]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/btrfs/free-space-cache.c
power_supply: Add support for tps65217-charger.
[karo-tx-linux.git] / fs / btrfs / free-space-cache.c
1 /*
2  * Copyright (C) 2008 Red Hat.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/pagemap.h>
20 #include <linux/sched.h>
21 #include <linux/slab.h>
22 #include <linux/math64.h>
23 #include <linux/ratelimit.h>
24 #include "ctree.h"
25 #include "free-space-cache.h"
26 #include "transaction.h"
27 #include "disk-io.h"
28 #include "extent_io.h"
29 #include "inode-map.h"
30 #include "volumes.h"
31
32 #define BITS_PER_BITMAP         (PAGE_CACHE_SIZE * 8)
33 #define MAX_CACHE_BYTES_PER_GIG (32 * 1024)
34
35 struct btrfs_trim_range {
36         u64 start;
37         u64 bytes;
38         struct list_head list;
39 };
40
41 static int link_free_space(struct btrfs_free_space_ctl *ctl,
42                            struct btrfs_free_space *info);
43 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
44                               struct btrfs_free_space *info);
45
46 static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
47                                                struct btrfs_path *path,
48                                                u64 offset)
49 {
50         struct btrfs_key key;
51         struct btrfs_key location;
52         struct btrfs_disk_key disk_key;
53         struct btrfs_free_space_header *header;
54         struct extent_buffer *leaf;
55         struct inode *inode = NULL;
56         int ret;
57
58         key.objectid = BTRFS_FREE_SPACE_OBJECTID;
59         key.offset = offset;
60         key.type = 0;
61
62         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
63         if (ret < 0)
64                 return ERR_PTR(ret);
65         if (ret > 0) {
66                 btrfs_release_path(path);
67                 return ERR_PTR(-ENOENT);
68         }
69
70         leaf = path->nodes[0];
71         header = btrfs_item_ptr(leaf, path->slots[0],
72                                 struct btrfs_free_space_header);
73         btrfs_free_space_key(leaf, header, &disk_key);
74         btrfs_disk_key_to_cpu(&location, &disk_key);
75         btrfs_release_path(path);
76
77         inode = btrfs_iget(root->fs_info->sb, &location, root, NULL);
78         if (!inode)
79                 return ERR_PTR(-ENOENT);
80         if (IS_ERR(inode))
81                 return inode;
82         if (is_bad_inode(inode)) {
83                 iput(inode);
84                 return ERR_PTR(-ENOENT);
85         }
86
87         mapping_set_gfp_mask(inode->i_mapping,
88                         mapping_gfp_mask(inode->i_mapping) &
89                         ~(__GFP_FS | __GFP_HIGHMEM));
90
91         return inode;
92 }
93
94 struct inode *lookup_free_space_inode(struct btrfs_root *root,
95                                       struct btrfs_block_group_cache
96                                       *block_group, struct btrfs_path *path)
97 {
98         struct inode *inode = NULL;
99         u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
100
101         spin_lock(&block_group->lock);
102         if (block_group->inode)
103                 inode = igrab(block_group->inode);
104         spin_unlock(&block_group->lock);
105         if (inode)
106                 return inode;
107
108         inode = __lookup_free_space_inode(root, path,
109                                           block_group->key.objectid);
110         if (IS_ERR(inode))
111                 return inode;
112
113         spin_lock(&block_group->lock);
114         if (!((BTRFS_I(inode)->flags & flags) == flags)) {
115                 btrfs_info(root->fs_info,
116                         "Old style space inode found, converting.");
117                 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
118                         BTRFS_INODE_NODATACOW;
119                 block_group->disk_cache_state = BTRFS_DC_CLEAR;
120         }
121
122         if (!block_group->iref) {
123                 block_group->inode = igrab(inode);
124                 block_group->iref = 1;
125         }
126         spin_unlock(&block_group->lock);
127
128         return inode;
129 }
130
131 static int __create_free_space_inode(struct btrfs_root *root,
132                                      struct btrfs_trans_handle *trans,
133                                      struct btrfs_path *path,
134                                      u64 ino, u64 offset)
135 {
136         struct btrfs_key key;
137         struct btrfs_disk_key disk_key;
138         struct btrfs_free_space_header *header;
139         struct btrfs_inode_item *inode_item;
140         struct extent_buffer *leaf;
141         u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
142         int ret;
143
144         ret = btrfs_insert_empty_inode(trans, root, path, ino);
145         if (ret)
146                 return ret;
147
148         /* We inline crc's for the free disk space cache */
149         if (ino != BTRFS_FREE_INO_OBJECTID)
150                 flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
151
152         leaf = path->nodes[0];
153         inode_item = btrfs_item_ptr(leaf, path->slots[0],
154                                     struct btrfs_inode_item);
155         btrfs_item_key(leaf, &disk_key, path->slots[0]);
156         memset_extent_buffer(leaf, 0, (unsigned long)inode_item,
157                              sizeof(*inode_item));
158         btrfs_set_inode_generation(leaf, inode_item, trans->transid);
159         btrfs_set_inode_size(leaf, inode_item, 0);
160         btrfs_set_inode_nbytes(leaf, inode_item, 0);
161         btrfs_set_inode_uid(leaf, inode_item, 0);
162         btrfs_set_inode_gid(leaf, inode_item, 0);
163         btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
164         btrfs_set_inode_flags(leaf, inode_item, flags);
165         btrfs_set_inode_nlink(leaf, inode_item, 1);
166         btrfs_set_inode_transid(leaf, inode_item, trans->transid);
167         btrfs_set_inode_block_group(leaf, inode_item, offset);
168         btrfs_mark_buffer_dirty(leaf);
169         btrfs_release_path(path);
170
171         key.objectid = BTRFS_FREE_SPACE_OBJECTID;
172         key.offset = offset;
173         key.type = 0;
174         ret = btrfs_insert_empty_item(trans, root, path, &key,
175                                       sizeof(struct btrfs_free_space_header));
176         if (ret < 0) {
177                 btrfs_release_path(path);
178                 return ret;
179         }
180
181         leaf = path->nodes[0];
182         header = btrfs_item_ptr(leaf, path->slots[0],
183                                 struct btrfs_free_space_header);
184         memset_extent_buffer(leaf, 0, (unsigned long)header, sizeof(*header));
185         btrfs_set_free_space_key(leaf, header, &disk_key);
186         btrfs_mark_buffer_dirty(leaf);
187         btrfs_release_path(path);
188
189         return 0;
190 }
191
192 int create_free_space_inode(struct btrfs_root *root,
193                             struct btrfs_trans_handle *trans,
194                             struct btrfs_block_group_cache *block_group,
195                             struct btrfs_path *path)
196 {
197         int ret;
198         u64 ino;
199
200         ret = btrfs_find_free_objectid(root, &ino);
201         if (ret < 0)
202                 return ret;
203
204         return __create_free_space_inode(root, trans, path, ino,
205                                          block_group->key.objectid);
206 }
207
208 int btrfs_check_trunc_cache_free_space(struct btrfs_root *root,
209                                        struct btrfs_block_rsv *rsv)
210 {
211         u64 needed_bytes;
212         int ret;
213
214         /* 1 for slack space, 1 for updating the inode */
215         needed_bytes = btrfs_calc_trunc_metadata_size(root, 1) +
216                 btrfs_calc_trans_metadata_size(root, 1);
217
218         spin_lock(&rsv->lock);
219         if (rsv->reserved < needed_bytes)
220                 ret = -ENOSPC;
221         else
222                 ret = 0;
223         spin_unlock(&rsv->lock);
224         return ret;
225 }
226
227 int btrfs_truncate_free_space_cache(struct btrfs_root *root,
228                                     struct btrfs_trans_handle *trans,
229                                     struct btrfs_block_group_cache *block_group,
230                                     struct inode *inode)
231 {
232         int ret = 0;
233         struct btrfs_path *path = btrfs_alloc_path();
234         bool locked = false;
235
236         if (!path) {
237                 ret = -ENOMEM;
238                 goto fail;
239         }
240
241         if (block_group) {
242                 locked = true;
243                 mutex_lock(&trans->transaction->cache_write_mutex);
244                 if (!list_empty(&block_group->io_list)) {
245                         list_del_init(&block_group->io_list);
246
247                         btrfs_wait_cache_io(root, trans, block_group,
248                                             &block_group->io_ctl, path,
249                                             block_group->key.objectid);
250                         btrfs_put_block_group(block_group);
251                 }
252
253                 /*
254                  * now that we've truncated the cache away, its no longer
255                  * setup or written
256                  */
257                 spin_lock(&block_group->lock);
258                 block_group->disk_cache_state = BTRFS_DC_CLEAR;
259                 spin_unlock(&block_group->lock);
260         }
261         btrfs_free_path(path);
262
263         btrfs_i_size_write(inode, 0);
264         truncate_pagecache(inode, 0);
265
266         /*
267          * We don't need an orphan item because truncating the free space cache
268          * will never be split across transactions.
269          * We don't need to check for -EAGAIN because we're a free space
270          * cache inode
271          */
272         ret = btrfs_truncate_inode_items(trans, root, inode,
273                                          0, BTRFS_EXTENT_DATA_KEY);
274         if (ret)
275                 goto fail;
276
277         ret = btrfs_update_inode(trans, root, inode);
278
279 fail:
280         if (locked)
281                 mutex_unlock(&trans->transaction->cache_write_mutex);
282         if (ret)
283                 btrfs_abort_transaction(trans, root, ret);
284
285         return ret;
286 }
287
288 static int readahead_cache(struct inode *inode)
289 {
290         struct file_ra_state *ra;
291         unsigned long last_index;
292
293         ra = kzalloc(sizeof(*ra), GFP_NOFS);
294         if (!ra)
295                 return -ENOMEM;
296
297         file_ra_state_init(ra, inode->i_mapping);
298         last_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
299
300         page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
301
302         kfree(ra);
303
304         return 0;
305 }
306
307 static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
308                        struct btrfs_root *root, int write)
309 {
310         int num_pages;
311         int check_crcs = 0;
312
313         num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_CACHE_SIZE);
314
315         if (btrfs_ino(inode) != BTRFS_FREE_INO_OBJECTID)
316                 check_crcs = 1;
317
318         /* Make sure we can fit our crcs into the first page */
319         if (write && check_crcs &&
320             (num_pages * sizeof(u32)) >= PAGE_CACHE_SIZE)
321                 return -ENOSPC;
322
323         memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
324
325         io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
326         if (!io_ctl->pages)
327                 return -ENOMEM;
328
329         io_ctl->num_pages = num_pages;
330         io_ctl->root = root;
331         io_ctl->check_crcs = check_crcs;
332         io_ctl->inode = inode;
333
334         return 0;
335 }
336
337 static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
338 {
339         kfree(io_ctl->pages);
340         io_ctl->pages = NULL;
341 }
342
343 static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
344 {
345         if (io_ctl->cur) {
346                 io_ctl->cur = NULL;
347                 io_ctl->orig = NULL;
348         }
349 }
350
351 static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
352 {
353         ASSERT(io_ctl->index < io_ctl->num_pages);
354         io_ctl->page = io_ctl->pages[io_ctl->index++];
355         io_ctl->cur = page_address(io_ctl->page);
356         io_ctl->orig = io_ctl->cur;
357         io_ctl->size = PAGE_CACHE_SIZE;
358         if (clear)
359                 memset(io_ctl->cur, 0, PAGE_CACHE_SIZE);
360 }
361
362 static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
363 {
364         int i;
365
366         io_ctl_unmap_page(io_ctl);
367
368         for (i = 0; i < io_ctl->num_pages; i++) {
369                 if (io_ctl->pages[i]) {
370                         ClearPageChecked(io_ctl->pages[i]);
371                         unlock_page(io_ctl->pages[i]);
372                         page_cache_release(io_ctl->pages[i]);
373                 }
374         }
375 }
376
377 static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, struct inode *inode,
378                                 int uptodate)
379 {
380         struct page *page;
381         gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
382         int i;
383
384         for (i = 0; i < io_ctl->num_pages; i++) {
385                 page = find_or_create_page(inode->i_mapping, i, mask);
386                 if (!page) {
387                         io_ctl_drop_pages(io_ctl);
388                         return -ENOMEM;
389                 }
390                 io_ctl->pages[i] = page;
391                 if (uptodate && !PageUptodate(page)) {
392                         btrfs_readpage(NULL, page);
393                         lock_page(page);
394                         if (!PageUptodate(page)) {
395                                 btrfs_err(BTRFS_I(inode)->root->fs_info,
396                                            "error reading free space cache");
397                                 io_ctl_drop_pages(io_ctl);
398                                 return -EIO;
399                         }
400                 }
401         }
402
403         for (i = 0; i < io_ctl->num_pages; i++) {
404                 clear_page_dirty_for_io(io_ctl->pages[i]);
405                 set_page_extent_mapped(io_ctl->pages[i]);
406         }
407
408         return 0;
409 }
410
411 static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
412 {
413         __le64 *val;
414
415         io_ctl_map_page(io_ctl, 1);
416
417         /*
418          * Skip the csum areas.  If we don't check crcs then we just have a
419          * 64bit chunk at the front of the first page.
420          */
421         if (io_ctl->check_crcs) {
422                 io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
423                 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
424         } else {
425                 io_ctl->cur += sizeof(u64);
426                 io_ctl->size -= sizeof(u64) * 2;
427         }
428
429         val = io_ctl->cur;
430         *val = cpu_to_le64(generation);
431         io_ctl->cur += sizeof(u64);
432 }
433
434 static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
435 {
436         __le64 *gen;
437
438         /*
439          * Skip the crc area.  If we don't check crcs then we just have a 64bit
440          * chunk at the front of the first page.
441          */
442         if (io_ctl->check_crcs) {
443                 io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
444                 io_ctl->size -= sizeof(u64) +
445                         (sizeof(u32) * io_ctl->num_pages);
446         } else {
447                 io_ctl->cur += sizeof(u64);
448                 io_ctl->size -= sizeof(u64) * 2;
449         }
450
451         gen = io_ctl->cur;
452         if (le64_to_cpu(*gen) != generation) {
453                 printk_ratelimited(KERN_ERR "BTRFS: space cache generation "
454                                    "(%Lu) does not match inode (%Lu)\n", *gen,
455                                    generation);
456                 io_ctl_unmap_page(io_ctl);
457                 return -EIO;
458         }
459         io_ctl->cur += sizeof(u64);
460         return 0;
461 }
462
463 static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
464 {
465         u32 *tmp;
466         u32 crc = ~(u32)0;
467         unsigned offset = 0;
468
469         if (!io_ctl->check_crcs) {
470                 io_ctl_unmap_page(io_ctl);
471                 return;
472         }
473
474         if (index == 0)
475                 offset = sizeof(u32) * io_ctl->num_pages;
476
477         crc = btrfs_csum_data(io_ctl->orig + offset, crc,
478                               PAGE_CACHE_SIZE - offset);
479         btrfs_csum_final(crc, (char *)&crc);
480         io_ctl_unmap_page(io_ctl);
481         tmp = page_address(io_ctl->pages[0]);
482         tmp += index;
483         *tmp = crc;
484 }
485
486 static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
487 {
488         u32 *tmp, val;
489         u32 crc = ~(u32)0;
490         unsigned offset = 0;
491
492         if (!io_ctl->check_crcs) {
493                 io_ctl_map_page(io_ctl, 0);
494                 return 0;
495         }
496
497         if (index == 0)
498                 offset = sizeof(u32) * io_ctl->num_pages;
499
500         tmp = page_address(io_ctl->pages[0]);
501         tmp += index;
502         val = *tmp;
503
504         io_ctl_map_page(io_ctl, 0);
505         crc = btrfs_csum_data(io_ctl->orig + offset, crc,
506                               PAGE_CACHE_SIZE - offset);
507         btrfs_csum_final(crc, (char *)&crc);
508         if (val != crc) {
509                 printk_ratelimited(KERN_ERR "BTRFS: csum mismatch on free "
510                                    "space cache\n");
511                 io_ctl_unmap_page(io_ctl);
512                 return -EIO;
513         }
514
515         return 0;
516 }
517
518 static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
519                             void *bitmap)
520 {
521         struct btrfs_free_space_entry *entry;
522
523         if (!io_ctl->cur)
524                 return -ENOSPC;
525
526         entry = io_ctl->cur;
527         entry->offset = cpu_to_le64(offset);
528         entry->bytes = cpu_to_le64(bytes);
529         entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
530                 BTRFS_FREE_SPACE_EXTENT;
531         io_ctl->cur += sizeof(struct btrfs_free_space_entry);
532         io_ctl->size -= sizeof(struct btrfs_free_space_entry);
533
534         if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
535                 return 0;
536
537         io_ctl_set_crc(io_ctl, io_ctl->index - 1);
538
539         /* No more pages to map */
540         if (io_ctl->index >= io_ctl->num_pages)
541                 return 0;
542
543         /* map the next page */
544         io_ctl_map_page(io_ctl, 1);
545         return 0;
546 }
547
548 static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
549 {
550         if (!io_ctl->cur)
551                 return -ENOSPC;
552
553         /*
554          * If we aren't at the start of the current page, unmap this one and
555          * map the next one if there is any left.
556          */
557         if (io_ctl->cur != io_ctl->orig) {
558                 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
559                 if (io_ctl->index >= io_ctl->num_pages)
560                         return -ENOSPC;
561                 io_ctl_map_page(io_ctl, 0);
562         }
563
564         memcpy(io_ctl->cur, bitmap, PAGE_CACHE_SIZE);
565         io_ctl_set_crc(io_ctl, io_ctl->index - 1);
566         if (io_ctl->index < io_ctl->num_pages)
567                 io_ctl_map_page(io_ctl, 0);
568         return 0;
569 }
570
571 static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
572 {
573         /*
574          * If we're not on the boundary we know we've modified the page and we
575          * need to crc the page.
576          */
577         if (io_ctl->cur != io_ctl->orig)
578                 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
579         else
580                 io_ctl_unmap_page(io_ctl);
581
582         while (io_ctl->index < io_ctl->num_pages) {
583                 io_ctl_map_page(io_ctl, 1);
584                 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
585         }
586 }
587
588 static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
589                             struct btrfs_free_space *entry, u8 *type)
590 {
591         struct btrfs_free_space_entry *e;
592         int ret;
593
594         if (!io_ctl->cur) {
595                 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
596                 if (ret)
597                         return ret;
598         }
599
600         e = io_ctl->cur;
601         entry->offset = le64_to_cpu(e->offset);
602         entry->bytes = le64_to_cpu(e->bytes);
603         *type = e->type;
604         io_ctl->cur += sizeof(struct btrfs_free_space_entry);
605         io_ctl->size -= sizeof(struct btrfs_free_space_entry);
606
607         if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
608                 return 0;
609
610         io_ctl_unmap_page(io_ctl);
611
612         return 0;
613 }
614
615 static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
616                               struct btrfs_free_space *entry)
617 {
618         int ret;
619
620         ret = io_ctl_check_crc(io_ctl, io_ctl->index);
621         if (ret)
622                 return ret;
623
624         memcpy(entry->bitmap, io_ctl->cur, PAGE_CACHE_SIZE);
625         io_ctl_unmap_page(io_ctl);
626
627         return 0;
628 }
629
630 /*
631  * Since we attach pinned extents after the fact we can have contiguous sections
632  * of free space that are split up in entries.  This poses a problem with the
633  * tree logging stuff since it could have allocated across what appears to be 2
634  * entries since we would have merged the entries when adding the pinned extents
635  * back to the free space cache.  So run through the space cache that we just
636  * loaded and merge contiguous entries.  This will make the log replay stuff not
637  * blow up and it will make for nicer allocator behavior.
638  */
639 static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
640 {
641         struct btrfs_free_space *e, *prev = NULL;
642         struct rb_node *n;
643
644 again:
645         spin_lock(&ctl->tree_lock);
646         for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
647                 e = rb_entry(n, struct btrfs_free_space, offset_index);
648                 if (!prev)
649                         goto next;
650                 if (e->bitmap || prev->bitmap)
651                         goto next;
652                 if (prev->offset + prev->bytes == e->offset) {
653                         unlink_free_space(ctl, prev);
654                         unlink_free_space(ctl, e);
655                         prev->bytes += e->bytes;
656                         kmem_cache_free(btrfs_free_space_cachep, e);
657                         link_free_space(ctl, prev);
658                         prev = NULL;
659                         spin_unlock(&ctl->tree_lock);
660                         goto again;
661                 }
662 next:
663                 prev = e;
664         }
665         spin_unlock(&ctl->tree_lock);
666 }
667
668 static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
669                                    struct btrfs_free_space_ctl *ctl,
670                                    struct btrfs_path *path, u64 offset)
671 {
672         struct btrfs_free_space_header *header;
673         struct extent_buffer *leaf;
674         struct btrfs_io_ctl io_ctl;
675         struct btrfs_key key;
676         struct btrfs_free_space *e, *n;
677         LIST_HEAD(bitmaps);
678         u64 num_entries;
679         u64 num_bitmaps;
680         u64 generation;
681         u8 type;
682         int ret = 0;
683
684         /* Nothing in the space cache, goodbye */
685         if (!i_size_read(inode))
686                 return 0;
687
688         key.objectid = BTRFS_FREE_SPACE_OBJECTID;
689         key.offset = offset;
690         key.type = 0;
691
692         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
693         if (ret < 0)
694                 return 0;
695         else if (ret > 0) {
696                 btrfs_release_path(path);
697                 return 0;
698         }
699
700         ret = -1;
701
702         leaf = path->nodes[0];
703         header = btrfs_item_ptr(leaf, path->slots[0],
704                                 struct btrfs_free_space_header);
705         num_entries = btrfs_free_space_entries(leaf, header);
706         num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
707         generation = btrfs_free_space_generation(leaf, header);
708         btrfs_release_path(path);
709
710         if (!BTRFS_I(inode)->generation) {
711                 btrfs_info(root->fs_info,
712                            "The free space cache file (%llu) is invalid. skip it\n",
713                            offset);
714                 return 0;
715         }
716
717         if (BTRFS_I(inode)->generation != generation) {
718                 btrfs_err(root->fs_info,
719                         "free space inode generation (%llu) "
720                         "did not match free space cache generation (%llu)",
721                         BTRFS_I(inode)->generation, generation);
722                 return 0;
723         }
724
725         if (!num_entries)
726                 return 0;
727
728         ret = io_ctl_init(&io_ctl, inode, root, 0);
729         if (ret)
730                 return ret;
731
732         ret = readahead_cache(inode);
733         if (ret)
734                 goto out;
735
736         ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
737         if (ret)
738                 goto out;
739
740         ret = io_ctl_check_crc(&io_ctl, 0);
741         if (ret)
742                 goto free_cache;
743
744         ret = io_ctl_check_generation(&io_ctl, generation);
745         if (ret)
746                 goto free_cache;
747
748         while (num_entries) {
749                 e = kmem_cache_zalloc(btrfs_free_space_cachep,
750                                       GFP_NOFS);
751                 if (!e)
752                         goto free_cache;
753
754                 ret = io_ctl_read_entry(&io_ctl, e, &type);
755                 if (ret) {
756                         kmem_cache_free(btrfs_free_space_cachep, e);
757                         goto free_cache;
758                 }
759
760                 if (!e->bytes) {
761                         kmem_cache_free(btrfs_free_space_cachep, e);
762                         goto free_cache;
763                 }
764
765                 if (type == BTRFS_FREE_SPACE_EXTENT) {
766                         spin_lock(&ctl->tree_lock);
767                         ret = link_free_space(ctl, e);
768                         spin_unlock(&ctl->tree_lock);
769                         if (ret) {
770                                 btrfs_err(root->fs_info,
771                                         "Duplicate entries in free space cache, dumping");
772                                 kmem_cache_free(btrfs_free_space_cachep, e);
773                                 goto free_cache;
774                         }
775                 } else {
776                         ASSERT(num_bitmaps);
777                         num_bitmaps--;
778                         e->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
779                         if (!e->bitmap) {
780                                 kmem_cache_free(
781                                         btrfs_free_space_cachep, e);
782                                 goto free_cache;
783                         }
784                         spin_lock(&ctl->tree_lock);
785                         ret = link_free_space(ctl, e);
786                         ctl->total_bitmaps++;
787                         ctl->op->recalc_thresholds(ctl);
788                         spin_unlock(&ctl->tree_lock);
789                         if (ret) {
790                                 btrfs_err(root->fs_info,
791                                         "Duplicate entries in free space cache, dumping");
792                                 kmem_cache_free(btrfs_free_space_cachep, e);
793                                 goto free_cache;
794                         }
795                         list_add_tail(&e->list, &bitmaps);
796                 }
797
798                 num_entries--;
799         }
800
801         io_ctl_unmap_page(&io_ctl);
802
803         /*
804          * We add the bitmaps at the end of the entries in order that
805          * the bitmap entries are added to the cache.
806          */
807         list_for_each_entry_safe(e, n, &bitmaps, list) {
808                 list_del_init(&e->list);
809                 ret = io_ctl_read_bitmap(&io_ctl, e);
810                 if (ret)
811                         goto free_cache;
812         }
813
814         io_ctl_drop_pages(&io_ctl);
815         merge_space_tree(ctl);
816         ret = 1;
817 out:
818         io_ctl_free(&io_ctl);
819         return ret;
820 free_cache:
821         io_ctl_drop_pages(&io_ctl);
822         __btrfs_remove_free_space_cache(ctl);
823         goto out;
824 }
825
826 int load_free_space_cache(struct btrfs_fs_info *fs_info,
827                           struct btrfs_block_group_cache *block_group)
828 {
829         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
830         struct btrfs_root *root = fs_info->tree_root;
831         struct inode *inode;
832         struct btrfs_path *path;
833         int ret = 0;
834         bool matched;
835         u64 used = btrfs_block_group_used(&block_group->item);
836
837         /*
838          * If this block group has been marked to be cleared for one reason or
839          * another then we can't trust the on disk cache, so just return.
840          */
841         spin_lock(&block_group->lock);
842         if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
843                 spin_unlock(&block_group->lock);
844                 return 0;
845         }
846         spin_unlock(&block_group->lock);
847
848         path = btrfs_alloc_path();
849         if (!path)
850                 return 0;
851         path->search_commit_root = 1;
852         path->skip_locking = 1;
853
854         inode = lookup_free_space_inode(root, block_group, path);
855         if (IS_ERR(inode)) {
856                 btrfs_free_path(path);
857                 return 0;
858         }
859
860         /* We may have converted the inode and made the cache invalid. */
861         spin_lock(&block_group->lock);
862         if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
863                 spin_unlock(&block_group->lock);
864                 btrfs_free_path(path);
865                 goto out;
866         }
867         spin_unlock(&block_group->lock);
868
869         ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
870                                       path, block_group->key.objectid);
871         btrfs_free_path(path);
872         if (ret <= 0)
873                 goto out;
874
875         spin_lock(&ctl->tree_lock);
876         matched = (ctl->free_space == (block_group->key.offset - used -
877                                        block_group->bytes_super));
878         spin_unlock(&ctl->tree_lock);
879
880         if (!matched) {
881                 __btrfs_remove_free_space_cache(ctl);
882                 btrfs_warn(fs_info, "block group %llu has wrong amount of free space",
883                         block_group->key.objectid);
884                 ret = -1;
885         }
886 out:
887         if (ret < 0) {
888                 /* This cache is bogus, make sure it gets cleared */
889                 spin_lock(&block_group->lock);
890                 block_group->disk_cache_state = BTRFS_DC_CLEAR;
891                 spin_unlock(&block_group->lock);
892                 ret = 0;
893
894                 btrfs_warn(fs_info, "failed to load free space cache for block group %llu, rebuild it now",
895                         block_group->key.objectid);
896         }
897
898         iput(inode);
899         return ret;
900 }
901
902 static noinline_for_stack
903 int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
904                               struct btrfs_free_space_ctl *ctl,
905                               struct btrfs_block_group_cache *block_group,
906                               int *entries, int *bitmaps,
907                               struct list_head *bitmap_list)
908 {
909         int ret;
910         struct btrfs_free_cluster *cluster = NULL;
911         struct btrfs_free_cluster *cluster_locked = NULL;
912         struct rb_node *node = rb_first(&ctl->free_space_offset);
913         struct btrfs_trim_range *trim_entry;
914
915         /* Get the cluster for this block_group if it exists */
916         if (block_group && !list_empty(&block_group->cluster_list)) {
917                 cluster = list_entry(block_group->cluster_list.next,
918                                      struct btrfs_free_cluster,
919                                      block_group_list);
920         }
921
922         if (!node && cluster) {
923                 cluster_locked = cluster;
924                 spin_lock(&cluster_locked->lock);
925                 node = rb_first(&cluster->root);
926                 cluster = NULL;
927         }
928
929         /* Write out the extent entries */
930         while (node) {
931                 struct btrfs_free_space *e;
932
933                 e = rb_entry(node, struct btrfs_free_space, offset_index);
934                 *entries += 1;
935
936                 ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
937                                        e->bitmap);
938                 if (ret)
939                         goto fail;
940
941                 if (e->bitmap) {
942                         list_add_tail(&e->list, bitmap_list);
943                         *bitmaps += 1;
944                 }
945                 node = rb_next(node);
946                 if (!node && cluster) {
947                         node = rb_first(&cluster->root);
948                         cluster_locked = cluster;
949                         spin_lock(&cluster_locked->lock);
950                         cluster = NULL;
951                 }
952         }
953         if (cluster_locked) {
954                 spin_unlock(&cluster_locked->lock);
955                 cluster_locked = NULL;
956         }
957
958         /*
959          * Make sure we don't miss any range that was removed from our rbtree
960          * because trimming is running. Otherwise after a umount+mount (or crash
961          * after committing the transaction) we would leak free space and get
962          * an inconsistent free space cache report from fsck.
963          */
964         list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
965                 ret = io_ctl_add_entry(io_ctl, trim_entry->start,
966                                        trim_entry->bytes, NULL);
967                 if (ret)
968                         goto fail;
969                 *entries += 1;
970         }
971
972         return 0;
973 fail:
974         if (cluster_locked)
975                 spin_unlock(&cluster_locked->lock);
976         return -ENOSPC;
977 }
978
979 static noinline_for_stack int
980 update_cache_item(struct btrfs_trans_handle *trans,
981                   struct btrfs_root *root,
982                   struct inode *inode,
983                   struct btrfs_path *path, u64 offset,
984                   int entries, int bitmaps)
985 {
986         struct btrfs_key key;
987         struct btrfs_free_space_header *header;
988         struct extent_buffer *leaf;
989         int ret;
990
991         key.objectid = BTRFS_FREE_SPACE_OBJECTID;
992         key.offset = offset;
993         key.type = 0;
994
995         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
996         if (ret < 0) {
997                 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
998                                  EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
999                                  GFP_NOFS);
1000                 goto fail;
1001         }
1002         leaf = path->nodes[0];
1003         if (ret > 0) {
1004                 struct btrfs_key found_key;
1005                 ASSERT(path->slots[0]);
1006                 path->slots[0]--;
1007                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1008                 if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1009                     found_key.offset != offset) {
1010                         clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1011                                          inode->i_size - 1,
1012                                          EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0,
1013                                          NULL, GFP_NOFS);
1014                         btrfs_release_path(path);
1015                         goto fail;
1016                 }
1017         }
1018
1019         BTRFS_I(inode)->generation = trans->transid;
1020         header = btrfs_item_ptr(leaf, path->slots[0],
1021                                 struct btrfs_free_space_header);
1022         btrfs_set_free_space_entries(leaf, header, entries);
1023         btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1024         btrfs_set_free_space_generation(leaf, header, trans->transid);
1025         btrfs_mark_buffer_dirty(leaf);
1026         btrfs_release_path(path);
1027
1028         return 0;
1029
1030 fail:
1031         return -1;
1032 }
1033
1034 static noinline_for_stack int
1035 write_pinned_extent_entries(struct btrfs_root *root,
1036                             struct btrfs_block_group_cache *block_group,
1037                             struct btrfs_io_ctl *io_ctl,
1038                             int *entries)
1039 {
1040         u64 start, extent_start, extent_end, len;
1041         struct extent_io_tree *unpin = NULL;
1042         int ret;
1043
1044         if (!block_group)
1045                 return 0;
1046
1047         /*
1048          * We want to add any pinned extents to our free space cache
1049          * so we don't leak the space
1050          *
1051          * We shouldn't have switched the pinned extents yet so this is the
1052          * right one
1053          */
1054         unpin = root->fs_info->pinned_extents;
1055
1056         start = block_group->key.objectid;
1057
1058         while (start < block_group->key.objectid + block_group->key.offset) {
1059                 ret = find_first_extent_bit(unpin, start,
1060                                             &extent_start, &extent_end,
1061                                             EXTENT_DIRTY, NULL);
1062                 if (ret)
1063                         return 0;
1064
1065                 /* This pinned extent is out of our range */
1066                 if (extent_start >= block_group->key.objectid +
1067                     block_group->key.offset)
1068                         return 0;
1069
1070                 extent_start = max(extent_start, start);
1071                 extent_end = min(block_group->key.objectid +
1072                                  block_group->key.offset, extent_end + 1);
1073                 len = extent_end - extent_start;
1074
1075                 *entries += 1;
1076                 ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1077                 if (ret)
1078                         return -ENOSPC;
1079
1080                 start = extent_end;
1081         }
1082
1083         return 0;
1084 }
1085
1086 static noinline_for_stack int
1087 write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1088 {
1089         struct list_head *pos, *n;
1090         int ret;
1091
1092         /* Write out the bitmaps */
1093         list_for_each_safe(pos, n, bitmap_list) {
1094                 struct btrfs_free_space *entry =
1095                         list_entry(pos, struct btrfs_free_space, list);
1096
1097                 ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1098                 if (ret)
1099                         return -ENOSPC;
1100                 list_del_init(&entry->list);
1101         }
1102
1103         return 0;
1104 }
1105
1106 static int flush_dirty_cache(struct inode *inode)
1107 {
1108         int ret;
1109
1110         ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1111         if (ret)
1112                 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1113                                  EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
1114                                  GFP_NOFS);
1115
1116         return ret;
1117 }
1118
1119 static void noinline_for_stack
1120 cleanup_bitmap_list(struct list_head *bitmap_list)
1121 {
1122         struct list_head *pos, *n;
1123
1124         list_for_each_safe(pos, n, bitmap_list) {
1125                 struct btrfs_free_space *entry =
1126                         list_entry(pos, struct btrfs_free_space, list);
1127                 list_del_init(&entry->list);
1128         }
1129 }
1130
1131 static void noinline_for_stack
1132 cleanup_write_cache_enospc(struct inode *inode,
1133                            struct btrfs_io_ctl *io_ctl,
1134                            struct extent_state **cached_state,
1135                            struct list_head *bitmap_list)
1136 {
1137         io_ctl_drop_pages(io_ctl);
1138         unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1139                              i_size_read(inode) - 1, cached_state,
1140                              GFP_NOFS);
1141 }
1142
1143 int btrfs_wait_cache_io(struct btrfs_root *root,
1144                         struct btrfs_trans_handle *trans,
1145                         struct btrfs_block_group_cache *block_group,
1146                         struct btrfs_io_ctl *io_ctl,
1147                         struct btrfs_path *path, u64 offset)
1148 {
1149         int ret;
1150         struct inode *inode = io_ctl->inode;
1151
1152         if (!inode)
1153                 return 0;
1154
1155         if (block_group)
1156                 root = root->fs_info->tree_root;
1157
1158         /* Flush the dirty pages in the cache file. */
1159         ret = flush_dirty_cache(inode);
1160         if (ret)
1161                 goto out;
1162
1163         /* Update the cache item to tell everyone this cache file is valid. */
1164         ret = update_cache_item(trans, root, inode, path, offset,
1165                                 io_ctl->entries, io_ctl->bitmaps);
1166 out:
1167         io_ctl_free(io_ctl);
1168         if (ret) {
1169                 invalidate_inode_pages2(inode->i_mapping);
1170                 BTRFS_I(inode)->generation = 0;
1171                 if (block_group) {
1172 #ifdef DEBUG
1173                         btrfs_err(root->fs_info,
1174                                 "failed to write free space cache for block group %llu",
1175                                 block_group->key.objectid);
1176 #endif
1177                 }
1178         }
1179         btrfs_update_inode(trans, root, inode);
1180
1181         if (block_group) {
1182                 /* the dirty list is protected by the dirty_bgs_lock */
1183                 spin_lock(&trans->transaction->dirty_bgs_lock);
1184
1185                 /* the disk_cache_state is protected by the block group lock */
1186                 spin_lock(&block_group->lock);
1187
1188                 /*
1189                  * only mark this as written if we didn't get put back on
1190                  * the dirty list while waiting for IO.   Otherwise our
1191                  * cache state won't be right, and we won't get written again
1192                  */
1193                 if (!ret && list_empty(&block_group->dirty_list))
1194                         block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1195                 else if (ret)
1196                         block_group->disk_cache_state = BTRFS_DC_ERROR;
1197
1198                 spin_unlock(&block_group->lock);
1199                 spin_unlock(&trans->transaction->dirty_bgs_lock);
1200                 io_ctl->inode = NULL;
1201                 iput(inode);
1202         }
1203
1204         return ret;
1205
1206 }
1207
1208 /**
1209  * __btrfs_write_out_cache - write out cached info to an inode
1210  * @root - the root the inode belongs to
1211  * @ctl - the free space cache we are going to write out
1212  * @block_group - the block_group for this cache if it belongs to a block_group
1213  * @trans - the trans handle
1214  * @path - the path to use
1215  * @offset - the offset for the key we'll insert
1216  *
1217  * This function writes out a free space cache struct to disk for quick recovery
1218  * on mount.  This will return 0 if it was successfull in writing the cache out,
1219  * or an errno if it was not.
1220  */
1221 static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
1222                                    struct btrfs_free_space_ctl *ctl,
1223                                    struct btrfs_block_group_cache *block_group,
1224                                    struct btrfs_io_ctl *io_ctl,
1225                                    struct btrfs_trans_handle *trans,
1226                                    struct btrfs_path *path, u64 offset)
1227 {
1228         struct extent_state *cached_state = NULL;
1229         LIST_HEAD(bitmap_list);
1230         int entries = 0;
1231         int bitmaps = 0;
1232         int ret;
1233         int must_iput = 0;
1234
1235         if (!i_size_read(inode))
1236                 return -EIO;
1237
1238         WARN_ON(io_ctl->pages);
1239         ret = io_ctl_init(io_ctl, inode, root, 1);
1240         if (ret)
1241                 return ret;
1242
1243         if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1244                 down_write(&block_group->data_rwsem);
1245                 spin_lock(&block_group->lock);
1246                 if (block_group->delalloc_bytes) {
1247                         block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1248                         spin_unlock(&block_group->lock);
1249                         up_write(&block_group->data_rwsem);
1250                         BTRFS_I(inode)->generation = 0;
1251                         ret = 0;
1252                         must_iput = 1;
1253                         goto out;
1254                 }
1255                 spin_unlock(&block_group->lock);
1256         }
1257
1258         /* Lock all pages first so we can lock the extent safely. */
1259         ret = io_ctl_prepare_pages(io_ctl, inode, 0);
1260         if (ret)
1261                 goto out;
1262
1263         lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1264                          0, &cached_state);
1265
1266         io_ctl_set_generation(io_ctl, trans->transid);
1267
1268         mutex_lock(&ctl->cache_writeout_mutex);
1269         /* Write out the extent entries in the free space cache */
1270         spin_lock(&ctl->tree_lock);
1271         ret = write_cache_extent_entries(io_ctl, ctl,
1272                                          block_group, &entries, &bitmaps,
1273                                          &bitmap_list);
1274         if (ret)
1275                 goto out_nospc_locked;
1276
1277         /*
1278          * Some spaces that are freed in the current transaction are pinned,
1279          * they will be added into free space cache after the transaction is
1280          * committed, we shouldn't lose them.
1281          *
1282          * If this changes while we are working we'll get added back to
1283          * the dirty list and redo it.  No locking needed
1284          */
1285         ret = write_pinned_extent_entries(root, block_group, io_ctl, &entries);
1286         if (ret)
1287                 goto out_nospc_locked;
1288
1289         /*
1290          * At last, we write out all the bitmaps and keep cache_writeout_mutex
1291          * locked while doing it because a concurrent trim can be manipulating
1292          * or freeing the bitmap.
1293          */
1294         ret = write_bitmap_entries(io_ctl, &bitmap_list);
1295         spin_unlock(&ctl->tree_lock);
1296         mutex_unlock(&ctl->cache_writeout_mutex);
1297         if (ret)
1298                 goto out_nospc;
1299
1300         /* Zero out the rest of the pages just to make sure */
1301         io_ctl_zero_remaining_pages(io_ctl);
1302
1303         /* Everything is written out, now we dirty the pages in the file. */
1304         ret = btrfs_dirty_pages(root, inode, io_ctl->pages, io_ctl->num_pages,
1305                                 0, i_size_read(inode), &cached_state);
1306         if (ret)
1307                 goto out_nospc;
1308
1309         if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1310                 up_write(&block_group->data_rwsem);
1311         /*
1312          * Release the pages and unlock the extent, we will flush
1313          * them out later
1314          */
1315         io_ctl_drop_pages(io_ctl);
1316
1317         unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1318                              i_size_read(inode) - 1, &cached_state, GFP_NOFS);
1319
1320         /*
1321          * at this point the pages are under IO and we're happy,
1322          * The caller is responsible for waiting on them and updating the
1323          * the cache and the inode
1324          */
1325         io_ctl->entries = entries;
1326         io_ctl->bitmaps = bitmaps;
1327
1328         ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
1329         if (ret)
1330                 goto out;
1331
1332         return 0;
1333
1334 out:
1335         io_ctl->inode = NULL;
1336         io_ctl_free(io_ctl);
1337         if (ret) {
1338                 invalidate_inode_pages2(inode->i_mapping);
1339                 BTRFS_I(inode)->generation = 0;
1340         }
1341         btrfs_update_inode(trans, root, inode);
1342         if (must_iput)
1343                 iput(inode);
1344         return ret;
1345
1346 out_nospc_locked:
1347         cleanup_bitmap_list(&bitmap_list);
1348         spin_unlock(&ctl->tree_lock);
1349         mutex_unlock(&ctl->cache_writeout_mutex);
1350
1351 out_nospc:
1352         cleanup_write_cache_enospc(inode, io_ctl, &cached_state, &bitmap_list);
1353
1354         if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1355                 up_write(&block_group->data_rwsem);
1356
1357         goto out;
1358 }
1359
1360 int btrfs_write_out_cache(struct btrfs_root *root,
1361                           struct btrfs_trans_handle *trans,
1362                           struct btrfs_block_group_cache *block_group,
1363                           struct btrfs_path *path)
1364 {
1365         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1366         struct inode *inode;
1367         int ret = 0;
1368
1369         root = root->fs_info->tree_root;
1370
1371         spin_lock(&block_group->lock);
1372         if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1373                 spin_unlock(&block_group->lock);
1374                 return 0;
1375         }
1376         spin_unlock(&block_group->lock);
1377
1378         inode = lookup_free_space_inode(root, block_group, path);
1379         if (IS_ERR(inode))
1380                 return 0;
1381
1382         ret = __btrfs_write_out_cache(root, inode, ctl, block_group,
1383                                       &block_group->io_ctl, trans,
1384                                       path, block_group->key.objectid);
1385         if (ret) {
1386 #ifdef DEBUG
1387                 btrfs_err(root->fs_info,
1388                         "failed to write free space cache for block group %llu",
1389                         block_group->key.objectid);
1390 #endif
1391                 spin_lock(&block_group->lock);
1392                 block_group->disk_cache_state = BTRFS_DC_ERROR;
1393                 spin_unlock(&block_group->lock);
1394
1395                 block_group->io_ctl.inode = NULL;
1396                 iput(inode);
1397         }
1398
1399         /*
1400          * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1401          * to wait for IO and put the inode
1402          */
1403
1404         return ret;
1405 }
1406
1407 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1408                                           u64 offset)
1409 {
1410         ASSERT(offset >= bitmap_start);
1411         offset -= bitmap_start;
1412         return (unsigned long)(div_u64(offset, unit));
1413 }
1414
1415 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1416 {
1417         return (unsigned long)(div_u64(bytes, unit));
1418 }
1419
1420 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1421                                    u64 offset)
1422 {
1423         u64 bitmap_start;
1424         u32 bytes_per_bitmap;
1425
1426         bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1427         bitmap_start = offset - ctl->start;
1428         bitmap_start = div_u64(bitmap_start, bytes_per_bitmap);
1429         bitmap_start *= bytes_per_bitmap;
1430         bitmap_start += ctl->start;
1431
1432         return bitmap_start;
1433 }
1434
1435 static int tree_insert_offset(struct rb_root *root, u64 offset,
1436                               struct rb_node *node, int bitmap)
1437 {
1438         struct rb_node **p = &root->rb_node;
1439         struct rb_node *parent = NULL;
1440         struct btrfs_free_space *info;
1441
1442         while (*p) {
1443                 parent = *p;
1444                 info = rb_entry(parent, struct btrfs_free_space, offset_index);
1445
1446                 if (offset < info->offset) {
1447                         p = &(*p)->rb_left;
1448                 } else if (offset > info->offset) {
1449                         p = &(*p)->rb_right;
1450                 } else {
1451                         /*
1452                          * we could have a bitmap entry and an extent entry
1453                          * share the same offset.  If this is the case, we want
1454                          * the extent entry to always be found first if we do a
1455                          * linear search through the tree, since we want to have
1456                          * the quickest allocation time, and allocating from an
1457                          * extent is faster than allocating from a bitmap.  So
1458                          * if we're inserting a bitmap and we find an entry at
1459                          * this offset, we want to go right, or after this entry
1460                          * logically.  If we are inserting an extent and we've
1461                          * found a bitmap, we want to go left, or before
1462                          * logically.
1463                          */
1464                         if (bitmap) {
1465                                 if (info->bitmap) {
1466                                         WARN_ON_ONCE(1);
1467                                         return -EEXIST;
1468                                 }
1469                                 p = &(*p)->rb_right;
1470                         } else {
1471                                 if (!info->bitmap) {
1472                                         WARN_ON_ONCE(1);
1473                                         return -EEXIST;
1474                                 }
1475                                 p = &(*p)->rb_left;
1476                         }
1477                 }
1478         }
1479
1480         rb_link_node(node, parent, p);
1481         rb_insert_color(node, root);
1482
1483         return 0;
1484 }
1485
1486 /*
1487  * searches the tree for the given offset.
1488  *
1489  * fuzzy - If this is set, then we are trying to make an allocation, and we just
1490  * want a section that has at least bytes size and comes at or after the given
1491  * offset.
1492  */
1493 static struct btrfs_free_space *
1494 tree_search_offset(struct btrfs_free_space_ctl *ctl,
1495                    u64 offset, int bitmap_only, int fuzzy)
1496 {
1497         struct rb_node *n = ctl->free_space_offset.rb_node;
1498         struct btrfs_free_space *entry, *prev = NULL;
1499
1500         /* find entry that is closest to the 'offset' */
1501         while (1) {
1502                 if (!n) {
1503                         entry = NULL;
1504                         break;
1505                 }
1506
1507                 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1508                 prev = entry;
1509
1510                 if (offset < entry->offset)
1511                         n = n->rb_left;
1512                 else if (offset > entry->offset)
1513                         n = n->rb_right;
1514                 else
1515                         break;
1516         }
1517
1518         if (bitmap_only) {
1519                 if (!entry)
1520                         return NULL;
1521                 if (entry->bitmap)
1522                         return entry;
1523
1524                 /*
1525                  * bitmap entry and extent entry may share same offset,
1526                  * in that case, bitmap entry comes after extent entry.
1527                  */
1528                 n = rb_next(n);
1529                 if (!n)
1530                         return NULL;
1531                 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1532                 if (entry->offset != offset)
1533                         return NULL;
1534
1535                 WARN_ON(!entry->bitmap);
1536                 return entry;
1537         } else if (entry) {
1538                 if (entry->bitmap) {
1539                         /*
1540                          * if previous extent entry covers the offset,
1541                          * we should return it instead of the bitmap entry
1542                          */
1543                         n = rb_prev(&entry->offset_index);
1544                         if (n) {
1545                                 prev = rb_entry(n, struct btrfs_free_space,
1546                                                 offset_index);
1547                                 if (!prev->bitmap &&
1548                                     prev->offset + prev->bytes > offset)
1549                                         entry = prev;
1550                         }
1551                 }
1552                 return entry;
1553         }
1554
1555         if (!prev)
1556                 return NULL;
1557
1558         /* find last entry before the 'offset' */
1559         entry = prev;
1560         if (entry->offset > offset) {
1561                 n = rb_prev(&entry->offset_index);
1562                 if (n) {
1563                         entry = rb_entry(n, struct btrfs_free_space,
1564                                         offset_index);
1565                         ASSERT(entry->offset <= offset);
1566                 } else {
1567                         if (fuzzy)
1568                                 return entry;
1569                         else
1570                                 return NULL;
1571                 }
1572         }
1573
1574         if (entry->bitmap) {
1575                 n = rb_prev(&entry->offset_index);
1576                 if (n) {
1577                         prev = rb_entry(n, struct btrfs_free_space,
1578                                         offset_index);
1579                         if (!prev->bitmap &&
1580                             prev->offset + prev->bytes > offset)
1581                                 return prev;
1582                 }
1583                 if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1584                         return entry;
1585         } else if (entry->offset + entry->bytes > offset)
1586                 return entry;
1587
1588         if (!fuzzy)
1589                 return NULL;
1590
1591         while (1) {
1592                 if (entry->bitmap) {
1593                         if (entry->offset + BITS_PER_BITMAP *
1594                             ctl->unit > offset)
1595                                 break;
1596                 } else {
1597                         if (entry->offset + entry->bytes > offset)
1598                                 break;
1599                 }
1600
1601                 n = rb_next(&entry->offset_index);
1602                 if (!n)
1603                         return NULL;
1604                 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1605         }
1606         return entry;
1607 }
1608
1609 static inline void
1610 __unlink_free_space(struct btrfs_free_space_ctl *ctl,
1611                     struct btrfs_free_space *info)
1612 {
1613         rb_erase(&info->offset_index, &ctl->free_space_offset);
1614         ctl->free_extents--;
1615 }
1616
1617 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1618                               struct btrfs_free_space *info)
1619 {
1620         __unlink_free_space(ctl, info);
1621         ctl->free_space -= info->bytes;
1622 }
1623
1624 static int link_free_space(struct btrfs_free_space_ctl *ctl,
1625                            struct btrfs_free_space *info)
1626 {
1627         int ret = 0;
1628
1629         ASSERT(info->bytes || info->bitmap);
1630         ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1631                                  &info->offset_index, (info->bitmap != NULL));
1632         if (ret)
1633                 return ret;
1634
1635         ctl->free_space += info->bytes;
1636         ctl->free_extents++;
1637         return ret;
1638 }
1639
1640 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
1641 {
1642         struct btrfs_block_group_cache *block_group = ctl->private;
1643         u64 max_bytes;
1644         u64 bitmap_bytes;
1645         u64 extent_bytes;
1646         u64 size = block_group->key.offset;
1647         u32 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
1648         u32 max_bitmaps = div_u64(size + bytes_per_bg - 1, bytes_per_bg);
1649
1650         max_bitmaps = max_t(u32, max_bitmaps, 1);
1651
1652         ASSERT(ctl->total_bitmaps <= max_bitmaps);
1653
1654         /*
1655          * The goal is to keep the total amount of memory used per 1gb of space
1656          * at or below 32k, so we need to adjust how much memory we allow to be
1657          * used by extent based free space tracking
1658          */
1659         if (size < 1024 * 1024 * 1024)
1660                 max_bytes = MAX_CACHE_BYTES_PER_GIG;
1661         else
1662                 max_bytes = MAX_CACHE_BYTES_PER_GIG *
1663                         div_u64(size, 1024 * 1024 * 1024);
1664
1665         /*
1666          * we want to account for 1 more bitmap than what we have so we can make
1667          * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1668          * we add more bitmaps.
1669          */
1670         bitmap_bytes = (ctl->total_bitmaps + 1) * PAGE_CACHE_SIZE;
1671
1672         if (bitmap_bytes >= max_bytes) {
1673                 ctl->extents_thresh = 0;
1674                 return;
1675         }
1676
1677         /*
1678          * we want the extent entry threshold to always be at most 1/2 the max
1679          * bytes we can have, or whatever is less than that.
1680          */
1681         extent_bytes = max_bytes - bitmap_bytes;
1682         extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
1683
1684         ctl->extents_thresh =
1685                 div_u64(extent_bytes, sizeof(struct btrfs_free_space));
1686 }
1687
1688 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1689                                        struct btrfs_free_space *info,
1690                                        u64 offset, u64 bytes)
1691 {
1692         unsigned long start, count;
1693
1694         start = offset_to_bit(info->offset, ctl->unit, offset);
1695         count = bytes_to_bits(bytes, ctl->unit);
1696         ASSERT(start + count <= BITS_PER_BITMAP);
1697
1698         bitmap_clear(info->bitmap, start, count);
1699
1700         info->bytes -= bytes;
1701 }
1702
1703 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1704                               struct btrfs_free_space *info, u64 offset,
1705                               u64 bytes)
1706 {
1707         __bitmap_clear_bits(ctl, info, offset, bytes);
1708         ctl->free_space -= bytes;
1709 }
1710
1711 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1712                             struct btrfs_free_space *info, u64 offset,
1713                             u64 bytes)
1714 {
1715         unsigned long start, count;
1716
1717         start = offset_to_bit(info->offset, ctl->unit, offset);
1718         count = bytes_to_bits(bytes, ctl->unit);
1719         ASSERT(start + count <= BITS_PER_BITMAP);
1720
1721         bitmap_set(info->bitmap, start, count);
1722
1723         info->bytes += bytes;
1724         ctl->free_space += bytes;
1725 }
1726
1727 /*
1728  * If we can not find suitable extent, we will use bytes to record
1729  * the size of the max extent.
1730  */
1731 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1732                          struct btrfs_free_space *bitmap_info, u64 *offset,
1733                          u64 *bytes)
1734 {
1735         unsigned long found_bits = 0;
1736         unsigned long max_bits = 0;
1737         unsigned long bits, i;
1738         unsigned long next_zero;
1739         unsigned long extent_bits;
1740
1741         i = offset_to_bit(bitmap_info->offset, ctl->unit,
1742                           max_t(u64, *offset, bitmap_info->offset));
1743         bits = bytes_to_bits(*bytes, ctl->unit);
1744
1745         for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1746                 next_zero = find_next_zero_bit(bitmap_info->bitmap,
1747                                                BITS_PER_BITMAP, i);
1748                 extent_bits = next_zero - i;
1749                 if (extent_bits >= bits) {
1750                         found_bits = extent_bits;
1751                         break;
1752                 } else if (extent_bits > max_bits) {
1753                         max_bits = extent_bits;
1754                 }
1755                 i = next_zero;
1756         }
1757
1758         if (found_bits) {
1759                 *offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1760                 *bytes = (u64)(found_bits) * ctl->unit;
1761                 return 0;
1762         }
1763
1764         *bytes = (u64)(max_bits) * ctl->unit;
1765         return -1;
1766 }
1767
1768 /* Cache the size of the max extent in bytes */
1769 static struct btrfs_free_space *
1770 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
1771                 unsigned long align, u64 *max_extent_size)
1772 {
1773         struct btrfs_free_space *entry;
1774         struct rb_node *node;
1775         u64 tmp;
1776         u64 align_off;
1777         int ret;
1778
1779         if (!ctl->free_space_offset.rb_node)
1780                 goto out;
1781
1782         entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1783         if (!entry)
1784                 goto out;
1785
1786         for (node = &entry->offset_index; node; node = rb_next(node)) {
1787                 entry = rb_entry(node, struct btrfs_free_space, offset_index);
1788                 if (entry->bytes < *bytes) {
1789                         if (entry->bytes > *max_extent_size)
1790                                 *max_extent_size = entry->bytes;
1791                         continue;
1792                 }
1793
1794                 /* make sure the space returned is big enough
1795                  * to match our requested alignment
1796                  */
1797                 if (*bytes >= align) {
1798                         tmp = entry->offset - ctl->start + align - 1;
1799                         tmp = div64_u64(tmp, align);
1800                         tmp = tmp * align + ctl->start;
1801                         align_off = tmp - entry->offset;
1802                 } else {
1803                         align_off = 0;
1804                         tmp = entry->offset;
1805                 }
1806
1807                 if (entry->bytes < *bytes + align_off) {
1808                         if (entry->bytes > *max_extent_size)
1809                                 *max_extent_size = entry->bytes;
1810                         continue;
1811                 }
1812
1813                 if (entry->bitmap) {
1814                         u64 size = *bytes;
1815
1816                         ret = search_bitmap(ctl, entry, &tmp, &size);
1817                         if (!ret) {
1818                                 *offset = tmp;
1819                                 *bytes = size;
1820                                 return entry;
1821                         } else if (size > *max_extent_size) {
1822                                 *max_extent_size = size;
1823                         }
1824                         continue;
1825                 }
1826
1827                 *offset = tmp;
1828                 *bytes = entry->bytes - align_off;
1829                 return entry;
1830         }
1831 out:
1832         return NULL;
1833 }
1834
1835 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1836                            struct btrfs_free_space *info, u64 offset)
1837 {
1838         info->offset = offset_to_bitmap(ctl, offset);
1839         info->bytes = 0;
1840         INIT_LIST_HEAD(&info->list);
1841         link_free_space(ctl, info);
1842         ctl->total_bitmaps++;
1843
1844         ctl->op->recalc_thresholds(ctl);
1845 }
1846
1847 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1848                         struct btrfs_free_space *bitmap_info)
1849 {
1850         unlink_free_space(ctl, bitmap_info);
1851         kfree(bitmap_info->bitmap);
1852         kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1853         ctl->total_bitmaps--;
1854         ctl->op->recalc_thresholds(ctl);
1855 }
1856
1857 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1858                               struct btrfs_free_space *bitmap_info,
1859                               u64 *offset, u64 *bytes)
1860 {
1861         u64 end;
1862         u64 search_start, search_bytes;
1863         int ret;
1864
1865 again:
1866         end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1867
1868         /*
1869          * We need to search for bits in this bitmap.  We could only cover some
1870          * of the extent in this bitmap thanks to how we add space, so we need
1871          * to search for as much as it as we can and clear that amount, and then
1872          * go searching for the next bit.
1873          */
1874         search_start = *offset;
1875         search_bytes = ctl->unit;
1876         search_bytes = min(search_bytes, end - search_start + 1);
1877         ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes);
1878         if (ret < 0 || search_start != *offset)
1879                 return -EINVAL;
1880
1881         /* We may have found more bits than what we need */
1882         search_bytes = min(search_bytes, *bytes);
1883
1884         /* Cannot clear past the end of the bitmap */
1885         search_bytes = min(search_bytes, end - search_start + 1);
1886
1887         bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
1888         *offset += search_bytes;
1889         *bytes -= search_bytes;
1890
1891         if (*bytes) {
1892                 struct rb_node *next = rb_next(&bitmap_info->offset_index);
1893                 if (!bitmap_info->bytes)
1894                         free_bitmap(ctl, bitmap_info);
1895
1896                 /*
1897                  * no entry after this bitmap, but we still have bytes to
1898                  * remove, so something has gone wrong.
1899                  */
1900                 if (!next)
1901                         return -EINVAL;
1902
1903                 bitmap_info = rb_entry(next, struct btrfs_free_space,
1904                                        offset_index);
1905
1906                 /*
1907                  * if the next entry isn't a bitmap we need to return to let the
1908                  * extent stuff do its work.
1909                  */
1910                 if (!bitmap_info->bitmap)
1911                         return -EAGAIN;
1912
1913                 /*
1914                  * Ok the next item is a bitmap, but it may not actually hold
1915                  * the information for the rest of this free space stuff, so
1916                  * look for it, and if we don't find it return so we can try
1917                  * everything over again.
1918                  */
1919                 search_start = *offset;
1920                 search_bytes = ctl->unit;
1921                 ret = search_bitmap(ctl, bitmap_info, &search_start,
1922                                     &search_bytes);
1923                 if (ret < 0 || search_start != *offset)
1924                         return -EAGAIN;
1925
1926                 goto again;
1927         } else if (!bitmap_info->bytes)
1928                 free_bitmap(ctl, bitmap_info);
1929
1930         return 0;
1931 }
1932
1933 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
1934                                struct btrfs_free_space *info, u64 offset,
1935                                u64 bytes)
1936 {
1937         u64 bytes_to_set = 0;
1938         u64 end;
1939
1940         end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
1941
1942         bytes_to_set = min(end - offset, bytes);
1943
1944         bitmap_set_bits(ctl, info, offset, bytes_to_set);
1945
1946         return bytes_to_set;
1947
1948 }
1949
1950 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
1951                       struct btrfs_free_space *info)
1952 {
1953         struct btrfs_block_group_cache *block_group = ctl->private;
1954
1955         /*
1956          * If we are below the extents threshold then we can add this as an
1957          * extent, and don't have to deal with the bitmap
1958          */
1959         if (ctl->free_extents < ctl->extents_thresh) {
1960                 /*
1961                  * If this block group has some small extents we don't want to
1962                  * use up all of our free slots in the cache with them, we want
1963                  * to reserve them to larger extents, however if we have plent
1964                  * of cache left then go ahead an dadd them, no sense in adding
1965                  * the overhead of a bitmap if we don't have to.
1966                  */
1967                 if (info->bytes <= block_group->sectorsize * 4) {
1968                         if (ctl->free_extents * 2 <= ctl->extents_thresh)
1969                                 return false;
1970                 } else {
1971                         return false;
1972                 }
1973         }
1974
1975         /*
1976          * The original block groups from mkfs can be really small, like 8
1977          * megabytes, so don't bother with a bitmap for those entries.  However
1978          * some block groups can be smaller than what a bitmap would cover but
1979          * are still large enough that they could overflow the 32k memory limit,
1980          * so allow those block groups to still be allowed to have a bitmap
1981          * entry.
1982          */
1983         if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->key.offset)
1984                 return false;
1985
1986         return true;
1987 }
1988
1989 static struct btrfs_free_space_op free_space_op = {
1990         .recalc_thresholds      = recalculate_thresholds,
1991         .use_bitmap             = use_bitmap,
1992 };
1993
1994 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
1995                               struct btrfs_free_space *info)
1996 {
1997         struct btrfs_free_space *bitmap_info;
1998         struct btrfs_block_group_cache *block_group = NULL;
1999         int added = 0;
2000         u64 bytes, offset, bytes_added;
2001         int ret;
2002
2003         bytes = info->bytes;
2004         offset = info->offset;
2005
2006         if (!ctl->op->use_bitmap(ctl, info))
2007                 return 0;
2008
2009         if (ctl->op == &free_space_op)
2010                 block_group = ctl->private;
2011 again:
2012         /*
2013          * Since we link bitmaps right into the cluster we need to see if we
2014          * have a cluster here, and if so and it has our bitmap we need to add
2015          * the free space to that bitmap.
2016          */
2017         if (block_group && !list_empty(&block_group->cluster_list)) {
2018                 struct btrfs_free_cluster *cluster;
2019                 struct rb_node *node;
2020                 struct btrfs_free_space *entry;
2021
2022                 cluster = list_entry(block_group->cluster_list.next,
2023                                      struct btrfs_free_cluster,
2024                                      block_group_list);
2025                 spin_lock(&cluster->lock);
2026                 node = rb_first(&cluster->root);
2027                 if (!node) {
2028                         spin_unlock(&cluster->lock);
2029                         goto no_cluster_bitmap;
2030                 }
2031
2032                 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2033                 if (!entry->bitmap) {
2034                         spin_unlock(&cluster->lock);
2035                         goto no_cluster_bitmap;
2036                 }
2037
2038                 if (entry->offset == offset_to_bitmap(ctl, offset)) {
2039                         bytes_added = add_bytes_to_bitmap(ctl, entry,
2040                                                           offset, bytes);
2041                         bytes -= bytes_added;
2042                         offset += bytes_added;
2043                 }
2044                 spin_unlock(&cluster->lock);
2045                 if (!bytes) {
2046                         ret = 1;
2047                         goto out;
2048                 }
2049         }
2050
2051 no_cluster_bitmap:
2052         bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2053                                          1, 0);
2054         if (!bitmap_info) {
2055                 ASSERT(added == 0);
2056                 goto new_bitmap;
2057         }
2058
2059         bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
2060         bytes -= bytes_added;
2061         offset += bytes_added;
2062         added = 0;
2063
2064         if (!bytes) {
2065                 ret = 1;
2066                 goto out;
2067         } else
2068                 goto again;
2069
2070 new_bitmap:
2071         if (info && info->bitmap) {
2072                 add_new_bitmap(ctl, info, offset);
2073                 added = 1;
2074                 info = NULL;
2075                 goto again;
2076         } else {
2077                 spin_unlock(&ctl->tree_lock);
2078
2079                 /* no pre-allocated info, allocate a new one */
2080                 if (!info) {
2081                         info = kmem_cache_zalloc(btrfs_free_space_cachep,
2082                                                  GFP_NOFS);
2083                         if (!info) {
2084                                 spin_lock(&ctl->tree_lock);
2085                                 ret = -ENOMEM;
2086                                 goto out;
2087                         }
2088                 }
2089
2090                 /* allocate the bitmap */
2091                 info->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
2092                 spin_lock(&ctl->tree_lock);
2093                 if (!info->bitmap) {
2094                         ret = -ENOMEM;
2095                         goto out;
2096                 }
2097                 goto again;
2098         }
2099
2100 out:
2101         if (info) {
2102                 if (info->bitmap)
2103                         kfree(info->bitmap);
2104                 kmem_cache_free(btrfs_free_space_cachep, info);
2105         }
2106
2107         return ret;
2108 }
2109
2110 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2111                           struct btrfs_free_space *info, bool update_stat)
2112 {
2113         struct btrfs_free_space *left_info;
2114         struct btrfs_free_space *right_info;
2115         bool merged = false;
2116         u64 offset = info->offset;
2117         u64 bytes = info->bytes;
2118
2119         /*
2120          * first we want to see if there is free space adjacent to the range we
2121          * are adding, if there is remove that struct and add a new one to
2122          * cover the entire range
2123          */
2124         right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2125         if (right_info && rb_prev(&right_info->offset_index))
2126                 left_info = rb_entry(rb_prev(&right_info->offset_index),
2127                                      struct btrfs_free_space, offset_index);
2128         else
2129                 left_info = tree_search_offset(ctl, offset - 1, 0, 0);
2130
2131         if (right_info && !right_info->bitmap) {
2132                 if (update_stat)
2133                         unlink_free_space(ctl, right_info);
2134                 else
2135                         __unlink_free_space(ctl, right_info);
2136                 info->bytes += right_info->bytes;
2137                 kmem_cache_free(btrfs_free_space_cachep, right_info);
2138                 merged = true;
2139         }
2140
2141         if (left_info && !left_info->bitmap &&
2142             left_info->offset + left_info->bytes == offset) {
2143                 if (update_stat)
2144                         unlink_free_space(ctl, left_info);
2145                 else
2146                         __unlink_free_space(ctl, left_info);
2147                 info->offset = left_info->offset;
2148                 info->bytes += left_info->bytes;
2149                 kmem_cache_free(btrfs_free_space_cachep, left_info);
2150                 merged = true;
2151         }
2152
2153         return merged;
2154 }
2155
2156 static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2157                                      struct btrfs_free_space *info,
2158                                      bool update_stat)
2159 {
2160         struct btrfs_free_space *bitmap;
2161         unsigned long i;
2162         unsigned long j;
2163         const u64 end = info->offset + info->bytes;
2164         const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2165         u64 bytes;
2166
2167         bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2168         if (!bitmap)
2169                 return false;
2170
2171         i = offset_to_bit(bitmap->offset, ctl->unit, end);
2172         j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2173         if (j == i)
2174                 return false;
2175         bytes = (j - i) * ctl->unit;
2176         info->bytes += bytes;
2177
2178         if (update_stat)
2179                 bitmap_clear_bits(ctl, bitmap, end, bytes);
2180         else
2181                 __bitmap_clear_bits(ctl, bitmap, end, bytes);
2182
2183         if (!bitmap->bytes)
2184                 free_bitmap(ctl, bitmap);
2185
2186         return true;
2187 }
2188
2189 static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2190                                        struct btrfs_free_space *info,
2191                                        bool update_stat)
2192 {
2193         struct btrfs_free_space *bitmap;
2194         u64 bitmap_offset;
2195         unsigned long i;
2196         unsigned long j;
2197         unsigned long prev_j;
2198         u64 bytes;
2199
2200         bitmap_offset = offset_to_bitmap(ctl, info->offset);
2201         /* If we're on a boundary, try the previous logical bitmap. */
2202         if (bitmap_offset == info->offset) {
2203                 if (info->offset == 0)
2204                         return false;
2205                 bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2206         }
2207
2208         bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2209         if (!bitmap)
2210                 return false;
2211
2212         i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2213         j = 0;
2214         prev_j = (unsigned long)-1;
2215         for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2216                 if (j > i)
2217                         break;
2218                 prev_j = j;
2219         }
2220         if (prev_j == i)
2221                 return false;
2222
2223         if (prev_j == (unsigned long)-1)
2224                 bytes = (i + 1) * ctl->unit;
2225         else
2226                 bytes = (i - prev_j) * ctl->unit;
2227
2228         info->offset -= bytes;
2229         info->bytes += bytes;
2230
2231         if (update_stat)
2232                 bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2233         else
2234                 __bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2235
2236         if (!bitmap->bytes)
2237                 free_bitmap(ctl, bitmap);
2238
2239         return true;
2240 }
2241
2242 /*
2243  * We prefer always to allocate from extent entries, both for clustered and
2244  * non-clustered allocation requests. So when attempting to add a new extent
2245  * entry, try to see if there's adjacent free space in bitmap entries, and if
2246  * there is, migrate that space from the bitmaps to the extent.
2247  * Like this we get better chances of satisfying space allocation requests
2248  * because we attempt to satisfy them based on a single cache entry, and never
2249  * on 2 or more entries - even if the entries represent a contiguous free space
2250  * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2251  * ends).
2252  */
2253 static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2254                               struct btrfs_free_space *info,
2255                               bool update_stat)
2256 {
2257         /*
2258          * Only work with disconnected entries, as we can change their offset,
2259          * and must be extent entries.
2260          */
2261         ASSERT(!info->bitmap);
2262         ASSERT(RB_EMPTY_NODE(&info->offset_index));
2263
2264         if (ctl->total_bitmaps > 0) {
2265                 bool stole_end;
2266                 bool stole_front = false;
2267
2268                 stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2269                 if (ctl->total_bitmaps > 0)
2270                         stole_front = steal_from_bitmap_to_front(ctl, info,
2271                                                                  update_stat);
2272
2273                 if (stole_end || stole_front)
2274                         try_merge_free_space(ctl, info, update_stat);
2275         }
2276 }
2277
2278 int __btrfs_add_free_space(struct btrfs_free_space_ctl *ctl,
2279                            u64 offset, u64 bytes)
2280 {
2281         struct btrfs_free_space *info;
2282         int ret = 0;
2283
2284         info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2285         if (!info)
2286                 return -ENOMEM;
2287
2288         info->offset = offset;
2289         info->bytes = bytes;
2290         RB_CLEAR_NODE(&info->offset_index);
2291
2292         spin_lock(&ctl->tree_lock);
2293
2294         if (try_merge_free_space(ctl, info, true))
2295                 goto link;
2296
2297         /*
2298          * There was no extent directly to the left or right of this new
2299          * extent then we know we're going to have to allocate a new extent, so
2300          * before we do that see if we need to drop this into a bitmap
2301          */
2302         ret = insert_into_bitmap(ctl, info);
2303         if (ret < 0) {
2304                 goto out;
2305         } else if (ret) {
2306                 ret = 0;
2307                 goto out;
2308         }
2309 link:
2310         /*
2311          * Only steal free space from adjacent bitmaps if we're sure we're not
2312          * going to add the new free space to existing bitmap entries - because
2313          * that would mean unnecessary work that would be reverted. Therefore
2314          * attempt to steal space from bitmaps if we're adding an extent entry.
2315          */
2316         steal_from_bitmap(ctl, info, true);
2317
2318         ret = link_free_space(ctl, info);
2319         if (ret)
2320                 kmem_cache_free(btrfs_free_space_cachep, info);
2321 out:
2322         spin_unlock(&ctl->tree_lock);
2323
2324         if (ret) {
2325                 printk(KERN_CRIT "BTRFS: unable to add free space :%d\n", ret);
2326                 ASSERT(ret != -EEXIST);
2327         }
2328
2329         return ret;
2330 }
2331
2332 int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
2333                             u64 offset, u64 bytes)
2334 {
2335         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2336         struct btrfs_free_space *info;
2337         int ret;
2338         bool re_search = false;
2339
2340         spin_lock(&ctl->tree_lock);
2341
2342 again:
2343         ret = 0;
2344         if (!bytes)
2345                 goto out_lock;
2346
2347         info = tree_search_offset(ctl, offset, 0, 0);
2348         if (!info) {
2349                 /*
2350                  * oops didn't find an extent that matched the space we wanted
2351                  * to remove, look for a bitmap instead
2352                  */
2353                 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2354                                           1, 0);
2355                 if (!info) {
2356                         /*
2357                          * If we found a partial bit of our free space in a
2358                          * bitmap but then couldn't find the other part this may
2359                          * be a problem, so WARN about it.
2360                          */
2361                         WARN_ON(re_search);
2362                         goto out_lock;
2363                 }
2364         }
2365
2366         re_search = false;
2367         if (!info->bitmap) {
2368                 unlink_free_space(ctl, info);
2369                 if (offset == info->offset) {
2370                         u64 to_free = min(bytes, info->bytes);
2371
2372                         info->bytes -= to_free;
2373                         info->offset += to_free;
2374                         if (info->bytes) {
2375                                 ret = link_free_space(ctl, info);
2376                                 WARN_ON(ret);
2377                         } else {
2378                                 kmem_cache_free(btrfs_free_space_cachep, info);
2379                         }
2380
2381                         offset += to_free;
2382                         bytes -= to_free;
2383                         goto again;
2384                 } else {
2385                         u64 old_end = info->bytes + info->offset;
2386
2387                         info->bytes = offset - info->offset;
2388                         ret = link_free_space(ctl, info);
2389                         WARN_ON(ret);
2390                         if (ret)
2391                                 goto out_lock;
2392
2393                         /* Not enough bytes in this entry to satisfy us */
2394                         if (old_end < offset + bytes) {
2395                                 bytes -= old_end - offset;
2396                                 offset = old_end;
2397                                 goto again;
2398                         } else if (old_end == offset + bytes) {
2399                                 /* all done */
2400                                 goto out_lock;
2401                         }
2402                         spin_unlock(&ctl->tree_lock);
2403
2404                         ret = btrfs_add_free_space(block_group, offset + bytes,
2405                                                    old_end - (offset + bytes));
2406                         WARN_ON(ret);
2407                         goto out;
2408                 }
2409         }
2410
2411         ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2412         if (ret == -EAGAIN) {
2413                 re_search = true;
2414                 goto again;
2415         }
2416 out_lock:
2417         spin_unlock(&ctl->tree_lock);
2418 out:
2419         return ret;
2420 }
2421
2422 void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
2423                            u64 bytes)
2424 {
2425         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2426         struct btrfs_free_space *info;
2427         struct rb_node *n;
2428         int count = 0;
2429
2430         for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2431                 info = rb_entry(n, struct btrfs_free_space, offset_index);
2432                 if (info->bytes >= bytes && !block_group->ro)
2433                         count++;
2434                 btrfs_crit(block_group->fs_info,
2435                            "entry offset %llu, bytes %llu, bitmap %s",
2436                            info->offset, info->bytes,
2437                        (info->bitmap) ? "yes" : "no");
2438         }
2439         btrfs_info(block_group->fs_info, "block group has cluster?: %s",
2440                list_empty(&block_group->cluster_list) ? "no" : "yes");
2441         btrfs_info(block_group->fs_info,
2442                    "%d blocks of free space at or bigger than bytes is", count);
2443 }
2444
2445 void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
2446 {
2447         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2448
2449         spin_lock_init(&ctl->tree_lock);
2450         ctl->unit = block_group->sectorsize;
2451         ctl->start = block_group->key.objectid;
2452         ctl->private = block_group;
2453         ctl->op = &free_space_op;
2454         INIT_LIST_HEAD(&ctl->trimming_ranges);
2455         mutex_init(&ctl->cache_writeout_mutex);
2456
2457         /*
2458          * we only want to have 32k of ram per block group for keeping
2459          * track of free space, and if we pass 1/2 of that we want to
2460          * start converting things over to using bitmaps
2461          */
2462         ctl->extents_thresh = ((1024 * 32) / 2) /
2463                                 sizeof(struct btrfs_free_space);
2464 }
2465
2466 /*
2467  * for a given cluster, put all of its extents back into the free
2468  * space cache.  If the block group passed doesn't match the block group
2469  * pointed to by the cluster, someone else raced in and freed the
2470  * cluster already.  In that case, we just return without changing anything
2471  */
2472 static int
2473 __btrfs_return_cluster_to_free_space(
2474                              struct btrfs_block_group_cache *block_group,
2475                              struct btrfs_free_cluster *cluster)
2476 {
2477         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2478         struct btrfs_free_space *entry;
2479         struct rb_node *node;
2480
2481         spin_lock(&cluster->lock);
2482         if (cluster->block_group != block_group)
2483                 goto out;
2484
2485         cluster->block_group = NULL;
2486         cluster->window_start = 0;
2487         list_del_init(&cluster->block_group_list);
2488
2489         node = rb_first(&cluster->root);
2490         while (node) {
2491                 bool bitmap;
2492
2493                 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2494                 node = rb_next(&entry->offset_index);
2495                 rb_erase(&entry->offset_index, &cluster->root);
2496                 RB_CLEAR_NODE(&entry->offset_index);
2497
2498                 bitmap = (entry->bitmap != NULL);
2499                 if (!bitmap) {
2500                         try_merge_free_space(ctl, entry, false);
2501                         steal_from_bitmap(ctl, entry, false);
2502                 }
2503                 tree_insert_offset(&ctl->free_space_offset,
2504                                    entry->offset, &entry->offset_index, bitmap);
2505         }
2506         cluster->root = RB_ROOT;
2507
2508 out:
2509         spin_unlock(&cluster->lock);
2510         btrfs_put_block_group(block_group);
2511         return 0;
2512 }
2513
2514 static void __btrfs_remove_free_space_cache_locked(
2515                                 struct btrfs_free_space_ctl *ctl)
2516 {
2517         struct btrfs_free_space *info;
2518         struct rb_node *node;
2519
2520         while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2521                 info = rb_entry(node, struct btrfs_free_space, offset_index);
2522                 if (!info->bitmap) {
2523                         unlink_free_space(ctl, info);
2524                         kmem_cache_free(btrfs_free_space_cachep, info);
2525                 } else {
2526                         free_bitmap(ctl, info);
2527                 }
2528
2529                 cond_resched_lock(&ctl->tree_lock);
2530         }
2531 }
2532
2533 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2534 {
2535         spin_lock(&ctl->tree_lock);
2536         __btrfs_remove_free_space_cache_locked(ctl);
2537         spin_unlock(&ctl->tree_lock);
2538 }
2539
2540 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
2541 {
2542         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2543         struct btrfs_free_cluster *cluster;
2544         struct list_head *head;
2545
2546         spin_lock(&ctl->tree_lock);
2547         while ((head = block_group->cluster_list.next) !=
2548                &block_group->cluster_list) {
2549                 cluster = list_entry(head, struct btrfs_free_cluster,
2550                                      block_group_list);
2551
2552                 WARN_ON(cluster->block_group != block_group);
2553                 __btrfs_return_cluster_to_free_space(block_group, cluster);
2554
2555                 cond_resched_lock(&ctl->tree_lock);
2556         }
2557         __btrfs_remove_free_space_cache_locked(ctl);
2558         spin_unlock(&ctl->tree_lock);
2559
2560 }
2561
2562 u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
2563                                u64 offset, u64 bytes, u64 empty_size,
2564                                u64 *max_extent_size)
2565 {
2566         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2567         struct btrfs_free_space *entry = NULL;
2568         u64 bytes_search = bytes + empty_size;
2569         u64 ret = 0;
2570         u64 align_gap = 0;
2571         u64 align_gap_len = 0;
2572
2573         spin_lock(&ctl->tree_lock);
2574         entry = find_free_space(ctl, &offset, &bytes_search,
2575                                 block_group->full_stripe_len, max_extent_size);
2576         if (!entry)
2577                 goto out;
2578
2579         ret = offset;
2580         if (entry->bitmap) {
2581                 bitmap_clear_bits(ctl, entry, offset, bytes);
2582                 if (!entry->bytes)
2583                         free_bitmap(ctl, entry);
2584         } else {
2585                 unlink_free_space(ctl, entry);
2586                 align_gap_len = offset - entry->offset;
2587                 align_gap = entry->offset;
2588
2589                 entry->offset = offset + bytes;
2590                 WARN_ON(entry->bytes < bytes + align_gap_len);
2591
2592                 entry->bytes -= bytes + align_gap_len;
2593                 if (!entry->bytes)
2594                         kmem_cache_free(btrfs_free_space_cachep, entry);
2595                 else
2596                         link_free_space(ctl, entry);
2597         }
2598 out:
2599         spin_unlock(&ctl->tree_lock);
2600
2601         if (align_gap_len)
2602                 __btrfs_add_free_space(ctl, align_gap, align_gap_len);
2603         return ret;
2604 }
2605
2606 /*
2607  * given a cluster, put all of its extents back into the free space
2608  * cache.  If a block group is passed, this function will only free
2609  * a cluster that belongs to the passed block group.
2610  *
2611  * Otherwise, it'll get a reference on the block group pointed to by the
2612  * cluster and remove the cluster from it.
2613  */
2614 int btrfs_return_cluster_to_free_space(
2615                                struct btrfs_block_group_cache *block_group,
2616                                struct btrfs_free_cluster *cluster)
2617 {
2618         struct btrfs_free_space_ctl *ctl;
2619         int ret;
2620
2621         /* first, get a safe pointer to the block group */
2622         spin_lock(&cluster->lock);
2623         if (!block_group) {
2624                 block_group = cluster->block_group;
2625                 if (!block_group) {
2626                         spin_unlock(&cluster->lock);
2627                         return 0;
2628                 }
2629         } else if (cluster->block_group != block_group) {
2630                 /* someone else has already freed it don't redo their work */
2631                 spin_unlock(&cluster->lock);
2632                 return 0;
2633         }
2634         atomic_inc(&block_group->count);
2635         spin_unlock(&cluster->lock);
2636
2637         ctl = block_group->free_space_ctl;
2638
2639         /* now return any extents the cluster had on it */
2640         spin_lock(&ctl->tree_lock);
2641         ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
2642         spin_unlock(&ctl->tree_lock);
2643
2644         /* finally drop our ref */
2645         btrfs_put_block_group(block_group);
2646         return ret;
2647 }
2648
2649 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
2650                                    struct btrfs_free_cluster *cluster,
2651                                    struct btrfs_free_space *entry,
2652                                    u64 bytes, u64 min_start,
2653                                    u64 *max_extent_size)
2654 {
2655         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2656         int err;
2657         u64 search_start = cluster->window_start;
2658         u64 search_bytes = bytes;
2659         u64 ret = 0;
2660
2661         search_start = min_start;
2662         search_bytes = bytes;
2663
2664         err = search_bitmap(ctl, entry, &search_start, &search_bytes);
2665         if (err) {
2666                 if (search_bytes > *max_extent_size)
2667                         *max_extent_size = search_bytes;
2668                 return 0;
2669         }
2670
2671         ret = search_start;
2672         __bitmap_clear_bits(ctl, entry, ret, bytes);
2673
2674         return ret;
2675 }
2676
2677 /*
2678  * given a cluster, try to allocate 'bytes' from it, returns 0
2679  * if it couldn't find anything suitably large, or a logical disk offset
2680  * if things worked out
2681  */
2682 u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
2683                              struct btrfs_free_cluster *cluster, u64 bytes,
2684                              u64 min_start, u64 *max_extent_size)
2685 {
2686         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2687         struct btrfs_free_space *entry = NULL;
2688         struct rb_node *node;
2689         u64 ret = 0;
2690
2691         spin_lock(&cluster->lock);
2692         if (bytes > cluster->max_size)
2693                 goto out;
2694
2695         if (cluster->block_group != block_group)
2696                 goto out;
2697
2698         node = rb_first(&cluster->root);
2699         if (!node)
2700                 goto out;
2701
2702         entry = rb_entry(node, struct btrfs_free_space, offset_index);
2703         while (1) {
2704                 if (entry->bytes < bytes && entry->bytes > *max_extent_size)
2705                         *max_extent_size = entry->bytes;
2706
2707                 if (entry->bytes < bytes ||
2708                     (!entry->bitmap && entry->offset < min_start)) {
2709                         node = rb_next(&entry->offset_index);
2710                         if (!node)
2711                                 break;
2712                         entry = rb_entry(node, struct btrfs_free_space,
2713                                          offset_index);
2714                         continue;
2715                 }
2716
2717                 if (entry->bitmap) {
2718                         ret = btrfs_alloc_from_bitmap(block_group,
2719                                                       cluster, entry, bytes,
2720                                                       cluster->window_start,
2721                                                       max_extent_size);
2722                         if (ret == 0) {
2723                                 node = rb_next(&entry->offset_index);
2724                                 if (!node)
2725                                         break;
2726                                 entry = rb_entry(node, struct btrfs_free_space,
2727                                                  offset_index);
2728                                 continue;
2729                         }
2730                         cluster->window_start += bytes;
2731                 } else {
2732                         ret = entry->offset;
2733
2734                         entry->offset += bytes;
2735                         entry->bytes -= bytes;
2736                 }
2737
2738                 if (entry->bytes == 0)
2739                         rb_erase(&entry->offset_index, &cluster->root);
2740                 break;
2741         }
2742 out:
2743         spin_unlock(&cluster->lock);
2744
2745         if (!ret)
2746                 return 0;
2747
2748         spin_lock(&ctl->tree_lock);
2749
2750         ctl->free_space -= bytes;
2751         if (entry->bytes == 0) {
2752                 ctl->free_extents--;
2753                 if (entry->bitmap) {
2754                         kfree(entry->bitmap);
2755                         ctl->total_bitmaps--;
2756                         ctl->op->recalc_thresholds(ctl);
2757                 }
2758                 kmem_cache_free(btrfs_free_space_cachep, entry);
2759         }
2760
2761         spin_unlock(&ctl->tree_lock);
2762
2763         return ret;
2764 }
2765
2766 static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
2767                                 struct btrfs_free_space *entry,
2768                                 struct btrfs_free_cluster *cluster,
2769                                 u64 offset, u64 bytes,
2770                                 u64 cont1_bytes, u64 min_bytes)
2771 {
2772         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2773         unsigned long next_zero;
2774         unsigned long i;
2775         unsigned long want_bits;
2776         unsigned long min_bits;
2777         unsigned long found_bits;
2778         unsigned long start = 0;
2779         unsigned long total_found = 0;
2780         int ret;
2781
2782         i = offset_to_bit(entry->offset, ctl->unit,
2783                           max_t(u64, offset, entry->offset));
2784         want_bits = bytes_to_bits(bytes, ctl->unit);
2785         min_bits = bytes_to_bits(min_bytes, ctl->unit);
2786
2787 again:
2788         found_bits = 0;
2789         for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
2790                 next_zero = find_next_zero_bit(entry->bitmap,
2791                                                BITS_PER_BITMAP, i);
2792                 if (next_zero - i >= min_bits) {
2793                         found_bits = next_zero - i;
2794                         break;
2795                 }
2796                 i = next_zero;
2797         }
2798
2799         if (!found_bits)
2800                 return -ENOSPC;
2801
2802         if (!total_found) {
2803                 start = i;
2804                 cluster->max_size = 0;
2805         }
2806
2807         total_found += found_bits;
2808
2809         if (cluster->max_size < found_bits * ctl->unit)
2810                 cluster->max_size = found_bits * ctl->unit;
2811
2812         if (total_found < want_bits || cluster->max_size < cont1_bytes) {
2813                 i = next_zero + 1;
2814                 goto again;
2815         }
2816
2817         cluster->window_start = start * ctl->unit + entry->offset;
2818         rb_erase(&entry->offset_index, &ctl->free_space_offset);
2819         ret = tree_insert_offset(&cluster->root, entry->offset,
2820                                  &entry->offset_index, 1);
2821         ASSERT(!ret); /* -EEXIST; Logic error */
2822
2823         trace_btrfs_setup_cluster(block_group, cluster,
2824                                   total_found * ctl->unit, 1);
2825         return 0;
2826 }
2827
2828 /*
2829  * This searches the block group for just extents to fill the cluster with.
2830  * Try to find a cluster with at least bytes total bytes, at least one
2831  * extent of cont1_bytes, and other clusters of at least min_bytes.
2832  */
2833 static noinline int
2834 setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
2835                         struct btrfs_free_cluster *cluster,
2836                         struct list_head *bitmaps, u64 offset, u64 bytes,
2837                         u64 cont1_bytes, u64 min_bytes)
2838 {
2839         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2840         struct btrfs_free_space *first = NULL;
2841         struct btrfs_free_space *entry = NULL;
2842         struct btrfs_free_space *last;
2843         struct rb_node *node;
2844         u64 window_free;
2845         u64 max_extent;
2846         u64 total_size = 0;
2847
2848         entry = tree_search_offset(ctl, offset, 0, 1);
2849         if (!entry)
2850                 return -ENOSPC;
2851
2852         /*
2853          * We don't want bitmaps, so just move along until we find a normal
2854          * extent entry.
2855          */
2856         while (entry->bitmap || entry->bytes < min_bytes) {
2857                 if (entry->bitmap && list_empty(&entry->list))
2858                         list_add_tail(&entry->list, bitmaps);
2859                 node = rb_next(&entry->offset_index);
2860                 if (!node)
2861                         return -ENOSPC;
2862                 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2863         }
2864
2865         window_free = entry->bytes;
2866         max_extent = entry->bytes;
2867         first = entry;
2868         last = entry;
2869
2870         for (node = rb_next(&entry->offset_index); node;
2871              node = rb_next(&entry->offset_index)) {
2872                 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2873
2874                 if (entry->bitmap) {
2875                         if (list_empty(&entry->list))
2876                                 list_add_tail(&entry->list, bitmaps);
2877                         continue;
2878                 }
2879
2880                 if (entry->bytes < min_bytes)
2881                         continue;
2882
2883                 last = entry;
2884                 window_free += entry->bytes;
2885                 if (entry->bytes > max_extent)
2886                         max_extent = entry->bytes;
2887         }
2888
2889         if (window_free < bytes || max_extent < cont1_bytes)
2890                 return -ENOSPC;
2891
2892         cluster->window_start = first->offset;
2893
2894         node = &first->offset_index;
2895
2896         /*
2897          * now we've found our entries, pull them out of the free space
2898          * cache and put them into the cluster rbtree
2899          */
2900         do {
2901                 int ret;
2902
2903                 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2904                 node = rb_next(&entry->offset_index);
2905                 if (entry->bitmap || entry->bytes < min_bytes)
2906                         continue;
2907
2908                 rb_erase(&entry->offset_index, &ctl->free_space_offset);
2909                 ret = tree_insert_offset(&cluster->root, entry->offset,
2910                                          &entry->offset_index, 0);
2911                 total_size += entry->bytes;
2912                 ASSERT(!ret); /* -EEXIST; Logic error */
2913         } while (node && entry != last);
2914
2915         cluster->max_size = max_extent;
2916         trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
2917         return 0;
2918 }
2919
2920 /*
2921  * This specifically looks for bitmaps that may work in the cluster, we assume
2922  * that we have already failed to find extents that will work.
2923  */
2924 static noinline int
2925 setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
2926                      struct btrfs_free_cluster *cluster,
2927                      struct list_head *bitmaps, u64 offset, u64 bytes,
2928                      u64 cont1_bytes, u64 min_bytes)
2929 {
2930         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2931         struct btrfs_free_space *entry;
2932         int ret = -ENOSPC;
2933         u64 bitmap_offset = offset_to_bitmap(ctl, offset);
2934
2935         if (ctl->total_bitmaps == 0)
2936                 return -ENOSPC;
2937
2938         /*
2939          * The bitmap that covers offset won't be in the list unless offset
2940          * is just its start offset.
2941          */
2942         entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
2943         if (entry->offset != bitmap_offset) {
2944                 entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
2945                 if (entry && list_empty(&entry->list))
2946                         list_add(&entry->list, bitmaps);
2947         }
2948
2949         list_for_each_entry(entry, bitmaps, list) {
2950                 if (entry->bytes < bytes)
2951                         continue;
2952                 ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
2953                                            bytes, cont1_bytes, min_bytes);
2954                 if (!ret)
2955                         return 0;
2956         }
2957
2958         /*
2959          * The bitmaps list has all the bitmaps that record free space
2960          * starting after offset, so no more search is required.
2961          */
2962         return -ENOSPC;
2963 }
2964
2965 /*
2966  * here we try to find a cluster of blocks in a block group.  The goal
2967  * is to find at least bytes+empty_size.
2968  * We might not find them all in one contiguous area.
2969  *
2970  * returns zero and sets up cluster if things worked out, otherwise
2971  * it returns -enospc
2972  */
2973 int btrfs_find_space_cluster(struct btrfs_root *root,
2974                              struct btrfs_block_group_cache *block_group,
2975                              struct btrfs_free_cluster *cluster,
2976                              u64 offset, u64 bytes, u64 empty_size)
2977 {
2978         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2979         struct btrfs_free_space *entry, *tmp;
2980         LIST_HEAD(bitmaps);
2981         u64 min_bytes;
2982         u64 cont1_bytes;
2983         int ret;
2984
2985         /*
2986          * Choose the minimum extent size we'll require for this
2987          * cluster.  For SSD_SPREAD, don't allow any fragmentation.
2988          * For metadata, allow allocates with smaller extents.  For
2989          * data, keep it dense.
2990          */
2991         if (btrfs_test_opt(root, SSD_SPREAD)) {
2992                 cont1_bytes = min_bytes = bytes + empty_size;
2993         } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
2994                 cont1_bytes = bytes;
2995                 min_bytes = block_group->sectorsize;
2996         } else {
2997                 cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
2998                 min_bytes = block_group->sectorsize;
2999         }
3000
3001         spin_lock(&ctl->tree_lock);
3002
3003         /*
3004          * If we know we don't have enough space to make a cluster don't even
3005          * bother doing all the work to try and find one.
3006          */
3007         if (ctl->free_space < bytes) {
3008                 spin_unlock(&ctl->tree_lock);
3009                 return -ENOSPC;
3010         }
3011
3012         spin_lock(&cluster->lock);
3013
3014         /* someone already found a cluster, hooray */
3015         if (cluster->block_group) {
3016                 ret = 0;
3017                 goto out;
3018         }
3019
3020         trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3021                                  min_bytes);
3022
3023         ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3024                                       bytes + empty_size,
3025                                       cont1_bytes, min_bytes);
3026         if (ret)
3027                 ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3028                                            offset, bytes + empty_size,
3029                                            cont1_bytes, min_bytes);
3030
3031         /* Clear our temporary list */
3032         list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3033                 list_del_init(&entry->list);
3034
3035         if (!ret) {
3036                 atomic_inc(&block_group->count);
3037                 list_add_tail(&cluster->block_group_list,
3038                               &block_group->cluster_list);
3039                 cluster->block_group = block_group;
3040         } else {
3041                 trace_btrfs_failed_cluster_setup(block_group);
3042         }
3043 out:
3044         spin_unlock(&cluster->lock);
3045         spin_unlock(&ctl->tree_lock);
3046
3047         return ret;
3048 }
3049
3050 /*
3051  * simple code to zero out a cluster
3052  */
3053 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3054 {
3055         spin_lock_init(&cluster->lock);
3056         spin_lock_init(&cluster->refill_lock);
3057         cluster->root = RB_ROOT;
3058         cluster->max_size = 0;
3059         INIT_LIST_HEAD(&cluster->block_group_list);
3060         cluster->block_group = NULL;
3061 }
3062
3063 static int do_trimming(struct btrfs_block_group_cache *block_group,
3064                        u64 *total_trimmed, u64 start, u64 bytes,
3065                        u64 reserved_start, u64 reserved_bytes,
3066                        struct btrfs_trim_range *trim_entry)
3067 {
3068         struct btrfs_space_info *space_info = block_group->space_info;
3069         struct btrfs_fs_info *fs_info = block_group->fs_info;
3070         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3071         int ret;
3072         int update = 0;
3073         u64 trimmed = 0;
3074
3075         spin_lock(&space_info->lock);
3076         spin_lock(&block_group->lock);
3077         if (!block_group->ro) {
3078                 block_group->reserved += reserved_bytes;
3079                 space_info->bytes_reserved += reserved_bytes;
3080                 update = 1;
3081         }
3082         spin_unlock(&block_group->lock);
3083         spin_unlock(&space_info->lock);
3084
3085         ret = btrfs_discard_extent(fs_info->extent_root,
3086                                    start, bytes, &trimmed);
3087         if (!ret)
3088                 *total_trimmed += trimmed;
3089
3090         mutex_lock(&ctl->cache_writeout_mutex);
3091         btrfs_add_free_space(block_group, reserved_start, reserved_bytes);
3092         list_del(&trim_entry->list);
3093         mutex_unlock(&ctl->cache_writeout_mutex);
3094
3095         if (update) {
3096                 spin_lock(&space_info->lock);
3097                 spin_lock(&block_group->lock);
3098                 if (block_group->ro)
3099                         space_info->bytes_readonly += reserved_bytes;
3100                 block_group->reserved -= reserved_bytes;
3101                 space_info->bytes_reserved -= reserved_bytes;
3102                 spin_unlock(&space_info->lock);
3103                 spin_unlock(&block_group->lock);
3104         }
3105
3106         return ret;
3107 }
3108
3109 static int trim_no_bitmap(struct btrfs_block_group_cache *block_group,
3110                           u64 *total_trimmed, u64 start, u64 end, u64 minlen)
3111 {
3112         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3113         struct btrfs_free_space *entry;
3114         struct rb_node *node;
3115         int ret = 0;
3116         u64 extent_start;
3117         u64 extent_bytes;
3118         u64 bytes;
3119
3120         while (start < end) {
3121                 struct btrfs_trim_range trim_entry;
3122
3123                 mutex_lock(&ctl->cache_writeout_mutex);
3124                 spin_lock(&ctl->tree_lock);
3125
3126                 if (ctl->free_space < minlen) {
3127                         spin_unlock(&ctl->tree_lock);
3128                         mutex_unlock(&ctl->cache_writeout_mutex);
3129                         break;
3130                 }
3131
3132                 entry = tree_search_offset(ctl, start, 0, 1);
3133                 if (!entry) {
3134                         spin_unlock(&ctl->tree_lock);
3135                         mutex_unlock(&ctl->cache_writeout_mutex);
3136                         break;
3137                 }
3138
3139                 /* skip bitmaps */
3140                 while (entry->bitmap) {
3141                         node = rb_next(&entry->offset_index);
3142                         if (!node) {
3143                                 spin_unlock(&ctl->tree_lock);
3144                                 mutex_unlock(&ctl->cache_writeout_mutex);
3145                                 goto out;
3146                         }
3147                         entry = rb_entry(node, struct btrfs_free_space,
3148                                          offset_index);
3149                 }
3150
3151                 if (entry->offset >= end) {
3152                         spin_unlock(&ctl->tree_lock);
3153                         mutex_unlock(&ctl->cache_writeout_mutex);
3154                         break;
3155                 }
3156
3157                 extent_start = entry->offset;
3158                 extent_bytes = entry->bytes;
3159                 start = max(start, extent_start);
3160                 bytes = min(extent_start + extent_bytes, end) - start;
3161                 if (bytes < minlen) {
3162                         spin_unlock(&ctl->tree_lock);
3163                         mutex_unlock(&ctl->cache_writeout_mutex);
3164                         goto next;
3165                 }
3166
3167                 unlink_free_space(ctl, entry);
3168                 kmem_cache_free(btrfs_free_space_cachep, entry);
3169
3170                 spin_unlock(&ctl->tree_lock);
3171                 trim_entry.start = extent_start;
3172                 trim_entry.bytes = extent_bytes;
3173                 list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3174                 mutex_unlock(&ctl->cache_writeout_mutex);
3175
3176                 ret = do_trimming(block_group, total_trimmed, start, bytes,
3177                                   extent_start, extent_bytes, &trim_entry);
3178                 if (ret)
3179                         break;
3180 next:
3181                 start += bytes;
3182
3183                 if (fatal_signal_pending(current)) {
3184                         ret = -ERESTARTSYS;
3185                         break;
3186                 }
3187
3188                 cond_resched();
3189         }
3190 out:
3191         return ret;
3192 }
3193
3194 static int trim_bitmaps(struct btrfs_block_group_cache *block_group,
3195                         u64 *total_trimmed, u64 start, u64 end, u64 minlen)
3196 {
3197         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3198         struct btrfs_free_space *entry;
3199         int ret = 0;
3200         int ret2;
3201         u64 bytes;
3202         u64 offset = offset_to_bitmap(ctl, start);
3203
3204         while (offset < end) {
3205                 bool next_bitmap = false;
3206                 struct btrfs_trim_range trim_entry;
3207
3208                 mutex_lock(&ctl->cache_writeout_mutex);
3209                 spin_lock(&ctl->tree_lock);
3210
3211                 if (ctl->free_space < minlen) {
3212                         spin_unlock(&ctl->tree_lock);
3213                         mutex_unlock(&ctl->cache_writeout_mutex);
3214                         break;
3215                 }
3216
3217                 entry = tree_search_offset(ctl, offset, 1, 0);
3218                 if (!entry) {
3219                         spin_unlock(&ctl->tree_lock);
3220                         mutex_unlock(&ctl->cache_writeout_mutex);
3221                         next_bitmap = true;
3222                         goto next;
3223                 }
3224
3225                 bytes = minlen;
3226                 ret2 = search_bitmap(ctl, entry, &start, &bytes);
3227                 if (ret2 || start >= end) {
3228                         spin_unlock(&ctl->tree_lock);
3229                         mutex_unlock(&ctl->cache_writeout_mutex);
3230                         next_bitmap = true;
3231                         goto next;
3232                 }
3233
3234                 bytes = min(bytes, end - start);
3235                 if (bytes < minlen) {
3236                         spin_unlock(&ctl->tree_lock);
3237                         mutex_unlock(&ctl->cache_writeout_mutex);
3238                         goto next;
3239                 }
3240
3241                 bitmap_clear_bits(ctl, entry, start, bytes);
3242                 if (entry->bytes == 0)
3243                         free_bitmap(ctl, entry);
3244
3245                 spin_unlock(&ctl->tree_lock);
3246                 trim_entry.start = start;
3247                 trim_entry.bytes = bytes;
3248                 list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3249                 mutex_unlock(&ctl->cache_writeout_mutex);
3250
3251                 ret = do_trimming(block_group, total_trimmed, start, bytes,
3252                                   start, bytes, &trim_entry);
3253                 if (ret)
3254                         break;
3255 next:
3256                 if (next_bitmap) {
3257                         offset += BITS_PER_BITMAP * ctl->unit;
3258                 } else {
3259                         start += bytes;
3260                         if (start >= offset + BITS_PER_BITMAP * ctl->unit)
3261                                 offset += BITS_PER_BITMAP * ctl->unit;
3262                 }
3263
3264                 if (fatal_signal_pending(current)) {
3265                         ret = -ERESTARTSYS;
3266                         break;
3267                 }
3268
3269                 cond_resched();
3270         }
3271
3272         return ret;
3273 }
3274
3275 void btrfs_get_block_group_trimming(struct btrfs_block_group_cache *cache)
3276 {
3277         atomic_inc(&cache->trimming);
3278 }
3279
3280 void btrfs_put_block_group_trimming(struct btrfs_block_group_cache *block_group)
3281 {
3282         struct extent_map_tree *em_tree;
3283         struct extent_map *em;
3284         bool cleanup;
3285
3286         spin_lock(&block_group->lock);
3287         cleanup = (atomic_dec_and_test(&block_group->trimming) &&
3288                    block_group->removed);
3289         spin_unlock(&block_group->lock);
3290
3291         if (cleanup) {
3292                 lock_chunks(block_group->fs_info->chunk_root);
3293                 em_tree = &block_group->fs_info->mapping_tree.map_tree;
3294                 write_lock(&em_tree->lock);
3295                 em = lookup_extent_mapping(em_tree, block_group->key.objectid,
3296                                            1);
3297                 BUG_ON(!em); /* logic error, can't happen */
3298                 /*
3299                  * remove_extent_mapping() will delete us from the pinned_chunks
3300                  * list, which is protected by the chunk mutex.
3301                  */
3302                 remove_extent_mapping(em_tree, em);
3303                 write_unlock(&em_tree->lock);
3304                 unlock_chunks(block_group->fs_info->chunk_root);
3305
3306                 /* once for us and once for the tree */
3307                 free_extent_map(em);
3308                 free_extent_map(em);
3309
3310                 /*
3311                  * We've left one free space entry and other tasks trimming
3312                  * this block group have left 1 entry each one. Free them.
3313                  */
3314                 __btrfs_remove_free_space_cache(block_group->free_space_ctl);
3315         }
3316 }
3317
3318 int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
3319                            u64 *trimmed, u64 start, u64 end, u64 minlen)
3320 {
3321         int ret;
3322
3323         *trimmed = 0;
3324
3325         spin_lock(&block_group->lock);
3326         if (block_group->removed) {
3327                 spin_unlock(&block_group->lock);
3328                 return 0;
3329         }
3330         btrfs_get_block_group_trimming(block_group);
3331         spin_unlock(&block_group->lock);
3332
3333         ret = trim_no_bitmap(block_group, trimmed, start, end, minlen);
3334         if (ret)
3335                 goto out;
3336
3337         ret = trim_bitmaps(block_group, trimmed, start, end, minlen);
3338 out:
3339         btrfs_put_block_group_trimming(block_group);
3340         return ret;
3341 }
3342
3343 /*
3344  * Find the left-most item in the cache tree, and then return the
3345  * smallest inode number in the item.
3346  *
3347  * Note: the returned inode number may not be the smallest one in
3348  * the tree, if the left-most item is a bitmap.
3349  */
3350 u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
3351 {
3352         struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
3353         struct btrfs_free_space *entry = NULL;
3354         u64 ino = 0;
3355
3356         spin_lock(&ctl->tree_lock);
3357
3358         if (RB_EMPTY_ROOT(&ctl->free_space_offset))
3359                 goto out;
3360
3361         entry = rb_entry(rb_first(&ctl->free_space_offset),
3362                          struct btrfs_free_space, offset_index);
3363
3364         if (!entry->bitmap) {
3365                 ino = entry->offset;
3366
3367                 unlink_free_space(ctl, entry);
3368                 entry->offset++;
3369                 entry->bytes--;
3370                 if (!entry->bytes)
3371                         kmem_cache_free(btrfs_free_space_cachep, entry);
3372                 else
3373                         link_free_space(ctl, entry);
3374         } else {
3375                 u64 offset = 0;
3376                 u64 count = 1;
3377                 int ret;
3378
3379                 ret = search_bitmap(ctl, entry, &offset, &count);
3380                 /* Logic error; Should be empty if it can't find anything */
3381                 ASSERT(!ret);
3382
3383                 ino = offset;
3384                 bitmap_clear_bits(ctl, entry, offset, 1);
3385                 if (entry->bytes == 0)
3386                         free_bitmap(ctl, entry);
3387         }
3388 out:
3389         spin_unlock(&ctl->tree_lock);
3390
3391         return ino;
3392 }
3393
3394 struct inode *lookup_free_ino_inode(struct btrfs_root *root,
3395                                     struct btrfs_path *path)
3396 {
3397         struct inode *inode = NULL;
3398
3399         spin_lock(&root->ino_cache_lock);
3400         if (root->ino_cache_inode)
3401                 inode = igrab(root->ino_cache_inode);
3402         spin_unlock(&root->ino_cache_lock);
3403         if (inode)
3404                 return inode;
3405
3406         inode = __lookup_free_space_inode(root, path, 0);
3407         if (IS_ERR(inode))
3408                 return inode;
3409
3410         spin_lock(&root->ino_cache_lock);
3411         if (!btrfs_fs_closing(root->fs_info))
3412                 root->ino_cache_inode = igrab(inode);
3413         spin_unlock(&root->ino_cache_lock);
3414
3415         return inode;
3416 }
3417
3418 int create_free_ino_inode(struct btrfs_root *root,
3419                           struct btrfs_trans_handle *trans,
3420                           struct btrfs_path *path)
3421 {
3422         return __create_free_space_inode(root, trans, path,
3423                                          BTRFS_FREE_INO_OBJECTID, 0);
3424 }
3425
3426 int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3427 {
3428         struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3429         struct btrfs_path *path;
3430         struct inode *inode;
3431         int ret = 0;
3432         u64 root_gen = btrfs_root_generation(&root->root_item);
3433
3434         if (!btrfs_test_opt(root, INODE_MAP_CACHE))
3435                 return 0;
3436
3437         /*
3438          * If we're unmounting then just return, since this does a search on the
3439          * normal root and not the commit root and we could deadlock.
3440          */
3441         if (btrfs_fs_closing(fs_info))
3442                 return 0;
3443
3444         path = btrfs_alloc_path();
3445         if (!path)
3446                 return 0;
3447
3448         inode = lookup_free_ino_inode(root, path);
3449         if (IS_ERR(inode))
3450                 goto out;
3451
3452         if (root_gen != BTRFS_I(inode)->generation)
3453                 goto out_put;
3454
3455         ret = __load_free_space_cache(root, inode, ctl, path, 0);
3456
3457         if (ret < 0)
3458                 btrfs_err(fs_info,
3459                         "failed to load free ino cache for root %llu",
3460                         root->root_key.objectid);
3461 out_put:
3462         iput(inode);
3463 out:
3464         btrfs_free_path(path);
3465         return ret;
3466 }
3467
3468 int btrfs_write_out_ino_cache(struct btrfs_root *root,
3469                               struct btrfs_trans_handle *trans,
3470                               struct btrfs_path *path,
3471                               struct inode *inode)
3472 {
3473         struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3474         int ret;
3475         struct btrfs_io_ctl io_ctl;
3476         bool release_metadata = true;
3477
3478         if (!btrfs_test_opt(root, INODE_MAP_CACHE))
3479                 return 0;
3480
3481         memset(&io_ctl, 0, sizeof(io_ctl));
3482         ret = __btrfs_write_out_cache(root, inode, ctl, NULL, &io_ctl,
3483                                       trans, path, 0);
3484         if (!ret) {
3485                 /*
3486                  * At this point writepages() didn't error out, so our metadata
3487                  * reservation is released when the writeback finishes, at
3488                  * inode.c:btrfs_finish_ordered_io(), regardless of it finishing
3489                  * with or without an error.
3490                  */
3491                 release_metadata = false;
3492                 ret = btrfs_wait_cache_io(root, trans, NULL, &io_ctl, path, 0);
3493         }
3494
3495         if (ret) {
3496                 if (release_metadata)
3497                         btrfs_delalloc_release_metadata(inode, inode->i_size);
3498 #ifdef DEBUG
3499                 btrfs_err(root->fs_info,
3500                         "failed to write free ino cache for root %llu",
3501                         root->root_key.objectid);
3502 #endif
3503         }
3504
3505         return ret;
3506 }
3507
3508 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3509 /*
3510  * Use this if you need to make a bitmap or extent entry specifically, it
3511  * doesn't do any of the merging that add_free_space does, this acts a lot like
3512  * how the free space cache loading stuff works, so you can get really weird
3513  * configurations.
3514  */
3515 int test_add_free_space_entry(struct btrfs_block_group_cache *cache,
3516                               u64 offset, u64 bytes, bool bitmap)
3517 {
3518         struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3519         struct btrfs_free_space *info = NULL, *bitmap_info;
3520         void *map = NULL;
3521         u64 bytes_added;
3522         int ret;
3523
3524 again:
3525         if (!info) {
3526                 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
3527                 if (!info)
3528                         return -ENOMEM;
3529         }
3530
3531         if (!bitmap) {
3532                 spin_lock(&ctl->tree_lock);
3533                 info->offset = offset;
3534                 info->bytes = bytes;
3535                 ret = link_free_space(ctl, info);
3536                 spin_unlock(&ctl->tree_lock);
3537                 if (ret)
3538                         kmem_cache_free(btrfs_free_space_cachep, info);
3539                 return ret;
3540         }
3541
3542         if (!map) {
3543                 map = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
3544                 if (!map) {
3545                         kmem_cache_free(btrfs_free_space_cachep, info);
3546                         return -ENOMEM;
3547                 }
3548         }
3549
3550         spin_lock(&ctl->tree_lock);
3551         bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3552                                          1, 0);
3553         if (!bitmap_info) {
3554                 info->bitmap = map;
3555                 map = NULL;
3556                 add_new_bitmap(ctl, info, offset);
3557                 bitmap_info = info;
3558                 info = NULL;
3559         }
3560
3561         bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
3562         bytes -= bytes_added;
3563         offset += bytes_added;
3564         spin_unlock(&ctl->tree_lock);
3565
3566         if (bytes)
3567                 goto again;
3568
3569         if (info)
3570                 kmem_cache_free(btrfs_free_space_cachep, info);
3571         if (map)
3572                 kfree(map);
3573         return 0;
3574 }
3575
3576 /*
3577  * Checks to see if the given range is in the free space cache.  This is really
3578  * just used to check the absence of space, so if there is free space in the
3579  * range at all we will return 1.
3580  */
3581 int test_check_exists(struct btrfs_block_group_cache *cache,
3582                       u64 offset, u64 bytes)
3583 {
3584         struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3585         struct btrfs_free_space *info;
3586         int ret = 0;
3587
3588         spin_lock(&ctl->tree_lock);
3589         info = tree_search_offset(ctl, offset, 0, 0);
3590         if (!info) {
3591                 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3592                                           1, 0);
3593                 if (!info)
3594                         goto out;
3595         }
3596
3597 have_info:
3598         if (info->bitmap) {
3599                 u64 bit_off, bit_bytes;
3600                 struct rb_node *n;
3601                 struct btrfs_free_space *tmp;
3602
3603                 bit_off = offset;
3604                 bit_bytes = ctl->unit;
3605                 ret = search_bitmap(ctl, info, &bit_off, &bit_bytes);
3606                 if (!ret) {
3607                         if (bit_off == offset) {
3608                                 ret = 1;
3609                                 goto out;
3610                         } else if (bit_off > offset &&
3611                                    offset + bytes > bit_off) {
3612                                 ret = 1;
3613                                 goto out;
3614                         }
3615                 }
3616
3617                 n = rb_prev(&info->offset_index);
3618                 while (n) {
3619                         tmp = rb_entry(n, struct btrfs_free_space,
3620                                        offset_index);
3621                         if (tmp->offset + tmp->bytes < offset)
3622                                 break;
3623                         if (offset + bytes < tmp->offset) {
3624                                 n = rb_prev(&info->offset_index);
3625                                 continue;
3626                         }
3627                         info = tmp;
3628                         goto have_info;
3629                 }
3630
3631                 n = rb_next(&info->offset_index);
3632                 while (n) {
3633                         tmp = rb_entry(n, struct btrfs_free_space,
3634                                        offset_index);
3635                         if (offset + bytes < tmp->offset)
3636                                 break;
3637                         if (tmp->offset + tmp->bytes < offset) {
3638                                 n = rb_next(&info->offset_index);
3639                                 continue;
3640                         }
3641                         info = tmp;
3642                         goto have_info;
3643                 }
3644
3645                 ret = 0;
3646                 goto out;
3647         }
3648
3649         if (info->offset == offset) {
3650                 ret = 1;
3651                 goto out;
3652         }
3653
3654         if (offset > info->offset && offset < info->offset + info->bytes)
3655                 ret = 1;
3656 out:
3657         spin_unlock(&ctl->tree_lock);
3658         return ret;
3659 }
3660 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */