]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/btrfs/ordered-data.c
Merge branch 'raid56-scrub-replace' of git://github.com/miaoxie/linux-btrfs into...
[karo-tx-linux.git] / fs / btrfs / ordered-data.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/slab.h>
20 #include <linux/blkdev.h>
21 #include <linux/writeback.h>
22 #include <linux/pagevec.h>
23 #include "ctree.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "extent_io.h"
27 #include "disk-io.h"
28
29 static struct kmem_cache *btrfs_ordered_extent_cache;
30
31 static u64 entry_end(struct btrfs_ordered_extent *entry)
32 {
33         if (entry->file_offset + entry->len < entry->file_offset)
34                 return (u64)-1;
35         return entry->file_offset + entry->len;
36 }
37
38 /* returns NULL if the insertion worked, or it returns the node it did find
39  * in the tree
40  */
41 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
42                                    struct rb_node *node)
43 {
44         struct rb_node **p = &root->rb_node;
45         struct rb_node *parent = NULL;
46         struct btrfs_ordered_extent *entry;
47
48         while (*p) {
49                 parent = *p;
50                 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
51
52                 if (file_offset < entry->file_offset)
53                         p = &(*p)->rb_left;
54                 else if (file_offset >= entry_end(entry))
55                         p = &(*p)->rb_right;
56                 else
57                         return parent;
58         }
59
60         rb_link_node(node, parent, p);
61         rb_insert_color(node, root);
62         return NULL;
63 }
64
65 static void ordered_data_tree_panic(struct inode *inode, int errno,
66                                                u64 offset)
67 {
68         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
69         btrfs_panic(fs_info, errno, "Inconsistency in ordered tree at offset "
70                     "%llu", offset);
71 }
72
73 /*
74  * look for a given offset in the tree, and if it can't be found return the
75  * first lesser offset
76  */
77 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
78                                      struct rb_node **prev_ret)
79 {
80         struct rb_node *n = root->rb_node;
81         struct rb_node *prev = NULL;
82         struct rb_node *test;
83         struct btrfs_ordered_extent *entry;
84         struct btrfs_ordered_extent *prev_entry = NULL;
85
86         while (n) {
87                 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
88                 prev = n;
89                 prev_entry = entry;
90
91                 if (file_offset < entry->file_offset)
92                         n = n->rb_left;
93                 else if (file_offset >= entry_end(entry))
94                         n = n->rb_right;
95                 else
96                         return n;
97         }
98         if (!prev_ret)
99                 return NULL;
100
101         while (prev && file_offset >= entry_end(prev_entry)) {
102                 test = rb_next(prev);
103                 if (!test)
104                         break;
105                 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
106                                       rb_node);
107                 if (file_offset < entry_end(prev_entry))
108                         break;
109
110                 prev = test;
111         }
112         if (prev)
113                 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
114                                       rb_node);
115         while (prev && file_offset < entry_end(prev_entry)) {
116                 test = rb_prev(prev);
117                 if (!test)
118                         break;
119                 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
120                                       rb_node);
121                 prev = test;
122         }
123         *prev_ret = prev;
124         return NULL;
125 }
126
127 /*
128  * helper to check if a given offset is inside a given entry
129  */
130 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
131 {
132         if (file_offset < entry->file_offset ||
133             entry->file_offset + entry->len <= file_offset)
134                 return 0;
135         return 1;
136 }
137
138 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
139                           u64 len)
140 {
141         if (file_offset + len <= entry->file_offset ||
142             entry->file_offset + entry->len <= file_offset)
143                 return 0;
144         return 1;
145 }
146
147 /*
148  * look find the first ordered struct that has this offset, otherwise
149  * the first one less than this offset
150  */
151 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
152                                           u64 file_offset)
153 {
154         struct rb_root *root = &tree->tree;
155         struct rb_node *prev = NULL;
156         struct rb_node *ret;
157         struct btrfs_ordered_extent *entry;
158
159         if (tree->last) {
160                 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
161                                  rb_node);
162                 if (offset_in_entry(entry, file_offset))
163                         return tree->last;
164         }
165         ret = __tree_search(root, file_offset, &prev);
166         if (!ret)
167                 ret = prev;
168         if (ret)
169                 tree->last = ret;
170         return ret;
171 }
172
173 /* allocate and add a new ordered_extent into the per-inode tree.
174  * file_offset is the logical offset in the file
175  *
176  * start is the disk block number of an extent already reserved in the
177  * extent allocation tree
178  *
179  * len is the length of the extent
180  *
181  * The tree is given a single reference on the ordered extent that was
182  * inserted.
183  */
184 static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
185                                       u64 start, u64 len, u64 disk_len,
186                                       int type, int dio, int compress_type)
187 {
188         struct btrfs_root *root = BTRFS_I(inode)->root;
189         struct btrfs_ordered_inode_tree *tree;
190         struct rb_node *node;
191         struct btrfs_ordered_extent *entry;
192
193         tree = &BTRFS_I(inode)->ordered_tree;
194         entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
195         if (!entry)
196                 return -ENOMEM;
197
198         entry->file_offset = file_offset;
199         entry->start = start;
200         entry->len = len;
201         if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) &&
202             !(type == BTRFS_ORDERED_NOCOW))
203                 entry->csum_bytes_left = disk_len;
204         entry->disk_len = disk_len;
205         entry->bytes_left = len;
206         entry->inode = igrab(inode);
207         entry->compress_type = compress_type;
208         entry->truncated_len = (u64)-1;
209         if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
210                 set_bit(type, &entry->flags);
211
212         if (dio)
213                 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
214
215         /* one ref for the tree */
216         atomic_set(&entry->refs, 1);
217         init_waitqueue_head(&entry->wait);
218         INIT_LIST_HEAD(&entry->list);
219         INIT_LIST_HEAD(&entry->root_extent_list);
220         INIT_LIST_HEAD(&entry->work_list);
221         init_completion(&entry->completion);
222         INIT_LIST_HEAD(&entry->log_list);
223         INIT_LIST_HEAD(&entry->trans_list);
224
225         trace_btrfs_ordered_extent_add(inode, entry);
226
227         spin_lock_irq(&tree->lock);
228         node = tree_insert(&tree->tree, file_offset,
229                            &entry->rb_node);
230         if (node)
231                 ordered_data_tree_panic(inode, -EEXIST, file_offset);
232         spin_unlock_irq(&tree->lock);
233
234         spin_lock(&root->ordered_extent_lock);
235         list_add_tail(&entry->root_extent_list,
236                       &root->ordered_extents);
237         root->nr_ordered_extents++;
238         if (root->nr_ordered_extents == 1) {
239                 spin_lock(&root->fs_info->ordered_root_lock);
240                 BUG_ON(!list_empty(&root->ordered_root));
241                 list_add_tail(&root->ordered_root,
242                               &root->fs_info->ordered_roots);
243                 spin_unlock(&root->fs_info->ordered_root_lock);
244         }
245         spin_unlock(&root->ordered_extent_lock);
246
247         return 0;
248 }
249
250 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
251                              u64 start, u64 len, u64 disk_len, int type)
252 {
253         return __btrfs_add_ordered_extent(inode, file_offset, start, len,
254                                           disk_len, type, 0,
255                                           BTRFS_COMPRESS_NONE);
256 }
257
258 int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
259                                  u64 start, u64 len, u64 disk_len, int type)
260 {
261         return __btrfs_add_ordered_extent(inode, file_offset, start, len,
262                                           disk_len, type, 1,
263                                           BTRFS_COMPRESS_NONE);
264 }
265
266 int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
267                                       u64 start, u64 len, u64 disk_len,
268                                       int type, int compress_type)
269 {
270         return __btrfs_add_ordered_extent(inode, file_offset, start, len,
271                                           disk_len, type, 0,
272                                           compress_type);
273 }
274
275 /*
276  * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
277  * when an ordered extent is finished.  If the list covers more than one
278  * ordered extent, it is split across multiples.
279  */
280 void btrfs_add_ordered_sum(struct inode *inode,
281                            struct btrfs_ordered_extent *entry,
282                            struct btrfs_ordered_sum *sum)
283 {
284         struct btrfs_ordered_inode_tree *tree;
285
286         tree = &BTRFS_I(inode)->ordered_tree;
287         spin_lock_irq(&tree->lock);
288         list_add_tail(&sum->list, &entry->list);
289         WARN_ON(entry->csum_bytes_left < sum->len);
290         entry->csum_bytes_left -= sum->len;
291         if (entry->csum_bytes_left == 0)
292                 wake_up(&entry->wait);
293         spin_unlock_irq(&tree->lock);
294 }
295
296 /*
297  * this is used to account for finished IO across a given range
298  * of the file.  The IO may span ordered extents.  If
299  * a given ordered_extent is completely done, 1 is returned, otherwise
300  * 0.
301  *
302  * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
303  * to make sure this function only returns 1 once for a given ordered extent.
304  *
305  * file_offset is updated to one byte past the range that is recorded as
306  * complete.  This allows you to walk forward in the file.
307  */
308 int btrfs_dec_test_first_ordered_pending(struct inode *inode,
309                                    struct btrfs_ordered_extent **cached,
310                                    u64 *file_offset, u64 io_size, int uptodate)
311 {
312         struct btrfs_ordered_inode_tree *tree;
313         struct rb_node *node;
314         struct btrfs_ordered_extent *entry = NULL;
315         int ret;
316         unsigned long flags;
317         u64 dec_end;
318         u64 dec_start;
319         u64 to_dec;
320
321         tree = &BTRFS_I(inode)->ordered_tree;
322         spin_lock_irqsave(&tree->lock, flags);
323         node = tree_search(tree, *file_offset);
324         if (!node) {
325                 ret = 1;
326                 goto out;
327         }
328
329         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
330         if (!offset_in_entry(entry, *file_offset)) {
331                 ret = 1;
332                 goto out;
333         }
334
335         dec_start = max(*file_offset, entry->file_offset);
336         dec_end = min(*file_offset + io_size, entry->file_offset +
337                       entry->len);
338         *file_offset = dec_end;
339         if (dec_start > dec_end) {
340                 btrfs_crit(BTRFS_I(inode)->root->fs_info,
341                         "bad ordering dec_start %llu end %llu", dec_start, dec_end);
342         }
343         to_dec = dec_end - dec_start;
344         if (to_dec > entry->bytes_left) {
345                 btrfs_crit(BTRFS_I(inode)->root->fs_info,
346                         "bad ordered accounting left %llu size %llu",
347                         entry->bytes_left, to_dec);
348         }
349         entry->bytes_left -= to_dec;
350         if (!uptodate)
351                 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
352
353         if (entry->bytes_left == 0) {
354                 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
355                 if (waitqueue_active(&entry->wait))
356                         wake_up(&entry->wait);
357         } else {
358                 ret = 1;
359         }
360 out:
361         if (!ret && cached && entry) {
362                 *cached = entry;
363                 atomic_inc(&entry->refs);
364         }
365         spin_unlock_irqrestore(&tree->lock, flags);
366         return ret == 0;
367 }
368
369 /*
370  * this is used to account for finished IO across a given range
371  * of the file.  The IO should not span ordered extents.  If
372  * a given ordered_extent is completely done, 1 is returned, otherwise
373  * 0.
374  *
375  * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
376  * to make sure this function only returns 1 once for a given ordered extent.
377  */
378 int btrfs_dec_test_ordered_pending(struct inode *inode,
379                                    struct btrfs_ordered_extent **cached,
380                                    u64 file_offset, u64 io_size, int uptodate)
381 {
382         struct btrfs_ordered_inode_tree *tree;
383         struct rb_node *node;
384         struct btrfs_ordered_extent *entry = NULL;
385         unsigned long flags;
386         int ret;
387
388         tree = &BTRFS_I(inode)->ordered_tree;
389         spin_lock_irqsave(&tree->lock, flags);
390         if (cached && *cached) {
391                 entry = *cached;
392                 goto have_entry;
393         }
394
395         node = tree_search(tree, file_offset);
396         if (!node) {
397                 ret = 1;
398                 goto out;
399         }
400
401         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
402 have_entry:
403         if (!offset_in_entry(entry, file_offset)) {
404                 ret = 1;
405                 goto out;
406         }
407
408         if (io_size > entry->bytes_left) {
409                 btrfs_crit(BTRFS_I(inode)->root->fs_info,
410                            "bad ordered accounting left %llu size %llu",
411                        entry->bytes_left, io_size);
412         }
413         entry->bytes_left -= io_size;
414         if (!uptodate)
415                 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
416
417         if (entry->bytes_left == 0) {
418                 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
419                 if (waitqueue_active(&entry->wait))
420                         wake_up(&entry->wait);
421         } else {
422                 ret = 1;
423         }
424 out:
425         if (!ret && cached && entry) {
426                 *cached = entry;
427                 atomic_inc(&entry->refs);
428         }
429         spin_unlock_irqrestore(&tree->lock, flags);
430         return ret == 0;
431 }
432
433 /* Needs to either be called under a log transaction or the log_mutex */
434 void btrfs_get_logged_extents(struct inode *inode,
435                               struct list_head *logged_list,
436                               const loff_t start,
437                               const loff_t end)
438 {
439         struct btrfs_ordered_inode_tree *tree;
440         struct btrfs_ordered_extent *ordered;
441         struct rb_node *n;
442         struct rb_node *prev;
443
444         tree = &BTRFS_I(inode)->ordered_tree;
445         spin_lock_irq(&tree->lock);
446         n = __tree_search(&tree->tree, end, &prev);
447         if (!n)
448                 n = prev;
449         for (; n; n = rb_prev(n)) {
450                 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
451                 if (ordered->file_offset > end)
452                         continue;
453                 if (entry_end(ordered) <= start)
454                         break;
455                 if (!list_empty(&ordered->log_list))
456                         continue;
457                 if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
458                         continue;
459                 list_add(&ordered->log_list, logged_list);
460                 atomic_inc(&ordered->refs);
461         }
462         spin_unlock_irq(&tree->lock);
463 }
464
465 void btrfs_put_logged_extents(struct list_head *logged_list)
466 {
467         struct btrfs_ordered_extent *ordered;
468
469         while (!list_empty(logged_list)) {
470                 ordered = list_first_entry(logged_list,
471                                            struct btrfs_ordered_extent,
472                                            log_list);
473                 list_del_init(&ordered->log_list);
474                 btrfs_put_ordered_extent(ordered);
475         }
476 }
477
478 void btrfs_submit_logged_extents(struct list_head *logged_list,
479                                  struct btrfs_root *log)
480 {
481         int index = log->log_transid % 2;
482
483         spin_lock_irq(&log->log_extents_lock[index]);
484         list_splice_tail(logged_list, &log->logged_list[index]);
485         spin_unlock_irq(&log->log_extents_lock[index]);
486 }
487
488 void btrfs_wait_logged_extents(struct btrfs_trans_handle *trans,
489                                struct btrfs_root *log, u64 transid)
490 {
491         struct btrfs_ordered_extent *ordered;
492         int index = transid % 2;
493
494         spin_lock_irq(&log->log_extents_lock[index]);
495         while (!list_empty(&log->logged_list[index])) {
496                 ordered = list_first_entry(&log->logged_list[index],
497                                            struct btrfs_ordered_extent,
498                                            log_list);
499                 list_del_init(&ordered->log_list);
500                 spin_unlock_irq(&log->log_extents_lock[index]);
501
502                 if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
503                     !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
504                         struct inode *inode = ordered->inode;
505                         u64 start = ordered->file_offset;
506                         u64 end = ordered->file_offset + ordered->len - 1;
507
508                         WARN_ON(!inode);
509                         filemap_fdatawrite_range(inode->i_mapping, start, end);
510                 }
511                 wait_event(ordered->wait, test_bit(BTRFS_ORDERED_IO_DONE,
512                                                    &ordered->flags));
513
514                 if (!test_and_set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
515                         list_add_tail(&ordered->trans_list, &trans->ordered);
516                 spin_lock_irq(&log->log_extents_lock[index]);
517         }
518         spin_unlock_irq(&log->log_extents_lock[index]);
519 }
520
521 void btrfs_free_logged_extents(struct btrfs_root *log, u64 transid)
522 {
523         struct btrfs_ordered_extent *ordered;
524         int index = transid % 2;
525
526         spin_lock_irq(&log->log_extents_lock[index]);
527         while (!list_empty(&log->logged_list[index])) {
528                 ordered = list_first_entry(&log->logged_list[index],
529                                            struct btrfs_ordered_extent,
530                                            log_list);
531                 list_del_init(&ordered->log_list);
532                 spin_unlock_irq(&log->log_extents_lock[index]);
533                 btrfs_put_ordered_extent(ordered);
534                 spin_lock_irq(&log->log_extents_lock[index]);
535         }
536         spin_unlock_irq(&log->log_extents_lock[index]);
537 }
538
539 /*
540  * used to drop a reference on an ordered extent.  This will free
541  * the extent if the last reference is dropped
542  */
543 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
544 {
545         struct list_head *cur;
546         struct btrfs_ordered_sum *sum;
547
548         trace_btrfs_ordered_extent_put(entry->inode, entry);
549
550         if (atomic_dec_and_test(&entry->refs)) {
551                 if (entry->inode)
552                         btrfs_add_delayed_iput(entry->inode);
553                 while (!list_empty(&entry->list)) {
554                         cur = entry->list.next;
555                         sum = list_entry(cur, struct btrfs_ordered_sum, list);
556                         list_del(&sum->list);
557                         kfree(sum);
558                 }
559                 kmem_cache_free(btrfs_ordered_extent_cache, entry);
560         }
561 }
562
563 /*
564  * remove an ordered extent from the tree.  No references are dropped
565  * and waiters are woken up.
566  */
567 void btrfs_remove_ordered_extent(struct inode *inode,
568                                  struct btrfs_ordered_extent *entry)
569 {
570         struct btrfs_ordered_inode_tree *tree;
571         struct btrfs_root *root = BTRFS_I(inode)->root;
572         struct rb_node *node;
573
574         tree = &BTRFS_I(inode)->ordered_tree;
575         spin_lock_irq(&tree->lock);
576         node = &entry->rb_node;
577         rb_erase(node, &tree->tree);
578         if (tree->last == node)
579                 tree->last = NULL;
580         set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
581         spin_unlock_irq(&tree->lock);
582
583         spin_lock(&root->ordered_extent_lock);
584         list_del_init(&entry->root_extent_list);
585         root->nr_ordered_extents--;
586
587         trace_btrfs_ordered_extent_remove(inode, entry);
588
589         if (!root->nr_ordered_extents) {
590                 spin_lock(&root->fs_info->ordered_root_lock);
591                 BUG_ON(list_empty(&root->ordered_root));
592                 list_del_init(&root->ordered_root);
593                 spin_unlock(&root->fs_info->ordered_root_lock);
594         }
595         spin_unlock(&root->ordered_extent_lock);
596         wake_up(&entry->wait);
597 }
598
599 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
600 {
601         struct btrfs_ordered_extent *ordered;
602
603         ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
604         btrfs_start_ordered_extent(ordered->inode, ordered, 1);
605         complete(&ordered->completion);
606 }
607
608 /*
609  * wait for all the ordered extents in a root.  This is done when balancing
610  * space between drives.
611  */
612 int btrfs_wait_ordered_extents(struct btrfs_root *root, int nr)
613 {
614         struct list_head splice, works;
615         struct btrfs_ordered_extent *ordered, *next;
616         int count = 0;
617
618         INIT_LIST_HEAD(&splice);
619         INIT_LIST_HEAD(&works);
620
621         mutex_lock(&root->ordered_extent_mutex);
622         spin_lock(&root->ordered_extent_lock);
623         list_splice_init(&root->ordered_extents, &splice);
624         while (!list_empty(&splice) && nr) {
625                 ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
626                                            root_extent_list);
627                 list_move_tail(&ordered->root_extent_list,
628                                &root->ordered_extents);
629                 atomic_inc(&ordered->refs);
630                 spin_unlock(&root->ordered_extent_lock);
631
632                 btrfs_init_work(&ordered->flush_work,
633                                 btrfs_flush_delalloc_helper,
634                                 btrfs_run_ordered_extent_work, NULL, NULL);
635                 list_add_tail(&ordered->work_list, &works);
636                 btrfs_queue_work(root->fs_info->flush_workers,
637                                  &ordered->flush_work);
638
639                 cond_resched();
640                 spin_lock(&root->ordered_extent_lock);
641                 if (nr != -1)
642                         nr--;
643                 count++;
644         }
645         list_splice_tail(&splice, &root->ordered_extents);
646         spin_unlock(&root->ordered_extent_lock);
647
648         list_for_each_entry_safe(ordered, next, &works, work_list) {
649                 list_del_init(&ordered->work_list);
650                 wait_for_completion(&ordered->completion);
651                 btrfs_put_ordered_extent(ordered);
652                 cond_resched();
653         }
654         mutex_unlock(&root->ordered_extent_mutex);
655
656         return count;
657 }
658
659 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, int nr)
660 {
661         struct btrfs_root *root;
662         struct list_head splice;
663         int done;
664
665         INIT_LIST_HEAD(&splice);
666
667         mutex_lock(&fs_info->ordered_operations_mutex);
668         spin_lock(&fs_info->ordered_root_lock);
669         list_splice_init(&fs_info->ordered_roots, &splice);
670         while (!list_empty(&splice) && nr) {
671                 root = list_first_entry(&splice, struct btrfs_root,
672                                         ordered_root);
673                 root = btrfs_grab_fs_root(root);
674                 BUG_ON(!root);
675                 list_move_tail(&root->ordered_root,
676                                &fs_info->ordered_roots);
677                 spin_unlock(&fs_info->ordered_root_lock);
678
679                 done = btrfs_wait_ordered_extents(root, nr);
680                 btrfs_put_fs_root(root);
681
682                 spin_lock(&fs_info->ordered_root_lock);
683                 if (nr != -1) {
684                         nr -= done;
685                         WARN_ON(nr < 0);
686                 }
687         }
688         list_splice_tail(&splice, &fs_info->ordered_roots);
689         spin_unlock(&fs_info->ordered_root_lock);
690         mutex_unlock(&fs_info->ordered_operations_mutex);
691 }
692
693 /*
694  * Used to start IO or wait for a given ordered extent to finish.
695  *
696  * If wait is one, this effectively waits on page writeback for all the pages
697  * in the extent, and it waits on the io completion code to insert
698  * metadata into the btree corresponding to the extent
699  */
700 void btrfs_start_ordered_extent(struct inode *inode,
701                                        struct btrfs_ordered_extent *entry,
702                                        int wait)
703 {
704         u64 start = entry->file_offset;
705         u64 end = start + entry->len - 1;
706
707         trace_btrfs_ordered_extent_start(inode, entry);
708
709         /*
710          * pages in the range can be dirty, clean or writeback.  We
711          * start IO on any dirty ones so the wait doesn't stall waiting
712          * for the flusher thread to find them
713          */
714         if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
715                 filemap_fdatawrite_range(inode->i_mapping, start, end);
716         if (wait) {
717                 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
718                                                  &entry->flags));
719         }
720 }
721
722 /*
723  * Used to wait on ordered extents across a large range of bytes.
724  */
725 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
726 {
727         int ret = 0;
728         u64 end;
729         u64 orig_end;
730         struct btrfs_ordered_extent *ordered;
731
732         if (start + len < start) {
733                 orig_end = INT_LIMIT(loff_t);
734         } else {
735                 orig_end = start + len - 1;
736                 if (orig_end > INT_LIMIT(loff_t))
737                         orig_end = INT_LIMIT(loff_t);
738         }
739
740         /* start IO across the range first to instantiate any delalloc
741          * extents
742          */
743         ret = btrfs_fdatawrite_range(inode, start, orig_end);
744         if (ret)
745                 return ret;
746
747         ret = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
748         if (ret)
749                 return ret;
750
751         end = orig_end;
752         while (1) {
753                 ordered = btrfs_lookup_first_ordered_extent(inode, end);
754                 if (!ordered)
755                         break;
756                 if (ordered->file_offset > orig_end) {
757                         btrfs_put_ordered_extent(ordered);
758                         break;
759                 }
760                 if (ordered->file_offset + ordered->len <= start) {
761                         btrfs_put_ordered_extent(ordered);
762                         break;
763                 }
764                 btrfs_start_ordered_extent(inode, ordered, 1);
765                 end = ordered->file_offset;
766                 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
767                         ret = -EIO;
768                 btrfs_put_ordered_extent(ordered);
769                 if (ret || end == 0 || end == start)
770                         break;
771                 end--;
772         }
773         return ret;
774 }
775
776 /*
777  * find an ordered extent corresponding to file_offset.  return NULL if
778  * nothing is found, otherwise take a reference on the extent and return it
779  */
780 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
781                                                          u64 file_offset)
782 {
783         struct btrfs_ordered_inode_tree *tree;
784         struct rb_node *node;
785         struct btrfs_ordered_extent *entry = NULL;
786
787         tree = &BTRFS_I(inode)->ordered_tree;
788         spin_lock_irq(&tree->lock);
789         node = tree_search(tree, file_offset);
790         if (!node)
791                 goto out;
792
793         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
794         if (!offset_in_entry(entry, file_offset))
795                 entry = NULL;
796         if (entry)
797                 atomic_inc(&entry->refs);
798 out:
799         spin_unlock_irq(&tree->lock);
800         return entry;
801 }
802
803 /* Since the DIO code tries to lock a wide area we need to look for any ordered
804  * extents that exist in the range, rather than just the start of the range.
805  */
806 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
807                                                         u64 file_offset,
808                                                         u64 len)
809 {
810         struct btrfs_ordered_inode_tree *tree;
811         struct rb_node *node;
812         struct btrfs_ordered_extent *entry = NULL;
813
814         tree = &BTRFS_I(inode)->ordered_tree;
815         spin_lock_irq(&tree->lock);
816         node = tree_search(tree, file_offset);
817         if (!node) {
818                 node = tree_search(tree, file_offset + len);
819                 if (!node)
820                         goto out;
821         }
822
823         while (1) {
824                 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
825                 if (range_overlaps(entry, file_offset, len))
826                         break;
827
828                 if (entry->file_offset >= file_offset + len) {
829                         entry = NULL;
830                         break;
831                 }
832                 entry = NULL;
833                 node = rb_next(node);
834                 if (!node)
835                         break;
836         }
837 out:
838         if (entry)
839                 atomic_inc(&entry->refs);
840         spin_unlock_irq(&tree->lock);
841         return entry;
842 }
843
844 /*
845  * lookup and return any extent before 'file_offset'.  NULL is returned
846  * if none is found
847  */
848 struct btrfs_ordered_extent *
849 btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
850 {
851         struct btrfs_ordered_inode_tree *tree;
852         struct rb_node *node;
853         struct btrfs_ordered_extent *entry = NULL;
854
855         tree = &BTRFS_I(inode)->ordered_tree;
856         spin_lock_irq(&tree->lock);
857         node = tree_search(tree, file_offset);
858         if (!node)
859                 goto out;
860
861         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
862         atomic_inc(&entry->refs);
863 out:
864         spin_unlock_irq(&tree->lock);
865         return entry;
866 }
867
868 /*
869  * After an extent is done, call this to conditionally update the on disk
870  * i_size.  i_size is updated to cover any fully written part of the file.
871  */
872 int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
873                                 struct btrfs_ordered_extent *ordered)
874 {
875         struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
876         u64 disk_i_size;
877         u64 new_i_size;
878         u64 i_size = i_size_read(inode);
879         struct rb_node *node;
880         struct rb_node *prev = NULL;
881         struct btrfs_ordered_extent *test;
882         int ret = 1;
883
884         spin_lock_irq(&tree->lock);
885         if (ordered) {
886                 offset = entry_end(ordered);
887                 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags))
888                         offset = min(offset,
889                                      ordered->file_offset +
890                                      ordered->truncated_len);
891         } else {
892                 offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
893         }
894         disk_i_size = BTRFS_I(inode)->disk_i_size;
895
896         /* truncate file */
897         if (disk_i_size > i_size) {
898                 BTRFS_I(inode)->disk_i_size = i_size;
899                 ret = 0;
900                 goto out;
901         }
902
903         /*
904          * if the disk i_size is already at the inode->i_size, or
905          * this ordered extent is inside the disk i_size, we're done
906          */
907         if (disk_i_size == i_size)
908                 goto out;
909
910         /*
911          * We still need to update disk_i_size if outstanding_isize is greater
912          * than disk_i_size.
913          */
914         if (offset <= disk_i_size &&
915             (!ordered || ordered->outstanding_isize <= disk_i_size))
916                 goto out;
917
918         /*
919          * walk backward from this ordered extent to disk_i_size.
920          * if we find an ordered extent then we can't update disk i_size
921          * yet
922          */
923         if (ordered) {
924                 node = rb_prev(&ordered->rb_node);
925         } else {
926                 prev = tree_search(tree, offset);
927                 /*
928                  * we insert file extents without involving ordered struct,
929                  * so there should be no ordered struct cover this offset
930                  */
931                 if (prev) {
932                         test = rb_entry(prev, struct btrfs_ordered_extent,
933                                         rb_node);
934                         BUG_ON(offset_in_entry(test, offset));
935                 }
936                 node = prev;
937         }
938         for (; node; node = rb_prev(node)) {
939                 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
940
941                 /* We treat this entry as if it doesnt exist */
942                 if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
943                         continue;
944                 if (test->file_offset + test->len <= disk_i_size)
945                         break;
946                 if (test->file_offset >= i_size)
947                         break;
948                 if (entry_end(test) > disk_i_size) {
949                         /*
950                          * we don't update disk_i_size now, so record this
951                          * undealt i_size. Or we will not know the real
952                          * i_size.
953                          */
954                         if (test->outstanding_isize < offset)
955                                 test->outstanding_isize = offset;
956                         if (ordered &&
957                             ordered->outstanding_isize >
958                             test->outstanding_isize)
959                                 test->outstanding_isize =
960                                                 ordered->outstanding_isize;
961                         goto out;
962                 }
963         }
964         new_i_size = min_t(u64, offset, i_size);
965
966         /*
967          * Some ordered extents may completed before the current one, and
968          * we hold the real i_size in ->outstanding_isize.
969          */
970         if (ordered && ordered->outstanding_isize > new_i_size)
971                 new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
972         BTRFS_I(inode)->disk_i_size = new_i_size;
973         ret = 0;
974 out:
975         /*
976          * We need to do this because we can't remove ordered extents until
977          * after the i_disk_size has been updated and then the inode has been
978          * updated to reflect the change, so we need to tell anybody who finds
979          * this ordered extent that we've already done all the real work, we
980          * just haven't completed all the other work.
981          */
982         if (ordered)
983                 set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
984         spin_unlock_irq(&tree->lock);
985         return ret;
986 }
987
988 /*
989  * search the ordered extents for one corresponding to 'offset' and
990  * try to find a checksum.  This is used because we allow pages to
991  * be reclaimed before their checksum is actually put into the btree
992  */
993 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
994                            u32 *sum, int len)
995 {
996         struct btrfs_ordered_sum *ordered_sum;
997         struct btrfs_ordered_extent *ordered;
998         struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
999         unsigned long num_sectors;
1000         unsigned long i;
1001         u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
1002         int index = 0;
1003
1004         ordered = btrfs_lookup_ordered_extent(inode, offset);
1005         if (!ordered)
1006                 return 0;
1007
1008         spin_lock_irq(&tree->lock);
1009         list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
1010                 if (disk_bytenr >= ordered_sum->bytenr &&
1011                     disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
1012                         i = (disk_bytenr - ordered_sum->bytenr) >>
1013                             inode->i_sb->s_blocksize_bits;
1014                         num_sectors = ordered_sum->len >>
1015                                       inode->i_sb->s_blocksize_bits;
1016                         num_sectors = min_t(int, len - index, num_sectors - i);
1017                         memcpy(sum + index, ordered_sum->sums + i,
1018                                num_sectors);
1019
1020                         index += (int)num_sectors;
1021                         if (index == len)
1022                                 goto out;
1023                         disk_bytenr += num_sectors * sectorsize;
1024                 }
1025         }
1026 out:
1027         spin_unlock_irq(&tree->lock);
1028         btrfs_put_ordered_extent(ordered);
1029         return index;
1030 }
1031
1032 int __init ordered_data_init(void)
1033 {
1034         btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1035                                      sizeof(struct btrfs_ordered_extent), 0,
1036                                      SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
1037                                      NULL);
1038         if (!btrfs_ordered_extent_cache)
1039                 return -ENOMEM;
1040
1041         return 0;
1042 }
1043
1044 void ordered_data_exit(void)
1045 {
1046         if (btrfs_ordered_extent_cache)
1047                 kmem_cache_destroy(btrfs_ordered_extent_cache);
1048 }