969         WARN_ON(trans->transid == 0);
2970         btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2971         btrfs_set_header_nritems(lower, nritems + 1);
2972         btrfs_mark_buffer_dirty(lower);
2973 }
2974
2975 /*
2976  * split the node at the specified level in path in two.
2977  * The path is corrected to point to the appropriate node after the split
2978  *
2979  * Before splitting this tries to make some room in the node by pushing
2980  * left and right, if either one works, it returns right away.
2981  *
2982  * returns 0 on success and < 0 on failure
2983  */
2984 static noinline int split_node(struct btrfs_trans_handle *trans,
2985                                struct btrfs_root *root,
2986                                struct btrfs_path *path, int level)
2987 {
2988         struct extent_buffer *c;
2989         struct extent_buffer *split;
2990         struct btrfs_disk_key disk_key;
2991         int mid;
2992         int ret;
2993         u32 c_nritems;
2994
2995         c = path->nodes[level];
2996         WARN_ON(btrfs_header_generation(c) != trans->transid);
2997         if (c == root->node) {
2998                 /* trying to split the root, lets make a new one */
2999                 ret = insert_new_root(trans, root, path, level + 1);
3000                 if (ret)
3001                         return ret;
3002         } else {
3003                 ret = push_nodes_for_insert(trans, root, path, level);
3004                 c = path->nodes[level];
3005                 if (!ret && btrfs_header_nritems(c) <
3006                     BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3007                         return 0;
3008                 if (ret < 0)
3009                         return ret;
3010         }
3011
3012         c_nritems = btrfs_header_nritems(c);
3013         mid = (c_nritems + 1) / 2;
3014         btrfs_node_key(c, &disk_key, mid);
3015
3016         split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3017                                         root->root_key.objectid,
3018                                         &disk_key, level, c->start, 0);
3019         if (IS_ERR(split))
3020                 return PTR_ERR(split);
3021
3022         root_add_used(root, root->nodesize);
3023
3024         memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3025         btrfs_set_header_level(split, btrfs_header_level(c));
3026         btrfs_set_header_bytenr(split, split->start);
3027         btrfs_set_header_generation(split, trans->transid);
3028         btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3029         btrfs_set_header_owner(split, root->root_key.objectid);
3030         write_extent_buffer(split, root->fs_info->fsid,
3031                             (unsigned long)btrfs_header_fsid(split),
3032                             BTRFS_FSID_SIZE);
3033         write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3034                             (unsigned long)btrfs_header_chunk_tree_uuid(split),
3035                             BTRFS_UUID_SIZE);
3036
3037         tree_mod_log_eb_copy(root->fs_info, split, c, 0, mid, c_nritems - mid);
3038         copy_extent_buffer(split, c,
3039                            btrfs_node_key_ptr_offset(0),
3040                            btrfs_node_key_ptr_offset(mid),
3041                            (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3042         btrfs_set_header_nritems(split, c_nritems - mid);
3043         btrfs_set_header_nritems(c, mid);
3044         ret = 0;
3045
3046         btrfs_mark_buffer_dirty(c);
3047         btrfs_mark_buffer_dirty(split);
3048
3049         insert_ptr(trans, root, path, &disk_key, split->start,
3050                    path->slots[level + 1] + 1, level + 1, 1);
3051
3052         if (path->slots[level] >= mid) {
3053                 path->slots[level] -= mid;
3054                 btrfs_tree_unlock(c);
3055                 free_extent_buffer(c);
3056                 path->nodes[level] = split;
3057                 path->slots[level + 1] += 1;
3058         } else {
3059                 btrfs_tree_unlock(split);
3060                 free_extent_buffer(split);
3061         }
3062         return ret;
3063 }
3064
3065 /*
3066  * how many bytes are required to store the items in a leaf.  start
3067  * and nr indicate which items in the leaf to check.  This totals up the
3068  * space used both by the item structs and the item data
3069  */
3070 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3071 {
3072         int data_len;
3073         int nritems = btrfs_header_nritems(l);
3074         int end = min(nritems, start + nr) - 1;
3075
3076         if (!nr)
3077                 return 0;
3078         data_len = btrfs_item_end_nr(l, start);
3079         data_len = data_len - btrfs_item_offset_nr(l, end);
3080         data_len += sizeof(struct btrfs_item) * nr;
3081         WARN_ON(data_len < 0);
3082         return data_len;
3083 }
3084
3085 /*
3086  * The space between the end of the leaf items and
3087  * the start of the leaf data.  IOW, how much room
3088  * the leaf has left for both items and data
3089  */
3090 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3091                                    struct extent_buffer *leaf)
3092 {
3093         int nritems = btrfs_header_nritems(leaf);
3094         int ret;
3095         ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3096         if (ret < 0) {
3097                 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
3098                        "used %d nritems %d\n",
3099                        ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3100                        leaf_space_used(leaf, 0, nritems), nritems);
3101         }
3102         return ret;
3103 }
3104
3105 /*
3106  * min slot controls the lowest index we're willing to push to the
3107  * right.  We'll push up to and including min_slot, but no lower
3108  */
3109 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3110                                       struct btrfs_root *root,
3111                                       struct btrfs_path *path,
3112                                       int data_size, int empty,
3113                                       struct extent_buffer *right,
3114                                       int free_space, u32 left_nritems,
3115                                       u32 min_slot)
3116 {
3117         struct extent_buffer *left = path->nodes[0];
3118         struct extent_buffer *upper = path->nodes[1];
3119         struct btrfs_map_token token;
3120         struct btrfs_disk_key disk_key;
3121         int slot;
3122         u32 i;
3123         int push_space = 0;
3124         int push_items = 0;
3125         struct btrfs_item *item;
3126         u32 nr;
3127         u32 right_nritems;
3128         u32 data_end;
3129         u32 this_item_size;
3130
3131         btrfs_init_map_token(&token);
3132
3133         if (empty)
3134                 nr = 0;
3135         else
3136                 nr = max_t(u32, 1, min_slot);
3137
3138         if (path->slots[0] >= left_nritems)
3139                 push_space += data_size;
3140
3141         slot = path->slots[1];
3142         i = left_nritems - 1;
3143         while (i >= nr) {
3144                 item = btrfs_item_nr(left, i);
3145
3146                 if (!empty && push_items > 0) {
3147                         if (path->slots[0] > i)
3148                                 break;
3149                         if (path->slots[0] == i) {
3150                                 int space = btrfs_leaf_free_space(root, left);
3151                                 if (space + push_space * 2 > free_space)
3152                                         break;
3153                         }
3154                 }
3155
3156                 if (path->slots[0] == i)
3157                         push_space += data_size;
3158
3159                 this_item_size = btrfs_item_size(left, item);
3160                 if (this_item_size + sizeof(*item) + push_space > free_space)
3161                         break;
3162
3163                 push_items++;
3164                 push_space += this_item_size + sizeof(*item);
3165                 if (i == 0)
3166                         break;
3167                 i--;
3168         }
3169
3170         if (push_items == 0)
3171                 goto out_unlock;
3172
3173         if (!empty && push_items == left_nritems)
3174                 WARN_ON(1);
3175
3176         /* push left to right */
3177         right_nritems = btrfs_header_nritems(right);
3178
3179         push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3180         push_space -= leaf_data_end(root, left);
3181
3182         /* make room in the right data area */
3183         data_end = leaf_data_end(root, right);
3184         memmove_extent_buffer(right,
3185                               btrfs_leaf_data(right) + data_end - push_space,
3186                               btrfs_leaf_data(right) + data_end,
3187                               BTRFS_LEAF_DATA_SIZE(root) - data_end);
3188
3189         /* copy from the left data area */
3190         copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3191                      BTRFS_LEAF_DATA_SIZE(root) - push_space,
3192                      btrfs_leaf_data(left) + leaf_data_end(root, left),
3193                      push_space);
3194
3195         memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3196                               btrfs_item_nr_offset(0),
3197                               right_nritems * sizeof(struct btrfs_item));
3198
3199         /* copy the items from left to right */
3200         copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3201                    btrfs_item_nr_offset(left_nritems - push_items),
3202                    push_items * sizeof(struct btrfs_item));
3203
3204         /* update the item pointers */
3205         right_nritems += push_items;
3206         btrfs_set_header_nritems(right, right_nritems);
3207         push_space = BTRFS_LEAF_DATA_SIZE(root);
3208         for (i = 0; i < right_nritems; i++) {
3209                 item = btrfs_item_nr(right, i);
3210                 push_space -= btrfs_token_item_size(right, item, &token);
3211                 btrfs_set_token_item_offset(right, item, push_space, &token);
3212         }
3213
3214         left_nritems -= push_items;
3215         btrfs_set_header_nritems(left, left_nritems);
3216
3217         if (left_nritems)
3218                 btrfs_mark_buffer_dirty(left);
3219         else
3220                 clean_tree_block(trans, root, left);
3221
3222         btrfs_mark_buffer_dirty(right);
3223
3224         btrfs_item_key(right, &disk_key, 0);
3225         btrfs_set_node_key(upper, &disk_key, slot + 1);
3226         btrfs_mark_buffer_dirty(upper);
3227
3228         /* then fixup the leaf pointer in the path */
3229         if (path->slots[0] >= left_nritems) {
3230                 path->slots[0] -= left_nritems;
3231                 if (btrfs_header_nritems(path->nodes[0]) == 0)
3232                         clean_tree_block(trans, root, path->nodes[0]);
3233                 btrfs_tree_unlock(path->nodes[0]);
3234                 free_extent_buffer(path->nodes[0]);
3235                 path->nodes[0] = right;
3236                 path->slots[1] += 1;
3237         } else {
3238                 btrfs_tree_unlock(right);
3239                 free_extent_buffer(right);
3240         }
3241         return 0;
3242
3243 out_unlock:
3244         btrfs_tree_unlock(right);
3245         free_extent_buffer(right);
3246         return 1;
3247 }
3248
3249 /*
3250  * push some data in the path leaf to the right, trying to free up at
3251  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3252  *
3253  * returns 1 if the push failed because the other node didn't have enough
3254  * room, 0 if everything worked out and < 0 if there were major errors.
3255  *
3256  * this will push starting from min_slot to the end of the leaf.  It won't
3257  * push any slot lower than min_slot
3258  */
3259 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3260                            *root, struct btrfs_path *path,
3261                            int min_data_size, int data_size,
3262                            int empty, u32 min_slot)
3263 {
3264         struct extent_buffer *left = path->nodes[0];
3265         struct extent_buffer *right;
3266         struct extent_buffer *upper;
3267         int slot;
3268         int free_space;
3269         u32 left_nritems;
3270         int ret;
3271
3272         if (!path->nodes[1])
3273                 return 1;
3274
3275         slot = path->slots[1];
3276         upper = path->nodes[1];
3277         if (slot >= btrfs_header_nritems(upper) - 1)
3278                 return 1;
3279
3280         btrfs_assert_tree_locked(path->nodes[1]);
3281
3282         right = read_node_slot(root, upper, slot + 1);
3283         if (right == NULL)
3284                 return 1;
3285
3286         btrfs_tree_lock(right);
3287         btrfs_set_lock_blocking(right);
3288
3289         free_space = btrfs_leaf_free_space(root, right);
3290         if (free_space < data_size)
3291                 goto out_unlock;
3292
3293         /* cow and double check */
3294         ret = btrfs_cow_block(trans, root, right, upper,
3295                               slot + 1, &right);
3296         if (ret)
3297                 goto out_unlock;
3298
3299         free_space = btrfs_leaf_free_space(root, right);
3300         if (free_space < data_size)
3301                 goto out_unlock;
3302
3303         left_nritems = btrfs_header_nritems(left);
3304         if (left_nritems == 0)
3305                 goto out_unlock;
3306
3307         return __push_leaf_right(trans, root, path, min_data_size, empty,
3308                                 right, free_space, left_nritems, min_slot);
3309 out_unlock:
3310         btrfs_tree_unlock(right);
3311         free_extent_buffer(right);
3312         return 1;
3313 }
3314
3315 /*
3316  * push some data in the path leaf to the left, trying to free up at
3317  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3318  *
3319  * max_slot can put a limit on how far into the leaf we'll push items.  The
3320  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3321  * items
3322  */
3323 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3324                                      struct btrfs_root *root,
3325                                      struct btrfs_path *path, int data_size,
3326                                      int empty, struct extent_buffer *left,
3327                                      int free_space, u32 right_nritems,
3328                                      u32 max_slot)
3329 {
3330         struct btrfs_disk_key disk_key;
3331         struct extent_buffer *right = path->nodes[0];
3332         int i;
3333         int push_space = 0;
3334         int push_items = 0;
3335         struct btrfs_item *item;
3336         u32 old_left_nritems;
3337         u32 nr;
3338         int ret = 0;
3339         u32 this_item_size;
3340         u32 old_left_item_size;
3341         struct btrfs_map_token token;
3342
3343         btrfs_init_map_token(&token);
3344
3345         if (empty)
3346                 nr = min(right_nritems, max_slot);
3347         else
3348                 nr = min(right_nritems - 1, max_slot);
3349
3350         for (i = 0; i < nr; i++) {
3351                 item = btrfs_item_nr(right, i);
3352
3353                 if (!empty && push_items > 0) {
3354                         if (path->slots[0] < i)
3355                                 break;
3356                         if (path->slots[0] == i) {
3357                                 int space = btrfs_leaf_free_space(root, right);
3358                                 if (space + push_space * 2 > free_space)
3359                                         break;
3360                         }
3361                 }
3362
3363                 if (path->slots[0] == i)
3364                         push_space += data_size;
3365
3366                 this_item_size = btrfs_item_size(right, item);
3367                 if (this_item_size + sizeof(*item) + push_space > free_space)
3368                         break;
3369
3370                 push_items++;
3371                 push_space += this_item_size + sizeof(*item);
3372         }
3373
3374         if (push_items == 0) {
3375                 ret = 1;
3376                 goto out;
3377         }
3378         if (!empty && push_items == btrfs_header_nritems(right))
3379                 WARN_ON(1);
3380
3381         /* push data from right to left */
3382         copy_extent_buffer(left, right,
3383                            btrfs_item_nr_offset(btrfs_header_nritems(left)),
3384                            btrfs_item_nr_offset(0),
3385                            push_items * sizeof(struct btrfs_item));
3386
3387         push_space = BTRFS_LEAF_DATA_SIZE(root) -
3388                      btrfs_item_offset_nr(right, push_items - 1);
3389
3390         copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3391                      leaf_data_end(root, left) - push_space,
3392                      btrfs_leaf_data(right) +
3393                      btrfs_item_offset_nr(right, push_items - 1),
3394                      push_space);
3395         old_left_nritems = btrfs_header_nritems(left);
3396         BUG_ON(old_left_nritems <= 0);
3397
3398         old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3399         for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3400                 u32 ioff;
3401
3402                 item = btrfs_item_nr(left, i);
3403
3404                 ioff = btrfs_token_item_offset(left, item, &token);
3405                 btrfs_set_token_item_offset(left, item,
3406                       ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3407                       &token);
3408         }
3409         btrfs_set_header_nritems(left, old_left_nritems + push_items);
3410
3411         /* fixup right node */
3412         if (push_items > right_nritems) {
3413                 printk(KERN_CRIT "push items %d nr %u\n", push_items,
3414                        right_nritems);
3415                 WARN_ON(1);
3416         }
3417
3418         if (push_items < right_nritems) {
3419                 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3420                                                   leaf_data_end(root, right);
3421                 memmove_extent_buffer(right, btrfs_leaf_data(right) +
3422                                       BTRFS_LEAF_DATA_SIZE(root) - push_space,
3423                                       btrfs_leaf_data(right) +
3424                                       leaf_data_end(root, right), push_space);
3425
3426                 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3427                               btrfs_item_nr_offset(push_items),
3428                              (btrfs_header_nritems(right) - push_items) *
3429                              sizeof(struct btrfs_item));
3430         }
3431         right_nritems -= push_items;
3432         btrfs_set_header_nritems(right, right_nritems);
3433         push_space = BTRFS_LEAF_DATA_SIZE(root);
3434         for (i = 0; i < right_nritems; i++) {
3435                 item = btrfs_item_nr(right, i);
3436
3437                 push_space = push_space - btrfs_token_item_size(right,
3438                                                                 item, &token);
3439                 btrfs_set_token_item_offset(right, item, push_space, &token);
3440         }
3441
3442         btrfs_mark_buffer_dirty(left);
3443         if (right_nritems)
3444                 btrfs_mark_buffer_dirty(right);
3445         else
3446                 clean_tree_block(trans, root, right);
3447
3448         btrfs_item_key(right, &disk_key, 0);
3449         fixup_low_keys(trans, root, path, &disk_key, 1);
3450
3451         /* then fixup the leaf pointer in the path */
3452         if (path->slots[0] < push_items) {
3453                 path->slots[0] += old_left_nritems;
3454                 btrfs_tree_unlock(path->nodes[0]);
3455                 free_extent_buffer(path->nodes[0]);
3456                 path->nodes[0] = left;
3457                 path->slots[1] -= 1;
3458         } else {
3459                 btrfs_tree_unlock(left);
3460                 free_extent_buffer(left);
3461                 path->slots[0] -= push_items;
3462         }
3463         BUG_ON(path->slots[0] < 0);
3464         return ret;
3465 out:
3466         btrfs_tree_unlock(left);
3467         free_extent_buffer(left);
3468         return ret;
3469 }
3470
3471 /*
3472  * push some data in the path leaf to the left, trying to free up at
3473  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3474  *
3475  * max_slot can put a limit on how far into the leaf we'll push items.  The
3476  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3477  * items
3478  */
3479 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3480                           *root, struct btrfs_path *path, int min_data_size,
3481                           int data_size, int empty, u32 max_slot)
3482 {
3483         struct extent_buffer *right = path->nodes[0];
3484         struct extent_buffer *left;
3485         int slot;
3486         int free_space;
3487         u32 right_nritems;
3488         int ret = 0;
3489
3490         slot = path->slots[1];
3491         if (slot == 0)
3492                 return 1;
3493         if (!path->nodes[1])
3494                 return 1;
3495
3496         right_nritems = btrfs_header_nritems(right);
3497         if (right_nritems == 0)
3498                 return 1;
3499
3500         btrfs_assert_tree_locked(path->nodes[1]);
3501
3502         left = read_node_slot(root, path->nodes[1], slot - 1);
3503         if (left == NULL)
3504                 return 1;
3505
3506         btrfs_tree_lock(left);
3507         btrfs_set_lock_blocking(left);
3508
3509         free_space = btrfs_leaf_free_space(root, left);
3510         if (free_space < data_size) {
3511                 ret = 1;
3512                 goto out;
3513         }
3514
3515         /* cow and double check */
3516         ret = btrfs_cow_block(trans, root, left,
3517                               path->nodes[1], slot - 1, &left);
3518         if (ret) {
3519                 /* we hit -ENOSPC, but it isn't fatal here */
3520                 if (ret == -ENOSPC)
3521                         ret = 1;
3522                 goto out;
3523         }
3524
3525         free_space = btrfs_leaf_free_space(root, left);
3526         if (free_space < data_size) {
3527                 ret = 1;
3528                 goto out;
3529         }
3530
3531         return __push_leaf_left(trans, root, path, min_data_size,
3532                                empty, left, free_space, right_nritems,
3533                                max_slot);
3534 out:
3535         btrfs_tree_unlock(left);
3536         free_extent_buffer(left);
3537         return ret;
3538 }
3539
3540 /*
3541  * split the path's leaf in two, making sure there is at least data_size
3542  * available for the resulting leaf level of the path.
3543  */
3544 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3545                                     struct btrfs_root *root,
3546                                     struct btrfs_path *path,
3547                                     struct extent_buffer *l,
3548                                     struct extent_buffer *right,
3549                                     int slot, int mid, int nritems)
3550 {
3551         int data_copy_size;
3552         int rt_data_off;
3553         int i;
3554         struct btrfs_disk_key disk_key;
3555         struct btrfs_map_token token;
3556
3557         btrfs_init_map_token(&token);
3558
3559         nritems = nritems - mid;
3560         btrfs_set_header_nritems(right, nritems);
3561         data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
3562
3563         copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
3564                            btrfs_item_nr_offset(mid),
3565                            nritems * sizeof(struct btrfs_item));
3566
3567         copy_extent_buffer(right, l,
3568                      btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
3569                      data_copy_size, btrfs_leaf_data(l) +
3570                      leaf_data_end(root, l), data_copy_size);
3571
3572         rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
3573                       btrfs_item_end_nr(l, mid);
3574
3575         for (i = 0; i < nritems; i++) {
3576                 struct btrfs_item *item = btrfs_item_nr(right, i);
3577                 u32 ioff;
3578
3579                 ioff = btrfs_token_item_offset(right, item, &token);
3580                 btrfs_set_token_item_offset(right, item,
3581                                             ioff + rt_data_off, &token);
3582         }
3583
3584         btrfs_set_header_nritems(l, mid);
3585         btrfs_item_key(right, &disk_key, 0);
3586         insert_ptr(trans, root, path, &disk_key, right->start,
3587                    path->slots[1] + 1, 1, 0);
3588
3589         btrfs_mark_buffer_dirty(right);
3590         btrfs_mark_buffer_dirty(l);
3591         BUG_ON(path->slots[0] != slot);
3592
3593         if (mid <= slot) {
3594                 btrfs_tree_unlock(path->nodes[0]);
3595                 free_extent_buffer(path->nodes[0]);
3596                 path->nodes[0] = right;
3597                 path->slots[0] -= mid;
3598                 path->slots[1] += 1;
3599         } else {
3600                 btrfs_tree_unlock(right);
3601                 free_extent_buffer(right);
3602         }
3603
3604         BUG_ON(path->slots[0] < 0);
3605 }
3606
3607 /*
3608  * double splits happen when we need to insert a big item in the middle
3609  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3610  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3611  *          A                 B                 C
3612  *
3613  * We avoid this by trying to push the items on either side of our target
3614  * into the adjacent leaves.  If all goes well we can avoid the double split
3615  * completely.
3616  */
3617 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3618                                           struct btrfs_root *root,
3619                                           struct btrfs_path *path,
3620                                           int data_size)
3621 {
3622         int ret;
3623         int progress = 0;
3624         int slot;
3625         u32 nritems;
3626
3627         slot = path->slots[0];
3628
3629         /*
3630          * try to push all the items after our slot into the
3631          * right leaf
3632          */
3633         ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
3634         if (ret < 0)
3635                 return ret;
3636
3637         if (ret == 0)
3638                 progress++;
3639
3640         nritems = btrfs_header_nritems(path->nodes[0]);
3641         /*
3642          * our goal is to get our slot at the start or end of a leaf.  If
3643          * we've done so we're done
3644          */
3645         if (path->slots[0] == 0 || path->slots[0] == nritems)
3646                 return 0;
3647
3648         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3649                 return 0;
3650
3651         /* try to push all the items before our slot into the next leaf */
3652         slot = path->slots[0];
3653         ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
3654         if (ret < 0)
3655                 return ret;
3656
3657         if (ret == 0)
3658                 progress++;
3659
3660         if (progress)
3661                 return 0;
3662         return 1;
3663 }
3664
3665 /*
3666  * split the path's leaf in two, making sure there is at least data_size
3667  * available for the resulting leaf level of the path.
3668  *
3669  * returns 0 if all went well and < 0 on failure.
3670  */
3671 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3672                                struct btrfs_root *root,
3673                                struct btrfs_key *ins_key,
3674                                struct btrfs_path *path, int data_size,
3675                                int extend)
3676 {
3677         struct btrfs_disk_key disk_key;
3678         struct extent_buffer *l;
3679         u32 nritems;
3680         int mid;
3681         int slot;
3682         struct extent_buffer *right;
3683         int ret = 0;
3684         int wret;
3685         int split;
3686         int num_doubles = 0;
3687         int tried_avoid_double = 0;
3688
3689         l = path->nodes[0];
3690         slot = path->slots[0];
3691         if (extend && data_size + btrfs_item_size_nr(l, slot) +
3692             sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
3693                 return -EOVERFLOW;
3694
3695         /* first try to make some room by pushing left and right */
3696         if (data_size) {
3697                 wret = push_leaf_right(trans, root, path, data_size,
3698                                        data_size, 0, 0);
3699                 if (wret < 0)
3700                         return wret;
3701                 if (wret) {
3702                         wret = push_leaf_left(trans, root, path, data_size,
3703                                               data_size, 0, (u32)-1);
3704                         if (wret < 0)
3705                                 return wret;
3706                 }
3707                 l = path->nodes[0];
3708
3709                 /* did the pushes work? */
3710                 if (btrfs_leaf_free_space(root, l) >= data_size)
3711                         return 0;
3712         }
3713
3714         if (!path->nodes[1]) {
3715                 ret = insert_new_root(trans, root, path, 1);
3716                 if (ret)
3717                         return ret;
3718         }
3719 again:
3720         split = 1;
3721         l = path->nodes[0];
3722         slot = path->slots[0];
3723         nritems = btrfs_header_nritems(l);
3724         mid = (nritems + 1) / 2;
3725
3726         if (mid <= slot) {
3727                 if (nritems == 1 ||
3728                     leaf_space_used(l, mid, nritems - mid) + data_size >
3729                         BTRFS_LEAF_DATA_SIZE(root)) {
3730                         if (slot >= nritems) {
3731                                 split = 0;
3732                         } else {
3733                                 mid = slot;
3734                                 if (mid != nritems &&
3735                                     leaf_space_used(l, mid, nritems - mid) +
3736                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3737                                         if (data_size && !tried_avoid_double)
3738                                                 goto push_for_double;
3739                                         split = 2;
3740                                 }
3741                         }
3742                 }
3743         } else {
3744                 if (leaf_space_used(l, 0, mid) + data_size >
3745                         BTRFS_LEAF_DATA_SIZE(root)) {
3746                         if (!extend && data_size && slot == 0) {
3747                                 split = 0;
3748                         } else if ((extend || !data_size) && slot == 0) {
3749                                 mid = 1;
3750                         } else {
3751                                 mid = slot;
3752                                 if (mid != nritems &&
3753                                     leaf_space_used(l, mid, nritems - mid) +
3754                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3755                                         if (data_size && !tried_avoid_double)
3756                                                 goto push_for_double;
3757                                         split = 2 ;
3758                                 }
3759                         }
3760                 }
3761         }
3762
3763         if (split == 0)
3764                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
3765         else
3766                 btrfs_item_key(l, &disk_key, mid);
3767
3768         right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
3769                                         root->root_key.objectid,
3770                                         &disk_key, 0, l->start, 0);
3771         if (IS_ERR(right))
3772                 return PTR_ERR(right);
3773
3774         root_add_used(root, root->leafsize);
3775
3776         memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
3777         btrfs_set_header_bytenr(right, right->start);
3778         btrfs_set_header_generation(right, trans->transid);
3779         btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
3780         btrfs_set_header_owner(right, root->root_key.objectid);
3781         btrfs_set_header_level(right, 0);
3782         write_extent_buffer(right, root->fs_info->fsid,
3783                             (unsigned long)btrfs_header_fsid(right),
3784                             BTRFS_FSID_SIZE);
3785
3786         write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
3787                             (unsigned long)btrfs_header_chunk_tree_uuid(right),
3788                             BTRFS_UUID_SIZE);
3789
3790         if (split == 0) {
3791                 if (mid <= slot) {
3792                         btrfs_set_header_nritems(right, 0);
3793                         insert_ptr(trans, root, path, &disk_key, right->start,
3794                                    path->slots[1] + 1, 1, 0);
3795                         btrfs_tree_unlock(path->nodes[0]);
3796                         free_extent_buffer(path->nodes[0]);
3797                         path->nodes[0] = right;
3798                         path->slots[0] = 0;
3799                         path->slots[1] += 1;
3800                 } else {
3801                         btrfs_set_header_nritems(right, 0);
3802                         insert_ptr(trans, root, path, &disk_key, right->start,
3803                                           path->slots[1], 1, 0);
3804                         btrfs_tree_unlock(path->nodes[0]);
3805                         free_extent_buffer(path->nodes[0]);
3806                         path->nodes[0] = right;
3807                         path->slots[0] = 0;
3808                         if (path->slots[1] == 0)
3809                                 fixup_low_keys(trans, root, path,
3810                                                &disk_key, 1);
3811                 }
3812                 btrfs_mark_buffer_dirty(right);
3813                 return ret;
3814         }
3815
3816         copy_for_split(trans, root, path, l, right, slot, mid, nritems);
3817
3818         if (split == 2) {
3819                 BUG_ON(num_doubles != 0);
3820                 num_doubles++;
3821                 goto again;
3822         }
3823
3824         return 0;
3825
3826 push_for_double:
3827         push_for_double_split(trans, root, path, data_size);
3828         tried_avoid_double = 1;
3829         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3830                 return 0;
3831         goto again;
3832 }
3833
3834 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3835                                          struct btrfs_root *root,
3836                                          struct btrfs_path *path, int ins_len)
3837 {
3838         struct btrfs_key key;
3839         struct extent_buffer *leaf;
3840         struct btrfs_file_extent_item *fi;
3841         u64 extent_len = 0;
3842         u32 item_size;
3843         int ret;
3844
3845         leaf = path->nodes[0];
3846         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3847
3848         BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3849                key.type != BTRFS_EXTENT_CSUM_KEY);
3850
3851         if (btrfs_leaf_free_space(root, leaf) >= ins_len)
3852                 return 0;
3853
3854         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3855         if (key.type == BTRFS_EXTENT_DATA_KEY) {
3856                 fi = btrfs_item_ptr(leaf, path->slots[0],
3857                                     struct btrfs_file_extent_item);
3858                 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3859         }
3860         btrfs_release_path(path);
3861
3862         path->keep_locks = 1;
3863         path->search_for_split = 1;
3864         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3865         path->search_for_split = 0;
3866         if (ret < 0)
3867                 goto err;
3868
3869         ret = -EAGAIN;
3870         leaf = path->nodes[0];
3871         /* if our item isn't there or got smaller, return now */
3872         if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
3873                 goto err;
3874
3875         /* the leaf has  changed, it now has room.  return now */
3876         if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
3877                 goto err;
3878
3879         if (key.type == BTRFS_EXTENT_DATA_KEY) {
3880                 fi = btrfs_item_ptr(leaf, path->slots[0],
3881                                     struct btrfs_file_extent_item);
3882                 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3883                         goto err;
3884         }
3885
3886         btrfs_set_path_blocking(path);
3887         ret = split_leaf(trans, root, &key, path, ins_len, 1);
3888         if (ret)
3889                 goto err;
3890
3891         path->keep_locks = 0;
3892         btrfs_unlock_up_safe(path, 1);
3893         return 0;
3894 err:
3895         path->keep_locks = 0;
3896         return ret;
3897 }
3898
3899 static noinline int split_item(struct btrfs_trans_handle *trans,
3900                                struct btrfs_root *root,
3901                                struct btrfs_path *path,
3902                                struct btrfs_key *new_key,
3903                                unsigned long split_offset)
3904 {
3905         struct extent_buffer *leaf;
3906         struct btrfs_item *item;
3907         struct btrfs_item *new_item;
3908         int slot;
3909         char *buf;
3910         u32 nritems;
3911         u32 item_size;
3912         u32 orig_offset;
3913         struct btrfs_disk_key disk_key;
3914
3915         leaf = path->nodes[0];
3916         BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
3917
3918         btrfs_set_path_blocking(path);
3919
3920         item = btrfs_item_nr(leaf, path->slots[0]);
3921         orig_offset = btrfs_item_offset(leaf, item);
3922         item_size = btrfs_item_size(leaf, item);
3923
3924         buf = kmalloc(item_size, GFP_NOFS);
3925         if (!buf)
3926                 return -ENOMEM;
3927
3928         read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3929                             path->slots[0]), item_size);
3930
3931         slot = path->slots[0] + 1;
3932         nritems = btrfs_header_nritems(leaf);
3933         if (slot != nritems) {
3934                 /* shift the items */
3935                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
3936                                 btrfs_item_nr_offset(slot),
3937                                 (nritems - slot) * sizeof(struct btrfs_item));
3938         }
3939
3940         btrfs_cpu_key_to_disk(&disk_key, new_key);
3941         btrfs_set_item_key(leaf, &disk_key, slot);
3942
3943         new_item = btrfs_item_nr(leaf, slot);
3944
3945         btrfs_set_item_offset(leaf, new_item, orig_offset);
3946         btrfs_set_item_size(leaf, new_item, item_size - split_offset);
3947
3948         btrfs_set_item_offset(leaf, item,
3949                               orig_offset + item_size - split_offset);
3950         btrfs_set_item_size(leaf, item, split_offset);
3951
3952         btrfs_set_header_nritems(leaf, nritems + 1);
3953
3954         /* write the data for the start of the original item */
3955         write_extent_buffer(leaf, buf,
3956                             btrfs_item_ptr_offset(leaf, path->slots[0]),
3957                             split_offset);
3958
3959         /* write the data for the new item */
3960         write_extent_buffer(leaf, buf + split_offset,
3961                             btrfs_item_ptr_offset(leaf, slot),
3962                             item_size - split_offset);
3963         btrfs_mark_buffer_dirty(leaf);
3964
3965         BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
3966         kfree(buf);
3967         return 0;
3968 }
3969
3970 /*
3971  * This function splits a single item into two items,
3972  * giving 'new_key' to the new item and splitting the
3973  * old one at split_offset (from the start of the item).
3974  *
3975  * The path may be released by this operation.  After
3976  * the split, the path is pointing to the old item.  The
3977  * new item is going to be in the same node as the old one.
3978  *
3979  * Note, the item being split must be smaller enough to live alone on
3980  * a tree block with room for one extra struct btrfs_item
3981  *
3982  * This allows us to split the item in place, keeping a lock on the
3983  * leaf the entire time.
3984  */
3985 int btrfs_split_item(struct btrfs_trans_handle *trans,
3986                      struct btrfs_root *root,
3987                      struct btrfs_path *path,
3988                      struct btrfs_key *new_key,
3989                      unsigned long split_offset)
3990 {
3991         int ret;
3992         ret = setup_leaf_for_split(trans, root, path,
3993                                    sizeof(struct btrfs_item));
3994         if (ret)
3995                 return ret;
3996
3997         ret = split_item(trans, root, path, new_key, split_offset);
3998         return ret;
3999 }
4000
4001 /*
4002  * This function duplicate a item, giving 'new_key' to the new item.
4003  * It guarantees both items live in the same tree leaf and the new item
4004  * is contiguous with the original item.
4005  *
4006  * This allows us to split file extent in place, keeping a lock on the
4007  * leaf the entire time.
4008  */
4009 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4010                          struct btrfs_root *root,
4011                          struct btrfs_path *path,
4012                          struct btrfs_key *new_key)
4013 {
4014         struct extent_buffer *leaf;
4015         int ret;
4016         u32 item_size;
4017
4018         leaf = path->nodes[0];
4019         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4020         ret = setup_leaf_for_split(trans, root, path,
4021                                    item_size + sizeof(struct btrfs_item));
4022         if (ret)
4023                 return ret;
4024
4025         path->slots[0]++;
4026         setup_items_for_insert(trans, root, path, new_key, &item_size,
4027                                item_size, item_size +
4028                                sizeof(struct btrfs_item), 1);
4029         leaf = path->nodes[0];
4030         memcpy_extent_buffer(leaf,
4031                              btrfs_item_ptr_offset(leaf, path->slots[0]),
4032                              btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4033                              item_size);
4034         return 0;
4035 }
4036
4037 /*
4038  * make the item pointed to by the path smaller.  new_size indicates
4039  * how small to make it, and from_end tells us if we just chop bytes
4040  * off the end of the item or if we shift the item to chop bytes off
4041  * the front.
4042  */
4043 void btrfs_truncate_item(struct btrfs_trans_handle *trans,
4044                          struct btrfs_root *root,
4045                          struct btrfs_path *path,
4046                          u32 new_size, int from_end)
4047 {
4048         int slot;
4049         struct extent_buffer *leaf;
4050         struct btrfs_item *item;
4051         u32 nritems;
4052         unsigned int data_end;
4053         unsigned int old_data_start;
4054         unsigned int old_size;
4055         unsigned int size_diff;
4056         int i;
4057         struct btrfs_map_token token;
4058
4059         btrfs_init_map_token(&token);
4060
4061         leaf = path->nodes[0];
4062         slot = path->slots[0];
4063
4064         old_size = btrfs_item_size_nr(leaf, slot);
4065         if (old_size == new_size)
4066                 return;
4067
4068         nritems = btrfs_header_nritems(leaf);
4069         data_end = leaf_data_end(root, leaf);
4070
4071         old_data_start = btrfs_item_offset_nr(leaf, slot);
4072
4073         size_diff = old_size - new_size;
4074
4075         BUG_ON(slot < 0);
4076         BUG_ON(slot >= nritems);
4077
4078         /*
4079          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4080          */
4081         /* first correct the data pointers */
4082         for (i = slot; i < nritems; i++) {
4083                 u32 ioff;
4084                 item = btrfs_item_nr(leaf, i);
4085
4086                 ioff = btrfs_token_item_offset(leaf, item, &token);
4087                 btrfs_set_token_item_offset(leaf, item,
4088                                             ioff + size_diff, &token);
4089         }
4090
4091         /* shift the data */
4092         if (from_end) {
4093                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4094                               data_end + size_diff, btrfs_leaf_data(leaf) +
4095                               data_end, old_data_start + new_size - data_end);
4096         } else {
4097                 struct btrfs_disk_key disk_key;
4098                 u64 offset;
4099
4100                 btrfs_item_key(leaf, &disk_key, slot);
4101
4102                 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4103                         unsigned long ptr;
4104                         struct btrfs_file_extent_item *fi;
4105
4106                         fi = btrfs_item_ptr(leaf, slot,
4107                                             struct btrfs_file_extent_item);
4108                         fi = (struct btrfs_file_extent_item *)(
4109                              (unsigned long)fi - size_diff);
4110
4111                         if (btrfs_file_extent_type(leaf, fi) ==
4112                             BTRFS_FILE_EXTENT_INLINE) {
4113                                 ptr = btrfs_item_ptr_offset(leaf, slot);
4114                                 memmove_extent_buffer(leaf, ptr,
4115                                       (unsigned long)fi,
4116                                       offsetof(struct btrfs_file_extent_item,
4117                                                  disk_bytenr));
4118                         }
4119                 }
4120
4121                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4122                               data_end + size_diff, btrfs_leaf_data(leaf) +
4123                               data_end, old_data_start - data_end);
4124
4125                 offset = btrfs_disk_key_offset(&disk_key);
4126                 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4127                 btrfs_set_item_key(leaf, &disk_key, slot);
4128                 if (slot == 0)
4129                         fixup_low_keys(trans, root, path, &disk_key, 1);
4130         }
4131
4132         item = btrfs_item_nr(leaf, slot);
4133         btrfs_set_item_size(leaf, item, new_size);
4134         btrfs_mark_buffer_dirty(leaf);
4135
4136         if (btrfs_leaf_free_space(root, leaf) < 0) {
4137                 btrfs_print_leaf(root, leaf);
4138                 BUG();
4139         }
4140 }
4141
4142 /*
4143  * make the item pointed to by the path bigger, data_size is the new size.
4144  */
4145 void btrfs_extend_item(struct btrfs_trans_handle *trans,
4146                        struct btrfs_root *root, struct btrfs_path *path,
4147                        u32 data_size)
4148 {
4149         int slot;
4150         struct extent_buffer *leaf;
4151         struct btrfs_item *item;
4152         u32 nritems;
4153         unsigned int data_end;
4154         unsigned int old_data;
4155         unsigned int old_size;
4156         int i;
4157         struct btrfs_map_token token;
4158
4159         btrfs_init_map_token(&token);
4160
4161         leaf = path->nodes[0];
4162
4163         nritems = btrfs_header_nritems(leaf);
4164         data_end = leaf_data_end(root, leaf);
4165
4166         if (btrfs_leaf_free_space(root, leaf) < data_size) {
4167                 btrfs_print_leaf(root, leaf);
4168                 BUG();
4169         }
4170         slot = path->slots[0];
4171         old_data = btrfs_item_end_nr(leaf, slot);
4172
4173         BUG_ON(slot < 0);
4174         if (slot >= nritems) {
4175                 btrfs_print_leaf(root, leaf);
4176                 printk(KERN_CRIT "slot %d too large, nritems %d\n",
4177                        slot, nritems);
4178                 BUG_ON(1);
4179         }
4180
4181         /*
4182          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4183          */
4184         /* first correct the data pointers */
4185         for (i = slot; i < nritems; i++) {
4186                 u32 ioff;
4187                 item = btrfs_item_nr(leaf, i);
4188
4189                 ioff = btrfs_token_item_offset(leaf, item, &token);
4190                 btrfs_set_token_item_offset(leaf, item,
4191                                             ioff - data_size, &token);
4192         }
4193
4194         /* shift the data */
4195         memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4196                       data_end - data_size, btrfs_leaf_data(leaf) +
4197                       data_end, old_data - data_end);
4198
4199         data_end = old_data;
4200         old_size = btrfs_item_size_nr(leaf, slot);
4201         item = btrfs_item_nr(leaf, slot);
4202         btrfs_set_item_size(leaf, item, old_size + data_size);
4203         btrfs_mark_buffer_dirty(leaf);
4204
4205         if (btrfs_leaf_free_space(root, leaf) < 0) {
4206                 btrfs_print_leaf(root, leaf);
4207                 BUG();
4208         }
4209 }
4210
4211 /*
4212  * Given a key and some data, insert items into the tree.
4213  * This does all the path init required, making room in the tree if needed.
4214  * Returns the number of keys that were inserted.
4215  */
4216 int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
4217                             struct btrfs_root *root,
4218                             struct btrfs_path *path,
4219                             struct btrfs_key *cpu_key, u32 *data_size,
4220                             int nr)
4221 {
4222         struct extent_buffer *leaf;
4223         struct btrfs_item *item;
4224         int ret = 0;
4225         int slot;
4226         int i;
4227         u32 nritems;
4228         u32 total_data = 0;
4229         u32 total_size = 0;
4230         unsigned int data_end;
4231         struct btrfs_disk_key disk_key;
4232         struct btrfs_key found_key;
4233         struct btrfs_map_token token;
4234
4235         btrfs_init_map_token(&token);
4236
4237         for (i = 0; i < nr; i++) {
4238                 if (total_size + data_size[i] + sizeof(struct btrfs_item) >
4239                     BTRFS_LEAF_DATA_SIZE(root)) {
4240                         break;
4241                         nr = i;
4242                 }
4243                 total_data += data_size[i];
4244                 total_size += data_size[i] + sizeof(struct btrfs_item);
4245         }
4246         BUG_ON(nr == 0);
4247
4248         ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4249         if (ret == 0)
4250                 return -EEXIST;
4251         if (ret < 0)
4252                 goto out;
4253
4254         leaf = path->nodes[0];
4255
4256         nritems = btrfs_header_nritems(leaf);
4257         data_end = leaf_data_end(root, leaf);
4258
4259         if (btrfs_leaf_free_space(root, leaf) < total_size) {
4260                 for (i = nr; i >= 0; i--) {
4261                         total_data -= data_size[i];
4262                         total_size -= data_size[i] + sizeof(struct btrfs_item);
4263                         if (total_size < btrfs_leaf_free_space(root, leaf))
4264                                 break;
4265                 }
4266                 nr = i;
4267         }
4268
4269         slot = path->slots[0];
4270         BUG_ON(slot < 0);
4271
4272         if (slot != nritems) {
4273                 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4274
4275                 item = btrfs_item_nr(leaf, slot);
4276                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4277
4278                 /* figure out how many keys we can insert in here */
4279                 total_data = data_size[0];
4280                 for (i = 1; i < nr; i++) {
4281                         if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0)
4282                                 break;
4283                         total_data += data_size[i];
4284                 }
4285                 nr = i;
4286
4287                 if (old_data < data_end) {
4288                         btrfs_print_leaf(root, leaf);
4289                         printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
4290                                slot, old_data, data_end);
4291                         BUG_ON(1);
4292                 }
4293                 /*
4294                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
4295                  */
4296                 /* first correct the data pointers */
4297                 for (i = slot; i < nritems; i++) {
4298                         u32 ioff;
4299
4300                         item = btrfs_item_nr(leaf, i);
4301                         ioff = btrfs_token_item_offset(leaf, item, &token);
4302                         btrfs_set_token_item_offset(leaf, item,
4303                                                     ioff - total_data, &token);
4304                 }
4305                 /* shift the items */
4306                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4307                               btrfs_item_nr_offset(slot),
4308                               (nritems - slot) * sizeof(struct btrfs_item));
4309
4310                 /* shift the data */
4311                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4312                               data_end - total_data, btrfs_leaf_data(leaf) +
4313                               data_end, old_data - data_end);
4314                 data_end = old_data;
4315         } else {
4316                 /*
4317                  * this sucks but it has to be done, if we are inserting at
4318                  * the end of the leaf only insert 1 of the items, since we
4319                  * have no way of knowing whats on the next leaf and we'd have
4320                  * to drop our current locks to figure it out
4321                  */
4322                 nr = 1;
4323         }
4324
4325         /* setup the item for the new data */
4326         for (i = 0; i < nr; i++) {
4327                 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4328                 btrfs_set_item_key(leaf, &disk_key, slot + i);
4329                 item = btrfs_item_nr(leaf, slot + i);
4330                 btrfs_set_token_item_offset(leaf, item,
4331                                             data_end - data_size[i], &token);
4332                 data_end -= data_size[i];
4333                 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4334         }
4335         btrfs_set_header_nritems(leaf, nritems + nr);
4336         btrfs_mark_buffer_dirty(leaf);
4337
4338         ret = 0;
4339         if (slot == 0) {
4340                 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4341                 fixup_low_keys(trans, root, path, &disk_key, 1);
4342         }
4343
4344         if (btrfs_leaf_free_space(root, leaf) < 0) {
4345                 btrfs_print_leaf(root, leaf);
4346                 BUG();
4347         }
4348 out:
4349         if (!ret)
4350                 ret = nr;
4351         return ret;
4352 }
4353
4354 /*
4355  * this is a helper for btrfs_insert_empty_items, the main goal here is
4356  * to save stack depth by doing the bulk of the work in a function
4357  * that doesn't call btrfs_search_slot
4358  */
4359 void setup_items_for_insert(struct btrfs_trans_handle *trans,
4360                             struct btrfs_root *root, struct btrfs_path *path,
4361                             struct btrfs_key *cpu_key, u32 *data_size,
4362                             u32 total_data, u32 total_size, int nr)
4363 {
4364         struct btrfs_item *item;
4365         int i;
4366         u32 nritems;
4367         unsigned int data_end;
4368         struct btrfs_disk_key disk_key;
4369         struct extent_buffer *leaf;
4370         int slot;
4371         struct btrfs_map_token token;
4372
4373         btrfs_init_map_token(&token);
4374
4375         leaf = path->nodes[0];
4376         slot = path->slots[0];
4377
4378         nritems = btrfs_header_nritems(leaf);
4379         data_end = leaf_data_end(root, leaf);
4380
4381         if (btrfs_leaf_free_space(root, leaf) < total_size) {
4382                 btrfs_print_leaf(root, leaf);
4383                 printk(KERN_CRIT "not enough freespace need %u have %d\n",
4384                        total_size, btrfs_leaf_free_space(root, leaf));
4385                 BUG();
4386         }
4387
4388         if (slot != nritems) {
4389                 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4390
4391                 if (old_data < data_end) {
4392                         btrfs_print_leaf(root, leaf);
4393                         printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
4394                                slot, old_data, data_end);
4395                         BUG_ON(1);
4396                 }
4397                 /*
4398                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
4399                  */
4400                 /* first correct the data pointers */
4401                 for (i = slot; i < nritems; i++) {
4402                         u32 ioff;
4403
4404                         item = btrfs_item_nr(leaf, i);
4405                         ioff = btrfs_token_item_offset(leaf, item, &token);
4406                         btrfs_set_token_item_offset(leaf, item,
4407                                                     ioff - total_data, &token);
4408                 }
4409                 /* shift the items */
4410                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4411                               btrfs_item_nr_offset(slot),
4412                               (nritems - slot) * sizeof(struct btrfs_item));
4413
4414                 /* shift the data */
4415                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4416                               data_end - total_data, btrfs_leaf_data(leaf) +
4417                               data_end, old_data - data_end);
4418                 data_end = old_data;
4419         }
4420
4421         /* setup the item for the new data */
4422         for (i = 0; i < nr; i++) {
4423                 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4424                 btrfs_set_item_key(leaf, &disk_key, slot + i);
4425                 item = btrfs_item_nr(leaf, slot + i);
4426                 btrfs_set_token_item_offset(leaf, item,
4427                                             data_end - data_size[i], &token);
4428                 data_end -= data_size[i];
4429                 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4430         }
4431
4432         btrfs_set_header_nritems(leaf, nritems + nr);
4433
4434         if (slot == 0) {
4435                 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4436                 fixup_low_keys(trans, root, path, &disk_key, 1);
4437         }
4438         btrfs_unlock_up_safe(path, 1);
4439         btrfs_mark_buffer_dirty(leaf);
4440
4441         if (btrfs_leaf_free_space(root, leaf) < 0) {
4442                 btrfs_print_leaf(root, leaf);
4443                 BUG();
4444         }
4445 }
4446
4447 /*
4448  * Given a key and some data, insert items into the tree.
4449  * This does all the path init required, making room in the tree if needed.
4450  */
4451 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4452                             struct btrfs_root *root,
4453                             struct btrfs_path *path,
4454                             struct btrfs_key *cpu_key, u32 *data_size,
4455                             int nr)
4456 {
4457         int ret = 0;
4458         int slot;
4459         int i;
4460         u32 total_size = 0;
4461         u32 total_data = 0;
4462
4463         for (i = 0; i < nr; i++)
4464                 total_data += data_size[i];
4465
4466         total_size = total_data + (nr * sizeof(struct btrfs_item));
4467         ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4468         if (ret == 0)
4469                 return -EEXIST;
4470         if (ret < 0)
4471                 return ret;
4472
4473         slot = path->slots[0];
4474         BUG_ON(slot < 0);
4475
4476         setup_items_for_insert(trans, root, path, cpu_key, data_size,
4477                                total_data, total_size, nr);
4478         return 0;
4479 }
4480
4481 /*
4482  * Given a key and some data, insert an item into the tree.
4483  * This does all the path init required, making room in the tree if needed.
4484  */
4485 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4486                       *root, struct btrfs_key *cpu_key, void *data, u32
4487                       data_size)
4488 {
4489         int ret = 0;
4490         struct btrfs_path *path;
4491         struct extent_buffer *leaf;
4492         unsigned long ptr;
4493
4494         path = btrfs_alloc_path();
4495         if (!path)
4496                 return -ENOMEM;
4497         ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4498         if (!ret) {
4499                 leaf = path->nodes[0];
4500                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4501                 write_extent_buffer(leaf, data, ptr, data_size);
4502                 btrfs_mark_buffer_dirty(leaf);
4503         }
4504         btrfs_free_path(path);
4505         return ret;
4506 }
4507
4508 /*
4509  * delete the pointer from a given node.
4510  *
4511  * the tree should have been previously balanced so the deletion does not
4512  * empty a node.
4513  */
4514 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4515                     struct btrfs_path *path, int level, int slot,
4516                     int tree_mod_log)
4517 {
4518         struct extent_buffer *parent = path->nodes[level];
4519         u32 nritems;
4520         int ret;
4521
4522         nritems = btrfs_header_nritems(parent);
4523         if (slot != nritems - 1) {
4524                 if (tree_mod_log && level)
4525                         tree_mod_log_eb_move(root->fs_info, parent, slot,
4526                                              slot + 1, nritems - slot - 1);
4527                 memmove_extent_buffer(parent,
4528                               btrfs_node_key_ptr_offset(slot),
4529                               btrfs_node_key_ptr_offset(slot + 1),
4530                               sizeof(struct btrfs_key_ptr) *
4531                               (nritems - slot - 1));
4532         }
4533
4534         if (tree_mod_log && level) {
4535                 ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4536                                               MOD_LOG_KEY_REMOVE);
4537                 BUG_ON(ret < 0);
4538         }
4539
4540         nritems--;
4541         btrfs_set_header_nritems(parent, nritems);
4542         if (nritems == 0 && parent == root->node) {
4543                 BUG_ON(btrfs_header_level(root->node) != 1);
4544                 /* just turn the root into a leaf and break */
4545                 btrfs_set_header_level(root->node, 0);
4546         } else if (slot == 0) {
4547                 struct btrfs_disk_key disk_key;
4548
4549                 btrfs_node_key(parent, &disk_key, 0);
4550                 fixup_low_keys(trans, root, path, &disk_key, level + 1);
4551         }
4552         btrfs_mark_buffer_dirty(parent);
4553 }
4554
4555 /*
4556  * a helper function to delete the leaf pointed to by path->slots[1] and
4557  * path->nodes[1].
4558  *
4559  * This deletes the pointer in path->nodes[1] and frees the leaf
4560  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4561  *
4562  * The path must have already been setup for deleting the leaf, including
4563  * all the proper balancing.  path->nodes[1] must be locked.
4564  */
4565 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4566                                     struct btrfs_root *root,
4567                                     struct btrfs_path *path,
4568                                     struct extent_buffer *leaf)
4569 {
4570         WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4571         del_ptr(trans, root, path, 1, path->slots[1], 1);
4572
4573         /*
4574          * btrfs_free_extent is expensive, we want to make sure we
4575          * aren't holding any locks when we call it
4576          */
4577         btrfs_unlock_up_safe(path, 0);
4578
4579         root_sub_used(root, leaf->len);
4580
4581         extent_buffer_get(leaf);
4582         btrfs_free_tree_block(trans, root, leaf, 0, 1);
4583         free_extent_buffer_stale(leaf);
4584 }
4585 /*
4586  * delete the item at the leaf level in path.  If that empties
4587  * the leaf, remove it from the tree
4588  */
4589 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4590                     struct btrfs_path *path, int slot, int nr)
4591 {
4592         struct extent_buffer *leaf;
4593         struct btrfs_item *item;
4594         int last_off;
4595         int dsize = 0;
4596         int ret = 0;
4597         int wret;
4598         int i;
4599         u32 nritems;
4600         struct btrfs_map_token token;
4601
4602         btrfs_init_map_token(&token);
4603
4604         leaf = path->nodes[0];
4605         last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4606
4607         for (i = 0; i < nr; i++)
4608                 dsize += btrfs_item_size_nr(leaf, slot + i);
4609
4610         nritems = btrfs_header_nritems(leaf);
4611
4612         if (slot + nr != nritems) {
4613                 int data_end = leaf_data_end(root, leaf);
4614
4615                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4616                               data_end + dsize,
4617                               btrfs_leaf_data(leaf) + data_end,
4618                               last_off - data_end);
4619
4620                 for (i = slot + nr; i < nritems; i++) {
4621                         u32 ioff;
4622
4623                         item = btrfs_item_nr(leaf, i);
4624                         ioff = btrfs_token_item_offset(leaf, item, &token);
4625                         btrfs_set_token_item_offset(leaf, item,
4626                                                     ioff + dsize, &token);
4627                 }
4628
4629                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4630                               btrfs_item_nr_offset(slot + nr),
4631                               sizeof(struct btrfs_item) *
4632                               (nritems - slot - nr));
4633         }
4634         btrfs_set_header_nritems(leaf, nritems - nr);
4635         nritems -= nr;
4636
4637         /* delete the leaf if we've emptied it */
4638         if (nritems == 0) {
4639                 if (leaf == root->node) {
4640                         btrfs_set_header_level(leaf, 0);
4641                 } else {
4642                         btrfs_set_path_blocking(path);
4643                         clean_tree_block(trans, root, leaf);
4644                         btrfs_del_leaf(trans, root, path, leaf);
4645                 }
4646         } else {
4647                 int used = leaf_space_used(leaf, 0, nritems);
4648                 if (slot == 0) {
4649                         struct btrfs_disk_key disk_key;
4650
4651                         btrfs_item_key(leaf, &disk_key, 0);
4652                         fixup_low_keys(trans, root, path, &disk_key, 1);
4653                 }
4654
4655                 /* delete the leaf if it is mostly empty */
4656                 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
4657                         /* push_leaf_left fixes the path.
4658                          * make sure the path still points to our leaf
4659                          * for possible call to del_ptr below
4660                          */
4661                         slot = path->slots[1];
4662                         extent_buffer_get(leaf);
4663
4664                         btrfs_set_path_blocking(path);
4665                         wret = push_leaf_left(trans, root, path, 1, 1,
4666                                               1, (u32)-1);
4667                         if (wret < 0 && wret != -ENOSPC)
4668                                 ret = wret;
4669
4670                         if (path->nodes[0] == leaf &&
4671                             btrfs_header_nritems(leaf)) {
4672                                 wret = push_leaf_right(trans, root, path, 1,
4673                                                        1, 1, 0);
4674                                 if (wret < 0 && wret != -ENOSPC)
4675                                         ret = wret;
4676                         }
4677
4678                         if (btrfs_header_nritems(leaf) == 0) {
4679                                 path->slots[1] = slot;
4680                                 btrfs_del_leaf(trans, root, path, leaf);
4681                                 free_extent_buffer(leaf);
4682                                 ret = 0;
4683                         } else {
4684                                 /* if we're still in the path, make sure
4685                                  * we're dirty.  Otherwise, one of the
4686                                  * push_leaf functions must have already
4687                                  * dirtied this buffer
4688                                  */
4689                                 if (path->nodes[0] == leaf)
4690                                         btrfs_mark_buffer_dirty(leaf);
4691                                 free_extent_buffer(leaf);
4692                         }
4693                 } else {
4694                         btrfs_mark_buffer_dirty(leaf);
4695                 }
4696         }
4697         return ret;
4698 }
4699
4700 /*
4701  * search the tree again to find a leaf with lesser keys
4702  * returns 0 if it found something or 1 if there are no lesser leaves.
4703  * returns < 0 on io errors.
4704  *
4705  * This may release the path, and so you may lose any locks held at the
4706  * time you call it.
4707  */
4708 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4709 {
4710         struct btrfs_key key;
4711         struct btrfs_disk_key found_key;
4712         int ret;
4713
4714         btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4715
4716         if (key.offset > 0)
4717                 key.offset--;
4718         else if (key.type > 0)
4719                 key.type--;
4720         else if (key.objectid > 0)
4721                 key.objectid--;
4722         else
4723                 return 1;
4724
4725         btrfs_release_path(path);
4726         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4727         if (ret < 0)
4728                 return ret;
4729         btrfs_item_key(path->nodes[0], &found_key, 0);
4730         ret = comp_keys(&found_key, &key);
4731         if (ret < 0)
4732                 return 0;
4733         return 1;
4734 }
4735
4736 /*
4737  * A helper function to walk down the tree starting at min_key, and looking
4738  * for nodes or leaves that are either in cache or have a minimum
4739  * transaction id.  This is used by the btree defrag code, and tree logging
4740  *
4741  * This does not cow, but it does stuff the starting key it finds back
4742  * into min_key, so you can call btrfs_search_slot with cow=1 on the
4743  * key and get a writable path.
4744  *
4745  * This does lock as it descends, and path->keep_locks should be set
4746  * to 1 by the caller.
4747  *
4748  * This honors path->lowest_level to prevent descent past a given level
4749  * of the tree.
4750  *
4751  * min_trans indicates the oldest transaction that you are interested
4752  * in walking through.  Any nodes or leaves older than min_trans are
4753  * skipped over (without reading them).
4754  *
4755  * returns zero if something useful was found, < 0 on error and 1 if there
4756  * was nothing in the tree that matched the search criteria.
4757  */
4758 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4759                          struct btrfs_key *max_key,
4760                          struct btrfs_path *path, int cache_only,
4761                          u64 min_trans)
4762 {
4763         struct extent_buffer *cur;
4764         struct btrfs_key found_key;
4765         int slot;
4766         int sret;
4767         u32 nritems;
4768         int level;
4769         int ret = 1;
4770
4771         WARN_ON(!path->keep_locks);
4772 again:
4773         cur = btrfs_read_lock_root_node(root);
4774         level = btrfs_header_level(cur);
4775         WARN_ON(path->nodes[level]);
4776         path->nodes[level] = cur;
4777         path->locks[level] = BTRFS_READ_LOCK;
4778
4779         if (btrfs_header_generation(cur) < min_trans) {
4780                 ret = 1;
4781                 goto out;
4782         }
4783         while (1) {
4784                 nritems = btrfs_header_nritems(cur);
4785                 level = btrfs_header_level(cur);
4786                 sret = bin_search(cur, min_key, level, &slot);
4787
4788                 /* at the lowest level, we're done, setup the path and exit */
4789                 if (level == path->lowest_level) {
4790                         if (slot >= nritems)
4791                                 goto find_next_key;
4792                         ret = 0;
4793                         path->slots[level] = slot;
4794                         btrfs_item_key_to_cpu(cur, &found_key, slot);
4795                         goto out;
4796                 }
4797                 if (sret && slot > 0)
4798                         slot--;
4799                 /*
4800                  * check this node pointer against the cache_only and
4801                  * min_trans parameters.  If it isn't in cache or is too
4802                  * old, skip to the next one.
4803                  */
4804                 while (slot < nritems) {
4805                         u64 blockptr;
4806                         u64 gen;
4807                         struct extent_buffer *tmp;
4808                         struct btrfs_disk_key disk_key;
4809
4810                         blockptr = btrfs_node_blockptr(cur, slot);
4811                         gen = btrfs_node_ptr_generation(cur, slot);
4812                         if (gen < min_trans) {
4813                                 slot++;
4814                                 continue;
4815                         }
4816                         if (!cache_only)
4817                                 break;
4818
4819                         if (max_key) {
4820                                 btrfs_node_key(cur, &disk_key, slot);
4821                                 if (comp_keys(&disk_key, max_key) >= 0) {
4822                                         ret = 1;
4823                                         goto out;
4824                                 }
4825                         }
4826
4827                         tmp = btrfs_find_tree_block(root, blockptr,
4828                                             btrfs_level_size(root, level - 1));
4829
4830                         if (tmp && btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
4831                                 free_extent_buffer(tmp);
4832                                 break;
4833                         }
4834                         if (tmp)
4835                                 free_extent_buffer(tmp);
4836                         slot++;
4837                 }
4838 find_next_key:
4839                 /*
4840                  * we didn't find a candidate key in this node, walk forward
4841                  * and find another one
4842                  */
4843                 if (slot >= nritems) {
4844                         path->slots[level] = slot;
4845                         btrfs_set_path_blocking(path);
4846                         sret = btrfs_find_next_key(root, path, min_key, level,
4847                                                   cache_only, min_trans);
4848                         if (sret == 0) {
4849                                 btrfs_release_path(path);
4850                                 goto again;
4851                         } else {
4852                                 goto out;
4853                         }
4854                 }
4855                 /* save our key for returning back */
4856                 btrfs_node_key_to_cpu(cur, &found_key, slot);
4857                 path->slots[level] = slot;
4858                 if (level == path->lowest_level) {
4859                         ret = 0;
4860                         unlock_up(path, level, 1, 0, NULL);
4861                         goto out;
4862                 }
4863                 btrfs_set_path_blocking(path);
4864                 cur = read_node_slot(root, cur, slot);
4865                 BUG_ON(!cur); /* -ENOMEM */
4866
4867                 btrfs_tree_read_lock(cur);
4868
4869                 path->locks[level - 1] = BTRFS_READ_LOCK;
4870                 path->nodes[level - 1] = cur;
4871                 unlock_up(path, level, 1, 0, NULL);
4872                 btrfs_clear_path_blocking(path, NULL, 0);
4873         }
4874 out:
4875         if (ret == 0)
4876                 memcpy(min_key, &found_key, sizeof(found_key));
4877         btrfs_set_path_blocking(path);
4878         return ret;
4879 }
4880
4881 /*
4882  * this is similar to btrfs_next_leaf, but does not try to preserve
4883  * and fixup the path.  It looks for and returns the next key in the
4884  * tree based on the current path and the cache_only and min_trans
4885  * parameters.
4886  *
4887  * 0 is returned if another key is found, < 0 if there are any errors
4888  * and 1 is returned if there are no higher keys in the tree
4889  *
4890  * path->keep_locks should be set to 1 on the search made before
4891  * calling this function.
4892  */
4893 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4894                         struct btrfs_key *key, int level,
4895                         int cache_only, u64 min_trans)
4896 {
4897         int slot;
4898         struct extent_buffer *c;
4899
4900         WARN_ON(!path->keep_locks);
4901         while (level < BTRFS_MAX_LEVEL) {
4902                 if (!path->nodes[level])
4903                         return 1;
4904
4905                 slot = path->slots[level] + 1;
4906                 c = path->nodes[level];
4907 next:
4908                 if (slot >= btrfs_header_nritems(c)) {
4909                         int ret;
4910                         int orig_lowest;
4911                         struct btrfs_key cur_key;
4912                         if (level + 1 >= BTRFS_MAX_LEVEL ||
4913                             !path->nodes[level + 1])
4914                                 return 1;
4915
4916                         if (path->locks[level + 1]) {
4917                                 level++;
4918                                 continue;
4919                         }
4920
4921                         slot = btrfs_header_nritems(c) - 1;
4922                         if (level == 0)
4923                                 btrfs_item_key_to_cpu(c, &cur_key, slot);
4924                         else
4925                                 btrfs_node_key_to_cpu(c, &cur_key, slot);
4926
4927                         orig_lowest = path->lowest_level;
4928                         btrfs_release_path(path);
4929                         path->lowest_level = level;
4930                         ret = btrfs_search_slot(NULL, root, &cur_key, path,
4931                                                 0, 0);
4932                         path->lowest_level = orig_lowest;
4933                         if (ret < 0)
4934                                 return ret;
4935
4936                         c = path->nodes[level];
4937                         slot = path->slots[level];
4938                         if (ret == 0)
4939                                 slot++;
4940                         goto next;
4941                 }
4942
4943                 if (level == 0)
4944                         btrfs_item_key_to_cpu(c, key, slot);
4945                 else {
4946                         u64 blockptr = btrfs_node_blockptr(c, slot);
4947                         u64 gen = btrfs_node_ptr_generation(c, slot);
4948
4949                         if (cache_only) {
4950                                 struct extent_buffer *cur;
4951                                 cur = btrfs_find_tree_block(root, blockptr,
4952                                             btrfs_level_size(root, level - 1));
4953                                 if (!cur ||
4954                                     btrfs_buffer_uptodate(cur, gen, 1) <= 0) {
4955                                         slot++;
4956                                         if (cur)
4957                                                 free_extent_buffer(cur);
4958                                         goto next;
4959                                 }
4960                                 free_extent_buffer(cur);
4961                         }
4962                         if (gen < min_trans) {
4963                                 slot++;
4964                                 goto next;
4965                         }
4966                         btrfs_node_key_to_cpu(c, key, slot);
4967                 }
4968                 return 0;
4969         }
4970         return 1;
4971 }
4972
4973 /*
4974  * search the tree again to find a leaf with greater keys
4975  * returns 0 if it found something or 1 if there are no greater leaves.
4976  * returns < 0 on io errors.
4977  */
4978 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
4979 {
4980         int slot;
4981         int level;
4982         struct extent_buffer *c;
4983         struct extent_buffer *next;
4984         struct btrfs_key key;
4985         u32 nritems;
4986         int ret;
4987         int old_spinning = path->leave_spinning;
4988         int next_rw_lock = 0;
4989
4990         nritems = btrfs_header_nritems(path->nodes[0]);
4991         if (nritems == 0)
4992                 return 1;
4993
4994         btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4995 again:
4996         level = 1;
4997         next = NULL;
4998         next_rw_lock = 0;
4999         btrfs_release_path(path);
5000
5001         path->keep_locks = 1;
5002         path->leave_spinning = 1;
5003
5004         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5005         path->keep_locks = 0;
5006
5007         if (ret < 0)
5008                 return ret;
5009
5010         nritems = btrfs_header_nritems(path->nodes[0]);
5011         /*
5012          * by releasing the path above we dropped all our locks.  A balance
5013          * could have added more items next to the key that used to be
5014          * at the very end of the block.  So, check again here and
5015          * advance the path if there are now more items available.
5016          */
5017         if (nritems > 0 && path->slots[0] < nritems - 1) {
5018                 if (ret == 0)
5019                         path->slots[0]++;
5020                 ret = 0;
5021                 goto done;
5022         }
5023
5024         while (level < BTRFS_MAX_LEVEL) {
5025                 if (!path->nodes[level]) {
5026                         ret = 1;
5027                         goto done;
5028                 }
5029
5030                 slot = path->slots[level] + 1;
5031                 c = path->nodes[level];
5032                 if (slot >= btrfs_header_nritems(c)) {
5033                         level++;
5034                         if (level == BTRFS_MAX_LEVEL) {
5035                                 ret = 1;
5036                                 goto done;
5037                         }
5038                         continue;
5039                 }
5040
5041                 if (next) {
5042                         btrfs_tree_unlock_rw(next, next_rw_lock);
5043                         free_extent_buffer(next);
5044                 }
5045
5046                 next = c;
5047                 next_rw_lock = path->locks[level];
5048                 ret = read_block_for_search(NULL, root, path, &next, level,
5049                                             slot, &key, 0);
5050                 if (ret == -EAGAIN)
5051                         goto again;
5052
5053                 if (ret < 0) {
5054                         btrfs_release_path(path);
5055                         goto done;
5056                 }
5057
5058                 if (!path->skip_locking) {
5059                         ret = btrfs_try_tree_read_lock(next);
5060                         if (!ret) {
5061                                 btrfs_set_path_blocking(path);
5062                                 btrfs_tree_read_lock(next);
5063                                 btrfs_clear_path_blocking(path, next,
5064                                                           BTRFS_READ_LOCK);
5065                         }
5066                         next_rw_lock = BTRFS_READ_LOCK;
5067                 }
5068                 break;
5069         }
5070         path->slots[level] = slot;
5071         while (1) {
5072                 level--;
5073                 c = path->nodes[level];
5074                 if (path->locks[level])
5075                         btrfs_tree_unlock_rw(c, path->locks[level]);
5076
5077                 free_extent_buffer(c);
5078                 path->nodes[level] = next;
5079                 path->slots[level] = 0;
5080                 if (!path->skip_locking)
5081                         path->locks[level] = next_rw_lock;
5082                 if (!level)
5083                         break;
5084
5085                 ret = read_block_for_search(NULL, root, path, &next, level,
5086                                             0, &key, 0);
5087                 if (ret == -EAGAIN)
5088                         goto again;
5089
5090                 if (ret < 0) {
5091                         btrfs_release_path(path);
5092                         goto done;
5093                 }
5094
5095                 if (!path->skip_locking) {
5096                         ret = btrfs_try_tree_read_lock(next);
5097                         if (!ret) {
5098                                 btrfs_set_path_blocking(path);
5099                                 btrfs_tree_read_lock(next);
5100                                 btrfs_clear_path_blocking(path, next,
5101                                                           BTRFS_READ_LOCK);
5102                         }
5103                         next_rw_lock = BTRFS_READ_LOCK;
5104                 }
5105         }
5106         ret = 0;
5107 done:
5108         unlock_up(path, 0, 1, 0, NULL);
5109         path->leave_spinning = old_spinning;
5110         if (!old_spinning)
5111                 btrfs_set_path_blocking(path);
5112
5113         return ret;
5114 }
5115
5116 /*
5117  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5118  * searching until it gets past min_objectid or finds an item of 'type'
5119  *
5120  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5121  */
5122 int btrfs_previous_item(struct btrfs_root *root,
5123                         struct btrfs_path *path, u64 min_objectid,
5124                         int type)
5125 {
5126         struct btrfs_key found_key;
5127         struct extent_buffer *leaf;
5128         u32 nritems;
5129         int ret;
5130
5131         while (1) {
5132                 if (path->slots[0] == 0) {
5133                         btrfs_set_path_blocking(path);
5134                         ret = btrfs_prev_leaf(root, path);
5135                         if (ret != 0)
5136                                 return ret;
5137                 } else {
5138                         path->slots[0]--;
5139                 }
5140                 leaf = path->nodes[0];
5141                 nritems = btrfs_header_nritems(leaf);
5142                 if (nritems == 0)
5143                         return 1;
5144                 if (path->slots[0] == nritems)
5145                         path->slots[0]--;
5146
5147                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5148                 if (found_key.objectid < min_objectid)
5149                         break;
5150                 if (found_key.type == type)
5151                         return 0;
5152                 if (found_key.objectid == min_objectid &&
5153                     found_key.type < type)
5154                         break;
5155         }
5156         return 1;
5157 }