]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/btrfs/disk-io.c
Merge branch 'integrity-check-patch-v2' of git://btrfs.giantdisaster.de/git/btrfs...
[karo-tx-linux.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <asm/unaligned.h>
34 #include "compat.h"
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "async-thread.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47
48 static struct extent_io_ops btree_extent_io_ops;
49 static void end_workqueue_fn(struct btrfs_work *work);
50 static void free_fs_root(struct btrfs_root *root);
51 static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
52                                     int read_only);
53 static int btrfs_destroy_ordered_operations(struct btrfs_root *root);
54 static int btrfs_destroy_ordered_extents(struct btrfs_root *root);
55 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
56                                       struct btrfs_root *root);
57 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
58 static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
59 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
60                                         struct extent_io_tree *dirty_pages,
61                                         int mark);
62 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
63                                        struct extent_io_tree *pinned_extents);
64 static int btrfs_cleanup_transaction(struct btrfs_root *root);
65
66 /*
67  * end_io_wq structs are used to do processing in task context when an IO is
68  * complete.  This is used during reads to verify checksums, and it is used
69  * by writes to insert metadata for new file extents after IO is complete.
70  */
71 struct end_io_wq {
72         struct bio *bio;
73         bio_end_io_t *end_io;
74         void *private;
75         struct btrfs_fs_info *info;
76         int error;
77         int metadata;
78         struct list_head list;
79         struct btrfs_work work;
80 };
81
82 /*
83  * async submit bios are used to offload expensive checksumming
84  * onto the worker threads.  They checksum file and metadata bios
85  * just before they are sent down the IO stack.
86  */
87 struct async_submit_bio {
88         struct inode *inode;
89         struct bio *bio;
90         struct list_head list;
91         extent_submit_bio_hook_t *submit_bio_start;
92         extent_submit_bio_hook_t *submit_bio_done;
93         int rw;
94         int mirror_num;
95         unsigned long bio_flags;
96         /*
97          * bio_offset is optional, can be used if the pages in the bio
98          * can't tell us where in the file the bio should go
99          */
100         u64 bio_offset;
101         struct btrfs_work work;
102 };
103
104 /*
105  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
106  * eb, the lockdep key is determined by the btrfs_root it belongs to and
107  * the level the eb occupies in the tree.
108  *
109  * Different roots are used for different purposes and may nest inside each
110  * other and they require separate keysets.  As lockdep keys should be
111  * static, assign keysets according to the purpose of the root as indicated
112  * by btrfs_root->objectid.  This ensures that all special purpose roots
113  * have separate keysets.
114  *
115  * Lock-nesting across peer nodes is always done with the immediate parent
116  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
117  * subclass to avoid triggering lockdep warning in such cases.
118  *
119  * The key is set by the readpage_end_io_hook after the buffer has passed
120  * csum validation but before the pages are unlocked.  It is also set by
121  * btrfs_init_new_buffer on freshly allocated blocks.
122  *
123  * We also add a check to make sure the highest level of the tree is the
124  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
125  * needs update as well.
126  */
127 #ifdef CONFIG_DEBUG_LOCK_ALLOC
128 # if BTRFS_MAX_LEVEL != 8
129 #  error
130 # endif
131
132 static struct btrfs_lockdep_keyset {
133         u64                     id;             /* root objectid */
134         const char              *name_stem;     /* lock name stem */
135         char                    names[BTRFS_MAX_LEVEL + 1][20];
136         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
137 } btrfs_lockdep_keysets[] = {
138         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
139         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
140         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
141         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
142         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
143         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
144         { .id = BTRFS_ORPHAN_OBJECTID,          .name_stem = "orphan"   },
145         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
146         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
147         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
148         { .id = 0,                              .name_stem = "tree"     },
149 };
150
151 void __init btrfs_init_lockdep(void)
152 {
153         int i, j;
154
155         /* initialize lockdep class names */
156         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
157                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
158
159                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
160                         snprintf(ks->names[j], sizeof(ks->names[j]),
161                                  "btrfs-%s-%02d", ks->name_stem, j);
162         }
163 }
164
165 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
166                                     int level)
167 {
168         struct btrfs_lockdep_keyset *ks;
169
170         BUG_ON(level >= ARRAY_SIZE(ks->keys));
171
172         /* find the matching keyset, id 0 is the default entry */
173         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
174                 if (ks->id == objectid)
175                         break;
176
177         lockdep_set_class_and_name(&eb->lock,
178                                    &ks->keys[level], ks->names[level]);
179 }
180
181 #endif
182
183 /*
184  * extents on the btree inode are pretty simple, there's one extent
185  * that covers the entire device
186  */
187 static struct extent_map *btree_get_extent(struct inode *inode,
188                 struct page *page, size_t pg_offset, u64 start, u64 len,
189                 int create)
190 {
191         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
192         struct extent_map *em;
193         int ret;
194
195         read_lock(&em_tree->lock);
196         em = lookup_extent_mapping(em_tree, start, len);
197         if (em) {
198                 em->bdev =
199                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
200                 read_unlock(&em_tree->lock);
201                 goto out;
202         }
203         read_unlock(&em_tree->lock);
204
205         em = alloc_extent_map();
206         if (!em) {
207                 em = ERR_PTR(-ENOMEM);
208                 goto out;
209         }
210         em->start = 0;
211         em->len = (u64)-1;
212         em->block_len = (u64)-1;
213         em->block_start = 0;
214         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
215
216         write_lock(&em_tree->lock);
217         ret = add_extent_mapping(em_tree, em);
218         if (ret == -EEXIST) {
219                 u64 failed_start = em->start;
220                 u64 failed_len = em->len;
221
222                 free_extent_map(em);
223                 em = lookup_extent_mapping(em_tree, start, len);
224                 if (em) {
225                         ret = 0;
226                 } else {
227                         em = lookup_extent_mapping(em_tree, failed_start,
228                                                    failed_len);
229                         ret = -EIO;
230                 }
231         } else if (ret) {
232                 free_extent_map(em);
233                 em = NULL;
234         }
235         write_unlock(&em_tree->lock);
236
237         if (ret)
238                 em = ERR_PTR(ret);
239 out:
240         return em;
241 }
242
243 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
244 {
245         return crc32c(seed, data, len);
246 }
247
248 void btrfs_csum_final(u32 crc, char *result)
249 {
250         put_unaligned_le32(~crc, result);
251 }
252
253 /*
254  * compute the csum for a btree block, and either verify it or write it
255  * into the csum field of the block.
256  */
257 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
258                            int verify)
259 {
260         u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
261         char *result = NULL;
262         unsigned long len;
263         unsigned long cur_len;
264         unsigned long offset = BTRFS_CSUM_SIZE;
265         char *kaddr;
266         unsigned long map_start;
267         unsigned long map_len;
268         int err;
269         u32 crc = ~(u32)0;
270         unsigned long inline_result;
271
272         len = buf->len - offset;
273         while (len > 0) {
274                 err = map_private_extent_buffer(buf, offset, 32,
275                                         &kaddr, &map_start, &map_len);
276                 if (err)
277                         return 1;
278                 cur_len = min(len, map_len - (offset - map_start));
279                 crc = btrfs_csum_data(root, kaddr + offset - map_start,
280                                       crc, cur_len);
281                 len -= cur_len;
282                 offset += cur_len;
283         }
284         if (csum_size > sizeof(inline_result)) {
285                 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
286                 if (!result)
287                         return 1;
288         } else {
289                 result = (char *)&inline_result;
290         }
291
292         btrfs_csum_final(crc, result);
293
294         if (verify) {
295                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
296                         u32 val;
297                         u32 found = 0;
298                         memcpy(&found, result, csum_size);
299
300                         read_extent_buffer(buf, &val, 0, csum_size);
301                         printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
302                                        "failed on %llu wanted %X found %X "
303                                        "level %d\n",
304                                        root->fs_info->sb->s_id,
305                                        (unsigned long long)buf->start, val, found,
306                                        btrfs_header_level(buf));
307                         if (result != (char *)&inline_result)
308                                 kfree(result);
309                         return 1;
310                 }
311         } else {
312                 write_extent_buffer(buf, result, 0, csum_size);
313         }
314         if (result != (char *)&inline_result)
315                 kfree(result);
316         return 0;
317 }
318
319 /*
320  * we can't consider a given block up to date unless the transid of the
321  * block matches the transid in the parent node's pointer.  This is how we
322  * detect blocks that either didn't get written at all or got written
323  * in the wrong place.
324  */
325 static int verify_parent_transid(struct extent_io_tree *io_tree,
326                                  struct extent_buffer *eb, u64 parent_transid)
327 {
328         struct extent_state *cached_state = NULL;
329         int ret;
330
331         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
332                 return 0;
333
334         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
335                          0, &cached_state, GFP_NOFS);
336         if (extent_buffer_uptodate(io_tree, eb, cached_state) &&
337             btrfs_header_generation(eb) == parent_transid) {
338                 ret = 0;
339                 goto out;
340         }
341         printk_ratelimited("parent transid verify failed on %llu wanted %llu "
342                        "found %llu\n",
343                        (unsigned long long)eb->start,
344                        (unsigned long long)parent_transid,
345                        (unsigned long long)btrfs_header_generation(eb));
346         ret = 1;
347         clear_extent_buffer_uptodate(io_tree, eb, &cached_state);
348 out:
349         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
350                              &cached_state, GFP_NOFS);
351         return ret;
352 }
353
354 /*
355  * helper to read a given tree block, doing retries as required when
356  * the checksums don't match and we have alternate mirrors to try.
357  */
358 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
359                                           struct extent_buffer *eb,
360                                           u64 start, u64 parent_transid)
361 {
362         struct extent_io_tree *io_tree;
363         int ret;
364         int num_copies = 0;
365         int mirror_num = 0;
366
367         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
368         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
369         while (1) {
370                 ret = read_extent_buffer_pages(io_tree, eb, start,
371                                                WAIT_COMPLETE,
372                                                btree_get_extent, mirror_num);
373                 if (!ret &&
374                     !verify_parent_transid(io_tree, eb, parent_transid))
375                         return ret;
376
377                 /*
378                  * This buffer's crc is fine, but its contents are corrupted, so
379                  * there is no reason to read the other copies, they won't be
380                  * any less wrong.
381                  */
382                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
383                         return ret;
384
385                 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
386                                               eb->start, eb->len);
387                 if (num_copies == 1)
388                         return ret;
389
390                 mirror_num++;
391                 if (mirror_num > num_copies)
392                         return ret;
393         }
394         return -EIO;
395 }
396
397 /*
398  * checksum a dirty tree block before IO.  This has extra checks to make sure
399  * we only fill in the checksum field in the first page of a multi-page block
400  */
401
402 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
403 {
404         struct extent_io_tree *tree;
405         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
406         u64 found_start;
407         unsigned long len;
408         struct extent_buffer *eb;
409         int ret;
410
411         tree = &BTRFS_I(page->mapping->host)->io_tree;
412
413         if (page->private == EXTENT_PAGE_PRIVATE) {
414                 WARN_ON(1);
415                 goto out;
416         }
417         if (!page->private) {
418                 WARN_ON(1);
419                 goto out;
420         }
421         len = page->private >> 2;
422         WARN_ON(len == 0);
423
424         eb = alloc_extent_buffer(tree, start, len, page);
425         if (eb == NULL) {
426                 WARN_ON(1);
427                 goto out;
428         }
429         ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
430                                              btrfs_header_generation(eb));
431         BUG_ON(ret);
432         WARN_ON(!btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN));
433
434         found_start = btrfs_header_bytenr(eb);
435         if (found_start != start) {
436                 WARN_ON(1);
437                 goto err;
438         }
439         if (eb->first_page != page) {
440                 WARN_ON(1);
441                 goto err;
442         }
443         if (!PageUptodate(page)) {
444                 WARN_ON(1);
445                 goto err;
446         }
447         csum_tree_block(root, eb, 0);
448 err:
449         free_extent_buffer(eb);
450 out:
451         return 0;
452 }
453
454 static int check_tree_block_fsid(struct btrfs_root *root,
455                                  struct extent_buffer *eb)
456 {
457         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
458         u8 fsid[BTRFS_UUID_SIZE];
459         int ret = 1;
460
461         read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
462                            BTRFS_FSID_SIZE);
463         while (fs_devices) {
464                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
465                         ret = 0;
466                         break;
467                 }
468                 fs_devices = fs_devices->seed;
469         }
470         return ret;
471 }
472
473 #define CORRUPT(reason, eb, root, slot)                         \
474         printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
475                "root=%llu, slot=%d\n", reason,                  \
476                (unsigned long long)btrfs_header_bytenr(eb),     \
477                (unsigned long long)root->objectid, slot)
478
479 static noinline int check_leaf(struct btrfs_root *root,
480                                struct extent_buffer *leaf)
481 {
482         struct btrfs_key key;
483         struct btrfs_key leaf_key;
484         u32 nritems = btrfs_header_nritems(leaf);
485         int slot;
486
487         if (nritems == 0)
488                 return 0;
489
490         /* Check the 0 item */
491         if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
492             BTRFS_LEAF_DATA_SIZE(root)) {
493                 CORRUPT("invalid item offset size pair", leaf, root, 0);
494                 return -EIO;
495         }
496
497         /*
498          * Check to make sure each items keys are in the correct order and their
499          * offsets make sense.  We only have to loop through nritems-1 because
500          * we check the current slot against the next slot, which verifies the
501          * next slot's offset+size makes sense and that the current's slot
502          * offset is correct.
503          */
504         for (slot = 0; slot < nritems - 1; slot++) {
505                 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
506                 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
507
508                 /* Make sure the keys are in the right order */
509                 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
510                         CORRUPT("bad key order", leaf, root, slot);
511                         return -EIO;
512                 }
513
514                 /*
515                  * Make sure the offset and ends are right, remember that the
516                  * item data starts at the end of the leaf and grows towards the
517                  * front.
518                  */
519                 if (btrfs_item_offset_nr(leaf, slot) !=
520                         btrfs_item_end_nr(leaf, slot + 1)) {
521                         CORRUPT("slot offset bad", leaf, root, slot);
522                         return -EIO;
523                 }
524
525                 /*
526                  * Check to make sure that we don't point outside of the leaf,
527                  * just incase all the items are consistent to eachother, but
528                  * all point outside of the leaf.
529                  */
530                 if (btrfs_item_end_nr(leaf, slot) >
531                     BTRFS_LEAF_DATA_SIZE(root)) {
532                         CORRUPT("slot end outside of leaf", leaf, root, slot);
533                         return -EIO;
534                 }
535         }
536
537         return 0;
538 }
539
540 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
541                                struct extent_state *state)
542 {
543         struct extent_io_tree *tree;
544         u64 found_start;
545         int found_level;
546         unsigned long len;
547         struct extent_buffer *eb;
548         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
549         int ret = 0;
550
551         tree = &BTRFS_I(page->mapping->host)->io_tree;
552         if (page->private == EXTENT_PAGE_PRIVATE)
553                 goto out;
554         if (!page->private)
555                 goto out;
556
557         len = page->private >> 2;
558         WARN_ON(len == 0);
559
560         eb = alloc_extent_buffer(tree, start, len, page);
561         if (eb == NULL) {
562                 ret = -EIO;
563                 goto out;
564         }
565
566         found_start = btrfs_header_bytenr(eb);
567         if (found_start != start) {
568                 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
569                                "%llu %llu\n",
570                                (unsigned long long)found_start,
571                                (unsigned long long)eb->start);
572                 ret = -EIO;
573                 goto err;
574         }
575         if (eb->first_page != page) {
576                 printk(KERN_INFO "btrfs bad first page %lu %lu\n",
577                        eb->first_page->index, page->index);
578                 WARN_ON(1);
579                 ret = -EIO;
580                 goto err;
581         }
582         if (check_tree_block_fsid(root, eb)) {
583                 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
584                                (unsigned long long)eb->start);
585                 ret = -EIO;
586                 goto err;
587         }
588         found_level = btrfs_header_level(eb);
589
590         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
591                                        eb, found_level);
592
593         ret = csum_tree_block(root, eb, 1);
594         if (ret) {
595                 ret = -EIO;
596                 goto err;
597         }
598
599         /*
600          * If this is a leaf block and it is corrupt, set the corrupt bit so
601          * that we don't try and read the other copies of this block, just
602          * return -EIO.
603          */
604         if (found_level == 0 && check_leaf(root, eb)) {
605                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
606                 ret = -EIO;
607         }
608
609         end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
610         end = eb->start + end - 1;
611 err:
612         if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
613                 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
614                 btree_readahead_hook(root, eb, eb->start, ret);
615         }
616
617         free_extent_buffer(eb);
618 out:
619         return ret;
620 }
621
622 static int btree_io_failed_hook(struct bio *failed_bio,
623                          struct page *page, u64 start, u64 end,
624                          int mirror_num, struct extent_state *state)
625 {
626         struct extent_io_tree *tree;
627         unsigned long len;
628         struct extent_buffer *eb;
629         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
630
631         tree = &BTRFS_I(page->mapping->host)->io_tree;
632         if (page->private == EXTENT_PAGE_PRIVATE)
633                 goto out;
634         if (!page->private)
635                 goto out;
636
637         len = page->private >> 2;
638         WARN_ON(len == 0);
639
640         eb = alloc_extent_buffer(tree, start, len, page);
641         if (eb == NULL)
642                 goto out;
643
644         if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
645                 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
646                 btree_readahead_hook(root, eb, eb->start, -EIO);
647         }
648         free_extent_buffer(eb);
649
650 out:
651         return -EIO;    /* we fixed nothing */
652 }
653
654 static void end_workqueue_bio(struct bio *bio, int err)
655 {
656         struct end_io_wq *end_io_wq = bio->bi_private;
657         struct btrfs_fs_info *fs_info;
658
659         fs_info = end_io_wq->info;
660         end_io_wq->error = err;
661         end_io_wq->work.func = end_workqueue_fn;
662         end_io_wq->work.flags = 0;
663
664         if (bio->bi_rw & REQ_WRITE) {
665                 if (end_io_wq->metadata == 1)
666                         btrfs_queue_worker(&fs_info->endio_meta_write_workers,
667                                            &end_io_wq->work);
668                 else if (end_io_wq->metadata == 2)
669                         btrfs_queue_worker(&fs_info->endio_freespace_worker,
670                                            &end_io_wq->work);
671                 else
672                         btrfs_queue_worker(&fs_info->endio_write_workers,
673                                            &end_io_wq->work);
674         } else {
675                 if (end_io_wq->metadata)
676                         btrfs_queue_worker(&fs_info->endio_meta_workers,
677                                            &end_io_wq->work);
678                 else
679                         btrfs_queue_worker(&fs_info->endio_workers,
680                                            &end_io_wq->work);
681         }
682 }
683
684 /*
685  * For the metadata arg you want
686  *
687  * 0 - if data
688  * 1 - if normal metadta
689  * 2 - if writing to the free space cache area
690  */
691 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
692                         int metadata)
693 {
694         struct end_io_wq *end_io_wq;
695         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
696         if (!end_io_wq)
697                 return -ENOMEM;
698
699         end_io_wq->private = bio->bi_private;
700         end_io_wq->end_io = bio->bi_end_io;
701         end_io_wq->info = info;
702         end_io_wq->error = 0;
703         end_io_wq->bio = bio;
704         end_io_wq->metadata = metadata;
705
706         bio->bi_private = end_io_wq;
707         bio->bi_end_io = end_workqueue_bio;
708         return 0;
709 }
710
711 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
712 {
713         unsigned long limit = min_t(unsigned long,
714                                     info->workers.max_workers,
715                                     info->fs_devices->open_devices);
716         return 256 * limit;
717 }
718
719 static void run_one_async_start(struct btrfs_work *work)
720 {
721         struct async_submit_bio *async;
722
723         async = container_of(work, struct  async_submit_bio, work);
724         async->submit_bio_start(async->inode, async->rw, async->bio,
725                                async->mirror_num, async->bio_flags,
726                                async->bio_offset);
727 }
728
729 static void run_one_async_done(struct btrfs_work *work)
730 {
731         struct btrfs_fs_info *fs_info;
732         struct async_submit_bio *async;
733         int limit;
734
735         async = container_of(work, struct  async_submit_bio, work);
736         fs_info = BTRFS_I(async->inode)->root->fs_info;
737
738         limit = btrfs_async_submit_limit(fs_info);
739         limit = limit * 2 / 3;
740
741         atomic_dec(&fs_info->nr_async_submits);
742
743         if (atomic_read(&fs_info->nr_async_submits) < limit &&
744             waitqueue_active(&fs_info->async_submit_wait))
745                 wake_up(&fs_info->async_submit_wait);
746
747         async->submit_bio_done(async->inode, async->rw, async->bio,
748                                async->mirror_num, async->bio_flags,
749                                async->bio_offset);
750 }
751
752 static void run_one_async_free(struct btrfs_work *work)
753 {
754         struct async_submit_bio *async;
755
756         async = container_of(work, struct  async_submit_bio, work);
757         kfree(async);
758 }
759
760 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
761                         int rw, struct bio *bio, int mirror_num,
762                         unsigned long bio_flags,
763                         u64 bio_offset,
764                         extent_submit_bio_hook_t *submit_bio_start,
765                         extent_submit_bio_hook_t *submit_bio_done)
766 {
767         struct async_submit_bio *async;
768
769         async = kmalloc(sizeof(*async), GFP_NOFS);
770         if (!async)
771                 return -ENOMEM;
772
773         async->inode = inode;
774         async->rw = rw;
775         async->bio = bio;
776         async->mirror_num = mirror_num;
777         async->submit_bio_start = submit_bio_start;
778         async->submit_bio_done = submit_bio_done;
779
780         async->work.func = run_one_async_start;
781         async->work.ordered_func = run_one_async_done;
782         async->work.ordered_free = run_one_async_free;
783
784         async->work.flags = 0;
785         async->bio_flags = bio_flags;
786         async->bio_offset = bio_offset;
787
788         atomic_inc(&fs_info->nr_async_submits);
789
790         if (rw & REQ_SYNC)
791                 btrfs_set_work_high_prio(&async->work);
792
793         btrfs_queue_worker(&fs_info->workers, &async->work);
794
795         while (atomic_read(&fs_info->async_submit_draining) &&
796               atomic_read(&fs_info->nr_async_submits)) {
797                 wait_event(fs_info->async_submit_wait,
798                            (atomic_read(&fs_info->nr_async_submits) == 0));
799         }
800
801         return 0;
802 }
803
804 static int btree_csum_one_bio(struct bio *bio)
805 {
806         struct bio_vec *bvec = bio->bi_io_vec;
807         int bio_index = 0;
808         struct btrfs_root *root;
809
810         WARN_ON(bio->bi_vcnt <= 0);
811         while (bio_index < bio->bi_vcnt) {
812                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
813                 csum_dirty_buffer(root, bvec->bv_page);
814                 bio_index++;
815                 bvec++;
816         }
817         return 0;
818 }
819
820 static int __btree_submit_bio_start(struct inode *inode, int rw,
821                                     struct bio *bio, int mirror_num,
822                                     unsigned long bio_flags,
823                                     u64 bio_offset)
824 {
825         /*
826          * when we're called for a write, we're already in the async
827          * submission context.  Just jump into btrfs_map_bio
828          */
829         btree_csum_one_bio(bio);
830         return 0;
831 }
832
833 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
834                                  int mirror_num, unsigned long bio_flags,
835                                  u64 bio_offset)
836 {
837         /*
838          * when we're called for a write, we're already in the async
839          * submission context.  Just jump into btrfs_map_bio
840          */
841         return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
842 }
843
844 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
845                                  int mirror_num, unsigned long bio_flags,
846                                  u64 bio_offset)
847 {
848         int ret;
849
850         ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
851                                           bio, 1);
852         BUG_ON(ret);
853
854         if (!(rw & REQ_WRITE)) {
855                 /*
856                  * called for a read, do the setup so that checksum validation
857                  * can happen in the async kernel threads
858                  */
859                 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
860                                      mirror_num, 0);
861         }
862
863         /*
864          * kthread helpers are used to submit writes so that checksumming
865          * can happen in parallel across all CPUs
866          */
867         return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
868                                    inode, rw, bio, mirror_num, 0,
869                                    bio_offset,
870                                    __btree_submit_bio_start,
871                                    __btree_submit_bio_done);
872 }
873
874 #ifdef CONFIG_MIGRATION
875 static int btree_migratepage(struct address_space *mapping,
876                         struct page *newpage, struct page *page)
877 {
878         /*
879          * we can't safely write a btree page from here,
880          * we haven't done the locking hook
881          */
882         if (PageDirty(page))
883                 return -EAGAIN;
884         /*
885          * Buffers may be managed in a filesystem specific way.
886          * We must have no buffers or drop them.
887          */
888         if (page_has_private(page) &&
889             !try_to_release_page(page, GFP_KERNEL))
890                 return -EAGAIN;
891         return migrate_page(mapping, newpage, page);
892 }
893 #endif
894
895 static int btree_writepage(struct page *page, struct writeback_control *wbc)
896 {
897         struct extent_io_tree *tree;
898         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
899         struct extent_buffer *eb;
900         int was_dirty;
901
902         tree = &BTRFS_I(page->mapping->host)->io_tree;
903         if (!(current->flags & PF_MEMALLOC)) {
904                 return extent_write_full_page(tree, page,
905                                               btree_get_extent, wbc);
906         }
907
908         redirty_page_for_writepage(wbc, page);
909         eb = btrfs_find_tree_block(root, page_offset(page), PAGE_CACHE_SIZE);
910         WARN_ON(!eb);
911
912         was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
913         if (!was_dirty) {
914                 spin_lock(&root->fs_info->delalloc_lock);
915                 root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
916                 spin_unlock(&root->fs_info->delalloc_lock);
917         }
918         free_extent_buffer(eb);
919
920         unlock_page(page);
921         return 0;
922 }
923
924 static int btree_writepages(struct address_space *mapping,
925                             struct writeback_control *wbc)
926 {
927         struct extent_io_tree *tree;
928         tree = &BTRFS_I(mapping->host)->io_tree;
929         if (wbc->sync_mode == WB_SYNC_NONE) {
930                 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
931                 u64 num_dirty;
932                 unsigned long thresh = 32 * 1024 * 1024;
933
934                 if (wbc->for_kupdate)
935                         return 0;
936
937                 /* this is a bit racy, but that's ok */
938                 num_dirty = root->fs_info->dirty_metadata_bytes;
939                 if (num_dirty < thresh)
940                         return 0;
941         }
942         return extent_writepages(tree, mapping, btree_get_extent, wbc);
943 }
944
945 static int btree_readpage(struct file *file, struct page *page)
946 {
947         struct extent_io_tree *tree;
948         tree = &BTRFS_I(page->mapping->host)->io_tree;
949         return extent_read_full_page(tree, page, btree_get_extent, 0);
950 }
951
952 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
953 {
954         struct extent_io_tree *tree;
955         struct extent_map_tree *map;
956         int ret;
957
958         if (PageWriteback(page) || PageDirty(page))
959                 return 0;
960
961         tree = &BTRFS_I(page->mapping->host)->io_tree;
962         map = &BTRFS_I(page->mapping->host)->extent_tree;
963
964         ret = try_release_extent_state(map, tree, page, gfp_flags);
965         if (!ret)
966                 return 0;
967
968         ret = try_release_extent_buffer(tree, page);
969         if (ret == 1) {
970                 ClearPagePrivate(page);
971                 set_page_private(page, 0);
972                 page_cache_release(page);
973         }
974
975         return ret;
976 }
977
978 static void btree_invalidatepage(struct page *page, unsigned long offset)
979 {
980         struct extent_io_tree *tree;
981         tree = &BTRFS_I(page->mapping->host)->io_tree;
982         extent_invalidatepage(tree, page, offset);
983         btree_releasepage(page, GFP_NOFS);
984         if (PagePrivate(page)) {
985                 printk(KERN_WARNING "btrfs warning page private not zero "
986                        "on page %llu\n", (unsigned long long)page_offset(page));
987                 ClearPagePrivate(page);
988                 set_page_private(page, 0);
989                 page_cache_release(page);
990         }
991 }
992
993 static const struct address_space_operations btree_aops = {
994         .readpage       = btree_readpage,
995         .writepage      = btree_writepage,
996         .writepages     = btree_writepages,
997         .releasepage    = btree_releasepage,
998         .invalidatepage = btree_invalidatepage,
999 #ifdef CONFIG_MIGRATION
1000         .migratepage    = btree_migratepage,
1001 #endif
1002 };
1003
1004 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1005                          u64 parent_transid)
1006 {
1007         struct extent_buffer *buf = NULL;
1008         struct inode *btree_inode = root->fs_info->btree_inode;
1009         int ret = 0;
1010
1011         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1012         if (!buf)
1013                 return 0;
1014         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1015                                  buf, 0, WAIT_NONE, btree_get_extent, 0);
1016         free_extent_buffer(buf);
1017         return ret;
1018 }
1019
1020 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1021                          int mirror_num, struct extent_buffer **eb)
1022 {
1023         struct extent_buffer *buf = NULL;
1024         struct inode *btree_inode = root->fs_info->btree_inode;
1025         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1026         int ret;
1027
1028         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1029         if (!buf)
1030                 return 0;
1031
1032         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1033
1034         ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1035                                        btree_get_extent, mirror_num);
1036         if (ret) {
1037                 free_extent_buffer(buf);
1038                 return ret;
1039         }
1040
1041         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1042                 free_extent_buffer(buf);
1043                 return -EIO;
1044         } else if (extent_buffer_uptodate(io_tree, buf, NULL)) {
1045                 *eb = buf;
1046         } else {
1047                 free_extent_buffer(buf);
1048         }
1049         return 0;
1050 }
1051
1052 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1053                                             u64 bytenr, u32 blocksize)
1054 {
1055         struct inode *btree_inode = root->fs_info->btree_inode;
1056         struct extent_buffer *eb;
1057         eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1058                                 bytenr, blocksize);
1059         return eb;
1060 }
1061
1062 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1063                                                  u64 bytenr, u32 blocksize)
1064 {
1065         struct inode *btree_inode = root->fs_info->btree_inode;
1066         struct extent_buffer *eb;
1067
1068         eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1069                                  bytenr, blocksize, NULL);
1070         return eb;
1071 }
1072
1073
1074 int btrfs_write_tree_block(struct extent_buffer *buf)
1075 {
1076         return filemap_fdatawrite_range(buf->first_page->mapping, buf->start,
1077                                         buf->start + buf->len - 1);
1078 }
1079
1080 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1081 {
1082         return filemap_fdatawait_range(buf->first_page->mapping,
1083                                        buf->start, buf->start + buf->len - 1);
1084 }
1085
1086 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1087                                       u32 blocksize, u64 parent_transid)
1088 {
1089         struct extent_buffer *buf = NULL;
1090         int ret;
1091
1092         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1093         if (!buf)
1094                 return NULL;
1095
1096         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1097
1098         if (ret == 0)
1099                 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
1100         return buf;
1101
1102 }
1103
1104 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1105                      struct extent_buffer *buf)
1106 {
1107         struct inode *btree_inode = root->fs_info->btree_inode;
1108         if (btrfs_header_generation(buf) ==
1109             root->fs_info->running_transaction->transid) {
1110                 btrfs_assert_tree_locked(buf);
1111
1112                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1113                         spin_lock(&root->fs_info->delalloc_lock);
1114                         if (root->fs_info->dirty_metadata_bytes >= buf->len)
1115                                 root->fs_info->dirty_metadata_bytes -= buf->len;
1116                         else
1117                                 WARN_ON(1);
1118                         spin_unlock(&root->fs_info->delalloc_lock);
1119                 }
1120
1121                 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1122                 btrfs_set_lock_blocking(buf);
1123                 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
1124                                           buf);
1125         }
1126         return 0;
1127 }
1128
1129 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1130                         u32 stripesize, struct btrfs_root *root,
1131                         struct btrfs_fs_info *fs_info,
1132                         u64 objectid)
1133 {
1134         root->node = NULL;
1135         root->commit_root = NULL;
1136         root->sectorsize = sectorsize;
1137         root->nodesize = nodesize;
1138         root->leafsize = leafsize;
1139         root->stripesize = stripesize;
1140         root->ref_cows = 0;
1141         root->track_dirty = 0;
1142         root->in_radix = 0;
1143         root->orphan_item_inserted = 0;
1144         root->orphan_cleanup_state = 0;
1145
1146         root->fs_info = fs_info;
1147         root->objectid = objectid;
1148         root->last_trans = 0;
1149         root->highest_objectid = 0;
1150         root->name = NULL;
1151         root->inode_tree = RB_ROOT;
1152         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1153         root->block_rsv = NULL;
1154         root->orphan_block_rsv = NULL;
1155
1156         INIT_LIST_HEAD(&root->dirty_list);
1157         INIT_LIST_HEAD(&root->orphan_list);
1158         INIT_LIST_HEAD(&root->root_list);
1159         spin_lock_init(&root->orphan_lock);
1160         spin_lock_init(&root->inode_lock);
1161         spin_lock_init(&root->accounting_lock);
1162         mutex_init(&root->objectid_mutex);
1163         mutex_init(&root->log_mutex);
1164         init_waitqueue_head(&root->log_writer_wait);
1165         init_waitqueue_head(&root->log_commit_wait[0]);
1166         init_waitqueue_head(&root->log_commit_wait[1]);
1167         atomic_set(&root->log_commit[0], 0);
1168         atomic_set(&root->log_commit[1], 0);
1169         atomic_set(&root->log_writers, 0);
1170         root->log_batch = 0;
1171         root->log_transid = 0;
1172         root->last_log_commit = 0;
1173         extent_io_tree_init(&root->dirty_log_pages,
1174                              fs_info->btree_inode->i_mapping);
1175
1176         memset(&root->root_key, 0, sizeof(root->root_key));
1177         memset(&root->root_item, 0, sizeof(root->root_item));
1178         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1179         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1180         root->defrag_trans_start = fs_info->generation;
1181         init_completion(&root->kobj_unregister);
1182         root->defrag_running = 0;
1183         root->root_key.objectid = objectid;
1184         root->anon_dev = 0;
1185         return 0;
1186 }
1187
1188 static int find_and_setup_root(struct btrfs_root *tree_root,
1189                                struct btrfs_fs_info *fs_info,
1190                                u64 objectid,
1191                                struct btrfs_root *root)
1192 {
1193         int ret;
1194         u32 blocksize;
1195         u64 generation;
1196
1197         __setup_root(tree_root->nodesize, tree_root->leafsize,
1198                      tree_root->sectorsize, tree_root->stripesize,
1199                      root, fs_info, objectid);
1200         ret = btrfs_find_last_root(tree_root, objectid,
1201                                    &root->root_item, &root->root_key);
1202         if (ret > 0)
1203                 return -ENOENT;
1204         BUG_ON(ret);
1205
1206         generation = btrfs_root_generation(&root->root_item);
1207         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1208         root->commit_root = NULL;
1209         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1210                                      blocksize, generation);
1211         if (!root->node || !btrfs_buffer_uptodate(root->node, generation)) {
1212                 free_extent_buffer(root->node);
1213                 root->node = NULL;
1214                 return -EIO;
1215         }
1216         root->commit_root = btrfs_root_node(root);
1217         return 0;
1218 }
1219
1220 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1221                                          struct btrfs_fs_info *fs_info)
1222 {
1223         struct btrfs_root *root;
1224         struct btrfs_root *tree_root = fs_info->tree_root;
1225         struct extent_buffer *leaf;
1226
1227         root = kzalloc(sizeof(*root), GFP_NOFS);
1228         if (!root)
1229                 return ERR_PTR(-ENOMEM);
1230
1231         __setup_root(tree_root->nodesize, tree_root->leafsize,
1232                      tree_root->sectorsize, tree_root->stripesize,
1233                      root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1234
1235         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1236         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1237         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1238         /*
1239          * log trees do not get reference counted because they go away
1240          * before a real commit is actually done.  They do store pointers
1241          * to file data extents, and those reference counts still get
1242          * updated (along with back refs to the log tree).
1243          */
1244         root->ref_cows = 0;
1245
1246         leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1247                                       BTRFS_TREE_LOG_OBJECTID, NULL,
1248                                       0, 0, 0, 0);
1249         if (IS_ERR(leaf)) {
1250                 kfree(root);
1251                 return ERR_CAST(leaf);
1252         }
1253
1254         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1255         btrfs_set_header_bytenr(leaf, leaf->start);
1256         btrfs_set_header_generation(leaf, trans->transid);
1257         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1258         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1259         root->node = leaf;
1260
1261         write_extent_buffer(root->node, root->fs_info->fsid,
1262                             (unsigned long)btrfs_header_fsid(root->node),
1263                             BTRFS_FSID_SIZE);
1264         btrfs_mark_buffer_dirty(root->node);
1265         btrfs_tree_unlock(root->node);
1266         return root;
1267 }
1268
1269 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1270                              struct btrfs_fs_info *fs_info)
1271 {
1272         struct btrfs_root *log_root;
1273
1274         log_root = alloc_log_tree(trans, fs_info);
1275         if (IS_ERR(log_root))
1276                 return PTR_ERR(log_root);
1277         WARN_ON(fs_info->log_root_tree);
1278         fs_info->log_root_tree = log_root;
1279         return 0;
1280 }
1281
1282 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1283                        struct btrfs_root *root)
1284 {
1285         struct btrfs_root *log_root;
1286         struct btrfs_inode_item *inode_item;
1287
1288         log_root = alloc_log_tree(trans, root->fs_info);
1289         if (IS_ERR(log_root))
1290                 return PTR_ERR(log_root);
1291
1292         log_root->last_trans = trans->transid;
1293         log_root->root_key.offset = root->root_key.objectid;
1294
1295         inode_item = &log_root->root_item.inode;
1296         inode_item->generation = cpu_to_le64(1);
1297         inode_item->size = cpu_to_le64(3);
1298         inode_item->nlink = cpu_to_le32(1);
1299         inode_item->nbytes = cpu_to_le64(root->leafsize);
1300         inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1301
1302         btrfs_set_root_node(&log_root->root_item, log_root->node);
1303
1304         WARN_ON(root->log_root);
1305         root->log_root = log_root;
1306         root->log_transid = 0;
1307         root->last_log_commit = 0;
1308         return 0;
1309 }
1310
1311 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1312                                                struct btrfs_key *location)
1313 {
1314         struct btrfs_root *root;
1315         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1316         struct btrfs_path *path;
1317         struct extent_buffer *l;
1318         u64 generation;
1319         u32 blocksize;
1320         int ret = 0;
1321
1322         root = kzalloc(sizeof(*root), GFP_NOFS);
1323         if (!root)
1324                 return ERR_PTR(-ENOMEM);
1325         if (location->offset == (u64)-1) {
1326                 ret = find_and_setup_root(tree_root, fs_info,
1327                                           location->objectid, root);
1328                 if (ret) {
1329                         kfree(root);
1330                         return ERR_PTR(ret);
1331                 }
1332                 goto out;
1333         }
1334
1335         __setup_root(tree_root->nodesize, tree_root->leafsize,
1336                      tree_root->sectorsize, tree_root->stripesize,
1337                      root, fs_info, location->objectid);
1338
1339         path = btrfs_alloc_path();
1340         if (!path) {
1341                 kfree(root);
1342                 return ERR_PTR(-ENOMEM);
1343         }
1344         ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1345         if (ret == 0) {
1346                 l = path->nodes[0];
1347                 read_extent_buffer(l, &root->root_item,
1348                                 btrfs_item_ptr_offset(l, path->slots[0]),
1349                                 sizeof(root->root_item));
1350                 memcpy(&root->root_key, location, sizeof(*location));
1351         }
1352         btrfs_free_path(path);
1353         if (ret) {
1354                 kfree(root);
1355                 if (ret > 0)
1356                         ret = -ENOENT;
1357                 return ERR_PTR(ret);
1358         }
1359
1360         generation = btrfs_root_generation(&root->root_item);
1361         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1362         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1363                                      blocksize, generation);
1364         root->commit_root = btrfs_root_node(root);
1365         BUG_ON(!root->node);
1366 out:
1367         if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1368                 root->ref_cows = 1;
1369                 btrfs_check_and_init_root_item(&root->root_item);
1370         }
1371
1372         return root;
1373 }
1374
1375 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1376                                               struct btrfs_key *location)
1377 {
1378         struct btrfs_root *root;
1379         int ret;
1380
1381         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1382                 return fs_info->tree_root;
1383         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1384                 return fs_info->extent_root;
1385         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1386                 return fs_info->chunk_root;
1387         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1388                 return fs_info->dev_root;
1389         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1390                 return fs_info->csum_root;
1391 again:
1392         spin_lock(&fs_info->fs_roots_radix_lock);
1393         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1394                                  (unsigned long)location->objectid);
1395         spin_unlock(&fs_info->fs_roots_radix_lock);
1396         if (root)
1397                 return root;
1398
1399         root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1400         if (IS_ERR(root))
1401                 return root;
1402
1403         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1404         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1405                                         GFP_NOFS);
1406         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1407                 ret = -ENOMEM;
1408                 goto fail;
1409         }
1410
1411         btrfs_init_free_ino_ctl(root);
1412         mutex_init(&root->fs_commit_mutex);
1413         spin_lock_init(&root->cache_lock);
1414         init_waitqueue_head(&root->cache_wait);
1415
1416         ret = get_anon_bdev(&root->anon_dev);
1417         if (ret)
1418                 goto fail;
1419
1420         if (btrfs_root_refs(&root->root_item) == 0) {
1421                 ret = -ENOENT;
1422                 goto fail;
1423         }
1424
1425         ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1426         if (ret < 0)
1427                 goto fail;
1428         if (ret == 0)
1429                 root->orphan_item_inserted = 1;
1430
1431         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1432         if (ret)
1433                 goto fail;
1434
1435         spin_lock(&fs_info->fs_roots_radix_lock);
1436         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1437                                 (unsigned long)root->root_key.objectid,
1438                                 root);
1439         if (ret == 0)
1440                 root->in_radix = 1;
1441
1442         spin_unlock(&fs_info->fs_roots_radix_lock);
1443         radix_tree_preload_end();
1444         if (ret) {
1445                 if (ret == -EEXIST) {
1446                         free_fs_root(root);
1447                         goto again;
1448                 }
1449                 goto fail;
1450         }
1451
1452         ret = btrfs_find_dead_roots(fs_info->tree_root,
1453                                     root->root_key.objectid);
1454         WARN_ON(ret);
1455         return root;
1456 fail:
1457         free_fs_root(root);
1458         return ERR_PTR(ret);
1459 }
1460
1461 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1462 {
1463         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1464         int ret = 0;
1465         struct btrfs_device *device;
1466         struct backing_dev_info *bdi;
1467
1468         rcu_read_lock();
1469         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1470                 if (!device->bdev)
1471                         continue;
1472                 bdi = blk_get_backing_dev_info(device->bdev);
1473                 if (bdi && bdi_congested(bdi, bdi_bits)) {
1474                         ret = 1;
1475                         break;
1476                 }
1477         }
1478         rcu_read_unlock();
1479         return ret;
1480 }
1481
1482 /*
1483  * If this fails, caller must call bdi_destroy() to get rid of the
1484  * bdi again.
1485  */
1486 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1487 {
1488         int err;
1489
1490         bdi->capabilities = BDI_CAP_MAP_COPY;
1491         err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1492         if (err)
1493                 return err;
1494
1495         bdi->ra_pages   = default_backing_dev_info.ra_pages;
1496         bdi->congested_fn       = btrfs_congested_fn;
1497         bdi->congested_data     = info;
1498         return 0;
1499 }
1500
1501 static int bio_ready_for_csum(struct bio *bio)
1502 {
1503         u64 length = 0;
1504         u64 buf_len = 0;
1505         u64 start = 0;
1506         struct page *page;
1507         struct extent_io_tree *io_tree = NULL;
1508         struct bio_vec *bvec;
1509         int i;
1510         int ret;
1511
1512         bio_for_each_segment(bvec, bio, i) {
1513                 page = bvec->bv_page;
1514                 if (page->private == EXTENT_PAGE_PRIVATE) {
1515                         length += bvec->bv_len;
1516                         continue;
1517                 }
1518                 if (!page->private) {
1519                         length += bvec->bv_len;
1520                         continue;
1521                 }
1522                 length = bvec->bv_len;
1523                 buf_len = page->private >> 2;
1524                 start = page_offset(page) + bvec->bv_offset;
1525                 io_tree = &BTRFS_I(page->mapping->host)->io_tree;
1526         }
1527         /* are we fully contained in this bio? */
1528         if (buf_len <= length)
1529                 return 1;
1530
1531         ret = extent_range_uptodate(io_tree, start + length,
1532                                     start + buf_len - 1);
1533         return ret;
1534 }
1535
1536 /*
1537  * called by the kthread helper functions to finally call the bio end_io
1538  * functions.  This is where read checksum verification actually happens
1539  */
1540 static void end_workqueue_fn(struct btrfs_work *work)
1541 {
1542         struct bio *bio;
1543         struct end_io_wq *end_io_wq;
1544         struct btrfs_fs_info *fs_info;
1545         int error;
1546
1547         end_io_wq = container_of(work, struct end_io_wq, work);
1548         bio = end_io_wq->bio;
1549         fs_info = end_io_wq->info;
1550
1551         /* metadata bio reads are special because the whole tree block must
1552          * be checksummed at once.  This makes sure the entire block is in
1553          * ram and up to date before trying to verify things.  For
1554          * blocksize <= pagesize, it is basically a noop
1555          */
1556         if (!(bio->bi_rw & REQ_WRITE) && end_io_wq->metadata &&
1557             !bio_ready_for_csum(bio)) {
1558                 btrfs_queue_worker(&fs_info->endio_meta_workers,
1559                                    &end_io_wq->work);
1560                 return;
1561         }
1562         error = end_io_wq->error;
1563         bio->bi_private = end_io_wq->private;
1564         bio->bi_end_io = end_io_wq->end_io;
1565         kfree(end_io_wq);
1566         bio_endio(bio, error);
1567 }
1568
1569 static int cleaner_kthread(void *arg)
1570 {
1571         struct btrfs_root *root = arg;
1572
1573         do {
1574                 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1575
1576                 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1577                     mutex_trylock(&root->fs_info->cleaner_mutex)) {
1578                         btrfs_run_delayed_iputs(root);
1579                         btrfs_clean_old_snapshots(root);
1580                         mutex_unlock(&root->fs_info->cleaner_mutex);
1581                         btrfs_run_defrag_inodes(root->fs_info);
1582                 }
1583
1584                 if (freezing(current)) {
1585                         refrigerator();
1586                 } else {
1587                         set_current_state(TASK_INTERRUPTIBLE);
1588                         if (!kthread_should_stop())
1589                                 schedule();
1590                         __set_current_state(TASK_RUNNING);
1591                 }
1592         } while (!kthread_should_stop());
1593         return 0;
1594 }
1595
1596 static int transaction_kthread(void *arg)
1597 {
1598         struct btrfs_root *root = arg;
1599         struct btrfs_trans_handle *trans;
1600         struct btrfs_transaction *cur;
1601         u64 transid;
1602         unsigned long now;
1603         unsigned long delay;
1604         int ret;
1605
1606         do {
1607                 delay = HZ * 30;
1608                 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1609                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1610
1611                 spin_lock(&root->fs_info->trans_lock);
1612                 cur = root->fs_info->running_transaction;
1613                 if (!cur) {
1614                         spin_unlock(&root->fs_info->trans_lock);
1615                         goto sleep;
1616                 }
1617
1618                 now = get_seconds();
1619                 if (!cur->blocked &&
1620                     (now < cur->start_time || now - cur->start_time < 30)) {
1621                         spin_unlock(&root->fs_info->trans_lock);
1622                         delay = HZ * 5;
1623                         goto sleep;
1624                 }
1625                 transid = cur->transid;
1626                 spin_unlock(&root->fs_info->trans_lock);
1627
1628                 trans = btrfs_join_transaction(root);
1629                 BUG_ON(IS_ERR(trans));
1630                 if (transid == trans->transid) {
1631                         ret = btrfs_commit_transaction(trans, root);
1632                         BUG_ON(ret);
1633                 } else {
1634                         btrfs_end_transaction(trans, root);
1635                 }
1636 sleep:
1637                 wake_up_process(root->fs_info->cleaner_kthread);
1638                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1639
1640                 if (freezing(current)) {
1641                         refrigerator();
1642                 } else {
1643                         set_current_state(TASK_INTERRUPTIBLE);
1644                         if (!kthread_should_stop() &&
1645                             !btrfs_transaction_blocked(root->fs_info))
1646                                 schedule_timeout(delay);
1647                         __set_current_state(TASK_RUNNING);
1648                 }
1649         } while (!kthread_should_stop());
1650         return 0;
1651 }
1652
1653 /*
1654  * this will find the highest generation in the array of
1655  * root backups.  The index of the highest array is returned,
1656  * or -1 if we can't find anything.
1657  *
1658  * We check to make sure the array is valid by comparing the
1659  * generation of the latest  root in the array with the generation
1660  * in the super block.  If they don't match we pitch it.
1661  */
1662 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1663 {
1664         u64 cur;
1665         int newest_index = -1;
1666         struct btrfs_root_backup *root_backup;
1667         int i;
1668
1669         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1670                 root_backup = info->super_copy->super_roots + i;
1671                 cur = btrfs_backup_tree_root_gen(root_backup);
1672                 if (cur == newest_gen)
1673                         newest_index = i;
1674         }
1675
1676         /* check to see if we actually wrapped around */
1677         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1678                 root_backup = info->super_copy->super_roots;
1679                 cur = btrfs_backup_tree_root_gen(root_backup);
1680                 if (cur == newest_gen)
1681                         newest_index = 0;
1682         }
1683         return newest_index;
1684 }
1685
1686
1687 /*
1688  * find the oldest backup so we know where to store new entries
1689  * in the backup array.  This will set the backup_root_index
1690  * field in the fs_info struct
1691  */
1692 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1693                                      u64 newest_gen)
1694 {
1695         int newest_index = -1;
1696
1697         newest_index = find_newest_super_backup(info, newest_gen);
1698         /* if there was garbage in there, just move along */
1699         if (newest_index == -1) {
1700                 info->backup_root_index = 0;
1701         } else {
1702                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1703         }
1704 }
1705
1706 /*
1707  * copy all the root pointers into the super backup array.
1708  * this will bump the backup pointer by one when it is
1709  * done
1710  */
1711 static void backup_super_roots(struct btrfs_fs_info *info)
1712 {
1713         int next_backup;
1714         struct btrfs_root_backup *root_backup;
1715         int last_backup;
1716
1717         next_backup = info->backup_root_index;
1718         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1719                 BTRFS_NUM_BACKUP_ROOTS;
1720
1721         /*
1722          * just overwrite the last backup if we're at the same generation
1723          * this happens only at umount
1724          */
1725         root_backup = info->super_for_commit->super_roots + last_backup;
1726         if (btrfs_backup_tree_root_gen(root_backup) ==
1727             btrfs_header_generation(info->tree_root->node))
1728                 next_backup = last_backup;
1729
1730         root_backup = info->super_for_commit->super_roots + next_backup;
1731
1732         /*
1733          * make sure all of our padding and empty slots get zero filled
1734          * regardless of which ones we use today
1735          */
1736         memset(root_backup, 0, sizeof(*root_backup));
1737
1738         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1739
1740         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1741         btrfs_set_backup_tree_root_gen(root_backup,
1742                                btrfs_header_generation(info->tree_root->node));
1743
1744         btrfs_set_backup_tree_root_level(root_backup,
1745                                btrfs_header_level(info->tree_root->node));
1746
1747         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1748         btrfs_set_backup_chunk_root_gen(root_backup,
1749                                btrfs_header_generation(info->chunk_root->node));
1750         btrfs_set_backup_chunk_root_level(root_backup,
1751                                btrfs_header_level(info->chunk_root->node));
1752
1753         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1754         btrfs_set_backup_extent_root_gen(root_backup,
1755                                btrfs_header_generation(info->extent_root->node));
1756         btrfs_set_backup_extent_root_level(root_backup,
1757                                btrfs_header_level(info->extent_root->node));
1758
1759         /*
1760          * we might commit during log recovery, which happens before we set
1761          * the fs_root.  Make sure it is valid before we fill it in.
1762          */
1763         if (info->fs_root && info->fs_root->node) {
1764                 btrfs_set_backup_fs_root(root_backup,
1765                                          info->fs_root->node->start);
1766                 btrfs_set_backup_fs_root_gen(root_backup,
1767                                btrfs_header_generation(info->fs_root->node));
1768                 btrfs_set_backup_fs_root_level(root_backup,
1769                                btrfs_header_level(info->fs_root->node));
1770         }
1771
1772         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1773         btrfs_set_backup_dev_root_gen(root_backup,
1774                                btrfs_header_generation(info->dev_root->node));
1775         btrfs_set_backup_dev_root_level(root_backup,
1776                                        btrfs_header_level(info->dev_root->node));
1777
1778         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1779         btrfs_set_backup_csum_root_gen(root_backup,
1780                                btrfs_header_generation(info->csum_root->node));
1781         btrfs_set_backup_csum_root_level(root_backup,
1782                                btrfs_header_level(info->csum_root->node));
1783
1784         btrfs_set_backup_total_bytes(root_backup,
1785                              btrfs_super_total_bytes(info->super_copy));
1786         btrfs_set_backup_bytes_used(root_backup,
1787                              btrfs_super_bytes_used(info->super_copy));
1788         btrfs_set_backup_num_devices(root_backup,
1789                              btrfs_super_num_devices(info->super_copy));
1790
1791         /*
1792          * if we don't copy this out to the super_copy, it won't get remembered
1793          * for the next commit
1794          */
1795         memcpy(&info->super_copy->super_roots,
1796                &info->super_for_commit->super_roots,
1797                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1798 }
1799
1800 /*
1801  * this copies info out of the root backup array and back into
1802  * the in-memory super block.  It is meant to help iterate through
1803  * the array, so you send it the number of backups you've already
1804  * tried and the last backup index you used.
1805  *
1806  * this returns -1 when it has tried all the backups
1807  */
1808 static noinline int next_root_backup(struct btrfs_fs_info *info,
1809                                      struct btrfs_super_block *super,
1810                                      int *num_backups_tried, int *backup_index)
1811 {
1812         struct btrfs_root_backup *root_backup;
1813         int newest = *backup_index;
1814
1815         if (*num_backups_tried == 0) {
1816                 u64 gen = btrfs_super_generation(super);
1817
1818                 newest = find_newest_super_backup(info, gen);
1819                 if (newest == -1)
1820                         return -1;
1821
1822                 *backup_index = newest;
1823                 *num_backups_tried = 1;
1824         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1825                 /* we've tried all the backups, all done */
1826                 return -1;
1827         } else {
1828                 /* jump to the next oldest backup */
1829                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1830                         BTRFS_NUM_BACKUP_ROOTS;
1831                 *backup_index = newest;
1832                 *num_backups_tried += 1;
1833         }
1834         root_backup = super->super_roots + newest;
1835
1836         btrfs_set_super_generation(super,
1837                                    btrfs_backup_tree_root_gen(root_backup));
1838         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1839         btrfs_set_super_root_level(super,
1840                                    btrfs_backup_tree_root_level(root_backup));
1841         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1842
1843         /*
1844          * fixme: the total bytes and num_devices need to match or we should
1845          * need a fsck
1846          */
1847         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1848         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1849         return 0;
1850 }
1851
1852 /* helper to cleanup tree roots */
1853 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1854 {
1855         free_extent_buffer(info->tree_root->node);
1856         free_extent_buffer(info->tree_root->commit_root);
1857         free_extent_buffer(info->dev_root->node);
1858         free_extent_buffer(info->dev_root->commit_root);
1859         free_extent_buffer(info->extent_root->node);
1860         free_extent_buffer(info->extent_root->commit_root);
1861         free_extent_buffer(info->csum_root->node);
1862         free_extent_buffer(info->csum_root->commit_root);
1863
1864         info->tree_root->node = NULL;
1865         info->tree_root->commit_root = NULL;
1866         info->dev_root->node = NULL;
1867         info->dev_root->commit_root = NULL;
1868         info->extent_root->node = NULL;
1869         info->extent_root->commit_root = NULL;
1870         info->csum_root->node = NULL;
1871         info->csum_root->commit_root = NULL;
1872
1873         if (chunk_root) {
1874                 free_extent_buffer(info->chunk_root->node);
1875                 free_extent_buffer(info->chunk_root->commit_root);
1876                 info->chunk_root->node = NULL;
1877                 info->chunk_root->commit_root = NULL;
1878         }
1879 }
1880
1881
1882 struct btrfs_root *open_ctree(struct super_block *sb,
1883                               struct btrfs_fs_devices *fs_devices,
1884                               char *options)
1885 {
1886         u32 sectorsize;
1887         u32 nodesize;
1888         u32 leafsize;
1889         u32 blocksize;
1890         u32 stripesize;
1891         u64 generation;
1892         u64 features;
1893         struct btrfs_key location;
1894         struct buffer_head *bh;
1895         struct btrfs_super_block *disk_super;
1896         struct btrfs_root *tree_root = btrfs_sb(sb);
1897         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1898         struct btrfs_root *extent_root;
1899         struct btrfs_root *csum_root;
1900         struct btrfs_root *chunk_root;
1901         struct btrfs_root *dev_root;
1902         struct btrfs_root *log_tree_root;
1903         int ret;
1904         int err = -EINVAL;
1905         int num_backups_tried = 0;
1906         int backup_index = 0;
1907
1908         extent_root = fs_info->extent_root =
1909                 kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
1910         csum_root = fs_info->csum_root =
1911                 kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
1912         chunk_root = fs_info->chunk_root =
1913                 kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
1914         dev_root = fs_info->dev_root =
1915                 kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
1916
1917         if (!extent_root || !csum_root || !chunk_root || !dev_root) {
1918                 err = -ENOMEM;
1919                 goto fail;
1920         }
1921
1922         ret = init_srcu_struct(&fs_info->subvol_srcu);
1923         if (ret) {
1924                 err = ret;
1925                 goto fail;
1926         }
1927
1928         ret = setup_bdi(fs_info, &fs_info->bdi);
1929         if (ret) {
1930                 err = ret;
1931                 goto fail_srcu;
1932         }
1933
1934         fs_info->btree_inode = new_inode(sb);
1935         if (!fs_info->btree_inode) {
1936                 err = -ENOMEM;
1937                 goto fail_bdi;
1938         }
1939
1940         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1941
1942         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
1943         INIT_LIST_HEAD(&fs_info->trans_list);
1944         INIT_LIST_HEAD(&fs_info->dead_roots);
1945         INIT_LIST_HEAD(&fs_info->delayed_iputs);
1946         INIT_LIST_HEAD(&fs_info->hashers);
1947         INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1948         INIT_LIST_HEAD(&fs_info->ordered_operations);
1949         INIT_LIST_HEAD(&fs_info->caching_block_groups);
1950         spin_lock_init(&fs_info->delalloc_lock);
1951         spin_lock_init(&fs_info->trans_lock);
1952         spin_lock_init(&fs_info->ref_cache_lock);
1953         spin_lock_init(&fs_info->fs_roots_radix_lock);
1954         spin_lock_init(&fs_info->delayed_iput_lock);
1955         spin_lock_init(&fs_info->defrag_inodes_lock);
1956         spin_lock_init(&fs_info->free_chunk_lock);
1957         mutex_init(&fs_info->reloc_mutex);
1958
1959         init_completion(&fs_info->kobj_unregister);
1960         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1961         INIT_LIST_HEAD(&fs_info->space_info);
1962         btrfs_mapping_init(&fs_info->mapping_tree);
1963         btrfs_init_block_rsv(&fs_info->global_block_rsv);
1964         btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
1965         btrfs_init_block_rsv(&fs_info->trans_block_rsv);
1966         btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
1967         btrfs_init_block_rsv(&fs_info->empty_block_rsv);
1968         btrfs_init_block_rsv(&fs_info->delayed_block_rsv);
1969         atomic_set(&fs_info->nr_async_submits, 0);
1970         atomic_set(&fs_info->async_delalloc_pages, 0);
1971         atomic_set(&fs_info->async_submit_draining, 0);
1972         atomic_set(&fs_info->nr_async_bios, 0);
1973         atomic_set(&fs_info->defrag_running, 0);
1974         fs_info->sb = sb;
1975         fs_info->max_inline = 8192 * 1024;
1976         fs_info->metadata_ratio = 0;
1977         fs_info->defrag_inodes = RB_ROOT;
1978         fs_info->trans_no_join = 0;
1979         fs_info->free_chunk_space = 0;
1980
1981         /* readahead state */
1982         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
1983         spin_lock_init(&fs_info->reada_lock);
1984
1985         fs_info->thread_pool_size = min_t(unsigned long,
1986                                           num_online_cpus() + 2, 8);
1987
1988         INIT_LIST_HEAD(&fs_info->ordered_extents);
1989         spin_lock_init(&fs_info->ordered_extent_lock);
1990         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
1991                                         GFP_NOFS);
1992         if (!fs_info->delayed_root) {
1993                 err = -ENOMEM;
1994                 goto fail_iput;
1995         }
1996         btrfs_init_delayed_root(fs_info->delayed_root);
1997
1998         mutex_init(&fs_info->scrub_lock);
1999         atomic_set(&fs_info->scrubs_running, 0);
2000         atomic_set(&fs_info->scrub_pause_req, 0);
2001         atomic_set(&fs_info->scrubs_paused, 0);
2002         atomic_set(&fs_info->scrub_cancel_req, 0);
2003         init_waitqueue_head(&fs_info->scrub_pause_wait);
2004         init_rwsem(&fs_info->scrub_super_lock);
2005         fs_info->scrub_workers_refcnt = 0;
2006 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2007         fs_info->check_integrity_print_mask = 0;
2008 #endif
2009
2010         spin_lock_init(&fs_info->balance_lock);
2011         mutex_init(&fs_info->balance_mutex);
2012         atomic_set(&fs_info->balance_running, 0);
2013         atomic_set(&fs_info->balance_pause_req, 0);
2014         atomic_set(&fs_info->balance_cancel_req, 0);
2015         fs_info->balance_ctl = NULL;
2016         init_waitqueue_head(&fs_info->balance_wait_q);
2017
2018         sb->s_blocksize = 4096;
2019         sb->s_blocksize_bits = blksize_bits(4096);
2020         sb->s_bdi = &fs_info->bdi;
2021
2022         fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2023         set_nlink(fs_info->btree_inode, 1);
2024         /*
2025          * we set the i_size on the btree inode to the max possible int.
2026          * the real end of the address space is determined by all of
2027          * the devices in the system
2028          */
2029         fs_info->btree_inode->i_size = OFFSET_MAX;
2030         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2031         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2032
2033         RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2034         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2035                              fs_info->btree_inode->i_mapping);
2036         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2037
2038         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2039
2040         BTRFS_I(fs_info->btree_inode)->root = tree_root;
2041         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2042                sizeof(struct btrfs_key));
2043         BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
2044         insert_inode_hash(fs_info->btree_inode);
2045
2046         spin_lock_init(&fs_info->block_group_cache_lock);
2047         fs_info->block_group_cache_tree = RB_ROOT;
2048
2049         extent_io_tree_init(&fs_info->freed_extents[0],
2050                              fs_info->btree_inode->i_mapping);
2051         extent_io_tree_init(&fs_info->freed_extents[1],
2052                              fs_info->btree_inode->i_mapping);
2053         fs_info->pinned_extents = &fs_info->freed_extents[0];
2054         fs_info->do_barriers = 1;
2055
2056
2057         mutex_init(&fs_info->ordered_operations_mutex);
2058         mutex_init(&fs_info->tree_log_mutex);
2059         mutex_init(&fs_info->chunk_mutex);
2060         mutex_init(&fs_info->transaction_kthread_mutex);
2061         mutex_init(&fs_info->cleaner_mutex);
2062         mutex_init(&fs_info->volume_mutex);
2063         init_rwsem(&fs_info->extent_commit_sem);
2064         init_rwsem(&fs_info->cleanup_work_sem);
2065         init_rwsem(&fs_info->subvol_sem);
2066
2067         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2068         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2069
2070         init_waitqueue_head(&fs_info->transaction_throttle);
2071         init_waitqueue_head(&fs_info->transaction_wait);
2072         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2073         init_waitqueue_head(&fs_info->async_submit_wait);
2074
2075         __setup_root(4096, 4096, 4096, 4096, tree_root,
2076                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
2077
2078         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2079         if (!bh) {
2080                 err = -EINVAL;
2081                 goto fail_alloc;
2082         }
2083
2084         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2085         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2086                sizeof(*fs_info->super_for_commit));
2087         brelse(bh);
2088
2089         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2090
2091         disk_super = fs_info->super_copy;
2092         if (!btrfs_super_root(disk_super))
2093                 goto fail_alloc;
2094
2095         /* check FS state, whether FS is broken. */
2096         fs_info->fs_state |= btrfs_super_flags(disk_super);
2097
2098         btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2099
2100         /*
2101          * run through our array of backup supers and setup
2102          * our ring pointer to the oldest one
2103          */
2104         generation = btrfs_super_generation(disk_super);
2105         find_oldest_super_backup(fs_info, generation);
2106
2107         /*
2108          * In the long term, we'll store the compression type in the super
2109          * block, and it'll be used for per file compression control.
2110          */
2111         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2112
2113         ret = btrfs_parse_options(tree_root, options);
2114         if (ret) {
2115                 err = ret;
2116                 goto fail_alloc;
2117         }
2118
2119         features = btrfs_super_incompat_flags(disk_super) &
2120                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2121         if (features) {
2122                 printk(KERN_ERR "BTRFS: couldn't mount because of "
2123                        "unsupported optional features (%Lx).\n",
2124                        (unsigned long long)features);
2125                 err = -EINVAL;
2126                 goto fail_alloc;
2127         }
2128
2129         features = btrfs_super_incompat_flags(disk_super);
2130         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2131         if (tree_root->fs_info->compress_type & BTRFS_COMPRESS_LZO)
2132                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2133         btrfs_set_super_incompat_flags(disk_super, features);
2134
2135         features = btrfs_super_compat_ro_flags(disk_super) &
2136                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2137         if (!(sb->s_flags & MS_RDONLY) && features) {
2138                 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2139                        "unsupported option features (%Lx).\n",
2140                        (unsigned long long)features);
2141                 err = -EINVAL;
2142                 goto fail_alloc;
2143         }
2144
2145         btrfs_init_workers(&fs_info->generic_worker,
2146                            "genwork", 1, NULL);
2147
2148         btrfs_init_workers(&fs_info->workers, "worker",
2149                            fs_info->thread_pool_size,
2150                            &fs_info->generic_worker);
2151
2152         btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2153                            fs_info->thread_pool_size,
2154                            &fs_info->generic_worker);
2155
2156         btrfs_init_workers(&fs_info->submit_workers, "submit",
2157                            min_t(u64, fs_devices->num_devices,
2158                            fs_info->thread_pool_size),
2159                            &fs_info->generic_worker);
2160
2161         btrfs_init_workers(&fs_info->caching_workers, "cache",
2162                            2, &fs_info->generic_worker);
2163
2164         /* a higher idle thresh on the submit workers makes it much more
2165          * likely that bios will be send down in a sane order to the
2166          * devices
2167          */
2168         fs_info->submit_workers.idle_thresh = 64;
2169
2170         fs_info->workers.idle_thresh = 16;
2171         fs_info->workers.ordered = 1;
2172
2173         fs_info->delalloc_workers.idle_thresh = 2;
2174         fs_info->delalloc_workers.ordered = 1;
2175
2176         btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2177                            &fs_info->generic_worker);
2178         btrfs_init_workers(&fs_info->endio_workers, "endio",
2179                            fs_info->thread_pool_size,
2180                            &fs_info->generic_worker);
2181         btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2182                            fs_info->thread_pool_size,
2183                            &fs_info->generic_worker);
2184         btrfs_init_workers(&fs_info->endio_meta_write_workers,
2185                            "endio-meta-write", fs_info->thread_pool_size,
2186                            &fs_info->generic_worker);
2187         btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2188                            fs_info->thread_pool_size,
2189                            &fs_info->generic_worker);
2190         btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2191                            1, &fs_info->generic_worker);
2192         btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2193                            fs_info->thread_pool_size,
2194                            &fs_info->generic_worker);
2195         btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2196                            fs_info->thread_pool_size,
2197                            &fs_info->generic_worker);
2198
2199         /*
2200          * endios are largely parallel and should have a very
2201          * low idle thresh
2202          */
2203         fs_info->endio_workers.idle_thresh = 4;
2204         fs_info->endio_meta_workers.idle_thresh = 4;
2205
2206         fs_info->endio_write_workers.idle_thresh = 2;
2207         fs_info->endio_meta_write_workers.idle_thresh = 2;
2208         fs_info->readahead_workers.idle_thresh = 2;
2209
2210         /*
2211          * btrfs_start_workers can really only fail because of ENOMEM so just
2212          * return -ENOMEM if any of these fail.
2213          */
2214         ret = btrfs_start_workers(&fs_info->workers);
2215         ret |= btrfs_start_workers(&fs_info->generic_worker);
2216         ret |= btrfs_start_workers(&fs_info->submit_workers);
2217         ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2218         ret |= btrfs_start_workers(&fs_info->fixup_workers);
2219         ret |= btrfs_start_workers(&fs_info->endio_workers);
2220         ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2221         ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2222         ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2223         ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2224         ret |= btrfs_start_workers(&fs_info->delayed_workers);
2225         ret |= btrfs_start_workers(&fs_info->caching_workers);
2226         ret |= btrfs_start_workers(&fs_info->readahead_workers);
2227         if (ret) {
2228                 ret = -ENOMEM;
2229                 goto fail_sb_buffer;
2230         }
2231
2232         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2233         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2234                                     4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2235
2236         nodesize = btrfs_super_nodesize(disk_super);
2237         leafsize = btrfs_super_leafsize(disk_super);
2238         sectorsize = btrfs_super_sectorsize(disk_super);
2239         stripesize = btrfs_super_stripesize(disk_super);
2240         tree_root->nodesize = nodesize;
2241         tree_root->leafsize = leafsize;
2242         tree_root->sectorsize = sectorsize;
2243         tree_root->stripesize = stripesize;
2244
2245         sb->s_blocksize = sectorsize;
2246         sb->s_blocksize_bits = blksize_bits(sectorsize);
2247
2248         if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
2249                     sizeof(disk_super->magic))) {
2250                 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2251                 goto fail_sb_buffer;
2252         }
2253
2254         mutex_lock(&fs_info->chunk_mutex);
2255         ret = btrfs_read_sys_array(tree_root);
2256         mutex_unlock(&fs_info->chunk_mutex);
2257         if (ret) {
2258                 printk(KERN_WARNING "btrfs: failed to read the system "
2259                        "array on %s\n", sb->s_id);
2260                 goto fail_sb_buffer;
2261         }
2262
2263         blocksize = btrfs_level_size(tree_root,
2264                                      btrfs_super_chunk_root_level(disk_super));
2265         generation = btrfs_super_chunk_root_generation(disk_super);
2266
2267         __setup_root(nodesize, leafsize, sectorsize, stripesize,
2268                      chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2269
2270         chunk_root->node = read_tree_block(chunk_root,
2271                                            btrfs_super_chunk_root(disk_super),
2272                                            blocksize, generation);
2273         BUG_ON(!chunk_root->node);
2274         if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2275                 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2276                        sb->s_id);
2277                 goto fail_tree_roots;
2278         }
2279         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2280         chunk_root->commit_root = btrfs_root_node(chunk_root);
2281
2282         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2283            (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2284            BTRFS_UUID_SIZE);
2285
2286         ret = btrfs_read_chunk_tree(chunk_root);
2287         if (ret) {
2288                 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2289                        sb->s_id);
2290                 goto fail_tree_roots;
2291         }
2292
2293         btrfs_close_extra_devices(fs_devices);
2294
2295 retry_root_backup:
2296         blocksize = btrfs_level_size(tree_root,
2297                                      btrfs_super_root_level(disk_super));
2298         generation = btrfs_super_generation(disk_super);
2299
2300         tree_root->node = read_tree_block(tree_root,
2301                                           btrfs_super_root(disk_super),
2302                                           blocksize, generation);
2303         if (!tree_root->node ||
2304             !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2305                 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2306                        sb->s_id);
2307
2308                 goto recovery_tree_root;
2309         }
2310
2311         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2312         tree_root->commit_root = btrfs_root_node(tree_root);
2313
2314         ret = find_and_setup_root(tree_root, fs_info,
2315                                   BTRFS_EXTENT_TREE_OBJECTID, extent_root);
2316         if (ret)
2317                 goto recovery_tree_root;
2318         extent_root->track_dirty = 1;
2319
2320         ret = find_and_setup_root(tree_root, fs_info,
2321                                   BTRFS_DEV_TREE_OBJECTID, dev_root);
2322         if (ret)
2323                 goto recovery_tree_root;
2324         dev_root->track_dirty = 1;
2325
2326         ret = find_and_setup_root(tree_root, fs_info,
2327                                   BTRFS_CSUM_TREE_OBJECTID, csum_root);
2328         if (ret)
2329                 goto recovery_tree_root;
2330
2331         csum_root->track_dirty = 1;
2332
2333         fs_info->generation = generation;
2334         fs_info->last_trans_committed = generation;
2335
2336         ret = btrfs_init_space_info(fs_info);
2337         if (ret) {
2338                 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2339                 goto fail_block_groups;
2340         }
2341
2342         ret = btrfs_read_block_groups(extent_root);
2343         if (ret) {
2344                 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2345                 goto fail_block_groups;
2346         }
2347
2348         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2349                                                "btrfs-cleaner");
2350         if (IS_ERR(fs_info->cleaner_kthread))
2351                 goto fail_block_groups;
2352
2353         fs_info->transaction_kthread = kthread_run(transaction_kthread,
2354                                                    tree_root,
2355                                                    "btrfs-transaction");
2356         if (IS_ERR(fs_info->transaction_kthread))
2357                 goto fail_cleaner;
2358
2359         if (!btrfs_test_opt(tree_root, SSD) &&
2360             !btrfs_test_opt(tree_root, NOSSD) &&
2361             !fs_info->fs_devices->rotating) {
2362                 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2363                        "mode\n");
2364                 btrfs_set_opt(fs_info->mount_opt, SSD);
2365         }
2366
2367 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2368         if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2369                 ret = btrfsic_mount(tree_root, fs_devices,
2370                                     btrfs_test_opt(tree_root,
2371                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2372                                     1 : 0,
2373                                     fs_info->check_integrity_print_mask);
2374                 if (ret)
2375                         printk(KERN_WARNING "btrfs: failed to initialize"
2376                                " integrity check module %s\n", sb->s_id);
2377         }
2378 #endif
2379
2380         /* do not make disk changes in broken FS */
2381         if (btrfs_super_log_root(disk_super) != 0 &&
2382             !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
2383                 u64 bytenr = btrfs_super_log_root(disk_super);
2384
2385                 if (fs_devices->rw_devices == 0) {
2386                         printk(KERN_WARNING "Btrfs log replay required "
2387                                "on RO media\n");
2388                         err = -EIO;
2389                         goto fail_trans_kthread;
2390                 }
2391                 blocksize =
2392                      btrfs_level_size(tree_root,
2393                                       btrfs_super_log_root_level(disk_super));
2394
2395                 log_tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
2396                 if (!log_tree_root) {
2397                         err = -ENOMEM;
2398                         goto fail_trans_kthread;
2399                 }
2400
2401                 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2402                              log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2403
2404                 log_tree_root->node = read_tree_block(tree_root, bytenr,
2405                                                       blocksize,
2406                                                       generation + 1);
2407                 ret = btrfs_recover_log_trees(log_tree_root);
2408                 BUG_ON(ret);
2409
2410                 if (sb->s_flags & MS_RDONLY) {
2411                         ret =  btrfs_commit_super(tree_root);
2412                         BUG_ON(ret);
2413                 }
2414         }
2415
2416         ret = btrfs_find_orphan_roots(tree_root);
2417         BUG_ON(ret);
2418
2419         if (!(sb->s_flags & MS_RDONLY)) {
2420                 ret = btrfs_cleanup_fs_roots(fs_info);
2421                 BUG_ON(ret);
2422
2423                 ret = btrfs_recover_relocation(tree_root);
2424                 if (ret < 0) {
2425                         printk(KERN_WARNING
2426                                "btrfs: failed to recover relocation\n");
2427                         err = -EINVAL;
2428                         goto fail_trans_kthread;
2429                 }
2430         }
2431
2432         location.objectid = BTRFS_FS_TREE_OBJECTID;
2433         location.type = BTRFS_ROOT_ITEM_KEY;
2434         location.offset = (u64)-1;
2435
2436         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2437         if (!fs_info->fs_root)
2438                 goto fail_trans_kthread;
2439         if (IS_ERR(fs_info->fs_root)) {
2440                 err = PTR_ERR(fs_info->fs_root);
2441                 goto fail_trans_kthread;
2442         }
2443
2444         if (!(sb->s_flags & MS_RDONLY)) {
2445                 down_read(&fs_info->cleanup_work_sem);
2446                 err = btrfs_orphan_cleanup(fs_info->fs_root);
2447                 if (!err)
2448                         err = btrfs_orphan_cleanup(fs_info->tree_root);
2449                 up_read(&fs_info->cleanup_work_sem);
2450
2451                 if (!err)
2452                         err = btrfs_recover_balance(fs_info->tree_root);
2453
2454                 if (err) {
2455                         close_ctree(tree_root);
2456                         return ERR_PTR(err);
2457                 }
2458         }
2459
2460         return tree_root;
2461
2462 fail_trans_kthread:
2463         kthread_stop(fs_info->transaction_kthread);
2464 fail_cleaner:
2465         kthread_stop(fs_info->cleaner_kthread);
2466
2467         /*
2468          * make sure we're done with the btree inode before we stop our
2469          * kthreads
2470          */
2471         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2472         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2473
2474 fail_block_groups:
2475         btrfs_free_block_groups(fs_info);
2476
2477 fail_tree_roots:
2478         free_root_pointers(fs_info, 1);
2479
2480 fail_sb_buffer:
2481         btrfs_stop_workers(&fs_info->generic_worker);
2482         btrfs_stop_workers(&fs_info->readahead_workers);
2483         btrfs_stop_workers(&fs_info->fixup_workers);
2484         btrfs_stop_workers(&fs_info->delalloc_workers);
2485         btrfs_stop_workers(&fs_info->workers);
2486         btrfs_stop_workers(&fs_info->endio_workers);
2487         btrfs_stop_workers(&fs_info->endio_meta_workers);
2488         btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2489         btrfs_stop_workers(&fs_info->endio_write_workers);
2490         btrfs_stop_workers(&fs_info->endio_freespace_worker);
2491         btrfs_stop_workers(&fs_info->submit_workers);
2492         btrfs_stop_workers(&fs_info->delayed_workers);
2493         btrfs_stop_workers(&fs_info->caching_workers);
2494 fail_alloc:
2495 fail_iput:
2496         btrfs_mapping_tree_free(&fs_info->mapping_tree);
2497
2498         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2499         iput(fs_info->btree_inode);
2500 fail_bdi:
2501         bdi_destroy(&fs_info->bdi);
2502 fail_srcu:
2503         cleanup_srcu_struct(&fs_info->subvol_srcu);
2504 fail:
2505         btrfs_close_devices(fs_info->fs_devices);
2506         free_fs_info(fs_info);
2507         return ERR_PTR(err);
2508
2509 recovery_tree_root:
2510         if (!btrfs_test_opt(tree_root, RECOVERY))
2511                 goto fail_tree_roots;
2512
2513         free_root_pointers(fs_info, 0);
2514
2515         /* don't use the log in recovery mode, it won't be valid */
2516         btrfs_set_super_log_root(disk_super, 0);
2517
2518         /* we can't trust the free space cache either */
2519         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2520
2521         ret = next_root_backup(fs_info, fs_info->super_copy,
2522                                &num_backups_tried, &backup_index);
2523         if (ret == -1)
2524                 goto fail_block_groups;
2525         goto retry_root_backup;
2526 }
2527
2528 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2529 {
2530         char b[BDEVNAME_SIZE];
2531
2532         if (uptodate) {
2533                 set_buffer_uptodate(bh);
2534         } else {
2535                 printk_ratelimited(KERN_WARNING "lost page write due to "
2536                                         "I/O error on %s\n",
2537                                        bdevname(bh->b_bdev, b));
2538                 /* note, we dont' set_buffer_write_io_error because we have
2539                  * our own ways of dealing with the IO errors
2540                  */
2541                 clear_buffer_uptodate(bh);
2542         }
2543         unlock_buffer(bh);
2544         put_bh(bh);
2545 }
2546
2547 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2548 {
2549         struct buffer_head *bh;
2550         struct buffer_head *latest = NULL;
2551         struct btrfs_super_block *super;
2552         int i;
2553         u64 transid = 0;
2554         u64 bytenr;
2555
2556         /* we would like to check all the supers, but that would make
2557          * a btrfs mount succeed after a mkfs from a different FS.
2558          * So, we need to add a special mount option to scan for
2559          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2560          */
2561         for (i = 0; i < 1; i++) {
2562                 bytenr = btrfs_sb_offset(i);
2563                 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2564                         break;
2565                 bh = __bread(bdev, bytenr / 4096, 4096);
2566                 if (!bh)
2567                         continue;
2568
2569                 super = (struct btrfs_super_block *)bh->b_data;
2570                 if (btrfs_super_bytenr(super) != bytenr ||
2571                     strncmp((char *)(&super->magic), BTRFS_MAGIC,
2572                             sizeof(super->magic))) {
2573                         brelse(bh);
2574                         continue;
2575                 }
2576
2577                 if (!latest || btrfs_super_generation(super) > transid) {
2578                         brelse(latest);
2579                         latest = bh;
2580                         transid = btrfs_super_generation(super);
2581                 } else {
2582                         brelse(bh);
2583                 }
2584         }
2585         return latest;
2586 }
2587
2588 /*
2589  * this should be called twice, once with wait == 0 and
2590  * once with wait == 1.  When wait == 0 is done, all the buffer heads
2591  * we write are pinned.
2592  *
2593  * They are released when wait == 1 is done.
2594  * max_mirrors must be the same for both runs, and it indicates how
2595  * many supers on this one device should be written.
2596  *
2597  * max_mirrors == 0 means to write them all.
2598  */
2599 static int write_dev_supers(struct btrfs_device *device,
2600                             struct btrfs_super_block *sb,
2601                             int do_barriers, int wait, int max_mirrors)
2602 {
2603         struct buffer_head *bh;
2604         int i;
2605         int ret;
2606         int errors = 0;
2607         u32 crc;
2608         u64 bytenr;
2609
2610         if (max_mirrors == 0)
2611                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2612
2613         for (i = 0; i < max_mirrors; i++) {
2614                 bytenr = btrfs_sb_offset(i);
2615                 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2616                         break;
2617
2618                 if (wait) {
2619                         bh = __find_get_block(device->bdev, bytenr / 4096,
2620                                               BTRFS_SUPER_INFO_SIZE);
2621                         BUG_ON(!bh);
2622                         wait_on_buffer(bh);
2623                         if (!buffer_uptodate(bh))
2624                                 errors++;
2625
2626                         /* drop our reference */
2627                         brelse(bh);
2628
2629                         /* drop the reference from the wait == 0 run */
2630                         brelse(bh);
2631                         continue;
2632                 } else {
2633                         btrfs_set_super_bytenr(sb, bytenr);
2634
2635                         crc = ~(u32)0;
2636                         crc = btrfs_csum_data(NULL, (char *)sb +
2637                                               BTRFS_CSUM_SIZE, crc,
2638                                               BTRFS_SUPER_INFO_SIZE -
2639                                               BTRFS_CSUM_SIZE);
2640                         btrfs_csum_final(crc, sb->csum);
2641
2642                         /*
2643                          * one reference for us, and we leave it for the
2644                          * caller
2645                          */
2646                         bh = __getblk(device->bdev, bytenr / 4096,
2647                                       BTRFS_SUPER_INFO_SIZE);
2648                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2649
2650                         /* one reference for submit_bh */
2651                         get_bh(bh);
2652
2653                         set_buffer_uptodate(bh);
2654                         lock_buffer(bh);
2655                         bh->b_end_io = btrfs_end_buffer_write_sync;
2656                 }
2657
2658                 /*
2659                  * we fua the first super.  The others we allow
2660                  * to go down lazy.
2661                  */
2662                 ret = btrfsic_submit_bh(WRITE_FUA, bh);
2663                 if (ret)
2664                         errors++;
2665         }
2666         return errors < i ? 0 : -1;
2667 }
2668
2669 /*
2670  * endio for the write_dev_flush, this will wake anyone waiting
2671  * for the barrier when it is done
2672  */
2673 static void btrfs_end_empty_barrier(struct bio *bio, int err)
2674 {
2675         if (err) {
2676                 if (err == -EOPNOTSUPP)
2677                         set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2678                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2679         }
2680         if (bio->bi_private)
2681                 complete(bio->bi_private);
2682         bio_put(bio);
2683 }
2684
2685 /*
2686  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
2687  * sent down.  With wait == 1, it waits for the previous flush.
2688  *
2689  * any device where the flush fails with eopnotsupp are flagged as not-barrier
2690  * capable
2691  */
2692 static int write_dev_flush(struct btrfs_device *device, int wait)
2693 {
2694         struct bio *bio;
2695         int ret = 0;
2696
2697         if (device->nobarriers)
2698                 return 0;
2699
2700         if (wait) {
2701                 bio = device->flush_bio;
2702                 if (!bio)
2703                         return 0;
2704
2705                 wait_for_completion(&device->flush_wait);
2706
2707                 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
2708                         printk("btrfs: disabling barriers on dev %s\n",
2709                                device->name);
2710                         device->nobarriers = 1;
2711                 }
2712                 if (!bio_flagged(bio, BIO_UPTODATE)) {
2713                         ret = -EIO;
2714                 }
2715
2716                 /* drop the reference from the wait == 0 run */
2717                 bio_put(bio);
2718                 device->flush_bio = NULL;
2719
2720                 return ret;
2721         }
2722
2723         /*
2724          * one reference for us, and we leave it for the
2725          * caller
2726          */
2727         device->flush_bio = NULL;;
2728         bio = bio_alloc(GFP_NOFS, 0);
2729         if (!bio)
2730                 return -ENOMEM;
2731
2732         bio->bi_end_io = btrfs_end_empty_barrier;
2733         bio->bi_bdev = device->bdev;
2734         init_completion(&device->flush_wait);
2735         bio->bi_private = &device->flush_wait;
2736         device->flush_bio = bio;
2737
2738         bio_get(bio);
2739         btrfsic_submit_bio(WRITE_FLUSH, bio);
2740
2741         return 0;
2742 }
2743
2744 /*
2745  * send an empty flush down to each device in parallel,
2746  * then wait for them
2747  */
2748 static int barrier_all_devices(struct btrfs_fs_info *info)
2749 {
2750         struct list_head *head;
2751         struct btrfs_device *dev;
2752         int errors = 0;
2753         int ret;
2754
2755         /* send down all the barriers */
2756         head = &info->fs_devices->devices;
2757         list_for_each_entry_rcu(dev, head, dev_list) {
2758                 if (!dev->bdev) {
2759                         errors++;
2760                         continue;
2761                 }
2762                 if (!dev->in_fs_metadata || !dev->writeable)
2763                         continue;
2764
2765                 ret = write_dev_flush(dev, 0);
2766                 if (ret)
2767                         errors++;
2768         }
2769
2770         /* wait for all the barriers */
2771         list_for_each_entry_rcu(dev, head, dev_list) {
2772                 if (!dev->bdev) {
2773                         errors++;
2774                         continue;
2775                 }
2776                 if (!dev->in_fs_metadata || !dev->writeable)
2777                         continue;
2778
2779                 ret = write_dev_flush(dev, 1);
2780                 if (ret)
2781                         errors++;
2782         }
2783         if (errors)
2784                 return -EIO;
2785         return 0;
2786 }
2787
2788 int write_all_supers(struct btrfs_root *root, int max_mirrors)
2789 {
2790         struct list_head *head;
2791         struct btrfs_device *dev;
2792         struct btrfs_super_block *sb;
2793         struct btrfs_dev_item *dev_item;
2794         int ret;
2795         int do_barriers;
2796         int max_errors;
2797         int total_errors = 0;
2798         u64 flags;
2799
2800         max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
2801         do_barriers = !btrfs_test_opt(root, NOBARRIER);
2802         backup_super_roots(root->fs_info);
2803
2804         sb = root->fs_info->super_for_commit;
2805         dev_item = &sb->dev_item;
2806
2807         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2808         head = &root->fs_info->fs_devices->devices;
2809
2810         if (do_barriers)
2811                 barrier_all_devices(root->fs_info);
2812
2813         list_for_each_entry_rcu(dev, head, dev_list) {
2814                 if (!dev->bdev) {
2815                         total_errors++;
2816                         continue;
2817                 }
2818                 if (!dev->in_fs_metadata || !dev->writeable)
2819                         continue;
2820
2821                 btrfs_set_stack_device_generation(dev_item, 0);
2822                 btrfs_set_stack_device_type(dev_item, dev->type);
2823                 btrfs_set_stack_device_id(dev_item, dev->devid);
2824                 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2825                 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2826                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2827                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2828                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2829                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2830                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2831
2832                 flags = btrfs_super_flags(sb);
2833                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2834
2835                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
2836                 if (ret)
2837                         total_errors++;
2838         }
2839         if (total_errors > max_errors) {
2840                 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2841                        total_errors);
2842                 BUG();
2843         }
2844
2845         total_errors = 0;
2846         list_for_each_entry_rcu(dev, head, dev_list) {
2847                 if (!dev->bdev)
2848                         continue;
2849                 if (!dev->in_fs_metadata || !dev->writeable)
2850                         continue;
2851
2852                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2853                 if (ret)
2854                         total_errors++;
2855         }
2856         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2857         if (total_errors > max_errors) {
2858                 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2859                        total_errors);
2860                 BUG();
2861         }
2862         return 0;
2863 }
2864
2865 int write_ctree_super(struct btrfs_trans_handle *trans,
2866                       struct btrfs_root *root, int max_mirrors)
2867 {
2868         int ret;
2869
2870         ret = write_all_supers(root, max_mirrors);
2871         return ret;
2872 }
2873
2874 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2875 {
2876         spin_lock(&fs_info->fs_roots_radix_lock);
2877         radix_tree_delete(&fs_info->fs_roots_radix,
2878                           (unsigned long)root->root_key.objectid);
2879         spin_unlock(&fs_info->fs_roots_radix_lock);
2880
2881         if (btrfs_root_refs(&root->root_item) == 0)
2882                 synchronize_srcu(&fs_info->subvol_srcu);
2883
2884         __btrfs_remove_free_space_cache(root->free_ino_pinned);
2885         __btrfs_remove_free_space_cache(root->free_ino_ctl);
2886         free_fs_root(root);
2887         return 0;
2888 }
2889
2890 static void free_fs_root(struct btrfs_root *root)
2891 {
2892         iput(root->cache_inode);
2893         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2894         if (root->anon_dev)
2895                 free_anon_bdev(root->anon_dev);
2896         free_extent_buffer(root->node);
2897         free_extent_buffer(root->commit_root);
2898         kfree(root->free_ino_ctl);
2899         kfree(root->free_ino_pinned);
2900         kfree(root->name);
2901         kfree(root);
2902 }
2903
2904 static int del_fs_roots(struct btrfs_fs_info *fs_info)
2905 {
2906         int ret;
2907         struct btrfs_root *gang[8];
2908         int i;
2909
2910         while (!list_empty(&fs_info->dead_roots)) {
2911                 gang[0] = list_entry(fs_info->dead_roots.next,
2912                                      struct btrfs_root, root_list);
2913                 list_del(&gang[0]->root_list);
2914
2915                 if (gang[0]->in_radix) {
2916                         btrfs_free_fs_root(fs_info, gang[0]);
2917                 } else {
2918                         free_extent_buffer(gang[0]->node);
2919                         free_extent_buffer(gang[0]->commit_root);
2920                         kfree(gang[0]);
2921                 }
2922         }
2923
2924         while (1) {
2925                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2926                                              (void **)gang, 0,
2927                                              ARRAY_SIZE(gang));
2928                 if (!ret)
2929                         break;
2930                 for (i = 0; i < ret; i++)
2931                         btrfs_free_fs_root(fs_info, gang[i]);
2932         }
2933         return 0;
2934 }
2935
2936 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2937 {
2938         u64 root_objectid = 0;
2939         struct btrfs_root *gang[8];
2940         int i;
2941         int ret;
2942
2943         while (1) {
2944                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2945                                              (void **)gang, root_objectid,
2946                                              ARRAY_SIZE(gang));
2947                 if (!ret)
2948                         break;
2949
2950                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
2951                 for (i = 0; i < ret; i++) {
2952                         int err;
2953
2954                         root_objectid = gang[i]->root_key.objectid;
2955                         err = btrfs_orphan_cleanup(gang[i]);
2956                         if (err)
2957                                 return err;
2958                 }
2959                 root_objectid++;
2960         }
2961         return 0;
2962 }
2963
2964 int btrfs_commit_super(struct btrfs_root *root)
2965 {
2966         struct btrfs_trans_handle *trans;
2967         int ret;
2968
2969         mutex_lock(&root->fs_info->cleaner_mutex);
2970         btrfs_run_delayed_iputs(root);
2971         btrfs_clean_old_snapshots(root);
2972         mutex_unlock(&root->fs_info->cleaner_mutex);
2973
2974         /* wait until ongoing cleanup work done */
2975         down_write(&root->fs_info->cleanup_work_sem);
2976         up_write(&root->fs_info->cleanup_work_sem);
2977
2978         trans = btrfs_join_transaction(root);
2979         if (IS_ERR(trans))
2980                 return PTR_ERR(trans);
2981         ret = btrfs_commit_transaction(trans, root);
2982         BUG_ON(ret);
2983         /* run commit again to drop the original snapshot */
2984         trans = btrfs_join_transaction(root);
2985         if (IS_ERR(trans))
2986                 return PTR_ERR(trans);
2987         btrfs_commit_transaction(trans, root);
2988         ret = btrfs_write_and_wait_transaction(NULL, root);
2989         BUG_ON(ret);
2990
2991         ret = write_ctree_super(NULL, root, 0);
2992         return ret;
2993 }
2994
2995 int close_ctree(struct btrfs_root *root)
2996 {
2997         struct btrfs_fs_info *fs_info = root->fs_info;
2998         int ret;
2999
3000         fs_info->closing = 1;
3001         smp_mb();
3002
3003         /* pause restriper - we want to resume on mount */
3004         btrfs_pause_balance(root->fs_info);
3005
3006         btrfs_scrub_cancel(root);
3007
3008         /* wait for any defraggers to finish */
3009         wait_event(fs_info->transaction_wait,
3010                    (atomic_read(&fs_info->defrag_running) == 0));
3011
3012         /* clear out the rbtree of defraggable inodes */
3013         btrfs_run_defrag_inodes(root->fs_info);
3014
3015         /*
3016          * Here come 2 situations when btrfs is broken to flip readonly:
3017          *
3018          * 1. when btrfs flips readonly somewhere else before
3019          * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
3020          * and btrfs will skip to write sb directly to keep
3021          * ERROR state on disk.
3022          *
3023          * 2. when btrfs flips readonly just in btrfs_commit_super,
3024          * and in such case, btrfs cannot write sb via btrfs_commit_super,
3025          * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
3026          * btrfs will cleanup all FS resources first and write sb then.
3027          */
3028         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3029                 ret = btrfs_commit_super(root);
3030                 if (ret)
3031                         printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3032         }
3033
3034         if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
3035                 ret = btrfs_error_commit_super(root);
3036                 if (ret)
3037                         printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3038         }
3039
3040         btrfs_put_block_group_cache(fs_info);
3041
3042         kthread_stop(root->fs_info->transaction_kthread);
3043         kthread_stop(root->fs_info->cleaner_kthread);
3044
3045         fs_info->closing = 2;
3046         smp_mb();
3047
3048         if (fs_info->delalloc_bytes) {
3049                 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
3050                        (unsigned long long)fs_info->delalloc_bytes);
3051         }
3052         if (fs_info->total_ref_cache_size) {
3053                 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
3054                        (unsigned long long)fs_info->total_ref_cache_size);
3055         }
3056
3057         free_extent_buffer(fs_info->extent_root->node);
3058         free_extent_buffer(fs_info->extent_root->commit_root);
3059         free_extent_buffer(fs_info->tree_root->node);
3060         free_extent_buffer(fs_info->tree_root->commit_root);
3061         free_extent_buffer(root->fs_info->chunk_root->node);
3062         free_extent_buffer(root->fs_info->chunk_root->commit_root);
3063         free_extent_buffer(root->fs_info->dev_root->node);
3064         free_extent_buffer(root->fs_info->dev_root->commit_root);
3065         free_extent_buffer(root->fs_info->csum_root->node);
3066         free_extent_buffer(root->fs_info->csum_root->commit_root);
3067
3068         btrfs_free_block_groups(root->fs_info);
3069
3070         del_fs_roots(fs_info);
3071
3072         iput(fs_info->btree_inode);
3073
3074         btrfs_stop_workers(&fs_info->generic_worker);
3075         btrfs_stop_workers(&fs_info->fixup_workers);
3076         btrfs_stop_workers(&fs_info->delalloc_workers);
3077         btrfs_stop_workers(&fs_info->workers);
3078         btrfs_stop_workers(&fs_info->endio_workers);
3079         btrfs_stop_workers(&fs_info->endio_meta_workers);
3080         btrfs_stop_workers(&fs_info->endio_meta_write_workers);
3081         btrfs_stop_workers(&fs_info->endio_write_workers);
3082         btrfs_stop_workers(&fs_info->endio_freespace_worker);
3083         btrfs_stop_workers(&fs_info->submit_workers);
3084         btrfs_stop_workers(&fs_info->delayed_workers);
3085         btrfs_stop_workers(&fs_info->caching_workers);
3086         btrfs_stop_workers(&fs_info->readahead_workers);
3087
3088 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3089         if (btrfs_test_opt(root, CHECK_INTEGRITY))
3090                 btrfsic_unmount(root, fs_info->fs_devices);
3091 #endif
3092
3093         btrfs_close_devices(fs_info->fs_devices);
3094         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3095
3096         bdi_destroy(&fs_info->bdi);
3097         cleanup_srcu_struct(&fs_info->subvol_srcu);
3098
3099         free_fs_info(fs_info);
3100
3101         return 0;
3102 }
3103
3104 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
3105 {
3106         int ret;
3107         struct inode *btree_inode = buf->first_page->mapping->host;
3108
3109         ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf,
3110                                      NULL);
3111         if (!ret)
3112                 return ret;
3113
3114         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3115                                     parent_transid);
3116         return !ret;
3117 }
3118
3119 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3120 {
3121         struct inode *btree_inode = buf->first_page->mapping->host;
3122         return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
3123                                           buf);
3124 }
3125
3126 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3127 {
3128         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
3129         u64 transid = btrfs_header_generation(buf);
3130         struct inode *btree_inode = root->fs_info->btree_inode;
3131         int was_dirty;
3132
3133         btrfs_assert_tree_locked(buf);
3134         if (transid != root->fs_info->generation) {
3135                 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
3136                        "found %llu running %llu\n",
3137                         (unsigned long long)buf->start,
3138                         (unsigned long long)transid,
3139                         (unsigned long long)root->fs_info->generation);
3140                 WARN_ON(1);
3141         }
3142         was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
3143                                             buf);
3144         if (!was_dirty) {
3145                 spin_lock(&root->fs_info->delalloc_lock);
3146                 root->fs_info->dirty_metadata_bytes += buf->len;
3147                 spin_unlock(&root->fs_info->delalloc_lock);
3148         }
3149 }
3150
3151 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
3152 {
3153         /*
3154          * looks as though older kernels can get into trouble with
3155          * this code, they end up stuck in balance_dirty_pages forever
3156          */
3157         u64 num_dirty;
3158         unsigned long thresh = 32 * 1024 * 1024;
3159
3160         if (current->flags & PF_MEMALLOC)
3161                 return;
3162
3163         btrfs_balance_delayed_items(root);
3164
3165         num_dirty = root->fs_info->dirty_metadata_bytes;
3166
3167         if (num_dirty > thresh) {
3168                 balance_dirty_pages_ratelimited_nr(
3169                                    root->fs_info->btree_inode->i_mapping, 1);
3170         }
3171         return;
3172 }
3173
3174 void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
3175 {
3176         /*
3177          * looks as though older kernels can get into trouble with
3178          * this code, they end up stuck in balance_dirty_pages forever
3179          */
3180         u64 num_dirty;
3181         unsigned long thresh = 32 * 1024 * 1024;
3182
3183         if (current->flags & PF_MEMALLOC)
3184                 return;
3185
3186         num_dirty = root->fs_info->dirty_metadata_bytes;
3187
3188         if (num_dirty > thresh) {
3189                 balance_dirty_pages_ratelimited_nr(
3190                                    root->fs_info->btree_inode->i_mapping, 1);
3191         }
3192         return;
3193 }
3194
3195 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3196 {
3197         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
3198         int ret;
3199         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3200         if (ret == 0)
3201                 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
3202         return ret;
3203 }
3204
3205 static int btree_lock_page_hook(struct page *page, void *data,
3206                                 void (*flush_fn)(void *))
3207 {
3208         struct inode *inode = page->mapping->host;
3209         struct btrfs_root *root = BTRFS_I(inode)->root;
3210         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3211         struct extent_buffer *eb;
3212         unsigned long len;
3213         u64 bytenr = page_offset(page);
3214
3215         if (page->private == EXTENT_PAGE_PRIVATE)
3216                 goto out;
3217
3218         len = page->private >> 2;
3219         eb = find_extent_buffer(io_tree, bytenr, len);
3220         if (!eb)
3221                 goto out;
3222
3223         if (!btrfs_try_tree_write_lock(eb)) {
3224                 flush_fn(data);
3225                 btrfs_tree_lock(eb);
3226         }
3227         btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3228
3229         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3230                 spin_lock(&root->fs_info->delalloc_lock);
3231                 if (root->fs_info->dirty_metadata_bytes >= eb->len)
3232                         root->fs_info->dirty_metadata_bytes -= eb->len;
3233                 else
3234                         WARN_ON(1);
3235                 spin_unlock(&root->fs_info->delalloc_lock);
3236         }
3237
3238         btrfs_tree_unlock(eb);
3239         free_extent_buffer(eb);
3240 out:
3241         if (!trylock_page(page)) {
3242                 flush_fn(data);
3243                 lock_page(page);
3244         }
3245         return 0;
3246 }
3247
3248 static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3249                               int read_only)
3250 {
3251         if (read_only)
3252                 return;
3253
3254         if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
3255                 printk(KERN_WARNING "warning: mount fs with errors, "
3256                        "running btrfsck is recommended\n");
3257 }
3258
3259 int btrfs_error_commit_super(struct btrfs_root *root)
3260 {
3261         int ret;
3262
3263         mutex_lock(&root->fs_info->cleaner_mutex);
3264         btrfs_run_delayed_iputs(root);
3265         mutex_unlock(&root->fs_info->cleaner_mutex);
3266
3267         down_write(&root->fs_info->cleanup_work_sem);
3268         up_write(&root->fs_info->cleanup_work_sem);
3269
3270         /* cleanup FS via transaction */
3271         btrfs_cleanup_transaction(root);
3272
3273         ret = write_ctree_super(NULL, root, 0);
3274
3275         return ret;
3276 }
3277
3278 static int btrfs_destroy_ordered_operations(struct btrfs_root *root)
3279 {
3280         struct btrfs_inode *btrfs_inode;
3281         struct list_head splice;
3282
3283         INIT_LIST_HEAD(&splice);
3284
3285         mutex_lock(&root->fs_info->ordered_operations_mutex);
3286         spin_lock(&root->fs_info->ordered_extent_lock);
3287
3288         list_splice_init(&root->fs_info->ordered_operations, &splice);
3289         while (!list_empty(&splice)) {
3290                 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3291                                          ordered_operations);
3292
3293                 list_del_init(&btrfs_inode->ordered_operations);
3294
3295                 btrfs_invalidate_inodes(btrfs_inode->root);
3296         }
3297
3298         spin_unlock(&root->fs_info->ordered_extent_lock);
3299         mutex_unlock(&root->fs_info->ordered_operations_mutex);
3300
3301         return 0;
3302 }
3303
3304 static int btrfs_destroy_ordered_extents(struct btrfs_root *root)
3305 {
3306         struct list_head splice;
3307         struct btrfs_ordered_extent *ordered;
3308         struct inode *inode;
3309
3310         INIT_LIST_HEAD(&splice);
3311
3312         spin_lock(&root->fs_info->ordered_extent_lock);
3313
3314         list_splice_init(&root->fs_info->ordered_extents, &splice);
3315         while (!list_empty(&splice)) {
3316                 ordered = list_entry(splice.next, struct btrfs_ordered_extent,
3317                                      root_extent_list);
3318
3319                 list_del_init(&ordered->root_extent_list);
3320                 atomic_inc(&ordered->refs);
3321
3322                 /* the inode may be getting freed (in sys_unlink path). */
3323                 inode = igrab(ordered->inode);
3324
3325                 spin_unlock(&root->fs_info->ordered_extent_lock);
3326                 if (inode)
3327                         iput(inode);
3328
3329                 atomic_set(&ordered->refs, 1);
3330                 btrfs_put_ordered_extent(ordered);
3331
3332                 spin_lock(&root->fs_info->ordered_extent_lock);
3333         }
3334
3335         spin_unlock(&root->fs_info->ordered_extent_lock);
3336
3337         return 0;
3338 }
3339
3340 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3341                                       struct btrfs_root *root)
3342 {
3343         struct rb_node *node;
3344         struct btrfs_delayed_ref_root *delayed_refs;
3345         struct btrfs_delayed_ref_node *ref;
3346         int ret = 0;
3347
3348         delayed_refs = &trans->delayed_refs;
3349
3350         spin_lock(&delayed_refs->lock);
3351         if (delayed_refs->num_entries == 0) {
3352                 spin_unlock(&delayed_refs->lock);
3353                 printk(KERN_INFO "delayed_refs has NO entry\n");
3354                 return ret;
3355         }
3356
3357         node = rb_first(&delayed_refs->root);
3358         while (node) {
3359                 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3360                 node = rb_next(node);
3361
3362                 ref->in_tree = 0;
3363                 rb_erase(&ref->rb_node, &delayed_refs->root);
3364                 delayed_refs->num_entries--;
3365
3366                 atomic_set(&ref->refs, 1);
3367                 if (btrfs_delayed_ref_is_head(ref)) {
3368                         struct btrfs_delayed_ref_head *head;
3369
3370                         head = btrfs_delayed_node_to_head(ref);
3371                         mutex_lock(&head->mutex);
3372                         kfree(head->extent_op);
3373                         delayed_refs->num_heads--;
3374                         if (list_empty(&head->cluster))
3375                                 delayed_refs->num_heads_ready--;
3376                         list_del_init(&head->cluster);
3377                         mutex_unlock(&head->mutex);
3378                 }
3379
3380                 spin_unlock(&delayed_refs->lock);
3381                 btrfs_put_delayed_ref(ref);
3382
3383                 cond_resched();
3384                 spin_lock(&delayed_refs->lock);
3385         }
3386
3387         spin_unlock(&delayed_refs->lock);
3388
3389         return ret;
3390 }
3391
3392 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
3393 {
3394         struct btrfs_pending_snapshot *snapshot;
3395         struct list_head splice;
3396
3397         INIT_LIST_HEAD(&splice);
3398
3399         list_splice_init(&t->pending_snapshots, &splice);
3400
3401         while (!list_empty(&splice)) {
3402                 snapshot = list_entry(splice.next,
3403                                       struct btrfs_pending_snapshot,
3404                                       list);
3405
3406                 list_del_init(&snapshot->list);
3407
3408                 kfree(snapshot);
3409         }
3410
3411         return 0;
3412 }
3413
3414 static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3415 {
3416         struct btrfs_inode *btrfs_inode;
3417         struct list_head splice;
3418
3419         INIT_LIST_HEAD(&splice);
3420
3421         spin_lock(&root->fs_info->delalloc_lock);
3422         list_splice_init(&root->fs_info->delalloc_inodes, &splice);
3423
3424         while (!list_empty(&splice)) {
3425                 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3426                                     delalloc_inodes);
3427
3428                 list_del_init(&btrfs_inode->delalloc_inodes);
3429
3430                 btrfs_invalidate_inodes(btrfs_inode->root);
3431         }
3432
3433         spin_unlock(&root->fs_info->delalloc_lock);
3434
3435         return 0;
3436 }
3437
3438 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3439                                         struct extent_io_tree *dirty_pages,
3440                                         int mark)
3441 {
3442         int ret;
3443         struct page *page;
3444         struct inode *btree_inode = root->fs_info->btree_inode;
3445         struct extent_buffer *eb;
3446         u64 start = 0;
3447         u64 end;
3448         u64 offset;
3449         unsigned long index;
3450
3451         while (1) {
3452                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3453                                             mark);
3454                 if (ret)
3455                         break;
3456
3457                 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3458                 while (start <= end) {
3459                         index = start >> PAGE_CACHE_SHIFT;
3460                         start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3461                         page = find_get_page(btree_inode->i_mapping, index);
3462                         if (!page)
3463                                 continue;
3464                         offset = page_offset(page);
3465
3466                         spin_lock(&dirty_pages->buffer_lock);
3467                         eb = radix_tree_lookup(
3468                              &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3469                                                offset >> PAGE_CACHE_SHIFT);
3470                         spin_unlock(&dirty_pages->buffer_lock);
3471                         if (eb) {
3472                                 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3473                                                          &eb->bflags);
3474                                 atomic_set(&eb->refs, 1);
3475                         }
3476                         if (PageWriteback(page))
3477                                 end_page_writeback(page);
3478
3479                         lock_page(page);
3480                         if (PageDirty(page)) {
3481                                 clear_page_dirty_for_io(page);
3482                                 spin_lock_irq(&page->mapping->tree_lock);
3483                                 radix_tree_tag_clear(&page->mapping->page_tree,
3484                                                         page_index(page),
3485                                                         PAGECACHE_TAG_DIRTY);
3486                                 spin_unlock_irq(&page->mapping->tree_lock);
3487                         }
3488
3489                         page->mapping->a_ops->invalidatepage(page, 0);
3490                         unlock_page(page);
3491                 }
3492         }
3493
3494         return ret;
3495 }
3496
3497 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3498                                        struct extent_io_tree *pinned_extents)
3499 {
3500         struct extent_io_tree *unpin;
3501         u64 start;
3502         u64 end;
3503         int ret;
3504
3505         unpin = pinned_extents;
3506         while (1) {
3507                 ret = find_first_extent_bit(unpin, 0, &start, &end,
3508                                             EXTENT_DIRTY);
3509                 if (ret)
3510                         break;
3511
3512                 /* opt_discard */
3513                 if (btrfs_test_opt(root, DISCARD))
3514                         ret = btrfs_error_discard_extent(root, start,
3515                                                          end + 1 - start,
3516                                                          NULL);
3517
3518                 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3519                 btrfs_error_unpin_extent_range(root, start, end);
3520                 cond_resched();
3521         }
3522
3523         return 0;
3524 }
3525
3526 static int btrfs_cleanup_transaction(struct btrfs_root *root)
3527 {
3528         struct btrfs_transaction *t;
3529         LIST_HEAD(list);
3530
3531         WARN_ON(1);
3532
3533         mutex_lock(&root->fs_info->transaction_kthread_mutex);
3534
3535         spin_lock(&root->fs_info->trans_lock);
3536         list_splice_init(&root->fs_info->trans_list, &list);
3537         root->fs_info->trans_no_join = 1;
3538         spin_unlock(&root->fs_info->trans_lock);
3539
3540         while (!list_empty(&list)) {
3541                 t = list_entry(list.next, struct btrfs_transaction, list);
3542                 if (!t)
3543                         break;
3544
3545                 btrfs_destroy_ordered_operations(root);
3546
3547                 btrfs_destroy_ordered_extents(root);
3548
3549                 btrfs_destroy_delayed_refs(t, root);
3550
3551                 btrfs_block_rsv_release(root,
3552                                         &root->fs_info->trans_block_rsv,
3553                                         t->dirty_pages.dirty_bytes);
3554
3555                 /* FIXME: cleanup wait for commit */
3556                 t->in_commit = 1;
3557                 t->blocked = 1;
3558                 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3559                         wake_up(&root->fs_info->transaction_blocked_wait);
3560
3561                 t->blocked = 0;
3562                 if (waitqueue_active(&root->fs_info->transaction_wait))
3563                         wake_up(&root->fs_info->transaction_wait);
3564
3565                 t->commit_done = 1;
3566                 if (waitqueue_active(&t->commit_wait))
3567                         wake_up(&t->commit_wait);
3568
3569                 btrfs_destroy_pending_snapshots(t);
3570
3571                 btrfs_destroy_delalloc_inodes(root);
3572
3573                 spin_lock(&root->fs_info->trans_lock);
3574                 root->fs_info->running_transaction = NULL;
3575                 spin_unlock(&root->fs_info->trans_lock);
3576
3577                 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3578                                              EXTENT_DIRTY);
3579
3580                 btrfs_destroy_pinned_extent(root,
3581                                             root->fs_info->pinned_extents);
3582
3583                 atomic_set(&t->use_count, 0);
3584                 list_del_init(&t->list);
3585                 memset(t, 0, sizeof(*t));
3586                 kmem_cache_free(btrfs_transaction_cachep, t);
3587         }
3588
3589         spin_lock(&root->fs_info->trans_lock);
3590         root->fs_info->trans_no_join = 0;
3591         spin_unlock(&root->fs_info->trans_lock);
3592         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3593
3594         return 0;
3595 }
3596
3597 static struct extent_io_ops btree_extent_io_ops = {
3598         .write_cache_pages_lock_hook = btree_lock_page_hook,
3599         .readpage_end_io_hook = btree_readpage_end_io_hook,
3600         .readpage_io_failed_hook = btree_io_failed_hook,
3601         .submit_bio_hook = btree_submit_bio_hook,
3602         /* note we're sharing with inode.c for the merge bio hook */
3603         .merge_bio_hook = btrfs_merge_bio_hook,
3604 };