]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/btrfs/extent_io.c
tile: expect new initramfs name from hypervisor file system
[karo-tx-linux.git] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "compat.h"
17 #include "ctree.h"
18 #include "btrfs_inode.h"
19 #include "volumes.h"
20 #include "check-integrity.h"
21 #include "locking.h"
22 #include "rcu-string.h"
23
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26
27 static LIST_HEAD(buffers);
28 static LIST_HEAD(states);
29
30 #define LEAK_DEBUG 0
31 #if LEAK_DEBUG
32 static DEFINE_SPINLOCK(leak_lock);
33 #endif
34
35 #define BUFFER_LRU_MAX 64
36
37 struct tree_entry {
38         u64 start;
39         u64 end;
40         struct rb_node rb_node;
41 };
42
43 struct extent_page_data {
44         struct bio *bio;
45         struct extent_io_tree *tree;
46         get_extent_t *get_extent;
47         unsigned long bio_flags;
48
49         /* tells writepage not to lock the state bits for this range
50          * it still does the unlocking
51          */
52         unsigned int extent_locked:1;
53
54         /* tells the submit_bio code to use a WRITE_SYNC */
55         unsigned int sync_io:1;
56 };
57
58 static noinline void flush_write_bio(void *data);
59 static inline struct btrfs_fs_info *
60 tree_fs_info(struct extent_io_tree *tree)
61 {
62         return btrfs_sb(tree->mapping->host->i_sb);
63 }
64
65 int __init extent_io_init(void)
66 {
67         extent_state_cache = kmem_cache_create("btrfs_extent_state",
68                         sizeof(struct extent_state), 0,
69                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
70         if (!extent_state_cache)
71                 return -ENOMEM;
72
73         extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
74                         sizeof(struct extent_buffer), 0,
75                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
76         if (!extent_buffer_cache)
77                 goto free_state_cache;
78         return 0;
79
80 free_state_cache:
81         kmem_cache_destroy(extent_state_cache);
82         return -ENOMEM;
83 }
84
85 void extent_io_exit(void)
86 {
87         struct extent_state *state;
88         struct extent_buffer *eb;
89
90         while (!list_empty(&states)) {
91                 state = list_entry(states.next, struct extent_state, leak_list);
92                 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
93                        "state %lu in tree %p refs %d\n",
94                        (unsigned long long)state->start,
95                        (unsigned long long)state->end,
96                        state->state, state->tree, atomic_read(&state->refs));
97                 list_del(&state->leak_list);
98                 kmem_cache_free(extent_state_cache, state);
99
100         }
101
102         while (!list_empty(&buffers)) {
103                 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
104                 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
105                        "refs %d\n", (unsigned long long)eb->start,
106                        eb->len, atomic_read(&eb->refs));
107                 list_del(&eb->leak_list);
108                 kmem_cache_free(extent_buffer_cache, eb);
109         }
110
111         /*
112          * Make sure all delayed rcu free are flushed before we
113          * destroy caches.
114          */
115         rcu_barrier();
116         if (extent_state_cache)
117                 kmem_cache_destroy(extent_state_cache);
118         if (extent_buffer_cache)
119                 kmem_cache_destroy(extent_buffer_cache);
120 }
121
122 void extent_io_tree_init(struct extent_io_tree *tree,
123                          struct address_space *mapping)
124 {
125         tree->state = RB_ROOT;
126         INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
127         tree->ops = NULL;
128         tree->dirty_bytes = 0;
129         spin_lock_init(&tree->lock);
130         spin_lock_init(&tree->buffer_lock);
131         tree->mapping = mapping;
132 }
133
134 static struct extent_state *alloc_extent_state(gfp_t mask)
135 {
136         struct extent_state *state;
137 #if LEAK_DEBUG
138         unsigned long flags;
139 #endif
140
141         state = kmem_cache_alloc(extent_state_cache, mask);
142         if (!state)
143                 return state;
144         state->state = 0;
145         state->private = 0;
146         state->tree = NULL;
147 #if LEAK_DEBUG
148         spin_lock_irqsave(&leak_lock, flags);
149         list_add(&state->leak_list, &states);
150         spin_unlock_irqrestore(&leak_lock, flags);
151 #endif
152         atomic_set(&state->refs, 1);
153         init_waitqueue_head(&state->wq);
154         trace_alloc_extent_state(state, mask, _RET_IP_);
155         return state;
156 }
157
158 void free_extent_state(struct extent_state *state)
159 {
160         if (!state)
161                 return;
162         if (atomic_dec_and_test(&state->refs)) {
163 #if LEAK_DEBUG
164                 unsigned long flags;
165 #endif
166                 WARN_ON(state->tree);
167 #if LEAK_DEBUG
168                 spin_lock_irqsave(&leak_lock, flags);
169                 list_del(&state->leak_list);
170                 spin_unlock_irqrestore(&leak_lock, flags);
171 #endif
172                 trace_free_extent_state(state, _RET_IP_);
173                 kmem_cache_free(extent_state_cache, state);
174         }
175 }
176
177 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
178                                    struct rb_node *node)
179 {
180         struct rb_node **p = &root->rb_node;
181         struct rb_node *parent = NULL;
182         struct tree_entry *entry;
183
184         while (*p) {
185                 parent = *p;
186                 entry = rb_entry(parent, struct tree_entry, rb_node);
187
188                 if (offset < entry->start)
189                         p = &(*p)->rb_left;
190                 else if (offset > entry->end)
191                         p = &(*p)->rb_right;
192                 else
193                         return parent;
194         }
195
196         rb_link_node(node, parent, p);
197         rb_insert_color(node, root);
198         return NULL;
199 }
200
201 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
202                                      struct rb_node **prev_ret,
203                                      struct rb_node **next_ret)
204 {
205         struct rb_root *root = &tree->state;
206         struct rb_node *n = root->rb_node;
207         struct rb_node *prev = NULL;
208         struct rb_node *orig_prev = NULL;
209         struct tree_entry *entry;
210         struct tree_entry *prev_entry = NULL;
211
212         while (n) {
213                 entry = rb_entry(n, struct tree_entry, rb_node);
214                 prev = n;
215                 prev_entry = entry;
216
217                 if (offset < entry->start)
218                         n = n->rb_left;
219                 else if (offset > entry->end)
220                         n = n->rb_right;
221                 else
222                         return n;
223         }
224
225         if (prev_ret) {
226                 orig_prev = prev;
227                 while (prev && offset > prev_entry->end) {
228                         prev = rb_next(prev);
229                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
230                 }
231                 *prev_ret = prev;
232                 prev = orig_prev;
233         }
234
235         if (next_ret) {
236                 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
237                 while (prev && offset < prev_entry->start) {
238                         prev = rb_prev(prev);
239                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
240                 }
241                 *next_ret = prev;
242         }
243         return NULL;
244 }
245
246 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
247                                           u64 offset)
248 {
249         struct rb_node *prev = NULL;
250         struct rb_node *ret;
251
252         ret = __etree_search(tree, offset, &prev, NULL);
253         if (!ret)
254                 return prev;
255         return ret;
256 }
257
258 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
259                      struct extent_state *other)
260 {
261         if (tree->ops && tree->ops->merge_extent_hook)
262                 tree->ops->merge_extent_hook(tree->mapping->host, new,
263                                              other);
264 }
265
266 /*
267  * utility function to look for merge candidates inside a given range.
268  * Any extents with matching state are merged together into a single
269  * extent in the tree.  Extents with EXTENT_IO in their state field
270  * are not merged because the end_io handlers need to be able to do
271  * operations on them without sleeping (or doing allocations/splits).
272  *
273  * This should be called with the tree lock held.
274  */
275 static void merge_state(struct extent_io_tree *tree,
276                         struct extent_state *state)
277 {
278         struct extent_state *other;
279         struct rb_node *other_node;
280
281         if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
282                 return;
283
284         other_node = rb_prev(&state->rb_node);
285         if (other_node) {
286                 other = rb_entry(other_node, struct extent_state, rb_node);
287                 if (other->end == state->start - 1 &&
288                     other->state == state->state) {
289                         merge_cb(tree, state, other);
290                         state->start = other->start;
291                         other->tree = NULL;
292                         rb_erase(&other->rb_node, &tree->state);
293                         free_extent_state(other);
294                 }
295         }
296         other_node = rb_next(&state->rb_node);
297         if (other_node) {
298                 other = rb_entry(other_node, struct extent_state, rb_node);
299                 if (other->start == state->end + 1 &&
300                     other->state == state->state) {
301                         merge_cb(tree, state, other);
302                         state->end = other->end;
303                         other->tree = NULL;
304                         rb_erase(&other->rb_node, &tree->state);
305                         free_extent_state(other);
306                 }
307         }
308 }
309
310 static void set_state_cb(struct extent_io_tree *tree,
311                          struct extent_state *state, int *bits)
312 {
313         if (tree->ops && tree->ops->set_bit_hook)
314                 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
315 }
316
317 static void clear_state_cb(struct extent_io_tree *tree,
318                            struct extent_state *state, int *bits)
319 {
320         if (tree->ops && tree->ops->clear_bit_hook)
321                 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
322 }
323
324 static void set_state_bits(struct extent_io_tree *tree,
325                            struct extent_state *state, int *bits);
326
327 /*
328  * insert an extent_state struct into the tree.  'bits' are set on the
329  * struct before it is inserted.
330  *
331  * This may return -EEXIST if the extent is already there, in which case the
332  * state struct is freed.
333  *
334  * The tree lock is not taken internally.  This is a utility function and
335  * probably isn't what you want to call (see set/clear_extent_bit).
336  */
337 static int insert_state(struct extent_io_tree *tree,
338                         struct extent_state *state, u64 start, u64 end,
339                         int *bits)
340 {
341         struct rb_node *node;
342
343         if (end < start)
344                 WARN(1, KERN_ERR "btrfs end < start %llu %llu\n",
345                        (unsigned long long)end,
346                        (unsigned long long)start);
347         state->start = start;
348         state->end = end;
349
350         set_state_bits(tree, state, bits);
351
352         node = tree_insert(&tree->state, end, &state->rb_node);
353         if (node) {
354                 struct extent_state *found;
355                 found = rb_entry(node, struct extent_state, rb_node);
356                 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
357                        "%llu %llu\n", (unsigned long long)found->start,
358                        (unsigned long long)found->end,
359                        (unsigned long long)start, (unsigned long long)end);
360                 return -EEXIST;
361         }
362         state->tree = tree;
363         merge_state(tree, state);
364         return 0;
365 }
366
367 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
368                      u64 split)
369 {
370         if (tree->ops && tree->ops->split_extent_hook)
371                 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
372 }
373
374 /*
375  * split a given extent state struct in two, inserting the preallocated
376  * struct 'prealloc' as the newly created second half.  'split' indicates an
377  * offset inside 'orig' where it should be split.
378  *
379  * Before calling,
380  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
381  * are two extent state structs in the tree:
382  * prealloc: [orig->start, split - 1]
383  * orig: [ split, orig->end ]
384  *
385  * The tree locks are not taken by this function. They need to be held
386  * by the caller.
387  */
388 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
389                        struct extent_state *prealloc, u64 split)
390 {
391         struct rb_node *node;
392
393         split_cb(tree, orig, split);
394
395         prealloc->start = orig->start;
396         prealloc->end = split - 1;
397         prealloc->state = orig->state;
398         orig->start = split;
399
400         node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
401         if (node) {
402                 free_extent_state(prealloc);
403                 return -EEXIST;
404         }
405         prealloc->tree = tree;
406         return 0;
407 }
408
409 static struct extent_state *next_state(struct extent_state *state)
410 {
411         struct rb_node *next = rb_next(&state->rb_node);
412         if (next)
413                 return rb_entry(next, struct extent_state, rb_node);
414         else
415                 return NULL;
416 }
417
418 /*
419  * utility function to clear some bits in an extent state struct.
420  * it will optionally wake up any one waiting on this state (wake == 1).
421  *
422  * If no bits are set on the state struct after clearing things, the
423  * struct is freed and removed from the tree
424  */
425 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
426                                             struct extent_state *state,
427                                             int *bits, int wake)
428 {
429         struct extent_state *next;
430         int bits_to_clear = *bits & ~EXTENT_CTLBITS;
431
432         if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
433                 u64 range = state->end - state->start + 1;
434                 WARN_ON(range > tree->dirty_bytes);
435                 tree->dirty_bytes -= range;
436         }
437         clear_state_cb(tree, state, bits);
438         state->state &= ~bits_to_clear;
439         if (wake)
440                 wake_up(&state->wq);
441         if (state->state == 0) {
442                 next = next_state(state);
443                 if (state->tree) {
444                         rb_erase(&state->rb_node, &tree->state);
445                         state->tree = NULL;
446                         free_extent_state(state);
447                 } else {
448                         WARN_ON(1);
449                 }
450         } else {
451                 merge_state(tree, state);
452                 next = next_state(state);
453         }
454         return next;
455 }
456
457 static struct extent_state *
458 alloc_extent_state_atomic(struct extent_state *prealloc)
459 {
460         if (!prealloc)
461                 prealloc = alloc_extent_state(GFP_ATOMIC);
462
463         return prealloc;
464 }
465
466 void extent_io_tree_panic(struct extent_io_tree *tree, int err)
467 {
468         btrfs_panic(tree_fs_info(tree), err, "Locking error: "
469                     "Extent tree was modified by another "
470                     "thread while locked.");
471 }
472
473 /*
474  * clear some bits on a range in the tree.  This may require splitting
475  * or inserting elements in the tree, so the gfp mask is used to
476  * indicate which allocations or sleeping are allowed.
477  *
478  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
479  * the given range from the tree regardless of state (ie for truncate).
480  *
481  * the range [start, end] is inclusive.
482  *
483  * This takes the tree lock, and returns 0 on success and < 0 on error.
484  */
485 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
486                      int bits, int wake, int delete,
487                      struct extent_state **cached_state,
488                      gfp_t mask)
489 {
490         struct extent_state *state;
491         struct extent_state *cached;
492         struct extent_state *prealloc = NULL;
493         struct rb_node *node;
494         u64 last_end;
495         int err;
496         int clear = 0;
497
498         if (delete)
499                 bits |= ~EXTENT_CTLBITS;
500         bits |= EXTENT_FIRST_DELALLOC;
501
502         if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
503                 clear = 1;
504 again:
505         if (!prealloc && (mask & __GFP_WAIT)) {
506                 prealloc = alloc_extent_state(mask);
507                 if (!prealloc)
508                         return -ENOMEM;
509         }
510
511         spin_lock(&tree->lock);
512         if (cached_state) {
513                 cached = *cached_state;
514
515                 if (clear) {
516                         *cached_state = NULL;
517                         cached_state = NULL;
518                 }
519
520                 if (cached && cached->tree && cached->start <= start &&
521                     cached->end > start) {
522                         if (clear)
523                                 atomic_dec(&cached->refs);
524                         state = cached;
525                         goto hit_next;
526                 }
527                 if (clear)
528                         free_extent_state(cached);
529         }
530         /*
531          * this search will find the extents that end after
532          * our range starts
533          */
534         node = tree_search(tree, start);
535         if (!node)
536                 goto out;
537         state = rb_entry(node, struct extent_state, rb_node);
538 hit_next:
539         if (state->start > end)
540                 goto out;
541         WARN_ON(state->end < start);
542         last_end = state->end;
543
544         /* the state doesn't have the wanted bits, go ahead */
545         if (!(state->state & bits)) {
546                 state = next_state(state);
547                 goto next;
548         }
549
550         /*
551          *     | ---- desired range ---- |
552          *  | state | or
553          *  | ------------- state -------------- |
554          *
555          * We need to split the extent we found, and may flip
556          * bits on second half.
557          *
558          * If the extent we found extends past our range, we
559          * just split and search again.  It'll get split again
560          * the next time though.
561          *
562          * If the extent we found is inside our range, we clear
563          * the desired bit on it.
564          */
565
566         if (state->start < start) {
567                 prealloc = alloc_extent_state_atomic(prealloc);
568                 BUG_ON(!prealloc);
569                 err = split_state(tree, state, prealloc, start);
570                 if (err)
571                         extent_io_tree_panic(tree, err);
572
573                 prealloc = NULL;
574                 if (err)
575                         goto out;
576                 if (state->end <= end) {
577                         state = clear_state_bit(tree, state, &bits, wake);
578                         goto next;
579                 }
580                 goto search_again;
581         }
582         /*
583          * | ---- desired range ---- |
584          *                        | state |
585          * We need to split the extent, and clear the bit
586          * on the first half
587          */
588         if (state->start <= end && state->end > end) {
589                 prealloc = alloc_extent_state_atomic(prealloc);
590                 BUG_ON(!prealloc);
591                 err = split_state(tree, state, prealloc, end + 1);
592                 if (err)
593                         extent_io_tree_panic(tree, err);
594
595                 if (wake)
596                         wake_up(&state->wq);
597
598                 clear_state_bit(tree, prealloc, &bits, wake);
599
600                 prealloc = NULL;
601                 goto out;
602         }
603
604         state = clear_state_bit(tree, state, &bits, wake);
605 next:
606         if (last_end == (u64)-1)
607                 goto out;
608         start = last_end + 1;
609         if (start <= end && state && !need_resched())
610                 goto hit_next;
611         goto search_again;
612
613 out:
614         spin_unlock(&tree->lock);
615         if (prealloc)
616                 free_extent_state(prealloc);
617
618         return 0;
619
620 search_again:
621         if (start > end)
622                 goto out;
623         spin_unlock(&tree->lock);
624         if (mask & __GFP_WAIT)
625                 cond_resched();
626         goto again;
627 }
628
629 static void wait_on_state(struct extent_io_tree *tree,
630                           struct extent_state *state)
631                 __releases(tree->lock)
632                 __acquires(tree->lock)
633 {
634         DEFINE_WAIT(wait);
635         prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
636         spin_unlock(&tree->lock);
637         schedule();
638         spin_lock(&tree->lock);
639         finish_wait(&state->wq, &wait);
640 }
641
642 /*
643  * waits for one or more bits to clear on a range in the state tree.
644  * The range [start, end] is inclusive.
645  * The tree lock is taken by this function
646  */
647 void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
648 {
649         struct extent_state *state;
650         struct rb_node *node;
651
652         spin_lock(&tree->lock);
653 again:
654         while (1) {
655                 /*
656                  * this search will find all the extents that end after
657                  * our range starts
658                  */
659                 node = tree_search(tree, start);
660                 if (!node)
661                         break;
662
663                 state = rb_entry(node, struct extent_state, rb_node);
664
665                 if (state->start > end)
666                         goto out;
667
668                 if (state->state & bits) {
669                         start = state->start;
670                         atomic_inc(&state->refs);
671                         wait_on_state(tree, state);
672                         free_extent_state(state);
673                         goto again;
674                 }
675                 start = state->end + 1;
676
677                 if (start > end)
678                         break;
679
680                 cond_resched_lock(&tree->lock);
681         }
682 out:
683         spin_unlock(&tree->lock);
684 }
685
686 static void set_state_bits(struct extent_io_tree *tree,
687                            struct extent_state *state,
688                            int *bits)
689 {
690         int bits_to_set = *bits & ~EXTENT_CTLBITS;
691
692         set_state_cb(tree, state, bits);
693         if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
694                 u64 range = state->end - state->start + 1;
695                 tree->dirty_bytes += range;
696         }
697         state->state |= bits_to_set;
698 }
699
700 static void cache_state(struct extent_state *state,
701                         struct extent_state **cached_ptr)
702 {
703         if (cached_ptr && !(*cached_ptr)) {
704                 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
705                         *cached_ptr = state;
706                         atomic_inc(&state->refs);
707                 }
708         }
709 }
710
711 static void uncache_state(struct extent_state **cached_ptr)
712 {
713         if (cached_ptr && (*cached_ptr)) {
714                 struct extent_state *state = *cached_ptr;
715                 *cached_ptr = NULL;
716                 free_extent_state(state);
717         }
718 }
719
720 /*
721  * set some bits on a range in the tree.  This may require allocations or
722  * sleeping, so the gfp mask is used to indicate what is allowed.
723  *
724  * If any of the exclusive bits are set, this will fail with -EEXIST if some
725  * part of the range already has the desired bits set.  The start of the
726  * existing range is returned in failed_start in this case.
727  *
728  * [start, end] is inclusive This takes the tree lock.
729  */
730
731 static int __must_check
732 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
733                  int bits, int exclusive_bits, u64 *failed_start,
734                  struct extent_state **cached_state, gfp_t mask)
735 {
736         struct extent_state *state;
737         struct extent_state *prealloc = NULL;
738         struct rb_node *node;
739         int err = 0;
740         u64 last_start;
741         u64 last_end;
742
743         bits |= EXTENT_FIRST_DELALLOC;
744 again:
745         if (!prealloc && (mask & __GFP_WAIT)) {
746                 prealloc = alloc_extent_state(mask);
747                 BUG_ON(!prealloc);
748         }
749
750         spin_lock(&tree->lock);
751         if (cached_state && *cached_state) {
752                 state = *cached_state;
753                 if (state->start <= start && state->end > start &&
754                     state->tree) {
755                         node = &state->rb_node;
756                         goto hit_next;
757                 }
758         }
759         /*
760          * this search will find all the extents that end after
761          * our range starts.
762          */
763         node = tree_search(tree, start);
764         if (!node) {
765                 prealloc = alloc_extent_state_atomic(prealloc);
766                 BUG_ON(!prealloc);
767                 err = insert_state(tree, prealloc, start, end, &bits);
768                 if (err)
769                         extent_io_tree_panic(tree, err);
770
771                 prealloc = NULL;
772                 goto out;
773         }
774         state = rb_entry(node, struct extent_state, rb_node);
775 hit_next:
776         last_start = state->start;
777         last_end = state->end;
778
779         /*
780          * | ---- desired range ---- |
781          * | state |
782          *
783          * Just lock what we found and keep going
784          */
785         if (state->start == start && state->end <= end) {
786                 if (state->state & exclusive_bits) {
787                         *failed_start = state->start;
788                         err = -EEXIST;
789                         goto out;
790                 }
791
792                 set_state_bits(tree, state, &bits);
793                 cache_state(state, cached_state);
794                 merge_state(tree, state);
795                 if (last_end == (u64)-1)
796                         goto out;
797                 start = last_end + 1;
798                 state = next_state(state);
799                 if (start < end && state && state->start == start &&
800                     !need_resched())
801                         goto hit_next;
802                 goto search_again;
803         }
804
805         /*
806          *     | ---- desired range ---- |
807          * | state |
808          *   or
809          * | ------------- state -------------- |
810          *
811          * We need to split the extent we found, and may flip bits on
812          * second half.
813          *
814          * If the extent we found extends past our
815          * range, we just split and search again.  It'll get split
816          * again the next time though.
817          *
818          * If the extent we found is inside our range, we set the
819          * desired bit on it.
820          */
821         if (state->start < start) {
822                 if (state->state & exclusive_bits) {
823                         *failed_start = start;
824                         err = -EEXIST;
825                         goto out;
826                 }
827
828                 prealloc = alloc_extent_state_atomic(prealloc);
829                 BUG_ON(!prealloc);
830                 err = split_state(tree, state, prealloc, start);
831                 if (err)
832                         extent_io_tree_panic(tree, err);
833
834                 prealloc = NULL;
835                 if (err)
836                         goto out;
837                 if (state->end <= end) {
838                         set_state_bits(tree, state, &bits);
839                         cache_state(state, cached_state);
840                         merge_state(tree, state);
841                         if (last_end == (u64)-1)
842                                 goto out;
843                         start = last_end + 1;
844                         state = next_state(state);
845                         if (start < end && state && state->start == start &&
846                             !need_resched())
847                                 goto hit_next;
848                 }
849                 goto search_again;
850         }
851         /*
852          * | ---- desired range ---- |
853          *     | state | or               | state |
854          *
855          * There's a hole, we need to insert something in it and
856          * ignore the extent we found.
857          */
858         if (state->start > start) {
859                 u64 this_end;
860                 if (end < last_start)
861                         this_end = end;
862                 else
863                         this_end = last_start - 1;
864
865                 prealloc = alloc_extent_state_atomic(prealloc);
866                 BUG_ON(!prealloc);
867
868                 /*
869                  * Avoid to free 'prealloc' if it can be merged with
870                  * the later extent.
871                  */
872                 err = insert_state(tree, prealloc, start, this_end,
873                                    &bits);
874                 if (err)
875                         extent_io_tree_panic(tree, err);
876
877                 cache_state(prealloc, cached_state);
878                 prealloc = NULL;
879                 start = this_end + 1;
880                 goto search_again;
881         }
882         /*
883          * | ---- desired range ---- |
884          *                        | state |
885          * We need to split the extent, and set the bit
886          * on the first half
887          */
888         if (state->start <= end && state->end > end) {
889                 if (state->state & exclusive_bits) {
890                         *failed_start = start;
891                         err = -EEXIST;
892                         goto out;
893                 }
894
895                 prealloc = alloc_extent_state_atomic(prealloc);
896                 BUG_ON(!prealloc);
897                 err = split_state(tree, state, prealloc, end + 1);
898                 if (err)
899                         extent_io_tree_panic(tree, err);
900
901                 set_state_bits(tree, prealloc, &bits);
902                 cache_state(prealloc, cached_state);
903                 merge_state(tree, prealloc);
904                 prealloc = NULL;
905                 goto out;
906         }
907
908         goto search_again;
909
910 out:
911         spin_unlock(&tree->lock);
912         if (prealloc)
913                 free_extent_state(prealloc);
914
915         return err;
916
917 search_again:
918         if (start > end)
919                 goto out;
920         spin_unlock(&tree->lock);
921         if (mask & __GFP_WAIT)
922                 cond_resched();
923         goto again;
924 }
925
926 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits,
927                    u64 *failed_start, struct extent_state **cached_state,
928                    gfp_t mask)
929 {
930         return __set_extent_bit(tree, start, end, bits, 0, failed_start,
931                                 cached_state, mask);
932 }
933
934
935 /**
936  * convert_extent_bit - convert all bits in a given range from one bit to
937  *                      another
938  * @tree:       the io tree to search
939  * @start:      the start offset in bytes
940  * @end:        the end offset in bytes (inclusive)
941  * @bits:       the bits to set in this range
942  * @clear_bits: the bits to clear in this range
943  * @cached_state:       state that we're going to cache
944  * @mask:       the allocation mask
945  *
946  * This will go through and set bits for the given range.  If any states exist
947  * already in this range they are set with the given bit and cleared of the
948  * clear_bits.  This is only meant to be used by things that are mergeable, ie
949  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
950  * boundary bits like LOCK.
951  */
952 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
953                        int bits, int clear_bits,
954                        struct extent_state **cached_state, gfp_t mask)
955 {
956         struct extent_state *state;
957         struct extent_state *prealloc = NULL;
958         struct rb_node *node;
959         int err = 0;
960         u64 last_start;
961         u64 last_end;
962
963 again:
964         if (!prealloc && (mask & __GFP_WAIT)) {
965                 prealloc = alloc_extent_state(mask);
966                 if (!prealloc)
967                         return -ENOMEM;
968         }
969
970         spin_lock(&tree->lock);
971         if (cached_state && *cached_state) {
972                 state = *cached_state;
973                 if (state->start <= start && state->end > start &&
974                     state->tree) {
975                         node = &state->rb_node;
976                         goto hit_next;
977                 }
978         }
979
980         /*
981          * this search will find all the extents that end after
982          * our range starts.
983          */
984         node = tree_search(tree, start);
985         if (!node) {
986                 prealloc = alloc_extent_state_atomic(prealloc);
987                 if (!prealloc) {
988                         err = -ENOMEM;
989                         goto out;
990                 }
991                 err = insert_state(tree, prealloc, start, end, &bits);
992                 prealloc = NULL;
993                 if (err)
994                         extent_io_tree_panic(tree, err);
995                 goto out;
996         }
997         state = rb_entry(node, struct extent_state, rb_node);
998 hit_next:
999         last_start = state->start;
1000         last_end = state->end;
1001
1002         /*
1003          * | ---- desired range ---- |
1004          * | state |
1005          *
1006          * Just lock what we found and keep going
1007          */
1008         if (state->start == start && state->end <= end) {
1009                 set_state_bits(tree, state, &bits);
1010                 cache_state(state, cached_state);
1011                 state = clear_state_bit(tree, state, &clear_bits, 0);
1012                 if (last_end == (u64)-1)
1013                         goto out;
1014                 start = last_end + 1;
1015                 if (start < end && state && state->start == start &&
1016                     !need_resched())
1017                         goto hit_next;
1018                 goto search_again;
1019         }
1020
1021         /*
1022          *     | ---- desired range ---- |
1023          * | state |
1024          *   or
1025          * | ------------- state -------------- |
1026          *
1027          * We need to split the extent we found, and may flip bits on
1028          * second half.
1029          *
1030          * If the extent we found extends past our
1031          * range, we just split and search again.  It'll get split
1032          * again the next time though.
1033          *
1034          * If the extent we found is inside our range, we set the
1035          * desired bit on it.
1036          */
1037         if (state->start < start) {
1038                 prealloc = alloc_extent_state_atomic(prealloc);
1039                 if (!prealloc) {
1040                         err = -ENOMEM;
1041                         goto out;
1042                 }
1043                 err = split_state(tree, state, prealloc, start);
1044                 if (err)
1045                         extent_io_tree_panic(tree, err);
1046                 prealloc = NULL;
1047                 if (err)
1048                         goto out;
1049                 if (state->end <= end) {
1050                         set_state_bits(tree, state, &bits);
1051                         cache_state(state, cached_state);
1052                         state = clear_state_bit(tree, state, &clear_bits, 0);
1053                         if (last_end == (u64)-1)
1054                                 goto out;
1055                         start = last_end + 1;
1056                         if (start < end && state && state->start == start &&
1057                             !need_resched())
1058                                 goto hit_next;
1059                 }
1060                 goto search_again;
1061         }
1062         /*
1063          * | ---- desired range ---- |
1064          *     | state | or               | state |
1065          *
1066          * There's a hole, we need to insert something in it and
1067          * ignore the extent we found.
1068          */
1069         if (state->start > start) {
1070                 u64 this_end;
1071                 if (end < last_start)
1072                         this_end = end;
1073                 else
1074                         this_end = last_start - 1;
1075
1076                 prealloc = alloc_extent_state_atomic(prealloc);
1077                 if (!prealloc) {
1078                         err = -ENOMEM;
1079                         goto out;
1080                 }
1081
1082                 /*
1083                  * Avoid to free 'prealloc' if it can be merged with
1084                  * the later extent.
1085                  */
1086                 err = insert_state(tree, prealloc, start, this_end,
1087                                    &bits);
1088                 if (err)
1089                         extent_io_tree_panic(tree, err);
1090                 cache_state(prealloc, cached_state);
1091                 prealloc = NULL;
1092                 start = this_end + 1;
1093                 goto search_again;
1094         }
1095         /*
1096          * | ---- desired range ---- |
1097          *                        | state |
1098          * We need to split the extent, and set the bit
1099          * on the first half
1100          */
1101         if (state->start <= end && state->end > end) {
1102                 prealloc = alloc_extent_state_atomic(prealloc);
1103                 if (!prealloc) {
1104                         err = -ENOMEM;
1105                         goto out;
1106                 }
1107
1108                 err = split_state(tree, state, prealloc, end + 1);
1109                 if (err)
1110                         extent_io_tree_panic(tree, err);
1111
1112                 set_state_bits(tree, prealloc, &bits);
1113                 cache_state(prealloc, cached_state);
1114                 clear_state_bit(tree, prealloc, &clear_bits, 0);
1115                 prealloc = NULL;
1116                 goto out;
1117         }
1118
1119         goto search_again;
1120
1121 out:
1122         spin_unlock(&tree->lock);
1123         if (prealloc)
1124                 free_extent_state(prealloc);
1125
1126         return err;
1127
1128 search_again:
1129         if (start > end)
1130                 goto out;
1131         spin_unlock(&tree->lock);
1132         if (mask & __GFP_WAIT)
1133                 cond_resched();
1134         goto again;
1135 }
1136
1137 /* wrappers around set/clear extent bit */
1138 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1139                      gfp_t mask)
1140 {
1141         return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1142                               NULL, mask);
1143 }
1144
1145 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1146                     int bits, gfp_t mask)
1147 {
1148         return set_extent_bit(tree, start, end, bits, NULL,
1149                               NULL, mask);
1150 }
1151
1152 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1153                       int bits, gfp_t mask)
1154 {
1155         return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
1156 }
1157
1158 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1159                         struct extent_state **cached_state, gfp_t mask)
1160 {
1161         return set_extent_bit(tree, start, end,
1162                               EXTENT_DELALLOC | EXTENT_UPTODATE,
1163                               NULL, cached_state, mask);
1164 }
1165
1166 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1167                       struct extent_state **cached_state, gfp_t mask)
1168 {
1169         return set_extent_bit(tree, start, end,
1170                               EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1171                               NULL, cached_state, mask);
1172 }
1173
1174 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1175                        gfp_t mask)
1176 {
1177         return clear_extent_bit(tree, start, end,
1178                                 EXTENT_DIRTY | EXTENT_DELALLOC |
1179                                 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1180 }
1181
1182 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1183                      gfp_t mask)
1184 {
1185         return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1186                               NULL, mask);
1187 }
1188
1189 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1190                         struct extent_state **cached_state, gfp_t mask)
1191 {
1192         return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0,
1193                               cached_state, mask);
1194 }
1195
1196 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1197                           struct extent_state **cached_state, gfp_t mask)
1198 {
1199         return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1200                                 cached_state, mask);
1201 }
1202
1203 /*
1204  * either insert or lock state struct between start and end use mask to tell
1205  * us if waiting is desired.
1206  */
1207 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1208                      int bits, struct extent_state **cached_state)
1209 {
1210         int err;
1211         u64 failed_start;
1212         while (1) {
1213                 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1214                                        EXTENT_LOCKED, &failed_start,
1215                                        cached_state, GFP_NOFS);
1216                 if (err == -EEXIST) {
1217                         wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1218                         start = failed_start;
1219                 } else
1220                         break;
1221                 WARN_ON(start > end);
1222         }
1223         return err;
1224 }
1225
1226 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1227 {
1228         return lock_extent_bits(tree, start, end, 0, NULL);
1229 }
1230
1231 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1232 {
1233         int err;
1234         u64 failed_start;
1235
1236         err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1237                                &failed_start, NULL, GFP_NOFS);
1238         if (err == -EEXIST) {
1239                 if (failed_start > start)
1240                         clear_extent_bit(tree, start, failed_start - 1,
1241                                          EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1242                 return 0;
1243         }
1244         return 1;
1245 }
1246
1247 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1248                          struct extent_state **cached, gfp_t mask)
1249 {
1250         return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1251                                 mask);
1252 }
1253
1254 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1255 {
1256         return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1257                                 GFP_NOFS);
1258 }
1259
1260 /*
1261  * helper function to set both pages and extents in the tree writeback
1262  */
1263 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1264 {
1265         unsigned long index = start >> PAGE_CACHE_SHIFT;
1266         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1267         struct page *page;
1268
1269         while (index <= end_index) {
1270                 page = find_get_page(tree->mapping, index);
1271                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1272                 set_page_writeback(page);
1273                 page_cache_release(page);
1274                 index++;
1275         }
1276         return 0;
1277 }
1278
1279 /* find the first state struct with 'bits' set after 'start', and
1280  * return it.  tree->lock must be held.  NULL will returned if
1281  * nothing was found after 'start'
1282  */
1283 struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
1284                                                  u64 start, int bits)
1285 {
1286         struct rb_node *node;
1287         struct extent_state *state;
1288
1289         /*
1290          * this search will find all the extents that end after
1291          * our range starts.
1292          */
1293         node = tree_search(tree, start);
1294         if (!node)
1295                 goto out;
1296
1297         while (1) {
1298                 state = rb_entry(node, struct extent_state, rb_node);
1299                 if (state->end >= start && (state->state & bits))
1300                         return state;
1301
1302                 node = rb_next(node);
1303                 if (!node)
1304                         break;
1305         }
1306 out:
1307         return NULL;
1308 }
1309
1310 /*
1311  * find the first offset in the io tree with 'bits' set. zero is
1312  * returned if we find something, and *start_ret and *end_ret are
1313  * set to reflect the state struct that was found.
1314  *
1315  * If nothing was found, 1 is returned. If found something, return 0.
1316  */
1317 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1318                           u64 *start_ret, u64 *end_ret, int bits,
1319                           struct extent_state **cached_state)
1320 {
1321         struct extent_state *state;
1322         struct rb_node *n;
1323         int ret = 1;
1324
1325         spin_lock(&tree->lock);
1326         if (cached_state && *cached_state) {
1327                 state = *cached_state;
1328                 if (state->end == start - 1 && state->tree) {
1329                         n = rb_next(&state->rb_node);
1330                         while (n) {
1331                                 state = rb_entry(n, struct extent_state,
1332                                                  rb_node);
1333                                 if (state->state & bits)
1334                                         goto got_it;
1335                                 n = rb_next(n);
1336                         }
1337                         free_extent_state(*cached_state);
1338                         *cached_state = NULL;
1339                         goto out;
1340                 }
1341                 free_extent_state(*cached_state);
1342                 *cached_state = NULL;
1343         }
1344
1345         state = find_first_extent_bit_state(tree, start, bits);
1346 got_it:
1347         if (state) {
1348                 cache_state(state, cached_state);
1349                 *start_ret = state->start;
1350                 *end_ret = state->end;
1351                 ret = 0;
1352         }
1353 out:
1354         spin_unlock(&tree->lock);
1355         return ret;
1356 }
1357
1358 /*
1359  * find a contiguous range of bytes in the file marked as delalloc, not
1360  * more than 'max_bytes'.  start and end are used to return the range,
1361  *
1362  * 1 is returned if we find something, 0 if nothing was in the tree
1363  */
1364 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1365                                         u64 *start, u64 *end, u64 max_bytes,
1366                                         struct extent_state **cached_state)
1367 {
1368         struct rb_node *node;
1369         struct extent_state *state;
1370         u64 cur_start = *start;
1371         u64 found = 0;
1372         u64 total_bytes = 0;
1373
1374         spin_lock(&tree->lock);
1375
1376         /*
1377          * this search will find all the extents that end after
1378          * our range starts.
1379          */
1380         node = tree_search(tree, cur_start);
1381         if (!node) {
1382                 if (!found)
1383                         *end = (u64)-1;
1384                 goto out;
1385         }
1386
1387         while (1) {
1388                 state = rb_entry(node, struct extent_state, rb_node);
1389                 if (found && (state->start != cur_start ||
1390                               (state->state & EXTENT_BOUNDARY))) {
1391                         goto out;
1392                 }
1393                 if (!(state->state & EXTENT_DELALLOC)) {
1394                         if (!found)
1395                                 *end = state->end;
1396                         goto out;
1397                 }
1398                 if (!found) {
1399                         *start = state->start;
1400                         *cached_state = state;
1401                         atomic_inc(&state->refs);
1402                 }
1403                 found++;
1404                 *end = state->end;
1405                 cur_start = state->end + 1;
1406                 node = rb_next(node);
1407                 if (!node)
1408                         break;
1409                 total_bytes += state->end - state->start + 1;
1410                 if (total_bytes >= max_bytes)
1411                         break;
1412         }
1413 out:
1414         spin_unlock(&tree->lock);
1415         return found;
1416 }
1417
1418 static noinline void __unlock_for_delalloc(struct inode *inode,
1419                                            struct page *locked_page,
1420                                            u64 start, u64 end)
1421 {
1422         int ret;
1423         struct page *pages[16];
1424         unsigned long index = start >> PAGE_CACHE_SHIFT;
1425         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1426         unsigned long nr_pages = end_index - index + 1;
1427         int i;
1428
1429         if (index == locked_page->index && end_index == index)
1430                 return;
1431
1432         while (nr_pages > 0) {
1433                 ret = find_get_pages_contig(inode->i_mapping, index,
1434                                      min_t(unsigned long, nr_pages,
1435                                      ARRAY_SIZE(pages)), pages);
1436                 for (i = 0; i < ret; i++) {
1437                         if (pages[i] != locked_page)
1438                                 unlock_page(pages[i]);
1439                         page_cache_release(pages[i]);
1440                 }
1441                 nr_pages -= ret;
1442                 index += ret;
1443                 cond_resched();
1444         }
1445 }
1446
1447 static noinline int lock_delalloc_pages(struct inode *inode,
1448                                         struct page *locked_page,
1449                                         u64 delalloc_start,
1450                                         u64 delalloc_end)
1451 {
1452         unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1453         unsigned long start_index = index;
1454         unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1455         unsigned long pages_locked = 0;
1456         struct page *pages[16];
1457         unsigned long nrpages;
1458         int ret;
1459         int i;
1460
1461         /* the caller is responsible for locking the start index */
1462         if (index == locked_page->index && index == end_index)
1463                 return 0;
1464
1465         /* skip the page at the start index */
1466         nrpages = end_index - index + 1;
1467         while (nrpages > 0) {
1468                 ret = find_get_pages_contig(inode->i_mapping, index,
1469                                      min_t(unsigned long,
1470                                      nrpages, ARRAY_SIZE(pages)), pages);
1471                 if (ret == 0) {
1472                         ret = -EAGAIN;
1473                         goto done;
1474                 }
1475                 /* now we have an array of pages, lock them all */
1476                 for (i = 0; i < ret; i++) {
1477                         /*
1478                          * the caller is taking responsibility for
1479                          * locked_page
1480                          */
1481                         if (pages[i] != locked_page) {
1482                                 lock_page(pages[i]);
1483                                 if (!PageDirty(pages[i]) ||
1484                                     pages[i]->mapping != inode->i_mapping) {
1485                                         ret = -EAGAIN;
1486                                         unlock_page(pages[i]);
1487                                         page_cache_release(pages[i]);
1488                                         goto done;
1489                                 }
1490                         }
1491                         page_cache_release(pages[i]);
1492                         pages_locked++;
1493                 }
1494                 nrpages -= ret;
1495                 index += ret;
1496                 cond_resched();
1497         }
1498         ret = 0;
1499 done:
1500         if (ret && pages_locked) {
1501                 __unlock_for_delalloc(inode, locked_page,
1502                               delalloc_start,
1503                               ((u64)(start_index + pages_locked - 1)) <<
1504                               PAGE_CACHE_SHIFT);
1505         }
1506         return ret;
1507 }
1508
1509 /*
1510  * find a contiguous range of bytes in the file marked as delalloc, not
1511  * more than 'max_bytes'.  start and end are used to return the range,
1512  *
1513  * 1 is returned if we find something, 0 if nothing was in the tree
1514  */
1515 static noinline u64 find_lock_delalloc_range(struct inode *inode,
1516                                              struct extent_io_tree *tree,
1517                                              struct page *locked_page,
1518                                              u64 *start, u64 *end,
1519                                              u64 max_bytes)
1520 {
1521         u64 delalloc_start;
1522         u64 delalloc_end;
1523         u64 found;
1524         struct extent_state *cached_state = NULL;
1525         int ret;
1526         int loops = 0;
1527
1528 again:
1529         /* step one, find a bunch of delalloc bytes starting at start */
1530         delalloc_start = *start;
1531         delalloc_end = 0;
1532         found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1533                                     max_bytes, &cached_state);
1534         if (!found || delalloc_end <= *start) {
1535                 *start = delalloc_start;
1536                 *end = delalloc_end;
1537                 free_extent_state(cached_state);
1538                 return found;
1539         }
1540
1541         /*
1542          * start comes from the offset of locked_page.  We have to lock
1543          * pages in order, so we can't process delalloc bytes before
1544          * locked_page
1545          */
1546         if (delalloc_start < *start)
1547                 delalloc_start = *start;
1548
1549         /*
1550          * make sure to limit the number of pages we try to lock down
1551          * if we're looping.
1552          */
1553         if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
1554                 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1555
1556         /* step two, lock all the pages after the page that has start */
1557         ret = lock_delalloc_pages(inode, locked_page,
1558                                   delalloc_start, delalloc_end);
1559         if (ret == -EAGAIN) {
1560                 /* some of the pages are gone, lets avoid looping by
1561                  * shortening the size of the delalloc range we're searching
1562                  */
1563                 free_extent_state(cached_state);
1564                 if (!loops) {
1565                         unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1566                         max_bytes = PAGE_CACHE_SIZE - offset;
1567                         loops = 1;
1568                         goto again;
1569                 } else {
1570                         found = 0;
1571                         goto out_failed;
1572                 }
1573         }
1574         BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1575
1576         /* step three, lock the state bits for the whole range */
1577         lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1578
1579         /* then test to make sure it is all still delalloc */
1580         ret = test_range_bit(tree, delalloc_start, delalloc_end,
1581                              EXTENT_DELALLOC, 1, cached_state);
1582         if (!ret) {
1583                 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1584                                      &cached_state, GFP_NOFS);
1585                 __unlock_for_delalloc(inode, locked_page,
1586                               delalloc_start, delalloc_end);
1587                 cond_resched();
1588                 goto again;
1589         }
1590         free_extent_state(cached_state);
1591         *start = delalloc_start;
1592         *end = delalloc_end;
1593 out_failed:
1594         return found;
1595 }
1596
1597 int extent_clear_unlock_delalloc(struct inode *inode,
1598                                 struct extent_io_tree *tree,
1599                                 u64 start, u64 end, struct page *locked_page,
1600                                 unsigned long op)
1601 {
1602         int ret;
1603         struct page *pages[16];
1604         unsigned long index = start >> PAGE_CACHE_SHIFT;
1605         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1606         unsigned long nr_pages = end_index - index + 1;
1607         int i;
1608         int clear_bits = 0;
1609
1610         if (op & EXTENT_CLEAR_UNLOCK)
1611                 clear_bits |= EXTENT_LOCKED;
1612         if (op & EXTENT_CLEAR_DIRTY)
1613                 clear_bits |= EXTENT_DIRTY;
1614
1615         if (op & EXTENT_CLEAR_DELALLOC)
1616                 clear_bits |= EXTENT_DELALLOC;
1617
1618         clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1619         if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1620                     EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1621                     EXTENT_SET_PRIVATE2)))
1622                 return 0;
1623
1624         while (nr_pages > 0) {
1625                 ret = find_get_pages_contig(inode->i_mapping, index,
1626                                      min_t(unsigned long,
1627                                      nr_pages, ARRAY_SIZE(pages)), pages);
1628                 for (i = 0; i < ret; i++) {
1629
1630                         if (op & EXTENT_SET_PRIVATE2)
1631                                 SetPagePrivate2(pages[i]);
1632
1633                         if (pages[i] == locked_page) {
1634                                 page_cache_release(pages[i]);
1635                                 continue;
1636                         }
1637                         if (op & EXTENT_CLEAR_DIRTY)
1638                                 clear_page_dirty_for_io(pages[i]);
1639                         if (op & EXTENT_SET_WRITEBACK)
1640                                 set_page_writeback(pages[i]);
1641                         if (op & EXTENT_END_WRITEBACK)
1642                                 end_page_writeback(pages[i]);
1643                         if (op & EXTENT_CLEAR_UNLOCK_PAGE)
1644                                 unlock_page(pages[i]);
1645                         page_cache_release(pages[i]);
1646                 }
1647                 nr_pages -= ret;
1648                 index += ret;
1649                 cond_resched();
1650         }
1651         return 0;
1652 }
1653
1654 /*
1655  * count the number of bytes in the tree that have a given bit(s)
1656  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1657  * cached.  The total number found is returned.
1658  */
1659 u64 count_range_bits(struct extent_io_tree *tree,
1660                      u64 *start, u64 search_end, u64 max_bytes,
1661                      unsigned long bits, int contig)
1662 {
1663         struct rb_node *node;
1664         struct extent_state *state;
1665         u64 cur_start = *start;
1666         u64 total_bytes = 0;
1667         u64 last = 0;
1668         int found = 0;
1669
1670         if (search_end <= cur_start) {
1671                 WARN_ON(1);
1672                 return 0;
1673         }
1674
1675         spin_lock(&tree->lock);
1676         if (cur_start == 0 && bits == EXTENT_DIRTY) {
1677                 total_bytes = tree->dirty_bytes;
1678                 goto out;
1679         }
1680         /*
1681          * this search will find all the extents that end after
1682          * our range starts.
1683          */
1684         node = tree_search(tree, cur_start);
1685         if (!node)
1686                 goto out;
1687
1688         while (1) {
1689                 state = rb_entry(node, struct extent_state, rb_node);
1690                 if (state->start > search_end)
1691                         break;
1692                 if (contig && found && state->start > last + 1)
1693                         break;
1694                 if (state->end >= cur_start && (state->state & bits) == bits) {
1695                         total_bytes += min(search_end, state->end) + 1 -
1696                                        max(cur_start, state->start);
1697                         if (total_bytes >= max_bytes)
1698                                 break;
1699                         if (!found) {
1700                                 *start = max(cur_start, state->start);
1701                                 found = 1;
1702                         }
1703                         last = state->end;
1704                 } else if (contig && found) {
1705                         break;
1706                 }
1707                 node = rb_next(node);
1708                 if (!node)
1709                         break;
1710         }
1711 out:
1712         spin_unlock(&tree->lock);
1713         return total_bytes;
1714 }
1715
1716 /*
1717  * set the private field for a given byte offset in the tree.  If there isn't
1718  * an extent_state there already, this does nothing.
1719  */
1720 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1721 {
1722         struct rb_node *node;
1723         struct extent_state *state;
1724         int ret = 0;
1725
1726         spin_lock(&tree->lock);
1727         /*
1728          * this search will find all the extents that end after
1729          * our range starts.
1730          */
1731         node = tree_search(tree, start);
1732         if (!node) {
1733                 ret = -ENOENT;
1734                 goto out;
1735         }
1736         state = rb_entry(node, struct extent_state, rb_node);
1737         if (state->start != start) {
1738                 ret = -ENOENT;
1739                 goto out;
1740         }
1741         state->private = private;
1742 out:
1743         spin_unlock(&tree->lock);
1744         return ret;
1745 }
1746
1747 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1748 {
1749         struct rb_node *node;
1750         struct extent_state *state;
1751         int ret = 0;
1752
1753         spin_lock(&tree->lock);
1754         /*
1755          * this search will find all the extents that end after
1756          * our range starts.
1757          */
1758         node = tree_search(tree, start);
1759         if (!node) {
1760                 ret = -ENOENT;
1761                 goto out;
1762         }
1763         state = rb_entry(node, struct extent_state, rb_node);
1764         if (state->start != start) {
1765                 ret = -ENOENT;
1766                 goto out;
1767         }
1768         *private = state->private;
1769 out:
1770         spin_unlock(&tree->lock);
1771         return ret;
1772 }
1773
1774 /*
1775  * searches a range in the state tree for a given mask.
1776  * If 'filled' == 1, this returns 1 only if every extent in the tree
1777  * has the bits set.  Otherwise, 1 is returned if any bit in the
1778  * range is found set.
1779  */
1780 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1781                    int bits, int filled, struct extent_state *cached)
1782 {
1783         struct extent_state *state = NULL;
1784         struct rb_node *node;
1785         int bitset = 0;
1786
1787         spin_lock(&tree->lock);
1788         if (cached && cached->tree && cached->start <= start &&
1789             cached->end > start)
1790                 node = &cached->rb_node;
1791         else
1792                 node = tree_search(tree, start);
1793         while (node && start <= end) {
1794                 state = rb_entry(node, struct extent_state, rb_node);
1795
1796                 if (filled && state->start > start) {
1797                         bitset = 0;
1798                         break;
1799                 }
1800
1801                 if (state->start > end)
1802                         break;
1803
1804                 if (state->state & bits) {
1805                         bitset = 1;
1806                         if (!filled)
1807                                 break;
1808                 } else if (filled) {
1809                         bitset = 0;
1810                         break;
1811                 }
1812
1813                 if (state->end == (u64)-1)
1814                         break;
1815
1816                 start = state->end + 1;
1817                 if (start > end)
1818                         break;
1819                 node = rb_next(node);
1820                 if (!node) {
1821                         if (filled)
1822                                 bitset = 0;
1823                         break;
1824                 }
1825         }
1826         spin_unlock(&tree->lock);
1827         return bitset;
1828 }
1829
1830 /*
1831  * helper function to set a given page up to date if all the
1832  * extents in the tree for that page are up to date
1833  */
1834 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1835 {
1836         u64 start = page_offset(page);
1837         u64 end = start + PAGE_CACHE_SIZE - 1;
1838         if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1839                 SetPageUptodate(page);
1840 }
1841
1842 /*
1843  * helper function to unlock a page if all the extents in the tree
1844  * for that page are unlocked
1845  */
1846 static void check_page_locked(struct extent_io_tree *tree, struct page *page)
1847 {
1848         u64 start = page_offset(page);
1849         u64 end = start + PAGE_CACHE_SIZE - 1;
1850         if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL))
1851                 unlock_page(page);
1852 }
1853
1854 /*
1855  * helper function to end page writeback if all the extents
1856  * in the tree for that page are done with writeback
1857  */
1858 static void check_page_writeback(struct extent_io_tree *tree,
1859                                  struct page *page)
1860 {
1861         end_page_writeback(page);
1862 }
1863
1864 /*
1865  * When IO fails, either with EIO or csum verification fails, we
1866  * try other mirrors that might have a good copy of the data.  This
1867  * io_failure_record is used to record state as we go through all the
1868  * mirrors.  If another mirror has good data, the page is set up to date
1869  * and things continue.  If a good mirror can't be found, the original
1870  * bio end_io callback is called to indicate things have failed.
1871  */
1872 struct io_failure_record {
1873         struct page *page;
1874         u64 start;
1875         u64 len;
1876         u64 logical;
1877         unsigned long bio_flags;
1878         int this_mirror;
1879         int failed_mirror;
1880         int in_validation;
1881 };
1882
1883 static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1884                                 int did_repair)
1885 {
1886         int ret;
1887         int err = 0;
1888         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1889
1890         set_state_private(failure_tree, rec->start, 0);
1891         ret = clear_extent_bits(failure_tree, rec->start,
1892                                 rec->start + rec->len - 1,
1893                                 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1894         if (ret)
1895                 err = ret;
1896
1897         ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1898                                 rec->start + rec->len - 1,
1899                                 EXTENT_DAMAGED, GFP_NOFS);
1900         if (ret && !err)
1901                 err = ret;
1902
1903         kfree(rec);
1904         return err;
1905 }
1906
1907 static void repair_io_failure_callback(struct bio *bio, int err)
1908 {
1909         complete(bio->bi_private);
1910 }
1911
1912 /*
1913  * this bypasses the standard btrfs submit functions deliberately, as
1914  * the standard behavior is to write all copies in a raid setup. here we only
1915  * want to write the one bad copy. so we do the mapping for ourselves and issue
1916  * submit_bio directly.
1917  * to avoid any synchronization issues, wait for the data after writing, which
1918  * actually prevents the read that triggered the error from finishing.
1919  * currently, there can be no more than two copies of every data bit. thus,
1920  * exactly one rewrite is required.
1921  */
1922 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 start,
1923                         u64 length, u64 logical, struct page *page,
1924                         int mirror_num)
1925 {
1926         struct bio *bio;
1927         struct btrfs_device *dev;
1928         DECLARE_COMPLETION_ONSTACK(compl);
1929         u64 map_length = 0;
1930         u64 sector;
1931         struct btrfs_bio *bbio = NULL;
1932         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
1933         int ret;
1934
1935         BUG_ON(!mirror_num);
1936
1937         /* we can't repair anything in raid56 yet */
1938         if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
1939                 return 0;
1940
1941         bio = bio_alloc(GFP_NOFS, 1);
1942         if (!bio)
1943                 return -EIO;
1944         bio->bi_private = &compl;
1945         bio->bi_end_io = repair_io_failure_callback;
1946         bio->bi_size = 0;
1947         map_length = length;
1948
1949         ret = btrfs_map_block(fs_info, WRITE, logical,
1950                               &map_length, &bbio, mirror_num);
1951         if (ret) {
1952                 bio_put(bio);
1953                 return -EIO;
1954         }
1955         BUG_ON(mirror_num != bbio->mirror_num);
1956         sector = bbio->stripes[mirror_num-1].physical >> 9;
1957         bio->bi_sector = sector;
1958         dev = bbio->stripes[mirror_num-1].dev;
1959         kfree(bbio);
1960         if (!dev || !dev->bdev || !dev->writeable) {
1961                 bio_put(bio);
1962                 return -EIO;
1963         }
1964         bio->bi_bdev = dev->bdev;
1965         bio_add_page(bio, page, length, start - page_offset(page));
1966         btrfsic_submit_bio(WRITE_SYNC, bio);
1967         wait_for_completion(&compl);
1968
1969         if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
1970                 /* try to remap that extent elsewhere? */
1971                 bio_put(bio);
1972                 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
1973                 return -EIO;
1974         }
1975
1976         printk_ratelimited_in_rcu(KERN_INFO "btrfs read error corrected: ino %lu off %llu "
1977                       "(dev %s sector %llu)\n", page->mapping->host->i_ino,
1978                       start, rcu_str_deref(dev->name), sector);
1979
1980         bio_put(bio);
1981         return 0;
1982 }
1983
1984 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
1985                          int mirror_num)
1986 {
1987         u64 start = eb->start;
1988         unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
1989         int ret = 0;
1990
1991         for (i = 0; i < num_pages; i++) {
1992                 struct page *p = extent_buffer_page(eb, i);
1993                 ret = repair_io_failure(root->fs_info, start, PAGE_CACHE_SIZE,
1994                                         start, p, mirror_num);
1995                 if (ret)
1996                         break;
1997                 start += PAGE_CACHE_SIZE;
1998         }
1999
2000         return ret;
2001 }
2002
2003 /*
2004  * each time an IO finishes, we do a fast check in the IO failure tree
2005  * to see if we need to process or clean up an io_failure_record
2006  */
2007 static int clean_io_failure(u64 start, struct page *page)
2008 {
2009         u64 private;
2010         u64 private_failure;
2011         struct io_failure_record *failrec;
2012         struct btrfs_fs_info *fs_info;
2013         struct extent_state *state;
2014         int num_copies;
2015         int did_repair = 0;
2016         int ret;
2017         struct inode *inode = page->mapping->host;
2018
2019         private = 0;
2020         ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2021                                 (u64)-1, 1, EXTENT_DIRTY, 0);
2022         if (!ret)
2023                 return 0;
2024
2025         ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2026                                 &private_failure);
2027         if (ret)
2028                 return 0;
2029
2030         failrec = (struct io_failure_record *)(unsigned long) private_failure;
2031         BUG_ON(!failrec->this_mirror);
2032
2033         if (failrec->in_validation) {
2034                 /* there was no real error, just free the record */
2035                 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2036                          failrec->start);
2037                 did_repair = 1;
2038                 goto out;
2039         }
2040
2041         spin_lock(&BTRFS_I(inode)->io_tree.lock);
2042         state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2043                                             failrec->start,
2044                                             EXTENT_LOCKED);
2045         spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2046
2047         if (state && state->start == failrec->start) {
2048                 fs_info = BTRFS_I(inode)->root->fs_info;
2049                 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2050                                               failrec->len);
2051                 if (num_copies > 1)  {
2052                         ret = repair_io_failure(fs_info, start, failrec->len,
2053                                                 failrec->logical, page,
2054                                                 failrec->failed_mirror);
2055                         did_repair = !ret;
2056                 }
2057                 ret = 0;
2058         }
2059
2060 out:
2061         if (!ret)
2062                 ret = free_io_failure(inode, failrec, did_repair);
2063
2064         return ret;
2065 }
2066
2067 /*
2068  * this is a generic handler for readpage errors (default
2069  * readpage_io_failed_hook). if other copies exist, read those and write back
2070  * good data to the failed position. does not investigate in remapping the
2071  * failed extent elsewhere, hoping the device will be smart enough to do this as
2072  * needed
2073  */
2074
2075 static int bio_readpage_error(struct bio *failed_bio, struct page *page,
2076                                 u64 start, u64 end, int failed_mirror,
2077                                 struct extent_state *state)
2078 {
2079         struct io_failure_record *failrec = NULL;
2080         u64 private;
2081         struct extent_map *em;
2082         struct inode *inode = page->mapping->host;
2083         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2084         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2085         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2086         struct bio *bio;
2087         int num_copies;
2088         int ret;
2089         int read_mode;
2090         u64 logical;
2091
2092         BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2093
2094         ret = get_state_private(failure_tree, start, &private);
2095         if (ret) {
2096                 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2097                 if (!failrec)
2098                         return -ENOMEM;
2099                 failrec->start = start;
2100                 failrec->len = end - start + 1;
2101                 failrec->this_mirror = 0;
2102                 failrec->bio_flags = 0;
2103                 failrec->in_validation = 0;
2104
2105                 read_lock(&em_tree->lock);
2106                 em = lookup_extent_mapping(em_tree, start, failrec->len);
2107                 if (!em) {
2108                         read_unlock(&em_tree->lock);
2109                         kfree(failrec);
2110                         return -EIO;
2111                 }
2112
2113                 if (em->start > start || em->start + em->len < start) {
2114                         free_extent_map(em);
2115                         em = NULL;
2116                 }
2117                 read_unlock(&em_tree->lock);
2118
2119                 if (!em) {
2120                         kfree(failrec);
2121                         return -EIO;
2122                 }
2123                 logical = start - em->start;
2124                 logical = em->block_start + logical;
2125                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2126                         logical = em->block_start;
2127                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2128                         extent_set_compress_type(&failrec->bio_flags,
2129                                                  em->compress_type);
2130                 }
2131                 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2132                          "len=%llu\n", logical, start, failrec->len);
2133                 failrec->logical = logical;
2134                 free_extent_map(em);
2135
2136                 /* set the bits in the private failure tree */
2137                 ret = set_extent_bits(failure_tree, start, end,
2138                                         EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2139                 if (ret >= 0)
2140                         ret = set_state_private(failure_tree, start,
2141                                                 (u64)(unsigned long)failrec);
2142                 /* set the bits in the inode's tree */
2143                 if (ret >= 0)
2144                         ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2145                                                 GFP_NOFS);
2146                 if (ret < 0) {
2147                         kfree(failrec);
2148                         return ret;
2149                 }
2150         } else {
2151                 failrec = (struct io_failure_record *)(unsigned long)private;
2152                 pr_debug("bio_readpage_error: (found) logical=%llu, "
2153                          "start=%llu, len=%llu, validation=%d\n",
2154                          failrec->logical, failrec->start, failrec->len,
2155                          failrec->in_validation);
2156                 /*
2157                  * when data can be on disk more than twice, add to failrec here
2158                  * (e.g. with a list for failed_mirror) to make
2159                  * clean_io_failure() clean all those errors at once.
2160                  */
2161         }
2162         num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2163                                       failrec->logical, failrec->len);
2164         if (num_copies == 1) {
2165                 /*
2166                  * we only have a single copy of the data, so don't bother with
2167                  * all the retry and error correction code that follows. no
2168                  * matter what the error is, it is very likely to persist.
2169                  */
2170                 pr_debug("bio_readpage_error: cannot repair, num_copies == 1. "
2171                          "state=%p, num_copies=%d, next_mirror %d, "
2172                          "failed_mirror %d\n", state, num_copies,
2173                          failrec->this_mirror, failed_mirror);
2174                 free_io_failure(inode, failrec, 0);
2175                 return -EIO;
2176         }
2177
2178         if (!state) {
2179                 spin_lock(&tree->lock);
2180                 state = find_first_extent_bit_state(tree, failrec->start,
2181                                                     EXTENT_LOCKED);
2182                 if (state && state->start != failrec->start)
2183                         state = NULL;
2184                 spin_unlock(&tree->lock);
2185         }
2186
2187         /*
2188          * there are two premises:
2189          *      a) deliver good data to the caller
2190          *      b) correct the bad sectors on disk
2191          */
2192         if (failed_bio->bi_vcnt > 1) {
2193                 /*
2194                  * to fulfill b), we need to know the exact failing sectors, as
2195                  * we don't want to rewrite any more than the failed ones. thus,
2196                  * we need separate read requests for the failed bio
2197                  *
2198                  * if the following BUG_ON triggers, our validation request got
2199                  * merged. we need separate requests for our algorithm to work.
2200                  */
2201                 BUG_ON(failrec->in_validation);
2202                 failrec->in_validation = 1;
2203                 failrec->this_mirror = failed_mirror;
2204                 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2205         } else {
2206                 /*
2207                  * we're ready to fulfill a) and b) alongside. get a good copy
2208                  * of the failed sector and if we succeed, we have setup
2209                  * everything for repair_io_failure to do the rest for us.
2210                  */
2211                 if (failrec->in_validation) {
2212                         BUG_ON(failrec->this_mirror != failed_mirror);
2213                         failrec->in_validation = 0;
2214                         failrec->this_mirror = 0;
2215                 }
2216                 failrec->failed_mirror = failed_mirror;
2217                 failrec->this_mirror++;
2218                 if (failrec->this_mirror == failed_mirror)
2219                         failrec->this_mirror++;
2220                 read_mode = READ_SYNC;
2221         }
2222
2223         if (!state || failrec->this_mirror > num_copies) {
2224                 pr_debug("bio_readpage_error: (fail) state=%p, num_copies=%d, "
2225                          "next_mirror %d, failed_mirror %d\n", state,
2226                          num_copies, failrec->this_mirror, failed_mirror);
2227                 free_io_failure(inode, failrec, 0);
2228                 return -EIO;
2229         }
2230
2231         bio = bio_alloc(GFP_NOFS, 1);
2232         if (!bio) {
2233                 free_io_failure(inode, failrec, 0);
2234                 return -EIO;
2235         }
2236         bio->bi_private = state;
2237         bio->bi_end_io = failed_bio->bi_end_io;
2238         bio->bi_sector = failrec->logical >> 9;
2239         bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2240         bio->bi_size = 0;
2241
2242         bio_add_page(bio, page, failrec->len, start - page_offset(page));
2243
2244         pr_debug("bio_readpage_error: submitting new read[%#x] to "
2245                  "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2246                  failrec->this_mirror, num_copies, failrec->in_validation);
2247
2248         ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2249                                          failrec->this_mirror,
2250                                          failrec->bio_flags, 0);
2251         return ret;
2252 }
2253
2254 /* lots and lots of room for performance fixes in the end_bio funcs */
2255
2256 int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2257 {
2258         int uptodate = (err == 0);
2259         struct extent_io_tree *tree;
2260         int ret;
2261
2262         tree = &BTRFS_I(page->mapping->host)->io_tree;
2263
2264         if (tree->ops && tree->ops->writepage_end_io_hook) {
2265                 ret = tree->ops->writepage_end_io_hook(page, start,
2266                                                end, NULL, uptodate);
2267                 if (ret)
2268                         uptodate = 0;
2269         }
2270
2271         if (!uptodate) {
2272                 ClearPageUptodate(page);
2273                 SetPageError(page);
2274         }
2275         return 0;
2276 }
2277
2278 /*
2279  * after a writepage IO is done, we need to:
2280  * clear the uptodate bits on error
2281  * clear the writeback bits in the extent tree for this IO
2282  * end_page_writeback if the page has no more pending IO
2283  *
2284  * Scheduling is not allowed, so the extent state tree is expected
2285  * to have one and only one object corresponding to this IO.
2286  */
2287 static void end_bio_extent_writepage(struct bio *bio, int err)
2288 {
2289         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2290         struct extent_io_tree *tree;
2291         u64 start;
2292         u64 end;
2293         int whole_page;
2294
2295         do {
2296                 struct page *page = bvec->bv_page;
2297                 tree = &BTRFS_I(page->mapping->host)->io_tree;
2298
2299                 start = page_offset(page) + bvec->bv_offset;
2300                 end = start + bvec->bv_len - 1;
2301
2302                 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2303                         whole_page = 1;
2304                 else
2305                         whole_page = 0;
2306
2307                 if (--bvec >= bio->bi_io_vec)
2308                         prefetchw(&bvec->bv_page->flags);
2309
2310                 if (end_extent_writepage(page, err, start, end))
2311                         continue;
2312
2313                 if (whole_page)
2314                         end_page_writeback(page);
2315                 else
2316                         check_page_writeback(tree, page);
2317         } while (bvec >= bio->bi_io_vec);
2318
2319         bio_put(bio);
2320 }
2321
2322 /*
2323  * after a readpage IO is done, we need to:
2324  * clear the uptodate bits on error
2325  * set the uptodate bits if things worked
2326  * set the page up to date if all extents in the tree are uptodate
2327  * clear the lock bit in the extent tree
2328  * unlock the page if there are no other extents locked for it
2329  *
2330  * Scheduling is not allowed, so the extent state tree is expected
2331  * to have one and only one object corresponding to this IO.
2332  */
2333 static void end_bio_extent_readpage(struct bio *bio, int err)
2334 {
2335         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2336         struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2337         struct bio_vec *bvec = bio->bi_io_vec;
2338         struct extent_io_tree *tree;
2339         u64 start;
2340         u64 end;
2341         int whole_page;
2342         int mirror;
2343         int ret;
2344
2345         if (err)
2346                 uptodate = 0;
2347
2348         do {
2349                 struct page *page = bvec->bv_page;
2350                 struct extent_state *cached = NULL;
2351                 struct extent_state *state;
2352
2353                 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2354                          "mirror=%ld\n", (u64)bio->bi_sector, err,
2355                          (long int)bio->bi_bdev);
2356                 tree = &BTRFS_I(page->mapping->host)->io_tree;
2357
2358                 start = page_offset(page) + bvec->bv_offset;
2359                 end = start + bvec->bv_len - 1;
2360
2361                 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2362                         whole_page = 1;
2363                 else
2364                         whole_page = 0;
2365
2366                 if (++bvec <= bvec_end)
2367                         prefetchw(&bvec->bv_page->flags);
2368
2369                 spin_lock(&tree->lock);
2370                 state = find_first_extent_bit_state(tree, start, EXTENT_LOCKED);
2371                 if (state && state->start == start) {
2372                         /*
2373                          * take a reference on the state, unlock will drop
2374                          * the ref
2375                          */
2376                         cache_state(state, &cached);
2377                 }
2378                 spin_unlock(&tree->lock);
2379
2380                 mirror = (int)(unsigned long)bio->bi_bdev;
2381                 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
2382                         ret = tree->ops->readpage_end_io_hook(page, start, end,
2383                                                               state, mirror);
2384                         if (ret)
2385                                 uptodate = 0;
2386                         else
2387                                 clean_io_failure(start, page);
2388                 }
2389
2390                 if (!uptodate && tree->ops && tree->ops->readpage_io_failed_hook) {
2391                         ret = tree->ops->readpage_io_failed_hook(page, mirror);
2392                         if (!ret && !err &&
2393                             test_bit(BIO_UPTODATE, &bio->bi_flags))
2394                                 uptodate = 1;
2395                 } else if (!uptodate) {
2396                         /*
2397                          * The generic bio_readpage_error handles errors the
2398                          * following way: If possible, new read requests are
2399                          * created and submitted and will end up in
2400                          * end_bio_extent_readpage as well (if we're lucky, not
2401                          * in the !uptodate case). In that case it returns 0 and
2402                          * we just go on with the next page in our bio. If it
2403                          * can't handle the error it will return -EIO and we
2404                          * remain responsible for that page.
2405                          */
2406                         ret = bio_readpage_error(bio, page, start, end, mirror, NULL);
2407                         if (ret == 0) {
2408                                 uptodate =
2409                                         test_bit(BIO_UPTODATE, &bio->bi_flags);
2410                                 if (err)
2411                                         uptodate = 0;
2412                                 uncache_state(&cached);
2413                                 continue;
2414                         }
2415                 }
2416
2417                 if (uptodate && tree->track_uptodate) {
2418                         set_extent_uptodate(tree, start, end, &cached,
2419                                             GFP_ATOMIC);
2420                 }
2421                 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2422
2423                 if (whole_page) {
2424                         if (uptodate) {
2425                                 SetPageUptodate(page);
2426                         } else {
2427                                 ClearPageUptodate(page);
2428                                 SetPageError(page);
2429                         }
2430                         unlock_page(page);
2431                 } else {
2432                         if (uptodate) {
2433                                 check_page_uptodate(tree, page);
2434                         } else {
2435                                 ClearPageUptodate(page);
2436                                 SetPageError(page);
2437                         }
2438                         check_page_locked(tree, page);
2439                 }
2440         } while (bvec <= bvec_end);
2441
2442         bio_put(bio);
2443 }
2444
2445 struct bio *
2446 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2447                 gfp_t gfp_flags)
2448 {
2449         struct bio *bio;
2450
2451         bio = bio_alloc(gfp_flags, nr_vecs);
2452
2453         if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2454                 while (!bio && (nr_vecs /= 2))
2455                         bio = bio_alloc(gfp_flags, nr_vecs);
2456         }
2457
2458         if (bio) {
2459                 bio->bi_size = 0;
2460                 bio->bi_bdev = bdev;
2461                 bio->bi_sector = first_sector;
2462         }
2463         return bio;
2464 }
2465
2466 static int __must_check submit_one_bio(int rw, struct bio *bio,
2467                                        int mirror_num, unsigned long bio_flags)
2468 {
2469         int ret = 0;
2470         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2471         struct page *page = bvec->bv_page;
2472         struct extent_io_tree *tree = bio->bi_private;
2473         u64 start;
2474
2475         start = page_offset(page) + bvec->bv_offset;
2476
2477         bio->bi_private = NULL;
2478
2479         bio_get(bio);
2480
2481         if (tree->ops && tree->ops->submit_bio_hook)
2482                 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2483                                            mirror_num, bio_flags, start);
2484         else
2485                 btrfsic_submit_bio(rw, bio);
2486
2487         if (bio_flagged(bio, BIO_EOPNOTSUPP))
2488                 ret = -EOPNOTSUPP;
2489         bio_put(bio);
2490         return ret;
2491 }
2492
2493 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
2494                      unsigned long offset, size_t size, struct bio *bio,
2495                      unsigned long bio_flags)
2496 {
2497         int ret = 0;
2498         if (tree->ops && tree->ops->merge_bio_hook)
2499                 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
2500                                                 bio_flags);
2501         BUG_ON(ret < 0);
2502         return ret;
2503
2504 }
2505
2506 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2507                               struct page *page, sector_t sector,
2508                               size_t size, unsigned long offset,
2509                               struct block_device *bdev,
2510                               struct bio **bio_ret,
2511                               unsigned long max_pages,
2512                               bio_end_io_t end_io_func,
2513                               int mirror_num,
2514                               unsigned long prev_bio_flags,
2515                               unsigned long bio_flags)
2516 {
2517         int ret = 0;
2518         struct bio *bio;
2519         int nr;
2520         int contig = 0;
2521         int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2522         int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2523         size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2524
2525         if (bio_ret && *bio_ret) {
2526                 bio = *bio_ret;
2527                 if (old_compressed)
2528                         contig = bio->bi_sector == sector;
2529                 else
2530                         contig = bio->bi_sector + (bio->bi_size >> 9) ==
2531                                 sector;
2532
2533                 if (prev_bio_flags != bio_flags || !contig ||
2534                     merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
2535                     bio_add_page(bio, page, page_size, offset) < page_size) {
2536                         ret = submit_one_bio(rw, bio, mirror_num,
2537                                              prev_bio_flags);
2538                         if (ret < 0)
2539                                 return ret;
2540                         bio = NULL;
2541                 } else {
2542                         return 0;
2543                 }
2544         }
2545         if (this_compressed)
2546                 nr = BIO_MAX_PAGES;
2547         else
2548                 nr = bio_get_nr_vecs(bdev);
2549
2550         bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2551         if (!bio)
2552                 return -ENOMEM;
2553
2554         bio_add_page(bio, page, page_size, offset);
2555         bio->bi_end_io = end_io_func;
2556         bio->bi_private = tree;
2557
2558         if (bio_ret)
2559                 *bio_ret = bio;
2560         else
2561                 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2562
2563         return ret;
2564 }
2565
2566 void attach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
2567 {
2568         if (!PagePrivate(page)) {
2569                 SetPagePrivate(page);
2570                 page_cache_get(page);
2571                 set_page_private(page, (unsigned long)eb);
2572         } else {
2573                 WARN_ON(page->private != (unsigned long)eb);
2574         }
2575 }
2576
2577 void set_page_extent_mapped(struct page *page)
2578 {
2579         if (!PagePrivate(page)) {
2580                 SetPagePrivate(page);
2581                 page_cache_get(page);
2582                 set_page_private(page, EXTENT_PAGE_PRIVATE);
2583         }
2584 }
2585
2586 /*
2587  * basic readpage implementation.  Locked extent state structs are inserted
2588  * into the tree that are removed when the IO is done (by the end_io
2589  * handlers)
2590  * XXX JDM: This needs looking at to ensure proper page locking
2591  */
2592 static int __extent_read_full_page(struct extent_io_tree *tree,
2593                                    struct page *page,
2594                                    get_extent_t *get_extent,
2595                                    struct bio **bio, int mirror_num,
2596                                    unsigned long *bio_flags)
2597 {
2598         struct inode *inode = page->mapping->host;
2599         u64 start = page_offset(page);
2600         u64 page_end = start + PAGE_CACHE_SIZE - 1;
2601         u64 end;
2602         u64 cur = start;
2603         u64 extent_offset;
2604         u64 last_byte = i_size_read(inode);
2605         u64 block_start;
2606         u64 cur_end;
2607         sector_t sector;
2608         struct extent_map *em;
2609         struct block_device *bdev;
2610         struct btrfs_ordered_extent *ordered;
2611         int ret;
2612         int nr = 0;
2613         size_t pg_offset = 0;
2614         size_t iosize;
2615         size_t disk_io_size;
2616         size_t blocksize = inode->i_sb->s_blocksize;
2617         unsigned long this_bio_flag = 0;
2618
2619         set_page_extent_mapped(page);
2620
2621         if (!PageUptodate(page)) {
2622                 if (cleancache_get_page(page) == 0) {
2623                         BUG_ON(blocksize != PAGE_SIZE);
2624                         goto out;
2625                 }
2626         }
2627
2628         end = page_end;
2629         while (1) {
2630                 lock_extent(tree, start, end);
2631                 ordered = btrfs_lookup_ordered_extent(inode, start);
2632                 if (!ordered)
2633                         break;
2634                 unlock_extent(tree, start, end);
2635                 btrfs_start_ordered_extent(inode, ordered, 1);
2636                 btrfs_put_ordered_extent(ordered);
2637         }
2638
2639         if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2640                 char *userpage;
2641                 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2642
2643                 if (zero_offset) {
2644                         iosize = PAGE_CACHE_SIZE - zero_offset;
2645                         userpage = kmap_atomic(page);
2646                         memset(userpage + zero_offset, 0, iosize);
2647                         flush_dcache_page(page);
2648                         kunmap_atomic(userpage);
2649                 }
2650         }
2651         while (cur <= end) {
2652                 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2653
2654                 if (cur >= last_byte) {
2655                         char *userpage;
2656                         struct extent_state *cached = NULL;
2657
2658                         iosize = PAGE_CACHE_SIZE - pg_offset;
2659                         userpage = kmap_atomic(page);
2660                         memset(userpage + pg_offset, 0, iosize);
2661                         flush_dcache_page(page);
2662                         kunmap_atomic(userpage);
2663                         set_extent_uptodate(tree, cur, cur + iosize - 1,
2664                                             &cached, GFP_NOFS);
2665                         unlock_extent_cached(tree, cur, cur + iosize - 1,
2666                                              &cached, GFP_NOFS);
2667                         break;
2668                 }
2669                 em = get_extent(inode, page, pg_offset, cur,
2670                                 end - cur + 1, 0);
2671                 if (IS_ERR_OR_NULL(em)) {
2672                         SetPageError(page);
2673                         unlock_extent(tree, cur, end);
2674                         break;
2675                 }
2676                 extent_offset = cur - em->start;
2677                 BUG_ON(extent_map_end(em) <= cur);
2678                 BUG_ON(end < cur);
2679
2680                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2681                         this_bio_flag = EXTENT_BIO_COMPRESSED;
2682                         extent_set_compress_type(&this_bio_flag,
2683                                                  em->compress_type);
2684                 }
2685
2686                 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2687                 cur_end = min(extent_map_end(em) - 1, end);
2688                 iosize = ALIGN(iosize, blocksize);
2689                 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2690                         disk_io_size = em->block_len;
2691                         sector = em->block_start >> 9;
2692                 } else {
2693                         sector = (em->block_start + extent_offset) >> 9;
2694                         disk_io_size = iosize;
2695                 }
2696                 bdev = em->bdev;
2697                 block_start = em->block_start;
2698                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2699                         block_start = EXTENT_MAP_HOLE;
2700                 free_extent_map(em);
2701                 em = NULL;
2702
2703                 /* we've found a hole, just zero and go on */
2704                 if (block_start == EXTENT_MAP_HOLE) {
2705                         char *userpage;
2706                         struct extent_state *cached = NULL;
2707
2708                         userpage = kmap_atomic(page);
2709                         memset(userpage + pg_offset, 0, iosize);
2710                         flush_dcache_page(page);
2711                         kunmap_atomic(userpage);
2712
2713                         set_extent_uptodate(tree, cur, cur + iosize - 1,
2714                                             &cached, GFP_NOFS);
2715                         unlock_extent_cached(tree, cur, cur + iosize - 1,
2716                                              &cached, GFP_NOFS);
2717                         cur = cur + iosize;
2718                         pg_offset += iosize;
2719                         continue;
2720                 }
2721                 /* the get_extent function already copied into the page */
2722                 if (test_range_bit(tree, cur, cur_end,
2723                                    EXTENT_UPTODATE, 1, NULL)) {
2724                         check_page_uptodate(tree, page);
2725                         unlock_extent(tree, cur, cur + iosize - 1);
2726                         cur = cur + iosize;
2727                         pg_offset += iosize;
2728                         continue;
2729                 }
2730                 /* we have an inline extent but it didn't get marked up
2731                  * to date.  Error out
2732                  */
2733                 if (block_start == EXTENT_MAP_INLINE) {
2734                         SetPageError(page);
2735                         unlock_extent(tree, cur, cur + iosize - 1);
2736                         cur = cur + iosize;
2737                         pg_offset += iosize;
2738                         continue;
2739                 }
2740
2741                 pnr -= page->index;
2742                 ret = submit_extent_page(READ, tree, page,
2743                                          sector, disk_io_size, pg_offset,
2744                                          bdev, bio, pnr,
2745                                          end_bio_extent_readpage, mirror_num,
2746                                          *bio_flags,
2747                                          this_bio_flag);
2748                 if (!ret) {
2749                         nr++;
2750                         *bio_flags = this_bio_flag;
2751                 } else {
2752                         SetPageError(page);
2753                         unlock_extent(tree, cur, cur + iosize - 1);
2754                 }
2755                 cur = cur + iosize;
2756                 pg_offset += iosize;
2757         }
2758 out:
2759         if (!nr) {
2760                 if (!PageError(page))
2761                         SetPageUptodate(page);
2762                 unlock_page(page);
2763         }
2764         return 0;
2765 }
2766
2767 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2768                             get_extent_t *get_extent, int mirror_num)
2769 {
2770         struct bio *bio = NULL;
2771         unsigned long bio_flags = 0;
2772         int ret;
2773
2774         ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
2775                                       &bio_flags);
2776         if (bio)
2777                 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
2778         return ret;
2779 }
2780
2781 static noinline void update_nr_written(struct page *page,
2782                                       struct writeback_control *wbc,
2783                                       unsigned long nr_written)
2784 {
2785         wbc->nr_to_write -= nr_written;
2786         if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2787             wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2788                 page->mapping->writeback_index = page->index + nr_written;
2789 }
2790
2791 /*
2792  * the writepage semantics are similar to regular writepage.  extent
2793  * records are inserted to lock ranges in the tree, and as dirty areas
2794  * are found, they are marked writeback.  Then the lock bits are removed
2795  * and the end_io handler clears the writeback ranges
2796  */
2797 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2798                               void *data)
2799 {
2800         struct inode *inode = page->mapping->host;
2801         struct extent_page_data *epd = data;
2802         struct extent_io_tree *tree = epd->tree;
2803         u64 start = page_offset(page);
2804         u64 delalloc_start;
2805         u64 page_end = start + PAGE_CACHE_SIZE - 1;
2806         u64 end;
2807         u64 cur = start;
2808         u64 extent_offset;
2809         u64 last_byte = i_size_read(inode);
2810         u64 block_start;
2811         u64 iosize;
2812         sector_t sector;
2813         struct extent_state *cached_state = NULL;
2814         struct extent_map *em;
2815         struct block_device *bdev;
2816         int ret;
2817         int nr = 0;
2818         size_t pg_offset = 0;
2819         size_t blocksize;
2820         loff_t i_size = i_size_read(inode);
2821         unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2822         u64 nr_delalloc;
2823         u64 delalloc_end;
2824         int page_started;
2825         int compressed;
2826         int write_flags;
2827         unsigned long nr_written = 0;
2828         bool fill_delalloc = true;
2829
2830         if (wbc->sync_mode == WB_SYNC_ALL)
2831                 write_flags = WRITE_SYNC;
2832         else
2833                 write_flags = WRITE;
2834
2835         trace___extent_writepage(page, inode, wbc);
2836
2837         WARN_ON(!PageLocked(page));
2838
2839         ClearPageError(page);
2840
2841         pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
2842         if (page->index > end_index ||
2843            (page->index == end_index && !pg_offset)) {
2844                 page->mapping->a_ops->invalidatepage(page, 0);
2845                 unlock_page(page);
2846                 return 0;
2847         }
2848
2849         if (page->index == end_index) {
2850                 char *userpage;
2851
2852                 userpage = kmap_atomic(page);
2853                 memset(userpage + pg_offset, 0,
2854                        PAGE_CACHE_SIZE - pg_offset);
2855                 kunmap_atomic(userpage);
2856                 flush_dcache_page(page);
2857         }
2858         pg_offset = 0;
2859
2860         set_page_extent_mapped(page);
2861
2862         if (!tree->ops || !tree->ops->fill_delalloc)
2863                 fill_delalloc = false;
2864
2865         delalloc_start = start;
2866         delalloc_end = 0;
2867         page_started = 0;
2868         if (!epd->extent_locked && fill_delalloc) {
2869                 u64 delalloc_to_write = 0;
2870                 /*
2871                  * make sure the wbc mapping index is at least updated
2872                  * to this page.
2873                  */
2874                 update_nr_written(page, wbc, 0);
2875
2876                 while (delalloc_end < page_end) {
2877                         nr_delalloc = find_lock_delalloc_range(inode, tree,
2878                                                        page,
2879                                                        &delalloc_start,
2880                                                        &delalloc_end,
2881                                                        128 * 1024 * 1024);
2882                         if (nr_delalloc == 0) {
2883                                 delalloc_start = delalloc_end + 1;
2884                                 continue;
2885                         }
2886                         ret = tree->ops->fill_delalloc(inode, page,
2887                                                        delalloc_start,
2888                                                        delalloc_end,
2889                                                        &page_started,
2890                                                        &nr_written);
2891                         /* File system has been set read-only */
2892                         if (ret) {
2893                                 SetPageError(page);
2894                                 goto done;
2895                         }
2896                         /*
2897                          * delalloc_end is already one less than the total
2898                          * length, so we don't subtract one from
2899                          * PAGE_CACHE_SIZE
2900                          */
2901                         delalloc_to_write += (delalloc_end - delalloc_start +
2902                                               PAGE_CACHE_SIZE) >>
2903                                               PAGE_CACHE_SHIFT;
2904                         delalloc_start = delalloc_end + 1;
2905                 }
2906                 if (wbc->nr_to_write < delalloc_to_write) {
2907                         int thresh = 8192;
2908
2909                         if (delalloc_to_write < thresh * 2)
2910                                 thresh = delalloc_to_write;
2911                         wbc->nr_to_write = min_t(u64, delalloc_to_write,
2912                                                  thresh);
2913                 }
2914
2915                 /* did the fill delalloc function already unlock and start
2916                  * the IO?
2917                  */
2918                 if (page_started) {
2919                         ret = 0;
2920                         /*
2921                          * we've unlocked the page, so we can't update
2922                          * the mapping's writeback index, just update
2923                          * nr_to_write.
2924                          */
2925                         wbc->nr_to_write -= nr_written;
2926                         goto done_unlocked;
2927                 }
2928         }
2929         if (tree->ops && tree->ops->writepage_start_hook) {
2930                 ret = tree->ops->writepage_start_hook(page, start,
2931                                                       page_end);
2932                 if (ret) {
2933                         /* Fixup worker will requeue */
2934                         if (ret == -EBUSY)
2935                                 wbc->pages_skipped++;
2936                         else
2937                                 redirty_page_for_writepage(wbc, page);
2938                         update_nr_written(page, wbc, nr_written);
2939                         unlock_page(page);
2940                         ret = 0;
2941                         goto done_unlocked;
2942                 }
2943         }
2944
2945         /*
2946          * we don't want to touch the inode after unlocking the page,
2947          * so we update the mapping writeback index now
2948          */
2949         update_nr_written(page, wbc, nr_written + 1);
2950
2951         end = page_end;
2952         if (last_byte <= start) {
2953                 if (tree->ops && tree->ops->writepage_end_io_hook)
2954                         tree->ops->writepage_end_io_hook(page, start,
2955                                                          page_end, NULL, 1);
2956                 goto done;
2957         }
2958
2959         blocksize = inode->i_sb->s_blocksize;
2960
2961         while (cur <= end) {
2962                 if (cur >= last_byte) {
2963                         if (tree->ops && tree->ops->writepage_end_io_hook)
2964                                 tree->ops->writepage_end_io_hook(page, cur,
2965                                                          page_end, NULL, 1);
2966                         break;
2967                 }
2968                 em = epd->get_extent(inode, page, pg_offset, cur,
2969                                      end - cur + 1, 1);
2970                 if (IS_ERR_OR_NULL(em)) {
2971                         SetPageError(page);
2972                         break;
2973                 }
2974
2975                 extent_offset = cur - em->start;
2976                 BUG_ON(extent_map_end(em) <= cur);
2977                 BUG_ON(end < cur);
2978                 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2979                 iosize = ALIGN(iosize, blocksize);
2980                 sector = (em->block_start + extent_offset) >> 9;
2981                 bdev = em->bdev;
2982                 block_start = em->block_start;
2983                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
2984                 free_extent_map(em);
2985                 em = NULL;
2986
2987                 /*
2988                  * compressed and inline extents are written through other
2989                  * paths in the FS
2990                  */
2991                 if (compressed || block_start == EXTENT_MAP_HOLE ||
2992                     block_start == EXTENT_MAP_INLINE) {
2993                         /*
2994                          * end_io notification does not happen here for
2995                          * compressed extents
2996                          */
2997                         if (!compressed && tree->ops &&
2998                             tree->ops->writepage_end_io_hook)
2999                                 tree->ops->writepage_end_io_hook(page, cur,
3000                                                          cur + iosize - 1,
3001                                                          NULL, 1);
3002                         else if (compressed) {
3003                                 /* we don't want to end_page_writeback on
3004                                  * a compressed extent.  this happens
3005                                  * elsewhere
3006                                  */
3007                                 nr++;
3008                         }
3009
3010                         cur += iosize;
3011                         pg_offset += iosize;
3012                         continue;
3013                 }
3014                 /* leave this out until we have a page_mkwrite call */
3015                 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
3016                                    EXTENT_DIRTY, 0, NULL)) {
3017                         cur = cur + iosize;
3018                         pg_offset += iosize;
3019                         continue;
3020                 }
3021
3022                 if (tree->ops && tree->ops->writepage_io_hook) {
3023                         ret = tree->ops->writepage_io_hook(page, cur,
3024                                                 cur + iosize - 1);
3025                 } else {
3026                         ret = 0;
3027                 }
3028                 if (ret) {
3029                         SetPageError(page);
3030                 } else {
3031                         unsigned long max_nr = end_index + 1;
3032
3033                         set_range_writeback(tree, cur, cur + iosize - 1);
3034                         if (!PageWriteback(page)) {
3035                                 printk(KERN_ERR "btrfs warning page %lu not "
3036                                        "writeback, cur %llu end %llu\n",
3037                                        page->index, (unsigned long long)cur,
3038                                        (unsigned long long)end);
3039                         }
3040
3041                         ret = submit_extent_page(write_flags, tree, page,
3042                                                  sector, iosize, pg_offset,
3043                                                  bdev, &epd->bio, max_nr,
3044                                                  end_bio_extent_writepage,
3045                                                  0, 0, 0);
3046                         if (ret)
3047                                 SetPageError(page);
3048                 }
3049                 cur = cur + iosize;
3050                 pg_offset += iosize;
3051                 nr++;
3052         }
3053 done:
3054         if (nr == 0) {
3055                 /* make sure the mapping tag for page dirty gets cleared */
3056                 set_page_writeback(page);
3057                 end_page_writeback(page);
3058         }
3059         unlock_page(page);
3060
3061 done_unlocked:
3062
3063         /* drop our reference on any cached states */
3064         free_extent_state(cached_state);
3065         return 0;
3066 }
3067
3068 static int eb_wait(void *word)
3069 {
3070         io_schedule();
3071         return 0;
3072 }
3073
3074 static void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3075 {
3076         wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3077                     TASK_UNINTERRUPTIBLE);
3078 }
3079
3080 static int lock_extent_buffer_for_io(struct extent_buffer *eb,
3081                                      struct btrfs_fs_info *fs_info,
3082                                      struct extent_page_data *epd)
3083 {
3084         unsigned long i, num_pages;
3085         int flush = 0;
3086         int ret = 0;
3087
3088         if (!btrfs_try_tree_write_lock(eb)) {
3089                 flush = 1;
3090                 flush_write_bio(epd);
3091                 btrfs_tree_lock(eb);
3092         }
3093
3094         if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3095                 btrfs_tree_unlock(eb);
3096                 if (!epd->sync_io)
3097                         return 0;
3098                 if (!flush) {
3099                         flush_write_bio(epd);
3100                         flush = 1;
3101                 }
3102                 while (1) {
3103                         wait_on_extent_buffer_writeback(eb);
3104                         btrfs_tree_lock(eb);
3105                         if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3106                                 break;
3107                         btrfs_tree_unlock(eb);
3108                 }
3109         }
3110
3111         /*
3112          * We need to do this to prevent races in people who check if the eb is
3113          * under IO since we can end up having no IO bits set for a short period
3114          * of time.
3115          */
3116         spin_lock(&eb->refs_lock);
3117         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3118                 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3119                 spin_unlock(&eb->refs_lock);
3120                 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3121                 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3122                                      -eb->len,
3123                                      fs_info->dirty_metadata_batch);
3124                 ret = 1;
3125         } else {
3126                 spin_unlock(&eb->refs_lock);
3127         }
3128
3129         btrfs_tree_unlock(eb);
3130
3131         if (!ret)
3132                 return ret;
3133
3134         num_pages = num_extent_pages(eb->start, eb->len);
3135         for (i = 0; i < num_pages; i++) {
3136                 struct page *p = extent_buffer_page(eb, i);
3137
3138                 if (!trylock_page(p)) {
3139                         if (!flush) {
3140                                 flush_write_bio(epd);
3141                                 flush = 1;
3142                         }
3143                         lock_page(p);
3144                 }
3145         }
3146
3147         return ret;
3148 }
3149
3150 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3151 {
3152         clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3153         smp_mb__after_clear_bit();
3154         wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3155 }
3156
3157 static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3158 {
3159         int uptodate = err == 0;
3160         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
3161         struct extent_buffer *eb;
3162         int done;
3163
3164         do {
3165                 struct page *page = bvec->bv_page;
3166
3167                 bvec--;
3168                 eb = (struct extent_buffer *)page->private;
3169                 BUG_ON(!eb);
3170                 done = atomic_dec_and_test(&eb->io_pages);
3171
3172                 if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3173                         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3174                         ClearPageUptodate(page);
3175                         SetPageError(page);
3176                 }
3177
3178                 end_page_writeback(page);
3179
3180                 if (!done)
3181                         continue;
3182
3183                 end_extent_buffer_writeback(eb);
3184         } while (bvec >= bio->bi_io_vec);
3185
3186         bio_put(bio);
3187
3188 }
3189
3190 static int write_one_eb(struct extent_buffer *eb,
3191                         struct btrfs_fs_info *fs_info,
3192                         struct writeback_control *wbc,
3193                         struct extent_page_data *epd)
3194 {
3195         struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3196         u64 offset = eb->start;
3197         unsigned long i, num_pages;
3198         unsigned long bio_flags = 0;
3199         int rw = (epd->sync_io ? WRITE_SYNC : WRITE);
3200         int ret = 0;
3201
3202         clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3203         num_pages = num_extent_pages(eb->start, eb->len);
3204         atomic_set(&eb->io_pages, num_pages);
3205         if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3206                 bio_flags = EXTENT_BIO_TREE_LOG;
3207
3208         for (i = 0; i < num_pages; i++) {
3209                 struct page *p = extent_buffer_page(eb, i);
3210
3211                 clear_page_dirty_for_io(p);
3212                 set_page_writeback(p);
3213                 ret = submit_extent_page(rw, eb->tree, p, offset >> 9,
3214                                          PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3215                                          -1, end_bio_extent_buffer_writepage,
3216                                          0, epd->bio_flags, bio_flags);
3217                 epd->bio_flags = bio_flags;
3218                 if (ret) {
3219                         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3220                         SetPageError(p);
3221                         if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3222                                 end_extent_buffer_writeback(eb);
3223                         ret = -EIO;
3224                         break;
3225                 }
3226                 offset += PAGE_CACHE_SIZE;
3227                 update_nr_written(p, wbc, 1);
3228                 unlock_page(p);
3229         }
3230
3231         if (unlikely(ret)) {
3232                 for (; i < num_pages; i++) {
3233                         struct page *p = extent_buffer_page(eb, i);
3234                         unlock_page(p);
3235                 }
3236         }
3237
3238         return ret;
3239 }
3240
3241 int btree_write_cache_pages(struct address_space *mapping,
3242                                    struct writeback_control *wbc)
3243 {
3244         struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3245         struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3246         struct extent_buffer *eb, *prev_eb = NULL;
3247         struct extent_page_data epd = {
3248                 .bio = NULL,
3249                 .tree = tree,
3250                 .extent_locked = 0,
3251                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3252                 .bio_flags = 0,
3253         };
3254         int ret = 0;
3255         int done = 0;
3256         int nr_to_write_done = 0;
3257         struct pagevec pvec;
3258         int nr_pages;
3259         pgoff_t index;
3260         pgoff_t end;            /* Inclusive */
3261         int scanned = 0;
3262         int tag;
3263
3264         pagevec_init(&pvec, 0);
3265         if (wbc->range_cyclic) {
3266                 index = mapping->writeback_index; /* Start from prev offset */
3267                 end = -1;
3268         } else {
3269                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3270                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3271                 scanned = 1;
3272         }
3273         if (wbc->sync_mode == WB_SYNC_ALL)
3274                 tag = PAGECACHE_TAG_TOWRITE;
3275         else
3276                 tag = PAGECACHE_TAG_DIRTY;
3277 retry:
3278         if (wbc->sync_mode == WB_SYNC_ALL)
3279                 tag_pages_for_writeback(mapping, index, end);
3280         while (!done && !nr_to_write_done && (index <= end) &&
3281                (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3282                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3283                 unsigned i;
3284
3285                 scanned = 1;
3286                 for (i = 0; i < nr_pages; i++) {
3287                         struct page *page = pvec.pages[i];
3288
3289                         if (!PagePrivate(page))
3290                                 continue;
3291
3292                         if (!wbc->range_cyclic && page->index > end) {
3293                                 done = 1;
3294                                 break;
3295                         }
3296
3297                         spin_lock(&mapping->private_lock);
3298                         if (!PagePrivate(page)) {
3299                                 spin_unlock(&mapping->private_lock);
3300                                 continue;
3301                         }
3302
3303                         eb = (struct extent_buffer *)page->private;
3304
3305                         /*
3306                          * Shouldn't happen and normally this would be a BUG_ON
3307                          * but no sense in crashing the users box for something
3308                          * we can survive anyway.
3309                          */
3310                         if (!eb) {
3311                                 spin_unlock(&mapping->private_lock);
3312                                 WARN_ON(1);
3313                                 continue;
3314                         }
3315
3316                         if (eb == prev_eb) {
3317                                 spin_unlock(&mapping->private_lock);
3318                                 continue;
3319                         }
3320
3321                         ret = atomic_inc_not_zero(&eb->refs);
3322                         spin_unlock(&mapping->private_lock);
3323                         if (!ret)
3324                                 continue;
3325
3326                         prev_eb = eb;
3327                         ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3328                         if (!ret) {
3329                                 free_extent_buffer(eb);
3330                                 continue;
3331                         }
3332
3333                         ret = write_one_eb(eb, fs_info, wbc, &epd);
3334                         if (ret) {
3335                                 done = 1;
3336                                 free_extent_buffer(eb);
3337                                 break;
3338                         }
3339                         free_extent_buffer(eb);
3340
3341                         /*
3342                          * the filesystem may choose to bump up nr_to_write.
3343                          * We have to make sure to honor the new nr_to_write
3344                          * at any time
3345                          */
3346                         nr_to_write_done = wbc->nr_to_write <= 0;
3347                 }
3348                 pagevec_release(&pvec);
3349                 cond_resched();
3350         }
3351         if (!scanned && !done) {
3352                 /*
3353                  * We hit the last page and there is more work to be done: wrap
3354                  * back to the start of the file
3355                  */
3356                 scanned = 1;
3357                 index = 0;
3358                 goto retry;
3359         }
3360         flush_write_bio(&epd);
3361         return ret;
3362 }
3363
3364 /**
3365  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3366  * @mapping: address space structure to write
3367  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3368  * @writepage: function called for each page
3369  * @data: data passed to writepage function
3370  *
3371  * If a page is already under I/O, write_cache_pages() skips it, even
3372  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3373  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3374  * and msync() need to guarantee that all the data which was dirty at the time
3375  * the call was made get new I/O started against them.  If wbc->sync_mode is
3376  * WB_SYNC_ALL then we were called for data integrity and we must wait for
3377  * existing IO to complete.
3378  */
3379 static int extent_write_cache_pages(struct extent_io_tree *tree,
3380                              struct address_space *mapping,
3381                              struct writeback_control *wbc,
3382                              writepage_t writepage, void *data,
3383                              void (*flush_fn)(void *))
3384 {
3385         struct inode *inode = mapping->host;
3386         int ret = 0;
3387         int done = 0;
3388         int nr_to_write_done = 0;
3389         struct pagevec pvec;
3390         int nr_pages;
3391         pgoff_t index;
3392         pgoff_t end;            /* Inclusive */
3393         int scanned = 0;
3394         int tag;
3395
3396         /*
3397          * We have to hold onto the inode so that ordered extents can do their
3398          * work when the IO finishes.  The alternative to this is failing to add
3399          * an ordered extent if the igrab() fails there and that is a huge pain
3400          * to deal with, so instead just hold onto the inode throughout the
3401          * writepages operation.  If it fails here we are freeing up the inode
3402          * anyway and we'd rather not waste our time writing out stuff that is
3403          * going to be truncated anyway.
3404          */
3405         if (!igrab(inode))
3406                 return 0;
3407
3408         pagevec_init(&pvec, 0);
3409         if (wbc->range_cyclic) {
3410                 index = mapping->writeback_index; /* Start from prev offset */
3411                 end = -1;
3412         } else {
3413                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3414                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3415                 scanned = 1;
3416         }
3417         if (wbc->sync_mode == WB_SYNC_ALL)
3418                 tag = PAGECACHE_TAG_TOWRITE;
3419         else
3420                 tag = PAGECACHE_TAG_DIRTY;
3421 retry:
3422         if (wbc->sync_mode == WB_SYNC_ALL)
3423                 tag_pages_for_writeback(mapping, index, end);
3424         while (!done && !nr_to_write_done && (index <= end) &&
3425                (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3426                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3427                 unsigned i;
3428
3429                 scanned = 1;
3430                 for (i = 0; i < nr_pages; i++) {
3431                         struct page *page = pvec.pages[i];
3432
3433                         /*
3434                          * At this point we hold neither mapping->tree_lock nor
3435                          * lock on the page itself: the page may be truncated or
3436                          * invalidated (changing page->mapping to NULL), or even
3437                          * swizzled back from swapper_space to tmpfs file
3438                          * mapping
3439                          */
3440                         if (!trylock_page(page)) {
3441                                 flush_fn(data);
3442                                 lock_page(page);
3443                         }
3444
3445                         if (unlikely(page->mapping != mapping)) {
3446                                 unlock_page(page);
3447                                 continue;
3448                         }
3449
3450                         if (!wbc->range_cyclic && page->index > end) {
3451                                 done = 1;
3452                                 unlock_page(page);
3453                                 continue;
3454                         }
3455
3456                         if (wbc->sync_mode != WB_SYNC_NONE) {
3457                                 if (PageWriteback(page))
3458                                         flush_fn(data);
3459                                 wait_on_page_writeback(page);
3460                         }
3461
3462                         if (PageWriteback(page) ||
3463                             !clear_page_dirty_for_io(page)) {
3464                                 unlock_page(page);
3465                                 continue;
3466                         }
3467
3468                         ret = (*writepage)(page, wbc, data);
3469
3470                         if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3471                                 unlock_page(page);
3472                                 ret = 0;
3473                         }
3474                         if (ret)
3475                                 done = 1;
3476
3477                         /*
3478                          * the filesystem may choose to bump up nr_to_write.
3479                          * We have to make sure to honor the new nr_to_write
3480                          * at any time
3481                          */
3482                         nr_to_write_done = wbc->nr_to_write <= 0;
3483                 }
3484                 pagevec_release(&pvec);
3485                 cond_resched();
3486         }
3487         if (!scanned && !done) {
3488                 /*
3489                  * We hit the last page and there is more work to be done: wrap
3490                  * back to the start of the file
3491                  */
3492                 scanned = 1;
3493                 index = 0;
3494                 goto retry;
3495         }
3496         btrfs_add_delayed_iput(inode);
3497         return ret;
3498 }
3499
3500 static void flush_epd_write_bio(struct extent_page_data *epd)
3501 {
3502         if (epd->bio) {
3503                 int rw = WRITE;
3504                 int ret;
3505
3506                 if (epd->sync_io)
3507                         rw = WRITE_SYNC;
3508
3509                 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
3510                 BUG_ON(ret < 0); /* -ENOMEM */
3511                 epd->bio = NULL;
3512         }
3513 }
3514
3515 static noinline void flush_write_bio(void *data)
3516 {
3517         struct extent_page_data *epd = data;
3518         flush_epd_write_bio(epd);
3519 }
3520
3521 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3522                           get_extent_t *get_extent,
3523                           struct writeback_control *wbc)
3524 {
3525         int ret;
3526         struct extent_page_data epd = {
3527                 .bio = NULL,
3528                 .tree = tree,
3529                 .get_extent = get_extent,
3530                 .extent_locked = 0,
3531                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3532                 .bio_flags = 0,
3533         };
3534
3535         ret = __extent_writepage(page, wbc, &epd);
3536
3537         flush_epd_write_bio(&epd);
3538         return ret;
3539 }
3540
3541 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3542                               u64 start, u64 end, get_extent_t *get_extent,
3543                               int mode)
3544 {
3545         int ret = 0;
3546         struct address_space *mapping = inode->i_mapping;
3547         struct page *page;
3548         unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3549                 PAGE_CACHE_SHIFT;
3550
3551         struct extent_page_data epd = {
3552                 .bio = NULL,
3553                 .tree = tree,
3554                 .get_extent = get_extent,
3555                 .extent_locked = 1,
3556                 .sync_io = mode == WB_SYNC_ALL,
3557                 .bio_flags = 0,
3558         };
3559         struct writeback_control wbc_writepages = {
3560                 .sync_mode      = mode,
3561                 .nr_to_write    = nr_pages * 2,
3562                 .range_start    = start,
3563                 .range_end      = end + 1,
3564         };
3565
3566         while (start <= end) {
3567                 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3568                 if (clear_page_dirty_for_io(page))
3569                         ret = __extent_writepage(page, &wbc_writepages, &epd);
3570                 else {
3571                         if (tree->ops && tree->ops->writepage_end_io_hook)
3572                                 tree->ops->writepage_end_io_hook(page, start,
3573                                                  start + PAGE_CACHE_SIZE - 1,
3574                                                  NULL, 1);
3575                         unlock_page(page);
3576                 }
3577                 page_cache_release(page);
3578                 start += PAGE_CACHE_SIZE;
3579         }
3580
3581         flush_epd_write_bio(&epd);
3582         return ret;
3583 }
3584
3585 int extent_writepages(struct extent_io_tree *tree,
3586                       struct address_space *mapping,
3587                       get_extent_t *get_extent,
3588                       struct writeback_control *wbc)
3589 {
3590         int ret = 0;
3591         struct extent_page_data epd = {
3592                 .bio = NULL,
3593                 .tree = tree,
3594                 .get_extent = get_extent,
3595                 .extent_locked = 0,
3596                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3597                 .bio_flags = 0,
3598         };
3599
3600         ret = extent_write_cache_pages(tree, mapping, wbc,
3601                                        __extent_writepage, &epd,
3602                                        flush_write_bio);
3603         flush_epd_write_bio(&epd);
3604         return ret;
3605 }
3606
3607 int extent_readpages(struct extent_io_tree *tree,
3608                      struct address_space *mapping,
3609                      struct list_head *pages, unsigned nr_pages,
3610                      get_extent_t get_extent)
3611 {
3612         struct bio *bio = NULL;
3613         unsigned page_idx;
3614         unsigned long bio_flags = 0;
3615         struct page *pagepool[16];
3616         struct page *page;
3617         int i = 0;
3618         int nr = 0;
3619
3620         for (page_idx = 0; page_idx < nr_pages; page_idx++) {
3621                 page = list_entry(pages->prev, struct page, lru);
3622
3623                 prefetchw(&page->flags);
3624                 list_del(&page->lru);
3625                 if (add_to_page_cache_lru(page, mapping,
3626                                         page->index, GFP_NOFS)) {
3627                         page_cache_release(page);
3628                         continue;
3629                 }
3630
3631                 pagepool[nr++] = page;
3632                 if (nr < ARRAY_SIZE(pagepool))
3633                         continue;
3634                 for (i = 0; i < nr; i++) {
3635                         __extent_read_full_page(tree, pagepool[i], get_extent,
3636                                         &bio, 0, &bio_flags);
3637                         page_cache_release(pagepool[i]);
3638                 }
3639                 nr = 0;
3640         }
3641         for (i = 0; i < nr; i++) {
3642                 __extent_read_full_page(tree, pagepool[i], get_extent,
3643                                         &bio, 0, &bio_flags);
3644                 page_cache_release(pagepool[i]);
3645         }
3646
3647         BUG_ON(!list_empty(pages));
3648         if (bio)
3649                 return submit_one_bio(READ, bio, 0, bio_flags);
3650         return 0;
3651 }
3652
3653 /*
3654  * basic invalidatepage code, this waits on any locked or writeback
3655  * ranges corresponding to the page, and then deletes any extent state
3656  * records from the tree
3657  */
3658 int extent_invalidatepage(struct extent_io_tree *tree,
3659                           struct page *page, unsigned long offset)
3660 {
3661         struct extent_state *cached_state = NULL;
3662         u64 start = page_offset(page);
3663         u64 end = start + PAGE_CACHE_SIZE - 1;
3664         size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3665
3666         start += ALIGN(offset, blocksize);
3667         if (start > end)
3668                 return 0;
3669
3670         lock_extent_bits(tree, start, end, 0, &cached_state);
3671         wait_on_page_writeback(page);
3672         clear_extent_bit(tree, start, end,
3673                          EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3674                          EXTENT_DO_ACCOUNTING,
3675                          1, 1, &cached_state, GFP_NOFS);
3676         return 0;
3677 }
3678
3679 /*
3680  * a helper for releasepage, this tests for areas of the page that
3681  * are locked or under IO and drops the related state bits if it is safe
3682  * to drop the page.
3683  */
3684 int try_release_extent_state(struct extent_map_tree *map,
3685                              struct extent_io_tree *tree, struct page *page,
3686                              gfp_t mask)
3687 {
3688         u64 start = page_offset(page);
3689         u64 end = start + PAGE_CACHE_SIZE - 1;
3690         int ret = 1;
3691
3692         if (test_range_bit(tree, start, end,
3693                            EXTENT_IOBITS, 0, NULL))
3694                 ret = 0;
3695         else {
3696                 if ((mask & GFP_NOFS) == GFP_NOFS)
3697                         mask = GFP_NOFS;
3698                 /*
3699                  * at this point we can safely clear everything except the
3700                  * locked bit and the nodatasum bit
3701                  */
3702                 ret = clear_extent_bit(tree, start, end,
3703                                  ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3704                                  0, 0, NULL, mask);
3705
3706                 /* if clear_extent_bit failed for enomem reasons,
3707                  * we can't allow the release to continue.
3708                  */
3709                 if (ret < 0)
3710                         ret = 0;
3711                 else
3712                         ret = 1;
3713         }
3714         return ret;
3715 }
3716
3717 /*
3718  * a helper for releasepage.  As long as there are no locked extents
3719  * in the range corresponding to the page, both state records and extent
3720  * map records are removed
3721  */
3722 int try_release_extent_mapping(struct extent_map_tree *map,
3723                                struct extent_io_tree *tree, struct page *page,
3724                                gfp_t mask)
3725 {
3726         struct extent_map *em;
3727         u64 start = page_offset(page);
3728         u64 end = start + PAGE_CACHE_SIZE - 1;
3729
3730         if ((mask & __GFP_WAIT) &&
3731             page->mapping->host->i_size > 16 * 1024 * 1024) {
3732                 u64 len;
3733                 while (start <= end) {
3734                         len = end - start + 1;
3735                         write_lock(&map->lock);
3736                         em = lookup_extent_mapping(map, start, len);
3737                         if (!em) {
3738                                 write_unlock(&map->lock);
3739                                 break;
3740                         }
3741                         if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
3742                             em->start != start) {
3743                                 write_unlock(&map->lock);
3744                                 free_extent_map(em);
3745                                 break;
3746                         }
3747                         if (!test_range_bit(tree, em->start,
3748                                             extent_map_end(em) - 1,
3749                                             EXTENT_LOCKED | EXTENT_WRITEBACK,
3750                                             0, NULL)) {
3751                                 remove_extent_mapping(map, em);
3752                                 /* once for the rb tree */
3753                                 free_extent_map(em);
3754                         }
3755                         start = extent_map_end(em);
3756                         write_unlock(&map->lock);
3757
3758                         /* once for us */
3759                         free_extent_map(em);
3760                 }
3761         }
3762         return try_release_extent_state(map, tree, page, mask);
3763 }
3764
3765 /*
3766  * helper function for fiemap, which doesn't want to see any holes.
3767  * This maps until we find something past 'last'
3768  */
3769 static struct extent_map *get_extent_skip_holes(struct inode *inode,
3770                                                 u64 offset,
3771                                                 u64 last,
3772                                                 get_extent_t *get_extent)
3773 {
3774         u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
3775         struct extent_map *em;
3776         u64 len;
3777
3778         if (offset >= last)
3779                 return NULL;
3780
3781         while(1) {
3782                 len = last - offset;
3783                 if (len == 0)
3784                         break;
3785                 len = ALIGN(len, sectorsize);
3786                 em = get_extent(inode, NULL, 0, offset, len, 0);
3787                 if (IS_ERR_OR_NULL(em))
3788                         return em;
3789
3790                 /* if this isn't a hole return it */
3791                 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
3792                     em->block_start != EXTENT_MAP_HOLE) {
3793                         return em;
3794                 }
3795
3796                 /* this is a hole, advance to the next extent */
3797                 offset = extent_map_end(em);
3798                 free_extent_map(em);
3799                 if (offset >= last)
3800                         break;
3801         }
3802         return NULL;
3803 }
3804
3805 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3806                 __u64 start, __u64 len, get_extent_t *get_extent)
3807 {
3808         int ret = 0;
3809         u64 off = start;
3810         u64 max = start + len;
3811         u32 flags = 0;
3812         u32 found_type;
3813         u64 last;
3814         u64 last_for_get_extent = 0;
3815         u64 disko = 0;
3816         u64 isize = i_size_read(inode);
3817         struct btrfs_key found_key;
3818         struct extent_map *em = NULL;
3819         struct extent_state *cached_state = NULL;
3820         struct btrfs_path *path;
3821         struct btrfs_file_extent_item *item;
3822         int end = 0;
3823         u64 em_start = 0;
3824         u64 em_len = 0;
3825         u64 em_end = 0;
3826         unsigned long emflags;
3827
3828         if (len == 0)
3829                 return -EINVAL;
3830
3831         path = btrfs_alloc_path();
3832         if (!path)
3833                 return -ENOMEM;
3834         path->leave_spinning = 1;
3835
3836         start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
3837         len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
3838
3839         /*
3840          * lookup the last file extent.  We're not using i_size here
3841          * because there might be preallocation past i_size
3842          */
3843         ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
3844                                        path, btrfs_ino(inode), -1, 0);
3845         if (ret < 0) {
3846                 btrfs_free_path(path);
3847                 return ret;
3848         }
3849         WARN_ON(!ret);
3850         path->slots[0]--;
3851         item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3852                               struct btrfs_file_extent_item);
3853         btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
3854         found_type = btrfs_key_type(&found_key);
3855
3856         /* No extents, but there might be delalloc bits */
3857         if (found_key.objectid != btrfs_ino(inode) ||
3858             found_type != BTRFS_EXTENT_DATA_KEY) {
3859                 /* have to trust i_size as the end */
3860                 last = (u64)-1;
3861                 last_for_get_extent = isize;
3862         } else {
3863                 /*
3864                  * remember the start of the last extent.  There are a
3865                  * bunch of different factors that go into the length of the
3866                  * extent, so its much less complex to remember where it started
3867                  */
3868                 last = found_key.offset;
3869                 last_for_get_extent = last + 1;
3870         }
3871         btrfs_free_path(path);
3872
3873         /*
3874          * we might have some extents allocated but more delalloc past those
3875          * extents.  so, we trust isize unless the start of the last extent is
3876          * beyond isize
3877          */
3878         if (last < isize) {
3879                 last = (u64)-1;
3880                 last_for_get_extent = isize;
3881         }
3882
3883         lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len, 0,
3884                          &cached_state);
3885
3886         em = get_extent_skip_holes(inode, start, last_for_get_extent,
3887                                    get_extent);
3888         if (!em)
3889                 goto out;
3890         if (IS_ERR(em)) {
3891                 ret = PTR_ERR(em);
3892                 goto out;
3893         }
3894
3895         while (!end) {
3896                 u64 offset_in_extent;
3897
3898                 /* break if the extent we found is outside the range */
3899                 if (em->start >= max || extent_map_end(em) < off)
3900                         break;
3901
3902                 /*
3903                  * get_extent may return an extent that starts before our
3904                  * requested range.  We have to make sure the ranges
3905                  * we return to fiemap always move forward and don't
3906                  * overlap, so adjust the offsets here
3907                  */
3908                 em_start = max(em->start, off);
3909
3910                 /*
3911                  * record the offset from the start of the extent
3912                  * for adjusting the disk offset below
3913                  */
3914                 offset_in_extent = em_start - em->start;
3915                 em_end = extent_map_end(em);
3916                 em_len = em_end - em_start;
3917                 emflags = em->flags;
3918                 disko = 0;
3919                 flags = 0;
3920
3921                 /*
3922                  * bump off for our next call to get_extent
3923                  */
3924                 off = extent_map_end(em);
3925                 if (off >= max)
3926                         end = 1;
3927
3928                 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
3929                         end = 1;
3930                         flags |= FIEMAP_EXTENT_LAST;
3931                 } else if (em->block_start == EXTENT_MAP_INLINE) {
3932                         flags |= (FIEMAP_EXTENT_DATA_INLINE |
3933                                   FIEMAP_EXTENT_NOT_ALIGNED);
3934                 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
3935                         flags |= (FIEMAP_EXTENT_DELALLOC |
3936                                   FIEMAP_EXTENT_UNKNOWN);
3937                 } else {
3938                         disko = em->block_start + offset_in_extent;
3939                 }
3940                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
3941                         flags |= FIEMAP_EXTENT_ENCODED;
3942
3943                 free_extent_map(em);
3944                 em = NULL;
3945                 if ((em_start >= last) || em_len == (u64)-1 ||
3946                    (last == (u64)-1 && isize <= em_end)) {
3947                         flags |= FIEMAP_EXTENT_LAST;
3948                         end = 1;
3949                 }
3950
3951                 /* now scan forward to see if this is really the last extent. */
3952                 em = get_extent_skip_holes(inode, off, last_for_get_extent,
3953                                            get_extent);
3954                 if (IS_ERR(em)) {
3955                         ret = PTR_ERR(em);
3956                         goto out;
3957                 }
3958                 if (!em) {
3959                         flags |= FIEMAP_EXTENT_LAST;
3960                         end = 1;
3961                 }
3962                 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
3963                                               em_len, flags);
3964                 if (ret)
3965                         goto out_free;
3966         }
3967 out_free:
3968         free_extent_map(em);
3969 out:
3970         unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len,
3971                              &cached_state, GFP_NOFS);
3972         return ret;
3973 }
3974
3975 static void __free_extent_buffer(struct extent_buffer *eb)
3976 {
3977 #if LEAK_DEBUG
3978         unsigned long flags;
3979         spin_lock_irqsave(&leak_lock, flags);
3980         list_del(&eb->leak_list);
3981         spin_unlock_irqrestore(&leak_lock, flags);
3982 #endif
3983         kmem_cache_free(extent_buffer_cache, eb);
3984 }
3985
3986 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
3987                                                    u64 start,
3988                                                    unsigned long len,
3989                                                    gfp_t mask)
3990 {
3991         struct extent_buffer *eb = NULL;
3992 #if LEAK_DEBUG
3993         unsigned long flags;
3994 #endif
3995
3996         eb = kmem_cache_zalloc(extent_buffer_cache, mask);
3997         if (eb == NULL)
3998                 return NULL;
3999         eb->start = start;
4000         eb->len = len;
4001         eb->tree = tree;
4002         eb->bflags = 0;
4003         rwlock_init(&eb->lock);
4004         atomic_set(&eb->write_locks, 0);
4005         atomic_set(&eb->read_locks, 0);
4006         atomic_set(&eb->blocking_readers, 0);
4007         atomic_set(&eb->blocking_writers, 0);
4008         atomic_set(&eb->spinning_readers, 0);
4009         atomic_set(&eb->spinning_writers, 0);
4010         eb->lock_nested = 0;
4011         init_waitqueue_head(&eb->write_lock_wq);
4012         init_waitqueue_head(&eb->read_lock_wq);
4013
4014 #if LEAK_DEBUG
4015         spin_lock_irqsave(&leak_lock, flags);
4016         list_add(&eb->leak_list, &buffers);
4017         spin_unlock_irqrestore(&leak_lock, flags);
4018 #endif
4019         spin_lock_init(&eb->refs_lock);
4020         atomic_set(&eb->refs, 1);
4021         atomic_set(&eb->io_pages, 0);
4022
4023         /*
4024          * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4025          */
4026         BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4027                 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4028         BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4029
4030         return eb;
4031 }
4032
4033 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4034 {
4035         unsigned long i;
4036         struct page *p;
4037         struct extent_buffer *new;
4038         unsigned long num_pages = num_extent_pages(src->start, src->len);
4039
4040         new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_ATOMIC);
4041         if (new == NULL)
4042                 return NULL;
4043
4044         for (i = 0; i < num_pages; i++) {
4045                 p = alloc_page(GFP_ATOMIC);
4046                 BUG_ON(!p);
4047                 attach_extent_buffer_page(new, p);
4048                 WARN_ON(PageDirty(p));
4049                 SetPageUptodate(p);
4050                 new->pages[i] = p;
4051         }
4052
4053         copy_extent_buffer(new, src, 0, 0, src->len);
4054         set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4055         set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4056
4057         return new;
4058 }
4059
4060 struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4061 {
4062         struct extent_buffer *eb;
4063         unsigned long num_pages = num_extent_pages(0, len);
4064         unsigned long i;
4065
4066         eb = __alloc_extent_buffer(NULL, start, len, GFP_ATOMIC);
4067         if (!eb)
4068                 return NULL;
4069
4070         for (i = 0; i < num_pages; i++) {
4071                 eb->pages[i] = alloc_page(GFP_ATOMIC);
4072                 if (!eb->pages[i])
4073                         goto err;
4074         }
4075         set_extent_buffer_uptodate(eb);
4076         btrfs_set_header_nritems(eb, 0);
4077         set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4078
4079         return eb;
4080 err:
4081         for (; i > 0; i--)
4082                 __free_page(eb->pages[i - 1]);
4083         __free_extent_buffer(eb);
4084         return NULL;
4085 }
4086
4087 static int extent_buffer_under_io(struct extent_buffer *eb)
4088 {
4089         return (atomic_read(&eb->io_pages) ||
4090                 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4091                 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4092 }
4093
4094 /*
4095  * Helper for releasing extent buffer page.
4096  */
4097 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4098                                                 unsigned long start_idx)
4099 {
4100         unsigned long index;
4101         unsigned long num_pages;
4102         struct page *page;
4103         int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4104
4105         BUG_ON(extent_buffer_under_io(eb));
4106
4107         num_pages = num_extent_pages(eb->start, eb->len);
4108         index = start_idx + num_pages;
4109         if (start_idx >= index)
4110                 return;
4111
4112         do {
4113                 index--;
4114                 page = extent_buffer_page(eb, index);
4115                 if (page && mapped) {
4116                         spin_lock(&page->mapping->private_lock);
4117                         /*
4118                          * We do this since we'll remove the pages after we've
4119                          * removed the eb from the radix tree, so we could race
4120                          * and have this page now attached to the new eb.  So
4121                          * only clear page_private if it's still connected to
4122                          * this eb.
4123                          */
4124                         if (PagePrivate(page) &&
4125                             page->private == (unsigned long)eb) {
4126                                 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4127                                 BUG_ON(PageDirty(page));
4128                                 BUG_ON(PageWriteback(page));
4129                                 /*
4130                                  * We need to make sure we haven't be attached
4131                                  * to a new eb.
4132                                  */
4133                                 ClearPagePrivate(page);
4134                                 set_page_private(page, 0);
4135                                 /* One for the page private */
4136                                 page_cache_release(page);
4137                         }
4138                         spin_unlock(&page->mapping->private_lock);
4139
4140                 }
4141                 if (page) {
4142                         /* One for when we alloced the page */
4143                         page_cache_release(page);
4144                 }
4145         } while (index != start_idx);
4146 }
4147
4148 /*
4149  * Helper for releasing the extent buffer.
4150  */
4151 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4152 {
4153         btrfs_release_extent_buffer_page(eb, 0);
4154         __free_extent_buffer(eb);
4155 }
4156
4157 static void check_buffer_tree_ref(struct extent_buffer *eb)
4158 {
4159         int refs;
4160         /* the ref bit is tricky.  We have to make sure it is set
4161          * if we have the buffer dirty.   Otherwise the
4162          * code to free a buffer can end up dropping a dirty
4163          * page
4164          *
4165          * Once the ref bit is set, it won't go away while the
4166          * buffer is dirty or in writeback, and it also won't
4167          * go away while we have the reference count on the
4168          * eb bumped.
4169          *
4170          * We can't just set the ref bit without bumping the
4171          * ref on the eb because free_extent_buffer might
4172          * see the ref bit and try to clear it.  If this happens
4173          * free_extent_buffer might end up dropping our original
4174          * ref by mistake and freeing the page before we are able
4175          * to add one more ref.
4176          *
4177          * So bump the ref count first, then set the bit.  If someone
4178          * beat us to it, drop the ref we added.
4179          */
4180         refs = atomic_read(&eb->refs);
4181         if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4182                 return;
4183
4184         spin_lock(&eb->refs_lock);
4185         if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4186                 atomic_inc(&eb->refs);
4187         spin_unlock(&eb->refs_lock);
4188 }
4189
4190 static void mark_extent_buffer_accessed(struct extent_buffer *eb)
4191 {
4192         unsigned long num_pages, i;
4193
4194         check_buffer_tree_ref(eb);
4195
4196         num_pages = num_extent_pages(eb->start, eb->len);
4197         for (i = 0; i < num_pages; i++) {
4198                 struct page *p = extent_buffer_page(eb, i);
4199                 mark_page_accessed(p);
4200         }
4201 }
4202
4203 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
4204                                           u64 start, unsigned long len)
4205 {
4206         unsigned long num_pages = num_extent_pages(start, len);
4207         unsigned long i;
4208         unsigned long index = start >> PAGE_CACHE_SHIFT;
4209         struct extent_buffer *eb;
4210         struct extent_buffer *exists = NULL;
4211         struct page *p;
4212         struct address_space *mapping = tree->mapping;
4213         int uptodate = 1;
4214         int ret;
4215
4216         rcu_read_lock();
4217         eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4218         if (eb && atomic_inc_not_zero(&eb->refs)) {
4219                 rcu_read_unlock();
4220                 mark_extent_buffer_accessed(eb);
4221                 return eb;
4222         }
4223         rcu_read_unlock();
4224
4225         eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
4226         if (!eb)
4227                 return NULL;
4228
4229         for (i = 0; i < num_pages; i++, index++) {
4230                 p = find_or_create_page(mapping, index, GFP_NOFS);
4231                 if (!p)
4232                         goto free_eb;
4233
4234                 spin_lock(&mapping->private_lock);
4235                 if (PagePrivate(p)) {
4236                         /*
4237                          * We could have already allocated an eb for this page
4238                          * and attached one so lets see if we can get a ref on
4239                          * the existing eb, and if we can we know it's good and
4240                          * we can just return that one, else we know we can just
4241                          * overwrite page->private.
4242                          */
4243                         exists = (struct extent_buffer *)p->private;
4244                         if (atomic_inc_not_zero(&exists->refs)) {
4245                                 spin_unlock(&mapping->private_lock);
4246                                 unlock_page(p);
4247                                 page_cache_release(p);
4248                                 mark_extent_buffer_accessed(exists);
4249                                 goto free_eb;
4250                         }
4251
4252                         /*
4253                          * Do this so attach doesn't complain and we need to
4254                          * drop the ref the old guy had.
4255                          */
4256                         ClearPagePrivate(p);
4257                         WARN_ON(PageDirty(p));
4258                         page_cache_release(p);
4259                 }
4260                 attach_extent_buffer_page(eb, p);
4261                 spin_unlock(&mapping->private_lock);
4262                 WARN_ON(PageDirty(p));
4263                 mark_page_accessed(p);
4264                 eb->pages[i] = p;
4265                 if (!PageUptodate(p))
4266                         uptodate = 0;
4267
4268                 /*
4269                  * see below about how we avoid a nasty race with release page
4270                  * and why we unlock later
4271                  */
4272         }
4273         if (uptodate)
4274                 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4275 again:
4276         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4277         if (ret)
4278                 goto free_eb;
4279
4280         spin_lock(&tree->buffer_lock);
4281         ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
4282         if (ret == -EEXIST) {
4283                 exists = radix_tree_lookup(&tree->buffer,
4284                                                 start >> PAGE_CACHE_SHIFT);
4285                 if (!atomic_inc_not_zero(&exists->refs)) {
4286                         spin_unlock(&tree->buffer_lock);
4287                         radix_tree_preload_end();
4288                         exists = NULL;
4289                         goto again;
4290                 }
4291                 spin_unlock(&tree->buffer_lock);
4292                 radix_tree_preload_end();
4293                 mark_extent_buffer_accessed(exists);
4294                 goto free_eb;
4295         }
4296         /* add one reference for the tree */
4297         check_buffer_tree_ref(eb);
4298         spin_unlock(&tree->buffer_lock);
4299         radix_tree_preload_end();
4300
4301         /*
4302          * there is a race where release page may have
4303          * tried to find this extent buffer in the radix
4304          * but failed.  It will tell the VM it is safe to
4305          * reclaim the, and it will clear the page private bit.
4306          * We must make sure to set the page private bit properly
4307          * after the extent buffer is in the radix tree so
4308          * it doesn't get lost
4309          */
4310         SetPageChecked(eb->pages[0]);
4311         for (i = 1; i < num_pages; i++) {
4312                 p = extent_buffer_page(eb, i);
4313                 ClearPageChecked(p);
4314                 unlock_page(p);
4315         }
4316         unlock_page(eb->pages[0]);
4317         return eb;
4318
4319 free_eb:
4320         for (i = 0; i < num_pages; i++) {
4321                 if (eb->pages[i])
4322                         unlock_page(eb->pages[i]);
4323         }
4324
4325         WARN_ON(!atomic_dec_and_test(&eb->refs));
4326         btrfs_release_extent_buffer(eb);
4327         return exists;
4328 }
4329
4330 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
4331                                          u64 start, unsigned long len)
4332 {
4333         struct extent_buffer *eb;
4334
4335         rcu_read_lock();
4336         eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4337         if (eb && atomic_inc_not_zero(&eb->refs)) {
4338                 rcu_read_unlock();
4339                 mark_extent_buffer_accessed(eb);
4340                 return eb;
4341         }
4342         rcu_read_unlock();
4343
4344         return NULL;
4345 }
4346
4347 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4348 {
4349         struct extent_buffer *eb =
4350                         container_of(head, struct extent_buffer, rcu_head);
4351
4352         __free_extent_buffer(eb);
4353 }
4354
4355 /* Expects to have eb->eb_lock already held */
4356 static int release_extent_buffer(struct extent_buffer *eb, gfp_t mask)
4357 {
4358         WARN_ON(atomic_read(&eb->refs) == 0);
4359         if (atomic_dec_and_test(&eb->refs)) {
4360                 if (test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) {
4361                         spin_unlock(&eb->refs_lock);
4362                 } else {
4363                         struct extent_io_tree *tree = eb->tree;
4364
4365                         spin_unlock(&eb->refs_lock);
4366
4367                         spin_lock(&tree->buffer_lock);
4368                         radix_tree_delete(&tree->buffer,
4369                                           eb->start >> PAGE_CACHE_SHIFT);
4370                         spin_unlock(&tree->buffer_lock);
4371                 }
4372
4373                 /* Should be safe to release our pages at this point */
4374                 btrfs_release_extent_buffer_page(eb, 0);
4375                 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4376                 return 1;
4377         }
4378         spin_unlock(&eb->refs_lock);
4379
4380         return 0;
4381 }
4382
4383 void free_extent_buffer(struct extent_buffer *eb)
4384 {
4385         int refs;
4386         int old;
4387         if (!eb)
4388                 return;
4389
4390         while (1) {
4391                 refs = atomic_read(&eb->refs);
4392                 if (refs <= 3)
4393                         break;
4394                 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
4395                 if (old == refs)
4396                         return;
4397         }
4398
4399         spin_lock(&eb->refs_lock);
4400         if (atomic_read(&eb->refs) == 2 &&
4401             test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4402                 atomic_dec(&eb->refs);
4403
4404         if (atomic_read(&eb->refs) == 2 &&
4405             test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
4406             !extent_buffer_under_io(eb) &&
4407             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4408                 atomic_dec(&eb->refs);
4409
4410         /*
4411          * I know this is terrible, but it's temporary until we stop tracking
4412          * the uptodate bits and such for the extent buffers.
4413          */
4414         release_extent_buffer(eb, GFP_ATOMIC);
4415 }
4416
4417 void free_extent_buffer_stale(struct extent_buffer *eb)
4418 {
4419         if (!eb)
4420                 return;
4421
4422         spin_lock(&eb->refs_lock);
4423         set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4424
4425         if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
4426             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4427                 atomic_dec(&eb->refs);
4428         release_extent_buffer(eb, GFP_NOFS);
4429 }
4430
4431 void clear_extent_buffer_dirty(struct extent_buffer *eb)
4432 {
4433         unsigned long i;
4434         unsigned long num_pages;
4435         struct page *page;
4436
4437         num_pages = num_extent_pages(eb->start, eb->len);
4438
4439         for (i = 0; i < num_pages; i++) {
4440                 page = extent_buffer_page(eb, i);
4441                 if (!PageDirty(page))
4442                         continue;
4443
4444                 lock_page(page);
4445                 WARN_ON(!PagePrivate(page));
4446
4447                 clear_page_dirty_for_io(page);
4448                 spin_lock_irq(&page->mapping->tree_lock);
4449                 if (!PageDirty(page)) {
4450                         radix_tree_tag_clear(&page->mapping->page_tree,
4451                                                 page_index(page),
4452                                                 PAGECACHE_TAG_DIRTY);
4453                 }
4454                 spin_unlock_irq(&page->mapping->tree_lock);
4455                 ClearPageError(page);
4456                 unlock_page(page);
4457         }
4458         WARN_ON(atomic_read(&eb->refs) == 0);
4459 }
4460
4461 int set_extent_buffer_dirty(struct extent_buffer *eb)
4462 {
4463         unsigned long i;
4464         unsigned long num_pages;
4465         int was_dirty = 0;
4466
4467         check_buffer_tree_ref(eb);
4468
4469         was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4470
4471         num_pages = num_extent_pages(eb->start, eb->len);
4472         WARN_ON(atomic_read(&eb->refs) == 0);
4473         WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4474
4475         for (i = 0; i < num_pages; i++)
4476                 set_page_dirty(extent_buffer_page(eb, i));
4477         return was_dirty;
4478 }
4479
4480 static int range_straddles_pages(u64 start, u64 len)
4481 {
4482         if (len < PAGE_CACHE_SIZE)
4483                 return 1;
4484         if (start & (PAGE_CACHE_SIZE - 1))
4485                 return 1;
4486         if ((start + len) & (PAGE_CACHE_SIZE - 1))
4487                 return 1;
4488         return 0;
4489 }
4490
4491 int clear_extent_buffer_uptodate(struct extent_buffer *eb)
4492 {
4493         unsigned long i;
4494         struct page *page;
4495         unsigned long num_pages;
4496
4497         clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4498         num_pages = num_extent_pages(eb->start, eb->len);
4499         for (i = 0; i < num_pages; i++) {
4500                 page = extent_buffer_page(eb, i);
4501                 if (page)
4502                         ClearPageUptodate(page);
4503         }
4504         return 0;
4505 }
4506
4507 int set_extent_buffer_uptodate(struct extent_buffer *eb)
4508 {
4509         unsigned long i;
4510         struct page *page;
4511         unsigned long num_pages;
4512
4513         set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4514         num_pages = num_extent_pages(eb->start, eb->len);
4515         for (i = 0; i < num_pages; i++) {
4516                 page = extent_buffer_page(eb, i);
4517                 SetPageUptodate(page);
4518         }
4519         return 0;
4520 }
4521
4522 int extent_range_uptodate(struct extent_io_tree *tree,
4523                           u64 start, u64 end)
4524 {
4525         struct page *page;
4526         int ret;
4527         int pg_uptodate = 1;
4528         int uptodate;
4529         unsigned long index;
4530
4531         if (range_straddles_pages(start, end - start + 1)) {
4532                 ret = test_range_bit(tree, start, end,
4533                                      EXTENT_UPTODATE, 1, NULL);
4534                 if (ret)
4535                         return 1;
4536         }
4537         while (start <= end) {
4538                 index = start >> PAGE_CACHE_SHIFT;
4539                 page = find_get_page(tree->mapping, index);
4540                 if (!page)
4541                         return 1;
4542                 uptodate = PageUptodate(page);
4543                 page_cache_release(page);
4544                 if (!uptodate) {
4545                         pg_uptodate = 0;
4546                         break;
4547                 }
4548                 start += PAGE_CACHE_SIZE;
4549         }
4550         return pg_uptodate;
4551 }
4552
4553 int extent_buffer_uptodate(struct extent_buffer *eb)
4554 {
4555         return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4556 }
4557
4558 int read_extent_buffer_pages(struct extent_io_tree *tree,
4559                              struct extent_buffer *eb, u64 start, int wait,
4560                              get_extent_t *get_extent, int mirror_num)
4561 {
4562         unsigned long i;
4563         unsigned long start_i;
4564         struct page *page;
4565         int err;
4566         int ret = 0;
4567         int locked_pages = 0;
4568         int all_uptodate = 1;
4569         unsigned long num_pages;
4570         unsigned long num_reads = 0;
4571         struct bio *bio = NULL;
4572         unsigned long bio_flags = 0;
4573
4574         if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4575                 return 0;
4576
4577         if (start) {
4578                 WARN_ON(start < eb->start);
4579                 start_i = (start >> PAGE_CACHE_SHIFT) -
4580                         (eb->start >> PAGE_CACHE_SHIFT);
4581         } else {
4582                 start_i = 0;
4583         }
4584
4585         num_pages = num_extent_pages(eb->start, eb->len);
4586         for (i = start_i; i < num_pages; i++) {
4587                 page = extent_buffer_page(eb, i);
4588                 if (wait == WAIT_NONE) {
4589                         if (!trylock_page(page))
4590                                 goto unlock_exit;
4591                 } else {
4592                         lock_page(page);
4593                 }
4594                 locked_pages++;
4595                 if (!PageUptodate(page)) {
4596                         num_reads++;
4597                         all_uptodate = 0;
4598                 }
4599         }
4600         if (all_uptodate) {
4601                 if (start_i == 0)
4602                         set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4603                 goto unlock_exit;
4604         }
4605
4606         clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
4607         eb->read_mirror = 0;
4608         atomic_set(&eb->io_pages, num_reads);
4609         for (i = start_i; i < num_pages; i++) {
4610                 page = extent_buffer_page(eb, i);
4611                 if (!PageUptodate(page)) {
4612                         ClearPageError(page);
4613                         err = __extent_read_full_page(tree, page,
4614                                                       get_extent, &bio,
4615                                                       mirror_num, &bio_flags);
4616                         if (err)
4617                                 ret = err;
4618                 } else {
4619                         unlock_page(page);
4620                 }
4621         }
4622
4623         if (bio) {
4624                 err = submit_one_bio(READ, bio, mirror_num, bio_flags);
4625                 if (err)
4626                         return err;
4627         }
4628
4629         if (ret || wait != WAIT_COMPLETE)
4630                 return ret;
4631
4632         for (i = start_i; i < num_pages; i++) {
4633                 page = extent_buffer_page(eb, i);
4634                 wait_on_page_locked(page);
4635                 if (!PageUptodate(page))
4636                         ret = -EIO;
4637         }
4638
4639         return ret;
4640
4641 unlock_exit:
4642         i = start_i;
4643         while (locked_pages > 0) {
4644                 page = extent_buffer_page(eb, i);
4645                 i++;
4646                 unlock_page(page);
4647                 locked_pages--;
4648         }
4649         return ret;
4650 }
4651
4652 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4653                         unsigned long start,
4654                         unsigned long len)
4655 {
4656         size_t cur;
4657         size_t offset;
4658         struct page *page;
4659         char *kaddr;
4660         char *dst = (char *)dstv;
4661         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4662         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4663
4664         WARN_ON(start > eb->len);
4665         WARN_ON(start + len > eb->start + eb->len);
4666
4667         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4668
4669         while (len > 0) {
4670                 page = extent_buffer_page(eb, i);
4671
4672                 cur = min(len, (PAGE_CACHE_SIZE - offset));
4673                 kaddr = page_address(page);
4674                 memcpy(dst, kaddr + offset, cur);
4675
4676                 dst += cur;
4677                 len -= cur;
4678                 offset = 0;
4679                 i++;
4680         }
4681 }
4682
4683 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
4684                                unsigned long min_len, char **map,
4685                                unsigned long *map_start,
4686                                unsigned long *map_len)
4687 {
4688         size_t offset = start & (PAGE_CACHE_SIZE - 1);
4689         char *kaddr;
4690         struct page *p;
4691         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4692         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4693         unsigned long end_i = (start_offset + start + min_len - 1) >>
4694                 PAGE_CACHE_SHIFT;
4695
4696         if (i != end_i)
4697                 return -EINVAL;
4698
4699         if (i == 0) {
4700                 offset = start_offset;
4701                 *map_start = 0;
4702         } else {
4703                 offset = 0;
4704                 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4705         }
4706
4707         if (start + min_len > eb->len) {
4708                 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
4709                        "wanted %lu %lu\n", (unsigned long long)eb->start,
4710                        eb->len, start, min_len);
4711                 return -EINVAL;
4712         }
4713
4714         p = extent_buffer_page(eb, i);
4715         kaddr = page_address(p);
4716         *map = kaddr + offset;
4717         *map_len = PAGE_CACHE_SIZE - offset;
4718         return 0;
4719 }
4720
4721 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4722                           unsigned long start,
4723                           unsigned long len)
4724 {
4725         size_t cur;
4726         size_t offset;
4727         struct page *page;
4728         char *kaddr;
4729         char *ptr = (char *)ptrv;
4730         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4731         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4732         int ret = 0;
4733
4734         WARN_ON(start > eb->len);
4735         WARN_ON(start + len > eb->start + eb->len);
4736
4737         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4738
4739         while (len > 0) {
4740                 page = extent_buffer_page(eb, i);
4741
4742                 cur = min(len, (PAGE_CACHE_SIZE - offset));
4743
4744                 kaddr = page_address(page);
4745                 ret = memcmp(ptr, kaddr + offset, cur);
4746                 if (ret)
4747                         break;
4748
4749                 ptr += cur;
4750                 len -= cur;
4751                 offset = 0;
4752                 i++;
4753         }
4754         return ret;
4755 }
4756
4757 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
4758                          unsigned long start, unsigned long len)
4759 {
4760         size_t cur;
4761         size_t offset;
4762         struct page *page;
4763         char *kaddr;
4764         char *src = (char *)srcv;
4765         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4766         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4767
4768         WARN_ON(start > eb->len);
4769         WARN_ON(start + len > eb->start + eb->len);
4770
4771         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4772
4773         while (len > 0) {
4774                 page = extent_buffer_page(eb, i);
4775                 WARN_ON(!PageUptodate(page));
4776
4777                 cur = min(len, PAGE_CACHE_SIZE - offset);
4778                 kaddr = page_address(page);
4779                 memcpy(kaddr + offset, src, cur);
4780
4781                 src += cur;
4782                 len -= cur;
4783                 offset = 0;
4784                 i++;
4785         }
4786 }
4787
4788 void memset_extent_buffer(struct extent_buffer *eb, char c,
4789                           unsigned long start, unsigned long len)
4790 {
4791         size_t cur;
4792         size_t offset;
4793         struct page *page;
4794         char *kaddr;
4795         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4796         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4797
4798         WARN_ON(start > eb->len);
4799         WARN_ON(start + len > eb->start + eb->len);
4800
4801         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4802
4803         while (len > 0) {
4804                 page = extent_buffer_page(eb, i);
4805                 WARN_ON(!PageUptodate(page));
4806
4807                 cur = min(len, PAGE_CACHE_SIZE - offset);
4808                 kaddr = page_address(page);
4809                 memset(kaddr + offset, c, cur);
4810
4811                 len -= cur;
4812                 offset = 0;
4813                 i++;
4814         }
4815 }
4816
4817 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
4818                         unsigned long dst_offset, unsigned long src_offset,
4819                         unsigned long len)
4820 {
4821         u64 dst_len = dst->len;
4822         size_t cur;
4823         size_t offset;
4824         struct page *page;
4825         char *kaddr;
4826         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4827         unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4828
4829         WARN_ON(src->len != dst_len);
4830
4831         offset = (start_offset + dst_offset) &
4832                 ((unsigned long)PAGE_CACHE_SIZE - 1);
4833
4834         while (len > 0) {
4835                 page = extent_buffer_page(dst, i);
4836                 WARN_ON(!PageUptodate(page));
4837
4838                 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
4839
4840                 kaddr = page_address(page);
4841                 read_extent_buffer(src, kaddr + offset, src_offset, cur);
4842
4843                 src_offset += cur;
4844                 len -= cur;
4845                 offset = 0;
4846                 i++;
4847         }
4848 }
4849
4850 static void move_pages(struct page *dst_page, struct page *src_page,
4851                        unsigned long dst_off, unsigned long src_off,
4852                        unsigned long len)
4853 {
4854         char *dst_kaddr = page_address(dst_page);
4855         if (dst_page == src_page) {
4856                 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
4857         } else {
4858                 char *src_kaddr = page_address(src_page);
4859                 char *p = dst_kaddr + dst_off + len;
4860                 char *s = src_kaddr + src_off + len;
4861
4862                 while (len--)
4863                         *--p = *--s;
4864         }
4865 }
4866
4867 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4868 {
4869         unsigned long distance = (src > dst) ? src - dst : dst - src;
4870         return distance < len;
4871 }
4872
4873 static void copy_pages(struct page *dst_page, struct page *src_page,
4874                        unsigned long dst_off, unsigned long src_off,
4875                        unsigned long len)
4876 {
4877         char *dst_kaddr = page_address(dst_page);
4878         char *src_kaddr;
4879         int must_memmove = 0;
4880
4881         if (dst_page != src_page) {
4882                 src_kaddr = page_address(src_page);
4883         } else {
4884                 src_kaddr = dst_kaddr;
4885                 if (areas_overlap(src_off, dst_off, len))
4886                         must_memmove = 1;
4887         }
4888
4889         if (must_memmove)
4890                 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
4891         else
4892                 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
4893 }
4894
4895 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4896                            unsigned long src_offset, unsigned long len)
4897 {
4898         size_t cur;
4899         size_t dst_off_in_page;
4900         size_t src_off_in_page;
4901         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4902         unsigned long dst_i;
4903         unsigned long src_i;
4904
4905         if (src_offset + len > dst->len) {
4906                 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4907                        "len %lu dst len %lu\n", src_offset, len, dst->len);
4908                 BUG_ON(1);
4909         }
4910         if (dst_offset + len > dst->len) {
4911                 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4912                        "len %lu dst len %lu\n", dst_offset, len, dst->len);
4913                 BUG_ON(1);
4914         }
4915
4916         while (len > 0) {
4917                 dst_off_in_page = (start_offset + dst_offset) &
4918                         ((unsigned long)PAGE_CACHE_SIZE - 1);
4919                 src_off_in_page = (start_offset + src_offset) &
4920                         ((unsigned long)PAGE_CACHE_SIZE - 1);
4921
4922                 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4923                 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
4924
4925                 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
4926                                                src_off_in_page));
4927                 cur = min_t(unsigned long, cur,
4928                         (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
4929
4930                 copy_pages(extent_buffer_page(dst, dst_i),
4931                            extent_buffer_page(dst, src_i),
4932                            dst_off_in_page, src_off_in_page, cur);
4933
4934                 src_offset += cur;
4935                 dst_offset += cur;
4936                 len -= cur;
4937         }
4938 }
4939
4940 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4941                            unsigned long src_offset, unsigned long len)
4942 {
4943         size_t cur;
4944         size_t dst_off_in_page;
4945         size_t src_off_in_page;
4946         unsigned long dst_end = dst_offset + len - 1;
4947         unsigned long src_end = src_offset + len - 1;
4948         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4949         unsigned long dst_i;
4950         unsigned long src_i;
4951
4952         if (src_offset + len > dst->len) {
4953                 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4954                        "len %lu len %lu\n", src_offset, len, dst->len);
4955                 BUG_ON(1);
4956         }
4957         if (dst_offset + len > dst->len) {
4958                 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4959                        "len %lu len %lu\n", dst_offset, len, dst->len);
4960                 BUG_ON(1);
4961         }
4962         if (dst_offset < src_offset) {
4963                 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4964                 return;
4965         }
4966         while (len > 0) {
4967                 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
4968                 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
4969
4970                 dst_off_in_page = (start_offset + dst_end) &
4971                         ((unsigned long)PAGE_CACHE_SIZE - 1);
4972                 src_off_in_page = (start_offset + src_end) &
4973                         ((unsigned long)PAGE_CACHE_SIZE - 1);
4974
4975                 cur = min_t(unsigned long, len, src_off_in_page + 1);
4976                 cur = min(cur, dst_off_in_page + 1);
4977                 move_pages(extent_buffer_page(dst, dst_i),
4978                            extent_buffer_page(dst, src_i),
4979                            dst_off_in_page - cur + 1,
4980                            src_off_in_page - cur + 1, cur);
4981
4982                 dst_end -= cur;
4983                 src_end -= cur;
4984                 len -= cur;
4985         }
4986 }
4987
4988 int try_release_extent_buffer(struct page *page, gfp_t mask)
4989 {
4990         struct extent_buffer *eb;
4991
4992         /*
4993          * We need to make sure noboody is attaching this page to an eb right
4994          * now.
4995          */
4996         spin_lock(&page->mapping->private_lock);
4997         if (!PagePrivate(page)) {
4998                 spin_unlock(&page->mapping->private_lock);
4999                 return 1;
5000         }
5001
5002         eb = (struct extent_buffer *)page->private;
5003         BUG_ON(!eb);
5004
5005         /*
5006          * This is a little awful but should be ok, we need to make sure that
5007          * the eb doesn't disappear out from under us while we're looking at
5008          * this page.
5009          */
5010         spin_lock(&eb->refs_lock);
5011         if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5012                 spin_unlock(&eb->refs_lock);
5013                 spin_unlock(&page->mapping->private_lock);
5014                 return 0;
5015         }
5016         spin_unlock(&page->mapping->private_lock);
5017
5018         if ((mask & GFP_NOFS) == GFP_NOFS)
5019                 mask = GFP_NOFS;
5020
5021         /*
5022          * If tree ref isn't set then we know the ref on this eb is a real ref,
5023          * so just return, this page will likely be freed soon anyway.
5024          */
5025         if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5026                 spin_unlock(&eb->refs_lock);
5027                 return 0;
5028         }
5029
5030         return release_extent_buffer(eb, mask);
5031 }