]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/btrfs/ctree.c
Btrfs: fix return value for __tree_mod_log_oldest_root
[karo-tx-linux.git] / fs / btrfs / ctree.c
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "print-tree.h"
26 #include "locking.h"
27
28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
29                       *root, struct btrfs_path *path, int level);
30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
31                       *root, struct btrfs_key *ins_key,
32                       struct btrfs_path *path, int data_size, int extend);
33 static int push_node_left(struct btrfs_trans_handle *trans,
34                           struct btrfs_root *root, struct extent_buffer *dst,
35                           struct extent_buffer *src, int empty);
36 static int balance_node_right(struct btrfs_trans_handle *trans,
37                               struct btrfs_root *root,
38                               struct extent_buffer *dst_buf,
39                               struct extent_buffer *src_buf);
40 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
41                     struct btrfs_path *path, int level, int slot,
42                     int tree_mod_log);
43 static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
44                                  struct extent_buffer *eb);
45 struct extent_buffer *read_old_tree_block(struct btrfs_root *root, u64 bytenr,
46                                           u32 blocksize, u64 parent_transid,
47                                           u64 time_seq);
48 struct extent_buffer *btrfs_find_old_tree_block(struct btrfs_root *root,
49                                                 u64 bytenr, u32 blocksize,
50                                                 u64 time_seq);
51
52 struct btrfs_path *btrfs_alloc_path(void)
53 {
54         struct btrfs_path *path;
55         path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
56         return path;
57 }
58
59 /*
60  * set all locked nodes in the path to blocking locks.  This should
61  * be done before scheduling
62  */
63 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
64 {
65         int i;
66         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
67                 if (!p->nodes[i] || !p->locks[i])
68                         continue;
69                 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
70                 if (p->locks[i] == BTRFS_READ_LOCK)
71                         p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
72                 else if (p->locks[i] == BTRFS_WRITE_LOCK)
73                         p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
74         }
75 }
76
77 /*
78  * reset all the locked nodes in the patch to spinning locks.
79  *
80  * held is used to keep lockdep happy, when lockdep is enabled
81  * we set held to a blocking lock before we go around and
82  * retake all the spinlocks in the path.  You can safely use NULL
83  * for held
84  */
85 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
86                                         struct extent_buffer *held, int held_rw)
87 {
88         int i;
89
90 #ifdef CONFIG_DEBUG_LOCK_ALLOC
91         /* lockdep really cares that we take all of these spinlocks
92          * in the right order.  If any of the locks in the path are not
93          * currently blocking, it is going to complain.  So, make really
94          * really sure by forcing the path to blocking before we clear
95          * the path blocking.
96          */
97         if (held) {
98                 btrfs_set_lock_blocking_rw(held, held_rw);
99                 if (held_rw == BTRFS_WRITE_LOCK)
100                         held_rw = BTRFS_WRITE_LOCK_BLOCKING;
101                 else if (held_rw == BTRFS_READ_LOCK)
102                         held_rw = BTRFS_READ_LOCK_BLOCKING;
103         }
104         btrfs_set_path_blocking(p);
105 #endif
106
107         for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
108                 if (p->nodes[i] && p->locks[i]) {
109                         btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
110                         if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
111                                 p->locks[i] = BTRFS_WRITE_LOCK;
112                         else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
113                                 p->locks[i] = BTRFS_READ_LOCK;
114                 }
115         }
116
117 #ifdef CONFIG_DEBUG_LOCK_ALLOC
118         if (held)
119                 btrfs_clear_lock_blocking_rw(held, held_rw);
120 #endif
121 }
122
123 /* this also releases the path */
124 void btrfs_free_path(struct btrfs_path *p)
125 {
126         if (!p)
127                 return;
128         btrfs_release_path(p);
129         kmem_cache_free(btrfs_path_cachep, p);
130 }
131
132 /*
133  * path release drops references on the extent buffers in the path
134  * and it drops any locks held by this path
135  *
136  * It is safe to call this on paths that no locks or extent buffers held.
137  */
138 noinline void btrfs_release_path(struct btrfs_path *p)
139 {
140         int i;
141
142         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
143                 p->slots[i] = 0;
144                 if (!p->nodes[i])
145                         continue;
146                 if (p->locks[i]) {
147                         btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
148                         p->locks[i] = 0;
149                 }
150                 free_extent_buffer(p->nodes[i]);
151                 p->nodes[i] = NULL;
152         }
153 }
154
155 /*
156  * safely gets a reference on the root node of a tree.  A lock
157  * is not taken, so a concurrent writer may put a different node
158  * at the root of the tree.  See btrfs_lock_root_node for the
159  * looping required.
160  *
161  * The extent buffer returned by this has a reference taken, so
162  * it won't disappear.  It may stop being the root of the tree
163  * at any time because there are no locks held.
164  */
165 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
166 {
167         struct extent_buffer *eb;
168
169         while (1) {
170                 rcu_read_lock();
171                 eb = rcu_dereference(root->node);
172
173                 /*
174                  * RCU really hurts here, we could free up the root node because
175                  * it was cow'ed but we may not get the new root node yet so do
176                  * the inc_not_zero dance and if it doesn't work then
177                  * synchronize_rcu and try again.
178                  */
179                 if (atomic_inc_not_zero(&eb->refs)) {
180                         rcu_read_unlock();
181                         break;
182                 }
183                 rcu_read_unlock();
184                 synchronize_rcu();
185         }
186         return eb;
187 }
188
189 /* loop around taking references on and locking the root node of the
190  * tree until you end up with a lock on the root.  A locked buffer
191  * is returned, with a reference held.
192  */
193 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
194 {
195         struct extent_buffer *eb;
196
197         while (1) {
198                 eb = btrfs_root_node(root);
199                 btrfs_tree_lock(eb);
200                 if (eb == root->node)
201                         break;
202                 btrfs_tree_unlock(eb);
203                 free_extent_buffer(eb);
204         }
205         return eb;
206 }
207
208 /* loop around taking references on and locking the root node of the
209  * tree until you end up with a lock on the root.  A locked buffer
210  * is returned, with a reference held.
211  */
212 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
213 {
214         struct extent_buffer *eb;
215
216         while (1) {
217                 eb = btrfs_root_node(root);
218                 btrfs_tree_read_lock(eb);
219                 if (eb == root->node)
220                         break;
221                 btrfs_tree_read_unlock(eb);
222                 free_extent_buffer(eb);
223         }
224         return eb;
225 }
226
227 /* cowonly root (everything not a reference counted cow subvolume), just get
228  * put onto a simple dirty list.  transaction.c walks this to make sure they
229  * get properly updated on disk.
230  */
231 static void add_root_to_dirty_list(struct btrfs_root *root)
232 {
233         spin_lock(&root->fs_info->trans_lock);
234         if (root->track_dirty && list_empty(&root->dirty_list)) {
235                 list_add(&root->dirty_list,
236                          &root->fs_info->dirty_cowonly_roots);
237         }
238         spin_unlock(&root->fs_info->trans_lock);
239 }
240
241 /*
242  * used by snapshot creation to make a copy of a root for a tree with
243  * a given objectid.  The buffer with the new root node is returned in
244  * cow_ret, and this func returns zero on success or a negative error code.
245  */
246 int btrfs_copy_root(struct btrfs_trans_handle *trans,
247                       struct btrfs_root *root,
248                       struct extent_buffer *buf,
249                       struct extent_buffer **cow_ret, u64 new_root_objectid)
250 {
251         struct extent_buffer *cow;
252         int ret = 0;
253         int level;
254         struct btrfs_disk_key disk_key;
255
256         WARN_ON(root->ref_cows && trans->transid !=
257                 root->fs_info->running_transaction->transid);
258         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
259
260         level = btrfs_header_level(buf);
261         if (level == 0)
262                 btrfs_item_key(buf, &disk_key, 0);
263         else
264                 btrfs_node_key(buf, &disk_key, 0);
265
266         cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
267                                      new_root_objectid, &disk_key, level,
268                                      buf->start, 0);
269         if (IS_ERR(cow))
270                 return PTR_ERR(cow);
271
272         copy_extent_buffer(cow, buf, 0, 0, cow->len);
273         btrfs_set_header_bytenr(cow, cow->start);
274         btrfs_set_header_generation(cow, trans->transid);
275         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
276         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
277                                      BTRFS_HEADER_FLAG_RELOC);
278         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
279                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
280         else
281                 btrfs_set_header_owner(cow, new_root_objectid);
282
283         write_extent_buffer(cow, root->fs_info->fsid,
284                             (unsigned long)btrfs_header_fsid(cow),
285                             BTRFS_FSID_SIZE);
286
287         WARN_ON(btrfs_header_generation(buf) > trans->transid);
288         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
289                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
290         else
291                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
292
293         if (ret)
294                 return ret;
295
296         btrfs_mark_buffer_dirty(cow);
297         *cow_ret = cow;
298         return 0;
299 }
300
301 enum mod_log_op {
302         MOD_LOG_KEY_REPLACE,
303         MOD_LOG_KEY_ADD,
304         MOD_LOG_KEY_REMOVE,
305         MOD_LOG_KEY_REMOVE_WHILE_FREEING,
306         MOD_LOG_KEY_REMOVE_WHILE_MOVING,
307         MOD_LOG_MOVE_KEYS,
308         MOD_LOG_ROOT_REPLACE,
309 };
310
311 struct tree_mod_move {
312         int dst_slot;
313         int nr_items;
314 };
315
316 struct tree_mod_root {
317         u64 logical;
318         u8 level;
319 };
320
321 struct tree_mod_elem {
322         struct rb_node node;
323         u64 index;              /* shifted logical */
324         struct seq_list elem;
325         enum mod_log_op op;
326
327         /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
328         int slot;
329
330         /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
331         u64 generation;
332
333         /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
334         struct btrfs_disk_key key;
335         u64 blockptr;
336
337         /* this is used for op == MOD_LOG_MOVE_KEYS */
338         struct tree_mod_move move;
339
340         /* this is used for op == MOD_LOG_ROOT_REPLACE */
341         struct tree_mod_root old_root;
342 };
343
344 static inline void
345 __get_tree_mod_seq(struct btrfs_fs_info *fs_info, struct seq_list *elem)
346 {
347         elem->seq = atomic_inc_return(&fs_info->tree_mod_seq);
348         list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
349 }
350
351 void btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
352                             struct seq_list *elem)
353 {
354         elem->flags = 1;
355         spin_lock(&fs_info->tree_mod_seq_lock);
356         __get_tree_mod_seq(fs_info, elem);
357         spin_unlock(&fs_info->tree_mod_seq_lock);
358 }
359
360 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
361                             struct seq_list *elem)
362 {
363         struct rb_root *tm_root;
364         struct rb_node *node;
365         struct rb_node *next;
366         struct seq_list *cur_elem;
367         struct tree_mod_elem *tm;
368         u64 min_seq = (u64)-1;
369         u64 seq_putting = elem->seq;
370
371         if (!seq_putting)
372                 return;
373
374         BUG_ON(!(elem->flags & 1));
375         spin_lock(&fs_info->tree_mod_seq_lock);
376         list_del(&elem->list);
377
378         list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
379                 if ((cur_elem->flags & 1) && cur_elem->seq < min_seq) {
380                         if (seq_putting > cur_elem->seq) {
381                                 /*
382                                  * blocker with lower sequence number exists, we
383                                  * cannot remove anything from the log
384                                  */
385                                 goto out;
386                         }
387                         min_seq = cur_elem->seq;
388                 }
389         }
390
391         /*
392          * anything that's lower than the lowest existing (read: blocked)
393          * sequence number can be removed from the tree.
394          */
395         write_lock(&fs_info->tree_mod_log_lock);
396         tm_root = &fs_info->tree_mod_log;
397         for (node = rb_first(tm_root); node; node = next) {
398                 next = rb_next(node);
399                 tm = container_of(node, struct tree_mod_elem, node);
400                 if (tm->elem.seq > min_seq)
401                         continue;
402                 rb_erase(node, tm_root);
403                 list_del(&tm->elem.list);
404                 kfree(tm);
405         }
406         write_unlock(&fs_info->tree_mod_log_lock);
407 out:
408         spin_unlock(&fs_info->tree_mod_seq_lock);
409 }
410
411 /*
412  * key order of the log:
413  *       index -> sequence
414  *
415  * the index is the shifted logical of the *new* root node for root replace
416  * operations, or the shifted logical of the affected block for all other
417  * operations.
418  */
419 static noinline int
420 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
421 {
422         struct rb_root *tm_root;
423         struct rb_node **new;
424         struct rb_node *parent = NULL;
425         struct tree_mod_elem *cur;
426         int ret = 0;
427
428         BUG_ON(!tm || !tm->elem.seq);
429
430         write_lock(&fs_info->tree_mod_log_lock);
431         tm_root = &fs_info->tree_mod_log;
432         new = &tm_root->rb_node;
433         while (*new) {
434                 cur = container_of(*new, struct tree_mod_elem, node);
435                 parent = *new;
436                 if (cur->index < tm->index)
437                         new = &((*new)->rb_left);
438                 else if (cur->index > tm->index)
439                         new = &((*new)->rb_right);
440                 else if (cur->elem.seq < tm->elem.seq)
441                         new = &((*new)->rb_left);
442                 else if (cur->elem.seq > tm->elem.seq)
443                         new = &((*new)->rb_right);
444                 else {
445                         kfree(tm);
446                         ret = -EEXIST;
447                         goto unlock;
448                 }
449         }
450
451         rb_link_node(&tm->node, parent, new);
452         rb_insert_color(&tm->node, tm_root);
453 unlock:
454         write_unlock(&fs_info->tree_mod_log_lock);
455         return ret;
456 }
457
458 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
459                                     struct extent_buffer *eb) {
460         smp_mb();
461         if (list_empty(&(fs_info)->tree_mod_seq_list))
462                 return 1;
463         if (!eb)
464                 return 0;
465         if (btrfs_header_level(eb) == 0)
466                 return 1;
467         return 0;
468 }
469
470 static inline int tree_mod_alloc(struct btrfs_fs_info *fs_info, gfp_t flags,
471                                  struct tree_mod_elem **tm_ret)
472 {
473         struct tree_mod_elem *tm;
474         int seq;
475
476         if (tree_mod_dont_log(fs_info, NULL))
477                 return 0;
478
479         tm = *tm_ret = kzalloc(sizeof(*tm), flags);
480         if (!tm)
481                 return -ENOMEM;
482
483         tm->elem.flags = 0;
484         spin_lock(&fs_info->tree_mod_seq_lock);
485         if (list_empty(&fs_info->tree_mod_seq_list)) {
486                 /*
487                  * someone emptied the list while we were waiting for the lock.
488                  * we must not add to the list, because no blocker exists. items
489                  * are removed from the list only when the existing blocker is
490                  * removed from the list.
491                  */
492                 kfree(tm);
493                 seq = 0;
494         } else {
495                 __get_tree_mod_seq(fs_info, &tm->elem);
496                 seq = tm->elem.seq;
497         }
498         spin_unlock(&fs_info->tree_mod_seq_lock);
499
500         return seq;
501 }
502
503 static noinline int
504 tree_mod_log_insert_key_mask(struct btrfs_fs_info *fs_info,
505                              struct extent_buffer *eb, int slot,
506                              enum mod_log_op op, gfp_t flags)
507 {
508         struct tree_mod_elem *tm;
509         int ret;
510
511         ret = tree_mod_alloc(fs_info, flags, &tm);
512         if (ret <= 0)
513                 return ret;
514
515         tm->index = eb->start >> PAGE_CACHE_SHIFT;
516         if (op != MOD_LOG_KEY_ADD) {
517                 btrfs_node_key(eb, &tm->key, slot);
518                 tm->blockptr = btrfs_node_blockptr(eb, slot);
519         }
520         tm->op = op;
521         tm->slot = slot;
522         tm->generation = btrfs_node_ptr_generation(eb, slot);
523
524         return __tree_mod_log_insert(fs_info, tm);
525 }
526
527 static noinline int
528 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
529                         int slot, enum mod_log_op op)
530 {
531         return tree_mod_log_insert_key_mask(fs_info, eb, slot, op, GFP_NOFS);
532 }
533
534 static noinline int
535 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
536                          struct extent_buffer *eb, int dst_slot, int src_slot,
537                          int nr_items, gfp_t flags)
538 {
539         struct tree_mod_elem *tm;
540         int ret;
541         int i;
542
543         if (tree_mod_dont_log(fs_info, eb))
544                 return 0;
545
546         for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
547                 ret = tree_mod_log_insert_key(fs_info, eb, i + dst_slot,
548                                               MOD_LOG_KEY_REMOVE_WHILE_MOVING);
549                 BUG_ON(ret < 0);
550         }
551
552         ret = tree_mod_alloc(fs_info, flags, &tm);
553         if (ret <= 0)
554                 return ret;
555
556         tm->index = eb->start >> PAGE_CACHE_SHIFT;
557         tm->slot = src_slot;
558         tm->move.dst_slot = dst_slot;
559         tm->move.nr_items = nr_items;
560         tm->op = MOD_LOG_MOVE_KEYS;
561
562         return __tree_mod_log_insert(fs_info, tm);
563 }
564
565 static noinline int
566 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
567                          struct extent_buffer *old_root,
568                          struct extent_buffer *new_root, gfp_t flags)
569 {
570         struct tree_mod_elem *tm;
571         int ret;
572
573         ret = tree_mod_alloc(fs_info, flags, &tm);
574         if (ret <= 0)
575                 return ret;
576
577         tm->index = new_root->start >> PAGE_CACHE_SHIFT;
578         tm->old_root.logical = old_root->start;
579         tm->old_root.level = btrfs_header_level(old_root);
580         tm->generation = btrfs_header_generation(old_root);
581         tm->op = MOD_LOG_ROOT_REPLACE;
582
583         return __tree_mod_log_insert(fs_info, tm);
584 }
585
586 static struct tree_mod_elem *
587 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
588                       int smallest)
589 {
590         struct rb_root *tm_root;
591         struct rb_node *node;
592         struct tree_mod_elem *cur = NULL;
593         struct tree_mod_elem *found = NULL;
594         u64 index = start >> PAGE_CACHE_SHIFT;
595
596         read_lock(&fs_info->tree_mod_log_lock);
597         tm_root = &fs_info->tree_mod_log;
598         node = tm_root->rb_node;
599         while (node) {
600                 cur = container_of(node, struct tree_mod_elem, node);
601                 if (cur->index < index) {
602                         node = node->rb_left;
603                 } else if (cur->index > index) {
604                         node = node->rb_right;
605                 } else if (cur->elem.seq < min_seq) {
606                         node = node->rb_left;
607                 } else if (!smallest) {
608                         /* we want the node with the highest seq */
609                         if (found)
610                                 BUG_ON(found->elem.seq > cur->elem.seq);
611                         found = cur;
612                         node = node->rb_left;
613                 } else if (cur->elem.seq > min_seq) {
614                         /* we want the node with the smallest seq */
615                         if (found)
616                                 BUG_ON(found->elem.seq < cur->elem.seq);
617                         found = cur;
618                         node = node->rb_right;
619                 } else {
620                         found = cur;
621                         break;
622                 }
623         }
624         read_unlock(&fs_info->tree_mod_log_lock);
625
626         return found;
627 }
628
629 /*
630  * this returns the element from the log with the smallest time sequence
631  * value that's in the log (the oldest log item). any element with a time
632  * sequence lower than min_seq will be ignored.
633  */
634 static struct tree_mod_elem *
635 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
636                            u64 min_seq)
637 {
638         return __tree_mod_log_search(fs_info, start, min_seq, 1);
639 }
640
641 /*
642  * this returns the element from the log with the largest time sequence
643  * value that's in the log (the most recent log item). any element with
644  * a time sequence lower than min_seq will be ignored.
645  */
646 static struct tree_mod_elem *
647 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
648 {
649         return __tree_mod_log_search(fs_info, start, min_seq, 0);
650 }
651
652 static inline void
653 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
654                      struct extent_buffer *src, unsigned long dst_offset,
655                      unsigned long src_offset, int nr_items)
656 {
657         int ret;
658         int i;
659
660         if (tree_mod_dont_log(fs_info, NULL))
661                 return;
662
663         if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
664                 return;
665
666         /* speed this up by single seq for all operations? */
667         for (i = 0; i < nr_items; i++) {
668                 ret = tree_mod_log_insert_key(fs_info, src, i + src_offset,
669                                               MOD_LOG_KEY_REMOVE);
670                 BUG_ON(ret < 0);
671                 ret = tree_mod_log_insert_key(fs_info, dst, i + dst_offset,
672                                               MOD_LOG_KEY_ADD);
673                 BUG_ON(ret < 0);
674         }
675 }
676
677 static inline void
678 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
679                      int dst_offset, int src_offset, int nr_items)
680 {
681         int ret;
682         ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
683                                        nr_items, GFP_NOFS);
684         BUG_ON(ret < 0);
685 }
686
687 static inline void
688 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
689                           struct extent_buffer *eb,
690                           struct btrfs_disk_key *disk_key, int slot, int atomic)
691 {
692         int ret;
693
694         ret = tree_mod_log_insert_key_mask(fs_info, eb, slot,
695                                            MOD_LOG_KEY_REPLACE,
696                                            atomic ? GFP_ATOMIC : GFP_NOFS);
697         BUG_ON(ret < 0);
698 }
699
700 static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
701                                  struct extent_buffer *eb)
702 {
703         int i;
704         int ret;
705         u32 nritems;
706
707         if (tree_mod_dont_log(fs_info, eb))
708                 return;
709
710         nritems = btrfs_header_nritems(eb);
711         for (i = nritems - 1; i >= 0; i--) {
712                 ret = tree_mod_log_insert_key(fs_info, eb, i,
713                                               MOD_LOG_KEY_REMOVE_WHILE_FREEING);
714                 BUG_ON(ret < 0);
715         }
716 }
717
718 static inline void
719 tree_mod_log_set_root_pointer(struct btrfs_root *root,
720                               struct extent_buffer *new_root_node)
721 {
722         int ret;
723         tree_mod_log_free_eb(root->fs_info, root->node);
724         ret = tree_mod_log_insert_root(root->fs_info, root->node,
725                                        new_root_node, GFP_NOFS);
726         BUG_ON(ret < 0);
727 }
728
729 /*
730  * check if the tree block can be shared by multiple trees
731  */
732 int btrfs_block_can_be_shared(struct btrfs_root *root,
733                               struct extent_buffer *buf)
734 {
735         /*
736          * Tree blocks not in refernece counted trees and tree roots
737          * are never shared. If a block was allocated after the last
738          * snapshot and the block was not allocated by tree relocation,
739          * we know the block is not shared.
740          */
741         if (root->ref_cows &&
742             buf != root->node && buf != root->commit_root &&
743             (btrfs_header_generation(buf) <=
744              btrfs_root_last_snapshot(&root->root_item) ||
745              btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
746                 return 1;
747 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
748         if (root->ref_cows &&
749             btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
750                 return 1;
751 #endif
752         return 0;
753 }
754
755 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
756                                        struct btrfs_root *root,
757                                        struct extent_buffer *buf,
758                                        struct extent_buffer *cow,
759                                        int *last_ref)
760 {
761         u64 refs;
762         u64 owner;
763         u64 flags;
764         u64 new_flags = 0;
765         int ret;
766
767         /*
768          * Backrefs update rules:
769          *
770          * Always use full backrefs for extent pointers in tree block
771          * allocated by tree relocation.
772          *
773          * If a shared tree block is no longer referenced by its owner
774          * tree (btrfs_header_owner(buf) == root->root_key.objectid),
775          * use full backrefs for extent pointers in tree block.
776          *
777          * If a tree block is been relocating
778          * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
779          * use full backrefs for extent pointers in tree block.
780          * The reason for this is some operations (such as drop tree)
781          * are only allowed for blocks use full backrefs.
782          */
783
784         if (btrfs_block_can_be_shared(root, buf)) {
785                 ret = btrfs_lookup_extent_info(trans, root, buf->start,
786                                                buf->len, &refs, &flags);
787                 if (ret)
788                         return ret;
789                 if (refs == 0) {
790                         ret = -EROFS;
791                         btrfs_std_error(root->fs_info, ret);
792                         return ret;
793                 }
794         } else {
795                 refs = 1;
796                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
797                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
798                         flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
799                 else
800                         flags = 0;
801         }
802
803         owner = btrfs_header_owner(buf);
804         BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
805                !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
806
807         if (refs > 1) {
808                 if ((owner == root->root_key.objectid ||
809                      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
810                     !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
811                         ret = btrfs_inc_ref(trans, root, buf, 1, 1);
812                         BUG_ON(ret); /* -ENOMEM */
813
814                         if (root->root_key.objectid ==
815                             BTRFS_TREE_RELOC_OBJECTID) {
816                                 ret = btrfs_dec_ref(trans, root, buf, 0, 1);
817                                 BUG_ON(ret); /* -ENOMEM */
818                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
819                                 BUG_ON(ret); /* -ENOMEM */
820                         }
821                         new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
822                 } else {
823
824                         if (root->root_key.objectid ==
825                             BTRFS_TREE_RELOC_OBJECTID)
826                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
827                         else
828                                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
829                         BUG_ON(ret); /* -ENOMEM */
830                 }
831                 if (new_flags != 0) {
832                         ret = btrfs_set_disk_extent_flags(trans, root,
833                                                           buf->start,
834                                                           buf->len,
835                                                           new_flags, 0);
836                         if (ret)
837                                 return ret;
838                 }
839         } else {
840                 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
841                         if (root->root_key.objectid ==
842                             BTRFS_TREE_RELOC_OBJECTID)
843                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
844                         else
845                                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
846                         BUG_ON(ret); /* -ENOMEM */
847                         ret = btrfs_dec_ref(trans, root, buf, 1, 1);
848                         BUG_ON(ret); /* -ENOMEM */
849                 }
850                 /*
851                  * don't log freeing in case we're freeing the root node, this
852                  * is done by tree_mod_log_set_root_pointer later
853                  */
854                 if (buf != root->node && btrfs_header_level(buf) != 0)
855                         tree_mod_log_free_eb(root->fs_info, buf);
856                 clean_tree_block(trans, root, buf);
857                 *last_ref = 1;
858         }
859         return 0;
860 }
861
862 /*
863  * does the dirty work in cow of a single block.  The parent block (if
864  * supplied) is updated to point to the new cow copy.  The new buffer is marked
865  * dirty and returned locked.  If you modify the block it needs to be marked
866  * dirty again.
867  *
868  * search_start -- an allocation hint for the new block
869  *
870  * empty_size -- a hint that you plan on doing more cow.  This is the size in
871  * bytes the allocator should try to find free next to the block it returns.
872  * This is just a hint and may be ignored by the allocator.
873  */
874 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
875                              struct btrfs_root *root,
876                              struct extent_buffer *buf,
877                              struct extent_buffer *parent, int parent_slot,
878                              struct extent_buffer **cow_ret,
879                              u64 search_start, u64 empty_size)
880 {
881         struct btrfs_disk_key disk_key;
882         struct extent_buffer *cow;
883         int level, ret;
884         int last_ref = 0;
885         int unlock_orig = 0;
886         u64 parent_start;
887
888         if (*cow_ret == buf)
889                 unlock_orig = 1;
890
891         btrfs_assert_tree_locked(buf);
892
893         WARN_ON(root->ref_cows && trans->transid !=
894                 root->fs_info->running_transaction->transid);
895         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
896
897         level = btrfs_header_level(buf);
898
899         if (level == 0)
900                 btrfs_item_key(buf, &disk_key, 0);
901         else
902                 btrfs_node_key(buf, &disk_key, 0);
903
904         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
905                 if (parent)
906                         parent_start = parent->start;
907                 else
908                         parent_start = 0;
909         } else
910                 parent_start = 0;
911
912         cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
913                                      root->root_key.objectid, &disk_key,
914                                      level, search_start, empty_size);
915         if (IS_ERR(cow))
916                 return PTR_ERR(cow);
917
918         /* cow is set to blocking by btrfs_init_new_buffer */
919
920         copy_extent_buffer(cow, buf, 0, 0, cow->len);
921         btrfs_set_header_bytenr(cow, cow->start);
922         btrfs_set_header_generation(cow, trans->transid);
923         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
924         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
925                                      BTRFS_HEADER_FLAG_RELOC);
926         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
927                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
928         else
929                 btrfs_set_header_owner(cow, root->root_key.objectid);
930
931         write_extent_buffer(cow, root->fs_info->fsid,
932                             (unsigned long)btrfs_header_fsid(cow),
933                             BTRFS_FSID_SIZE);
934
935         ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
936         if (ret) {
937                 btrfs_abort_transaction(trans, root, ret);
938                 return ret;
939         }
940
941         if (root->ref_cows)
942                 btrfs_reloc_cow_block(trans, root, buf, cow);
943
944         if (buf == root->node) {
945                 WARN_ON(parent && parent != buf);
946                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
947                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
948                         parent_start = buf->start;
949                 else
950                         parent_start = 0;
951
952                 extent_buffer_get(cow);
953                 tree_mod_log_set_root_pointer(root, cow);
954                 rcu_assign_pointer(root->node, cow);
955
956                 btrfs_free_tree_block(trans, root, buf, parent_start,
957                                       last_ref);
958                 free_extent_buffer(buf);
959                 add_root_to_dirty_list(root);
960         } else {
961                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
962                         parent_start = parent->start;
963                 else
964                         parent_start = 0;
965
966                 WARN_ON(trans->transid != btrfs_header_generation(parent));
967                 tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
968                                         MOD_LOG_KEY_REPLACE);
969                 btrfs_set_node_blockptr(parent, parent_slot,
970                                         cow->start);
971                 btrfs_set_node_ptr_generation(parent, parent_slot,
972                                               trans->transid);
973                 btrfs_mark_buffer_dirty(parent);
974                 btrfs_free_tree_block(trans, root, buf, parent_start,
975                                       last_ref);
976         }
977         if (unlock_orig)
978                 btrfs_tree_unlock(buf);
979         free_extent_buffer_stale(buf);
980         btrfs_mark_buffer_dirty(cow);
981         *cow_ret = cow;
982         return 0;
983 }
984
985 /*
986  * returns the logical address of the oldest predecessor of the given root.
987  * entries older than time_seq are ignored.
988  */
989 static struct tree_mod_elem *
990 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
991                            struct btrfs_root *root, u64 time_seq)
992 {
993         struct tree_mod_elem *tm;
994         struct tree_mod_elem *found = NULL;
995         u64 root_logical = root->node->start;
996         int looped = 0;
997
998         if (!time_seq)
999                 return 0;
1000
1001         /*
1002          * the very last operation that's logged for a root is the replacement
1003          * operation (if it is replaced at all). this has the index of the *new*
1004          * root, making it the very first operation that's logged for this root.
1005          */
1006         while (1) {
1007                 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1008                                                 time_seq);
1009                 if (!looped && !tm)
1010                         return 0;
1011                 /*
1012                  * we must have key remove operations in the log before the
1013                  * replace operation.
1014                  */
1015                 BUG_ON(!tm);
1016
1017                 if (tm->op != MOD_LOG_ROOT_REPLACE)
1018                         break;
1019
1020                 found = tm;
1021                 root_logical = tm->old_root.logical;
1022                 BUG_ON(root_logical == root->node->start);
1023                 looped = 1;
1024         }
1025
1026         /* if there's no old root to return, return what we found instead */
1027         if (!found)
1028                 found = tm;
1029
1030         return found;
1031 }
1032
1033 /*
1034  * tm is a pointer to the first operation to rewind within eb. then, all
1035  * previous operations will be rewinded (until we reach something older than
1036  * time_seq).
1037  */
1038 static void
1039 __tree_mod_log_rewind(struct extent_buffer *eb, u64 time_seq,
1040                       struct tree_mod_elem *first_tm)
1041 {
1042         u32 n;
1043         struct rb_node *next;
1044         struct tree_mod_elem *tm = first_tm;
1045         unsigned long o_dst;
1046         unsigned long o_src;
1047         unsigned long p_size = sizeof(struct btrfs_key_ptr);
1048
1049         n = btrfs_header_nritems(eb);
1050         while (tm && tm->elem.seq >= time_seq) {
1051                 /*
1052                  * all the operations are recorded with the operator used for
1053                  * the modification. as we're going backwards, we do the
1054                  * opposite of each operation here.
1055                  */
1056                 switch (tm->op) {
1057                 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1058                         BUG_ON(tm->slot < n);
1059                 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1060                 case MOD_LOG_KEY_REMOVE:
1061                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1062                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1063                         btrfs_set_node_ptr_generation(eb, tm->slot,
1064                                                       tm->generation);
1065                         n++;
1066                         break;
1067                 case MOD_LOG_KEY_REPLACE:
1068                         BUG_ON(tm->slot >= n);
1069                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1070                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1071                         btrfs_set_node_ptr_generation(eb, tm->slot,
1072                                                       tm->generation);
1073                         break;
1074                 case MOD_LOG_KEY_ADD:
1075                         if (tm->slot != n - 1) {
1076                                 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1077                                 o_src = btrfs_node_key_ptr_offset(tm->slot + 1);
1078                                 memmove_extent_buffer(eb, o_dst, o_src, p_size);
1079                         }
1080                         n--;
1081                         break;
1082                 case MOD_LOG_MOVE_KEYS:
1083                         o_dst = btrfs_node_key_ptr_offset(tm->slot);
1084                         o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1085                         memmove_extent_buffer(eb, o_dst, o_src,
1086                                               tm->move.nr_items * p_size);
1087                         break;
1088                 case MOD_LOG_ROOT_REPLACE:
1089                         /*
1090                          * this operation is special. for roots, this must be
1091                          * handled explicitly before rewinding.
1092                          * for non-roots, this operation may exist if the node
1093                          * was a root: root A -> child B; then A gets empty and
1094                          * B is promoted to the new root. in the mod log, we'll
1095                          * have a root-replace operation for B, a tree block
1096                          * that is no root. we simply ignore that operation.
1097                          */
1098                         break;
1099                 }
1100                 next = rb_next(&tm->node);
1101                 if (!next)
1102                         break;
1103                 tm = container_of(next, struct tree_mod_elem, node);
1104                 if (tm->index != first_tm->index)
1105                         break;
1106         }
1107         btrfs_set_header_nritems(eb, n);
1108 }
1109
1110 static struct extent_buffer *
1111 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1112                     u64 time_seq)
1113 {
1114         struct extent_buffer *eb_rewin;
1115         struct tree_mod_elem *tm;
1116
1117         if (!time_seq)
1118                 return eb;
1119
1120         if (btrfs_header_level(eb) == 0)
1121                 return eb;
1122
1123         tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1124         if (!tm)
1125                 return eb;
1126
1127         if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1128                 BUG_ON(tm->slot != 0);
1129                 eb_rewin = alloc_dummy_extent_buffer(eb->start,
1130                                                 fs_info->tree_root->nodesize);
1131                 BUG_ON(!eb_rewin);
1132                 btrfs_set_header_bytenr(eb_rewin, eb->start);
1133                 btrfs_set_header_backref_rev(eb_rewin,
1134                                              btrfs_header_backref_rev(eb));
1135                 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1136                 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1137         } else {
1138                 eb_rewin = btrfs_clone_extent_buffer(eb);
1139                 BUG_ON(!eb_rewin);
1140         }
1141
1142         extent_buffer_get(eb_rewin);
1143         free_extent_buffer(eb);
1144
1145         __tree_mod_log_rewind(eb_rewin, time_seq, tm);
1146
1147         return eb_rewin;
1148 }
1149
1150 /*
1151  * get_old_root() rewinds the state of @root's root node to the given @time_seq
1152  * value. If there are no changes, the current root->root_node is returned. If
1153  * anything changed in between, there's a fresh buffer allocated on which the
1154  * rewind operations are done. In any case, the returned buffer is read locked.
1155  * Returns NULL on error (with no locks held).
1156  */
1157 static inline struct extent_buffer *
1158 get_old_root(struct btrfs_root *root, u64 time_seq)
1159 {
1160         struct tree_mod_elem *tm;
1161         struct extent_buffer *eb;
1162         struct tree_mod_root *old_root = NULL;
1163         u64 old_generation;
1164         u64 logical;
1165
1166         eb = btrfs_read_lock_root_node(root);
1167         tm = __tree_mod_log_oldest_root(root->fs_info, root, time_seq);
1168         if (!tm)
1169                 return root->node;
1170
1171         if (tm->op == MOD_LOG_ROOT_REPLACE) {
1172                 old_root = &tm->old_root;
1173                 old_generation = tm->generation;
1174                 logical = old_root->logical;
1175         } else {
1176                 logical = root->node->start;
1177         }
1178
1179         tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1180         /*
1181          * there was an item in the log when __tree_mod_log_oldest_root
1182          * returned. this one must not go away, because the time_seq passed to
1183          * us must be blocking its removal.
1184          */
1185         BUG_ON(!tm);
1186
1187         if (old_root)
1188                 eb = alloc_dummy_extent_buffer(tm->index << PAGE_CACHE_SHIFT,
1189                                                root->nodesize);
1190         else
1191                 eb = btrfs_clone_extent_buffer(root->node);
1192         btrfs_tree_read_unlock(root->node);
1193         free_extent_buffer(root->node);
1194         if (!eb)
1195                 return NULL;
1196         btrfs_tree_read_lock(eb);
1197         if (old_root) {
1198                 btrfs_set_header_bytenr(eb, eb->start);
1199                 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1200                 btrfs_set_header_owner(eb, root->root_key.objectid);
1201                 btrfs_set_header_level(eb, old_root->level);
1202                 btrfs_set_header_generation(eb, old_generation);
1203         }
1204         __tree_mod_log_rewind(eb, time_seq, tm);
1205         extent_buffer_get(eb);
1206
1207         return eb;
1208 }
1209
1210 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1211                                    struct btrfs_root *root,
1212                                    struct extent_buffer *buf)
1213 {
1214         /* ensure we can see the force_cow */
1215         smp_rmb();
1216
1217         /*
1218          * We do not need to cow a block if
1219          * 1) this block is not created or changed in this transaction;
1220          * 2) this block does not belong to TREE_RELOC tree;
1221          * 3) the root is not forced COW.
1222          *
1223          * What is forced COW:
1224          *    when we create snapshot during commiting the transaction,
1225          *    after we've finished coping src root, we must COW the shared
1226          *    block to ensure the metadata consistency.
1227          */
1228         if (btrfs_header_generation(buf) == trans->transid &&
1229             !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1230             !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1231               btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1232             !root->force_cow)
1233                 return 0;
1234         return 1;
1235 }
1236
1237 /*
1238  * cows a single block, see __btrfs_cow_block for the real work.
1239  * This version of it has extra checks so that a block isn't cow'd more than
1240  * once per transaction, as long as it hasn't been written yet
1241  */
1242 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1243                     struct btrfs_root *root, struct extent_buffer *buf,
1244                     struct extent_buffer *parent, int parent_slot,
1245                     struct extent_buffer **cow_ret)
1246 {
1247         u64 search_start;
1248         int ret;
1249
1250         if (trans->transaction != root->fs_info->running_transaction) {
1251                 printk(KERN_CRIT "trans %llu running %llu\n",
1252                        (unsigned long long)trans->transid,
1253                        (unsigned long long)
1254                        root->fs_info->running_transaction->transid);
1255                 WARN_ON(1);
1256         }
1257         if (trans->transid != root->fs_info->generation) {
1258                 printk(KERN_CRIT "trans %llu running %llu\n",
1259                        (unsigned long long)trans->transid,
1260                        (unsigned long long)root->fs_info->generation);
1261                 WARN_ON(1);
1262         }
1263
1264         if (!should_cow_block(trans, root, buf)) {
1265                 *cow_ret = buf;
1266                 return 0;
1267         }
1268
1269         search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
1270
1271         if (parent)
1272                 btrfs_set_lock_blocking(parent);
1273         btrfs_set_lock_blocking(buf);
1274
1275         ret = __btrfs_cow_block(trans, root, buf, parent,
1276                                  parent_slot, cow_ret, search_start, 0);
1277
1278         trace_btrfs_cow_block(root, buf, *cow_ret);
1279
1280         return ret;
1281 }
1282
1283 /*
1284  * helper function for defrag to decide if two blocks pointed to by a
1285  * node are actually close by
1286  */
1287 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1288 {
1289         if (blocknr < other && other - (blocknr + blocksize) < 32768)
1290                 return 1;
1291         if (blocknr > other && blocknr - (other + blocksize) < 32768)
1292                 return 1;
1293         return 0;
1294 }
1295
1296 /*
1297  * compare two keys in a memcmp fashion
1298  */
1299 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1300 {
1301         struct btrfs_key k1;
1302
1303         btrfs_disk_key_to_cpu(&k1, disk);
1304
1305         return btrfs_comp_cpu_keys(&k1, k2);
1306 }
1307
1308 /*
1309  * same as comp_keys only with two btrfs_key's
1310  */
1311 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1312 {
1313         if (k1->objectid > k2->objectid)
1314                 return 1;
1315         if (k1->objectid < k2->objectid)
1316                 return -1;
1317         if (k1->type > k2->type)
1318                 return 1;
1319         if (k1->type < k2->type)
1320                 return -1;
1321         if (k1->offset > k2->offset)
1322                 return 1;
1323         if (k1->offset < k2->offset)
1324                 return -1;
1325         return 0;
1326 }
1327
1328 /*
1329  * this is used by the defrag code to go through all the
1330  * leaves pointed to by a node and reallocate them so that
1331  * disk order is close to key order
1332  */
1333 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1334                        struct btrfs_root *root, struct extent_buffer *parent,
1335                        int start_slot, int cache_only, u64 *last_ret,
1336                        struct btrfs_key *progress)
1337 {
1338         struct extent_buffer *cur;
1339         u64 blocknr;
1340         u64 gen;
1341         u64 search_start = *last_ret;
1342         u64 last_block = 0;
1343         u64 other;
1344         u32 parent_nritems;
1345         int end_slot;
1346         int i;
1347         int err = 0;
1348         int parent_level;
1349         int uptodate;
1350         u32 blocksize;
1351         int progress_passed = 0;
1352         struct btrfs_disk_key disk_key;
1353
1354         parent_level = btrfs_header_level(parent);
1355         if (cache_only && parent_level != 1)
1356                 return 0;
1357
1358         if (trans->transaction != root->fs_info->running_transaction)
1359                 WARN_ON(1);
1360         if (trans->transid != root->fs_info->generation)
1361                 WARN_ON(1);
1362
1363         parent_nritems = btrfs_header_nritems(parent);
1364         blocksize = btrfs_level_size(root, parent_level - 1);
1365         end_slot = parent_nritems;
1366
1367         if (parent_nritems == 1)
1368                 return 0;
1369
1370         btrfs_set_lock_blocking(parent);
1371
1372         for (i = start_slot; i < end_slot; i++) {
1373                 int close = 1;
1374
1375                 btrfs_node_key(parent, &disk_key, i);
1376                 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1377                         continue;
1378
1379                 progress_passed = 1;
1380                 blocknr = btrfs_node_blockptr(parent, i);
1381                 gen = btrfs_node_ptr_generation(parent, i);
1382                 if (last_block == 0)
1383                         last_block = blocknr;
1384
1385                 if (i > 0) {
1386                         other = btrfs_node_blockptr(parent, i - 1);
1387                         close = close_blocks(blocknr, other, blocksize);
1388                 }
1389                 if (!close && i < end_slot - 2) {
1390                         other = btrfs_node_blockptr(parent, i + 1);
1391                         close = close_blocks(blocknr, other, blocksize);
1392                 }
1393                 if (close) {
1394                         last_block = blocknr;
1395                         continue;
1396                 }
1397
1398                 cur = btrfs_find_tree_block(root, blocknr, blocksize);
1399                 if (cur)
1400                         uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1401                 else
1402                         uptodate = 0;
1403                 if (!cur || !uptodate) {
1404                         if (cache_only) {
1405                                 free_extent_buffer(cur);
1406                                 continue;
1407                         }
1408                         if (!cur) {
1409                                 cur = read_tree_block(root, blocknr,
1410                                                          blocksize, gen);
1411                                 if (!cur)
1412                                         return -EIO;
1413                         } else if (!uptodate) {
1414                                 err = btrfs_read_buffer(cur, gen);
1415                                 if (err) {
1416                                         free_extent_buffer(cur);
1417                                         return err;
1418                                 }
1419                         }
1420                 }
1421                 if (search_start == 0)
1422                         search_start = last_block;
1423
1424                 btrfs_tree_lock(cur);
1425                 btrfs_set_lock_blocking(cur);
1426                 err = __btrfs_cow_block(trans, root, cur, parent, i,
1427                                         &cur, search_start,
1428                                         min(16 * blocksize,
1429                                             (end_slot - i) * blocksize));
1430                 if (err) {
1431                         btrfs_tree_unlock(cur);
1432                         free_extent_buffer(cur);
1433                         break;
1434                 }
1435                 search_start = cur->start;
1436                 last_block = cur->start;
1437                 *last_ret = search_start;
1438                 btrfs_tree_unlock(cur);
1439                 free_extent_buffer(cur);
1440         }
1441         return err;
1442 }
1443
1444 /*
1445  * The leaf data grows from end-to-front in the node.
1446  * this returns the address of the start of the last item,
1447  * which is the stop of the leaf data stack
1448  */
1449 static inline unsigned int leaf_data_end(struct btrfs_root *root,
1450                                          struct extent_buffer *leaf)
1451 {
1452         u32 nr = btrfs_header_nritems(leaf);
1453         if (nr == 0)
1454                 return BTRFS_LEAF_DATA_SIZE(root);
1455         return btrfs_item_offset_nr(leaf, nr - 1);
1456 }
1457
1458
1459 /*
1460  * search for key in the extent_buffer.  The items start at offset p,
1461  * and they are item_size apart.  There are 'max' items in p.
1462  *
1463  * the slot in the array is returned via slot, and it points to
1464  * the place where you would insert key if it is not found in
1465  * the array.
1466  *
1467  * slot may point to max if the key is bigger than all of the keys
1468  */
1469 static noinline int generic_bin_search(struct extent_buffer *eb,
1470                                        unsigned long p,
1471                                        int item_size, struct btrfs_key *key,
1472                                        int max, int *slot)
1473 {
1474         int low = 0;
1475         int high = max;
1476         int mid;
1477         int ret;
1478         struct btrfs_disk_key *tmp = NULL;
1479         struct btrfs_disk_key unaligned;
1480         unsigned long offset;
1481         char *kaddr = NULL;
1482         unsigned long map_start = 0;
1483         unsigned long map_len = 0;
1484         int err;
1485
1486         while (low < high) {
1487                 mid = (low + high) / 2;
1488                 offset = p + mid * item_size;
1489
1490                 if (!kaddr || offset < map_start ||
1491                     (offset + sizeof(struct btrfs_disk_key)) >
1492                     map_start + map_len) {
1493
1494                         err = map_private_extent_buffer(eb, offset,
1495                                                 sizeof(struct btrfs_disk_key),
1496                                                 &kaddr, &map_start, &map_len);
1497
1498                         if (!err) {
1499                                 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1500                                                         map_start);
1501                         } else {
1502                                 read_extent_buffer(eb, &unaligned,
1503                                                    offset, sizeof(unaligned));
1504                                 tmp = &unaligned;
1505                         }
1506
1507                 } else {
1508                         tmp = (struct btrfs_disk_key *)(kaddr + offset -
1509                                                         map_start);
1510                 }
1511                 ret = comp_keys(tmp, key);
1512
1513                 if (ret < 0)
1514                         low = mid + 1;
1515                 else if (ret > 0)
1516                         high = mid;
1517                 else {
1518                         *slot = mid;
1519                         return 0;
1520                 }
1521         }
1522         *slot = low;
1523         return 1;
1524 }
1525
1526 /*
1527  * simple bin_search frontend that does the right thing for
1528  * leaves vs nodes
1529  */
1530 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1531                       int level, int *slot)
1532 {
1533         if (level == 0)
1534                 return generic_bin_search(eb,
1535                                           offsetof(struct btrfs_leaf, items),
1536                                           sizeof(struct btrfs_item),
1537                                           key, btrfs_header_nritems(eb),
1538                                           slot);
1539         else
1540                 return generic_bin_search(eb,
1541                                           offsetof(struct btrfs_node, ptrs),
1542                                           sizeof(struct btrfs_key_ptr),
1543                                           key, btrfs_header_nritems(eb),
1544                                           slot);
1545 }
1546
1547 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1548                      int level, int *slot)
1549 {
1550         return bin_search(eb, key, level, slot);
1551 }
1552
1553 static void root_add_used(struct btrfs_root *root, u32 size)
1554 {
1555         spin_lock(&root->accounting_lock);
1556         btrfs_set_root_used(&root->root_item,
1557                             btrfs_root_used(&root->root_item) + size);
1558         spin_unlock(&root->accounting_lock);
1559 }
1560
1561 static void root_sub_used(struct btrfs_root *root, u32 size)
1562 {
1563         spin_lock(&root->accounting_lock);
1564         btrfs_set_root_used(&root->root_item,
1565                             btrfs_root_used(&root->root_item) - size);
1566         spin_unlock(&root->accounting_lock);
1567 }
1568
1569 /* given a node and slot number, this reads the blocks it points to.  The
1570  * extent buffer is returned with a reference taken (but unlocked).
1571  * NULL is returned on error.
1572  */
1573 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1574                                    struct extent_buffer *parent, int slot)
1575 {
1576         int level = btrfs_header_level(parent);
1577         if (slot < 0)
1578                 return NULL;
1579         if (slot >= btrfs_header_nritems(parent))
1580                 return NULL;
1581
1582         BUG_ON(level == 0);
1583
1584         return read_tree_block(root, btrfs_node_blockptr(parent, slot),
1585                        btrfs_level_size(root, level - 1),
1586                        btrfs_node_ptr_generation(parent, slot));
1587 }
1588
1589 /*
1590  * node level balancing, used to make sure nodes are in proper order for
1591  * item deletion.  We balance from the top down, so we have to make sure
1592  * that a deletion won't leave an node completely empty later on.
1593  */
1594 static noinline int balance_level(struct btrfs_trans_handle *trans,
1595                          struct btrfs_root *root,
1596                          struct btrfs_path *path, int level)
1597 {
1598         struct extent_buffer *right = NULL;
1599         struct extent_buffer *mid;
1600         struct extent_buffer *left = NULL;
1601         struct extent_buffer *parent = NULL;
1602         int ret = 0;
1603         int wret;
1604         int pslot;
1605         int orig_slot = path->slots[level];
1606         u64 orig_ptr;
1607
1608         if (level == 0)
1609                 return 0;
1610
1611         mid = path->nodes[level];
1612
1613         WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1614                 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1615         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1616
1617         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1618
1619         if (level < BTRFS_MAX_LEVEL - 1) {
1620                 parent = path->nodes[level + 1];
1621                 pslot = path->slots[level + 1];
1622         }
1623
1624         /*
1625          * deal with the case where there is only one pointer in the root
1626          * by promoting the node below to a root
1627          */
1628         if (!parent) {
1629                 struct extent_buffer *child;
1630
1631                 if (btrfs_header_nritems(mid) != 1)
1632                         return 0;
1633
1634                 /* promote the child to a root */
1635                 child = read_node_slot(root, mid, 0);
1636                 if (!child) {
1637                         ret = -EROFS;
1638                         btrfs_std_error(root->fs_info, ret);
1639                         goto enospc;
1640                 }
1641
1642                 btrfs_tree_lock(child);
1643                 btrfs_set_lock_blocking(child);
1644                 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1645                 if (ret) {
1646                         btrfs_tree_unlock(child);
1647                         free_extent_buffer(child);
1648                         goto enospc;
1649                 }
1650
1651                 tree_mod_log_set_root_pointer(root, child);
1652                 rcu_assign_pointer(root->node, child);
1653
1654                 add_root_to_dirty_list(root);
1655                 btrfs_tree_unlock(child);
1656
1657                 path->locks[level] = 0;
1658                 path->nodes[level] = NULL;
1659                 clean_tree_block(trans, root, mid);
1660                 btrfs_tree_unlock(mid);
1661                 /* once for the path */
1662                 free_extent_buffer(mid);
1663
1664                 root_sub_used(root, mid->len);
1665                 btrfs_free_tree_block(trans, root, mid, 0, 1);
1666                 /* once for the root ptr */
1667                 free_extent_buffer_stale(mid);
1668                 return 0;
1669         }
1670         if (btrfs_header_nritems(mid) >
1671             BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1672                 return 0;
1673
1674         left = read_node_slot(root, parent, pslot - 1);
1675         if (left) {
1676                 btrfs_tree_lock(left);
1677                 btrfs_set_lock_blocking(left);
1678                 wret = btrfs_cow_block(trans, root, left,
1679                                        parent, pslot - 1, &left);
1680                 if (wret) {
1681                         ret = wret;
1682                         goto enospc;
1683                 }
1684         }
1685         right = read_node_slot(root, parent, pslot + 1);
1686         if (right) {
1687                 btrfs_tree_lock(right);
1688                 btrfs_set_lock_blocking(right);
1689                 wret = btrfs_cow_block(trans, root, right,
1690                                        parent, pslot + 1, &right);
1691                 if (wret) {
1692                         ret = wret;
1693                         goto enospc;
1694                 }
1695         }
1696
1697         /* first, try to make some room in the middle buffer */
1698         if (left) {
1699                 orig_slot += btrfs_header_nritems(left);
1700                 wret = push_node_left(trans, root, left, mid, 1);
1701                 if (wret < 0)
1702                         ret = wret;
1703         }
1704
1705         /*
1706          * then try to empty the right most buffer into the middle
1707          */
1708         if (right) {
1709                 wret = push_node_left(trans, root, mid, right, 1);
1710                 if (wret < 0 && wret != -ENOSPC)
1711                         ret = wret;
1712                 if (btrfs_header_nritems(right) == 0) {
1713                         clean_tree_block(trans, root, right);
1714                         btrfs_tree_unlock(right);
1715                         del_ptr(trans, root, path, level + 1, pslot + 1, 1);
1716                         root_sub_used(root, right->len);
1717                         btrfs_free_tree_block(trans, root, right, 0, 1);
1718                         free_extent_buffer_stale(right);
1719                         right = NULL;
1720                 } else {
1721                         struct btrfs_disk_key right_key;
1722                         btrfs_node_key(right, &right_key, 0);
1723                         tree_mod_log_set_node_key(root->fs_info, parent,
1724                                                   &right_key, pslot + 1, 0);
1725                         btrfs_set_node_key(parent, &right_key, pslot + 1);
1726                         btrfs_mark_buffer_dirty(parent);
1727                 }
1728         }
1729         if (btrfs_header_nritems(mid) == 1) {
1730                 /*
1731                  * we're not allowed to leave a node with one item in the
1732                  * tree during a delete.  A deletion from lower in the tree
1733                  * could try to delete the only pointer in this node.
1734                  * So, pull some keys from the left.
1735                  * There has to be a left pointer at this point because
1736                  * otherwise we would have pulled some pointers from the
1737                  * right
1738                  */
1739                 if (!left) {
1740                         ret = -EROFS;
1741                         btrfs_std_error(root->fs_info, ret);
1742                         goto enospc;
1743                 }
1744                 wret = balance_node_right(trans, root, mid, left);
1745                 if (wret < 0) {
1746                         ret = wret;
1747                         goto enospc;
1748                 }
1749                 if (wret == 1) {
1750                         wret = push_node_left(trans, root, left, mid, 1);
1751                         if (wret < 0)
1752                                 ret = wret;
1753                 }
1754                 BUG_ON(wret == 1);
1755         }
1756         if (btrfs_header_nritems(mid) == 0) {
1757                 clean_tree_block(trans, root, mid);
1758                 btrfs_tree_unlock(mid);
1759                 del_ptr(trans, root, path, level + 1, pslot, 1);
1760                 root_sub_used(root, mid->len);
1761                 btrfs_free_tree_block(trans, root, mid, 0, 1);
1762                 free_extent_buffer_stale(mid);
1763                 mid = NULL;
1764         } else {
1765                 /* update the parent key to reflect our changes */
1766                 struct btrfs_disk_key mid_key;
1767                 btrfs_node_key(mid, &mid_key, 0);
1768                 tree_mod_log_set_node_key(root->fs_info, parent, &mid_key,
1769                                           pslot, 0);
1770                 btrfs_set_node_key(parent, &mid_key, pslot);
1771                 btrfs_mark_buffer_dirty(parent);
1772         }
1773
1774         /* update the path */
1775         if (left) {
1776                 if (btrfs_header_nritems(left) > orig_slot) {
1777                         extent_buffer_get(left);
1778                         /* left was locked after cow */
1779                         path->nodes[level] = left;
1780                         path->slots[level + 1] -= 1;
1781                         path->slots[level] = orig_slot;
1782                         if (mid) {
1783                                 btrfs_tree_unlock(mid);
1784                                 free_extent_buffer(mid);
1785                         }
1786                 } else {
1787                         orig_slot -= btrfs_header_nritems(left);
1788                         path->slots[level] = orig_slot;
1789                 }
1790         }
1791         /* double check we haven't messed things up */
1792         if (orig_ptr !=
1793             btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1794                 BUG();
1795 enospc:
1796         if (right) {
1797                 btrfs_tree_unlock(right);
1798                 free_extent_buffer(right);
1799         }
1800         if (left) {
1801                 if (path->nodes[level] != left)
1802                         btrfs_tree_unlock(left);
1803                 free_extent_buffer(left);
1804         }
1805         return ret;
1806 }
1807
1808 /* Node balancing for insertion.  Here we only split or push nodes around
1809  * when they are completely full.  This is also done top down, so we
1810  * have to be pessimistic.
1811  */
1812 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1813                                           struct btrfs_root *root,
1814                                           struct btrfs_path *path, int level)
1815 {
1816         struct extent_buffer *right = NULL;
1817         struct extent_buffer *mid;
1818         struct extent_buffer *left = NULL;
1819         struct extent_buffer *parent = NULL;
1820         int ret = 0;
1821         int wret;
1822         int pslot;
1823         int orig_slot = path->slots[level];
1824
1825         if (level == 0)
1826                 return 1;
1827
1828         mid = path->nodes[level];
1829         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1830
1831         if (level < BTRFS_MAX_LEVEL - 1) {
1832                 parent = path->nodes[level + 1];
1833                 pslot = path->slots[level + 1];
1834         }
1835
1836         if (!parent)
1837                 return 1;
1838
1839         left = read_node_slot(root, parent, pslot - 1);
1840
1841         /* first, try to make some room in the middle buffer */
1842         if (left) {
1843                 u32 left_nr;
1844
1845                 btrfs_tree_lock(left);
1846                 btrfs_set_lock_blocking(left);
1847
1848                 left_nr = btrfs_header_nritems(left);
1849                 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1850                         wret = 1;
1851                 } else {
1852                         ret = btrfs_cow_block(trans, root, left, parent,
1853                                               pslot - 1, &left);
1854                         if (ret)
1855                                 wret = 1;
1856                         else {
1857                                 wret = push_node_left(trans, root,
1858                                                       left, mid, 0);
1859                         }
1860                 }
1861                 if (wret < 0)
1862                         ret = wret;
1863                 if (wret == 0) {
1864                         struct btrfs_disk_key disk_key;
1865                         orig_slot += left_nr;
1866                         btrfs_node_key(mid, &disk_key, 0);
1867                         tree_mod_log_set_node_key(root->fs_info, parent,
1868                                                   &disk_key, pslot, 0);
1869                         btrfs_set_node_key(parent, &disk_key, pslot);
1870                         btrfs_mark_buffer_dirty(parent);
1871                         if (btrfs_header_nritems(left) > orig_slot) {
1872                                 path->nodes[level] = left;
1873                                 path->slots[level + 1] -= 1;
1874                                 path->slots[level] = orig_slot;
1875                                 btrfs_tree_unlock(mid);
1876                                 free_extent_buffer(mid);
1877                         } else {
1878                                 orig_slot -=
1879                                         btrfs_header_nritems(left);
1880                                 path->slots[level] = orig_slot;
1881                                 btrfs_tree_unlock(left);
1882                                 free_extent_buffer(left);
1883                         }
1884                         return 0;
1885                 }
1886                 btrfs_tree_unlock(left);
1887                 free_extent_buffer(left);
1888         }
1889         right = read_node_slot(root, parent, pslot + 1);
1890
1891         /*
1892          * then try to empty the right most buffer into the middle
1893          */
1894         if (right) {
1895                 u32 right_nr;
1896
1897                 btrfs_tree_lock(right);
1898                 btrfs_set_lock_blocking(right);
1899
1900                 right_nr = btrfs_header_nritems(right);
1901                 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1902                         wret = 1;
1903                 } else {
1904                         ret = btrfs_cow_block(trans, root, right,
1905                                               parent, pslot + 1,
1906                                               &right);
1907                         if (ret)
1908                                 wret = 1;
1909                         else {
1910                                 wret = balance_node_right(trans, root,
1911                                                           right, mid);
1912                         }
1913                 }
1914                 if (wret < 0)
1915                         ret = wret;
1916                 if (wret == 0) {
1917                         struct btrfs_disk_key disk_key;
1918
1919                         btrfs_node_key(right, &disk_key, 0);
1920                         tree_mod_log_set_node_key(root->fs_info, parent,
1921                                                   &disk_key, pslot + 1, 0);
1922                         btrfs_set_node_key(parent, &disk_key, pslot + 1);
1923                         btrfs_mark_buffer_dirty(parent);
1924
1925                         if (btrfs_header_nritems(mid) <= orig_slot) {
1926                                 path->nodes[level] = right;
1927                                 path->slots[level + 1] += 1;
1928                                 path->slots[level] = orig_slot -
1929                                         btrfs_header_nritems(mid);
1930                                 btrfs_tree_unlock(mid);
1931                                 free_extent_buffer(mid);
1932                         } else {
1933                                 btrfs_tree_unlock(right);
1934                                 free_extent_buffer(right);
1935                         }
1936                         return 0;
1937                 }
1938                 btrfs_tree_unlock(right);
1939                 free_extent_buffer(right);
1940         }
1941         return 1;
1942 }
1943
1944 /*
1945  * readahead one full node of leaves, finding things that are close
1946  * to the block in 'slot', and triggering ra on them.
1947  */
1948 static void reada_for_search(struct btrfs_root *root,
1949                              struct btrfs_path *path,
1950                              int level, int slot, u64 objectid)
1951 {
1952         struct extent_buffer *node;
1953         struct btrfs_disk_key disk_key;
1954         u32 nritems;
1955         u64 search;
1956         u64 target;
1957         u64 nread = 0;
1958         u64 gen;
1959         int direction = path->reada;
1960         struct extent_buffer *eb;
1961         u32 nr;
1962         u32 blocksize;
1963         u32 nscan = 0;
1964
1965         if (level != 1)
1966                 return;
1967
1968         if (!path->nodes[level])
1969                 return;
1970
1971         node = path->nodes[level];
1972
1973         search = btrfs_node_blockptr(node, slot);
1974         blocksize = btrfs_level_size(root, level - 1);
1975         eb = btrfs_find_tree_block(root, search, blocksize);
1976         if (eb) {
1977                 free_extent_buffer(eb);
1978                 return;
1979         }
1980
1981         target = search;
1982
1983         nritems = btrfs_header_nritems(node);
1984         nr = slot;
1985
1986         while (1) {
1987                 if (direction < 0) {
1988                         if (nr == 0)
1989                                 break;
1990                         nr--;
1991                 } else if (direction > 0) {
1992                         nr++;
1993                         if (nr >= nritems)
1994                                 break;
1995                 }
1996                 if (path->reada < 0 && objectid) {
1997                         btrfs_node_key(node, &disk_key, nr);
1998                         if (btrfs_disk_key_objectid(&disk_key) != objectid)
1999                                 break;
2000                 }
2001                 search = btrfs_node_blockptr(node, nr);
2002                 if ((search <= target && target - search <= 65536) ||
2003                     (search > target && search - target <= 65536)) {
2004                         gen = btrfs_node_ptr_generation(node, nr);
2005                         readahead_tree_block(root, search, blocksize, gen);
2006                         nread += blocksize;
2007                 }
2008                 nscan++;
2009                 if ((nread > 65536 || nscan > 32))
2010                         break;
2011         }
2012 }
2013
2014 /*
2015  * returns -EAGAIN if it had to drop the path, or zero if everything was in
2016  * cache
2017  */
2018 static noinline int reada_for_balance(struct btrfs_root *root,
2019                                       struct btrfs_path *path, int level)
2020 {
2021         int slot;
2022         int nritems;
2023         struct extent_buffer *parent;
2024         struct extent_buffer *eb;
2025         u64 gen;
2026         u64 block1 = 0;
2027         u64 block2 = 0;
2028         int ret = 0;
2029         int blocksize;
2030
2031         parent = path->nodes[level + 1];
2032         if (!parent)
2033                 return 0;
2034
2035         nritems = btrfs_header_nritems(parent);
2036         slot = path->slots[level + 1];
2037         blocksize = btrfs_level_size(root, level);
2038
2039         if (slot > 0) {
2040                 block1 = btrfs_node_blockptr(parent, slot - 1);
2041                 gen = btrfs_node_ptr_generation(parent, slot - 1);
2042                 eb = btrfs_find_tree_block(root, block1, blocksize);
2043                 /*
2044                  * if we get -eagain from btrfs_buffer_uptodate, we
2045                  * don't want to return eagain here.  That will loop
2046                  * forever
2047                  */
2048                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2049                         block1 = 0;
2050                 free_extent_buffer(eb);
2051         }
2052         if (slot + 1 < nritems) {
2053                 block2 = btrfs_node_blockptr(parent, slot + 1);
2054                 gen = btrfs_node_ptr_generation(parent, slot + 1);
2055                 eb = btrfs_find_tree_block(root, block2, blocksize);
2056                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2057                         block2 = 0;
2058                 free_extent_buffer(eb);
2059         }
2060         if (block1 || block2) {
2061                 ret = -EAGAIN;
2062
2063                 /* release the whole path */
2064                 btrfs_release_path(path);
2065
2066                 /* read the blocks */
2067                 if (block1)
2068                         readahead_tree_block(root, block1, blocksize, 0);
2069                 if (block2)
2070                         readahead_tree_block(root, block2, blocksize, 0);
2071
2072                 if (block1) {
2073                         eb = read_tree_block(root, block1, blocksize, 0);
2074                         free_extent_buffer(eb);
2075                 }
2076                 if (block2) {
2077                         eb = read_tree_block(root, block2, blocksize, 0);
2078                         free_extent_buffer(eb);
2079                 }
2080         }
2081         return ret;
2082 }
2083
2084
2085 /*
2086  * when we walk down the tree, it is usually safe to unlock the higher layers
2087  * in the tree.  The exceptions are when our path goes through slot 0, because
2088  * operations on the tree might require changing key pointers higher up in the
2089  * tree.
2090  *
2091  * callers might also have set path->keep_locks, which tells this code to keep
2092  * the lock if the path points to the last slot in the block.  This is part of
2093  * walking through the tree, and selecting the next slot in the higher block.
2094  *
2095  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2096  * if lowest_unlock is 1, level 0 won't be unlocked
2097  */
2098 static noinline void unlock_up(struct btrfs_path *path, int level,
2099                                int lowest_unlock, int min_write_lock_level,
2100                                int *write_lock_level)
2101 {
2102         int i;
2103         int skip_level = level;
2104         int no_skips = 0;
2105         struct extent_buffer *t;
2106
2107         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2108                 if (!path->nodes[i])
2109                         break;
2110                 if (!path->locks[i])
2111                         break;
2112                 if (!no_skips && path->slots[i] == 0) {
2113                         skip_level = i + 1;
2114                         continue;
2115                 }
2116                 if (!no_skips && path->keep_locks) {
2117                         u32 nritems;
2118                         t = path->nodes[i];
2119                         nritems = btrfs_header_nritems(t);
2120                         if (nritems < 1 || path->slots[i] >= nritems - 1) {
2121                                 skip_level = i + 1;
2122                                 continue;
2123                         }
2124                 }
2125                 if (skip_level < i && i >= lowest_unlock)
2126                         no_skips = 1;
2127
2128                 t = path->nodes[i];
2129                 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2130                         btrfs_tree_unlock_rw(t, path->locks[i]);
2131                         path->locks[i] = 0;
2132                         if (write_lock_level &&
2133                             i > min_write_lock_level &&
2134                             i <= *write_lock_level) {
2135                                 *write_lock_level = i - 1;
2136                         }
2137                 }
2138         }
2139 }
2140
2141 /*
2142  * This releases any locks held in the path starting at level and
2143  * going all the way up to the root.
2144  *
2145  * btrfs_search_slot will keep the lock held on higher nodes in a few
2146  * corner cases, such as COW of the block at slot zero in the node.  This
2147  * ignores those rules, and it should only be called when there are no
2148  * more updates to be done higher up in the tree.
2149  */
2150 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2151 {
2152         int i;
2153
2154         if (path->keep_locks)
2155                 return;
2156
2157         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2158                 if (!path->nodes[i])
2159                         continue;
2160                 if (!path->locks[i])
2161                         continue;
2162                 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2163                 path->locks[i] = 0;
2164         }
2165 }
2166
2167 /*
2168  * helper function for btrfs_search_slot.  The goal is to find a block
2169  * in cache without setting the path to blocking.  If we find the block
2170  * we return zero and the path is unchanged.
2171  *
2172  * If we can't find the block, we set the path blocking and do some
2173  * reada.  -EAGAIN is returned and the search must be repeated.
2174  */
2175 static int
2176 read_block_for_search(struct btrfs_trans_handle *trans,
2177                        struct btrfs_root *root, struct btrfs_path *p,
2178                        struct extent_buffer **eb_ret, int level, int slot,
2179                        struct btrfs_key *key, u64 time_seq)
2180 {
2181         u64 blocknr;
2182         u64 gen;
2183         u32 blocksize;
2184         struct extent_buffer *b = *eb_ret;
2185         struct extent_buffer *tmp;
2186         int ret;
2187
2188         blocknr = btrfs_node_blockptr(b, slot);
2189         gen = btrfs_node_ptr_generation(b, slot);
2190         blocksize = btrfs_level_size(root, level - 1);
2191
2192         tmp = btrfs_find_tree_block(root, blocknr, blocksize);
2193         if (tmp) {
2194                 /* first we do an atomic uptodate check */
2195                 if (btrfs_buffer_uptodate(tmp, 0, 1) > 0) {
2196                         if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2197                                 /*
2198                                  * we found an up to date block without
2199                                  * sleeping, return
2200                                  * right away
2201                                  */
2202                                 *eb_ret = tmp;
2203                                 return 0;
2204                         }
2205                         /* the pages were up to date, but we failed
2206                          * the generation number check.  Do a full
2207                          * read for the generation number that is correct.
2208                          * We must do this without dropping locks so
2209                          * we can trust our generation number
2210                          */
2211                         free_extent_buffer(tmp);
2212                         btrfs_set_path_blocking(p);
2213
2214                         /* now we're allowed to do a blocking uptodate check */
2215                         tmp = read_tree_block(root, blocknr, blocksize, gen);
2216                         if (tmp && btrfs_buffer_uptodate(tmp, gen, 0) > 0) {
2217                                 *eb_ret = tmp;
2218                                 return 0;
2219                         }
2220                         free_extent_buffer(tmp);
2221                         btrfs_release_path(p);
2222                         return -EIO;
2223                 }
2224         }
2225
2226         /*
2227          * reduce lock contention at high levels
2228          * of the btree by dropping locks before
2229          * we read.  Don't release the lock on the current
2230          * level because we need to walk this node to figure
2231          * out which blocks to read.
2232          */
2233         btrfs_unlock_up_safe(p, level + 1);
2234         btrfs_set_path_blocking(p);
2235
2236         free_extent_buffer(tmp);
2237         if (p->reada)
2238                 reada_for_search(root, p, level, slot, key->objectid);
2239
2240         btrfs_release_path(p);
2241
2242         ret = -EAGAIN;
2243         tmp = read_tree_block(root, blocknr, blocksize, 0);
2244         if (tmp) {
2245                 /*
2246                  * If the read above didn't mark this buffer up to date,
2247                  * it will never end up being up to date.  Set ret to EIO now
2248                  * and give up so that our caller doesn't loop forever
2249                  * on our EAGAINs.
2250                  */
2251                 if (!btrfs_buffer_uptodate(tmp, 0, 0))
2252                         ret = -EIO;
2253                 free_extent_buffer(tmp);
2254         }
2255         return ret;
2256 }
2257
2258 /*
2259  * helper function for btrfs_search_slot.  This does all of the checks
2260  * for node-level blocks and does any balancing required based on
2261  * the ins_len.
2262  *
2263  * If no extra work was required, zero is returned.  If we had to
2264  * drop the path, -EAGAIN is returned and btrfs_search_slot must
2265  * start over
2266  */
2267 static int
2268 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2269                        struct btrfs_root *root, struct btrfs_path *p,
2270                        struct extent_buffer *b, int level, int ins_len,
2271                        int *write_lock_level)
2272 {
2273         int ret;
2274         if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2275             BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2276                 int sret;
2277
2278                 if (*write_lock_level < level + 1) {
2279                         *write_lock_level = level + 1;
2280                         btrfs_release_path(p);
2281                         goto again;
2282                 }
2283
2284                 sret = reada_for_balance(root, p, level);
2285                 if (sret)
2286                         goto again;
2287
2288                 btrfs_set_path_blocking(p);
2289                 sret = split_node(trans, root, p, level);
2290                 btrfs_clear_path_blocking(p, NULL, 0);
2291
2292                 BUG_ON(sret > 0);
2293                 if (sret) {
2294                         ret = sret;
2295                         goto done;
2296                 }
2297                 b = p->nodes[level];
2298         } else if (ins_len < 0 && btrfs_header_nritems(b) <
2299                    BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2300                 int sret;
2301
2302                 if (*write_lock_level < level + 1) {
2303                         *write_lock_level = level + 1;
2304                         btrfs_release_path(p);
2305                         goto again;
2306                 }
2307
2308                 sret = reada_for_balance(root, p, level);
2309                 if (sret)
2310                         goto again;
2311
2312                 btrfs_set_path_blocking(p);
2313                 sret = balance_level(trans, root, p, level);
2314                 btrfs_clear_path_blocking(p, NULL, 0);
2315
2316                 if (sret) {
2317                         ret = sret;
2318                         goto done;
2319                 }
2320                 b = p->nodes[level];
2321                 if (!b) {
2322                         btrfs_release_path(p);
2323                         goto again;
2324                 }
2325                 BUG_ON(btrfs_header_nritems(b) == 1);
2326         }
2327         return 0;
2328
2329 again:
2330         ret = -EAGAIN;
2331 done:
2332         return ret;
2333 }
2334
2335 /*
2336  * look for key in the tree.  path is filled in with nodes along the way
2337  * if key is found, we return zero and you can find the item in the leaf
2338  * level of the path (level 0)
2339  *
2340  * If the key isn't found, the path points to the slot where it should
2341  * be inserted, and 1 is returned.  If there are other errors during the
2342  * search a negative error number is returned.
2343  *
2344  * if ins_len > 0, nodes and leaves will be split as we walk down the
2345  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
2346  * possible)
2347  */
2348 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2349                       *root, struct btrfs_key *key, struct btrfs_path *p, int
2350                       ins_len, int cow)
2351 {
2352         struct extent_buffer *b;
2353         int slot;
2354         int ret;
2355         int err;
2356         int level;
2357         int lowest_unlock = 1;
2358         int root_lock;
2359         /* everything at write_lock_level or lower must be write locked */
2360         int write_lock_level = 0;
2361         u8 lowest_level = 0;
2362         int min_write_lock_level;
2363
2364         lowest_level = p->lowest_level;
2365         WARN_ON(lowest_level && ins_len > 0);
2366         WARN_ON(p->nodes[0] != NULL);
2367
2368         if (ins_len < 0) {
2369                 lowest_unlock = 2;
2370
2371                 /* when we are removing items, we might have to go up to level
2372                  * two as we update tree pointers  Make sure we keep write
2373                  * for those levels as well
2374                  */
2375                 write_lock_level = 2;
2376         } else if (ins_len > 0) {
2377                 /*
2378                  * for inserting items, make sure we have a write lock on
2379                  * level 1 so we can update keys
2380                  */
2381                 write_lock_level = 1;
2382         }
2383
2384         if (!cow)
2385                 write_lock_level = -1;
2386
2387         if (cow && (p->keep_locks || p->lowest_level))
2388                 write_lock_level = BTRFS_MAX_LEVEL;
2389
2390         min_write_lock_level = write_lock_level;
2391
2392 again:
2393         /*
2394          * we try very hard to do read locks on the root
2395          */
2396         root_lock = BTRFS_READ_LOCK;
2397         level = 0;
2398         if (p->search_commit_root) {
2399                 /*
2400                  * the commit roots are read only
2401                  * so we always do read locks
2402                  */
2403                 b = root->commit_root;
2404                 extent_buffer_get(b);
2405                 level = btrfs_header_level(b);
2406                 if (!p->skip_locking)
2407                         btrfs_tree_read_lock(b);
2408         } else {
2409                 if (p->skip_locking) {
2410                         b = btrfs_root_node(root);
2411                         level = btrfs_header_level(b);
2412                 } else {
2413                         /* we don't know the level of the root node
2414                          * until we actually have it read locked
2415                          */
2416                         b = btrfs_read_lock_root_node(root);
2417                         level = btrfs_header_level(b);
2418                         if (level <= write_lock_level) {
2419                                 /* whoops, must trade for write lock */
2420                                 btrfs_tree_read_unlock(b);
2421                                 free_extent_buffer(b);
2422                                 b = btrfs_lock_root_node(root);
2423                                 root_lock = BTRFS_WRITE_LOCK;
2424
2425                                 /* the level might have changed, check again */
2426                                 level = btrfs_header_level(b);
2427                         }
2428                 }
2429         }
2430         p->nodes[level] = b;
2431         if (!p->skip_locking)
2432                 p->locks[level] = root_lock;
2433
2434         while (b) {
2435                 level = btrfs_header_level(b);
2436
2437                 /*
2438                  * setup the path here so we can release it under lock
2439                  * contention with the cow code
2440                  */
2441                 if (cow) {
2442                         /*
2443                          * if we don't really need to cow this block
2444                          * then we don't want to set the path blocking,
2445                          * so we test it here
2446                          */
2447                         if (!should_cow_block(trans, root, b))
2448                                 goto cow_done;
2449
2450                         btrfs_set_path_blocking(p);
2451
2452                         /*
2453                          * must have write locks on this node and the
2454                          * parent
2455                          */
2456                         if (level + 1 > write_lock_level) {
2457                                 write_lock_level = level + 1;
2458                                 btrfs_release_path(p);
2459                                 goto again;
2460                         }
2461
2462                         err = btrfs_cow_block(trans, root, b,
2463                                               p->nodes[level + 1],
2464                                               p->slots[level + 1], &b);
2465                         if (err) {
2466                                 ret = err;
2467                                 goto done;
2468                         }
2469                 }
2470 cow_done:
2471                 BUG_ON(!cow && ins_len);
2472
2473                 p->nodes[level] = b;
2474                 btrfs_clear_path_blocking(p, NULL, 0);
2475
2476                 /*
2477                  * we have a lock on b and as long as we aren't changing
2478                  * the tree, there is no way to for the items in b to change.
2479                  * It is safe to drop the lock on our parent before we
2480                  * go through the expensive btree search on b.
2481                  *
2482                  * If cow is true, then we might be changing slot zero,
2483                  * which may require changing the parent.  So, we can't
2484                  * drop the lock until after we know which slot we're
2485                  * operating on.
2486                  */
2487                 if (!cow)
2488                         btrfs_unlock_up_safe(p, level + 1);
2489
2490                 ret = bin_search(b, key, level, &slot);
2491
2492                 if (level != 0) {
2493                         int dec = 0;
2494                         if (ret && slot > 0) {
2495                                 dec = 1;
2496                                 slot -= 1;
2497                         }
2498                         p->slots[level] = slot;
2499                         err = setup_nodes_for_search(trans, root, p, b, level,
2500                                              ins_len, &write_lock_level);
2501                         if (err == -EAGAIN)
2502                                 goto again;
2503                         if (err) {
2504                                 ret = err;
2505                                 goto done;
2506                         }
2507                         b = p->nodes[level];
2508                         slot = p->slots[level];
2509
2510                         /*
2511                          * slot 0 is special, if we change the key
2512                          * we have to update the parent pointer
2513                          * which means we must have a write lock
2514                          * on the parent
2515                          */
2516                         if (slot == 0 && cow &&
2517                             write_lock_level < level + 1) {
2518                                 write_lock_level = level + 1;
2519                                 btrfs_release_path(p);
2520                                 goto again;
2521                         }
2522
2523                         unlock_up(p, level, lowest_unlock,
2524                                   min_write_lock_level, &write_lock_level);
2525
2526                         if (level == lowest_level) {
2527                                 if (dec)
2528                                         p->slots[level]++;
2529                                 goto done;
2530                         }
2531
2532                         err = read_block_for_search(trans, root, p,
2533                                                     &b, level, slot, key, 0);
2534                         if (err == -EAGAIN)
2535                                 goto again;
2536                         if (err) {
2537                                 ret = err;
2538                                 goto done;
2539                         }
2540
2541                         if (!p->skip_locking) {
2542                                 level = btrfs_header_level(b);
2543                                 if (level <= write_lock_level) {
2544                                         err = btrfs_try_tree_write_lock(b);
2545                                         if (!err) {
2546                                                 btrfs_set_path_blocking(p);
2547                                                 btrfs_tree_lock(b);
2548                                                 btrfs_clear_path_blocking(p, b,
2549                                                                   BTRFS_WRITE_LOCK);
2550                                         }
2551                                         p->locks[level] = BTRFS_WRITE_LOCK;
2552                                 } else {
2553                                         err = btrfs_try_tree_read_lock(b);
2554                                         if (!err) {
2555                                                 btrfs_set_path_blocking(p);
2556                                                 btrfs_tree_read_lock(b);
2557                                                 btrfs_clear_path_blocking(p, b,
2558                                                                   BTRFS_READ_LOCK);
2559                                         }
2560                                         p->locks[level] = BTRFS_READ_LOCK;
2561                                 }
2562                                 p->nodes[level] = b;
2563                         }
2564                 } else {
2565                         p->slots[level] = slot;
2566                         if (ins_len > 0 &&
2567                             btrfs_leaf_free_space(root, b) < ins_len) {
2568                                 if (write_lock_level < 1) {
2569                                         write_lock_level = 1;
2570                                         btrfs_release_path(p);
2571                                         goto again;
2572                                 }
2573
2574                                 btrfs_set_path_blocking(p);
2575                                 err = split_leaf(trans, root, key,
2576                                                  p, ins_len, ret == 0);
2577                                 btrfs_clear_path_blocking(p, NULL, 0);
2578
2579                                 BUG_ON(err > 0);
2580                                 if (err) {
2581                                         ret = err;
2582                                         goto done;
2583                                 }
2584                         }
2585                         if (!p->search_for_split)
2586                                 unlock_up(p, level, lowest_unlock,
2587                                           min_write_lock_level, &write_lock_level);
2588                         goto done;
2589                 }
2590         }
2591         ret = 1;
2592 done:
2593         /*
2594          * we don't really know what they plan on doing with the path
2595          * from here on, so for now just mark it as blocking
2596          */
2597         if (!p->leave_spinning)
2598                 btrfs_set_path_blocking(p);
2599         if (ret < 0)
2600                 btrfs_release_path(p);
2601         return ret;
2602 }
2603
2604 /*
2605  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2606  * current state of the tree together with the operations recorded in the tree
2607  * modification log to search for the key in a previous version of this tree, as
2608  * denoted by the time_seq parameter.
2609  *
2610  * Naturally, there is no support for insert, delete or cow operations.
2611  *
2612  * The resulting path and return value will be set up as if we called
2613  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2614  */
2615 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2616                           struct btrfs_path *p, u64 time_seq)
2617 {
2618         struct extent_buffer *b;
2619         int slot;
2620         int ret;
2621         int err;
2622         int level;
2623         int lowest_unlock = 1;
2624         u8 lowest_level = 0;
2625
2626         lowest_level = p->lowest_level;
2627         WARN_ON(p->nodes[0] != NULL);
2628
2629         if (p->search_commit_root) {
2630                 BUG_ON(time_seq);
2631                 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2632         }
2633
2634 again:
2635         b = get_old_root(root, time_seq);
2636         level = btrfs_header_level(b);
2637         p->locks[level] = BTRFS_READ_LOCK;
2638
2639         while (b) {
2640                 level = btrfs_header_level(b);
2641                 p->nodes[level] = b;
2642                 btrfs_clear_path_blocking(p, NULL, 0);
2643
2644                 /*
2645                  * we have a lock on b and as long as we aren't changing
2646                  * the tree, there is no way to for the items in b to change.
2647                  * It is safe to drop the lock on our parent before we
2648                  * go through the expensive btree search on b.
2649                  */
2650                 btrfs_unlock_up_safe(p, level + 1);
2651
2652                 ret = bin_search(b, key, level, &slot);
2653
2654                 if (level != 0) {
2655                         int dec = 0;
2656                         if (ret && slot > 0) {
2657                                 dec = 1;
2658                                 slot -= 1;
2659                         }
2660                         p->slots[level] = slot;
2661                         unlock_up(p, level, lowest_unlock, 0, NULL);
2662
2663                         if (level == lowest_level) {
2664                                 if (dec)
2665                                         p->slots[level]++;
2666                                 goto done;
2667                         }
2668
2669                         err = read_block_for_search(NULL, root, p, &b, level,
2670                                                     slot, key, time_seq);
2671                         if (err == -EAGAIN)
2672                                 goto again;
2673                         if (err) {
2674                                 ret = err;
2675                                 goto done;
2676                         }
2677
2678                         level = btrfs_header_level(b);
2679                         err = btrfs_try_tree_read_lock(b);
2680                         if (!err) {
2681                                 btrfs_set_path_blocking(p);
2682                                 btrfs_tree_read_lock(b);
2683                                 btrfs_clear_path_blocking(p, b,
2684                                                           BTRFS_READ_LOCK);
2685                         }
2686                         p->locks[level] = BTRFS_READ_LOCK;
2687                         p->nodes[level] = b;
2688                         b = tree_mod_log_rewind(root->fs_info, b, time_seq);
2689                         if (b != p->nodes[level]) {
2690                                 btrfs_tree_unlock_rw(p->nodes[level],
2691                                                      p->locks[level]);
2692                                 p->locks[level] = 0;
2693                                 p->nodes[level] = b;
2694                         }
2695                 } else {
2696                         p->slots[level] = slot;
2697                         unlock_up(p, level, lowest_unlock, 0, NULL);
2698                         goto done;
2699                 }
2700         }
2701         ret = 1;
2702 done:
2703         if (!p->leave_spinning)
2704                 btrfs_set_path_blocking(p);
2705         if (ret < 0)
2706                 btrfs_release_path(p);
2707
2708         return ret;
2709 }
2710
2711 /*
2712  * adjust the pointers going up the tree, starting at level
2713  * making sure the right key of each node is points to 'key'.
2714  * This is used after shifting pointers to the left, so it stops
2715  * fixing up pointers when a given leaf/node is not in slot 0 of the
2716  * higher levels
2717  *
2718  */
2719 static void fixup_low_keys(struct btrfs_trans_handle *trans,
2720                            struct btrfs_root *root, struct btrfs_path *path,
2721                            struct btrfs_disk_key *key, int level)
2722 {
2723         int i;
2724         struct extent_buffer *t;
2725
2726         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2727                 int tslot = path->slots[i];
2728                 if (!path->nodes[i])
2729                         break;
2730                 t = path->nodes[i];
2731                 tree_mod_log_set_node_key(root->fs_info, t, key, tslot, 1);
2732                 btrfs_set_node_key(t, key, tslot);
2733                 btrfs_mark_buffer_dirty(path->nodes[i]);
2734                 if (tslot != 0)
2735                         break;
2736         }
2737 }
2738
2739 /*
2740  * update item key.
2741  *
2742  * This function isn't completely safe. It's the caller's responsibility
2743  * that the new key won't break the order
2744  */
2745 void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
2746                              struct btrfs_root *root, struct btrfs_path *path,
2747                              struct btrfs_key *new_key)
2748 {
2749         struct btrfs_disk_key disk_key;
2750         struct extent_buffer *eb;
2751         int slot;
2752
2753         eb = path->nodes[0];
2754         slot = path->slots[0];
2755         if (slot > 0) {
2756                 btrfs_item_key(eb, &disk_key, slot - 1);
2757                 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
2758         }
2759         if (slot < btrfs_header_nritems(eb) - 1) {
2760                 btrfs_item_key(eb, &disk_key, slot + 1);
2761                 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
2762         }
2763
2764         btrfs_cpu_key_to_disk(&disk_key, new_key);
2765         btrfs_set_item_key(eb, &disk_key, slot);
2766         btrfs_mark_buffer_dirty(eb);
2767         if (slot == 0)
2768                 fixup_low_keys(trans, root, path, &disk_key, 1);
2769 }
2770
2771 /*
2772  * try to push data from one node into the next node left in the
2773  * tree.
2774  *
2775  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2776  * error, and > 0 if there was no room in the left hand block.
2777  */
2778 static int push_node_left(struct btrfs_trans_handle *trans,
2779                           struct btrfs_root *root, struct extent_buffer *dst,
2780                           struct extent_buffer *src, int empty)
2781 {
2782         int push_items = 0;
2783         int src_nritems;
2784         int dst_nritems;
2785         int ret = 0;
2786
2787         src_nritems = btrfs_header_nritems(src);
2788         dst_nritems = btrfs_header_nritems(dst);
2789         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2790         WARN_ON(btrfs_header_generation(src) != trans->transid);
2791         WARN_ON(btrfs_header_generation(dst) != trans->transid);
2792
2793         if (!empty && src_nritems <= 8)
2794                 return 1;
2795
2796         if (push_items <= 0)
2797                 return 1;
2798
2799         if (empty) {
2800                 push_items = min(src_nritems, push_items);
2801                 if (push_items < src_nritems) {
2802                         /* leave at least 8 pointers in the node if
2803                          * we aren't going to empty it
2804                          */
2805                         if (src_nritems - push_items < 8) {
2806                                 if (push_items <= 8)
2807                                         return 1;
2808                                 push_items -= 8;
2809                         }
2810                 }
2811         } else
2812                 push_items = min(src_nritems - 8, push_items);
2813
2814         tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
2815                              push_items);
2816         copy_extent_buffer(dst, src,
2817                            btrfs_node_key_ptr_offset(dst_nritems),
2818                            btrfs_node_key_ptr_offset(0),
2819                            push_items * sizeof(struct btrfs_key_ptr));
2820
2821         if (push_items < src_nritems) {
2822                 tree_mod_log_eb_move(root->fs_info, src, 0, push_items,
2823                                      src_nritems - push_items);
2824                 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
2825                                       btrfs_node_key_ptr_offset(push_items),
2826                                       (src_nritems - push_items) *
2827                                       sizeof(struct btrfs_key_ptr));
2828         }
2829         btrfs_set_header_nritems(src, src_nritems - push_items);
2830         btrfs_set_header_nritems(dst, dst_nritems + push_items);
2831         btrfs_mark_buffer_dirty(src);
2832         btrfs_mark_buffer_dirty(dst);
2833
2834         return ret;
2835 }
2836
2837 /*
2838  * try to push data from one node into the next node right in the
2839  * tree.
2840  *
2841  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2842  * error, and > 0 if there was no room in the right hand block.
2843  *
2844  * this will  only push up to 1/2 the contents of the left node over
2845  */
2846 static int balance_node_right(struct btrfs_trans_handle *trans,
2847                               struct btrfs_root *root,
2848                               struct extent_buffer *dst,
2849                               struct extent_buffer *src)
2850 {
2851         int push_items = 0;
2852         int max_push;
2853         int src_nritems;
2854         int dst_nritems;
2855         int ret = 0;
2856
2857         WARN_ON(btrfs_header_generation(src) != trans->transid);
2858         WARN_ON(btrfs_header_generation(dst) != trans->transid);
2859
2860         src_nritems = btrfs_header_nritems(src);
2861         dst_nritems = btrfs_header_nritems(dst);
2862         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2863         if (push_items <= 0)
2864                 return 1;
2865
2866         if (src_nritems < 4)
2867                 return 1;
2868
2869         max_push = src_nritems / 2 + 1;
2870         /* don't try to empty the node */
2871         if (max_push >= src_nritems)
2872                 return 1;
2873
2874         if (max_push < push_items)
2875                 push_items = max_push;
2876
2877         tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
2878         memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
2879                                       btrfs_node_key_ptr_offset(0),
2880                                       (dst_nritems) *
2881                                       sizeof(struct btrfs_key_ptr));
2882
2883         tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
2884                              src_nritems - push_items, push_items);
2885         copy_extent_buffer(dst, src,
2886                            btrfs_node_key_ptr_offset(0),
2887                            btrfs_node_key_ptr_offset(src_nritems - push_items),
2888                            push_items * sizeof(struct btrfs_key_ptr));
2889
2890         btrfs_set_header_nritems(src, src_nritems - push_items);
2891         btrfs_set_header_nritems(dst, dst_nritems + push_items);
2892
2893         btrfs_mark_buffer_dirty(src);
2894         btrfs_mark_buffer_dirty(dst);
2895
2896         return ret;
2897 }
2898
2899 /*
2900  * helper function to insert a new root level in the tree.
2901  * A new node is allocated, and a single item is inserted to
2902  * point to the existing root
2903  *
2904  * returns zero on success or < 0 on failure.
2905  */
2906 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2907                            struct btrfs_root *root,
2908                            struct btrfs_path *path, int level)
2909 {
2910         u64 lower_gen;
2911         struct extent_buffer *lower;
2912         struct extent_buffer *c;
2913         struct extent_buffer *old;
2914         struct btrfs_disk_key lower_key;
2915
2916         BUG_ON(path->nodes[level]);
2917         BUG_ON(path->nodes[level-1] != root->node);
2918
2919         lower = path->nodes[level-1];
2920         if (level == 1)
2921                 btrfs_item_key(lower, &lower_key, 0);
2922         else
2923                 btrfs_node_key(lower, &lower_key, 0);
2924
2925         c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2926                                    root->root_key.objectid, &lower_key,
2927                                    level, root->node->start, 0);
2928         if (IS_ERR(c))
2929                 return PTR_ERR(c);
2930
2931         root_add_used(root, root->nodesize);
2932
2933         memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
2934         btrfs_set_header_nritems(c, 1);
2935         btrfs_set_header_level(c, level);
2936         btrfs_set_header_bytenr(c, c->start);
2937         btrfs_set_header_generation(c, trans->transid);
2938         btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
2939         btrfs_set_header_owner(c, root->root_key.objectid);
2940
2941         write_extent_buffer(c, root->fs_info->fsid,
2942                             (unsigned long)btrfs_header_fsid(c),
2943                             BTRFS_FSID_SIZE);
2944
2945         write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
2946                             (unsigned long)btrfs_header_chunk_tree_uuid(c),
2947                             BTRFS_UUID_SIZE);
2948
2949         btrfs_set_node_key(c, &lower_key, 0);
2950         btrfs_set_node_blockptr(c, 0, lower->start);
2951         lower_gen = btrfs_header_generation(lower);
2952         WARN_ON(lower_gen != trans->transid);
2953
2954         btrfs_set_node_ptr_generation(c, 0, lower_gen);
2955
2956         btrfs_mark_buffer_dirty(c);
2957
2958         old = root->node;
2959         tree_mod_log_set_root_pointer(root, c);
2960         rcu_assign_pointer(root->node, c);
2961
2962         /* the super has an extra ref to root->node */
2963         free_extent_buffer(old);
2964
2965         add_root_to_dirty_list(root);
2966         extent_buffer_get(c);
2967         path->nodes[level] = c;
2968         path->locks[level] = BTRFS_WRITE_LOCK;
2969         path->slots[level] = 0;
2970         return 0;
2971 }
2972
2973 /*
2974  * worker function to insert a single pointer in a node.
2975  * the node should have enough room for the pointer already
2976  *
2977  * slot and level indicate where you want the key to go, and
2978  * blocknr is the block the key points to.
2979  */
2980 static void insert_ptr(struct btrfs_trans_handle *trans,
2981                        struct btrfs_root *root, struct btrfs_path *path,
2982                        struct btrfs_disk_key *key, u64 bytenr,
2983                        int slot, int level, int tree_mod_log)
2984 {
2985         struct extent_buffer *lower;
2986         int nritems;
2987         int ret;
2988
2989         BUG_ON(!path->nodes[level]);
2990         btrfs_assert_tree_locked(path->nodes[level]);
2991         lower = path->nodes[level];
2992         nritems = btrfs_header_nritems(lower);
2993         BUG_ON(slot > nritems);
2994         BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
2995         if (slot != nritems) {
2996                 if (tree_mod_log && level)
2997                         tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
2998                                              slot, nritems - slot);
2999                 memmove_extent_buffer(lower,
3000                               btrfs_node_key_ptr_offset(slot + 1),
3001                               btrfs_node_key_ptr_offset(slot),
3002                               (nritems - slot) * sizeof(struct btrfs_key_ptr));
3003         }
3004         if (tree_mod_log && level) {
3005                 ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3006                                               MOD_LOG_KEY_ADD);
3007                 BUG_ON(ret < 0);
3008         }
3009         btrfs_set_node_key(lower, key, slot);
3010         btrfs_set_node_blockptr(lower, slot, bytenr);
3011         WARN_ON(trans->transid == 0);
3012         btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3013         btrfs_set_header_nritems(lower, nritems + 1);
3014         btrfs_mark_buffer_dirty(lower);
3015 }
3016
3017 /*
3018  * split the node at the specified level in path in two.
3019  * The path is corrected to point to the appropriate node after the split
3020  *
3021  * Before splitting this tries to make some room in the node by pushing
3022  * left and right, if either one works, it returns right away.
3023  *
3024  * returns 0 on success and < 0 on failure
3025  */
3026 static noinline int split_node(struct btrfs_trans_handle *trans,
3027                                struct btrfs_root *root,
3028                                struct btrfs_path *path, int level)
3029 {
3030         struct extent_buffer *c;
3031         struct extent_buffer *split;
3032         struct btrfs_disk_key disk_key;
3033         int mid;
3034         int ret;
3035         u32 c_nritems;
3036
3037         c = path->nodes[level];
3038         WARN_ON(btrfs_header_generation(c) != trans->transid);
3039         if (c == root->node) {
3040                 /* trying to split the root, lets make a new one */
3041                 ret = insert_new_root(trans, root, path, level + 1);
3042                 if (ret)
3043                         return ret;
3044         } else {
3045                 ret = push_nodes_for_insert(trans, root, path, level);
3046                 c = path->nodes[level];
3047                 if (!ret && btrfs_header_nritems(c) <
3048                     BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3049                         return 0;
3050                 if (ret < 0)
3051                         return ret;
3052         }
3053
3054         c_nritems = btrfs_header_nritems(c);
3055         mid = (c_nritems + 1) / 2;
3056         btrfs_node_key(c, &disk_key, mid);
3057
3058         split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3059                                         root->root_key.objectid,
3060                                         &disk_key, level, c->start, 0);
3061         if (IS_ERR(split))
3062                 return PTR_ERR(split);
3063
3064         root_add_used(root, root->nodesize);
3065
3066         memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3067         btrfs_set_header_level(split, btrfs_header_level(c));
3068         btrfs_set_header_bytenr(split, split->start);
3069         btrfs_set_header_generation(split, trans->transid);
3070         btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3071         btrfs_set_header_owner(split, root->root_key.objectid);
3072         write_extent_buffer(split, root->fs_info->fsid,
3073                             (unsigned long)btrfs_header_fsid(split),
3074                             BTRFS_FSID_SIZE);
3075         write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3076                             (unsigned long)btrfs_header_chunk_tree_uuid(split),
3077                             BTRFS_UUID_SIZE);
3078
3079         tree_mod_log_eb_copy(root->fs_info, split, c, 0, mid, c_nritems - mid);
3080         copy_extent_buffer(split, c,
3081                            btrfs_node_key_ptr_offset(0),
3082                            btrfs_node_key_ptr_offset(mid),
3083                            (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3084         btrfs_set_header_nritems(split, c_nritems - mid);
3085         btrfs_set_header_nritems(c, mid);
3086         ret = 0;
3087
3088         btrfs_mark_buffer_dirty(c);
3089         btrfs_mark_buffer_dirty(split);
3090
3091         insert_ptr(trans, root, path, &disk_key, split->start,
3092                    path->slots[level + 1] + 1, level + 1, 1);
3093
3094         if (path->slots[level] >= mid) {
3095                 path->slots[level] -= mid;
3096                 btrfs_tree_unlock(c);
3097                 free_extent_buffer(c);
3098                 path->nodes[level] = split;
3099                 path->slots[level + 1] += 1;
3100         } else {
3101                 btrfs_tree_unlock(split);
3102                 free_extent_buffer(split);
3103         }
3104         return ret;
3105 }
3106
3107 /*
3108  * how many bytes are required to store the items in a leaf.  start
3109  * and nr indicate which items in the leaf to check.  This totals up the
3110  * space used both by the item structs and the item data
3111  */
3112 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3113 {
3114         int data_len;
3115         int nritems = btrfs_header_nritems(l);
3116         int end = min(nritems, start + nr) - 1;
3117
3118         if (!nr)
3119                 return 0;
3120         data_len = btrfs_item_end_nr(l, start);
3121         data_len = data_len - btrfs_item_offset_nr(l, end);
3122         data_len += sizeof(struct btrfs_item) * nr;
3123         WARN_ON(data_len < 0);
3124         return data_len;
3125 }
3126
3127 /*
3128  * The space between the end of the leaf items and
3129  * the start of the leaf data.  IOW, how much room
3130  * the leaf has left for both items and data
3131  */
3132 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3133                                    struct extent_buffer *leaf)
3134 {
3135         int nritems = btrfs_header_nritems(leaf);
3136         int ret;
3137         ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3138         if (ret < 0) {
3139                 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
3140                        "used %d nritems %d\n",
3141                        ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3142                        leaf_space_used(leaf, 0, nritems), nritems);
3143         }
3144         return ret;
3145 }
3146
3147 /*
3148  * min slot controls the lowest index we're willing to push to the
3149  * right.  We'll push up to and including min_slot, but no lower
3150  */
3151 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3152                                       struct btrfs_root *root,
3153                                       struct btrfs_path *path,
3154                                       int data_size, int empty,
3155                                       struct extent_buffer *right,
3156                                       int free_space, u32 left_nritems,
3157                                       u32 min_slot)
3158 {
3159         struct extent_buffer *left = path->nodes[0];
3160         struct extent_buffer *upper = path->nodes[1];
3161         struct btrfs_map_token token;
3162         struct btrfs_disk_key disk_key;
3163         int slot;
3164         u32 i;
3165         int push_space = 0;
3166         int push_items = 0;
3167         struct btrfs_item *item;
3168         u32 nr;
3169         u32 right_nritems;
3170         u32 data_end;
3171         u32 this_item_size;
3172
3173         btrfs_init_map_token(&token);
3174
3175         if (empty)
3176                 nr = 0;
3177         else
3178                 nr = max_t(u32, 1, min_slot);
3179
3180         if (path->slots[0] >= left_nritems)
3181                 push_space += data_size;
3182
3183         slot = path->slots[1];
3184         i = left_nritems - 1;
3185         while (i >= nr) {
3186                 item = btrfs_item_nr(left, i);
3187
3188                 if (!empty && push_items > 0) {
3189                         if (path->slots[0] > i)
3190                                 break;
3191                         if (path->slots[0] == i) {
3192                                 int space = btrfs_leaf_free_space(root, left);
3193                                 if (space + push_space * 2 > free_space)
3194                                         break;
3195                         }
3196                 }
3197
3198                 if (path->slots[0] == i)
3199                         push_space += data_size;
3200
3201                 this_item_size = btrfs_item_size(left, item);
3202                 if (this_item_size + sizeof(*item) + push_space > free_space)
3203                         break;
3204
3205                 push_items++;
3206                 push_space += this_item_size + sizeof(*item);
3207                 if (i == 0)
3208                         break;
3209                 i--;
3210         }
3211
3212         if (push_items == 0)
3213                 goto out_unlock;
3214
3215         if (!empty && push_items == left_nritems)
3216                 WARN_ON(1);
3217
3218         /* push left to right */
3219         right_nritems = btrfs_header_nritems(right);
3220
3221         push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3222         push_space -= leaf_data_end(root, left);
3223
3224         /* make room in the right data area */
3225         data_end = leaf_data_end(root, right);
3226         memmove_extent_buffer(right,
3227                               btrfs_leaf_data(right) + data_end - push_space,
3228                               btrfs_leaf_data(right) + data_end,
3229                               BTRFS_LEAF_DATA_SIZE(root) - data_end);
3230
3231         /* copy from the left data area */
3232         copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3233                      BTRFS_LEAF_DATA_SIZE(root) - push_space,
3234                      btrfs_leaf_data(left) + leaf_data_end(root, left),
3235                      push_space);
3236
3237         memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3238                               btrfs_item_nr_offset(0),
3239                               right_nritems * sizeof(struct btrfs_item));
3240
3241         /* copy the items from left to right */
3242         copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3243                    btrfs_item_nr_offset(left_nritems - push_items),
3244                    push_items * sizeof(struct btrfs_item));
3245
3246         /* update the item pointers */
3247         right_nritems += push_items;
3248         btrfs_set_header_nritems(right, right_nritems);
3249         push_space = BTRFS_LEAF_DATA_SIZE(root);
3250         for (i = 0; i < right_nritems; i++) {
3251                 item = btrfs_item_nr(right, i);
3252                 push_space -= btrfs_token_item_size(right, item, &token);
3253                 btrfs_set_token_item_offset(right, item, push_space, &token);
3254         }
3255
3256         left_nritems -= push_items;
3257         btrfs_set_header_nritems(left, left_nritems);
3258
3259         if (left_nritems)
3260                 btrfs_mark_buffer_dirty(left);
3261         else
3262                 clean_tree_block(trans, root, left);
3263
3264         btrfs_mark_buffer_dirty(right);
3265
3266         btrfs_item_key(right, &disk_key, 0);
3267         btrfs_set_node_key(upper, &disk_key, slot + 1);
3268         btrfs_mark_buffer_dirty(upper);
3269
3270         /* then fixup the leaf pointer in the path */
3271         if (path->slots[0] >= left_nritems) {
3272                 path->slots[0] -= left_nritems;
3273                 if (btrfs_header_nritems(path->nodes[0]) == 0)
3274                         clean_tree_block(trans, root, path->nodes[0]);
3275                 btrfs_tree_unlock(path->nodes[0]);
3276                 free_extent_buffer(path->nodes[0]);
3277                 path->nodes[0] = right;
3278                 path->slots[1] += 1;
3279         } else {
3280                 btrfs_tree_unlock(right);
3281                 free_extent_buffer(right);
3282         }
3283         return 0;
3284
3285 out_unlock:
3286         btrfs_tree_unlock(right);
3287         free_extent_buffer(right);
3288         return 1;
3289 }
3290
3291 /*
3292  * push some data in the path leaf to the right, trying to free up at
3293  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3294  *
3295  * returns 1 if the push failed because the other node didn't have enough
3296  * room, 0 if everything worked out and < 0 if there were major errors.
3297  *
3298  * this will push starting from min_slot to the end of the leaf.  It won't
3299  * push any slot lower than min_slot
3300  */
3301 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3302                            *root, struct btrfs_path *path,
3303                            int min_data_size, int data_size,
3304                            int empty, u32 min_slot)
3305 {
3306         struct extent_buffer *left = path->nodes[0];
3307         struct extent_buffer *right;
3308         struct extent_buffer *upper;
3309         int slot;
3310         int free_space;
3311         u32 left_nritems;
3312         int ret;
3313
3314         if (!path->nodes[1])
3315                 return 1;
3316
3317         slot = path->slots[1];
3318         upper = path->nodes[1];
3319         if (slot >= btrfs_header_nritems(upper) - 1)
3320                 return 1;
3321
3322         btrfs_assert_tree_locked(path->nodes[1]);
3323
3324         right = read_node_slot(root, upper, slot + 1);
3325         if (right == NULL)
3326                 return 1;
3327
3328         btrfs_tree_lock(right);
3329         btrfs_set_lock_blocking(right);
3330
3331         free_space = btrfs_leaf_free_space(root, right);
3332         if (free_space < data_size)
3333                 goto out_unlock;
3334
3335         /* cow and double check */
3336         ret = btrfs_cow_block(trans, root, right, upper,
3337                               slot + 1, &right);
3338         if (ret)
3339                 goto out_unlock;
3340
3341         free_space = btrfs_leaf_free_space(root, right);
3342         if (free_space < data_size)
3343                 goto out_unlock;
3344
3345         left_nritems = btrfs_header_nritems(left);
3346         if (left_nritems == 0)
3347                 goto out_unlock;
3348
3349         return __push_leaf_right(trans, root, path, min_data_size, empty,
3350                                 right, free_space, left_nritems, min_slot);
3351 out_unlock:
3352         btrfs_tree_unlock(right);
3353         free_extent_buffer(right);
3354         return 1;
3355 }
3356
3357 /*
3358  * push some data in the path leaf to the left, trying to free up at
3359  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3360  *
3361  * max_slot can put a limit on how far into the leaf we'll push items.  The
3362  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3363  * items
3364  */
3365 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3366                                      struct btrfs_root *root,
3367                                      struct btrfs_path *path, int data_size,
3368                                      int empty, struct extent_buffer *left,
3369                                      int free_space, u32 right_nritems,
3370                                      u32 max_slot)
3371 {
3372         struct btrfs_disk_key disk_key;
3373         struct extent_buffer *right = path->nodes[0];
3374         int i;
3375         int push_space = 0;
3376         int push_items = 0;
3377         struct btrfs_item *item;
3378         u32 old_left_nritems;
3379         u32 nr;
3380         int ret = 0;
3381         u32 this_item_size;
3382         u32 old_left_item_size;
3383         struct btrfs_map_token token;
3384
3385         btrfs_init_map_token(&token);
3386
3387         if (empty)
3388                 nr = min(right_nritems, max_slot);
3389         else
3390                 nr = min(right_nritems - 1, max_slot);
3391
3392         for (i = 0; i < nr; i++) {
3393                 item = btrfs_item_nr(right, i);
3394
3395                 if (!empty && push_items > 0) {
3396                         if (path->slots[0] < i)
3397                                 break;
3398                         if (path->slots[0] == i) {
3399                                 int space = btrfs_leaf_free_space(root, right);
3400                                 if (space + push_space * 2 > free_space)
3401                                         break;
3402                         }
3403                 }
3404
3405                 if (path->slots[0] == i)
3406                         push_space += data_size;
3407
3408                 this_item_size = btrfs_item_size(right, item);
3409                 if (this_item_size + sizeof(*item) + push_space > free_space)
3410                         break;
3411
3412                 push_items++;
3413                 push_space += this_item_size + sizeof(*item);
3414         }
3415
3416         if (push_items == 0) {
3417                 ret = 1;
3418                 goto out;
3419         }
3420         if (!empty && push_items == btrfs_header_nritems(right))
3421                 WARN_ON(1);
3422
3423         /* push data from right to left */
3424         copy_extent_buffer(left, right,
3425                            btrfs_item_nr_offset(btrfs_header_nritems(left)),
3426                            btrfs_item_nr_offset(0),
3427                            push_items * sizeof(struct btrfs_item));
3428
3429         push_space = BTRFS_LEAF_DATA_SIZE(root) -
3430                      btrfs_item_offset_nr(right, push_items - 1);
3431
3432         copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3433                      leaf_data_end(root, left) - push_space,
3434                      btrfs_leaf_data(right) +
3435                      btrfs_item_offset_nr(right, push_items - 1),
3436                      push_space);
3437         old_left_nritems = btrfs_header_nritems(left);
3438         BUG_ON(old_left_nritems <= 0);
3439
3440         old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3441         for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3442                 u32 ioff;
3443
3444                 item = btrfs_item_nr(left, i);
3445
3446                 ioff = btrfs_token_item_offset(left, item, &token);
3447                 btrfs_set_token_item_offset(left, item,
3448                       ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3449                       &token);
3450         }
3451         btrfs_set_header_nritems(left, old_left_nritems + push_items);
3452
3453         /* fixup right node */
3454         if (push_items > right_nritems) {
3455                 printk(KERN_CRIT "push items %d nr %u\n", push_items,
3456                        right_nritems);
3457                 WARN_ON(1);
3458         }
3459
3460         if (push_items < right_nritems) {
3461                 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3462                                                   leaf_data_end(root, right);
3463                 memmove_extent_buffer(right, btrfs_leaf_data(right) +
3464                                       BTRFS_LEAF_DATA_SIZE(root) - push_space,
3465                                       btrfs_leaf_data(right) +
3466                                       leaf_data_end(root, right), push_space);
3467
3468                 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3469                               btrfs_item_nr_offset(push_items),
3470                              (btrfs_header_nritems(right) - push_items) *
3471                              sizeof(struct btrfs_item));
3472         }
3473         right_nritems -= push_items;
3474         btrfs_set_header_nritems(right, right_nritems);
3475         push_space = BTRFS_LEAF_DATA_SIZE(root);
3476         for (i = 0; i < right_nritems; i++) {
3477                 item = btrfs_item_nr(right, i);
3478
3479                 push_space = push_space - btrfs_token_item_size(right,
3480                                                                 item, &token);
3481                 btrfs_set_token_item_offset(right, item, push_space, &token);
3482         }
3483
3484         btrfs_mark_buffer_dirty(left);
3485         if (right_nritems)
3486                 btrfs_mark_buffer_dirty(right);
3487         else
3488                 clean_tree_block(trans, root, right);
3489
3490         btrfs_item_key(right, &disk_key, 0);
3491         fixup_low_keys(trans, root, path, &disk_key, 1);
3492
3493         /* then fixup the leaf pointer in the path */
3494         if (path->slots[0] < push_items) {
3495                 path->slots[0] += old_left_nritems;
3496                 btrfs_tree_unlock(path->nodes[0]);
3497                 free_extent_buffer(path->nodes[0]);
3498                 path->nodes[0] = left;
3499                 path->slots[1] -= 1;
3500         } else {
3501                 btrfs_tree_unlock(left);
3502                 free_extent_buffer(left);
3503                 path->slots[0] -= push_items;
3504         }
3505         BUG_ON(path->slots[0] < 0);
3506         return ret;
3507 out:
3508         btrfs_tree_unlock(left);
3509         free_extent_buffer(left);
3510         return ret;
3511 }
3512
3513 /*
3514  * push some data in the path leaf to the left, trying to free up at
3515  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3516  *
3517  * max_slot can put a limit on how far into the leaf we'll push items.  The
3518  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3519  * items
3520  */
3521 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3522                           *root, struct btrfs_path *path, int min_data_size,
3523                           int data_size, int empty, u32 max_slot)
3524 {
3525         struct extent_buffer *right = path->nodes[0];
3526         struct extent_buffer *left;
3527         int slot;
3528         int free_space;
3529         u32 right_nritems;
3530         int ret = 0;
3531
3532         slot = path->slots[1];
3533         if (slot == 0)
3534                 return 1;
3535         if (!path->nodes[1])
3536                 return 1;
3537
3538         right_nritems = btrfs_header_nritems(right);
3539         if (right_nritems == 0)
3540                 return 1;
3541
3542         btrfs_assert_tree_locked(path->nodes[1]);
3543
3544         left = read_node_slot(root, path->nodes[1], slot - 1);
3545         if (left == NULL)
3546                 return 1;
3547
3548         btrfs_tree_lock(left);
3549         btrfs_set_lock_blocking(left);
3550
3551         free_space = btrfs_leaf_free_space(root, left);
3552         if (free_space < data_size) {
3553                 ret = 1;
3554                 goto out;
3555         }
3556
3557         /* cow and double check */
3558         ret = btrfs_cow_block(trans, root, left,
3559                               path->nodes[1], slot - 1, &left);
3560         if (ret) {
3561                 /* we hit -ENOSPC, but it isn't fatal here */
3562                 if (ret == -ENOSPC)
3563                         ret = 1;
3564                 goto out;
3565         }
3566
3567         free_space = btrfs_leaf_free_space(root, left);
3568         if (free_space < data_size) {
3569                 ret = 1;
3570                 goto out;
3571         }
3572
3573         return __push_leaf_left(trans, root, path, min_data_size,
3574                                empty, left, free_space, right_nritems,
3575                                max_slot);
3576 out:
3577         btrfs_tree_unlock(left);
3578         free_extent_buffer(left);
3579         return ret;
3580 }
3581
3582 /*
3583  * split the path's leaf in two, making sure there is at least data_size
3584  * available for the resulting leaf level of the path.
3585  */
3586 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3587                                     struct btrfs_root *root,
3588                                     struct btrfs_path *path,
3589                                     struct extent_buffer *l,
3590                                     struct extent_buffer *right,
3591                                     int slot, int mid, int nritems)
3592 {
3593         int data_copy_size;
3594         int rt_data_off;
3595         int i;
3596         struct btrfs_disk_key disk_key;
3597         struct btrfs_map_token token;
3598
3599         btrfs_init_map_token(&token);
3600
3601         nritems = nritems - mid;
3602         btrfs_set_header_nritems(right, nritems);
3603         data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
3604
3605         copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
3606                            btrfs_item_nr_offset(mid),
3607                            nritems * sizeof(struct btrfs_item));
3608
3609         copy_extent_buffer(right, l,
3610                      btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
3611                      data_copy_size, btrfs_leaf_data(l) +
3612                      leaf_data_end(root, l), data_copy_size);
3613
3614         rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
3615                       btrfs_item_end_nr(l, mid);
3616
3617         for (i = 0; i < nritems; i++) {
3618                 struct btrfs_item *item = btrfs_item_nr(right, i);
3619                 u32 ioff;
3620
3621                 ioff = btrfs_token_item_offset(right, item, &token);
3622                 btrfs_set_token_item_offset(right, item,
3623                                             ioff + rt_data_off, &token);
3624         }
3625
3626         btrfs_set_header_nritems(l, mid);
3627         btrfs_item_key(right, &disk_key, 0);
3628         insert_ptr(trans, root, path, &disk_key, right->start,
3629                    path->slots[1] + 1, 1, 0);
3630
3631         btrfs_mark_buffer_dirty(right);
3632         btrfs_mark_buffer_dirty(l);
3633         BUG_ON(path->slots[0] != slot);
3634
3635         if (mid <= slot) {
3636                 btrfs_tree_unlock(path->nodes[0]);
3637                 free_extent_buffer(path->nodes[0]);
3638                 path->nodes[0] = right;
3639                 path->slots[0] -= mid;
3640                 path->slots[1] += 1;
3641         } else {
3642                 btrfs_tree_unlock(right);
3643                 free_extent_buffer(right);
3644         }
3645
3646         BUG_ON(path->slots[0] < 0);
3647 }
3648
3649 /*
3650  * double splits happen when we need to insert a big item in the middle
3651  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3652  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3653  *          A                 B                 C
3654  *
3655  * We avoid this by trying to push the items on either side of our target
3656  * into the adjacent leaves.  If all goes well we can avoid the double split
3657  * completely.
3658  */
3659 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3660                                           struct btrfs_root *root,
3661                                           struct btrfs_path *path,
3662                                           int data_size)
3663 {
3664         int ret;
3665         int progress = 0;
3666         int slot;
3667         u32 nritems;
3668
3669         slot = path->slots[0];
3670
3671         /*
3672          * try to push all the items after our slot into the
3673          * right leaf
3674          */
3675         ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
3676         if (ret < 0)
3677                 return ret;
3678
3679         if (ret == 0)
3680                 progress++;
3681
3682         nritems = btrfs_header_nritems(path->nodes[0]);
3683         /*
3684          * our goal is to get our slot at the start or end of a leaf.  If
3685          * we've done so we're done
3686          */
3687         if (path->slots[0] == 0 || path->slots[0] == nritems)
3688                 return 0;
3689
3690         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3691                 return 0;
3692
3693         /* try to push all the items before our slot into the next leaf */
3694         slot = path->slots[0];
3695         ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
3696         if (ret < 0)
3697                 return ret;
3698
3699         if (ret == 0)
3700                 progress++;
3701
3702         if (progress)
3703                 return 0;
3704         return 1;
3705 }
3706
3707 /*
3708  * split the path's leaf in two, making sure there is at least data_size
3709  * available for the resulting leaf level of the path.
3710  *
3711  * returns 0 if all went well and < 0 on failure.
3712  */
3713 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3714                                struct btrfs_root *root,
3715                                struct btrfs_key *ins_key,
3716                                struct btrfs_path *path, int data_size,
3717                                int extend)
3718 {
3719         struct btrfs_disk_key disk_key;
3720         struct extent_buffer *l;
3721         u32 nritems;
3722         int mid;
3723         int slot;
3724         struct extent_buffer *right;
3725         int ret = 0;
3726         int wret;
3727         int split;
3728         int num_doubles = 0;
3729         int tried_avoid_double = 0;
3730
3731         l = path->nodes[0];
3732         slot = path->slots[0];
3733         if (extend && data_size + btrfs_item_size_nr(l, slot) +
3734             sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
3735                 return -EOVERFLOW;
3736
3737         /* first try to make some room by pushing left and right */
3738         if (data_size) {
3739                 wret = push_leaf_right(trans, root, path, data_size,
3740                                        data_size, 0, 0);
3741                 if (wret < 0)
3742                         return wret;
3743                 if (wret) {
3744                         wret = push_leaf_left(trans, root, path, data_size,
3745                                               data_size, 0, (u32)-1);
3746                         if (wret < 0)
3747                                 return wret;
3748                 }
3749                 l = path->nodes[0];
3750
3751                 /* did the pushes work? */
3752                 if (btrfs_leaf_free_space(root, l) >= data_size)
3753                         return 0;
3754         }
3755
3756         if (!path->nodes[1]) {
3757                 ret = insert_new_root(trans, root, path, 1);
3758                 if (ret)
3759                         return ret;
3760         }
3761 again:
3762         split = 1;
3763         l = path->nodes[0];
3764         slot = path->slots[0];
3765         nritems = btrfs_header_nritems(l);
3766         mid = (nritems + 1) / 2;
3767
3768         if (mid <= slot) {
3769                 if (nritems == 1 ||
3770                     leaf_space_used(l, mid, nritems - mid) + data_size >
3771                         BTRFS_LEAF_DATA_SIZE(root)) {
3772                         if (slot >= nritems) {
3773                                 split = 0;
3774                         } else {
3775                                 mid = slot;
3776                                 if (mid != nritems &&
3777                                     leaf_space_used(l, mid, nritems - mid) +
3778                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3779                                         if (data_size && !tried_avoid_double)
3780                                                 goto push_for_double;
3781                                         split = 2;
3782                                 }
3783                         }
3784                 }
3785         } else {
3786                 if (leaf_space_used(l, 0, mid) + data_size >
3787                         BTRFS_LEAF_DATA_SIZE(root)) {
3788                         if (!extend && data_size && slot == 0) {
3789                                 split = 0;
3790                         } else if ((extend || !data_size) && slot == 0) {
3791                                 mid = 1;
3792                         } else {
3793                                 mid = slot;
3794                                 if (mid != nritems &&
3795                                     leaf_space_used(l, mid, nritems - mid) +
3796                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3797                                         if (data_size && !tried_avoid_double)
3798                                                 goto push_for_double;
3799                                         split = 2 ;
3800                                 }
3801                         }
3802                 }
3803         }
3804
3805         if (split == 0)
3806                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
3807         else
3808                 btrfs_item_key(l, &disk_key, mid);
3809
3810         right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
3811                                         root->root_key.objectid,
3812                                         &disk_key, 0, l->start, 0);
3813         if (IS_ERR(right))
3814                 return PTR_ERR(right);
3815
3816         root_add_used(root, root->leafsize);
3817
3818         memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
3819         btrfs_set_header_bytenr(right, right->start);
3820         btrfs_set_header_generation(right, trans->transid);
3821         btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
3822         btrfs_set_header_owner(right, root->root_key.objectid);
3823         btrfs_set_header_level(right, 0);
3824         write_extent_buffer(right, root->fs_info->fsid,
3825                             (unsigned long)btrfs_header_fsid(right),
3826                             BTRFS_FSID_SIZE);
3827
3828         write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
3829                             (unsigned long)btrfs_header_chunk_tree_uuid(right),
3830                             BTRFS_UUID_SIZE);
3831
3832         if (split == 0) {
3833                 if (mid <= slot) {
3834                         btrfs_set_header_nritems(right, 0);
3835                         insert_ptr(trans, root, path, &disk_key, right->start,
3836                                    path->slots[1] + 1, 1, 0);
3837                         btrfs_tree_unlock(path->nodes[0]);
3838                         free_extent_buffer(path->nodes[0]);
3839                         path->nodes[0] = right;
3840                         path->slots[0] = 0;
3841                         path->slots[1] += 1;
3842                 } else {
3843                         btrfs_set_header_nritems(right, 0);
3844                         insert_ptr(trans, root, path, &disk_key, right->start,
3845                                           path->slots[1], 1, 0);
3846                         btrfs_tree_unlock(path->nodes[0]);
3847                         free_extent_buffer(path->nodes[0]);
3848                         path->nodes[0] = right;
3849                         path->slots[0] = 0;
3850                         if (path->slots[1] == 0)
3851                                 fixup_low_keys(trans, root, path,
3852                                                &disk_key, 1);
3853                 }
3854                 btrfs_mark_buffer_dirty(right);
3855                 return ret;
3856         }
3857
3858         copy_for_split(trans, root, path, l, right, slot, mid, nritems);
3859
3860         if (split == 2) {
3861                 BUG_ON(num_doubles != 0);
3862                 num_doubles++;
3863                 goto again;
3864         }
3865
3866         return 0;
3867
3868 push_for_double:
3869         push_for_double_split(trans, root, path, data_size);
3870         tried_avoid_double = 1;
3871         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3872                 return 0;
3873         goto again;
3874 }
3875
3876 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3877                                          struct btrfs_root *root,
3878                                          struct btrfs_path *path, int ins_len)
3879 {
3880         struct btrfs_key key;
3881         struct extent_buffer *leaf;
3882         struct btrfs_file_extent_item *fi;
3883         u64 extent_len = 0;
3884         u32 item_size;
3885         int ret;
3886
3887         leaf = path->nodes[0];
3888         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3889
3890         BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3891                key.type != BTRFS_EXTENT_CSUM_KEY);
3892
3893         if (btrfs_leaf_free_space(root, leaf) >= ins_len)
3894                 return 0;
3895
3896         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3897         if (key.type == BTRFS_EXTENT_DATA_KEY) {
3898                 fi = btrfs_item_ptr(leaf, path->slots[0],
3899                                     struct btrfs_file_extent_item);
3900                 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3901         }
3902         btrfs_release_path(path);
3903
3904         path->keep_locks = 1;
3905         path->search_for_split = 1;
3906         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3907         path->search_for_split = 0;
3908         if (ret < 0)
3909                 goto err;
3910
3911         ret = -EAGAIN;
3912         leaf = path->nodes[0];
3913         /* if our item isn't there or got smaller, return now */
3914         if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
3915                 goto err;
3916
3917         /* the leaf has  changed, it now has room.  return now */
3918         if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
3919                 goto err;
3920
3921         if (key.type == BTRFS_EXTENT_DATA_KEY) {
3922                 fi = btrfs_item_ptr(leaf, path->slots[0],
3923                                     struct btrfs_file_extent_item);
3924                 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3925                         goto err;
3926         }
3927
3928         btrfs_set_path_blocking(path);
3929         ret = split_leaf(trans, root, &key, path, ins_len, 1);
3930         if (ret)
3931                 goto err;
3932
3933         path->keep_locks = 0;
3934         btrfs_unlock_up_safe(path, 1);
3935         return 0;
3936 err:
3937         path->keep_locks = 0;
3938         return ret;
3939 }
3940
3941 static noinline int split_item(struct btrfs_trans_handle *trans,
3942                                struct btrfs_root *root,
3943                                struct btrfs_path *path,
3944                                struct btrfs_key *new_key,
3945                                unsigned long split_offset)
3946 {
3947         struct extent_buffer *leaf;
3948         struct btrfs_item *item;
3949         struct btrfs_item *new_item;
3950         int slot;
3951         char *buf;
3952         u32 nritems;
3953         u32 item_size;
3954         u32 orig_offset;
3955         struct btrfs_disk_key disk_key;
3956
3957         leaf = path->nodes[0];
3958         BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
3959
3960         btrfs_set_path_blocking(path);
3961
3962         item = btrfs_item_nr(leaf, path->slots[0]);
3963         orig_offset = btrfs_item_offset(leaf, item);
3964         item_size = btrfs_item_size(leaf, item);
3965
3966         buf = kmalloc(item_size, GFP_NOFS);
3967         if (!buf)
3968                 return -ENOMEM;
3969
3970         read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3971                             path->slots[0]), item_size);
3972
3973         slot = path->slots[0] + 1;
3974         nritems = btrfs_header_nritems(leaf);
3975         if (slot != nritems) {
3976                 /* shift the items */
3977                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
3978                                 btrfs_item_nr_offset(slot),
3979                                 (nritems - slot) * sizeof(struct btrfs_item));
3980         }
3981
3982         btrfs_cpu_key_to_disk(&disk_key, new_key);
3983         btrfs_set_item_key(leaf, &disk_key, slot);
3984
3985         new_item = btrfs_item_nr(leaf, slot);
3986
3987         btrfs_set_item_offset(leaf, new_item, orig_offset);
3988         btrfs_set_item_size(leaf, new_item, item_size - split_offset);
3989
3990         btrfs_set_item_offset(leaf, item,
3991                               orig_offset + item_size - split_offset);
3992         btrfs_set_item_size(leaf, item, split_offset);
3993
3994         btrfs_set_header_nritems(leaf, nritems + 1);
3995
3996         /* write the data for the start of the original item */
3997         write_extent_buffer(leaf, buf,
3998                             btrfs_item_ptr_offset(leaf, path->slots[0]),
3999                             split_offset);
4000
4001         /* write the data for the new item */
4002         write_extent_buffer(leaf, buf + split_offset,
4003                             btrfs_item_ptr_offset(leaf, slot),
4004                             item_size - split_offset);
4005         btrfs_mark_buffer_dirty(leaf);
4006
4007         BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4008         kfree(buf);
4009         return 0;
4010 }
4011
4012 /*
4013  * This function splits a single item into two items,
4014  * giving 'new_key' to the new item and splitting the
4015  * old one at split_offset (from the start of the item).
4016  *
4017  * The path may be released by this operation.  After
4018  * the split, the path is pointing to the old item.  The
4019  * new item is going to be in the same node as the old one.
4020  *
4021  * Note, the item being split must be smaller enough to live alone on
4022  * a tree block with room for one extra struct btrfs_item
4023  *
4024  * This allows us to split the item in place, keeping a lock on the
4025  * leaf the entire time.
4026  */
4027 int btrfs_split_item(struct btrfs_trans_handle *trans,
4028                      struct btrfs_root *root,
4029                      struct btrfs_path *path,
4030                      struct btrfs_key *new_key,
4031                      unsigned long split_offset)
4032 {
4033         int ret;
4034         ret = setup_leaf_for_split(trans, root, path,
4035                                    sizeof(struct btrfs_item));
4036         if (ret)
4037                 return ret;
4038
4039         ret = split_item(trans, root, path, new_key, split_offset);
4040         return ret;
4041 }
4042
4043 /*
4044  * This function duplicate a item, giving 'new_key' to the new item.
4045  * It guarantees both items live in the same tree leaf and the new item
4046  * is contiguous with the original item.
4047  *
4048  * This allows us to split file extent in place, keeping a lock on the
4049  * leaf the entire time.
4050  */
4051 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4052                          struct btrfs_root *root,
4053                          struct btrfs_path *path,
4054                          struct btrfs_key *new_key)
4055 {
4056         struct extent_buffer *leaf;
4057         int ret;
4058         u32 item_size;
4059
4060         leaf = path->nodes[0];
4061         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4062         ret = setup_leaf_for_split(trans, root, path,
4063                                    item_size + sizeof(struct btrfs_item));
4064         if (ret)
4065                 return ret;
4066
4067         path->slots[0]++;
4068         setup_items_for_insert(trans, root, path, new_key, &item_size,
4069                                item_size, item_size +
4070                                sizeof(struct btrfs_item), 1);
4071         leaf = path->nodes[0];
4072         memcpy_extent_buffer(leaf,
4073                              btrfs_item_ptr_offset(leaf, path->slots[0]),
4074                              btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4075                              item_size);
4076         return 0;
4077 }
4078
4079 /*
4080  * make the item pointed to by the path smaller.  new_size indicates
4081  * how small to make it, and from_end tells us if we just chop bytes
4082  * off the end of the item or if we shift the item to chop bytes off
4083  * the front.
4084  */
4085 void btrfs_truncate_item(struct btrfs_trans_handle *trans,
4086                          struct btrfs_root *root,
4087                          struct btrfs_path *path,
4088                          u32 new_size, int from_end)
4089 {
4090         int slot;
4091         struct extent_buffer *leaf;
4092         struct btrfs_item *item;
4093         u32 nritems;
4094         unsigned int data_end;
4095         unsigned int old_data_start;
4096         unsigned int old_size;
4097         unsigned int size_diff;
4098         int i;
4099         struct btrfs_map_token token;
4100
4101         btrfs_init_map_token(&token);
4102
4103         leaf = path->nodes[0];
4104         slot = path->slots[0];
4105
4106         old_size = btrfs_item_size_nr(leaf, slot);
4107         if (old_size == new_size)
4108                 return;
4109
4110         nritems = btrfs_header_nritems(leaf);
4111         data_end = leaf_data_end(root, leaf);
4112
4113         old_data_start = btrfs_item_offset_nr(leaf, slot);
4114
4115         size_diff = old_size - new_size;
4116
4117         BUG_ON(slot < 0);
4118         BUG_ON(slot >= nritems);
4119
4120         /*
4121          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4122          */
4123         /* first correct the data pointers */
4124         for (i = slot; i < nritems; i++) {
4125                 u32 ioff;
4126                 item = btrfs_item_nr(leaf, i);
4127
4128                 ioff = btrfs_token_item_offset(leaf, item, &token);
4129                 btrfs_set_token_item_offset(leaf, item,
4130                                             ioff + size_diff, &token);
4131         }
4132
4133         /* shift the data */
4134         if (from_end) {
4135                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4136                               data_end + size_diff, btrfs_leaf_data(leaf) +
4137                               data_end, old_data_start + new_size - data_end);
4138         } else {
4139                 struct btrfs_disk_key disk_key;
4140                 u64 offset;
4141
4142                 btrfs_item_key(leaf, &disk_key, slot);
4143
4144                 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4145                         unsigned long ptr;
4146                         struct btrfs_file_extent_item *fi;
4147
4148                         fi = btrfs_item_ptr(leaf, slot,
4149                                             struct btrfs_file_extent_item);
4150                         fi = (struct btrfs_file_extent_item *)(
4151                              (unsigned long)fi - size_diff);
4152
4153                         if (btrfs_file_extent_type(leaf, fi) ==
4154                             BTRFS_FILE_EXTENT_INLINE) {
4155                                 ptr = btrfs_item_ptr_offset(leaf, slot);
4156                                 memmove_extent_buffer(leaf, ptr,
4157                                       (unsigned long)fi,
4158                                       offsetof(struct btrfs_file_extent_item,
4159                                                  disk_bytenr));
4160                         }
4161                 }
4162
4163                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4164                               data_end + size_diff, btrfs_leaf_data(leaf) +
4165                               data_end, old_data_start - data_end);
4166
4167                 offset = btrfs_disk_key_offset(&disk_key);
4168                 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4169                 btrfs_set_item_key(leaf, &disk_key, slot);
4170                 if (slot == 0)
4171                         fixup_low_keys(trans, root, path, &disk_key, 1);
4172         }
4173
4174         item = btrfs_item_nr(leaf, slot);
4175         btrfs_set_item_size(leaf, item, new_size);
4176         btrfs_mark_buffer_dirty(leaf);
4177
4178         if (btrfs_leaf_free_space(root, leaf) < 0) {
4179                 btrfs_print_leaf(root, leaf);
4180                 BUG();
4181         }
4182 }
4183
4184 /*
4185  * make the item pointed to by the path bigger, data_size is the new size.
4186  */
4187 void btrfs_extend_item(struct btrfs_trans_handle *trans,
4188                        struct btrfs_root *root, struct btrfs_path *path,
4189                        u32 data_size)
4190 {
4191         int slot;
4192         struct extent_buffer *leaf;
4193         struct btrfs_item *item;
4194         u32 nritems;
4195         unsigned int data_end;
4196         unsigned int old_data;
4197         unsigned int old_size;
4198         int i;
4199         struct btrfs_map_token token;
4200
4201         btrfs_init_map_token(&token);
4202
4203         leaf = path->nodes[0];
4204
4205         nritems = btrfs_header_nritems(leaf);
4206         data_end = leaf_data_end(root, leaf);
4207
4208         if (btrfs_leaf_free_space(root, leaf) < data_size) {
4209                 btrfs_print_leaf(root, leaf);
4210                 BUG();
4211         }
4212         slot = path->slots[0];
4213         old_data = btrfs_item_end_nr(leaf, slot);
4214
4215         BUG_ON(slot < 0);
4216         if (slot >= nritems) {
4217                 btrfs_print_leaf(root, leaf);
4218                 printk(KERN_CRIT "slot %d too large, nritems %d\n",
4219                        slot, nritems);
4220                 BUG_ON(1);
4221         }
4222
4223         /*
4224          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4225          */
4226         /* first correct the data pointers */
4227         for (i = slot; i < nritems; i++) {
4228                 u32 ioff;
4229                 item = btrfs_item_nr(leaf, i);
4230
4231                 ioff = btrfs_token_item_offset(leaf, item, &token);
4232                 btrfs_set_token_item_offset(leaf, item,
4233                                             ioff - data_size, &token);
4234         }
4235
4236         /* shift the data */
4237         memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4238                       data_end - data_size, btrfs_leaf_data(leaf) +
4239                       data_end, old_data - data_end);
4240
4241         data_end = old_data;
4242         old_size = btrfs_item_size_nr(leaf, slot);
4243         item = btrfs_item_nr(leaf, slot);
4244         btrfs_set_item_size(leaf, item, old_size + data_size);
4245         btrfs_mark_buffer_dirty(leaf);
4246
4247         if (btrfs_leaf_free_space(root, leaf) < 0) {
4248                 btrfs_print_leaf(root, leaf);
4249                 BUG();
4250         }
4251 }
4252
4253 /*
4254  * Given a key and some data, insert items into the tree.
4255  * This does all the path init required, making room in the tree if needed.
4256  * Returns the number of keys that were inserted.
4257  */
4258 int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
4259                             struct btrfs_root *root,
4260                             struct btrfs_path *path,
4261                             struct btrfs_key *cpu_key, u32 *data_size,
4262                             int nr)
4263 {
4264         struct extent_buffer *leaf;
4265         struct btrfs_item *item;
4266         int ret = 0;
4267         int slot;
4268         int i;
4269         u32 nritems;
4270         u32 total_data = 0;
4271         u32 total_size = 0;
4272         unsigned int data_end;
4273         struct btrfs_disk_key disk_key;
4274         struct btrfs_key found_key;
4275         struct btrfs_map_token token;
4276
4277         btrfs_init_map_token(&token);
4278
4279         for (i = 0; i < nr; i++) {
4280                 if (total_size + data_size[i] + sizeof(struct btrfs_item) >
4281                     BTRFS_LEAF_DATA_SIZE(root)) {
4282                         break;
4283                         nr = i;
4284                 }
4285                 total_data += data_size[i];
4286                 total_size += data_size[i] + sizeof(struct btrfs_item);
4287         }
4288         BUG_ON(nr == 0);
4289
4290         ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4291         if (ret == 0)
4292                 return -EEXIST;
4293         if (ret < 0)
4294                 goto out;
4295
4296         leaf = path->nodes[0];
4297
4298         nritems = btrfs_header_nritems(leaf);
4299         data_end = leaf_data_end(root, leaf);
4300
4301         if (btrfs_leaf_free_space(root, leaf) < total_size) {
4302                 for (i = nr; i >= 0; i--) {
4303                         total_data -= data_size[i];
4304                         total_size -= data_size[i] + sizeof(struct btrfs_item);
4305                         if (total_size < btrfs_leaf_free_space(root, leaf))
4306                                 break;
4307                 }
4308                 nr = i;
4309         }
4310
4311         slot = path->slots[0];
4312         BUG_ON(slot < 0);
4313
4314         if (slot != nritems) {
4315                 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4316
4317                 item = btrfs_item_nr(leaf, slot);
4318                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4319
4320                 /* figure out how many keys we can insert in here */
4321                 total_data = data_size[0];
4322                 for (i = 1; i < nr; i++) {
4323                         if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0)
4324                                 break;
4325                         total_data += data_size[i];
4326                 }
4327                 nr = i;
4328
4329                 if (old_data < data_end) {
4330                         btrfs_print_leaf(root, leaf);
4331                         printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
4332                                slot, old_data, data_end);
4333                         BUG_ON(1);
4334                 }
4335                 /*
4336                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
4337                  */
4338                 /* first correct the data pointers */
4339                 for (i = slot; i < nritems; i++) {
4340                         u32 ioff;
4341
4342                         item = btrfs_item_nr(leaf, i);
4343                         ioff = btrfs_token_item_offset(leaf, item, &token);
4344                         btrfs_set_token_item_offset(leaf, item,
4345                                                     ioff - total_data, &token);
4346                 }
4347                 /* shift the items */
4348                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4349                               btrfs_item_nr_offset(slot),
4350                               (nritems - slot) * sizeof(struct btrfs_item));
4351
4352                 /* shift the data */
4353                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4354                               data_end - total_data, btrfs_leaf_data(leaf) +
4355                               data_end, old_data - data_end);
4356                 data_end = old_data;
4357         } else {
4358                 /*
4359                  * this sucks but it has to be done, if we are inserting at
4360                  * the end of the leaf only insert 1 of the items, since we
4361                  * have no way of knowing whats on the next leaf and we'd have
4362                  * to drop our current locks to figure it out
4363                  */
4364                 nr = 1;
4365         }
4366
4367         /* setup the item for the new data */
4368         for (i = 0; i < nr; i++) {
4369                 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4370                 btrfs_set_item_key(leaf, &disk_key, slot + i);
4371                 item = btrfs_item_nr(leaf, slot + i);
4372                 btrfs_set_token_item_offset(leaf, item,
4373                                             data_end - data_size[i], &token);
4374                 data_end -= data_size[i];
4375                 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4376         }
4377         btrfs_set_header_nritems(leaf, nritems + nr);
4378         btrfs_mark_buffer_dirty(leaf);
4379
4380         ret = 0;
4381         if (slot == 0) {
4382                 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4383                 fixup_low_keys(trans, root, path, &disk_key, 1);
4384         }
4385
4386         if (btrfs_leaf_free_space(root, leaf) < 0) {
4387                 btrfs_print_leaf(root, leaf);
4388                 BUG();
4389         }
4390 out:
4391         if (!ret)
4392                 ret = nr;
4393         return ret;
4394 }
4395
4396 /*
4397  * this is a helper for btrfs_insert_empty_items, the main goal here is
4398  * to save stack depth by doing the bulk of the work in a function
4399  * that doesn't call btrfs_search_slot
4400  */
4401 void setup_items_for_insert(struct btrfs_trans_handle *trans,
4402                             struct btrfs_root *root, struct btrfs_path *path,
4403                             struct btrfs_key *cpu_key, u32 *data_size,
4404                             u32 total_data, u32 total_size, int nr)
4405 {
4406         struct btrfs_item *item;
4407         int i;
4408         u32 nritems;
4409         unsigned int data_end;
4410         struct btrfs_disk_key disk_key;
4411         struct extent_buffer *leaf;
4412         int slot;
4413         struct btrfs_map_token token;
4414
4415         btrfs_init_map_token(&token);
4416
4417         leaf = path->nodes[0];
4418         slot = path->slots[0];
4419
4420         nritems = btrfs_header_nritems(leaf);
4421         data_end = leaf_data_end(root, leaf);
4422
4423         if (btrfs_leaf_free_space(root, leaf) < total_size) {
4424                 btrfs_print_leaf(root, leaf);
4425                 printk(KERN_CRIT "not enough freespace need %u have %d\n",
4426                        total_size, btrfs_leaf_free_space(root, leaf));
4427                 BUG();
4428         }
4429
4430         if (slot != nritems) {
4431                 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4432
4433                 if (old_data < data_end) {
4434                         btrfs_print_leaf(root, leaf);
4435                         printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
4436                                slot, old_data, data_end);
4437                         BUG_ON(1);
4438                 }
4439                 /*
4440                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
4441                  */
4442                 /* first correct the data pointers */
4443                 for (i = slot; i < nritems; i++) {
4444                         u32 ioff;
4445
4446                         item = btrfs_item_nr(leaf, i);
4447                         ioff = btrfs_token_item_offset(leaf, item, &token);
4448                         btrfs_set_token_item_offset(leaf, item,
4449                                                     ioff - total_data, &token);
4450                 }
4451                 /* shift the items */
4452                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4453                               btrfs_item_nr_offset(slot),
4454                               (nritems - slot) * sizeof(struct btrfs_item));
4455
4456                 /* shift the data */
4457                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4458                               data_end - total_data, btrfs_leaf_data(leaf) +
4459                               data_end, old_data - data_end);
4460                 data_end = old_data;
4461         }
4462
4463         /* setup the item for the new data */
4464         for (i = 0; i < nr; i++) {
4465                 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4466                 btrfs_set_item_key(leaf, &disk_key, slot + i);
4467                 item = btrfs_item_nr(leaf, slot + i);
4468                 btrfs_set_token_item_offset(leaf, item,
4469                                             data_end - data_size[i], &token);
4470                 data_end -= data_size[i];
4471                 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4472         }
4473
4474         btrfs_set_header_nritems(leaf, nritems + nr);
4475
4476         if (slot == 0) {
4477                 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4478                 fixup_low_keys(trans, root, path, &disk_key, 1);
4479         }
4480         btrfs_unlock_up_safe(path, 1);
4481         btrfs_mark_buffer_dirty(leaf);
4482
4483         if (btrfs_leaf_free_space(root, leaf) < 0) {
4484                 btrfs_print_leaf(root, leaf);
4485                 BUG();
4486         }
4487 }
4488
4489 /*
4490  * Given a key and some data, insert items into the tree.
4491  * This does all the path init required, making room in the tree if needed.
4492  */
4493 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4494                             struct btrfs_root *root,
4495                             struct btrfs_path *path,
4496                             struct btrfs_key *cpu_key, u32 *data_size,
4497                             int nr)
4498 {
4499         int ret = 0;
4500         int slot;
4501         int i;
4502         u32 total_size = 0;
4503         u32 total_data = 0;
4504
4505         for (i = 0; i < nr; i++)
4506                 total_data += data_size[i];
4507
4508         total_size = total_data + (nr * sizeof(struct btrfs_item));
4509         ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4510         if (ret == 0)
4511                 return -EEXIST;
4512         if (ret < 0)
4513                 return ret;
4514
4515         slot = path->slots[0];
4516         BUG_ON(slot < 0);
4517
4518         setup_items_for_insert(trans, root, path, cpu_key, data_size,
4519                                total_data, total_size, nr);
4520         return 0;
4521 }
4522
4523 /*
4524  * Given a key and some data, insert an item into the tree.
4525  * This does all the path init required, making room in the tree if needed.
4526  */
4527 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4528                       *root, struct btrfs_key *cpu_key, void *data, u32
4529                       data_size)
4530 {
4531         int ret = 0;
4532         struct btrfs_path *path;
4533         struct extent_buffer *leaf;
4534         unsigned long ptr;
4535
4536         path = btrfs_alloc_path();
4537         if (!path)
4538                 return -ENOMEM;
4539         ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4540         if (!ret) {
4541                 leaf = path->nodes[0];
4542                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4543                 write_extent_buffer(leaf, data, ptr, data_size);
4544                 btrfs_mark_buffer_dirty(leaf);
4545         }
4546         btrfs_free_path(path);
4547         return ret;
4548 }
4549
4550 /*
4551  * delete the pointer from a given node.
4552  *
4553  * the tree should have been previously balanced so the deletion does not
4554  * empty a node.
4555  */
4556 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4557                     struct btrfs_path *path, int level, int slot,
4558                     int tree_mod_log)
4559 {
4560         struct extent_buffer *parent = path->nodes[level];
4561         u32 nritems;
4562         int ret;
4563
4564         nritems = btrfs_header_nritems(parent);
4565         if (slot != nritems - 1) {
4566                 if (tree_mod_log && level)
4567                         tree_mod_log_eb_move(root->fs_info, parent, slot,
4568                                              slot + 1, nritems - slot - 1);
4569                 memmove_extent_buffer(parent,
4570                               btrfs_node_key_ptr_offset(slot),
4571                               btrfs_node_key_ptr_offset(slot + 1),
4572                               sizeof(struct btrfs_key_ptr) *
4573                               (nritems - slot - 1));
4574         } else if (tree_mod_log && level) {
4575                 ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4576                                               MOD_LOG_KEY_REMOVE);
4577                 BUG_ON(ret < 0);
4578         }
4579
4580         nritems--;
4581         btrfs_set_header_nritems(parent, nritems);
4582         if (nritems == 0 && parent == root->node) {
4583                 BUG_ON(btrfs_header_level(root->node) != 1);
4584                 /* just turn the root into a leaf and break */
4585                 btrfs_set_header_level(root->node, 0);
4586         } else if (slot == 0) {
4587                 struct btrfs_disk_key disk_key;
4588
4589                 btrfs_node_key(parent, &disk_key, 0);
4590                 fixup_low_keys(trans, root, path, &disk_key, level + 1);
4591         }
4592         btrfs_mark_buffer_dirty(parent);
4593 }
4594
4595 /*
4596  * a helper function to delete the leaf pointed to by path->slots[1] and
4597  * path->nodes[1].
4598  *
4599  * This deletes the pointer in path->nodes[1] and frees the leaf
4600  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4601  *
4602  * The path must have already been setup for deleting the leaf, including
4603  * all the proper balancing.  path->nodes[1] must be locked.
4604  */
4605 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4606                                     struct btrfs_root *root,
4607                                     struct btrfs_path *path,
4608                                     struct extent_buffer *leaf)
4609 {
4610         WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4611         del_ptr(trans, root, path, 1, path->slots[1], 1);
4612
4613         /*
4614          * btrfs_free_extent is expensive, we want to make sure we
4615          * aren't holding any locks when we call it
4616          */
4617         btrfs_unlock_up_safe(path, 0);
4618
4619         root_sub_used(root, leaf->len);
4620
4621         extent_buffer_get(leaf);
4622         btrfs_free_tree_block(trans, root, leaf, 0, 1);
4623         free_extent_buffer_stale(leaf);
4624 }
4625 /*
4626  * delete the item at the leaf level in path.  If that empties
4627  * the leaf, remove it from the tree
4628  */
4629 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4630                     struct btrfs_path *path, int slot, int nr)
4631 {
4632         struct extent_buffer *leaf;
4633         struct btrfs_item *item;
4634         int last_off;
4635         int dsize = 0;
4636         int ret = 0;
4637         int wret;
4638         int i;
4639         u32 nritems;
4640         struct btrfs_map_token token;
4641
4642         btrfs_init_map_token(&token);
4643
4644         leaf = path->nodes[0];
4645         last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4646
4647         for (i = 0; i < nr; i++)
4648                 dsize += btrfs_item_size_nr(leaf, slot + i);
4649
4650         nritems = btrfs_header_nritems(leaf);
4651
4652         if (slot + nr != nritems) {
4653                 int data_end = leaf_data_end(root, leaf);
4654
4655                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4656                               data_end + dsize,
4657                               btrfs_leaf_data(leaf) + data_end,
4658                               last_off - data_end);
4659
4660                 for (i = slot + nr; i < nritems; i++) {
4661                         u32 ioff;
4662
4663                         item = btrfs_item_nr(leaf, i);
4664                         ioff = btrfs_token_item_offset(leaf, item, &token);
4665                         btrfs_set_token_item_offset(leaf, item,
4666                                                     ioff + dsize, &token);
4667                 }
4668
4669                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4670                               btrfs_item_nr_offset(slot + nr),
4671                               sizeof(struct btrfs_item) *
4672                               (nritems - slot - nr));
4673         }
4674         btrfs_set_header_nritems(leaf, nritems - nr);
4675         nritems -= nr;
4676
4677         /* delete the leaf if we've emptied it */
4678         if (nritems == 0) {
4679                 if (leaf == root->node) {
4680                         btrfs_set_header_level(leaf, 0);
4681                 } else {
4682                         btrfs_set_path_blocking(path);
4683                         clean_tree_block(trans, root, leaf);
4684                         btrfs_del_leaf(trans, root, path, leaf);
4685                 }
4686         } else {
4687                 int used = leaf_space_used(leaf, 0, nritems);
4688                 if (slot == 0) {
4689                         struct btrfs_disk_key disk_key;
4690
4691                         btrfs_item_key(leaf, &disk_key, 0);
4692                         fixup_low_keys(trans, root, path, &disk_key, 1);
4693                 }
4694
4695                 /* delete the leaf if it is mostly empty */
4696                 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
4697                         /* push_leaf_left fixes the path.
4698                          * make sure the path still points to our leaf
4699                          * for possible call to del_ptr below
4700                          */
4701                         slot = path->slots[1];
4702                         extent_buffer_get(leaf);
4703
4704                         btrfs_set_path_blocking(path);
4705                         wret = push_leaf_left(trans, root, path, 1, 1,
4706                                               1, (u32)-1);
4707                         if (wret < 0 && wret != -ENOSPC)
4708                                 ret = wret;
4709
4710                         if (path->nodes[0] == leaf &&
4711                             btrfs_header_nritems(leaf)) {
4712                                 wret = push_leaf_right(trans, root, path, 1,
4713                                                        1, 1, 0);
4714                                 if (wret < 0 && wret != -ENOSPC)
4715                                         ret = wret;
4716                         }
4717
4718                         if (btrfs_header_nritems(leaf) == 0) {
4719                                 path->slots[1] = slot;
4720                                 btrfs_del_leaf(trans, root, path, leaf);
4721                                 free_extent_buffer(leaf);
4722                                 ret = 0;
4723                         } else {
4724                                 /* if we're still in the path, make sure
4725                                  * we're dirty.  Otherwise, one of the
4726                                  * push_leaf functions must have already
4727                                  * dirtied this buffer
4728                                  */
4729                                 if (path->nodes[0] == leaf)
4730                                         btrfs_mark_buffer_dirty(leaf);
4731                                 free_extent_buffer(leaf);
4732                         }
4733                 } else {
4734                         btrfs_mark_buffer_dirty(leaf);
4735                 }
4736         }
4737         return ret;
4738 }
4739
4740 /*
4741  * search the tree again to find a leaf with lesser keys
4742  * returns 0 if it found something or 1 if there are no lesser leaves.
4743  * returns < 0 on io errors.
4744  *
4745  * This may release the path, and so you may lose any locks held at the
4746  * time you call it.
4747  */
4748 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4749 {
4750         struct btrfs_key key;
4751         struct btrfs_disk_key found_key;
4752         int ret;
4753
4754         btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4755
4756         if (key.offset > 0)
4757                 key.offset--;
4758         else if (key.type > 0)
4759                 key.type--;
4760         else if (key.objectid > 0)
4761                 key.objectid--;
4762         else
4763                 return 1;
4764
4765         btrfs_release_path(path);
4766         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4767         if (ret < 0)
4768                 return ret;
4769         btrfs_item_key(path->nodes[0], &found_key, 0);
4770         ret = comp_keys(&found_key, &key);
4771         if (ret < 0)
4772                 return 0;
4773         return 1;
4774 }
4775
4776 /*
4777  * A helper function to walk down the tree starting at min_key, and looking
4778  * for nodes or leaves that are either in cache or have a minimum
4779  * transaction id.  This is used by the btree defrag code, and tree logging
4780  *
4781  * This does not cow, but it does stuff the starting key it finds back
4782  * into min_key, so you can call btrfs_search_slot with cow=1 on the
4783  * key and get a writable path.
4784  *
4785  * This does lock as it descends, and path->keep_locks should be set
4786  * to 1 by the caller.
4787  *
4788  * This honors path->lowest_level to prevent descent past a given level
4789  * of the tree.
4790  *
4791  * min_trans indicates the oldest transaction that you are interested
4792  * in walking through.  Any nodes or leaves older than min_trans are
4793  * skipped over (without reading them).
4794  *
4795  * returns zero if something useful was found, < 0 on error and 1 if there
4796  * was nothing in the tree that matched the search criteria.
4797  */
4798 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4799                          struct btrfs_key *max_key,
4800                          struct btrfs_path *path, int cache_only,
4801                          u64 min_trans)
4802 {
4803         struct extent_buffer *cur;
4804         struct btrfs_key found_key;
4805         int slot;
4806         int sret;
4807         u32 nritems;
4808         int level;
4809         int ret = 1;
4810
4811         WARN_ON(!path->keep_locks);
4812 again:
4813         cur = btrfs_read_lock_root_node(root);
4814         level = btrfs_header_level(cur);
4815         WARN_ON(path->nodes[level]);
4816         path->nodes[level] = cur;
4817         path->locks[level] = BTRFS_READ_LOCK;
4818
4819         if (btrfs_header_generation(cur) < min_trans) {
4820                 ret = 1;
4821                 goto out;
4822         }
4823         while (1) {
4824                 nritems = btrfs_header_nritems(cur);
4825                 level = btrfs_header_level(cur);
4826                 sret = bin_search(cur, min_key, level, &slot);
4827
4828                 /* at the lowest level, we're done, setup the path and exit */
4829                 if (level == path->lowest_level) {
4830                         if (slot >= nritems)
4831                                 goto find_next_key;
4832                         ret = 0;
4833                         path->slots[level] = slot;
4834                         btrfs_item_key_to_cpu(cur, &found_key, slot);
4835                         goto out;
4836                 }
4837                 if (sret && slot > 0)
4838                         slot--;
4839                 /*
4840                  * check this node pointer against the cache_only and
4841                  * min_trans parameters.  If it isn't in cache or is too
4842                  * old, skip to the next one.
4843                  */
4844                 while (slot < nritems) {
4845                         u64 blockptr;
4846                         u64 gen;
4847                         struct extent_buffer *tmp;
4848                         struct btrfs_disk_key disk_key;
4849
4850                         blockptr = btrfs_node_blockptr(cur, slot);
4851                         gen = btrfs_node_ptr_generation(cur, slot);
4852                         if (gen < min_trans) {
4853                                 slot++;
4854                                 continue;
4855                         }
4856                         if (!cache_only)
4857                                 break;
4858
4859                         if (max_key) {
4860                                 btrfs_node_key(cur, &disk_key, slot);
4861                                 if (comp_keys(&disk_key, max_key) >= 0) {
4862                                         ret = 1;
4863                                         goto out;
4864                                 }
4865                         }
4866
4867                         tmp = btrfs_find_tree_block(root, blockptr,
4868                                             btrfs_level_size(root, level - 1));
4869
4870                         if (tmp && btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
4871                                 free_extent_buffer(tmp);
4872                                 break;
4873                         }
4874                         if (tmp)
4875                                 free_extent_buffer(tmp);
4876                         slot++;
4877                 }
4878 find_next_key:
4879                 /*
4880                  * we didn't find a candidate key in this node, walk forward
4881                  * and find another one
4882                  */
4883                 if (slot >= nritems) {
4884                         path->slots[level] = slot;
4885                         btrfs_set_path_blocking(path);
4886                         sret = btrfs_find_next_key(root, path, min_key, level,
4887                                                   cache_only, min_trans);
4888                         if (sret == 0) {
4889                                 btrfs_release_path(path);
4890                                 goto again;
4891                         } else {
4892                                 goto out;
4893                         }
4894                 }
4895                 /* save our key for returning back */
4896                 btrfs_node_key_to_cpu(cur, &found_key, slot);
4897                 path->slots[level] = slot;
4898                 if (level == path->lowest_level) {
4899                         ret = 0;
4900                         unlock_up(path, level, 1, 0, NULL);
4901                         goto out;
4902                 }
4903                 btrfs_set_path_blocking(path);
4904                 cur = read_node_slot(root, cur, slot);
4905                 BUG_ON(!cur); /* -ENOMEM */
4906
4907                 btrfs_tree_read_lock(cur);
4908
4909                 path->locks[level - 1] = BTRFS_READ_LOCK;
4910                 path->nodes[level - 1] = cur;
4911                 unlock_up(path, level, 1, 0, NULL);
4912                 btrfs_clear_path_blocking(path, NULL, 0);
4913         }
4914 out:
4915         if (ret == 0)
4916                 memcpy(min_key, &found_key, sizeof(found_key));
4917         btrfs_set_path_blocking(path);
4918         return ret;
4919 }
4920
4921 /*
4922  * this is similar to btrfs_next_leaf, but does not try to preserve
4923  * and fixup the path.  It looks for and returns the next key in the
4924  * tree based on the current path and the cache_only and min_trans
4925  * parameters.
4926  *
4927  * 0 is returned if another key is found, < 0 if there are any errors
4928  * and 1 is returned if there are no higher keys in the tree
4929  *
4930  * path->keep_locks should be set to 1 on the search made before
4931  * calling this function.
4932  */
4933 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4934                         struct btrfs_key *key, int level,
4935                         int cache_only, u64 min_trans)
4936 {
4937         int slot;
4938         struct extent_buffer *c;
4939
4940         WARN_ON(!path->keep_locks);
4941         while (level < BTRFS_MAX_LEVEL) {
4942                 if (!path->nodes[level])
4943                         return 1;
4944
4945                 slot = path->slots[level] + 1;
4946                 c = path->nodes[level];
4947 next:
4948                 if (slot >= btrfs_header_nritems(c)) {
4949                         int ret;
4950                         int orig_lowest;
4951                         struct btrfs_key cur_key;
4952                         if (level + 1 >= BTRFS_MAX_LEVEL ||
4953                             !path->nodes[level + 1])
4954                                 return 1;
4955
4956                         if (path->locks[level + 1]) {
4957                                 level++;
4958                                 continue;
4959                         }
4960
4961                         slot = btrfs_header_nritems(c) - 1;
4962                         if (level == 0)
4963                                 btrfs_item_key_to_cpu(c, &cur_key, slot);
4964                         else
4965                                 btrfs_node_key_to_cpu(c, &cur_key, slot);
4966
4967                         orig_lowest = path->lowest_level;
4968                         btrfs_release_path(path);
4969                         path->lowest_level = level;
4970                         ret = btrfs_search_slot(NULL, root, &cur_key, path,
4971                                                 0, 0);
4972                         path->lowest_level = orig_lowest;
4973                         if (ret < 0)
4974                                 return ret;
4975
4976                         c = path->nodes[level];
4977                         slot = path->slots[level];
4978                         if (ret == 0)
4979                                 slot++;
4980                         goto next;
4981                 }
4982
4983                 if (level == 0)
4984                         btrfs_item_key_to_cpu(c, key, slot);
4985                 else {
4986                         u64 blockptr = btrfs_node_blockptr(c, slot);
4987                         u64 gen = btrfs_node_ptr_generation(c, slot);
4988
4989                         if (cache_only) {
4990                                 struct extent_buffer *cur;
4991                                 cur = btrfs_find_tree_block(root, blockptr,
4992                                             btrfs_level_size(root, level - 1));
4993                                 if (!cur ||
4994                                     btrfs_buffer_uptodate(cur, gen, 1) <= 0) {
4995                                         slot++;
4996                                         if (cur)
4997                                                 free_extent_buffer(cur);
4998                                         goto next;
4999                                 }
5000                                 free_extent_buffer(cur);
5001                         }
5002                         if (gen < min_trans) {
5003                                 slot++;
5004                                 goto next;
5005                         }
5006                         btrfs_node_key_to_cpu(c, key, slot);
5007                 }
5008                 return 0;
5009         }
5010         return 1;
5011 }
5012
5013 /*
5014  * search the tree again to find a leaf with greater keys
5015  * returns 0 if it found something or 1 if there are no greater leaves.
5016  * returns < 0 on io errors.
5017  */
5018 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5019 {
5020         int slot;
5021         int level;
5022         struct extent_buffer *c;
5023         struct extent_buffer *next;
5024         struct btrfs_key key;
5025         u32 nritems;
5026         int ret;
5027         int old_spinning = path->leave_spinning;
5028         int next_rw_lock = 0;
5029
5030         nritems = btrfs_header_nritems(path->nodes[0]);
5031         if (nritems == 0)
5032                 return 1;
5033
5034         btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5035 again:
5036         level = 1;
5037         next = NULL;
5038         next_rw_lock = 0;
5039         btrfs_release_path(path);
5040
5041         path->keep_locks = 1;
5042         path->leave_spinning = 1;
5043
5044         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5045         path->keep_locks = 0;
5046
5047         if (ret < 0)
5048                 return ret;
5049
5050         nritems = btrfs_header_nritems(path->nodes[0]);
5051         /*
5052          * by releasing the path above we dropped all our locks.  A balance
5053          * could have added more items next to the key that used to be
5054          * at the very end of the block.  So, check again here and
5055          * advance the path if there are now more items available.
5056          */
5057         if (nritems > 0 && path->slots[0] < nritems - 1) {
5058                 if (ret == 0)
5059                         path->slots[0]++;
5060                 ret = 0;
5061                 goto done;
5062         }
5063
5064         while (level < BTRFS_MAX_LEVEL) {
5065                 if (!path->nodes[level]) {
5066                         ret = 1;
5067                         goto done;
5068                 }
5069
5070                 slot = path->slots[level] + 1;
5071                 c = path->nodes[level];
5072                 if (slot >= btrfs_header_nritems(c)) {
5073                         level++;
5074                         if (level == BTRFS_MAX_LEVEL) {
5075                                 ret = 1;
5076                                 goto done;
5077                         }
5078                         continue;
5079                 }
5080
5081                 if (next) {
5082                         btrfs_tree_unlock_rw(next, next_rw_lock);
5083                         free_extent_buffer(next);
5084                 }
5085
5086                 next = c;
5087                 next_rw_lock = path->locks[level];
5088                 ret = read_block_for_search(NULL, root, path, &next, level,
5089                                             slot, &key, 0);
5090                 if (ret == -EAGAIN)
5091                         goto again;
5092
5093                 if (ret < 0) {
5094                         btrfs_release_path(path);
5095                         goto done;
5096                 }
5097
5098                 if (!path->skip_locking) {
5099                         ret = btrfs_try_tree_read_lock(next);
5100                         if (!ret) {
5101                                 btrfs_set_path_blocking(path);
5102                                 btrfs_tree_read_lock(next);
5103                                 btrfs_clear_path_blocking(path, next,
5104                                                           BTRFS_READ_LOCK);
5105                         }
5106                         next_rw_lock = BTRFS_READ_LOCK;
5107                 }
5108                 break;
5109         }
5110         path->slots[level] = slot;
5111         while (1) {
5112                 level--;
5113                 c = path->nodes[level];
5114                 if (path->locks[level])
5115                         btrfs_tree_unlock_rw(c, path->locks[level]);
5116
5117                 free_extent_buffer(c);
5118                 path->nodes[level] = next;
5119                 path->slots[level] = 0;
5120                 if (!path->skip_locking)
5121                         path->locks[level] = next_rw_lock;
5122                 if (!level)
5123                         break;
5124
5125                 ret = read_block_for_search(NULL, root, path, &next, level,
5126                                             0, &key, 0);
5127                 if (ret == -EAGAIN)
5128                         goto again;
5129
5130                 if (ret < 0) {
5131                         btrfs_release_path(path);
5132                         goto done;
5133                 }
5134
5135                 if (!path->skip_locking) {
5136                         ret = btrfs_try_tree_read_lock(next);
5137                         if (!ret) {
5138                                 btrfs_set_path_blocking(path);
5139                                 btrfs_tree_read_lock(next);
5140                                 btrfs_clear_path_blocking(path, next,
5141                                                           BTRFS_READ_LOCK);
5142                         }
5143                         next_rw_lock = BTRFS_READ_LOCK;
5144                 }
5145         }
5146         ret = 0;
5147 done:
5148         unlock_up(path, 0, 1, 0, NULL);
5149         path->leave_spinning = old_spinning;
5150         if (!old_spinning)
5151                 btrfs_set_path_blocking(path);
5152
5153         return ret;
5154 }
5155
5156 /*
5157  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5158  * searching until it gets past min_objectid or finds an item of 'type'
5159  *
5160  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5161  */
5162 int btrfs_previous_item(struct btrfs_root *root,
5163                         struct btrfs_path *path, u64 min_objectid,
5164                         int type)
5165 {
5166         struct btrfs_key found_key;
5167         struct extent_buffer *leaf;
5168         u32 nritems;
5169         int ret;
5170
5171         while (1) {
5172                 if (path->slots[0] == 0) {
5173                         btrfs_set_path_blocking(path);
5174                         ret = btrfs_prev_leaf(root, path);
5175                         if (ret != 0)
5176                                 return ret;
5177                 } else {
5178                         path->slots[0]--;
5179                 }
5180                 leaf = path->nodes[0];
5181                 nritems = btrfs_header_nritems(leaf);
5182                 if (nritems == 0)
5183                         return 1;
5184                 if (path->slots[0] == nritems)
5185                         path->slots[0]--;
5186
5187                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5188                 if (found_key.objectid < min_objectid)
5189                         break;
5190                 if (found_key.type == type)
5191                         return 0;
5192                 if (found_key.objectid == min_objectid &&
5193                     found_key.type < type)
5194                         break;
5195         }
5196         return 1;
5197 }