]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/btrfs/ctree.c
Merge tag 'mmc-fixes-for-3.5-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git...
[karo-tx-linux.git] / fs / btrfs / ctree.c
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "print-tree.h"
26 #include "locking.h"
27
28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
29                       *root, struct btrfs_path *path, int level);
30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
31                       *root, struct btrfs_key *ins_key,
32                       struct btrfs_path *path, int data_size, int extend);
33 static int push_node_left(struct btrfs_trans_handle *trans,
34                           struct btrfs_root *root, struct extent_buffer *dst,
35                           struct extent_buffer *src, int empty);
36 static int balance_node_right(struct btrfs_trans_handle *trans,
37                               struct btrfs_root *root,
38                               struct extent_buffer *dst_buf,
39                               struct extent_buffer *src_buf);
40 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
41                     struct btrfs_path *path, int level, int slot,
42                     int tree_mod_log);
43 static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
44                                  struct extent_buffer *eb);
45 struct extent_buffer *read_old_tree_block(struct btrfs_root *root, u64 bytenr,
46                                           u32 blocksize, u64 parent_transid,
47                                           u64 time_seq);
48 struct extent_buffer *btrfs_find_old_tree_block(struct btrfs_root *root,
49                                                 u64 bytenr, u32 blocksize,
50                                                 u64 time_seq);
51
52 struct btrfs_path *btrfs_alloc_path(void)
53 {
54         struct btrfs_path *path;
55         path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
56         return path;
57 }
58
59 /*
60  * set all locked nodes in the path to blocking locks.  This should
61  * be done before scheduling
62  */
63 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
64 {
65         int i;
66         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
67                 if (!p->nodes[i] || !p->locks[i])
68                         continue;
69                 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
70                 if (p->locks[i] == BTRFS_READ_LOCK)
71                         p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
72                 else if (p->locks[i] == BTRFS_WRITE_LOCK)
73                         p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
74         }
75 }
76
77 /*
78  * reset all the locked nodes in the patch to spinning locks.
79  *
80  * held is used to keep lockdep happy, when lockdep is enabled
81  * we set held to a blocking lock before we go around and
82  * retake all the spinlocks in the path.  You can safely use NULL
83  * for held
84  */
85 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
86                                         struct extent_buffer *held, int held_rw)
87 {
88         int i;
89
90 #ifdef CONFIG_DEBUG_LOCK_ALLOC
91         /* lockdep really cares that we take all of these spinlocks
92          * in the right order.  If any of the locks in the path are not
93          * currently blocking, it is going to complain.  So, make really
94          * really sure by forcing the path to blocking before we clear
95          * the path blocking.
96          */
97         if (held) {
98                 btrfs_set_lock_blocking_rw(held, held_rw);
99                 if (held_rw == BTRFS_WRITE_LOCK)
100                         held_rw = BTRFS_WRITE_LOCK_BLOCKING;
101                 else if (held_rw == BTRFS_READ_LOCK)
102                         held_rw = BTRFS_READ_LOCK_BLOCKING;
103         }
104         btrfs_set_path_blocking(p);
105 #endif
106
107         for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
108                 if (p->nodes[i] && p->locks[i]) {
109                         btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
110                         if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
111                                 p->locks[i] = BTRFS_WRITE_LOCK;
112                         else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
113                                 p->locks[i] = BTRFS_READ_LOCK;
114                 }
115         }
116
117 #ifdef CONFIG_DEBUG_LOCK_ALLOC
118         if (held)
119                 btrfs_clear_lock_blocking_rw(held, held_rw);
120 #endif
121 }
122
123 /* this also releases the path */
124 void btrfs_free_path(struct btrfs_path *p)
125 {
126         if (!p)
127                 return;
128         btrfs_release_path(p);
129         kmem_cache_free(btrfs_path_cachep, p);
130 }
131
132 /*
133  * path release drops references on the extent buffers in the path
134  * and it drops any locks held by this path
135  *
136  * It is safe to call this on paths that no locks or extent buffers held.
137  */
138 noinline void btrfs_release_path(struct btrfs_path *p)
139 {
140         int i;
141
142         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
143                 p->slots[i] = 0;
144                 if (!p->nodes[i])
145                         continue;
146                 if (p->locks[i]) {
147                         btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
148                         p->locks[i] = 0;
149                 }
150                 free_extent_buffer(p->nodes[i]);
151                 p->nodes[i] = NULL;
152         }
153 }
154
155 /*
156  * safely gets a reference on the root node of a tree.  A lock
157  * is not taken, so a concurrent writer may put a different node
158  * at the root of the tree.  See btrfs_lock_root_node for the
159  * looping required.
160  *
161  * The extent buffer returned by this has a reference taken, so
162  * it won't disappear.  It may stop being the root of the tree
163  * at any time because there are no locks held.
164  */
165 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
166 {
167         struct extent_buffer *eb;
168
169         while (1) {
170                 rcu_read_lock();
171                 eb = rcu_dereference(root->node);
172
173                 /*
174                  * RCU really hurts here, we could free up the root node because
175                  * it was cow'ed but we may not get the new root node yet so do
176                  * the inc_not_zero dance and if it doesn't work then
177                  * synchronize_rcu and try again.
178                  */
179                 if (atomic_inc_not_zero(&eb->refs)) {
180                         rcu_read_unlock();
181                         break;
182                 }
183                 rcu_read_unlock();
184                 synchronize_rcu();
185         }
186         return eb;
187 }
188
189 /* loop around taking references on and locking the root node of the
190  * tree until you end up with a lock on the root.  A locked buffer
191  * is returned, with a reference held.
192  */
193 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
194 {
195         struct extent_buffer *eb;
196
197         while (1) {
198                 eb = btrfs_root_node(root);
199                 btrfs_tree_lock(eb);
200                 if (eb == root->node)
201                         break;
202                 btrfs_tree_unlock(eb);
203                 free_extent_buffer(eb);
204         }
205         return eb;
206 }
207
208 /* loop around taking references on and locking the root node of the
209  * tree until you end up with a lock on the root.  A locked buffer
210  * is returned, with a reference held.
211  */
212 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
213 {
214         struct extent_buffer *eb;
215
216         while (1) {
217                 eb = btrfs_root_node(root);
218                 btrfs_tree_read_lock(eb);
219                 if (eb == root->node)
220                         break;
221                 btrfs_tree_read_unlock(eb);
222                 free_extent_buffer(eb);
223         }
224         return eb;
225 }
226
227 /* cowonly root (everything not a reference counted cow subvolume), just get
228  * put onto a simple dirty list.  transaction.c walks this to make sure they
229  * get properly updated on disk.
230  */
231 static void add_root_to_dirty_list(struct btrfs_root *root)
232 {
233         spin_lock(&root->fs_info->trans_lock);
234         if (root->track_dirty && list_empty(&root->dirty_list)) {
235                 list_add(&root->dirty_list,
236                          &root->fs_info->dirty_cowonly_roots);
237         }
238         spin_unlock(&root->fs_info->trans_lock);
239 }
240
241 /*
242  * used by snapshot creation to make a copy of a root for a tree with
243  * a given objectid.  The buffer with the new root node is returned in
244  * cow_ret, and this func returns zero on success or a negative error code.
245  */
246 int btrfs_copy_root(struct btrfs_trans_handle *trans,
247                       struct btrfs_root *root,
248                       struct extent_buffer *buf,
249                       struct extent_buffer **cow_ret, u64 new_root_objectid)
250 {
251         struct extent_buffer *cow;
252         int ret = 0;
253         int level;
254         struct btrfs_disk_key disk_key;
255
256         WARN_ON(root->ref_cows && trans->transid !=
257                 root->fs_info->running_transaction->transid);
258         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
259
260         level = btrfs_header_level(buf);
261         if (level == 0)
262                 btrfs_item_key(buf, &disk_key, 0);
263         else
264                 btrfs_node_key(buf, &disk_key, 0);
265
266         cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
267                                      new_root_objectid, &disk_key, level,
268                                      buf->start, 0);
269         if (IS_ERR(cow))
270                 return PTR_ERR(cow);
271
272         copy_extent_buffer(cow, buf, 0, 0, cow->len);
273         btrfs_set_header_bytenr(cow, cow->start);
274         btrfs_set_header_generation(cow, trans->transid);
275         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
276         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
277                                      BTRFS_HEADER_FLAG_RELOC);
278         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
279                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
280         else
281                 btrfs_set_header_owner(cow, new_root_objectid);
282
283         write_extent_buffer(cow, root->fs_info->fsid,
284                             (unsigned long)btrfs_header_fsid(cow),
285                             BTRFS_FSID_SIZE);
286
287         WARN_ON(btrfs_header_generation(buf) > trans->transid);
288         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
289                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
290         else
291                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
292
293         if (ret)
294                 return ret;
295
296         btrfs_mark_buffer_dirty(cow);
297         *cow_ret = cow;
298         return 0;
299 }
300
301 enum mod_log_op {
302         MOD_LOG_KEY_REPLACE,
303         MOD_LOG_KEY_ADD,
304         MOD_LOG_KEY_REMOVE,
305         MOD_LOG_KEY_REMOVE_WHILE_FREEING,
306         MOD_LOG_KEY_REMOVE_WHILE_MOVING,
307         MOD_LOG_MOVE_KEYS,
308         MOD_LOG_ROOT_REPLACE,
309 };
310
311 struct tree_mod_move {
312         int dst_slot;
313         int nr_items;
314 };
315
316 struct tree_mod_root {
317         u64 logical;
318         u8 level;
319 };
320
321 struct tree_mod_elem {
322         struct rb_node node;
323         u64 index;              /* shifted logical */
324         struct seq_list elem;
325         enum mod_log_op op;
326
327         /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
328         int slot;
329
330         /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
331         u64 generation;
332
333         /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
334         struct btrfs_disk_key key;
335         u64 blockptr;
336
337         /* this is used for op == MOD_LOG_MOVE_KEYS */
338         struct tree_mod_move move;
339
340         /* this is used for op == MOD_LOG_ROOT_REPLACE */
341         struct tree_mod_root old_root;
342 };
343
344 static inline void
345 __get_tree_mod_seq(struct btrfs_fs_info *fs_info, struct seq_list *elem)
346 {
347         elem->seq = atomic_inc_return(&fs_info->tree_mod_seq);
348         list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
349 }
350
351 void btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
352                             struct seq_list *elem)
353 {
354         elem->flags = 1;
355         spin_lock(&fs_info->tree_mod_seq_lock);
356         __get_tree_mod_seq(fs_info, elem);
357         spin_unlock(&fs_info->tree_mod_seq_lock);
358 }
359
360 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
361                             struct seq_list *elem)
362 {
363         struct rb_root *tm_root;
364         struct rb_node *node;
365         struct rb_node *next;
366         struct seq_list *cur_elem;
367         struct tree_mod_elem *tm;
368         u64 min_seq = (u64)-1;
369         u64 seq_putting = elem->seq;
370
371         if (!seq_putting)
372                 return;
373
374         BUG_ON(!(elem->flags & 1));
375         spin_lock(&fs_info->tree_mod_seq_lock);
376         list_del(&elem->list);
377
378         list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
379                 if ((cur_elem->flags & 1) && cur_elem->seq < min_seq) {
380                         if (seq_putting > cur_elem->seq) {
381                                 /*
382                                  * blocker with lower sequence number exists, we
383                                  * cannot remove anything from the log
384                                  */
385                                 goto out;
386                         }
387                         min_seq = cur_elem->seq;
388                 }
389         }
390
391         /*
392          * anything that's lower than the lowest existing (read: blocked)
393          * sequence number can be removed from the tree.
394          */
395         write_lock(&fs_info->tree_mod_log_lock);
396         tm_root = &fs_info->tree_mod_log;
397         for (node = rb_first(tm_root); node; node = next) {
398                 next = rb_next(node);
399                 tm = container_of(node, struct tree_mod_elem, node);
400                 if (tm->elem.seq > min_seq)
401                         continue;
402                 rb_erase(node, tm_root);
403                 list_del(&tm->elem.list);
404                 kfree(tm);
405         }
406         write_unlock(&fs_info->tree_mod_log_lock);
407 out:
408         spin_unlock(&fs_info->tree_mod_seq_lock);
409 }
410
411 /*
412  * key order of the log:
413  *       index -> sequence
414  *
415  * the index is the shifted logical of the *new* root node for root replace
416  * operations, or the shifted logical of the affected block for all other
417  * operations.
418  */
419 static noinline int
420 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
421 {
422         struct rb_root *tm_root;
423         struct rb_node **new;
424         struct rb_node *parent = NULL;
425         struct tree_mod_elem *cur;
426         int ret = 0;
427
428         BUG_ON(!tm || !tm->elem.seq);
429
430         write_lock(&fs_info->tree_mod_log_lock);
431         tm_root = &fs_info->tree_mod_log;
432         new = &tm_root->rb_node;
433         while (*new) {
434                 cur = container_of(*new, struct tree_mod_elem, node);
435                 parent = *new;
436                 if (cur->index < tm->index)
437                         new = &((*new)->rb_left);
438                 else if (cur->index > tm->index)
439                         new = &((*new)->rb_right);
440                 else if (cur->elem.seq < tm->elem.seq)
441                         new = &((*new)->rb_left);
442                 else if (cur->elem.seq > tm->elem.seq)
443                         new = &((*new)->rb_right);
444                 else {
445                         kfree(tm);
446                         ret = -EEXIST;
447                         goto unlock;
448                 }
449         }
450
451         rb_link_node(&tm->node, parent, new);
452         rb_insert_color(&tm->node, tm_root);
453 unlock:
454         write_unlock(&fs_info->tree_mod_log_lock);
455         return ret;
456 }
457
458 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
459                                     struct extent_buffer *eb) {
460         smp_mb();
461         if (list_empty(&(fs_info)->tree_mod_seq_list))
462                 return 1;
463         if (!eb)
464                 return 0;
465         if (btrfs_header_level(eb) == 0)
466                 return 1;
467         return 0;
468 }
469
470 /*
471  * This allocates memory and gets a tree modification sequence number when
472  * needed.
473  *
474  * Returns 0 when no sequence number is needed, < 0 on error.
475  * Returns 1 when a sequence number was added. In this case,
476  * fs_info->tree_mod_seq_lock was acquired and must be released by the caller
477  * after inserting into the rb tree.
478  */
479 static inline int tree_mod_alloc(struct btrfs_fs_info *fs_info, gfp_t flags,
480                                  struct tree_mod_elem **tm_ret)
481 {
482         struct tree_mod_elem *tm;
483         int seq;
484
485         if (tree_mod_dont_log(fs_info, NULL))
486                 return 0;
487
488         tm = *tm_ret = kzalloc(sizeof(*tm), flags);
489         if (!tm)
490                 return -ENOMEM;
491
492         tm->elem.flags = 0;
493         spin_lock(&fs_info->tree_mod_seq_lock);
494         if (list_empty(&fs_info->tree_mod_seq_list)) {
495                 /*
496                  * someone emptied the list while we were waiting for the lock.
497                  * we must not add to the list, because no blocker exists. items
498                  * are removed from the list only when the existing blocker is
499                  * removed from the list.
500                  */
501                 kfree(tm);
502                 seq = 0;
503                 spin_unlock(&fs_info->tree_mod_seq_lock);
504         } else {
505                 __get_tree_mod_seq(fs_info, &tm->elem);
506                 seq = tm->elem.seq;
507         }
508
509         return seq;
510 }
511
512 static noinline int
513 tree_mod_log_insert_key_mask(struct btrfs_fs_info *fs_info,
514                              struct extent_buffer *eb, int slot,
515                              enum mod_log_op op, gfp_t flags)
516 {
517         struct tree_mod_elem *tm;
518         int ret;
519
520         ret = tree_mod_alloc(fs_info, flags, &tm);
521         if (ret <= 0)
522                 return ret;
523
524         tm->index = eb->start >> PAGE_CACHE_SHIFT;
525         if (op != MOD_LOG_KEY_ADD) {
526                 btrfs_node_key(eb, &tm->key, slot);
527                 tm->blockptr = btrfs_node_blockptr(eb, slot);
528         }
529         tm->op = op;
530         tm->slot = slot;
531         tm->generation = btrfs_node_ptr_generation(eb, slot);
532
533         ret = __tree_mod_log_insert(fs_info, tm);
534         spin_unlock(&fs_info->tree_mod_seq_lock);
535         return ret;
536 }
537
538 static noinline int
539 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
540                         int slot, enum mod_log_op op)
541 {
542         return tree_mod_log_insert_key_mask(fs_info, eb, slot, op, GFP_NOFS);
543 }
544
545 static noinline int
546 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
547                          struct extent_buffer *eb, int dst_slot, int src_slot,
548                          int nr_items, gfp_t flags)
549 {
550         struct tree_mod_elem *tm;
551         int ret;
552         int i;
553
554         if (tree_mod_dont_log(fs_info, eb))
555                 return 0;
556
557         for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
558                 ret = tree_mod_log_insert_key(fs_info, eb, i + dst_slot,
559                                               MOD_LOG_KEY_REMOVE_WHILE_MOVING);
560                 BUG_ON(ret < 0);
561         }
562
563         ret = tree_mod_alloc(fs_info, flags, &tm);
564         if (ret <= 0)
565                 return ret;
566
567         tm->index = eb->start >> PAGE_CACHE_SHIFT;
568         tm->slot = src_slot;
569         tm->move.dst_slot = dst_slot;
570         tm->move.nr_items = nr_items;
571         tm->op = MOD_LOG_MOVE_KEYS;
572
573         ret = __tree_mod_log_insert(fs_info, tm);
574         spin_unlock(&fs_info->tree_mod_seq_lock);
575         return ret;
576 }
577
578 static noinline int
579 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
580                          struct extent_buffer *old_root,
581                          struct extent_buffer *new_root, gfp_t flags)
582 {
583         struct tree_mod_elem *tm;
584         int ret;
585
586         ret = tree_mod_alloc(fs_info, flags, &tm);
587         if (ret <= 0)
588                 return ret;
589
590         tm->index = new_root->start >> PAGE_CACHE_SHIFT;
591         tm->old_root.logical = old_root->start;
592         tm->old_root.level = btrfs_header_level(old_root);
593         tm->generation = btrfs_header_generation(old_root);
594         tm->op = MOD_LOG_ROOT_REPLACE;
595
596         ret = __tree_mod_log_insert(fs_info, tm);
597         spin_unlock(&fs_info->tree_mod_seq_lock);
598         return ret;
599 }
600
601 static struct tree_mod_elem *
602 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
603                       int smallest)
604 {
605         struct rb_root *tm_root;
606         struct rb_node *node;
607         struct tree_mod_elem *cur = NULL;
608         struct tree_mod_elem *found = NULL;
609         u64 index = start >> PAGE_CACHE_SHIFT;
610
611         read_lock(&fs_info->tree_mod_log_lock);
612         tm_root = &fs_info->tree_mod_log;
613         node = tm_root->rb_node;
614         while (node) {
615                 cur = container_of(node, struct tree_mod_elem, node);
616                 if (cur->index < index) {
617                         node = node->rb_left;
618                 } else if (cur->index > index) {
619                         node = node->rb_right;
620                 } else if (cur->elem.seq < min_seq) {
621                         node = node->rb_left;
622                 } else if (!smallest) {
623                         /* we want the node with the highest seq */
624                         if (found)
625                                 BUG_ON(found->elem.seq > cur->elem.seq);
626                         found = cur;
627                         node = node->rb_left;
628                 } else if (cur->elem.seq > min_seq) {
629                         /* we want the node with the smallest seq */
630                         if (found)
631                                 BUG_ON(found->elem.seq < cur->elem.seq);
632                         found = cur;
633                         node = node->rb_right;
634                 } else {
635                         found = cur;
636                         break;
637                 }
638         }
639         read_unlock(&fs_info->tree_mod_log_lock);
640
641         return found;
642 }
643
644 /*
645  * this returns the element from the log with the smallest time sequence
646  * value that's in the log (the oldest log item). any element with a time
647  * sequence lower than min_seq will be ignored.
648  */
649 static struct tree_mod_elem *
650 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
651                            u64 min_seq)
652 {
653         return __tree_mod_log_search(fs_info, start, min_seq, 1);
654 }
655
656 /*
657  * this returns the element from the log with the largest time sequence
658  * value that's in the log (the most recent log item). any element with
659  * a time sequence lower than min_seq will be ignored.
660  */
661 static struct tree_mod_elem *
662 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
663 {
664         return __tree_mod_log_search(fs_info, start, min_seq, 0);
665 }
666
667 static inline void
668 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
669                      struct extent_buffer *src, unsigned long dst_offset,
670                      unsigned long src_offset, int nr_items)
671 {
672         int ret;
673         int i;
674
675         if (tree_mod_dont_log(fs_info, NULL))
676                 return;
677
678         if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
679                 return;
680
681         /* speed this up by single seq for all operations? */
682         for (i = 0; i < nr_items; i++) {
683                 ret = tree_mod_log_insert_key(fs_info, src, i + src_offset,
684                                               MOD_LOG_KEY_REMOVE);
685                 BUG_ON(ret < 0);
686                 ret = tree_mod_log_insert_key(fs_info, dst, i + dst_offset,
687                                               MOD_LOG_KEY_ADD);
688                 BUG_ON(ret < 0);
689         }
690 }
691
692 static inline void
693 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
694                      int dst_offset, int src_offset, int nr_items)
695 {
696         int ret;
697         ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
698                                        nr_items, GFP_NOFS);
699         BUG_ON(ret < 0);
700 }
701
702 static inline void
703 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
704                           struct extent_buffer *eb,
705                           struct btrfs_disk_key *disk_key, int slot, int atomic)
706 {
707         int ret;
708
709         ret = tree_mod_log_insert_key_mask(fs_info, eb, slot,
710                                            MOD_LOG_KEY_REPLACE,
711                                            atomic ? GFP_ATOMIC : GFP_NOFS);
712         BUG_ON(ret < 0);
713 }
714
715 static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
716                                  struct extent_buffer *eb)
717 {
718         int i;
719         int ret;
720         u32 nritems;
721
722         if (tree_mod_dont_log(fs_info, eb))
723                 return;
724
725         nritems = btrfs_header_nritems(eb);
726         for (i = nritems - 1; i >= 0; i--) {
727                 ret = tree_mod_log_insert_key(fs_info, eb, i,
728                                               MOD_LOG_KEY_REMOVE_WHILE_FREEING);
729                 BUG_ON(ret < 0);
730         }
731 }
732
733 static inline void
734 tree_mod_log_set_root_pointer(struct btrfs_root *root,
735                               struct extent_buffer *new_root_node)
736 {
737         int ret;
738         tree_mod_log_free_eb(root->fs_info, root->node);
739         ret = tree_mod_log_insert_root(root->fs_info, root->node,
740                                        new_root_node, GFP_NOFS);
741         BUG_ON(ret < 0);
742 }
743
744 /*
745  * check if the tree block can be shared by multiple trees
746  */
747 int btrfs_block_can_be_shared(struct btrfs_root *root,
748                               struct extent_buffer *buf)
749 {
750         /*
751          * Tree blocks not in refernece counted trees and tree roots
752          * are never shared. If a block was allocated after the last
753          * snapshot and the block was not allocated by tree relocation,
754          * we know the block is not shared.
755          */
756         if (root->ref_cows &&
757             buf != root->node && buf != root->commit_root &&
758             (btrfs_header_generation(buf) <=
759              btrfs_root_last_snapshot(&root->root_item) ||
760              btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
761                 return 1;
762 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
763         if (root->ref_cows &&
764             btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
765                 return 1;
766 #endif
767         return 0;
768 }
769
770 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
771                                        struct btrfs_root *root,
772                                        struct extent_buffer *buf,
773                                        struct extent_buffer *cow,
774                                        int *last_ref)
775 {
776         u64 refs;
777         u64 owner;
778         u64 flags;
779         u64 new_flags = 0;
780         int ret;
781
782         /*
783          * Backrefs update rules:
784          *
785          * Always use full backrefs for extent pointers in tree block
786          * allocated by tree relocation.
787          *
788          * If a shared tree block is no longer referenced by its owner
789          * tree (btrfs_header_owner(buf) == root->root_key.objectid),
790          * use full backrefs for extent pointers in tree block.
791          *
792          * If a tree block is been relocating
793          * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
794          * use full backrefs for extent pointers in tree block.
795          * The reason for this is some operations (such as drop tree)
796          * are only allowed for blocks use full backrefs.
797          */
798
799         if (btrfs_block_can_be_shared(root, buf)) {
800                 ret = btrfs_lookup_extent_info(trans, root, buf->start,
801                                                buf->len, &refs, &flags);
802                 if (ret)
803                         return ret;
804                 if (refs == 0) {
805                         ret = -EROFS;
806                         btrfs_std_error(root->fs_info, ret);
807                         return ret;
808                 }
809         } else {
810                 refs = 1;
811                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
812                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
813                         flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
814                 else
815                         flags = 0;
816         }
817
818         owner = btrfs_header_owner(buf);
819         BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
820                !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
821
822         if (refs > 1) {
823                 if ((owner == root->root_key.objectid ||
824                      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
825                     !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
826                         ret = btrfs_inc_ref(trans, root, buf, 1, 1);
827                         BUG_ON(ret); /* -ENOMEM */
828
829                         if (root->root_key.objectid ==
830                             BTRFS_TREE_RELOC_OBJECTID) {
831                                 ret = btrfs_dec_ref(trans, root, buf, 0, 1);
832                                 BUG_ON(ret); /* -ENOMEM */
833                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
834                                 BUG_ON(ret); /* -ENOMEM */
835                         }
836                         new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
837                 } else {
838
839                         if (root->root_key.objectid ==
840                             BTRFS_TREE_RELOC_OBJECTID)
841                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
842                         else
843                                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
844                         BUG_ON(ret); /* -ENOMEM */
845                 }
846                 if (new_flags != 0) {
847                         ret = btrfs_set_disk_extent_flags(trans, root,
848                                                           buf->start,
849                                                           buf->len,
850                                                           new_flags, 0);
851                         if (ret)
852                                 return ret;
853                 }
854         } else {
855                 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
856                         if (root->root_key.objectid ==
857                             BTRFS_TREE_RELOC_OBJECTID)
858                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
859                         else
860                                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
861                         BUG_ON(ret); /* -ENOMEM */
862                         ret = btrfs_dec_ref(trans, root, buf, 1, 1);
863                         BUG_ON(ret); /* -ENOMEM */
864                 }
865                 /*
866                  * don't log freeing in case we're freeing the root node, this
867                  * is done by tree_mod_log_set_root_pointer later
868                  */
869                 if (buf != root->node && btrfs_header_level(buf) != 0)
870                         tree_mod_log_free_eb(root->fs_info, buf);
871                 clean_tree_block(trans, root, buf);
872                 *last_ref = 1;
873         }
874         return 0;
875 }
876
877 /*
878  * does the dirty work in cow of a single block.  The parent block (if
879  * supplied) is updated to point to the new cow copy.  The new buffer is marked
880  * dirty and returned locked.  If you modify the block it needs to be marked
881  * dirty again.
882  *
883  * search_start -- an allocation hint for the new block
884  *
885  * empty_size -- a hint that you plan on doing more cow.  This is the size in
886  * bytes the allocator should try to find free next to the block it returns.
887  * This is just a hint and may be ignored by the allocator.
888  */
889 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
890                              struct btrfs_root *root,
891                              struct extent_buffer *buf,
892                              struct extent_buffer *parent, int parent_slot,
893                              struct extent_buffer **cow_ret,
894                              u64 search_start, u64 empty_size)
895 {
896         struct btrfs_disk_key disk_key;
897         struct extent_buffer *cow;
898         int level, ret;
899         int last_ref = 0;
900         int unlock_orig = 0;
901         u64 parent_start;
902
903         if (*cow_ret == buf)
904                 unlock_orig = 1;
905
906         btrfs_assert_tree_locked(buf);
907
908         WARN_ON(root->ref_cows && trans->transid !=
909                 root->fs_info->running_transaction->transid);
910         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
911
912         level = btrfs_header_level(buf);
913
914         if (level == 0)
915                 btrfs_item_key(buf, &disk_key, 0);
916         else
917                 btrfs_node_key(buf, &disk_key, 0);
918
919         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
920                 if (parent)
921                         parent_start = parent->start;
922                 else
923                         parent_start = 0;
924         } else
925                 parent_start = 0;
926
927         cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
928                                      root->root_key.objectid, &disk_key,
929                                      level, search_start, empty_size);
930         if (IS_ERR(cow))
931                 return PTR_ERR(cow);
932
933         /* cow is set to blocking by btrfs_init_new_buffer */
934
935         copy_extent_buffer(cow, buf, 0, 0, cow->len);
936         btrfs_set_header_bytenr(cow, cow->start);
937         btrfs_set_header_generation(cow, trans->transid);
938         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
939         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
940                                      BTRFS_HEADER_FLAG_RELOC);
941         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
942                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
943         else
944                 btrfs_set_header_owner(cow, root->root_key.objectid);
945
946         write_extent_buffer(cow, root->fs_info->fsid,
947                             (unsigned long)btrfs_header_fsid(cow),
948                             BTRFS_FSID_SIZE);
949
950         ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
951         if (ret) {
952                 btrfs_abort_transaction(trans, root, ret);
953                 return ret;
954         }
955
956         if (root->ref_cows)
957                 btrfs_reloc_cow_block(trans, root, buf, cow);
958
959         if (buf == root->node) {
960                 WARN_ON(parent && parent != buf);
961                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
962                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
963                         parent_start = buf->start;
964                 else
965                         parent_start = 0;
966
967                 extent_buffer_get(cow);
968                 tree_mod_log_set_root_pointer(root, cow);
969                 rcu_assign_pointer(root->node, cow);
970
971                 btrfs_free_tree_block(trans, root, buf, parent_start,
972                                       last_ref);
973                 free_extent_buffer(buf);
974                 add_root_to_dirty_list(root);
975         } else {
976                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
977                         parent_start = parent->start;
978                 else
979                         parent_start = 0;
980
981                 WARN_ON(trans->transid != btrfs_header_generation(parent));
982                 tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
983                                         MOD_LOG_KEY_REPLACE);
984                 btrfs_set_node_blockptr(parent, parent_slot,
985                                         cow->start);
986                 btrfs_set_node_ptr_generation(parent, parent_slot,
987                                               trans->transid);
988                 btrfs_mark_buffer_dirty(parent);
989                 btrfs_free_tree_block(trans, root, buf, parent_start,
990                                       last_ref);
991         }
992         if (unlock_orig)
993                 btrfs_tree_unlock(buf);
994         free_extent_buffer_stale(buf);
995         btrfs_mark_buffer_dirty(cow);
996         *cow_ret = cow;
997         return 0;
998 }
999
1000 /*
1001  * returns the logical address of the oldest predecessor of the given root.
1002  * entries older than time_seq are ignored.
1003  */
1004 static struct tree_mod_elem *
1005 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1006                            struct btrfs_root *root, u64 time_seq)
1007 {
1008         struct tree_mod_elem *tm;
1009         struct tree_mod_elem *found = NULL;
1010         u64 root_logical = root->node->start;
1011         int looped = 0;
1012
1013         if (!time_seq)
1014                 return 0;
1015
1016         /*
1017          * the very last operation that's logged for a root is the replacement
1018          * operation (if it is replaced at all). this has the index of the *new*
1019          * root, making it the very first operation that's logged for this root.
1020          */
1021         while (1) {
1022                 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1023                                                 time_seq);
1024                 if (!looped && !tm)
1025                         return 0;
1026                 /*
1027                  * we must have key remove operations in the log before the
1028                  * replace operation.
1029                  */
1030                 BUG_ON(!tm);
1031
1032                 if (tm->op != MOD_LOG_ROOT_REPLACE)
1033                         break;
1034
1035                 found = tm;
1036                 root_logical = tm->old_root.logical;
1037                 BUG_ON(root_logical == root->node->start);
1038                 looped = 1;
1039         }
1040
1041         /* if there's no old root to return, return what we found instead */
1042         if (!found)
1043                 found = tm;
1044
1045         return found;
1046 }
1047
1048 /*
1049  * tm is a pointer to the first operation to rewind within eb. then, all
1050  * previous operations will be rewinded (until we reach something older than
1051  * time_seq).
1052  */
1053 static void
1054 __tree_mod_log_rewind(struct extent_buffer *eb, u64 time_seq,
1055                       struct tree_mod_elem *first_tm)
1056 {
1057         u32 n;
1058         struct rb_node *next;
1059         struct tree_mod_elem *tm = first_tm;
1060         unsigned long o_dst;
1061         unsigned long o_src;
1062         unsigned long p_size = sizeof(struct btrfs_key_ptr);
1063
1064         n = btrfs_header_nritems(eb);
1065         while (tm && tm->elem.seq >= time_seq) {
1066                 /*
1067                  * all the operations are recorded with the operator used for
1068                  * the modification. as we're going backwards, we do the
1069                  * opposite of each operation here.
1070                  */
1071                 switch (tm->op) {
1072                 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1073                         BUG_ON(tm->slot < n);
1074                 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1075                 case MOD_LOG_KEY_REMOVE:
1076                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1077                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1078                         btrfs_set_node_ptr_generation(eb, tm->slot,
1079                                                       tm->generation);
1080                         n++;
1081                         break;
1082                 case MOD_LOG_KEY_REPLACE:
1083                         BUG_ON(tm->slot >= n);
1084                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1085                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1086                         btrfs_set_node_ptr_generation(eb, tm->slot,
1087                                                       tm->generation);
1088                         break;
1089                 case MOD_LOG_KEY_ADD:
1090                         if (tm->slot != n - 1) {
1091                                 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1092                                 o_src = btrfs_node_key_ptr_offset(tm->slot + 1);
1093                                 memmove_extent_buffer(eb, o_dst, o_src, p_size);
1094                         }
1095                         n--;
1096                         break;
1097                 case MOD_LOG_MOVE_KEYS:
1098                         o_dst = btrfs_node_key_ptr_offset(tm->slot);
1099                         o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1100                         memmove_extent_buffer(eb, o_dst, o_src,
1101                                               tm->move.nr_items * p_size);
1102                         break;
1103                 case MOD_LOG_ROOT_REPLACE:
1104                         /*
1105                          * this operation is special. for roots, this must be
1106                          * handled explicitly before rewinding.
1107                          * for non-roots, this operation may exist if the node
1108                          * was a root: root A -> child B; then A gets empty and
1109                          * B is promoted to the new root. in the mod log, we'll
1110                          * have a root-replace operation for B, a tree block
1111                          * that is no root. we simply ignore that operation.
1112                          */
1113                         break;
1114                 }
1115                 next = rb_next(&tm->node);
1116                 if (!next)
1117                         break;
1118                 tm = container_of(next, struct tree_mod_elem, node);
1119                 if (tm->index != first_tm->index)
1120                         break;
1121         }
1122         btrfs_set_header_nritems(eb, n);
1123 }
1124
1125 static struct extent_buffer *
1126 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1127                     u64 time_seq)
1128 {
1129         struct extent_buffer *eb_rewin;
1130         struct tree_mod_elem *tm;
1131
1132         if (!time_seq)
1133                 return eb;
1134
1135         if (btrfs_header_level(eb) == 0)
1136                 return eb;
1137
1138         tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1139         if (!tm)
1140                 return eb;
1141
1142         if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1143                 BUG_ON(tm->slot != 0);
1144                 eb_rewin = alloc_dummy_extent_buffer(eb->start,
1145                                                 fs_info->tree_root->nodesize);
1146                 BUG_ON(!eb_rewin);
1147                 btrfs_set_header_bytenr(eb_rewin, eb->start);
1148                 btrfs_set_header_backref_rev(eb_rewin,
1149                                              btrfs_header_backref_rev(eb));
1150                 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1151                 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1152         } else {
1153                 eb_rewin = btrfs_clone_extent_buffer(eb);
1154                 BUG_ON(!eb_rewin);
1155         }
1156
1157         extent_buffer_get(eb_rewin);
1158         free_extent_buffer(eb);
1159
1160         __tree_mod_log_rewind(eb_rewin, time_seq, tm);
1161
1162         return eb_rewin;
1163 }
1164
1165 /*
1166  * get_old_root() rewinds the state of @root's root node to the given @time_seq
1167  * value. If there are no changes, the current root->root_node is returned. If
1168  * anything changed in between, there's a fresh buffer allocated on which the
1169  * rewind operations are done. In any case, the returned buffer is read locked.
1170  * Returns NULL on error (with no locks held).
1171  */
1172 static inline struct extent_buffer *
1173 get_old_root(struct btrfs_root *root, u64 time_seq)
1174 {
1175         struct tree_mod_elem *tm;
1176         struct extent_buffer *eb;
1177         struct tree_mod_root *old_root = NULL;
1178         u64 old_generation = 0;
1179         u64 logical;
1180
1181         eb = btrfs_read_lock_root_node(root);
1182         tm = __tree_mod_log_oldest_root(root->fs_info, root, time_seq);
1183         if (!tm)
1184                 return root->node;
1185
1186         if (tm->op == MOD_LOG_ROOT_REPLACE) {
1187                 old_root = &tm->old_root;
1188                 old_generation = tm->generation;
1189                 logical = old_root->logical;
1190         } else {
1191                 logical = root->node->start;
1192         }
1193
1194         tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1195         /*
1196          * there was an item in the log when __tree_mod_log_oldest_root
1197          * returned. this one must not go away, because the time_seq passed to
1198          * us must be blocking its removal.
1199          */
1200         BUG_ON(!tm);
1201
1202         if (old_root)
1203                 eb = alloc_dummy_extent_buffer(tm->index << PAGE_CACHE_SHIFT,
1204                                                root->nodesize);
1205         else
1206                 eb = btrfs_clone_extent_buffer(root->node);
1207         btrfs_tree_read_unlock(root->node);
1208         free_extent_buffer(root->node);
1209         if (!eb)
1210                 return NULL;
1211         btrfs_tree_read_lock(eb);
1212         if (old_root) {
1213                 btrfs_set_header_bytenr(eb, eb->start);
1214                 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1215                 btrfs_set_header_owner(eb, root->root_key.objectid);
1216                 btrfs_set_header_level(eb, old_root->level);
1217                 btrfs_set_header_generation(eb, old_generation);
1218         }
1219         __tree_mod_log_rewind(eb, time_seq, tm);
1220         extent_buffer_get(eb);
1221
1222         return eb;
1223 }
1224
1225 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1226                                    struct btrfs_root *root,
1227                                    struct extent_buffer *buf)
1228 {
1229         /* ensure we can see the force_cow */
1230         smp_rmb();
1231
1232         /*
1233          * We do not need to cow a block if
1234          * 1) this block is not created or changed in this transaction;
1235          * 2) this block does not belong to TREE_RELOC tree;
1236          * 3) the root is not forced COW.
1237          *
1238          * What is forced COW:
1239          *    when we create snapshot during commiting the transaction,
1240          *    after we've finished coping src root, we must COW the shared
1241          *    block to ensure the metadata consistency.
1242          */
1243         if (btrfs_header_generation(buf) == trans->transid &&
1244             !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1245             !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1246               btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1247             !root->force_cow)
1248                 return 0;
1249         return 1;
1250 }
1251
1252 /*
1253  * cows a single block, see __btrfs_cow_block for the real work.
1254  * This version of it has extra checks so that a block isn't cow'd more than
1255  * once per transaction, as long as it hasn't been written yet
1256  */
1257 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1258                     struct btrfs_root *root, struct extent_buffer *buf,
1259                     struct extent_buffer *parent, int parent_slot,
1260                     struct extent_buffer **cow_ret)
1261 {
1262         u64 search_start;
1263         int ret;
1264
1265         if (trans->transaction != root->fs_info->running_transaction) {
1266                 printk(KERN_CRIT "trans %llu running %llu\n",
1267                        (unsigned long long)trans->transid,
1268                        (unsigned long long)
1269                        root->fs_info->running_transaction->transid);
1270                 WARN_ON(1);
1271         }
1272         if (trans->transid != root->fs_info->generation) {
1273                 printk(KERN_CRIT "trans %llu running %llu\n",
1274                        (unsigned long long)trans->transid,
1275                        (unsigned long long)root->fs_info->generation);
1276                 WARN_ON(1);
1277         }
1278
1279         if (!should_cow_block(trans, root, buf)) {
1280                 *cow_ret = buf;
1281                 return 0;
1282         }
1283
1284         search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
1285
1286         if (parent)
1287                 btrfs_set_lock_blocking(parent);
1288         btrfs_set_lock_blocking(buf);
1289
1290         ret = __btrfs_cow_block(trans, root, buf, parent,
1291                                  parent_slot, cow_ret, search_start, 0);
1292
1293         trace_btrfs_cow_block(root, buf, *cow_ret);
1294
1295         return ret;
1296 }
1297
1298 /*
1299  * helper function for defrag to decide if two blocks pointed to by a
1300  * node are actually close by
1301  */
1302 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1303 {
1304         if (blocknr < other && other - (blocknr + blocksize) < 32768)
1305                 return 1;
1306         if (blocknr > other && blocknr - (other + blocksize) < 32768)
1307                 return 1;
1308         return 0;
1309 }
1310
1311 /*
1312  * compare two keys in a memcmp fashion
1313  */
1314 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1315 {
1316         struct btrfs_key k1;
1317
1318         btrfs_disk_key_to_cpu(&k1, disk);
1319
1320         return btrfs_comp_cpu_keys(&k1, k2);
1321 }
1322
1323 /*
1324  * same as comp_keys only with two btrfs_key's
1325  */
1326 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1327 {
1328         if (k1->objectid > k2->objectid)
1329                 return 1;
1330         if (k1->objectid < k2->objectid)
1331                 return -1;
1332         if (k1->type > k2->type)
1333                 return 1;
1334         if (k1->type < k2->type)
1335                 return -1;
1336         if (k1->offset > k2->offset)
1337                 return 1;
1338         if (k1->offset < k2->offset)
1339                 return -1;
1340         return 0;
1341 }
1342
1343 /*
1344  * this is used by the defrag code to go through all the
1345  * leaves pointed to by a node and reallocate them so that
1346  * disk order is close to key order
1347  */
1348 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1349                        struct btrfs_root *root, struct extent_buffer *parent,
1350                        int start_slot, int cache_only, u64 *last_ret,
1351                        struct btrfs_key *progress)
1352 {
1353         struct extent_buffer *cur;
1354         u64 blocknr;
1355         u64 gen;
1356         u64 search_start = *last_ret;
1357         u64 last_block = 0;
1358         u64 other;
1359         u32 parent_nritems;
1360         int end_slot;
1361         int i;
1362         int err = 0;
1363         int parent_level;
1364         int uptodate;
1365         u32 blocksize;
1366         int progress_passed = 0;
1367         struct btrfs_disk_key disk_key;
1368
1369         parent_level = btrfs_header_level(parent);
1370         if (cache_only && parent_level != 1)
1371                 return 0;
1372
1373         if (trans->transaction != root->fs_info->running_transaction)
1374                 WARN_ON(1);
1375         if (trans->transid != root->fs_info->generation)
1376                 WARN_ON(1);
1377
1378         parent_nritems = btrfs_header_nritems(parent);
1379         blocksize = btrfs_level_size(root, parent_level - 1);
1380         end_slot = parent_nritems;
1381
1382         if (parent_nritems == 1)
1383                 return 0;
1384
1385         btrfs_set_lock_blocking(parent);
1386
1387         for (i = start_slot; i < end_slot; i++) {
1388                 int close = 1;
1389
1390                 btrfs_node_key(parent, &disk_key, i);
1391                 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1392                         continue;
1393
1394                 progress_passed = 1;
1395                 blocknr = btrfs_node_blockptr(parent, i);
1396                 gen = btrfs_node_ptr_generation(parent, i);
1397                 if (last_block == 0)
1398                         last_block = blocknr;
1399
1400                 if (i > 0) {
1401                         other = btrfs_node_blockptr(parent, i - 1);
1402                         close = close_blocks(blocknr, other, blocksize);
1403                 }
1404                 if (!close && i < end_slot - 2) {
1405                         other = btrfs_node_blockptr(parent, i + 1);
1406                         close = close_blocks(blocknr, other, blocksize);
1407                 }
1408                 if (close) {
1409                         last_block = blocknr;
1410                         continue;
1411                 }
1412
1413                 cur = btrfs_find_tree_block(root, blocknr, blocksize);
1414                 if (cur)
1415                         uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1416                 else
1417                         uptodate = 0;
1418                 if (!cur || !uptodate) {
1419                         if (cache_only) {
1420                                 free_extent_buffer(cur);
1421                                 continue;
1422                         }
1423                         if (!cur) {
1424                                 cur = read_tree_block(root, blocknr,
1425                                                          blocksize, gen);
1426                                 if (!cur)
1427                                         return -EIO;
1428                         } else if (!uptodate) {
1429                                 err = btrfs_read_buffer(cur, gen);
1430                                 if (err) {
1431                                         free_extent_buffer(cur);
1432                                         return err;
1433                                 }
1434                         }
1435                 }
1436                 if (search_start == 0)
1437                         search_start = last_block;
1438
1439                 btrfs_tree_lock(cur);
1440                 btrfs_set_lock_blocking(cur);
1441                 err = __btrfs_cow_block(trans, root, cur, parent, i,
1442                                         &cur, search_start,
1443                                         min(16 * blocksize,
1444                                             (end_slot - i) * blocksize));
1445                 if (err) {
1446                         btrfs_tree_unlock(cur);
1447                         free_extent_buffer(cur);
1448                         break;
1449                 }
1450                 search_start = cur->start;
1451                 last_block = cur->start;
1452                 *last_ret = search_start;
1453                 btrfs_tree_unlock(cur);
1454                 free_extent_buffer(cur);
1455         }
1456         return err;
1457 }
1458
1459 /*
1460  * The leaf data grows from end-to-front in the node.
1461  * this returns the address of the start of the last item,
1462  * which is the stop of the leaf data stack
1463  */
1464 static inline unsigned int leaf_data_end(struct btrfs_root *root,
1465                                          struct extent_buffer *leaf)
1466 {
1467         u32 nr = btrfs_header_nritems(leaf);
1468         if (nr == 0)
1469                 return BTRFS_LEAF_DATA_SIZE(root);
1470         return btrfs_item_offset_nr(leaf, nr - 1);
1471 }
1472
1473
1474 /*
1475  * search for key in the extent_buffer.  The items start at offset p,
1476  * and they are item_size apart.  There are 'max' items in p.
1477  *
1478  * the slot in the array is returned via slot, and it points to
1479  * the place where you would insert key if it is not found in
1480  * the array.
1481  *
1482  * slot may point to max if the key is bigger than all of the keys
1483  */
1484 static noinline int generic_bin_search(struct extent_buffer *eb,
1485                                        unsigned long p,
1486                                        int item_size, struct btrfs_key *key,
1487                                        int max, int *slot)
1488 {
1489         int low = 0;
1490         int high = max;
1491         int mid;
1492         int ret;
1493         struct btrfs_disk_key *tmp = NULL;
1494         struct btrfs_disk_key unaligned;
1495         unsigned long offset;
1496         char *kaddr = NULL;
1497         unsigned long map_start = 0;
1498         unsigned long map_len = 0;
1499         int err;
1500
1501         while (low < high) {
1502                 mid = (low + high) / 2;
1503                 offset = p + mid * item_size;
1504
1505                 if (!kaddr || offset < map_start ||
1506                     (offset + sizeof(struct btrfs_disk_key)) >
1507                     map_start + map_len) {
1508
1509                         err = map_private_extent_buffer(eb, offset,
1510                                                 sizeof(struct btrfs_disk_key),
1511                                                 &kaddr, &map_start, &map_len);
1512
1513                         if (!err) {
1514                                 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1515                                                         map_start);
1516                         } else {
1517                                 read_extent_buffer(eb, &unaligned,
1518                                                    offset, sizeof(unaligned));
1519                                 tmp = &unaligned;
1520                         }
1521
1522                 } else {
1523                         tmp = (struct btrfs_disk_key *)(kaddr + offset -
1524                                                         map_start);
1525                 }
1526                 ret = comp_keys(tmp, key);
1527
1528                 if (ret < 0)
1529                         low = mid + 1;
1530                 else if (ret > 0)
1531                         high = mid;
1532                 else {
1533                         *slot = mid;
1534                         return 0;
1535                 }
1536         }
1537         *slot = low;
1538         return 1;
1539 }
1540
1541 /*
1542  * simple bin_search frontend that does the right thing for
1543  * leaves vs nodes
1544  */
1545 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1546                       int level, int *slot)
1547 {
1548         if (level == 0)
1549                 return generic_bin_search(eb,
1550                                           offsetof(struct btrfs_leaf, items),
1551                                           sizeof(struct btrfs_item),
1552                                           key, btrfs_header_nritems(eb),
1553                                           slot);
1554         else
1555                 return generic_bin_search(eb,
1556                                           offsetof(struct btrfs_node, ptrs),
1557                                           sizeof(struct btrfs_key_ptr),
1558                                           key, btrfs_header_nritems(eb),
1559                                           slot);
1560 }
1561
1562 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1563                      int level, int *slot)
1564 {
1565         return bin_search(eb, key, level, slot);
1566 }
1567
1568 static void root_add_used(struct btrfs_root *root, u32 size)
1569 {
1570         spin_lock(&root->accounting_lock);
1571         btrfs_set_root_used(&root->root_item,
1572                             btrfs_root_used(&root->root_item) + size);
1573         spin_unlock(&root->accounting_lock);
1574 }
1575
1576 static void root_sub_used(struct btrfs_root *root, u32 size)
1577 {
1578         spin_lock(&root->accounting_lock);
1579         btrfs_set_root_used(&root->root_item,
1580                             btrfs_root_used(&root->root_item) - size);
1581         spin_unlock(&root->accounting_lock);
1582 }
1583
1584 /* given a node and slot number, this reads the blocks it points to.  The
1585  * extent buffer is returned with a reference taken (but unlocked).
1586  * NULL is returned on error.
1587  */
1588 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1589                                    struct extent_buffer *parent, int slot)
1590 {
1591         int level = btrfs_header_level(parent);
1592         if (slot < 0)
1593                 return NULL;
1594         if (slot >= btrfs_header_nritems(parent))
1595                 return NULL;
1596
1597         BUG_ON(level == 0);
1598
1599         return read_tree_block(root, btrfs_node_blockptr(parent, slot),
1600                        btrfs_level_size(root, level - 1),
1601                        btrfs_node_ptr_generation(parent, slot));
1602 }
1603
1604 /*
1605  * node level balancing, used to make sure nodes are in proper order for
1606  * item deletion.  We balance from the top down, so we have to make sure
1607  * that a deletion won't leave an node completely empty later on.
1608  */
1609 static noinline int balance_level(struct btrfs_trans_handle *trans,
1610                          struct btrfs_root *root,
1611                          struct btrfs_path *path, int level)
1612 {
1613         struct extent_buffer *right = NULL;
1614         struct extent_buffer *mid;
1615         struct extent_buffer *left = NULL;
1616         struct extent_buffer *parent = NULL;
1617         int ret = 0;
1618         int wret;
1619         int pslot;
1620         int orig_slot = path->slots[level];
1621         u64 orig_ptr;
1622
1623         if (level == 0)
1624                 return 0;
1625
1626         mid = path->nodes[level];
1627
1628         WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1629                 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1630         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1631
1632         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1633
1634         if (level < BTRFS_MAX_LEVEL - 1) {
1635                 parent = path->nodes[level + 1];
1636                 pslot = path->slots[level + 1];
1637         }
1638
1639         /*
1640          * deal with the case where there is only one pointer in the root
1641          * by promoting the node below to a root
1642          */
1643         if (!parent) {
1644                 struct extent_buffer *child;
1645
1646                 if (btrfs_header_nritems(mid) != 1)
1647                         return 0;
1648
1649                 /* promote the child to a root */
1650                 child = read_node_slot(root, mid, 0);
1651                 if (!child) {
1652                         ret = -EROFS;
1653                         btrfs_std_error(root->fs_info, ret);
1654                         goto enospc;
1655                 }
1656
1657                 btrfs_tree_lock(child);
1658                 btrfs_set_lock_blocking(child);
1659                 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1660                 if (ret) {
1661                         btrfs_tree_unlock(child);
1662                         free_extent_buffer(child);
1663                         goto enospc;
1664                 }
1665
1666                 tree_mod_log_set_root_pointer(root, child);
1667                 rcu_assign_pointer(root->node, child);
1668
1669                 add_root_to_dirty_list(root);
1670                 btrfs_tree_unlock(child);
1671
1672                 path->locks[level] = 0;
1673                 path->nodes[level] = NULL;
1674                 clean_tree_block(trans, root, mid);
1675                 btrfs_tree_unlock(mid);
1676                 /* once for the path */
1677                 free_extent_buffer(mid);
1678
1679                 root_sub_used(root, mid->len);
1680                 btrfs_free_tree_block(trans, root, mid, 0, 1);
1681                 /* once for the root ptr */
1682                 free_extent_buffer_stale(mid);
1683                 return 0;
1684         }
1685         if (btrfs_header_nritems(mid) >
1686             BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1687                 return 0;
1688
1689         left = read_node_slot(root, parent, pslot - 1);
1690         if (left) {
1691                 btrfs_tree_lock(left);
1692                 btrfs_set_lock_blocking(left);
1693                 wret = btrfs_cow_block(trans, root, left,
1694                                        parent, pslot - 1, &left);
1695                 if (wret) {
1696                         ret = wret;
1697                         goto enospc;
1698                 }
1699         }
1700         right = read_node_slot(root, parent, pslot + 1);
1701         if (right) {
1702                 btrfs_tree_lock(right);
1703                 btrfs_set_lock_blocking(right);
1704                 wret = btrfs_cow_block(trans, root, right,
1705                                        parent, pslot + 1, &right);
1706                 if (wret) {
1707                         ret = wret;
1708                         goto enospc;
1709                 }
1710         }
1711
1712         /* first, try to make some room in the middle buffer */
1713         if (left) {
1714                 orig_slot += btrfs_header_nritems(left);
1715                 wret = push_node_left(trans, root, left, mid, 1);
1716                 if (wret < 0)
1717                         ret = wret;
1718         }
1719
1720         /*
1721          * then try to empty the right most buffer into the middle
1722          */
1723         if (right) {
1724                 wret = push_node_left(trans, root, mid, right, 1);
1725                 if (wret < 0 && wret != -ENOSPC)
1726                         ret = wret;
1727                 if (btrfs_header_nritems(right) == 0) {
1728                         clean_tree_block(trans, root, right);
1729                         btrfs_tree_unlock(right);
1730                         del_ptr(trans, root, path, level + 1, pslot + 1, 1);
1731                         root_sub_used(root, right->len);
1732                         btrfs_free_tree_block(trans, root, right, 0, 1);
1733                         free_extent_buffer_stale(right);
1734                         right = NULL;
1735                 } else {
1736                         struct btrfs_disk_key right_key;
1737                         btrfs_node_key(right, &right_key, 0);
1738                         tree_mod_log_set_node_key(root->fs_info, parent,
1739                                                   &right_key, pslot + 1, 0);
1740                         btrfs_set_node_key(parent, &right_key, pslot + 1);
1741                         btrfs_mark_buffer_dirty(parent);
1742                 }
1743         }
1744         if (btrfs_header_nritems(mid) == 1) {
1745                 /*
1746                  * we're not allowed to leave a node with one item in the
1747                  * tree during a delete.  A deletion from lower in the tree
1748                  * could try to delete the only pointer in this node.
1749                  * So, pull some keys from the left.
1750                  * There has to be a left pointer at this point because
1751                  * otherwise we would have pulled some pointers from the
1752                  * right
1753                  */
1754                 if (!left) {
1755                         ret = -EROFS;
1756                         btrfs_std_error(root->fs_info, ret);
1757                         goto enospc;
1758                 }
1759                 wret = balance_node_right(trans, root, mid, left);
1760                 if (wret < 0) {
1761                         ret = wret;
1762                         goto enospc;
1763                 }
1764                 if (wret == 1) {
1765                         wret = push_node_left(trans, root, left, mid, 1);
1766                         if (wret < 0)
1767                                 ret = wret;
1768                 }
1769                 BUG_ON(wret == 1);
1770         }
1771         if (btrfs_header_nritems(mid) == 0) {
1772                 clean_tree_block(trans, root, mid);
1773                 btrfs_tree_unlock(mid);
1774                 del_ptr(trans, root, path, level + 1, pslot, 1);
1775                 root_sub_used(root, mid->len);
1776                 btrfs_free_tree_block(trans, root, mid, 0, 1);
1777                 free_extent_buffer_stale(mid);
1778                 mid = NULL;
1779         } else {
1780                 /* update the parent key to reflect our changes */
1781                 struct btrfs_disk_key mid_key;
1782                 btrfs_node_key(mid, &mid_key, 0);
1783                 tree_mod_log_set_node_key(root->fs_info, parent, &mid_key,
1784                                           pslot, 0);
1785                 btrfs_set_node_key(parent, &mid_key, pslot);
1786                 btrfs_mark_buffer_dirty(parent);
1787         }
1788
1789         /* update the path */
1790         if (left) {
1791                 if (btrfs_header_nritems(left) > orig_slot) {
1792                         extent_buffer_get(left);
1793                         /* left was locked after cow */
1794                         path->nodes[level] = left;
1795                         path->slots[level + 1] -= 1;
1796                         path->slots[level] = orig_slot;
1797                         if (mid) {
1798                                 btrfs_tree_unlock(mid);
1799                                 free_extent_buffer(mid);
1800                         }
1801                 } else {
1802                         orig_slot -= btrfs_header_nritems(left);
1803                         path->slots[level] = orig_slot;
1804                 }
1805         }
1806         /* double check we haven't messed things up */
1807         if (orig_ptr !=
1808             btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1809                 BUG();
1810 enospc:
1811         if (right) {
1812                 btrfs_tree_unlock(right);
1813                 free_extent_buffer(right);
1814         }
1815         if (left) {
1816                 if (path->nodes[level] != left)
1817                         btrfs_tree_unlock(left);
1818                 free_extent_buffer(left);
1819         }
1820         return ret;
1821 }
1822
1823 /* Node balancing for insertion.  Here we only split or push nodes around
1824  * when they are completely full.  This is also done top down, so we
1825  * have to be pessimistic.
1826  */
1827 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1828                                           struct btrfs_root *root,
1829                                           struct btrfs_path *path, int level)
1830 {
1831         struct extent_buffer *right = NULL;
1832         struct extent_buffer *mid;
1833         struct extent_buffer *left = NULL;
1834         struct extent_buffer *parent = NULL;
1835         int ret = 0;
1836         int wret;
1837         int pslot;
1838         int orig_slot = path->slots[level];
1839
1840         if (level == 0)
1841                 return 1;
1842
1843         mid = path->nodes[level];
1844         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1845
1846         if (level < BTRFS_MAX_LEVEL - 1) {
1847                 parent = path->nodes[level + 1];
1848                 pslot = path->slots[level + 1];
1849         }
1850
1851         if (!parent)
1852                 return 1;
1853
1854         left = read_node_slot(root, parent, pslot - 1);
1855
1856         /* first, try to make some room in the middle buffer */
1857         if (left) {
1858                 u32 left_nr;
1859
1860                 btrfs_tree_lock(left);
1861                 btrfs_set_lock_blocking(left);
1862
1863                 left_nr = btrfs_header_nritems(left);
1864                 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1865                         wret = 1;
1866                 } else {
1867                         ret = btrfs_cow_block(trans, root, left, parent,
1868                                               pslot - 1, &left);
1869                         if (ret)
1870                                 wret = 1;
1871                         else {
1872                                 wret = push_node_left(trans, root,
1873                                                       left, mid, 0);
1874                         }
1875                 }
1876                 if (wret < 0)
1877                         ret = wret;
1878                 if (wret == 0) {
1879                         struct btrfs_disk_key disk_key;
1880                         orig_slot += left_nr;
1881                         btrfs_node_key(mid, &disk_key, 0);
1882                         tree_mod_log_set_node_key(root->fs_info, parent,
1883                                                   &disk_key, pslot, 0);
1884                         btrfs_set_node_key(parent, &disk_key, pslot);
1885                         btrfs_mark_buffer_dirty(parent);
1886                         if (btrfs_header_nritems(left) > orig_slot) {
1887                                 path->nodes[level] = left;
1888                                 path->slots[level + 1] -= 1;
1889                                 path->slots[level] = orig_slot;
1890                                 btrfs_tree_unlock(mid);
1891                                 free_extent_buffer(mid);
1892                         } else {
1893                                 orig_slot -=
1894                                         btrfs_header_nritems(left);
1895                                 path->slots[level] = orig_slot;
1896                                 btrfs_tree_unlock(left);
1897                                 free_extent_buffer(left);
1898                         }
1899                         return 0;
1900                 }
1901                 btrfs_tree_unlock(left);
1902                 free_extent_buffer(left);
1903         }
1904         right = read_node_slot(root, parent, pslot + 1);
1905
1906         /*
1907          * then try to empty the right most buffer into the middle
1908          */
1909         if (right) {
1910                 u32 right_nr;
1911
1912                 btrfs_tree_lock(right);
1913                 btrfs_set_lock_blocking(right);
1914
1915                 right_nr = btrfs_header_nritems(right);
1916                 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1917                         wret = 1;
1918                 } else {
1919                         ret = btrfs_cow_block(trans, root, right,
1920                                               parent, pslot + 1,
1921                                               &right);
1922                         if (ret)
1923                                 wret = 1;
1924                         else {
1925                                 wret = balance_node_right(trans, root,
1926                                                           right, mid);
1927                         }
1928                 }
1929                 if (wret < 0)
1930                         ret = wret;
1931                 if (wret == 0) {
1932                         struct btrfs_disk_key disk_key;
1933
1934                         btrfs_node_key(right, &disk_key, 0);
1935                         tree_mod_log_set_node_key(root->fs_info, parent,
1936                                                   &disk_key, pslot + 1, 0);
1937                         btrfs_set_node_key(parent, &disk_key, pslot + 1);
1938                         btrfs_mark_buffer_dirty(parent);
1939
1940                         if (btrfs_header_nritems(mid) <= orig_slot) {
1941                                 path->nodes[level] = right;
1942                                 path->slots[level + 1] += 1;
1943                                 path->slots[level] = orig_slot -
1944                                         btrfs_header_nritems(mid);
1945                                 btrfs_tree_unlock(mid);
1946                                 free_extent_buffer(mid);
1947                         } else {
1948                                 btrfs_tree_unlock(right);
1949                                 free_extent_buffer(right);
1950                         }
1951                         return 0;
1952                 }
1953                 btrfs_tree_unlock(right);
1954                 free_extent_buffer(right);
1955         }
1956         return 1;
1957 }
1958
1959 /*
1960  * readahead one full node of leaves, finding things that are close
1961  * to the block in 'slot', and triggering ra on them.
1962  */
1963 static void reada_for_search(struct btrfs_root *root,
1964                              struct btrfs_path *path,
1965                              int level, int slot, u64 objectid)
1966 {
1967         struct extent_buffer *node;
1968         struct btrfs_disk_key disk_key;
1969         u32 nritems;
1970         u64 search;
1971         u64 target;
1972         u64 nread = 0;
1973         u64 gen;
1974         int direction = path->reada;
1975         struct extent_buffer *eb;
1976         u32 nr;
1977         u32 blocksize;
1978         u32 nscan = 0;
1979
1980         if (level != 1)
1981                 return;
1982
1983         if (!path->nodes[level])
1984                 return;
1985
1986         node = path->nodes[level];
1987
1988         search = btrfs_node_blockptr(node, slot);
1989         blocksize = btrfs_level_size(root, level - 1);
1990         eb = btrfs_find_tree_block(root, search, blocksize);
1991         if (eb) {
1992                 free_extent_buffer(eb);
1993                 return;
1994         }
1995
1996         target = search;
1997
1998         nritems = btrfs_header_nritems(node);
1999         nr = slot;
2000
2001         while (1) {
2002                 if (direction < 0) {
2003                         if (nr == 0)
2004                                 break;
2005                         nr--;
2006                 } else if (direction > 0) {
2007                         nr++;
2008                         if (nr >= nritems)
2009                                 break;
2010                 }
2011                 if (path->reada < 0 && objectid) {
2012                         btrfs_node_key(node, &disk_key, nr);
2013                         if (btrfs_disk_key_objectid(&disk_key) != objectid)
2014                                 break;
2015                 }
2016                 search = btrfs_node_blockptr(node, nr);
2017                 if ((search <= target && target - search <= 65536) ||
2018                     (search > target && search - target <= 65536)) {
2019                         gen = btrfs_node_ptr_generation(node, nr);
2020                         readahead_tree_block(root, search, blocksize, gen);
2021                         nread += blocksize;
2022                 }
2023                 nscan++;
2024                 if ((nread > 65536 || nscan > 32))
2025                         break;
2026         }
2027 }
2028
2029 /*
2030  * returns -EAGAIN if it had to drop the path, or zero if everything was in
2031  * cache
2032  */
2033 static noinline int reada_for_balance(struct btrfs_root *root,
2034                                       struct btrfs_path *path, int level)
2035 {
2036         int slot;
2037         int nritems;
2038         struct extent_buffer *parent;
2039         struct extent_buffer *eb;
2040         u64 gen;
2041         u64 block1 = 0;
2042         u64 block2 = 0;
2043         int ret = 0;
2044         int blocksize;
2045
2046         parent = path->nodes[level + 1];
2047         if (!parent)
2048                 return 0;
2049
2050         nritems = btrfs_header_nritems(parent);
2051         slot = path->slots[level + 1];
2052         blocksize = btrfs_level_size(root, level);
2053
2054         if (slot > 0) {
2055                 block1 = btrfs_node_blockptr(parent, slot - 1);
2056                 gen = btrfs_node_ptr_generation(parent, slot - 1);
2057                 eb = btrfs_find_tree_block(root, block1, blocksize);
2058                 /*
2059                  * if we get -eagain from btrfs_buffer_uptodate, we
2060                  * don't want to return eagain here.  That will loop
2061                  * forever
2062                  */
2063                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2064                         block1 = 0;
2065                 free_extent_buffer(eb);
2066         }
2067         if (slot + 1 < nritems) {
2068                 block2 = btrfs_node_blockptr(parent, slot + 1);
2069                 gen = btrfs_node_ptr_generation(parent, slot + 1);
2070                 eb = btrfs_find_tree_block(root, block2, blocksize);
2071                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2072                         block2 = 0;
2073                 free_extent_buffer(eb);
2074         }
2075         if (block1 || block2) {
2076                 ret = -EAGAIN;
2077
2078                 /* release the whole path */
2079                 btrfs_release_path(path);
2080
2081                 /* read the blocks */
2082                 if (block1)
2083                         readahead_tree_block(root, block1, blocksize, 0);
2084                 if (block2)
2085                         readahead_tree_block(root, block2, blocksize, 0);
2086
2087                 if (block1) {
2088                         eb = read_tree_block(root, block1, blocksize, 0);
2089                         free_extent_buffer(eb);
2090                 }
2091                 if (block2) {
2092                         eb = read_tree_block(root, block2, blocksize, 0);
2093                         free_extent_buffer(eb);
2094                 }
2095         }
2096         return ret;
2097 }
2098
2099
2100 /*
2101  * when we walk down the tree, it is usually safe to unlock the higher layers
2102  * in the tree.  The exceptions are when our path goes through slot 0, because
2103  * operations on the tree might require changing key pointers higher up in the
2104  * tree.
2105  *
2106  * callers might also have set path->keep_locks, which tells this code to keep
2107  * the lock if the path points to the last slot in the block.  This is part of
2108  * walking through the tree, and selecting the next slot in the higher block.
2109  *
2110  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2111  * if lowest_unlock is 1, level 0 won't be unlocked
2112  */
2113 static noinline void unlock_up(struct btrfs_path *path, int level,
2114                                int lowest_unlock, int min_write_lock_level,
2115                                int *write_lock_level)
2116 {
2117         int i;
2118         int skip_level = level;
2119         int no_skips = 0;
2120         struct extent_buffer *t;
2121
2122         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2123                 if (!path->nodes[i])
2124                         break;
2125                 if (!path->locks[i])
2126                         break;
2127                 if (!no_skips && path->slots[i] == 0) {
2128                         skip_level = i + 1;
2129                         continue;
2130                 }
2131                 if (!no_skips && path->keep_locks) {
2132                         u32 nritems;
2133                         t = path->nodes[i];
2134                         nritems = btrfs_header_nritems(t);
2135                         if (nritems < 1 || path->slots[i] >= nritems - 1) {
2136                                 skip_level = i + 1;
2137                                 continue;
2138                         }
2139                 }
2140                 if (skip_level < i && i >= lowest_unlock)
2141                         no_skips = 1;
2142
2143                 t = path->nodes[i];
2144                 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2145                         btrfs_tree_unlock_rw(t, path->locks[i]);
2146                         path->locks[i] = 0;
2147                         if (write_lock_level &&
2148                             i > min_write_lock_level &&
2149                             i <= *write_lock_level) {
2150                                 *write_lock_level = i - 1;
2151                         }
2152                 }
2153         }
2154 }
2155
2156 /*
2157  * This releases any locks held in the path starting at level and
2158  * going all the way up to the root.
2159  *
2160  * btrfs_search_slot will keep the lock held on higher nodes in a few
2161  * corner cases, such as COW of the block at slot zero in the node.  This
2162  * ignores those rules, and it should only be called when there are no
2163  * more updates to be done higher up in the tree.
2164  */
2165 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2166 {
2167         int i;
2168
2169         if (path->keep_locks)
2170                 return;
2171
2172         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2173                 if (!path->nodes[i])
2174                         continue;
2175                 if (!path->locks[i])
2176                         continue;
2177                 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2178                 path->locks[i] = 0;
2179         }
2180 }
2181
2182 /*
2183  * helper function for btrfs_search_slot.  The goal is to find a block
2184  * in cache without setting the path to blocking.  If we find the block
2185  * we return zero and the path is unchanged.
2186  *
2187  * If we can't find the block, we set the path blocking and do some
2188  * reada.  -EAGAIN is returned and the search must be repeated.
2189  */
2190 static int
2191 read_block_for_search(struct btrfs_trans_handle *trans,
2192                        struct btrfs_root *root, struct btrfs_path *p,
2193                        struct extent_buffer **eb_ret, int level, int slot,
2194                        struct btrfs_key *key, u64 time_seq)
2195 {
2196         u64 blocknr;
2197         u64 gen;
2198         u32 blocksize;
2199         struct extent_buffer *b = *eb_ret;
2200         struct extent_buffer *tmp;
2201         int ret;
2202
2203         blocknr = btrfs_node_blockptr(b, slot);
2204         gen = btrfs_node_ptr_generation(b, slot);
2205         blocksize = btrfs_level_size(root, level - 1);
2206
2207         tmp = btrfs_find_tree_block(root, blocknr, blocksize);
2208         if (tmp) {
2209                 /* first we do an atomic uptodate check */
2210                 if (btrfs_buffer_uptodate(tmp, 0, 1) > 0) {
2211                         if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2212                                 /*
2213                                  * we found an up to date block without
2214                                  * sleeping, return
2215                                  * right away
2216                                  */
2217                                 *eb_ret = tmp;
2218                                 return 0;
2219                         }
2220                         /* the pages were up to date, but we failed
2221                          * the generation number check.  Do a full
2222                          * read for the generation number that is correct.
2223                          * We must do this without dropping locks so
2224                          * we can trust our generation number
2225                          */
2226                         free_extent_buffer(tmp);
2227                         btrfs_set_path_blocking(p);
2228
2229                         /* now we're allowed to do a blocking uptodate check */
2230                         tmp = read_tree_block(root, blocknr, blocksize, gen);
2231                         if (tmp && btrfs_buffer_uptodate(tmp, gen, 0) > 0) {
2232                                 *eb_ret = tmp;
2233                                 return 0;
2234                         }
2235                         free_extent_buffer(tmp);
2236                         btrfs_release_path(p);
2237                         return -EIO;
2238                 }
2239         }
2240
2241         /*
2242          * reduce lock contention at high levels
2243          * of the btree by dropping locks before
2244          * we read.  Don't release the lock on the current
2245          * level because we need to walk this node to figure
2246          * out which blocks to read.
2247          */
2248         btrfs_unlock_up_safe(p, level + 1);
2249         btrfs_set_path_blocking(p);
2250
2251         free_extent_buffer(tmp);
2252         if (p->reada)
2253                 reada_for_search(root, p, level, slot, key->objectid);
2254
2255         btrfs_release_path(p);
2256
2257         ret = -EAGAIN;
2258         tmp = read_tree_block(root, blocknr, blocksize, 0);
2259         if (tmp) {
2260                 /*
2261                  * If the read above didn't mark this buffer up to date,
2262                  * it will never end up being up to date.  Set ret to EIO now
2263                  * and give up so that our caller doesn't loop forever
2264                  * on our EAGAINs.
2265                  */
2266                 if (!btrfs_buffer_uptodate(tmp, 0, 0))
2267                         ret = -EIO;
2268                 free_extent_buffer(tmp);
2269         }
2270         return ret;
2271 }
2272
2273 /*
2274  * helper function for btrfs_search_slot.  This does all of the checks
2275  * for node-level blocks and does any balancing required based on
2276  * the ins_len.
2277  *
2278  * If no extra work was required, zero is returned.  If we had to
2279  * drop the path, -EAGAIN is returned and btrfs_search_slot must
2280  * start over
2281  */
2282 static int
2283 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2284                        struct btrfs_root *root, struct btrfs_path *p,
2285                        struct extent_buffer *b, int level, int ins_len,
2286                        int *write_lock_level)
2287 {
2288         int ret;
2289         if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2290             BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2291                 int sret;
2292
2293                 if (*write_lock_level < level + 1) {
2294                         *write_lock_level = level + 1;
2295                         btrfs_release_path(p);
2296                         goto again;
2297                 }
2298
2299                 sret = reada_for_balance(root, p, level);
2300                 if (sret)
2301                         goto again;
2302
2303                 btrfs_set_path_blocking(p);
2304                 sret = split_node(trans, root, p, level);
2305                 btrfs_clear_path_blocking(p, NULL, 0);
2306
2307                 BUG_ON(sret > 0);
2308                 if (sret) {
2309                         ret = sret;
2310                         goto done;
2311                 }
2312                 b = p->nodes[level];
2313         } else if (ins_len < 0 && btrfs_header_nritems(b) <
2314                    BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2315                 int sret;
2316
2317                 if (*write_lock_level < level + 1) {
2318                         *write_lock_level = level + 1;
2319                         btrfs_release_path(p);
2320                         goto again;
2321                 }
2322
2323                 sret = reada_for_balance(root, p, level);
2324                 if (sret)
2325                         goto again;
2326
2327                 btrfs_set_path_blocking(p);
2328                 sret = balance_level(trans, root, p, level);
2329                 btrfs_clear_path_blocking(p, NULL, 0);
2330
2331                 if (sret) {
2332                         ret = sret;
2333                         goto done;
2334                 }
2335                 b = p->nodes[level];
2336                 if (!b) {
2337                         btrfs_release_path(p);
2338                         goto again;
2339                 }
2340                 BUG_ON(btrfs_header_nritems(b) == 1);
2341         }
2342         return 0;
2343
2344 again:
2345         ret = -EAGAIN;
2346 done:
2347         return ret;
2348 }
2349
2350 /*
2351  * look for key in the tree.  path is filled in with nodes along the way
2352  * if key is found, we return zero and you can find the item in the leaf
2353  * level of the path (level 0)
2354  *
2355  * If the key isn't found, the path points to the slot where it should
2356  * be inserted, and 1 is returned.  If there are other errors during the
2357  * search a negative error number is returned.
2358  *
2359  * if ins_len > 0, nodes and leaves will be split as we walk down the
2360  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
2361  * possible)
2362  */
2363 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2364                       *root, struct btrfs_key *key, struct btrfs_path *p, int
2365                       ins_len, int cow)
2366 {
2367         struct extent_buffer *b;
2368         int slot;
2369         int ret;
2370         int err;
2371         int level;
2372         int lowest_unlock = 1;
2373         int root_lock;
2374         /* everything at write_lock_level or lower must be write locked */
2375         int write_lock_level = 0;
2376         u8 lowest_level = 0;
2377         int min_write_lock_level;
2378
2379         lowest_level = p->lowest_level;
2380         WARN_ON(lowest_level && ins_len > 0);
2381         WARN_ON(p->nodes[0] != NULL);
2382
2383         if (ins_len < 0) {
2384                 lowest_unlock = 2;
2385
2386                 /* when we are removing items, we might have to go up to level
2387                  * two as we update tree pointers  Make sure we keep write
2388                  * for those levels as well
2389                  */
2390                 write_lock_level = 2;
2391         } else if (ins_len > 0) {
2392                 /*
2393                  * for inserting items, make sure we have a write lock on
2394                  * level 1 so we can update keys
2395                  */
2396                 write_lock_level = 1;
2397         }
2398
2399         if (!cow)
2400                 write_lock_level = -1;
2401
2402         if (cow && (p->keep_locks || p->lowest_level))
2403                 write_lock_level = BTRFS_MAX_LEVEL;
2404
2405         min_write_lock_level = write_lock_level;
2406
2407 again:
2408         /*
2409          * we try very hard to do read locks on the root
2410          */
2411         root_lock = BTRFS_READ_LOCK;
2412         level = 0;
2413         if (p->search_commit_root) {
2414                 /*
2415                  * the commit roots are read only
2416                  * so we always do read locks
2417                  */
2418                 b = root->commit_root;
2419                 extent_buffer_get(b);
2420                 level = btrfs_header_level(b);
2421                 if (!p->skip_locking)
2422                         btrfs_tree_read_lock(b);
2423         } else {
2424                 if (p->skip_locking) {
2425                         b = btrfs_root_node(root);
2426                         level = btrfs_header_level(b);
2427                 } else {
2428                         /* we don't know the level of the root node
2429                          * until we actually have it read locked
2430                          */
2431                         b = btrfs_read_lock_root_node(root);
2432                         level = btrfs_header_level(b);
2433                         if (level <= write_lock_level) {
2434                                 /* whoops, must trade for write lock */
2435                                 btrfs_tree_read_unlock(b);
2436                                 free_extent_buffer(b);
2437                                 b = btrfs_lock_root_node(root);
2438                                 root_lock = BTRFS_WRITE_LOCK;
2439
2440                                 /* the level might have changed, check again */
2441                                 level = btrfs_header_level(b);
2442                         }
2443                 }
2444         }
2445         p->nodes[level] = b;
2446         if (!p->skip_locking)
2447                 p->locks[level] = root_lock;
2448
2449         while (b) {
2450                 level = btrfs_header_level(b);
2451
2452                 /*
2453                  * setup the path here so we can release it under lock
2454                  * contention with the cow code
2455                  */
2456                 if (cow) {
2457                         /*
2458                          * if we don't really need to cow this block
2459                          * then we don't want to set the path blocking,
2460                          * so we test it here
2461                          */
2462                         if (!should_cow_block(trans, root, b))
2463                                 goto cow_done;
2464
2465                         btrfs_set_path_blocking(p);
2466
2467                         /*
2468                          * must have write locks on this node and the
2469                          * parent
2470                          */
2471                         if (level + 1 > write_lock_level) {
2472                                 write_lock_level = level + 1;
2473                                 btrfs_release_path(p);
2474                                 goto again;
2475                         }
2476
2477                         err = btrfs_cow_block(trans, root, b,
2478                                               p->nodes[level + 1],
2479                                               p->slots[level + 1], &b);
2480                         if (err) {
2481                                 ret = err;
2482                                 goto done;
2483                         }
2484                 }
2485 cow_done:
2486                 BUG_ON(!cow && ins_len);
2487
2488                 p->nodes[level] = b;
2489                 btrfs_clear_path_blocking(p, NULL, 0);
2490
2491                 /*
2492                  * we have a lock on b and as long as we aren't changing
2493                  * the tree, there is no way to for the items in b to change.
2494                  * It is safe to drop the lock on our parent before we
2495                  * go through the expensive btree search on b.
2496                  *
2497                  * If cow is true, then we might be changing slot zero,
2498                  * which may require changing the parent.  So, we can't
2499                  * drop the lock until after we know which slot we're
2500                  * operating on.
2501                  */
2502                 if (!cow)
2503                         btrfs_unlock_up_safe(p, level + 1);
2504
2505                 ret = bin_search(b, key, level, &slot);
2506
2507                 if (level != 0) {
2508                         int dec = 0;
2509                         if (ret && slot > 0) {
2510                                 dec = 1;
2511                                 slot -= 1;
2512                         }
2513                         p->slots[level] = slot;
2514                         err = setup_nodes_for_search(trans, root, p, b, level,
2515                                              ins_len, &write_lock_level);
2516                         if (err == -EAGAIN)
2517                                 goto again;
2518                         if (err) {
2519                                 ret = err;
2520                                 goto done;
2521                         }
2522                         b = p->nodes[level];
2523                         slot = p->slots[level];
2524
2525                         /*
2526                          * slot 0 is special, if we change the key
2527                          * we have to update the parent pointer
2528                          * which means we must have a write lock
2529                          * on the parent
2530                          */
2531                         if (slot == 0 && cow &&
2532                             write_lock_level < level + 1) {
2533                                 write_lock_level = level + 1;
2534                                 btrfs_release_path(p);
2535                                 goto again;
2536                         }
2537
2538                         unlock_up(p, level, lowest_unlock,
2539                                   min_write_lock_level, &write_lock_level);
2540
2541                         if (level == lowest_level) {
2542                                 if (dec)
2543                                         p->slots[level]++;
2544                                 goto done;
2545                         }
2546
2547                         err = read_block_for_search(trans, root, p,
2548                                                     &b, level, slot, key, 0);
2549                         if (err == -EAGAIN)
2550                                 goto again;
2551                         if (err) {
2552                                 ret = err;
2553                                 goto done;
2554                         }
2555
2556                         if (!p->skip_locking) {
2557                                 level = btrfs_header_level(b);
2558                                 if (level <= write_lock_level) {
2559                                         err = btrfs_try_tree_write_lock(b);
2560                                         if (!err) {
2561                                                 btrfs_set_path_blocking(p);
2562                                                 btrfs_tree_lock(b);
2563                                                 btrfs_clear_path_blocking(p, b,
2564                                                                   BTRFS_WRITE_LOCK);
2565                                         }
2566                                         p->locks[level] = BTRFS_WRITE_LOCK;
2567                                 } else {
2568                                         err = btrfs_try_tree_read_lock(b);
2569                                         if (!err) {
2570                                                 btrfs_set_path_blocking(p);
2571                                                 btrfs_tree_read_lock(b);
2572                                                 btrfs_clear_path_blocking(p, b,
2573                                                                   BTRFS_READ_LOCK);
2574                                         }
2575                                         p->locks[level] = BTRFS_READ_LOCK;
2576                                 }
2577                                 p->nodes[level] = b;
2578                         }
2579                 } else {
2580                         p->slots[level] = slot;
2581                         if (ins_len > 0 &&
2582                             btrfs_leaf_free_space(root, b) < ins_len) {
2583                                 if (write_lock_level < 1) {
2584                                         write_lock_level = 1;
2585                                         btrfs_release_path(p);
2586                                         goto again;
2587                                 }
2588
2589                                 btrfs_set_path_blocking(p);
2590                                 err = split_leaf(trans, root, key,
2591                                                  p, ins_len, ret == 0);
2592                                 btrfs_clear_path_blocking(p, NULL, 0);
2593
2594                                 BUG_ON(err > 0);
2595                                 if (err) {
2596                                         ret = err;
2597                                         goto done;
2598                                 }
2599                         }
2600                         if (!p->search_for_split)
2601                                 unlock_up(p, level, lowest_unlock,
2602                                           min_write_lock_level, &write_lock_level);
2603                         goto done;
2604                 }
2605         }
2606         ret = 1;
2607 done:
2608         /*
2609          * we don't really know what they plan on doing with the path
2610          * from here on, so for now just mark it as blocking
2611          */
2612         if (!p->leave_spinning)
2613                 btrfs_set_path_blocking(p);
2614         if (ret < 0)
2615                 btrfs_release_path(p);
2616         return ret;
2617 }
2618
2619 /*
2620  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2621  * current state of the tree together with the operations recorded in the tree
2622  * modification log to search for the key in a previous version of this tree, as
2623  * denoted by the time_seq parameter.
2624  *
2625  * Naturally, there is no support for insert, delete or cow operations.
2626  *
2627  * The resulting path and return value will be set up as if we called
2628  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2629  */
2630 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2631                           struct btrfs_path *p, u64 time_seq)
2632 {
2633         struct extent_buffer *b;
2634         int slot;
2635         int ret;
2636         int err;
2637         int level;
2638         int lowest_unlock = 1;
2639         u8 lowest_level = 0;
2640
2641         lowest_level = p->lowest_level;
2642         WARN_ON(p->nodes[0] != NULL);
2643
2644         if (p->search_commit_root) {
2645                 BUG_ON(time_seq);
2646                 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2647         }
2648
2649 again:
2650         b = get_old_root(root, time_seq);
2651         level = btrfs_header_level(b);
2652         p->locks[level] = BTRFS_READ_LOCK;
2653
2654         while (b) {
2655                 level = btrfs_header_level(b);
2656                 p->nodes[level] = b;
2657                 btrfs_clear_path_blocking(p, NULL, 0);
2658
2659                 /*
2660                  * we have a lock on b and as long as we aren't changing
2661                  * the tree, there is no way to for the items in b to change.
2662                  * It is safe to drop the lock on our parent before we
2663                  * go through the expensive btree search on b.
2664                  */
2665                 btrfs_unlock_up_safe(p, level + 1);
2666
2667                 ret = bin_search(b, key, level, &slot);
2668
2669                 if (level != 0) {
2670                         int dec = 0;
2671                         if (ret && slot > 0) {
2672                                 dec = 1;
2673                                 slot -= 1;
2674                         }
2675                         p->slots[level] = slot;
2676                         unlock_up(p, level, lowest_unlock, 0, NULL);
2677
2678                         if (level == lowest_level) {
2679                                 if (dec)
2680                                         p->slots[level]++;
2681                                 goto done;
2682                         }
2683
2684                         err = read_block_for_search(NULL, root, p, &b, level,
2685                                                     slot, key, time_seq);
2686                         if (err == -EAGAIN)
2687                                 goto again;
2688                         if (err) {
2689                                 ret = err;
2690                                 goto done;
2691                         }
2692
2693                         level = btrfs_header_level(b);
2694                         err = btrfs_try_tree_read_lock(b);
2695                         if (!err) {
2696                                 btrfs_set_path_blocking(p);
2697                                 btrfs_tree_read_lock(b);
2698                                 btrfs_clear_path_blocking(p, b,
2699                                                           BTRFS_READ_LOCK);
2700                         }
2701                         p->locks[level] = BTRFS_READ_LOCK;
2702                         p->nodes[level] = b;
2703                         b = tree_mod_log_rewind(root->fs_info, b, time_seq);
2704                         if (b != p->nodes[level]) {
2705                                 btrfs_tree_unlock_rw(p->nodes[level],
2706                                                      p->locks[level]);
2707                                 p->locks[level] = 0;
2708                                 p->nodes[level] = b;
2709                         }
2710                 } else {
2711                         p->slots[level] = slot;
2712                         unlock_up(p, level, lowest_unlock, 0, NULL);
2713                         goto done;
2714                 }
2715         }
2716         ret = 1;
2717 done:
2718         if (!p->leave_spinning)
2719                 btrfs_set_path_blocking(p);
2720         if (ret < 0)
2721                 btrfs_release_path(p);
2722
2723         return ret;
2724 }
2725
2726 /*
2727  * adjust the pointers going up the tree, starting at level
2728  * making sure the right key of each node is points to 'key'.
2729  * This is used after shifting pointers to the left, so it stops
2730  * fixing up pointers when a given leaf/node is not in slot 0 of the
2731  * higher levels
2732  *
2733  */
2734 static void fixup_low_keys(struct btrfs_trans_handle *trans,
2735                            struct btrfs_root *root, struct btrfs_path *path,
2736                            struct btrfs_disk_key *key, int level)
2737 {
2738         int i;
2739         struct extent_buffer *t;
2740
2741         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2742                 int tslot = path->slots[i];
2743                 if (!path->nodes[i])
2744                         break;
2745                 t = path->nodes[i];
2746                 tree_mod_log_set_node_key(root->fs_info, t, key, tslot, 1);
2747                 btrfs_set_node_key(t, key, tslot);
2748                 btrfs_mark_buffer_dirty(path->nodes[i]);
2749                 if (tslot != 0)
2750                         break;
2751         }
2752 }
2753
2754 /*
2755  * update item key.
2756  *
2757  * This function isn't completely safe. It's the caller's responsibility
2758  * that the new key won't break the order
2759  */
2760 void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
2761                              struct btrfs_root *root, struct btrfs_path *path,
2762                              struct btrfs_key *new_key)
2763 {
2764         struct btrfs_disk_key disk_key;
2765         struct extent_buffer *eb;
2766         int slot;
2767
2768         eb = path->nodes[0];
2769         slot = path->slots[0];
2770         if (slot > 0) {
2771                 btrfs_item_key(eb, &disk_key, slot - 1);
2772                 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
2773         }
2774         if (slot < btrfs_header_nritems(eb) - 1) {
2775                 btrfs_item_key(eb, &disk_key, slot + 1);
2776                 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
2777         }
2778
2779         btrfs_cpu_key_to_disk(&disk_key, new_key);
2780         btrfs_set_item_key(eb, &disk_key, slot);
2781         btrfs_mark_buffer_dirty(eb);
2782         if (slot == 0)
2783                 fixup_low_keys(trans, root, path, &disk_key, 1);
2784 }
2785
2786 /*
2787  * try to push data from one node into the next node left in the
2788  * tree.
2789  *
2790  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2791  * error, and > 0 if there was no room in the left hand block.
2792  */
2793 static int push_node_left(struct btrfs_trans_handle *trans,
2794                           struct btrfs_root *root, struct extent_buffer *dst,
2795                           struct extent_buffer *src, int empty)
2796 {
2797         int push_items = 0;
2798         int src_nritems;
2799         int dst_nritems;
2800         int ret = 0;
2801
2802         src_nritems = btrfs_header_nritems(src);
2803         dst_nritems = btrfs_header_nritems(dst);
2804         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2805         WARN_ON(btrfs_header_generation(src) != trans->transid);
2806         WARN_ON(btrfs_header_generation(dst) != trans->transid);
2807
2808         if (!empty && src_nritems <= 8)
2809                 return 1;
2810
2811         if (push_items <= 0)
2812                 return 1;
2813
2814         if (empty) {
2815                 push_items = min(src_nritems, push_items);
2816                 if (push_items < src_nritems) {
2817                         /* leave at least 8 pointers in the node if
2818                          * we aren't going to empty it
2819                          */
2820                         if (src_nritems - push_items < 8) {
2821                                 if (push_items <= 8)
2822                                         return 1;
2823                                 push_items -= 8;
2824                         }
2825                 }
2826         } else
2827                 push_items = min(src_nritems - 8, push_items);
2828
2829         tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
2830                              push_items);
2831         copy_extent_buffer(dst, src,
2832                            btrfs_node_key_ptr_offset(dst_nritems),
2833                            btrfs_node_key_ptr_offset(0),
2834                            push_items * sizeof(struct btrfs_key_ptr));
2835
2836         if (push_items < src_nritems) {
2837                 tree_mod_log_eb_move(root->fs_info, src, 0, push_items,
2838                                      src_nritems - push_items);
2839                 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
2840                                       btrfs_node_key_ptr_offset(push_items),
2841                                       (src_nritems - push_items) *
2842                                       sizeof(struct btrfs_key_ptr));
2843         }
2844         btrfs_set_header_nritems(src, src_nritems - push_items);
2845         btrfs_set_header_nritems(dst, dst_nritems + push_items);
2846         btrfs_mark_buffer_dirty(src);
2847         btrfs_mark_buffer_dirty(dst);
2848
2849         return ret;
2850 }
2851
2852 /*
2853  * try to push data from one node into the next node right in the
2854  * tree.
2855  *
2856  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2857  * error, and > 0 if there was no room in the right hand block.
2858  *
2859  * this will  only push up to 1/2 the contents of the left node over
2860  */
2861 static int balance_node_right(struct btrfs_trans_handle *trans,
2862                               struct btrfs_root *root,
2863                               struct extent_buffer *dst,
2864                               struct extent_buffer *src)
2865 {
2866         int push_items = 0;
2867         int max_push;
2868         int src_nritems;
2869         int dst_nritems;
2870         int ret = 0;
2871
2872         WARN_ON(btrfs_header_generation(src) != trans->transid);
2873         WARN_ON(btrfs_header_generation(dst) != trans->transid);
2874
2875         src_nritems = btrfs_header_nritems(src);
2876         dst_nritems = btrfs_header_nritems(dst);
2877         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2878         if (push_items <= 0)
2879                 return 1;
2880
2881         if (src_nritems < 4)
2882                 return 1;
2883
2884         max_push = src_nritems / 2 + 1;
2885         /* don't try to empty the node */
2886         if (max_push >= src_nritems)
2887                 return 1;
2888
2889         if (max_push < push_items)
2890                 push_items = max_push;
2891
2892         tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
2893         memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
2894                                       btrfs_node_key_ptr_offset(0),
2895                                       (dst_nritems) *
2896                                       sizeof(struct btrfs_key_ptr));
2897
2898         tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
2899                              src_nritems - push_items, push_items);
2900         copy_extent_buffer(dst, src,
2901                            btrfs_node_key_ptr_offset(0),
2902                            btrfs_node_key_ptr_offset(src_nritems - push_items),
2903                            push_items * sizeof(struct btrfs_key_ptr));
2904
2905         btrfs_set_header_nritems(src, src_nritems - push_items);
2906         btrfs_set_header_nritems(dst, dst_nritems + push_items);
2907
2908         btrfs_mark_buffer_dirty(src);
2909         btrfs_mark_buffer_dirty(dst);
2910
2911         return ret;
2912 }
2913
2914 /*
2915  * helper function to insert a new root level in the tree.
2916  * A new node is allocated, and a single item is inserted to
2917  * point to the existing root
2918  *
2919  * returns zero on success or < 0 on failure.
2920  */
2921 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2922                            struct btrfs_root *root,
2923                            struct btrfs_path *path, int level)
2924 {
2925         u64 lower_gen;
2926         struct extent_buffer *lower;
2927         struct extent_buffer *c;
2928         struct extent_buffer *old;
2929         struct btrfs_disk_key lower_key;
2930
2931         BUG_ON(path->nodes[level]);
2932         BUG_ON(path->nodes[level-1] != root->node);
2933
2934         lower = path->nodes[level-1];
2935         if (level == 1)
2936                 btrfs_item_key(lower, &lower_key, 0);
2937         else
2938                 btrfs_node_key(lower, &lower_key, 0);
2939
2940         c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2941                                    root->root_key.objectid, &lower_key,
2942                                    level, root->node->start, 0);
2943         if (IS_ERR(c))
2944                 return PTR_ERR(c);
2945
2946         root_add_used(root, root->nodesize);
2947
2948         memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
2949         btrfs_set_header_nritems(c, 1);
2950         btrfs_set_header_level(c, level);
2951         btrfs_set_header_bytenr(c, c->start);
2952         btrfs_set_header_generation(c, trans->transid);
2953         btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
2954         btrfs_set_header_owner(c, root->root_key.objectid);
2955
2956         write_extent_buffer(c, root->fs_info->fsid,
2957                             (unsigned long)btrfs_header_fsid(c),
2958                             BTRFS_FSID_SIZE);
2959
2960         write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
2961                             (unsigned long)btrfs_header_chunk_tree_uuid(c),
2962                             BTRFS_UUID_SIZE);
2963
2964         btrfs_set_node_key(c, &lower_key, 0);
2965         btrfs_set_node_blockptr(c, 0, lower->start);
2966         lower_gen = btrfs_header_generation(lower);
2967         WARN_ON(lower_gen != trans->transid);
2968
2969         btrfs_set_node_ptr_generation(c, 0, lower_gen);
2970
2971         btrfs_mark_buffer_dirty(c);
2972
2973         old = root->node;
2974         tree_mod_log_set_root_pointer(root, c);
2975         rcu_assign_pointer(root->node, c);
2976
2977         /* the super has an extra ref to root->node */
2978         free_extent_buffer(old);
2979
2980         add_root_to_dirty_list(root);
2981         extent_buffer_get(c);
2982         path->nodes[level] = c;
2983         path->locks[level] = BTRFS_WRITE_LOCK;
2984         path->slots[level] = 0;
2985         return 0;
2986 }
2987
2988 /*
2989  * worker function to insert a single pointer in a node.
2990  * the node should have enough room for the pointer already
2991  *
2992  * slot and level indicate where you want the key to go, and
2993  * blocknr is the block the key points to.
2994  */
2995 static void insert_ptr(struct btrfs_trans_handle *trans,
2996                        struct btrfs_root *root, struct btrfs_path *path,
2997                        struct btrfs_disk_key *key, u64 bytenr,
2998                        int slot, int level, int tree_mod_log)
2999 {
3000         struct extent_buffer *lower;
3001         int nritems;
3002         int ret;
3003
3004         BUG_ON(!path->nodes[level]);
3005         btrfs_assert_tree_locked(path->nodes[level]);
3006         lower = path->nodes[level];
3007         nritems = btrfs_header_nritems(lower);
3008         BUG_ON(slot > nritems);
3009         BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3010         if (slot != nritems) {
3011                 if (tree_mod_log && level)
3012                         tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3013                                              slot, nritems - slot);
3014                 memmove_extent_buffer(lower,
3015                               btrfs_node_key_ptr_offset(slot + 1),
3016                               btrfs_node_key_ptr_offset(slot),
3017                               (nritems - slot) * sizeof(struct btrfs_key_ptr));
3018         }
3019         if (tree_mod_log && level) {
3020                 ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3021                                               MOD_LOG_KEY_ADD);
3022                 BUG_ON(ret < 0);
3023         }
3024         btrfs_set_node_key(lower, key, slot);
3025         btrfs_set_node_blockptr(lower, slot, bytenr);
3026         WARN_ON(trans->transid == 0);
3027         btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3028         btrfs_set_header_nritems(lower, nritems + 1);
3029         btrfs_mark_buffer_dirty(lower);
3030 }
3031
3032 /*
3033  * split the node at the specified level in path in two.
3034  * The path is corrected to point to the appropriate node after the split
3035  *
3036  * Before splitting this tries to make some room in the node by pushing
3037  * left and right, if either one works, it returns right away.
3038  *
3039  * returns 0 on success and < 0 on failure
3040  */
3041 static noinline int split_node(struct btrfs_trans_handle *trans,
3042                                struct btrfs_root *root,
3043                                struct btrfs_path *path, int level)
3044 {
3045         struct extent_buffer *c;
3046         struct extent_buffer *split;
3047         struct btrfs_disk_key disk_key;
3048         int mid;
3049         int ret;
3050         u32 c_nritems;
3051
3052         c = path->nodes[level];
3053         WARN_ON(btrfs_header_generation(c) != trans->transid);
3054         if (c == root->node) {
3055                 /* trying to split the root, lets make a new one */
3056                 ret = insert_new_root(trans, root, path, level + 1);
3057                 if (ret)
3058                         return ret;
3059         } else {
3060                 ret = push_nodes_for_insert(trans, root, path, level);
3061                 c = path->nodes[level];
3062                 if (!ret && btrfs_header_nritems(c) <
3063                     BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3064                         return 0;
3065                 if (ret < 0)
3066                         return ret;
3067         }
3068
3069         c_nritems = btrfs_header_nritems(c);
3070         mid = (c_nritems + 1) / 2;
3071         btrfs_node_key(c, &disk_key, mid);
3072
3073         split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3074                                         root->root_key.objectid,
3075                                         &disk_key, level, c->start, 0);
3076         if (IS_ERR(split))
3077                 return PTR_ERR(split);
3078
3079         root_add_used(root, root->nodesize);
3080
3081         memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3082         btrfs_set_header_level(split, btrfs_header_level(c));
3083         btrfs_set_header_bytenr(split, split->start);
3084         btrfs_set_header_generation(split, trans->transid);
3085         btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3086         btrfs_set_header_owner(split, root->root_key.objectid);
3087         write_extent_buffer(split, root->fs_info->fsid,
3088                             (unsigned long)btrfs_header_fsid(split),
3089                             BTRFS_FSID_SIZE);
3090         write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3091                             (unsigned long)btrfs_header_chunk_tree_uuid(split),
3092                             BTRFS_UUID_SIZE);
3093
3094         tree_mod_log_eb_copy(root->fs_info, split, c, 0, mid, c_nritems - mid);
3095         copy_extent_buffer(split, c,
3096                            btrfs_node_key_ptr_offset(0),
3097                            btrfs_node_key_ptr_offset(mid),
3098                            (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3099         btrfs_set_header_nritems(split, c_nritems - mid);
3100         btrfs_set_header_nritems(c, mid);
3101         ret = 0;
3102
3103         btrfs_mark_buffer_dirty(c);
3104         btrfs_mark_buffer_dirty(split);
3105
3106         insert_ptr(trans, root, path, &disk_key, split->start,
3107                    path->slots[level + 1] + 1, level + 1, 1);
3108
3109         if (path->slots[level] >= mid) {
3110                 path->slots[level] -= mid;
3111                 btrfs_tree_unlock(c);
3112                 free_extent_buffer(c);
3113                 path->nodes[level] = split;
3114                 path->slots[level + 1] += 1;
3115         } else {
3116                 btrfs_tree_unlock(split);
3117                 free_extent_buffer(split);
3118         }
3119         return ret;
3120 }
3121
3122 /*
3123  * how many bytes are required to store the items in a leaf.  start
3124  * and nr indicate which items in the leaf to check.  This totals up the
3125  * space used both by the item structs and the item data
3126  */
3127 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3128 {
3129         int data_len;
3130         int nritems = btrfs_header_nritems(l);
3131         int end = min(nritems, start + nr) - 1;
3132
3133         if (!nr)
3134                 return 0;
3135         data_len = btrfs_item_end_nr(l, start);
3136         data_len = data_len - btrfs_item_offset_nr(l, end);
3137         data_len += sizeof(struct btrfs_item) * nr;
3138         WARN_ON(data_len < 0);
3139         return data_len;
3140 }
3141
3142 /*
3143  * The space between the end of the leaf items and
3144  * the start of the leaf data.  IOW, how much room
3145  * the leaf has left for both items and data
3146  */
3147 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3148                                    struct extent_buffer *leaf)
3149 {
3150         int nritems = btrfs_header_nritems(leaf);
3151         int ret;
3152         ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3153         if (ret < 0) {
3154                 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
3155                        "used %d nritems %d\n",
3156                        ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3157                        leaf_space_used(leaf, 0, nritems), nritems);
3158         }
3159         return ret;
3160 }
3161
3162 /*
3163  * min slot controls the lowest index we're willing to push to the
3164  * right.  We'll push up to and including min_slot, but no lower
3165  */
3166 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3167                                       struct btrfs_root *root,
3168                                       struct btrfs_path *path,
3169                                       int data_size, int empty,
3170                                       struct extent_buffer *right,
3171                                       int free_space, u32 left_nritems,
3172                                       u32 min_slot)
3173 {
3174         struct extent_buffer *left = path->nodes[0];
3175         struct extent_buffer *upper = path->nodes[1];
3176         struct btrfs_map_token token;
3177         struct btrfs_disk_key disk_key;
3178         int slot;
3179         u32 i;
3180         int push_space = 0;
3181         int push_items = 0;
3182         struct btrfs_item *item;
3183         u32 nr;
3184         u32 right_nritems;
3185         u32 data_end;
3186         u32 this_item_size;
3187
3188         btrfs_init_map_token(&token);
3189
3190         if (empty)
3191                 nr = 0;
3192         else
3193                 nr = max_t(u32, 1, min_slot);
3194
3195         if (path->slots[0] >= left_nritems)
3196                 push_space += data_size;
3197
3198         slot = path->slots[1];
3199         i = left_nritems - 1;
3200         while (i >= nr) {
3201                 item = btrfs_item_nr(left, i);
3202
3203                 if (!empty && push_items > 0) {
3204                         if (path->slots[0] > i)
3205                                 break;
3206                         if (path->slots[0] == i) {
3207                                 int space = btrfs_leaf_free_space(root, left);
3208                                 if (space + push_space * 2 > free_space)
3209                                         break;
3210                         }
3211                 }
3212
3213                 if (path->slots[0] == i)
3214                         push_space += data_size;
3215
3216                 this_item_size = btrfs_item_size(left, item);
3217                 if (this_item_size + sizeof(*item) + push_space > free_space)
3218                         break;
3219
3220                 push_items++;
3221                 push_space += this_item_size + sizeof(*item);
3222                 if (i == 0)
3223                         break;
3224                 i--;
3225         }
3226
3227         if (push_items == 0)
3228                 goto out_unlock;
3229
3230         if (!empty && push_items == left_nritems)
3231                 WARN_ON(1);
3232
3233         /* push left to right */
3234         right_nritems = btrfs_header_nritems(right);
3235
3236         push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3237         push_space -= leaf_data_end(root, left);
3238
3239         /* make room in the right data area */
3240         data_end = leaf_data_end(root, right);
3241         memmove_extent_buffer(right,
3242                               btrfs_leaf_data(right) + data_end - push_space,
3243                               btrfs_leaf_data(right) + data_end,
3244                               BTRFS_LEAF_DATA_SIZE(root) - data_end);
3245
3246         /* copy from the left data area */
3247         copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3248                      BTRFS_LEAF_DATA_SIZE(root) - push_space,
3249                      btrfs_leaf_data(left) + leaf_data_end(root, left),
3250                      push_space);
3251
3252         memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3253                               btrfs_item_nr_offset(0),
3254                               right_nritems * sizeof(struct btrfs_item));
3255
3256         /* copy the items from left to right */
3257         copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3258                    btrfs_item_nr_offset(left_nritems - push_items),
3259                    push_items * sizeof(struct btrfs_item));
3260
3261         /* update the item pointers */
3262         right_nritems += push_items;
3263         btrfs_set_header_nritems(right, right_nritems);
3264         push_space = BTRFS_LEAF_DATA_SIZE(root);
3265         for (i = 0; i < right_nritems; i++) {
3266                 item = btrfs_item_nr(right, i);
3267                 push_space -= btrfs_token_item_size(right, item, &token);
3268                 btrfs_set_token_item_offset(right, item, push_space, &token);
3269         }
3270
3271         left_nritems -= push_items;
3272         btrfs_set_header_nritems(left, left_nritems);
3273
3274         if (left_nritems)
3275                 btrfs_mark_buffer_dirty(left);
3276         else
3277                 clean_tree_block(trans, root, left);
3278
3279         btrfs_mark_buffer_dirty(right);
3280
3281         btrfs_item_key(right, &disk_key, 0);
3282         btrfs_set_node_key(upper, &disk_key, slot + 1);
3283         btrfs_mark_buffer_dirty(upper);
3284
3285         /* then fixup the leaf pointer in the path */
3286         if (path->slots[0] >= left_nritems) {
3287                 path->slots[0] -= left_nritems;
3288                 if (btrfs_header_nritems(path->nodes[0]) == 0)
3289                         clean_tree_block(trans, root, path->nodes[0]);
3290                 btrfs_tree_unlock(path->nodes[0]);
3291                 free_extent_buffer(path->nodes[0]);
3292                 path->nodes[0] = right;
3293                 path->slots[1] += 1;
3294         } else {
3295                 btrfs_tree_unlock(right);
3296                 free_extent_buffer(right);
3297         }
3298         return 0;
3299
3300 out_unlock:
3301         btrfs_tree_unlock(right);
3302         free_extent_buffer(right);
3303         return 1;
3304 }
3305
3306 /*
3307  * push some data in the path leaf to the right, trying to free up at
3308  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3309  *
3310  * returns 1 if the push failed because the other node didn't have enough
3311  * room, 0 if everything worked out and < 0 if there were major errors.
3312  *
3313  * this will push starting from min_slot to the end of the leaf.  It won't
3314  * push any slot lower than min_slot
3315  */
3316 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3317                            *root, struct btrfs_path *path,
3318                            int min_data_size, int data_size,
3319                            int empty, u32 min_slot)
3320 {
3321         struct extent_buffer *left = path->nodes[0];
3322         struct extent_buffer *right;
3323         struct extent_buffer *upper;
3324         int slot;
3325         int free_space;
3326         u32 left_nritems;
3327         int ret;
3328
3329         if (!path->nodes[1])
3330                 return 1;
3331
3332         slot = path->slots[1];
3333         upper = path->nodes[1];
3334         if (slot >= btrfs_header_nritems(upper) - 1)
3335                 return 1;
3336
3337         btrfs_assert_tree_locked(path->nodes[1]);
3338
3339         right = read_node_slot(root, upper, slot + 1);
3340         if (right == NULL)
3341                 return 1;
3342
3343         btrfs_tree_lock(right);
3344         btrfs_set_lock_blocking(right);
3345
3346         free_space = btrfs_leaf_free_space(root, right);
3347         if (free_space < data_size)
3348                 goto out_unlock;
3349
3350         /* cow and double check */
3351         ret = btrfs_cow_block(trans, root, right, upper,
3352                               slot + 1, &right);
3353         if (ret)
3354                 goto out_unlock;
3355
3356         free_space = btrfs_leaf_free_space(root, right);
3357         if (free_space < data_size)
3358                 goto out_unlock;
3359
3360         left_nritems = btrfs_header_nritems(left);
3361         if (left_nritems == 0)
3362                 goto out_unlock;
3363
3364         return __push_leaf_right(trans, root, path, min_data_size, empty,
3365                                 right, free_space, left_nritems, min_slot);
3366 out_unlock:
3367         btrfs_tree_unlock(right);
3368         free_extent_buffer(right);
3369         return 1;
3370 }
3371
3372 /*
3373  * push some data in the path leaf to the left, trying to free up at
3374  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3375  *
3376  * max_slot can put a limit on how far into the leaf we'll push items.  The
3377  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3378  * items
3379  */
3380 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3381                                      struct btrfs_root *root,
3382                                      struct btrfs_path *path, int data_size,
3383                                      int empty, struct extent_buffer *left,
3384                                      int free_space, u32 right_nritems,
3385                                      u32 max_slot)
3386 {
3387         struct btrfs_disk_key disk_key;
3388         struct extent_buffer *right = path->nodes[0];
3389         int i;
3390         int push_space = 0;
3391         int push_items = 0;
3392         struct btrfs_item *item;
3393         u32 old_left_nritems;
3394         u32 nr;
3395         int ret = 0;
3396         u32 this_item_size;
3397         u32 old_left_item_size;
3398         struct btrfs_map_token token;
3399
3400         btrfs_init_map_token(&token);
3401
3402         if (empty)
3403                 nr = min(right_nritems, max_slot);
3404         else
3405                 nr = min(right_nritems - 1, max_slot);
3406
3407         for (i = 0; i < nr; i++) {
3408                 item = btrfs_item_nr(right, i);
3409
3410                 if (!empty && push_items > 0) {
3411                         if (path->slots[0] < i)
3412                                 break;
3413                         if (path->slots[0] == i) {
3414                                 int space = btrfs_leaf_free_space(root, right);
3415                                 if (space + push_space * 2 > free_space)
3416                                         break;
3417                         }
3418                 }
3419
3420                 if (path->slots[0] == i)
3421                         push_space += data_size;
3422
3423                 this_item_size = btrfs_item_size(right, item);
3424                 if (this_item_size + sizeof(*item) + push_space > free_space)
3425                         break;
3426
3427                 push_items++;
3428                 push_space += this_item_size + sizeof(*item);
3429         }
3430
3431         if (push_items == 0) {
3432                 ret = 1;
3433                 goto out;
3434         }
3435         if (!empty && push_items == btrfs_header_nritems(right))
3436                 WARN_ON(1);
3437
3438         /* push data from right to left */
3439         copy_extent_buffer(left, right,
3440                            btrfs_item_nr_offset(btrfs_header_nritems(left)),
3441                            btrfs_item_nr_offset(0),
3442                            push_items * sizeof(struct btrfs_item));
3443
3444         push_space = BTRFS_LEAF_DATA_SIZE(root) -
3445                      btrfs_item_offset_nr(right, push_items - 1);
3446
3447         copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3448                      leaf_data_end(root, left) - push_space,
3449                      btrfs_leaf_data(right) +
3450                      btrfs_item_offset_nr(right, push_items - 1),
3451                      push_space);
3452         old_left_nritems = btrfs_header_nritems(left);
3453         BUG_ON(old_left_nritems <= 0);
3454
3455         old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3456         for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3457                 u32 ioff;
3458
3459                 item = btrfs_item_nr(left, i);
3460
3461                 ioff = btrfs_token_item_offset(left, item, &token);
3462                 btrfs_set_token_item_offset(left, item,
3463                       ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3464                       &token);
3465         }
3466         btrfs_set_header_nritems(left, old_left_nritems + push_items);
3467
3468         /* fixup right node */
3469         if (push_items > right_nritems) {
3470                 printk(KERN_CRIT "push items %d nr %u\n", push_items,
3471                        right_nritems);
3472                 WARN_ON(1);
3473         }
3474
3475         if (push_items < right_nritems) {
3476                 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3477                                                   leaf_data_end(root, right);
3478                 memmove_extent_buffer(right, btrfs_leaf_data(right) +
3479                                       BTRFS_LEAF_DATA_SIZE(root) - push_space,
3480                                       btrfs_leaf_data(right) +
3481                                       leaf_data_end(root, right), push_space);
3482
3483                 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3484                               btrfs_item_nr_offset(push_items),
3485                              (btrfs_header_nritems(right) - push_items) *
3486                              sizeof(struct btrfs_item));
3487         }
3488         right_nritems -= push_items;
3489         btrfs_set_header_nritems(right, right_nritems);
3490         push_space = BTRFS_LEAF_DATA_SIZE(root);
3491         for (i = 0; i < right_nritems; i++) {
3492                 item = btrfs_item_nr(right, i);
3493
3494                 push_space = push_space - btrfs_token_item_size(right,
3495                                                                 item, &token);
3496                 btrfs_set_token_item_offset(right, item, push_space, &token);
3497         }
3498
3499         btrfs_mark_buffer_dirty(left);
3500         if (right_nritems)
3501                 btrfs_mark_buffer_dirty(right);
3502         else
3503                 clean_tree_block(trans, root, right);
3504
3505         btrfs_item_key(right, &disk_key, 0);
3506         fixup_low_keys(trans, root, path, &disk_key, 1);
3507
3508         /* then fixup the leaf pointer in the path */
3509         if (path->slots[0] < push_items) {
3510                 path->slots[0] += old_left_nritems;
3511                 btrfs_tree_unlock(path->nodes[0]);
3512                 free_extent_buffer(path->nodes[0]);
3513                 path->nodes[0] = left;
3514                 path->slots[1] -= 1;
3515         } else {
3516                 btrfs_tree_unlock(left);
3517                 free_extent_buffer(left);
3518                 path->slots[0] -= push_items;
3519         }
3520         BUG_ON(path->slots[0] < 0);
3521         return ret;
3522 out:
3523         btrfs_tree_unlock(left);
3524         free_extent_buffer(left);
3525         return ret;
3526 }
3527
3528 /*
3529  * push some data in the path leaf to the left, trying to free up at
3530  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3531  *
3532  * max_slot can put a limit on how far into the leaf we'll push items.  The
3533  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3534  * items
3535  */
3536 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3537                           *root, struct btrfs_path *path, int min_data_size,
3538                           int data_size, int empty, u32 max_slot)
3539 {
3540         struct extent_buffer *right = path->nodes[0];
3541         struct extent_buffer *left;
3542         int slot;
3543         int free_space;
3544         u32 right_nritems;
3545         int ret = 0;
3546
3547         slot = path->slots[1];
3548         if (slot == 0)
3549                 return 1;
3550         if (!path->nodes[1])
3551                 return 1;
3552
3553         right_nritems = btrfs_header_nritems(right);
3554         if (right_nritems == 0)
3555                 return 1;
3556
3557         btrfs_assert_tree_locked(path->nodes[1]);
3558
3559         left = read_node_slot(root, path->nodes[1], slot - 1);
3560         if (left == NULL)
3561                 return 1;
3562
3563         btrfs_tree_lock(left);
3564         btrfs_set_lock_blocking(left);
3565
3566         free_space = btrfs_leaf_free_space(root, left);
3567         if (free_space < data_size) {
3568                 ret = 1;
3569                 goto out;
3570         }
3571
3572         /* cow and double check */
3573         ret = btrfs_cow_block(trans, root, left,
3574                               path->nodes[1], slot - 1, &left);
3575         if (ret) {
3576                 /* we hit -ENOSPC, but it isn't fatal here */
3577                 if (ret == -ENOSPC)
3578                         ret = 1;
3579                 goto out;
3580         }
3581
3582         free_space = btrfs_leaf_free_space(root, left);
3583         if (free_space < data_size) {
3584                 ret = 1;
3585                 goto out;
3586         }
3587
3588         return __push_leaf_left(trans, root, path, min_data_size,
3589                                empty, left, free_space, right_nritems,
3590                                max_slot);
3591 out:
3592         btrfs_tree_unlock(left);
3593         free_extent_buffer(left);
3594         return ret;
3595 }
3596
3597 /*
3598  * split the path's leaf in two, making sure there is at least data_size
3599  * available for the resulting leaf level of the path.
3600  */
3601 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3602                                     struct btrfs_root *root,
3603                                     struct btrfs_path *path,
3604                                     struct extent_buffer *l,
3605                                     struct extent_buffer *right,
3606                                     int slot, int mid, int nritems)
3607 {
3608         int data_copy_size;
3609         int rt_data_off;
3610         int i;
3611         struct btrfs_disk_key disk_key;
3612         struct btrfs_map_token token;
3613
3614         btrfs_init_map_token(&token);
3615
3616         nritems = nritems - mid;
3617         btrfs_set_header_nritems(right, nritems);
3618         data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
3619
3620         copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
3621                            btrfs_item_nr_offset(mid),
3622                            nritems * sizeof(struct btrfs_item));
3623
3624         copy_extent_buffer(right, l,
3625                      btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
3626                      data_copy_size, btrfs_leaf_data(l) +
3627                      leaf_data_end(root, l), data_copy_size);
3628
3629         rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
3630                       btrfs_item_end_nr(l, mid);
3631
3632         for (i = 0; i < nritems; i++) {
3633                 struct btrfs_item *item = btrfs_item_nr(right, i);
3634                 u32 ioff;
3635
3636                 ioff = btrfs_token_item_offset(right, item, &token);
3637                 btrfs_set_token_item_offset(right, item,
3638                                             ioff + rt_data_off, &token);
3639         }
3640
3641         btrfs_set_header_nritems(l, mid);
3642         btrfs_item_key(right, &disk_key, 0);
3643         insert_ptr(trans, root, path, &disk_key, right->start,
3644                    path->slots[1] + 1, 1, 0);
3645
3646         btrfs_mark_buffer_dirty(right);
3647         btrfs_mark_buffer_dirty(l);
3648         BUG_ON(path->slots[0] != slot);
3649
3650         if (mid <= slot) {
3651                 btrfs_tree_unlock(path->nodes[0]);
3652                 free_extent_buffer(path->nodes[0]);
3653                 path->nodes[0] = right;
3654                 path->slots[0] -= mid;
3655                 path->slots[1] += 1;
3656         } else {
3657                 btrfs_tree_unlock(right);
3658                 free_extent_buffer(right);
3659         }
3660
3661         BUG_ON(path->slots[0] < 0);
3662 }
3663
3664 /*
3665  * double splits happen when we need to insert a big item in the middle
3666  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3667  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3668  *          A                 B                 C
3669  *
3670  * We avoid this by trying to push the items on either side of our target
3671  * into the adjacent leaves.  If all goes well we can avoid the double split
3672  * completely.
3673  */
3674 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3675                                           struct btrfs_root *root,
3676                                           struct btrfs_path *path,
3677                                           int data_size)
3678 {
3679         int ret;
3680         int progress = 0;
3681         int slot;
3682         u32 nritems;
3683
3684         slot = path->slots[0];
3685
3686         /*
3687          * try to push all the items after our slot into the
3688          * right leaf
3689          */
3690         ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
3691         if (ret < 0)
3692                 return ret;
3693
3694         if (ret == 0)
3695                 progress++;
3696
3697         nritems = btrfs_header_nritems(path->nodes[0]);
3698         /*
3699          * our goal is to get our slot at the start or end of a leaf.  If
3700          * we've done so we're done
3701          */
3702         if (path->slots[0] == 0 || path->slots[0] == nritems)
3703                 return 0;
3704
3705         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3706                 return 0;
3707
3708         /* try to push all the items before our slot into the next leaf */
3709         slot = path->slots[0];
3710         ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
3711         if (ret < 0)
3712                 return ret;
3713
3714         if (ret == 0)
3715                 progress++;
3716
3717         if (progress)
3718                 return 0;
3719         return 1;
3720 }
3721
3722 /*
3723  * split the path's leaf in two, making sure there is at least data_size
3724  * available for the resulting leaf level of the path.
3725  *
3726  * returns 0 if all went well and < 0 on failure.
3727  */
3728 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3729                                struct btrfs_root *root,
3730                                struct btrfs_key *ins_key,
3731                                struct btrfs_path *path, int data_size,
3732                                int extend)
3733 {
3734         struct btrfs_disk_key disk_key;
3735         struct extent_buffer *l;
3736         u32 nritems;
3737         int mid;
3738         int slot;
3739         struct extent_buffer *right;
3740         int ret = 0;
3741         int wret;
3742         int split;
3743         int num_doubles = 0;
3744         int tried_avoid_double = 0;
3745
3746         l = path->nodes[0];
3747         slot = path->slots[0];
3748         if (extend && data_size + btrfs_item_size_nr(l, slot) +
3749             sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
3750                 return -EOVERFLOW;
3751
3752         /* first try to make some room by pushing left and right */
3753         if (data_size) {
3754                 wret = push_leaf_right(trans, root, path, data_size,
3755                                        data_size, 0, 0);
3756                 if (wret < 0)
3757                         return wret;
3758                 if (wret) {
3759                         wret = push_leaf_left(trans, root, path, data_size,
3760                                               data_size, 0, (u32)-1);
3761                         if (wret < 0)
3762                                 return wret;
3763                 }
3764                 l = path->nodes[0];
3765
3766                 /* did the pushes work? */
3767                 if (btrfs_leaf_free_space(root, l) >= data_size)
3768                         return 0;
3769         }
3770
3771         if (!path->nodes[1]) {
3772                 ret = insert_new_root(trans, root, path, 1);
3773                 if (ret)
3774                         return ret;
3775         }
3776 again:
3777         split = 1;
3778         l = path->nodes[0];
3779         slot = path->slots[0];
3780         nritems = btrfs_header_nritems(l);
3781         mid = (nritems + 1) / 2;
3782
3783         if (mid <= slot) {
3784                 if (nritems == 1 ||
3785                     leaf_space_used(l, mid, nritems - mid) + data_size >
3786                         BTRFS_LEAF_DATA_SIZE(root)) {
3787                         if (slot >= nritems) {
3788                                 split = 0;
3789                         } else {
3790                                 mid = slot;
3791                                 if (mid != nritems &&
3792                                     leaf_space_used(l, mid, nritems - mid) +
3793                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3794                                         if (data_size && !tried_avoid_double)
3795                                                 goto push_for_double;
3796                                         split = 2;
3797                                 }
3798                         }
3799                 }
3800         } else {
3801                 if (leaf_space_used(l, 0, mid) + data_size >
3802                         BTRFS_LEAF_DATA_SIZE(root)) {
3803                         if (!extend && data_size && slot == 0) {
3804                                 split = 0;
3805                         } else if ((extend || !data_size) && slot == 0) {
3806                                 mid = 1;
3807                         } else {
3808                                 mid = slot;
3809                                 if (mid != nritems &&
3810                                     leaf_space_used(l, mid, nritems - mid) +
3811                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3812                                         if (data_size && !tried_avoid_double)
3813                                                 goto push_for_double;
3814                                         split = 2 ;
3815                                 }
3816                         }
3817                 }
3818         }
3819
3820         if (split == 0)
3821                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
3822         else
3823                 btrfs_item_key(l, &disk_key, mid);
3824
3825         right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
3826                                         root->root_key.objectid,
3827                                         &disk_key, 0, l->start, 0);
3828         if (IS_ERR(right))
3829                 return PTR_ERR(right);
3830
3831         root_add_used(root, root->leafsize);
3832
3833         memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
3834         btrfs_set_header_bytenr(right, right->start);
3835         btrfs_set_header_generation(right, trans->transid);
3836         btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
3837         btrfs_set_header_owner(right, root->root_key.objectid);
3838         btrfs_set_header_level(right, 0);
3839         write_extent_buffer(right, root->fs_info->fsid,
3840                             (unsigned long)btrfs_header_fsid(right),
3841                             BTRFS_FSID_SIZE);
3842
3843         write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
3844                             (unsigned long)btrfs_header_chunk_tree_uuid(right),
3845                             BTRFS_UUID_SIZE);
3846
3847         if (split == 0) {
3848                 if (mid <= slot) {
3849                         btrfs_set_header_nritems(right, 0);
3850                         insert_ptr(trans, root, path, &disk_key, right->start,
3851                                    path->slots[1] + 1, 1, 0);
3852                         btrfs_tree_unlock(path->nodes[0]);
3853                         free_extent_buffer(path->nodes[0]);
3854                         path->nodes[0] = right;
3855                         path->slots[0] = 0;
3856                         path->slots[1] += 1;
3857                 } else {
3858                         btrfs_set_header_nritems(right, 0);
3859                         insert_ptr(trans, root, path, &disk_key, right->start,
3860                                           path->slots[1], 1, 0);
3861                         btrfs_tree_unlock(path->nodes[0]);
3862                         free_extent_buffer(path->nodes[0]);
3863                         path->nodes[0] = right;
3864                         path->slots[0] = 0;
3865                         if (path->slots[1] == 0)
3866                                 fixup_low_keys(trans, root, path,
3867                                                &disk_key, 1);
3868                 }
3869                 btrfs_mark_buffer_dirty(right);
3870                 return ret;
3871         }
3872
3873         copy_for_split(trans, root, path, l, right, slot, mid, nritems);
3874
3875         if (split == 2) {
3876                 BUG_ON(num_doubles != 0);
3877                 num_doubles++;
3878                 goto again;
3879         }
3880
3881         return 0;
3882
3883 push_for_double:
3884         push_for_double_split(trans, root, path, data_size);
3885         tried_avoid_double = 1;
3886         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3887                 return 0;
3888         goto again;
3889 }
3890
3891 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3892                                          struct btrfs_root *root,
3893                                          struct btrfs_path *path, int ins_len)
3894 {
3895         struct btrfs_key key;
3896         struct extent_buffer *leaf;
3897         struct btrfs_file_extent_item *fi;
3898         u64 extent_len = 0;
3899         u32 item_size;
3900         int ret;
3901
3902         leaf = path->nodes[0];
3903         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3904
3905         BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3906                key.type != BTRFS_EXTENT_CSUM_KEY);
3907
3908         if (btrfs_leaf_free_space(root, leaf) >= ins_len)
3909                 return 0;
3910
3911         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3912         if (key.type == BTRFS_EXTENT_DATA_KEY) {
3913                 fi = btrfs_item_ptr(leaf, path->slots[0],
3914                                     struct btrfs_file_extent_item);
3915                 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3916         }
3917         btrfs_release_path(path);
3918
3919         path->keep_locks = 1;
3920         path->search_for_split = 1;
3921         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3922         path->search_for_split = 0;
3923         if (ret < 0)
3924                 goto err;
3925
3926         ret = -EAGAIN;
3927         leaf = path->nodes[0];
3928         /* if our item isn't there or got smaller, return now */
3929         if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
3930                 goto err;
3931
3932         /* the leaf has  changed, it now has room.  return now */
3933         if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
3934                 goto err;
3935
3936         if (key.type == BTRFS_EXTENT_DATA_KEY) {
3937                 fi = btrfs_item_ptr(leaf, path->slots[0],
3938                                     struct btrfs_file_extent_item);
3939                 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3940                         goto err;
3941         }
3942
3943         btrfs_set_path_blocking(path);
3944         ret = split_leaf(trans, root, &key, path, ins_len, 1);
3945         if (ret)
3946                 goto err;
3947
3948         path->keep_locks = 0;
3949         btrfs_unlock_up_safe(path, 1);
3950         return 0;
3951 err:
3952         path->keep_locks = 0;
3953         return ret;
3954 }
3955
3956 static noinline int split_item(struct btrfs_trans_handle *trans,
3957                                struct btrfs_root *root,
3958                                struct btrfs_path *path,
3959                                struct btrfs_key *new_key,
3960                                unsigned long split_offset)
3961 {
3962         struct extent_buffer *leaf;
3963         struct btrfs_item *item;
3964         struct btrfs_item *new_item;
3965         int slot;
3966         char *buf;
3967         u32 nritems;
3968         u32 item_size;
3969         u32 orig_offset;
3970         struct btrfs_disk_key disk_key;
3971
3972         leaf = path->nodes[0];
3973         BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
3974
3975         btrfs_set_path_blocking(path);
3976
3977         item = btrfs_item_nr(leaf, path->slots[0]);
3978         orig_offset = btrfs_item_offset(leaf, item);
3979         item_size = btrfs_item_size(leaf, item);
3980
3981         buf = kmalloc(item_size, GFP_NOFS);
3982         if (!buf)
3983                 return -ENOMEM;
3984
3985         read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3986                             path->slots[0]), item_size);
3987
3988         slot = path->slots[0] + 1;
3989         nritems = btrfs_header_nritems(leaf);
3990         if (slot != nritems) {
3991                 /* shift the items */
3992                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
3993                                 btrfs_item_nr_offset(slot),
3994                                 (nritems - slot) * sizeof(struct btrfs_item));
3995         }
3996
3997         btrfs_cpu_key_to_disk(&disk_key, new_key);
3998         btrfs_set_item_key(leaf, &disk_key, slot);
3999
4000         new_item = btrfs_item_nr(leaf, slot);
4001
4002         btrfs_set_item_offset(leaf, new_item, orig_offset);
4003         btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4004
4005         btrfs_set_item_offset(leaf, item,
4006                               orig_offset + item_size - split_offset);
4007         btrfs_set_item_size(leaf, item, split_offset);
4008
4009         btrfs_set_header_nritems(leaf, nritems + 1);
4010
4011         /* write the data for the start of the original item */
4012         write_extent_buffer(leaf, buf,
4013                             btrfs_item_ptr_offset(leaf, path->slots[0]),
4014                             split_offset);
4015
4016         /* write the data for the new item */
4017         write_extent_buffer(leaf, buf + split_offset,
4018                             btrfs_item_ptr_offset(leaf, slot),
4019                             item_size - split_offset);
4020         btrfs_mark_buffer_dirty(leaf);
4021
4022         BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4023         kfree(buf);
4024         return 0;
4025 }
4026
4027 /*
4028  * This function splits a single item into two items,
4029  * giving 'new_key' to the new item and splitting the
4030  * old one at split_offset (from the start of the item).
4031  *
4032  * The path may be released by this operation.  After
4033  * the split, the path is pointing to the old item.  The
4034  * new item is going to be in the same node as the old one.
4035  *
4036  * Note, the item being split must be smaller enough to live alone on
4037  * a tree block with room for one extra struct btrfs_item
4038  *
4039  * This allows us to split the item in place, keeping a lock on the
4040  * leaf the entire time.
4041  */
4042 int btrfs_split_item(struct btrfs_trans_handle *trans,
4043                      struct btrfs_root *root,
4044                      struct btrfs_path *path,
4045                      struct btrfs_key *new_key,
4046                      unsigned long split_offset)
4047 {
4048         int ret;
4049         ret = setup_leaf_for_split(trans, root, path,
4050                                    sizeof(struct btrfs_item));
4051         if (ret)
4052                 return ret;
4053
4054         ret = split_item(trans, root, path, new_key, split_offset);
4055         return ret;
4056 }
4057
4058 /*
4059  * This function duplicate a item, giving 'new_key' to the new item.
4060  * It guarantees both items live in the same tree leaf and the new item
4061  * is contiguous with the original item.
4062  *
4063  * This allows us to split file extent in place, keeping a lock on the
4064  * leaf the entire time.
4065  */
4066 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4067                          struct btrfs_root *root,
4068                          struct btrfs_path *path,
4069                          struct btrfs_key *new_key)
4070 {
4071         struct extent_buffer *leaf;
4072         int ret;
4073         u32 item_size;
4074
4075         leaf = path->nodes[0];
4076         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4077         ret = setup_leaf_for_split(trans, root, path,
4078                                    item_size + sizeof(struct btrfs_item));
4079         if (ret)
4080                 return ret;
4081
4082         path->slots[0]++;
4083         setup_items_for_insert(trans, root, path, new_key, &item_size,
4084                                item_size, item_size +
4085                                sizeof(struct btrfs_item), 1);
4086         leaf = path->nodes[0];
4087         memcpy_extent_buffer(leaf,
4088                              btrfs_item_ptr_offset(leaf, path->slots[0]),
4089                              btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4090                              item_size);
4091         return 0;
4092 }
4093
4094 /*
4095  * make the item pointed to by the path smaller.  new_size indicates
4096  * how small to make it, and from_end tells us if we just chop bytes
4097  * off the end of the item or if we shift the item to chop bytes off
4098  * the front.
4099  */
4100 void btrfs_truncate_item(struct btrfs_trans_handle *trans,
4101                          struct btrfs_root *root,
4102                          struct btrfs_path *path,
4103                          u32 new_size, int from_end)
4104 {
4105         int slot;
4106         struct extent_buffer *leaf;
4107         struct btrfs_item *item;
4108         u32 nritems;
4109         unsigned int data_end;
4110         unsigned int old_data_start;
4111         unsigned int old_size;
4112         unsigned int size_diff;
4113         int i;
4114         struct btrfs_map_token token;
4115
4116         btrfs_init_map_token(&token);
4117
4118         leaf = path->nodes[0];
4119         slot = path->slots[0];
4120
4121         old_size = btrfs_item_size_nr(leaf, slot);
4122         if (old_size == new_size)
4123                 return;
4124
4125         nritems = btrfs_header_nritems(leaf);
4126         data_end = leaf_data_end(root, leaf);
4127
4128         old_data_start = btrfs_item_offset_nr(leaf, slot);
4129
4130         size_diff = old_size - new_size;
4131
4132         BUG_ON(slot < 0);
4133         BUG_ON(slot >= nritems);
4134
4135         /*
4136          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4137          */
4138         /* first correct the data pointers */
4139         for (i = slot; i < nritems; i++) {
4140                 u32 ioff;
4141                 item = btrfs_item_nr(leaf, i);
4142
4143                 ioff = btrfs_token_item_offset(leaf, item, &token);
4144                 btrfs_set_token_item_offset(leaf, item,
4145                                             ioff + size_diff, &token);
4146         }
4147
4148         /* shift the data */
4149         if (from_end) {
4150                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4151                               data_end + size_diff, btrfs_leaf_data(leaf) +
4152                               data_end, old_data_start + new_size - data_end);
4153         } else {
4154                 struct btrfs_disk_key disk_key;
4155                 u64 offset;
4156
4157                 btrfs_item_key(leaf, &disk_key, slot);
4158
4159                 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4160                         unsigned long ptr;
4161                         struct btrfs_file_extent_item *fi;
4162
4163                         fi = btrfs_item_ptr(leaf, slot,
4164                                             struct btrfs_file_extent_item);
4165                         fi = (struct btrfs_file_extent_item *)(
4166                              (unsigned long)fi - size_diff);
4167
4168                         if (btrfs_file_extent_type(leaf, fi) ==
4169                             BTRFS_FILE_EXTENT_INLINE) {
4170                                 ptr = btrfs_item_ptr_offset(leaf, slot);
4171                                 memmove_extent_buffer(leaf, ptr,
4172                                       (unsigned long)fi,
4173                                       offsetof(struct btrfs_file_extent_item,
4174                                                  disk_bytenr));
4175                         }
4176                 }
4177
4178                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4179                               data_end + size_diff, btrfs_leaf_data(leaf) +
4180                               data_end, old_data_start - data_end);
4181
4182                 offset = btrfs_disk_key_offset(&disk_key);
4183                 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4184                 btrfs_set_item_key(leaf, &disk_key, slot);
4185                 if (slot == 0)
4186                         fixup_low_keys(trans, root, path, &disk_key, 1);
4187         }
4188
4189         item = btrfs_item_nr(leaf, slot);
4190         btrfs_set_item_size(leaf, item, new_size);
4191         btrfs_mark_buffer_dirty(leaf);
4192
4193         if (btrfs_leaf_free_space(root, leaf) < 0) {
4194                 btrfs_print_leaf(root, leaf);
4195                 BUG();
4196         }
4197 }
4198
4199 /*
4200  * make the item pointed to by the path bigger, data_size is the new size.
4201  */
4202 void btrfs_extend_item(struct btrfs_trans_handle *trans,
4203                        struct btrfs_root *root, struct btrfs_path *path,
4204                        u32 data_size)
4205 {
4206         int slot;
4207         struct extent_buffer *leaf;
4208         struct btrfs_item *item;
4209         u32 nritems;
4210         unsigned int data_end;
4211         unsigned int old_data;
4212         unsigned int old_size;
4213         int i;
4214         struct btrfs_map_token token;
4215
4216         btrfs_init_map_token(&token);
4217
4218         leaf = path->nodes[0];
4219
4220         nritems = btrfs_header_nritems(leaf);
4221         data_end = leaf_data_end(root, leaf);
4222
4223         if (btrfs_leaf_free_space(root, leaf) < data_size) {
4224                 btrfs_print_leaf(root, leaf);
4225                 BUG();
4226         }
4227         slot = path->slots[0];
4228         old_data = btrfs_item_end_nr(leaf, slot);
4229
4230         BUG_ON(slot < 0);
4231         if (slot >= nritems) {
4232                 btrfs_print_leaf(root, leaf);
4233                 printk(KERN_CRIT "slot %d too large, nritems %d\n",
4234                        slot, nritems);
4235                 BUG_ON(1);
4236         }
4237
4238         /*
4239          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4240          */
4241         /* first correct the data pointers */
4242         for (i = slot; i < nritems; i++) {
4243                 u32 ioff;
4244                 item = btrfs_item_nr(leaf, i);
4245
4246                 ioff = btrfs_token_item_offset(leaf, item, &token);
4247                 btrfs_set_token_item_offset(leaf, item,
4248                                             ioff - data_size, &token);
4249         }
4250
4251         /* shift the data */
4252         memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4253                       data_end - data_size, btrfs_leaf_data(leaf) +
4254                       data_end, old_data - data_end);
4255
4256         data_end = old_data;
4257         old_size = btrfs_item_size_nr(leaf, slot);
4258         item = btrfs_item_nr(leaf, slot);
4259         btrfs_set_item_size(leaf, item, old_size + data_size);
4260         btrfs_mark_buffer_dirty(leaf);
4261
4262         if (btrfs_leaf_free_space(root, leaf) < 0) {
4263                 btrfs_print_leaf(root, leaf);
4264                 BUG();
4265         }
4266 }
4267
4268 /*
4269  * Given a key and some data, insert items into the tree.
4270  * This does all the path init required, making room in the tree if needed.
4271  * Returns the number of keys that were inserted.
4272  */
4273 int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
4274                             struct btrfs_root *root,
4275                             struct btrfs_path *path,
4276                             struct btrfs_key *cpu_key, u32 *data_size,
4277                             int nr)
4278 {
4279         struct extent_buffer *leaf;
4280         struct btrfs_item *item;
4281         int ret = 0;
4282         int slot;
4283         int i;
4284         u32 nritems;
4285         u32 total_data = 0;
4286         u32 total_size = 0;
4287         unsigned int data_end;
4288         struct btrfs_disk_key disk_key;
4289         struct btrfs_key found_key;
4290         struct btrfs_map_token token;
4291
4292         btrfs_init_map_token(&token);
4293
4294         for (i = 0; i < nr; i++) {
4295                 if (total_size + data_size[i] + sizeof(struct btrfs_item) >
4296                     BTRFS_LEAF_DATA_SIZE(root)) {
4297                         break;
4298                         nr = i;
4299                 }
4300                 total_data += data_size[i];
4301                 total_size += data_size[i] + sizeof(struct btrfs_item);
4302         }
4303         BUG_ON(nr == 0);
4304
4305         ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4306         if (ret == 0)
4307                 return -EEXIST;
4308         if (ret < 0)
4309                 goto out;
4310
4311         leaf = path->nodes[0];
4312
4313         nritems = btrfs_header_nritems(leaf);
4314         data_end = leaf_data_end(root, leaf);
4315
4316         if (btrfs_leaf_free_space(root, leaf) < total_size) {
4317                 for (i = nr; i >= 0; i--) {
4318                         total_data -= data_size[i];
4319                         total_size -= data_size[i] + sizeof(struct btrfs_item);
4320                         if (total_size < btrfs_leaf_free_space(root, leaf))
4321                                 break;
4322                 }
4323                 nr = i;
4324         }
4325
4326         slot = path->slots[0];
4327         BUG_ON(slot < 0);
4328
4329         if (slot != nritems) {
4330                 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4331
4332                 item = btrfs_item_nr(leaf, slot);
4333                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4334
4335                 /* figure out how many keys we can insert in here */
4336                 total_data = data_size[0];
4337                 for (i = 1; i < nr; i++) {
4338                         if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0)
4339                                 break;
4340                         total_data += data_size[i];
4341                 }
4342                 nr = i;
4343
4344                 if (old_data < data_end) {
4345                         btrfs_print_leaf(root, leaf);
4346                         printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
4347                                slot, old_data, data_end);
4348                         BUG_ON(1);
4349                 }
4350                 /*
4351                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
4352                  */
4353                 /* first correct the data pointers */
4354                 for (i = slot; i < nritems; i++) {
4355                         u32 ioff;
4356
4357                         item = btrfs_item_nr(leaf, i);
4358                         ioff = btrfs_token_item_offset(leaf, item, &token);
4359                         btrfs_set_token_item_offset(leaf, item,
4360                                                     ioff - total_data, &token);
4361                 }
4362                 /* shift the items */
4363                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4364                               btrfs_item_nr_offset(slot),
4365                               (nritems - slot) * sizeof(struct btrfs_item));
4366
4367                 /* shift the data */
4368                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4369                               data_end - total_data, btrfs_leaf_data(leaf) +
4370                               data_end, old_data - data_end);
4371                 data_end = old_data;
4372         } else {
4373                 /*
4374                  * this sucks but it has to be done, if we are inserting at
4375                  * the end of the leaf only insert 1 of the items, since we
4376                  * have no way of knowing whats on the next leaf and we'd have
4377                  * to drop our current locks to figure it out
4378                  */
4379                 nr = 1;
4380         }
4381
4382         /* setup the item for the new data */
4383         for (i = 0; i < nr; i++) {
4384                 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4385                 btrfs_set_item_key(leaf, &disk_key, slot + i);
4386                 item = btrfs_item_nr(leaf, slot + i);
4387                 btrfs_set_token_item_offset(leaf, item,
4388                                             data_end - data_size[i], &token);
4389                 data_end -= data_size[i];
4390                 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4391         }
4392         btrfs_set_header_nritems(leaf, nritems + nr);
4393         btrfs_mark_buffer_dirty(leaf);
4394
4395         ret = 0;
4396         if (slot == 0) {
4397                 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4398                 fixup_low_keys(trans, root, path, &disk_key, 1);
4399         }
4400
4401         if (btrfs_leaf_free_space(root, leaf) < 0) {
4402                 btrfs_print_leaf(root, leaf);
4403                 BUG();
4404         }
4405 out:
4406         if (!ret)
4407                 ret = nr;
4408         return ret;
4409 }
4410
4411 /*
4412  * this is a helper for btrfs_insert_empty_items, the main goal here is
4413  * to save stack depth by doing the bulk of the work in a function
4414  * that doesn't call btrfs_search_slot
4415  */
4416 void setup_items_for_insert(struct btrfs_trans_handle *trans,
4417                             struct btrfs_root *root, struct btrfs_path *path,
4418                             struct btrfs_key *cpu_key, u32 *data_size,
4419                             u32 total_data, u32 total_size, int nr)
4420 {
4421         struct btrfs_item *item;
4422         int i;
4423         u32 nritems;
4424         unsigned int data_end;
4425         struct btrfs_disk_key disk_key;
4426         struct extent_buffer *leaf;
4427         int slot;
4428         struct btrfs_map_token token;
4429
4430         btrfs_init_map_token(&token);
4431
4432         leaf = path->nodes[0];
4433         slot = path->slots[0];
4434
4435         nritems = btrfs_header_nritems(leaf);
4436         data_end = leaf_data_end(root, leaf);
4437
4438         if (btrfs_leaf_free_space(root, leaf) < total_size) {
4439                 btrfs_print_leaf(root, leaf);
4440                 printk(KERN_CRIT "not enough freespace need %u have %d\n",
4441                        total_size, btrfs_leaf_free_space(root, leaf));
4442                 BUG();
4443         }
4444
4445         if (slot != nritems) {
4446                 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4447
4448                 if (old_data < data_end) {
4449                         btrfs_print_leaf(root, leaf);
4450                         printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
4451                                slot, old_data, data_end);
4452                         BUG_ON(1);
4453                 }
4454                 /*
4455                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
4456                  */
4457                 /* first correct the data pointers */
4458                 for (i = slot; i < nritems; i++) {
4459                         u32 ioff;
4460
4461                         item = btrfs_item_nr(leaf, i);
4462                         ioff = btrfs_token_item_offset(leaf, item, &token);
4463                         btrfs_set_token_item_offset(leaf, item,
4464                                                     ioff - total_data, &token);
4465                 }
4466                 /* shift the items */
4467                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4468                               btrfs_item_nr_offset(slot),
4469                               (nritems - slot) * sizeof(struct btrfs_item));
4470
4471                 /* shift the data */
4472                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4473                               data_end - total_data, btrfs_leaf_data(leaf) +
4474                               data_end, old_data - data_end);
4475                 data_end = old_data;
4476         }
4477
4478         /* setup the item for the new data */
4479         for (i = 0; i < nr; i++) {
4480                 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4481                 btrfs_set_item_key(leaf, &disk_key, slot + i);
4482                 item = btrfs_item_nr(leaf, slot + i);
4483                 btrfs_set_token_item_offset(leaf, item,
4484                                             data_end - data_size[i], &token);
4485                 data_end -= data_size[i];
4486                 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4487         }
4488
4489         btrfs_set_header_nritems(leaf, nritems + nr);
4490
4491         if (slot == 0) {
4492                 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4493                 fixup_low_keys(trans, root, path, &disk_key, 1);
4494         }
4495         btrfs_unlock_up_safe(path, 1);
4496         btrfs_mark_buffer_dirty(leaf);
4497
4498         if (btrfs_leaf_free_space(root, leaf) < 0) {
4499                 btrfs_print_leaf(root, leaf);
4500                 BUG();
4501         }
4502 }
4503
4504 /*
4505  * Given a key and some data, insert items into the tree.
4506  * This does all the path init required, making room in the tree if needed.
4507  */
4508 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4509                             struct btrfs_root *root,
4510                             struct btrfs_path *path,
4511                             struct btrfs_key *cpu_key, u32 *data_size,
4512                             int nr)
4513 {
4514         int ret = 0;
4515         int slot;
4516         int i;
4517         u32 total_size = 0;
4518         u32 total_data = 0;
4519
4520         for (i = 0; i < nr; i++)
4521                 total_data += data_size[i];
4522
4523         total_size = total_data + (nr * sizeof(struct btrfs_item));
4524         ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4525         if (ret == 0)
4526                 return -EEXIST;
4527         if (ret < 0)
4528                 return ret;
4529
4530         slot = path->slots[0];
4531         BUG_ON(slot < 0);
4532
4533         setup_items_for_insert(trans, root, path, cpu_key, data_size,
4534                                total_data, total_size, nr);
4535         return 0;
4536 }
4537
4538 /*
4539  * Given a key and some data, insert an item into the tree.
4540  * This does all the path init required, making room in the tree if needed.
4541  */
4542 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4543                       *root, struct btrfs_key *cpu_key, void *data, u32
4544                       data_size)
4545 {
4546         int ret = 0;
4547         struct btrfs_path *path;
4548         struct extent_buffer *leaf;
4549         unsigned long ptr;
4550
4551         path = btrfs_alloc_path();
4552         if (!path)
4553                 return -ENOMEM;
4554         ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4555         if (!ret) {
4556                 leaf = path->nodes[0];
4557                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4558                 write_extent_buffer(leaf, data, ptr, data_size);
4559                 btrfs_mark_buffer_dirty(leaf);
4560         }
4561         btrfs_free_path(path);
4562         return ret;
4563 }
4564
4565 /*
4566  * delete the pointer from a given node.
4567  *
4568  * the tree should have been previously balanced so the deletion does not
4569  * empty a node.
4570  */
4571 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4572                     struct btrfs_path *path, int level, int slot,
4573                     int tree_mod_log)
4574 {
4575         struct extent_buffer *parent = path->nodes[level];
4576         u32 nritems;
4577         int ret;
4578
4579         nritems = btrfs_header_nritems(parent);
4580         if (slot != nritems - 1) {
4581                 if (tree_mod_log && level)
4582                         tree_mod_log_eb_move(root->fs_info, parent, slot,
4583                                              slot + 1, nritems - slot - 1);
4584                 memmove_extent_buffer(parent,
4585                               btrfs_node_key_ptr_offset(slot),
4586                               btrfs_node_key_ptr_offset(slot + 1),
4587                               sizeof(struct btrfs_key_ptr) *
4588                               (nritems - slot - 1));
4589         } else if (tree_mod_log && level) {
4590                 ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4591                                               MOD_LOG_KEY_REMOVE);
4592                 BUG_ON(ret < 0);
4593         }
4594
4595         nritems--;
4596         btrfs_set_header_nritems(parent, nritems);
4597         if (nritems == 0 && parent == root->node) {
4598                 BUG_ON(btrfs_header_level(root->node) != 1);
4599                 /* just turn the root into a leaf and break */
4600                 btrfs_set_header_level(root->node, 0);
4601         } else if (slot == 0) {
4602                 struct btrfs_disk_key disk_key;
4603
4604                 btrfs_node_key(parent, &disk_key, 0);
4605                 fixup_low_keys(trans, root, path, &disk_key, level + 1);
4606         }
4607         btrfs_mark_buffer_dirty(parent);
4608 }
4609
4610 /*
4611  * a helper function to delete the leaf pointed to by path->slots[1] and
4612  * path->nodes[1].
4613  *
4614  * This deletes the pointer in path->nodes[1] and frees the leaf
4615  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4616  *
4617  * The path must have already been setup for deleting the leaf, including
4618  * all the proper balancing.  path->nodes[1] must be locked.
4619  */
4620 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4621                                     struct btrfs_root *root,
4622                                     struct btrfs_path *path,
4623                                     struct extent_buffer *leaf)
4624 {
4625         WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4626         del_ptr(trans, root, path, 1, path->slots[1], 1);
4627
4628         /*
4629          * btrfs_free_extent is expensive, we want to make sure we
4630          * aren't holding any locks when we call it
4631          */
4632         btrfs_unlock_up_safe(path, 0);
4633
4634         root_sub_used(root, leaf->len);
4635
4636         extent_buffer_get(leaf);
4637         btrfs_free_tree_block(trans, root, leaf, 0, 1);
4638         free_extent_buffer_stale(leaf);
4639 }
4640 /*
4641  * delete the item at the leaf level in path.  If that empties
4642  * the leaf, remove it from the tree
4643  */
4644 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4645                     struct btrfs_path *path, int slot, int nr)
4646 {
4647         struct extent_buffer *leaf;
4648         struct btrfs_item *item;
4649         int last_off;
4650         int dsize = 0;
4651         int ret = 0;
4652         int wret;
4653         int i;
4654         u32 nritems;
4655         struct btrfs_map_token token;
4656
4657         btrfs_init_map_token(&token);
4658
4659         leaf = path->nodes[0];
4660         last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4661
4662         for (i = 0; i < nr; i++)
4663                 dsize += btrfs_item_size_nr(leaf, slot + i);
4664
4665         nritems = btrfs_header_nritems(leaf);
4666
4667         if (slot + nr != nritems) {
4668                 int data_end = leaf_data_end(root, leaf);
4669
4670                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4671                               data_end + dsize,
4672                               btrfs_leaf_data(leaf) + data_end,
4673                               last_off - data_end);
4674
4675                 for (i = slot + nr; i < nritems; i++) {
4676                         u32 ioff;
4677
4678                         item = btrfs_item_nr(leaf, i);
4679                         ioff = btrfs_token_item_offset(leaf, item, &token);
4680                         btrfs_set_token_item_offset(leaf, item,
4681                                                     ioff + dsize, &token);
4682                 }
4683
4684                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4685                               btrfs_item_nr_offset(slot + nr),
4686                               sizeof(struct btrfs_item) *
4687                               (nritems - slot - nr));
4688         }
4689         btrfs_set_header_nritems(leaf, nritems - nr);
4690         nritems -= nr;
4691
4692         /* delete the leaf if we've emptied it */
4693         if (nritems == 0) {
4694                 if (leaf == root->node) {
4695                         btrfs_set_header_level(leaf, 0);
4696                 } else {
4697                         btrfs_set_path_blocking(path);
4698                         clean_tree_block(trans, root, leaf);
4699                         btrfs_del_leaf(trans, root, path, leaf);
4700                 }
4701         } else {
4702                 int used = leaf_space_used(leaf, 0, nritems);
4703                 if (slot == 0) {
4704                         struct btrfs_disk_key disk_key;
4705
4706                         btrfs_item_key(leaf, &disk_key, 0);
4707                         fixup_low_keys(trans, root, path, &disk_key, 1);
4708                 }
4709
4710                 /* delete the leaf if it is mostly empty */
4711                 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
4712                         /* push_leaf_left fixes the path.
4713                          * make sure the path still points to our leaf
4714                          * for possible call to del_ptr below
4715                          */
4716                         slot = path->slots[1];
4717                         extent_buffer_get(leaf);
4718
4719                         btrfs_set_path_blocking(path);
4720                         wret = push_leaf_left(trans, root, path, 1, 1,
4721                                               1, (u32)-1);
4722                         if (wret < 0 && wret != -ENOSPC)
4723                                 ret = wret;
4724
4725                         if (path->nodes[0] == leaf &&
4726                             btrfs_header_nritems(leaf)) {
4727                                 wret = push_leaf_right(trans, root, path, 1,
4728                                                        1, 1, 0);
4729                                 if (wret < 0 && wret != -ENOSPC)
4730                                         ret = wret;
4731                         }
4732
4733                         if (btrfs_header_nritems(leaf) == 0) {
4734                                 path->slots[1] = slot;
4735                                 btrfs_del_leaf(trans, root, path, leaf);
4736                                 free_extent_buffer(leaf);
4737                                 ret = 0;
4738                         } else {
4739                                 /* if we're still in the path, make sure
4740                                  * we're dirty.  Otherwise, one of the
4741                                  * push_leaf functions must have already
4742                                  * dirtied this buffer
4743                                  */
4744                                 if (path->nodes[0] == leaf)
4745                                         btrfs_mark_buffer_dirty(leaf);
4746                                 free_extent_buffer(leaf);
4747                         }
4748                 } else {
4749                         btrfs_mark_buffer_dirty(leaf);
4750                 }
4751         }
4752         return ret;
4753 }
4754
4755 /*
4756  * search the tree again to find a leaf with lesser keys
4757  * returns 0 if it found something or 1 if there are no lesser leaves.
4758  * returns < 0 on io errors.
4759  *
4760  * This may release the path, and so you may lose any locks held at the
4761  * time you call it.
4762  */
4763 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4764 {
4765         struct btrfs_key key;
4766         struct btrfs_disk_key found_key;
4767         int ret;
4768
4769         btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4770
4771         if (key.offset > 0)
4772                 key.offset--;
4773         else if (key.type > 0)
4774                 key.type--;
4775         else if (key.objectid > 0)
4776                 key.objectid--;
4777         else
4778                 return 1;
4779
4780         btrfs_release_path(path);
4781         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4782         if (ret < 0)
4783                 return ret;
4784         btrfs_item_key(path->nodes[0], &found_key, 0);
4785         ret = comp_keys(&found_key, &key);
4786         if (ret < 0)
4787                 return 0;
4788         return 1;
4789 }
4790
4791 /*
4792  * A helper function to walk down the tree starting at min_key, and looking
4793  * for nodes or leaves that are either in cache or have a minimum
4794  * transaction id.  This is used by the btree defrag code, and tree logging
4795  *
4796  * This does not cow, but it does stuff the starting key it finds back
4797  * into min_key, so you can call btrfs_search_slot with cow=1 on the
4798  * key and get a writable path.
4799  *
4800  * This does lock as it descends, and path->keep_locks should be set
4801  * to 1 by the caller.
4802  *
4803  * This honors path->lowest_level to prevent descent past a given level
4804  * of the tree.
4805  *
4806  * min_trans indicates the oldest transaction that you are interested
4807  * in walking through.  Any nodes or leaves older than min_trans are
4808  * skipped over (without reading them).
4809  *
4810  * returns zero if something useful was found, < 0 on error and 1 if there
4811  * was nothing in the tree that matched the search criteria.
4812  */
4813 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4814                          struct btrfs_key *max_key,
4815                          struct btrfs_path *path, int cache_only,
4816                          u64 min_trans)
4817 {
4818         struct extent_buffer *cur;
4819         struct btrfs_key found_key;
4820         int slot;
4821         int sret;
4822         u32 nritems;
4823         int level;
4824         int ret = 1;
4825
4826         WARN_ON(!path->keep_locks);
4827 again:
4828         cur = btrfs_read_lock_root_node(root);
4829         level = btrfs_header_level(cur);
4830         WARN_ON(path->nodes[level]);
4831         path->nodes[level] = cur;
4832         path->locks[level] = BTRFS_READ_LOCK;
4833
4834         if (btrfs_header_generation(cur) < min_trans) {
4835                 ret = 1;
4836                 goto out;
4837         }
4838         while (1) {
4839                 nritems = btrfs_header_nritems(cur);
4840                 level = btrfs_header_level(cur);
4841                 sret = bin_search(cur, min_key, level, &slot);
4842
4843                 /* at the lowest level, we're done, setup the path and exit */
4844                 if (level == path->lowest_level) {
4845                         if (slot >= nritems)
4846                                 goto find_next_key;
4847                         ret = 0;
4848                         path->slots[level] = slot;
4849                         btrfs_item_key_to_cpu(cur, &found_key, slot);
4850                         goto out;
4851                 }
4852                 if (sret && slot > 0)
4853                         slot--;
4854                 /*
4855                  * check this node pointer against the cache_only and
4856                  * min_trans parameters.  If it isn't in cache or is too
4857                  * old, skip to the next one.
4858                  */
4859                 while (slot < nritems) {
4860                         u64 blockptr;
4861                         u64 gen;
4862                         struct extent_buffer *tmp;
4863                         struct btrfs_disk_key disk_key;
4864
4865                         blockptr = btrfs_node_blockptr(cur, slot);
4866                         gen = btrfs_node_ptr_generation(cur, slot);
4867                         if (gen < min_trans) {
4868                                 slot++;
4869                                 continue;
4870                         }
4871                         if (!cache_only)
4872                                 break;
4873
4874                         if (max_key) {
4875                                 btrfs_node_key(cur, &disk_key, slot);
4876                                 if (comp_keys(&disk_key, max_key) >= 0) {
4877                                         ret = 1;
4878                                         goto out;
4879                                 }
4880                         }
4881
4882                         tmp = btrfs_find_tree_block(root, blockptr,
4883                                             btrfs_level_size(root, level - 1));
4884
4885                         if (tmp && btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
4886                                 free_extent_buffer(tmp);
4887                                 break;
4888                         }
4889                         if (tmp)
4890                                 free_extent_buffer(tmp);
4891                         slot++;
4892                 }
4893 find_next_key:
4894                 /*
4895                  * we didn't find a candidate key in this node, walk forward
4896                  * and find another one
4897                  */
4898                 if (slot >= nritems) {
4899                         path->slots[level] = slot;
4900                         btrfs_set_path_blocking(path);
4901                         sret = btrfs_find_next_key(root, path, min_key, level,
4902                                                   cache_only, min_trans);
4903                         if (sret == 0) {
4904                                 btrfs_release_path(path);
4905                                 goto again;
4906                         } else {
4907                                 goto out;
4908                         }
4909                 }
4910                 /* save our key for returning back */
4911                 btrfs_node_key_to_cpu(cur, &found_key, slot);
4912                 path->slots[level] = slot;
4913                 if (level == path->lowest_level) {
4914                         ret = 0;
4915                         unlock_up(path, level, 1, 0, NULL);
4916                         goto out;
4917                 }
4918                 btrfs_set_path_blocking(path);
4919                 cur = read_node_slot(root, cur, slot);
4920                 BUG_ON(!cur); /* -ENOMEM */
4921
4922                 btrfs_tree_read_lock(cur);
4923
4924                 path->locks[level - 1] = BTRFS_READ_LOCK;
4925                 path->nodes[level - 1] = cur;
4926                 unlock_up(path, level, 1, 0, NULL);
4927                 btrfs_clear_path_blocking(path, NULL, 0);
4928         }
4929 out:
4930         if (ret == 0)
4931                 memcpy(min_key, &found_key, sizeof(found_key));
4932         btrfs_set_path_blocking(path);
4933         return ret;
4934 }
4935
4936 /*
4937  * this is similar to btrfs_next_leaf, but does not try to preserve
4938  * and fixup the path.  It looks for and returns the next key in the
4939  * tree based on the current path and the cache_only and min_trans
4940  * parameters.
4941  *
4942  * 0 is returned if another key is found, < 0 if there are any errors
4943  * and 1 is returned if there are no higher keys in the tree
4944  *
4945  * path->keep_locks should be set to 1 on the search made before
4946  * calling this function.
4947  */
4948 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4949                         struct btrfs_key *key, int level,
4950                         int cache_only, u64 min_trans)
4951 {
4952         int slot;
4953         struct extent_buffer *c;
4954
4955         WARN_ON(!path->keep_locks);
4956         while (level < BTRFS_MAX_LEVEL) {
4957                 if (!path->nodes[level])
4958                         return 1;
4959
4960                 slot = path->slots[level] + 1;
4961                 c = path->nodes[level];
4962 next:
4963                 if (slot >= btrfs_header_nritems(c)) {
4964                         int ret;
4965                         int orig_lowest;
4966                         struct btrfs_key cur_key;
4967                         if (level + 1 >= BTRFS_MAX_LEVEL ||
4968                             !path->nodes[level + 1])
4969                                 return 1;
4970
4971                         if (path->locks[level + 1]) {
4972                                 level++;
4973                                 continue;
4974                         }
4975
4976                         slot = btrfs_header_nritems(c) - 1;
4977                         if (level == 0)
4978                                 btrfs_item_key_to_cpu(c, &cur_key, slot);
4979                         else
4980                                 btrfs_node_key_to_cpu(c, &cur_key, slot);
4981
4982                         orig_lowest = path->lowest_level;
4983                         btrfs_release_path(path);
4984                         path->lowest_level = level;
4985                         ret = btrfs_search_slot(NULL, root, &cur_key, path,
4986                                                 0, 0);
4987                         path->lowest_level = orig_lowest;
4988                         if (ret < 0)
4989                                 return ret;
4990
4991                         c = path->nodes[level];
4992                         slot = path->slots[level];
4993                         if (ret == 0)
4994                                 slot++;
4995                         goto next;
4996                 }
4997
4998                 if (level == 0)
4999                         btrfs_item_key_to_cpu(c, key, slot);
5000                 else {
5001                         u64 blockptr = btrfs_node_blockptr(c, slot);
5002                         u64 gen = btrfs_node_ptr_generation(c, slot);
5003
5004                         if (cache_only) {
5005                                 struct extent_buffer *cur;
5006                                 cur = btrfs_find_tree_block(root, blockptr,
5007                                             btrfs_level_size(root, level - 1));
5008                                 if (!cur ||
5009                                     btrfs_buffer_uptodate(cur, gen, 1) <= 0) {
5010                                         slot++;
5011                                         if (cur)
5012                                                 free_extent_buffer(cur);
5013                                         goto next;
5014                                 }
5015                                 free_extent_buffer(cur);
5016                         }
5017                         if (gen < min_trans) {
5018                                 slot++;
5019                                 goto next;
5020                         }
5021                         btrfs_node_key_to_cpu(c, key, slot);
5022                 }
5023                 return 0;
5024         }
5025         return 1;
5026 }
5027
5028 /*
5029  * search the tree again to find a leaf with greater keys
5030  * returns 0 if it found something or 1 if there are no greater leaves.
5031  * returns < 0 on io errors.
5032  */
5033 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5034 {
5035         return btrfs_next_old_leaf(root, path, 0);
5036 }
5037
5038 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5039                         u64 time_seq)
5040 {
5041         int slot;
5042         int level;
5043         struct extent_buffer *c;
5044         struct extent_buffer *next;
5045         struct btrfs_key key;
5046         u32 nritems;
5047         int ret;
5048         int old_spinning = path->leave_spinning;
5049         int next_rw_lock = 0;
5050
5051         nritems = btrfs_header_nritems(path->nodes[0]);
5052         if (nritems == 0)
5053                 return 1;
5054
5055         btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5056 again:
5057         level = 1;
5058         next = NULL;
5059         next_rw_lock = 0;
5060         btrfs_release_path(path);
5061
5062         path->keep_locks = 1;
5063         path->leave_spinning = 1;
5064
5065         if (time_seq)
5066                 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5067         else
5068                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5069         path->keep_locks = 0;
5070
5071         if (ret < 0)
5072                 return ret;
5073
5074         nritems = btrfs_header_nritems(path->nodes[0]);
5075         /*
5076          * by releasing the path above we dropped all our locks.  A balance
5077          * could have added more items next to the key that used to be
5078          * at the very end of the block.  So, check again here and
5079          * advance the path if there are now more items available.
5080          */
5081         if (nritems > 0 && path->slots[0] < nritems - 1) {
5082                 if (ret == 0)
5083                         path->slots[0]++;
5084                 ret = 0;
5085                 goto done;
5086         }
5087
5088         while (level < BTRFS_MAX_LEVEL) {
5089                 if (!path->nodes[level]) {
5090                         ret = 1;
5091                         goto done;
5092                 }
5093
5094                 slot = path->slots[level] + 1;
5095                 c = path->nodes[level];
5096                 if (slot >= btrfs_header_nritems(c)) {
5097                         level++;
5098                         if (level == BTRFS_MAX_LEVEL) {
5099                                 ret = 1;
5100                                 goto done;
5101                         }
5102                         continue;
5103                 }
5104
5105                 if (next) {
5106                         btrfs_tree_unlock_rw(next, next_rw_lock);
5107                         free_extent_buffer(next);
5108                 }
5109
5110                 next = c;
5111                 next_rw_lock = path->locks[level];
5112                 ret = read_block_for_search(NULL, root, path, &next, level,
5113                                             slot, &key, 0);
5114                 if (ret == -EAGAIN)
5115                         goto again;
5116
5117                 if (ret < 0) {
5118                         btrfs_release_path(path);
5119                         goto done;
5120                 }
5121
5122                 if (!path->skip_locking) {
5123                         ret = btrfs_try_tree_read_lock(next);
5124                         if (!ret) {
5125                                 btrfs_set_path_blocking(path);
5126                                 btrfs_tree_read_lock(next);
5127                                 btrfs_clear_path_blocking(path, next,
5128                                                           BTRFS_READ_LOCK);
5129                         }
5130                         next_rw_lock = BTRFS_READ_LOCK;
5131                 }
5132                 break;
5133         }
5134         path->slots[level] = slot;
5135         while (1) {
5136                 level--;
5137                 c = path->nodes[level];
5138                 if (path->locks[level])
5139                         btrfs_tree_unlock_rw(c, path->locks[level]);
5140
5141                 free_extent_buffer(c);
5142                 path->nodes[level] = next;
5143                 path->slots[level] = 0;
5144                 if (!path->skip_locking)
5145                         path->locks[level] = next_rw_lock;
5146                 if (!level)
5147                         break;
5148
5149                 ret = read_block_for_search(NULL, root, path, &next, level,
5150                                             0, &key, 0);
5151                 if (ret == -EAGAIN)
5152                         goto again;
5153
5154                 if (ret < 0) {
5155                         btrfs_release_path(path);
5156                         goto done;
5157                 }
5158
5159                 if (!path->skip_locking) {
5160                         ret = btrfs_try_tree_read_lock(next);
5161                         if (!ret) {
5162                                 btrfs_set_path_blocking(path);
5163                                 btrfs_tree_read_lock(next);
5164                                 btrfs_clear_path_blocking(path, next,
5165                                                           BTRFS_READ_LOCK);
5166                         }
5167                         next_rw_lock = BTRFS_READ_LOCK;
5168                 }
5169         }
5170         ret = 0;
5171 done:
5172         unlock_up(path, 0, 1, 0, NULL);
5173         path->leave_spinning = old_spinning;
5174         if (!old_spinning)
5175                 btrfs_set_path_blocking(path);
5176
5177         return ret;
5178 }
5179
5180 /*
5181  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5182  * searching until it gets past min_objectid or finds an item of 'type'
5183  *
5184  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5185  */
5186 int btrfs_previous_item(struct btrfs_root *root,
5187                         struct btrfs_path *path, u64 min_objectid,
5188                         int type)
5189 {
5190         struct btrfs_key found_key;
5191         struct extent_buffer *leaf;
5192         u32 nritems;
5193         int ret;
5194
5195         while (1) {
5196                 if (path->slots[0] == 0) {
5197                         btrfs_set_path_blocking(path);
5198                         ret = btrfs_prev_leaf(root, path);
5199                         if (ret != 0)
5200                                 return ret;
5201                 } else {
5202                         path->slots[0]--;
5203                 }
5204                 leaf = path->nodes[0];
5205                 nritems = btrfs_header_nritems(leaf);
5206                 if (nritems == 0)
5207                         return 1;
5208                 if (path->slots[0] == nritems)
5209                         path->slots[0]--;
5210
5211                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5212                 if (found_key.objectid < min_objectid)
5213                         break;
5214                 if (found_key.type == type)
5215                         return 0;
5216                 if (found_key.objectid == min_objectid &&
5217                     found_key.type < type)
5218                         break;
5219         }
5220         return 1;
5221 }