]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/btrfs/scrub.c
Merge branch 'acpica'
[karo-tx-linux.git] / fs / btrfs / scrub.c
1 /*
2  * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/blkdev.h>
20 #include <linux/ratelimit.h>
21 #include "ctree.h"
22 #include "volumes.h"
23 #include "disk-io.h"
24 #include "ordered-data.h"
25 #include "transaction.h"
26 #include "backref.h"
27 #include "extent_io.h"
28 #include "dev-replace.h"
29 #include "check-integrity.h"
30 #include "rcu-string.h"
31 #include "raid56.h"
32
33 /*
34  * This is only the first step towards a full-features scrub. It reads all
35  * extent and super block and verifies the checksums. In case a bad checksum
36  * is found or the extent cannot be read, good data will be written back if
37  * any can be found.
38  *
39  * Future enhancements:
40  *  - In case an unrepairable extent is encountered, track which files are
41  *    affected and report them
42  *  - track and record media errors, throw out bad devices
43  *  - add a mode to also read unallocated space
44  */
45
46 struct scrub_block;
47 struct scrub_ctx;
48
49 /*
50  * the following three values only influence the performance.
51  * The last one configures the number of parallel and outstanding I/O
52  * operations. The first two values configure an upper limit for the number
53  * of (dynamically allocated) pages that are added to a bio.
54  */
55 #define SCRUB_PAGES_PER_RD_BIO  32      /* 128k per bio */
56 #define SCRUB_PAGES_PER_WR_BIO  32      /* 128k per bio */
57 #define SCRUB_BIOS_PER_SCTX     64      /* 8MB per device in flight */
58
59 /*
60  * the following value times PAGE_SIZE needs to be large enough to match the
61  * largest node/leaf/sector size that shall be supported.
62  * Values larger than BTRFS_STRIPE_LEN are not supported.
63  */
64 #define SCRUB_MAX_PAGES_PER_BLOCK       16      /* 64k per node/leaf/sector */
65
66 struct scrub_page {
67         struct scrub_block      *sblock;
68         struct page             *page;
69         struct btrfs_device     *dev;
70         u64                     flags;  /* extent flags */
71         u64                     generation;
72         u64                     logical;
73         u64                     physical;
74         u64                     physical_for_dev_replace;
75         atomic_t                ref_count;
76         struct {
77                 unsigned int    mirror_num:8;
78                 unsigned int    have_csum:1;
79                 unsigned int    io_error:1;
80         };
81         u8                      csum[BTRFS_CSUM_SIZE];
82 };
83
84 struct scrub_bio {
85         int                     index;
86         struct scrub_ctx        *sctx;
87         struct btrfs_device     *dev;
88         struct bio              *bio;
89         int                     err;
90         u64                     logical;
91         u64                     physical;
92 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
93         struct scrub_page       *pagev[SCRUB_PAGES_PER_WR_BIO];
94 #else
95         struct scrub_page       *pagev[SCRUB_PAGES_PER_RD_BIO];
96 #endif
97         int                     page_count;
98         int                     next_free;
99         struct btrfs_work       work;
100 };
101
102 struct scrub_block {
103         struct scrub_page       *pagev[SCRUB_MAX_PAGES_PER_BLOCK];
104         int                     page_count;
105         atomic_t                outstanding_pages;
106         atomic_t                ref_count; /* free mem on transition to zero */
107         struct scrub_ctx        *sctx;
108         struct {
109                 unsigned int    header_error:1;
110                 unsigned int    checksum_error:1;
111                 unsigned int    no_io_error_seen:1;
112                 unsigned int    generation_error:1; /* also sets header_error */
113         };
114 };
115
116 struct scrub_wr_ctx {
117         struct scrub_bio *wr_curr_bio;
118         struct btrfs_device *tgtdev;
119         int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
120         atomic_t flush_all_writes;
121         struct mutex wr_lock;
122 };
123
124 struct scrub_ctx {
125         struct scrub_bio        *bios[SCRUB_BIOS_PER_SCTX];
126         struct btrfs_root       *dev_root;
127         int                     first_free;
128         int                     curr;
129         atomic_t                bios_in_flight;
130         atomic_t                workers_pending;
131         spinlock_t              list_lock;
132         wait_queue_head_t       list_wait;
133         u16                     csum_size;
134         struct list_head        csum_list;
135         atomic_t                cancel_req;
136         int                     readonly;
137         int                     pages_per_rd_bio;
138         u32                     sectorsize;
139         u32                     nodesize;
140         u32                     leafsize;
141
142         int                     is_dev_replace;
143         struct scrub_wr_ctx     wr_ctx;
144
145         /*
146          * statistics
147          */
148         struct btrfs_scrub_progress stat;
149         spinlock_t              stat_lock;
150 };
151
152 struct scrub_fixup_nodatasum {
153         struct scrub_ctx        *sctx;
154         struct btrfs_device     *dev;
155         u64                     logical;
156         struct btrfs_root       *root;
157         struct btrfs_work       work;
158         int                     mirror_num;
159 };
160
161 struct scrub_nocow_inode {
162         u64                     inum;
163         u64                     offset;
164         u64                     root;
165         struct list_head        list;
166 };
167
168 struct scrub_copy_nocow_ctx {
169         struct scrub_ctx        *sctx;
170         u64                     logical;
171         u64                     len;
172         int                     mirror_num;
173         u64                     physical_for_dev_replace;
174         struct list_head        inodes;
175         struct btrfs_work       work;
176 };
177
178 struct scrub_warning {
179         struct btrfs_path       *path;
180         u64                     extent_item_size;
181         char                    *scratch_buf;
182         char                    *msg_buf;
183         const char              *errstr;
184         sector_t                sector;
185         u64                     logical;
186         struct btrfs_device     *dev;
187         int                     msg_bufsize;
188         int                     scratch_bufsize;
189 };
190
191
192 static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
193 static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
194 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
195 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
196 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
197 static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
198                                      struct btrfs_fs_info *fs_info,
199                                      struct scrub_block *original_sblock,
200                                      u64 length, u64 logical,
201                                      struct scrub_block *sblocks_for_recheck);
202 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
203                                 struct scrub_block *sblock, int is_metadata,
204                                 int have_csum, u8 *csum, u64 generation,
205                                 u16 csum_size);
206 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
207                                          struct scrub_block *sblock,
208                                          int is_metadata, int have_csum,
209                                          const u8 *csum, u64 generation,
210                                          u16 csum_size);
211 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
212                                              struct scrub_block *sblock_good,
213                                              int force_write);
214 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
215                                             struct scrub_block *sblock_good,
216                                             int page_num, int force_write);
217 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
218 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
219                                            int page_num);
220 static int scrub_checksum_data(struct scrub_block *sblock);
221 static int scrub_checksum_tree_block(struct scrub_block *sblock);
222 static int scrub_checksum_super(struct scrub_block *sblock);
223 static void scrub_block_get(struct scrub_block *sblock);
224 static void scrub_block_put(struct scrub_block *sblock);
225 static void scrub_page_get(struct scrub_page *spage);
226 static void scrub_page_put(struct scrub_page *spage);
227 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
228                                     struct scrub_page *spage);
229 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
230                        u64 physical, struct btrfs_device *dev, u64 flags,
231                        u64 gen, int mirror_num, u8 *csum, int force,
232                        u64 physical_for_dev_replace);
233 static void scrub_bio_end_io(struct bio *bio, int err);
234 static void scrub_bio_end_io_worker(struct btrfs_work *work);
235 static void scrub_block_complete(struct scrub_block *sblock);
236 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
237                                u64 extent_logical, u64 extent_len,
238                                u64 *extent_physical,
239                                struct btrfs_device **extent_dev,
240                                int *extent_mirror_num);
241 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
242                               struct scrub_wr_ctx *wr_ctx,
243                               struct btrfs_fs_info *fs_info,
244                               struct btrfs_device *dev,
245                               int is_dev_replace);
246 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
247 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
248                                     struct scrub_page *spage);
249 static void scrub_wr_submit(struct scrub_ctx *sctx);
250 static void scrub_wr_bio_end_io(struct bio *bio, int err);
251 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
252 static int write_page_nocow(struct scrub_ctx *sctx,
253                             u64 physical_for_dev_replace, struct page *page);
254 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
255                                       struct scrub_copy_nocow_ctx *ctx);
256 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
257                             int mirror_num, u64 physical_for_dev_replace);
258 static void copy_nocow_pages_worker(struct btrfs_work *work);
259 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
260 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
261
262
263 static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
264 {
265         atomic_inc(&sctx->bios_in_flight);
266 }
267
268 static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
269 {
270         atomic_dec(&sctx->bios_in_flight);
271         wake_up(&sctx->list_wait);
272 }
273
274 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
275 {
276         while (atomic_read(&fs_info->scrub_pause_req)) {
277                 mutex_unlock(&fs_info->scrub_lock);
278                 wait_event(fs_info->scrub_pause_wait,
279                    atomic_read(&fs_info->scrub_pause_req) == 0);
280                 mutex_lock(&fs_info->scrub_lock);
281         }
282 }
283
284 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
285 {
286         atomic_inc(&fs_info->scrubs_paused);
287         wake_up(&fs_info->scrub_pause_wait);
288
289         mutex_lock(&fs_info->scrub_lock);
290         __scrub_blocked_if_needed(fs_info);
291         atomic_dec(&fs_info->scrubs_paused);
292         mutex_unlock(&fs_info->scrub_lock);
293
294         wake_up(&fs_info->scrub_pause_wait);
295 }
296
297 /*
298  * used for workers that require transaction commits (i.e., for the
299  * NOCOW case)
300  */
301 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
302 {
303         struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
304
305         /*
306          * increment scrubs_running to prevent cancel requests from
307          * completing as long as a worker is running. we must also
308          * increment scrubs_paused to prevent deadlocking on pause
309          * requests used for transactions commits (as the worker uses a
310          * transaction context). it is safe to regard the worker
311          * as paused for all matters practical. effectively, we only
312          * avoid cancellation requests from completing.
313          */
314         mutex_lock(&fs_info->scrub_lock);
315         atomic_inc(&fs_info->scrubs_running);
316         atomic_inc(&fs_info->scrubs_paused);
317         mutex_unlock(&fs_info->scrub_lock);
318
319         /*
320          * check if @scrubs_running=@scrubs_paused condition
321          * inside wait_event() is not an atomic operation.
322          * which means we may inc/dec @scrub_running/paused
323          * at any time. Let's wake up @scrub_pause_wait as
324          * much as we can to let commit transaction blocked less.
325          */
326         wake_up(&fs_info->scrub_pause_wait);
327
328         atomic_inc(&sctx->workers_pending);
329 }
330
331 /* used for workers that require transaction commits */
332 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
333 {
334         struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
335
336         /*
337          * see scrub_pending_trans_workers_inc() why we're pretending
338          * to be paused in the scrub counters
339          */
340         mutex_lock(&fs_info->scrub_lock);
341         atomic_dec(&fs_info->scrubs_running);
342         atomic_dec(&fs_info->scrubs_paused);
343         mutex_unlock(&fs_info->scrub_lock);
344         atomic_dec(&sctx->workers_pending);
345         wake_up(&fs_info->scrub_pause_wait);
346         wake_up(&sctx->list_wait);
347 }
348
349 static void scrub_free_csums(struct scrub_ctx *sctx)
350 {
351         while (!list_empty(&sctx->csum_list)) {
352                 struct btrfs_ordered_sum *sum;
353                 sum = list_first_entry(&sctx->csum_list,
354                                        struct btrfs_ordered_sum, list);
355                 list_del(&sum->list);
356                 kfree(sum);
357         }
358 }
359
360 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
361 {
362         int i;
363
364         if (!sctx)
365                 return;
366
367         scrub_free_wr_ctx(&sctx->wr_ctx);
368
369         /* this can happen when scrub is cancelled */
370         if (sctx->curr != -1) {
371                 struct scrub_bio *sbio = sctx->bios[sctx->curr];
372
373                 for (i = 0; i < sbio->page_count; i++) {
374                         WARN_ON(!sbio->pagev[i]->page);
375                         scrub_block_put(sbio->pagev[i]->sblock);
376                 }
377                 bio_put(sbio->bio);
378         }
379
380         for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
381                 struct scrub_bio *sbio = sctx->bios[i];
382
383                 if (!sbio)
384                         break;
385                 kfree(sbio);
386         }
387
388         scrub_free_csums(sctx);
389         kfree(sctx);
390 }
391
392 static noinline_for_stack
393 struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
394 {
395         struct scrub_ctx *sctx;
396         int             i;
397         struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
398         int pages_per_rd_bio;
399         int ret;
400
401         /*
402          * the setting of pages_per_rd_bio is correct for scrub but might
403          * be wrong for the dev_replace code where we might read from
404          * different devices in the initial huge bios. However, that
405          * code is able to correctly handle the case when adding a page
406          * to a bio fails.
407          */
408         if (dev->bdev)
409                 pages_per_rd_bio = min_t(int, SCRUB_PAGES_PER_RD_BIO,
410                                          bio_get_nr_vecs(dev->bdev));
411         else
412                 pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
413         sctx = kzalloc(sizeof(*sctx), GFP_NOFS);
414         if (!sctx)
415                 goto nomem;
416         sctx->is_dev_replace = is_dev_replace;
417         sctx->pages_per_rd_bio = pages_per_rd_bio;
418         sctx->curr = -1;
419         sctx->dev_root = dev->dev_root;
420         for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
421                 struct scrub_bio *sbio;
422
423                 sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
424                 if (!sbio)
425                         goto nomem;
426                 sctx->bios[i] = sbio;
427
428                 sbio->index = i;
429                 sbio->sctx = sctx;
430                 sbio->page_count = 0;
431                 btrfs_init_work(&sbio->work, scrub_bio_end_io_worker,
432                                 NULL, NULL);
433
434                 if (i != SCRUB_BIOS_PER_SCTX - 1)
435                         sctx->bios[i]->next_free = i + 1;
436                 else
437                         sctx->bios[i]->next_free = -1;
438         }
439         sctx->first_free = 0;
440         sctx->nodesize = dev->dev_root->nodesize;
441         sctx->leafsize = dev->dev_root->leafsize;
442         sctx->sectorsize = dev->dev_root->sectorsize;
443         atomic_set(&sctx->bios_in_flight, 0);
444         atomic_set(&sctx->workers_pending, 0);
445         atomic_set(&sctx->cancel_req, 0);
446         sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
447         INIT_LIST_HEAD(&sctx->csum_list);
448
449         spin_lock_init(&sctx->list_lock);
450         spin_lock_init(&sctx->stat_lock);
451         init_waitqueue_head(&sctx->list_wait);
452
453         ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
454                                  fs_info->dev_replace.tgtdev, is_dev_replace);
455         if (ret) {
456                 scrub_free_ctx(sctx);
457                 return ERR_PTR(ret);
458         }
459         return sctx;
460
461 nomem:
462         scrub_free_ctx(sctx);
463         return ERR_PTR(-ENOMEM);
464 }
465
466 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
467                                      void *warn_ctx)
468 {
469         u64 isize;
470         u32 nlink;
471         int ret;
472         int i;
473         struct extent_buffer *eb;
474         struct btrfs_inode_item *inode_item;
475         struct scrub_warning *swarn = warn_ctx;
476         struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
477         struct inode_fs_paths *ipath = NULL;
478         struct btrfs_root *local_root;
479         struct btrfs_key root_key;
480
481         root_key.objectid = root;
482         root_key.type = BTRFS_ROOT_ITEM_KEY;
483         root_key.offset = (u64)-1;
484         local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
485         if (IS_ERR(local_root)) {
486                 ret = PTR_ERR(local_root);
487                 goto err;
488         }
489
490         ret = inode_item_info(inum, 0, local_root, swarn->path);
491         if (ret) {
492                 btrfs_release_path(swarn->path);
493                 goto err;
494         }
495
496         eb = swarn->path->nodes[0];
497         inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
498                                         struct btrfs_inode_item);
499         isize = btrfs_inode_size(eb, inode_item);
500         nlink = btrfs_inode_nlink(eb, inode_item);
501         btrfs_release_path(swarn->path);
502
503         ipath = init_ipath(4096, local_root, swarn->path);
504         if (IS_ERR(ipath)) {
505                 ret = PTR_ERR(ipath);
506                 ipath = NULL;
507                 goto err;
508         }
509         ret = paths_from_inode(inum, ipath);
510
511         if (ret < 0)
512                 goto err;
513
514         /*
515          * we deliberately ignore the bit ipath might have been too small to
516          * hold all of the paths here
517          */
518         for (i = 0; i < ipath->fspath->elem_cnt; ++i)
519                 printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
520                         "%s, sector %llu, root %llu, inode %llu, offset %llu, "
521                         "length %llu, links %u (path: %s)\n", swarn->errstr,
522                         swarn->logical, rcu_str_deref(swarn->dev->name),
523                         (unsigned long long)swarn->sector, root, inum, offset,
524                         min(isize - offset, (u64)PAGE_SIZE), nlink,
525                         (char *)(unsigned long)ipath->fspath->val[i]);
526
527         free_ipath(ipath);
528         return 0;
529
530 err:
531         printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
532                 "%s, sector %llu, root %llu, inode %llu, offset %llu: path "
533                 "resolving failed with ret=%d\n", swarn->errstr,
534                 swarn->logical, rcu_str_deref(swarn->dev->name),
535                 (unsigned long long)swarn->sector, root, inum, offset, ret);
536
537         free_ipath(ipath);
538         return 0;
539 }
540
541 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
542 {
543         struct btrfs_device *dev;
544         struct btrfs_fs_info *fs_info;
545         struct btrfs_path *path;
546         struct btrfs_key found_key;
547         struct extent_buffer *eb;
548         struct btrfs_extent_item *ei;
549         struct scrub_warning swarn;
550         unsigned long ptr = 0;
551         u64 extent_item_pos;
552         u64 flags = 0;
553         u64 ref_root;
554         u32 item_size;
555         u8 ref_level;
556         const int bufsize = 4096;
557         int ret;
558
559         WARN_ON(sblock->page_count < 1);
560         dev = sblock->pagev[0]->dev;
561         fs_info = sblock->sctx->dev_root->fs_info;
562
563         path = btrfs_alloc_path();
564
565         swarn.scratch_buf = kmalloc(bufsize, GFP_NOFS);
566         swarn.msg_buf = kmalloc(bufsize, GFP_NOFS);
567         swarn.sector = (sblock->pagev[0]->physical) >> 9;
568         swarn.logical = sblock->pagev[0]->logical;
569         swarn.errstr = errstr;
570         swarn.dev = NULL;
571         swarn.msg_bufsize = bufsize;
572         swarn.scratch_bufsize = bufsize;
573
574         if (!path || !swarn.scratch_buf || !swarn.msg_buf)
575                 goto out;
576
577         ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
578                                   &flags);
579         if (ret < 0)
580                 goto out;
581
582         extent_item_pos = swarn.logical - found_key.objectid;
583         swarn.extent_item_size = found_key.offset;
584
585         eb = path->nodes[0];
586         ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
587         item_size = btrfs_item_size_nr(eb, path->slots[0]);
588
589         if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
590                 do {
591                         ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
592                                                       item_size, &ref_root,
593                                                       &ref_level);
594                         printk_in_rcu(KERN_WARNING
595                                 "BTRFS: %s at logical %llu on dev %s, "
596                                 "sector %llu: metadata %s (level %d) in tree "
597                                 "%llu\n", errstr, swarn.logical,
598                                 rcu_str_deref(dev->name),
599                                 (unsigned long long)swarn.sector,
600                                 ref_level ? "node" : "leaf",
601                                 ret < 0 ? -1 : ref_level,
602                                 ret < 0 ? -1 : ref_root);
603                 } while (ret != 1);
604                 btrfs_release_path(path);
605         } else {
606                 btrfs_release_path(path);
607                 swarn.path = path;
608                 swarn.dev = dev;
609                 iterate_extent_inodes(fs_info, found_key.objectid,
610                                         extent_item_pos, 1,
611                                         scrub_print_warning_inode, &swarn);
612         }
613
614 out:
615         btrfs_free_path(path);
616         kfree(swarn.scratch_buf);
617         kfree(swarn.msg_buf);
618 }
619
620 static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
621 {
622         struct page *page = NULL;
623         unsigned long index;
624         struct scrub_fixup_nodatasum *fixup = fixup_ctx;
625         int ret;
626         int corrected = 0;
627         struct btrfs_key key;
628         struct inode *inode = NULL;
629         struct btrfs_fs_info *fs_info;
630         u64 end = offset + PAGE_SIZE - 1;
631         struct btrfs_root *local_root;
632         int srcu_index;
633
634         key.objectid = root;
635         key.type = BTRFS_ROOT_ITEM_KEY;
636         key.offset = (u64)-1;
637
638         fs_info = fixup->root->fs_info;
639         srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
640
641         local_root = btrfs_read_fs_root_no_name(fs_info, &key);
642         if (IS_ERR(local_root)) {
643                 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
644                 return PTR_ERR(local_root);
645         }
646
647         key.type = BTRFS_INODE_ITEM_KEY;
648         key.objectid = inum;
649         key.offset = 0;
650         inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
651         srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
652         if (IS_ERR(inode))
653                 return PTR_ERR(inode);
654
655         index = offset >> PAGE_CACHE_SHIFT;
656
657         page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
658         if (!page) {
659                 ret = -ENOMEM;
660                 goto out;
661         }
662
663         if (PageUptodate(page)) {
664                 if (PageDirty(page)) {
665                         /*
666                          * we need to write the data to the defect sector. the
667                          * data that was in that sector is not in memory,
668                          * because the page was modified. we must not write the
669                          * modified page to that sector.
670                          *
671                          * TODO: what could be done here: wait for the delalloc
672                          *       runner to write out that page (might involve
673                          *       COW) and see whether the sector is still
674                          *       referenced afterwards.
675                          *
676                          * For the meantime, we'll treat this error
677                          * incorrectable, although there is a chance that a
678                          * later scrub will find the bad sector again and that
679                          * there's no dirty page in memory, then.
680                          */
681                         ret = -EIO;
682                         goto out;
683                 }
684                 fs_info = BTRFS_I(inode)->root->fs_info;
685                 ret = repair_io_failure(fs_info, offset, PAGE_SIZE,
686                                         fixup->logical, page,
687                                         fixup->mirror_num);
688                 unlock_page(page);
689                 corrected = !ret;
690         } else {
691                 /*
692                  * we need to get good data first. the general readpage path
693                  * will call repair_io_failure for us, we just have to make
694                  * sure we read the bad mirror.
695                  */
696                 ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
697                                         EXTENT_DAMAGED, GFP_NOFS);
698                 if (ret) {
699                         /* set_extent_bits should give proper error */
700                         WARN_ON(ret > 0);
701                         if (ret > 0)
702                                 ret = -EFAULT;
703                         goto out;
704                 }
705
706                 ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
707                                                 btrfs_get_extent,
708                                                 fixup->mirror_num);
709                 wait_on_page_locked(page);
710
711                 corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
712                                                 end, EXTENT_DAMAGED, 0, NULL);
713                 if (!corrected)
714                         clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
715                                                 EXTENT_DAMAGED, GFP_NOFS);
716         }
717
718 out:
719         if (page)
720                 put_page(page);
721
722         iput(inode);
723
724         if (ret < 0)
725                 return ret;
726
727         if (ret == 0 && corrected) {
728                 /*
729                  * we only need to call readpage for one of the inodes belonging
730                  * to this extent. so make iterate_extent_inodes stop
731                  */
732                 return 1;
733         }
734
735         return -EIO;
736 }
737
738 static void scrub_fixup_nodatasum(struct btrfs_work *work)
739 {
740         int ret;
741         struct scrub_fixup_nodatasum *fixup;
742         struct scrub_ctx *sctx;
743         struct btrfs_trans_handle *trans = NULL;
744         struct btrfs_path *path;
745         int uncorrectable = 0;
746
747         fixup = container_of(work, struct scrub_fixup_nodatasum, work);
748         sctx = fixup->sctx;
749
750         path = btrfs_alloc_path();
751         if (!path) {
752                 spin_lock(&sctx->stat_lock);
753                 ++sctx->stat.malloc_errors;
754                 spin_unlock(&sctx->stat_lock);
755                 uncorrectable = 1;
756                 goto out;
757         }
758
759         trans = btrfs_join_transaction(fixup->root);
760         if (IS_ERR(trans)) {
761                 uncorrectable = 1;
762                 goto out;
763         }
764
765         /*
766          * the idea is to trigger a regular read through the standard path. we
767          * read a page from the (failed) logical address by specifying the
768          * corresponding copynum of the failed sector. thus, that readpage is
769          * expected to fail.
770          * that is the point where on-the-fly error correction will kick in
771          * (once it's finished) and rewrite the failed sector if a good copy
772          * can be found.
773          */
774         ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
775                                                 path, scrub_fixup_readpage,
776                                                 fixup);
777         if (ret < 0) {
778                 uncorrectable = 1;
779                 goto out;
780         }
781         WARN_ON(ret != 1);
782
783         spin_lock(&sctx->stat_lock);
784         ++sctx->stat.corrected_errors;
785         spin_unlock(&sctx->stat_lock);
786
787 out:
788         if (trans && !IS_ERR(trans))
789                 btrfs_end_transaction(trans, fixup->root);
790         if (uncorrectable) {
791                 spin_lock(&sctx->stat_lock);
792                 ++sctx->stat.uncorrectable_errors;
793                 spin_unlock(&sctx->stat_lock);
794                 btrfs_dev_replace_stats_inc(
795                         &sctx->dev_root->fs_info->dev_replace.
796                         num_uncorrectable_read_errors);
797                 printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
798                     "unable to fixup (nodatasum) error at logical %llu on dev %s\n",
799                         fixup->logical, rcu_str_deref(fixup->dev->name));
800         }
801
802         btrfs_free_path(path);
803         kfree(fixup);
804
805         scrub_pending_trans_workers_dec(sctx);
806 }
807
808 /*
809  * scrub_handle_errored_block gets called when either verification of the
810  * pages failed or the bio failed to read, e.g. with EIO. In the latter
811  * case, this function handles all pages in the bio, even though only one
812  * may be bad.
813  * The goal of this function is to repair the errored block by using the
814  * contents of one of the mirrors.
815  */
816 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
817 {
818         struct scrub_ctx *sctx = sblock_to_check->sctx;
819         struct btrfs_device *dev;
820         struct btrfs_fs_info *fs_info;
821         u64 length;
822         u64 logical;
823         u64 generation;
824         unsigned int failed_mirror_index;
825         unsigned int is_metadata;
826         unsigned int have_csum;
827         u8 *csum;
828         struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
829         struct scrub_block *sblock_bad;
830         int ret;
831         int mirror_index;
832         int page_num;
833         int success;
834         static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
835                                       DEFAULT_RATELIMIT_BURST);
836
837         BUG_ON(sblock_to_check->page_count < 1);
838         fs_info = sctx->dev_root->fs_info;
839         if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
840                 /*
841                  * if we find an error in a super block, we just report it.
842                  * They will get written with the next transaction commit
843                  * anyway
844                  */
845                 spin_lock(&sctx->stat_lock);
846                 ++sctx->stat.super_errors;
847                 spin_unlock(&sctx->stat_lock);
848                 return 0;
849         }
850         length = sblock_to_check->page_count * PAGE_SIZE;
851         logical = sblock_to_check->pagev[0]->logical;
852         generation = sblock_to_check->pagev[0]->generation;
853         BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
854         failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
855         is_metadata = !(sblock_to_check->pagev[0]->flags &
856                         BTRFS_EXTENT_FLAG_DATA);
857         have_csum = sblock_to_check->pagev[0]->have_csum;
858         csum = sblock_to_check->pagev[0]->csum;
859         dev = sblock_to_check->pagev[0]->dev;
860
861         if (sctx->is_dev_replace && !is_metadata && !have_csum) {
862                 sblocks_for_recheck = NULL;
863                 goto nodatasum_case;
864         }
865
866         /*
867          * read all mirrors one after the other. This includes to
868          * re-read the extent or metadata block that failed (that was
869          * the cause that this fixup code is called) another time,
870          * page by page this time in order to know which pages
871          * caused I/O errors and which ones are good (for all mirrors).
872          * It is the goal to handle the situation when more than one
873          * mirror contains I/O errors, but the errors do not
874          * overlap, i.e. the data can be repaired by selecting the
875          * pages from those mirrors without I/O error on the
876          * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
877          * would be that mirror #1 has an I/O error on the first page,
878          * the second page is good, and mirror #2 has an I/O error on
879          * the second page, but the first page is good.
880          * Then the first page of the first mirror can be repaired by
881          * taking the first page of the second mirror, and the
882          * second page of the second mirror can be repaired by
883          * copying the contents of the 2nd page of the 1st mirror.
884          * One more note: if the pages of one mirror contain I/O
885          * errors, the checksum cannot be verified. In order to get
886          * the best data for repairing, the first attempt is to find
887          * a mirror without I/O errors and with a validated checksum.
888          * Only if this is not possible, the pages are picked from
889          * mirrors with I/O errors without considering the checksum.
890          * If the latter is the case, at the end, the checksum of the
891          * repaired area is verified in order to correctly maintain
892          * the statistics.
893          */
894
895         sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS *
896                                      sizeof(*sblocks_for_recheck),
897                                      GFP_NOFS);
898         if (!sblocks_for_recheck) {
899                 spin_lock(&sctx->stat_lock);
900                 sctx->stat.malloc_errors++;
901                 sctx->stat.read_errors++;
902                 sctx->stat.uncorrectable_errors++;
903                 spin_unlock(&sctx->stat_lock);
904                 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
905                 goto out;
906         }
907
908         /* setup the context, map the logical blocks and alloc the pages */
909         ret = scrub_setup_recheck_block(sctx, fs_info, sblock_to_check, length,
910                                         logical, sblocks_for_recheck);
911         if (ret) {
912                 spin_lock(&sctx->stat_lock);
913                 sctx->stat.read_errors++;
914                 sctx->stat.uncorrectable_errors++;
915                 spin_unlock(&sctx->stat_lock);
916                 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
917                 goto out;
918         }
919         BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
920         sblock_bad = sblocks_for_recheck + failed_mirror_index;
921
922         /* build and submit the bios for the failed mirror, check checksums */
923         scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
924                             csum, generation, sctx->csum_size);
925
926         if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
927             sblock_bad->no_io_error_seen) {
928                 /*
929                  * the error disappeared after reading page by page, or
930                  * the area was part of a huge bio and other parts of the
931                  * bio caused I/O errors, or the block layer merged several
932                  * read requests into one and the error is caused by a
933                  * different bio (usually one of the two latter cases is
934                  * the cause)
935                  */
936                 spin_lock(&sctx->stat_lock);
937                 sctx->stat.unverified_errors++;
938                 spin_unlock(&sctx->stat_lock);
939
940                 if (sctx->is_dev_replace)
941                         scrub_write_block_to_dev_replace(sblock_bad);
942                 goto out;
943         }
944
945         if (!sblock_bad->no_io_error_seen) {
946                 spin_lock(&sctx->stat_lock);
947                 sctx->stat.read_errors++;
948                 spin_unlock(&sctx->stat_lock);
949                 if (__ratelimit(&_rs))
950                         scrub_print_warning("i/o error", sblock_to_check);
951                 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
952         } else if (sblock_bad->checksum_error) {
953                 spin_lock(&sctx->stat_lock);
954                 sctx->stat.csum_errors++;
955                 spin_unlock(&sctx->stat_lock);
956                 if (__ratelimit(&_rs))
957                         scrub_print_warning("checksum error", sblock_to_check);
958                 btrfs_dev_stat_inc_and_print(dev,
959                                              BTRFS_DEV_STAT_CORRUPTION_ERRS);
960         } else if (sblock_bad->header_error) {
961                 spin_lock(&sctx->stat_lock);
962                 sctx->stat.verify_errors++;
963                 spin_unlock(&sctx->stat_lock);
964                 if (__ratelimit(&_rs))
965                         scrub_print_warning("checksum/header error",
966                                             sblock_to_check);
967                 if (sblock_bad->generation_error)
968                         btrfs_dev_stat_inc_and_print(dev,
969                                 BTRFS_DEV_STAT_GENERATION_ERRS);
970                 else
971                         btrfs_dev_stat_inc_and_print(dev,
972                                 BTRFS_DEV_STAT_CORRUPTION_ERRS);
973         }
974
975         if (sctx->readonly) {
976                 ASSERT(!sctx->is_dev_replace);
977                 goto out;
978         }
979
980         if (!is_metadata && !have_csum) {
981                 struct scrub_fixup_nodatasum *fixup_nodatasum;
982
983 nodatasum_case:
984                 WARN_ON(sctx->is_dev_replace);
985
986                 /*
987                  * !is_metadata and !have_csum, this means that the data
988                  * might not be COW'ed, that it might be modified
989                  * concurrently. The general strategy to work on the
990                  * commit root does not help in the case when COW is not
991                  * used.
992                  */
993                 fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
994                 if (!fixup_nodatasum)
995                         goto did_not_correct_error;
996                 fixup_nodatasum->sctx = sctx;
997                 fixup_nodatasum->dev = dev;
998                 fixup_nodatasum->logical = logical;
999                 fixup_nodatasum->root = fs_info->extent_root;
1000                 fixup_nodatasum->mirror_num = failed_mirror_index + 1;
1001                 scrub_pending_trans_workers_inc(sctx);
1002                 btrfs_init_work(&fixup_nodatasum->work, scrub_fixup_nodatasum,
1003                                 NULL, NULL);
1004                 btrfs_queue_work(fs_info->scrub_workers,
1005                                  &fixup_nodatasum->work);
1006                 goto out;
1007         }
1008
1009         /*
1010          * now build and submit the bios for the other mirrors, check
1011          * checksums.
1012          * First try to pick the mirror which is completely without I/O
1013          * errors and also does not have a checksum error.
1014          * If one is found, and if a checksum is present, the full block
1015          * that is known to contain an error is rewritten. Afterwards
1016          * the block is known to be corrected.
1017          * If a mirror is found which is completely correct, and no
1018          * checksum is present, only those pages are rewritten that had
1019          * an I/O error in the block to be repaired, since it cannot be
1020          * determined, which copy of the other pages is better (and it
1021          * could happen otherwise that a correct page would be
1022          * overwritten by a bad one).
1023          */
1024         for (mirror_index = 0;
1025              mirror_index < BTRFS_MAX_MIRRORS &&
1026              sblocks_for_recheck[mirror_index].page_count > 0;
1027              mirror_index++) {
1028                 struct scrub_block *sblock_other;
1029
1030                 if (mirror_index == failed_mirror_index)
1031                         continue;
1032                 sblock_other = sblocks_for_recheck + mirror_index;
1033
1034                 /* build and submit the bios, check checksums */
1035                 scrub_recheck_block(fs_info, sblock_other, is_metadata,
1036                                     have_csum, csum, generation,
1037                                     sctx->csum_size);
1038
1039                 if (!sblock_other->header_error &&
1040                     !sblock_other->checksum_error &&
1041                     sblock_other->no_io_error_seen) {
1042                         if (sctx->is_dev_replace) {
1043                                 scrub_write_block_to_dev_replace(sblock_other);
1044                         } else {
1045                                 int force_write = is_metadata || have_csum;
1046
1047                                 ret = scrub_repair_block_from_good_copy(
1048                                                 sblock_bad, sblock_other,
1049                                                 force_write);
1050                         }
1051                         if (0 == ret)
1052                                 goto corrected_error;
1053                 }
1054         }
1055
1056         /*
1057          * for dev_replace, pick good pages and write to the target device.
1058          */
1059         if (sctx->is_dev_replace) {
1060                 success = 1;
1061                 for (page_num = 0; page_num < sblock_bad->page_count;
1062                      page_num++) {
1063                         int sub_success;
1064
1065                         sub_success = 0;
1066                         for (mirror_index = 0;
1067                              mirror_index < BTRFS_MAX_MIRRORS &&
1068                              sblocks_for_recheck[mirror_index].page_count > 0;
1069                              mirror_index++) {
1070                                 struct scrub_block *sblock_other =
1071                                         sblocks_for_recheck + mirror_index;
1072                                 struct scrub_page *page_other =
1073                                         sblock_other->pagev[page_num];
1074
1075                                 if (!page_other->io_error) {
1076                                         ret = scrub_write_page_to_dev_replace(
1077                                                         sblock_other, page_num);
1078                                         if (ret == 0) {
1079                                                 /* succeeded for this page */
1080                                                 sub_success = 1;
1081                                                 break;
1082                                         } else {
1083                                                 btrfs_dev_replace_stats_inc(
1084                                                         &sctx->dev_root->
1085                                                         fs_info->dev_replace.
1086                                                         num_write_errors);
1087                                         }
1088                                 }
1089                         }
1090
1091                         if (!sub_success) {
1092                                 /*
1093                                  * did not find a mirror to fetch the page
1094                                  * from. scrub_write_page_to_dev_replace()
1095                                  * handles this case (page->io_error), by
1096                                  * filling the block with zeros before
1097                                  * submitting the write request
1098                                  */
1099                                 success = 0;
1100                                 ret = scrub_write_page_to_dev_replace(
1101                                                 sblock_bad, page_num);
1102                                 if (ret)
1103                                         btrfs_dev_replace_stats_inc(
1104                                                 &sctx->dev_root->fs_info->
1105                                                 dev_replace.num_write_errors);
1106                         }
1107                 }
1108
1109                 goto out;
1110         }
1111
1112         /*
1113          * for regular scrub, repair those pages that are errored.
1114          * In case of I/O errors in the area that is supposed to be
1115          * repaired, continue by picking good copies of those pages.
1116          * Select the good pages from mirrors to rewrite bad pages from
1117          * the area to fix. Afterwards verify the checksum of the block
1118          * that is supposed to be repaired. This verification step is
1119          * only done for the purpose of statistic counting and for the
1120          * final scrub report, whether errors remain.
1121          * A perfect algorithm could make use of the checksum and try
1122          * all possible combinations of pages from the different mirrors
1123          * until the checksum verification succeeds. For example, when
1124          * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1125          * of mirror #2 is readable but the final checksum test fails,
1126          * then the 2nd page of mirror #3 could be tried, whether now
1127          * the final checksum succeedes. But this would be a rare
1128          * exception and is therefore not implemented. At least it is
1129          * avoided that the good copy is overwritten.
1130          * A more useful improvement would be to pick the sectors
1131          * without I/O error based on sector sizes (512 bytes on legacy
1132          * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1133          * mirror could be repaired by taking 512 byte of a different
1134          * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1135          * area are unreadable.
1136          */
1137
1138         /* can only fix I/O errors from here on */
1139         if (sblock_bad->no_io_error_seen)
1140                 goto did_not_correct_error;
1141
1142         success = 1;
1143         for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1144                 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1145
1146                 if (!page_bad->io_error)
1147                         continue;
1148
1149                 for (mirror_index = 0;
1150                      mirror_index < BTRFS_MAX_MIRRORS &&
1151                      sblocks_for_recheck[mirror_index].page_count > 0;
1152                      mirror_index++) {
1153                         struct scrub_block *sblock_other = sblocks_for_recheck +
1154                                                            mirror_index;
1155                         struct scrub_page *page_other = sblock_other->pagev[
1156                                                         page_num];
1157
1158                         if (!page_other->io_error) {
1159                                 ret = scrub_repair_page_from_good_copy(
1160                                         sblock_bad, sblock_other, page_num, 0);
1161                                 if (0 == ret) {
1162                                         page_bad->io_error = 0;
1163                                         break; /* succeeded for this page */
1164                                 }
1165                         }
1166                 }
1167
1168                 if (page_bad->io_error) {
1169                         /* did not find a mirror to copy the page from */
1170                         success = 0;
1171                 }
1172         }
1173
1174         if (success) {
1175                 if (is_metadata || have_csum) {
1176                         /*
1177                          * need to verify the checksum now that all
1178                          * sectors on disk are repaired (the write
1179                          * request for data to be repaired is on its way).
1180                          * Just be lazy and use scrub_recheck_block()
1181                          * which re-reads the data before the checksum
1182                          * is verified, but most likely the data comes out
1183                          * of the page cache.
1184                          */
1185                         scrub_recheck_block(fs_info, sblock_bad,
1186                                             is_metadata, have_csum, csum,
1187                                             generation, sctx->csum_size);
1188                         if (!sblock_bad->header_error &&
1189                             !sblock_bad->checksum_error &&
1190                             sblock_bad->no_io_error_seen)
1191                                 goto corrected_error;
1192                         else
1193                                 goto did_not_correct_error;
1194                 } else {
1195 corrected_error:
1196                         spin_lock(&sctx->stat_lock);
1197                         sctx->stat.corrected_errors++;
1198                         spin_unlock(&sctx->stat_lock);
1199                         printk_ratelimited_in_rcu(KERN_ERR
1200                                 "BTRFS: fixed up error at logical %llu on dev %s\n",
1201                                 logical, rcu_str_deref(dev->name));
1202                 }
1203         } else {
1204 did_not_correct_error:
1205                 spin_lock(&sctx->stat_lock);
1206                 sctx->stat.uncorrectable_errors++;
1207                 spin_unlock(&sctx->stat_lock);
1208                 printk_ratelimited_in_rcu(KERN_ERR
1209                         "BTRFS: unable to fixup (regular) error at logical %llu on dev %s\n",
1210                         logical, rcu_str_deref(dev->name));
1211         }
1212
1213 out:
1214         if (sblocks_for_recheck) {
1215                 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1216                      mirror_index++) {
1217                         struct scrub_block *sblock = sblocks_for_recheck +
1218                                                      mirror_index;
1219                         int page_index;
1220
1221                         for (page_index = 0; page_index < sblock->page_count;
1222                              page_index++) {
1223                                 sblock->pagev[page_index]->sblock = NULL;
1224                                 scrub_page_put(sblock->pagev[page_index]);
1225                         }
1226                 }
1227                 kfree(sblocks_for_recheck);
1228         }
1229
1230         return 0;
1231 }
1232
1233 static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
1234                                      struct btrfs_fs_info *fs_info,
1235                                      struct scrub_block *original_sblock,
1236                                      u64 length, u64 logical,
1237                                      struct scrub_block *sblocks_for_recheck)
1238 {
1239         int page_index;
1240         int mirror_index;
1241         int ret;
1242
1243         /*
1244          * note: the two members ref_count and outstanding_pages
1245          * are not used (and not set) in the blocks that are used for
1246          * the recheck procedure
1247          */
1248
1249         page_index = 0;
1250         while (length > 0) {
1251                 u64 sublen = min_t(u64, length, PAGE_SIZE);
1252                 u64 mapped_length = sublen;
1253                 struct btrfs_bio *bbio = NULL;
1254
1255                 /*
1256                  * with a length of PAGE_SIZE, each returned stripe
1257                  * represents one mirror
1258                  */
1259                 ret = btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, logical,
1260                                       &mapped_length, &bbio, 0);
1261                 if (ret || !bbio || mapped_length < sublen) {
1262                         kfree(bbio);
1263                         return -EIO;
1264                 }
1265
1266                 BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO);
1267                 for (mirror_index = 0; mirror_index < (int)bbio->num_stripes;
1268                      mirror_index++) {
1269                         struct scrub_block *sblock;
1270                         struct scrub_page *page;
1271
1272                         if (mirror_index >= BTRFS_MAX_MIRRORS)
1273                                 continue;
1274
1275                         sblock = sblocks_for_recheck + mirror_index;
1276                         sblock->sctx = sctx;
1277                         page = kzalloc(sizeof(*page), GFP_NOFS);
1278                         if (!page) {
1279 leave_nomem:
1280                                 spin_lock(&sctx->stat_lock);
1281                                 sctx->stat.malloc_errors++;
1282                                 spin_unlock(&sctx->stat_lock);
1283                                 kfree(bbio);
1284                                 return -ENOMEM;
1285                         }
1286                         scrub_page_get(page);
1287                         sblock->pagev[page_index] = page;
1288                         page->logical = logical;
1289                         page->physical = bbio->stripes[mirror_index].physical;
1290                         BUG_ON(page_index >= original_sblock->page_count);
1291                         page->physical_for_dev_replace =
1292                                 original_sblock->pagev[page_index]->
1293                                 physical_for_dev_replace;
1294                         /* for missing devices, dev->bdev is NULL */
1295                         page->dev = bbio->stripes[mirror_index].dev;
1296                         page->mirror_num = mirror_index + 1;
1297                         sblock->page_count++;
1298                         page->page = alloc_page(GFP_NOFS);
1299                         if (!page->page)
1300                                 goto leave_nomem;
1301                 }
1302                 kfree(bbio);
1303                 length -= sublen;
1304                 logical += sublen;
1305                 page_index++;
1306         }
1307
1308         return 0;
1309 }
1310
1311 /*
1312  * this function will check the on disk data for checksum errors, header
1313  * errors and read I/O errors. If any I/O errors happen, the exact pages
1314  * which are errored are marked as being bad. The goal is to enable scrub
1315  * to take those pages that are not errored from all the mirrors so that
1316  * the pages that are errored in the just handled mirror can be repaired.
1317  */
1318 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1319                                 struct scrub_block *sblock, int is_metadata,
1320                                 int have_csum, u8 *csum, u64 generation,
1321                                 u16 csum_size)
1322 {
1323         int page_num;
1324
1325         sblock->no_io_error_seen = 1;
1326         sblock->header_error = 0;
1327         sblock->checksum_error = 0;
1328
1329         for (page_num = 0; page_num < sblock->page_count; page_num++) {
1330                 struct bio *bio;
1331                 struct scrub_page *page = sblock->pagev[page_num];
1332
1333                 if (page->dev->bdev == NULL) {
1334                         page->io_error = 1;
1335                         sblock->no_io_error_seen = 0;
1336                         continue;
1337                 }
1338
1339                 WARN_ON(!page->page);
1340                 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1341                 if (!bio) {
1342                         page->io_error = 1;
1343                         sblock->no_io_error_seen = 0;
1344                         continue;
1345                 }
1346                 bio->bi_bdev = page->dev->bdev;
1347                 bio->bi_iter.bi_sector = page->physical >> 9;
1348
1349                 bio_add_page(bio, page->page, PAGE_SIZE, 0);
1350                 if (btrfsic_submit_bio_wait(READ, bio))
1351                         sblock->no_io_error_seen = 0;
1352
1353                 bio_put(bio);
1354         }
1355
1356         if (sblock->no_io_error_seen)
1357                 scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
1358                                              have_csum, csum, generation,
1359                                              csum_size);
1360
1361         return;
1362 }
1363
1364 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
1365                                          struct scrub_block *sblock,
1366                                          int is_metadata, int have_csum,
1367                                          const u8 *csum, u64 generation,
1368                                          u16 csum_size)
1369 {
1370         int page_num;
1371         u8 calculated_csum[BTRFS_CSUM_SIZE];
1372         u32 crc = ~(u32)0;
1373         void *mapped_buffer;
1374
1375         WARN_ON(!sblock->pagev[0]->page);
1376         if (is_metadata) {
1377                 struct btrfs_header *h;
1378
1379                 mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1380                 h = (struct btrfs_header *)mapped_buffer;
1381
1382                 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h) ||
1383                     memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE) ||
1384                     memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1385                            BTRFS_UUID_SIZE)) {
1386                         sblock->header_error = 1;
1387                 } else if (generation != btrfs_stack_header_generation(h)) {
1388                         sblock->header_error = 1;
1389                         sblock->generation_error = 1;
1390                 }
1391                 csum = h->csum;
1392         } else {
1393                 if (!have_csum)
1394                         return;
1395
1396                 mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1397         }
1398
1399         for (page_num = 0;;) {
1400                 if (page_num == 0 && is_metadata)
1401                         crc = btrfs_csum_data(
1402                                 ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
1403                                 crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
1404                 else
1405                         crc = btrfs_csum_data(mapped_buffer, crc, PAGE_SIZE);
1406
1407                 kunmap_atomic(mapped_buffer);
1408                 page_num++;
1409                 if (page_num >= sblock->page_count)
1410                         break;
1411                 WARN_ON(!sblock->pagev[page_num]->page);
1412
1413                 mapped_buffer = kmap_atomic(sblock->pagev[page_num]->page);
1414         }
1415
1416         btrfs_csum_final(crc, calculated_csum);
1417         if (memcmp(calculated_csum, csum, csum_size))
1418                 sblock->checksum_error = 1;
1419 }
1420
1421 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1422                                              struct scrub_block *sblock_good,
1423                                              int force_write)
1424 {
1425         int page_num;
1426         int ret = 0;
1427
1428         for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1429                 int ret_sub;
1430
1431                 ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1432                                                            sblock_good,
1433                                                            page_num,
1434                                                            force_write);
1435                 if (ret_sub)
1436                         ret = ret_sub;
1437         }
1438
1439         return ret;
1440 }
1441
1442 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1443                                             struct scrub_block *sblock_good,
1444                                             int page_num, int force_write)
1445 {
1446         struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1447         struct scrub_page *page_good = sblock_good->pagev[page_num];
1448
1449         BUG_ON(page_bad->page == NULL);
1450         BUG_ON(page_good->page == NULL);
1451         if (force_write || sblock_bad->header_error ||
1452             sblock_bad->checksum_error || page_bad->io_error) {
1453                 struct bio *bio;
1454                 int ret;
1455
1456                 if (!page_bad->dev->bdev) {
1457                         printk_ratelimited(KERN_WARNING "BTRFS: "
1458                                 "scrub_repair_page_from_good_copy(bdev == NULL) "
1459                                 "is unexpected!\n");
1460                         return -EIO;
1461                 }
1462
1463                 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1464                 if (!bio)
1465                         return -EIO;
1466                 bio->bi_bdev = page_bad->dev->bdev;
1467                 bio->bi_iter.bi_sector = page_bad->physical >> 9;
1468
1469                 ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1470                 if (PAGE_SIZE != ret) {
1471                         bio_put(bio);
1472                         return -EIO;
1473                 }
1474
1475                 if (btrfsic_submit_bio_wait(WRITE, bio)) {
1476                         btrfs_dev_stat_inc_and_print(page_bad->dev,
1477                                 BTRFS_DEV_STAT_WRITE_ERRS);
1478                         btrfs_dev_replace_stats_inc(
1479                                 &sblock_bad->sctx->dev_root->fs_info->
1480                                 dev_replace.num_write_errors);
1481                         bio_put(bio);
1482                         return -EIO;
1483                 }
1484                 bio_put(bio);
1485         }
1486
1487         return 0;
1488 }
1489
1490 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1491 {
1492         int page_num;
1493
1494         for (page_num = 0; page_num < sblock->page_count; page_num++) {
1495                 int ret;
1496
1497                 ret = scrub_write_page_to_dev_replace(sblock, page_num);
1498                 if (ret)
1499                         btrfs_dev_replace_stats_inc(
1500                                 &sblock->sctx->dev_root->fs_info->dev_replace.
1501                                 num_write_errors);
1502         }
1503 }
1504
1505 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1506                                            int page_num)
1507 {
1508         struct scrub_page *spage = sblock->pagev[page_num];
1509
1510         BUG_ON(spage->page == NULL);
1511         if (spage->io_error) {
1512                 void *mapped_buffer = kmap_atomic(spage->page);
1513
1514                 memset(mapped_buffer, 0, PAGE_CACHE_SIZE);
1515                 flush_dcache_page(spage->page);
1516                 kunmap_atomic(mapped_buffer);
1517         }
1518         return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1519 }
1520
1521 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1522                                     struct scrub_page *spage)
1523 {
1524         struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1525         struct scrub_bio *sbio;
1526         int ret;
1527
1528         mutex_lock(&wr_ctx->wr_lock);
1529 again:
1530         if (!wr_ctx->wr_curr_bio) {
1531                 wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
1532                                               GFP_NOFS);
1533                 if (!wr_ctx->wr_curr_bio) {
1534                         mutex_unlock(&wr_ctx->wr_lock);
1535                         return -ENOMEM;
1536                 }
1537                 wr_ctx->wr_curr_bio->sctx = sctx;
1538                 wr_ctx->wr_curr_bio->page_count = 0;
1539         }
1540         sbio = wr_ctx->wr_curr_bio;
1541         if (sbio->page_count == 0) {
1542                 struct bio *bio;
1543
1544                 sbio->physical = spage->physical_for_dev_replace;
1545                 sbio->logical = spage->logical;
1546                 sbio->dev = wr_ctx->tgtdev;
1547                 bio = sbio->bio;
1548                 if (!bio) {
1549                         bio = btrfs_io_bio_alloc(GFP_NOFS, wr_ctx->pages_per_wr_bio);
1550                         if (!bio) {
1551                                 mutex_unlock(&wr_ctx->wr_lock);
1552                                 return -ENOMEM;
1553                         }
1554                         sbio->bio = bio;
1555                 }
1556
1557                 bio->bi_private = sbio;
1558                 bio->bi_end_io = scrub_wr_bio_end_io;
1559                 bio->bi_bdev = sbio->dev->bdev;
1560                 bio->bi_iter.bi_sector = sbio->physical >> 9;
1561                 sbio->err = 0;
1562         } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1563                    spage->physical_for_dev_replace ||
1564                    sbio->logical + sbio->page_count * PAGE_SIZE !=
1565                    spage->logical) {
1566                 scrub_wr_submit(sctx);
1567                 goto again;
1568         }
1569
1570         ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1571         if (ret != PAGE_SIZE) {
1572                 if (sbio->page_count < 1) {
1573                         bio_put(sbio->bio);
1574                         sbio->bio = NULL;
1575                         mutex_unlock(&wr_ctx->wr_lock);
1576                         return -EIO;
1577                 }
1578                 scrub_wr_submit(sctx);
1579                 goto again;
1580         }
1581
1582         sbio->pagev[sbio->page_count] = spage;
1583         scrub_page_get(spage);
1584         sbio->page_count++;
1585         if (sbio->page_count == wr_ctx->pages_per_wr_bio)
1586                 scrub_wr_submit(sctx);
1587         mutex_unlock(&wr_ctx->wr_lock);
1588
1589         return 0;
1590 }
1591
1592 static void scrub_wr_submit(struct scrub_ctx *sctx)
1593 {
1594         struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1595         struct scrub_bio *sbio;
1596
1597         if (!wr_ctx->wr_curr_bio)
1598                 return;
1599
1600         sbio = wr_ctx->wr_curr_bio;
1601         wr_ctx->wr_curr_bio = NULL;
1602         WARN_ON(!sbio->bio->bi_bdev);
1603         scrub_pending_bio_inc(sctx);
1604         /* process all writes in a single worker thread. Then the block layer
1605          * orders the requests before sending them to the driver which
1606          * doubled the write performance on spinning disks when measured
1607          * with Linux 3.5 */
1608         btrfsic_submit_bio(WRITE, sbio->bio);
1609 }
1610
1611 static void scrub_wr_bio_end_io(struct bio *bio, int err)
1612 {
1613         struct scrub_bio *sbio = bio->bi_private;
1614         struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
1615
1616         sbio->err = err;
1617         sbio->bio = bio;
1618
1619         btrfs_init_work(&sbio->work, scrub_wr_bio_end_io_worker, NULL, NULL);
1620         btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1621 }
1622
1623 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1624 {
1625         struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1626         struct scrub_ctx *sctx = sbio->sctx;
1627         int i;
1628
1629         WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1630         if (sbio->err) {
1631                 struct btrfs_dev_replace *dev_replace =
1632                         &sbio->sctx->dev_root->fs_info->dev_replace;
1633
1634                 for (i = 0; i < sbio->page_count; i++) {
1635                         struct scrub_page *spage = sbio->pagev[i];
1636
1637                         spage->io_error = 1;
1638                         btrfs_dev_replace_stats_inc(&dev_replace->
1639                                                     num_write_errors);
1640                 }
1641         }
1642
1643         for (i = 0; i < sbio->page_count; i++)
1644                 scrub_page_put(sbio->pagev[i]);
1645
1646         bio_put(sbio->bio);
1647         kfree(sbio);
1648         scrub_pending_bio_dec(sctx);
1649 }
1650
1651 static int scrub_checksum(struct scrub_block *sblock)
1652 {
1653         u64 flags;
1654         int ret;
1655
1656         WARN_ON(sblock->page_count < 1);
1657         flags = sblock->pagev[0]->flags;
1658         ret = 0;
1659         if (flags & BTRFS_EXTENT_FLAG_DATA)
1660                 ret = scrub_checksum_data(sblock);
1661         else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1662                 ret = scrub_checksum_tree_block(sblock);
1663         else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1664                 (void)scrub_checksum_super(sblock);
1665         else
1666                 WARN_ON(1);
1667         if (ret)
1668                 scrub_handle_errored_block(sblock);
1669
1670         return ret;
1671 }
1672
1673 static int scrub_checksum_data(struct scrub_block *sblock)
1674 {
1675         struct scrub_ctx *sctx = sblock->sctx;
1676         u8 csum[BTRFS_CSUM_SIZE];
1677         u8 *on_disk_csum;
1678         struct page *page;
1679         void *buffer;
1680         u32 crc = ~(u32)0;
1681         int fail = 0;
1682         u64 len;
1683         int index;
1684
1685         BUG_ON(sblock->page_count < 1);
1686         if (!sblock->pagev[0]->have_csum)
1687                 return 0;
1688
1689         on_disk_csum = sblock->pagev[0]->csum;
1690         page = sblock->pagev[0]->page;
1691         buffer = kmap_atomic(page);
1692
1693         len = sctx->sectorsize;
1694         index = 0;
1695         for (;;) {
1696                 u64 l = min_t(u64, len, PAGE_SIZE);
1697
1698                 crc = btrfs_csum_data(buffer, crc, l);
1699                 kunmap_atomic(buffer);
1700                 len -= l;
1701                 if (len == 0)
1702                         break;
1703                 index++;
1704                 BUG_ON(index >= sblock->page_count);
1705                 BUG_ON(!sblock->pagev[index]->page);
1706                 page = sblock->pagev[index]->page;
1707                 buffer = kmap_atomic(page);
1708         }
1709
1710         btrfs_csum_final(crc, csum);
1711         if (memcmp(csum, on_disk_csum, sctx->csum_size))
1712                 fail = 1;
1713
1714         return fail;
1715 }
1716
1717 static int scrub_checksum_tree_block(struct scrub_block *sblock)
1718 {
1719         struct scrub_ctx *sctx = sblock->sctx;
1720         struct btrfs_header *h;
1721         struct btrfs_root *root = sctx->dev_root;
1722         struct btrfs_fs_info *fs_info = root->fs_info;
1723         u8 calculated_csum[BTRFS_CSUM_SIZE];
1724         u8 on_disk_csum[BTRFS_CSUM_SIZE];
1725         struct page *page;
1726         void *mapped_buffer;
1727         u64 mapped_size;
1728         void *p;
1729         u32 crc = ~(u32)0;
1730         int fail = 0;
1731         int crc_fail = 0;
1732         u64 len;
1733         int index;
1734
1735         BUG_ON(sblock->page_count < 1);
1736         page = sblock->pagev[0]->page;
1737         mapped_buffer = kmap_atomic(page);
1738         h = (struct btrfs_header *)mapped_buffer;
1739         memcpy(on_disk_csum, h->csum, sctx->csum_size);
1740
1741         /*
1742          * we don't use the getter functions here, as we
1743          * a) don't have an extent buffer and
1744          * b) the page is already kmapped
1745          */
1746
1747         if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
1748                 ++fail;
1749
1750         if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h))
1751                 ++fail;
1752
1753         if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1754                 ++fail;
1755
1756         if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1757                    BTRFS_UUID_SIZE))
1758                 ++fail;
1759
1760         WARN_ON(sctx->nodesize != sctx->leafsize);
1761         len = sctx->nodesize - BTRFS_CSUM_SIZE;
1762         mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1763         p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1764         index = 0;
1765         for (;;) {
1766                 u64 l = min_t(u64, len, mapped_size);
1767
1768                 crc = btrfs_csum_data(p, crc, l);
1769                 kunmap_atomic(mapped_buffer);
1770                 len -= l;
1771                 if (len == 0)
1772                         break;
1773                 index++;
1774                 BUG_ON(index >= sblock->page_count);
1775                 BUG_ON(!sblock->pagev[index]->page);
1776                 page = sblock->pagev[index]->page;
1777                 mapped_buffer = kmap_atomic(page);
1778                 mapped_size = PAGE_SIZE;
1779                 p = mapped_buffer;
1780         }
1781
1782         btrfs_csum_final(crc, calculated_csum);
1783         if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1784                 ++crc_fail;
1785
1786         return fail || crc_fail;
1787 }
1788
1789 static int scrub_checksum_super(struct scrub_block *sblock)
1790 {
1791         struct btrfs_super_block *s;
1792         struct scrub_ctx *sctx = sblock->sctx;
1793         struct btrfs_root *root = sctx->dev_root;
1794         struct btrfs_fs_info *fs_info = root->fs_info;
1795         u8 calculated_csum[BTRFS_CSUM_SIZE];
1796         u8 on_disk_csum[BTRFS_CSUM_SIZE];
1797         struct page *page;
1798         void *mapped_buffer;
1799         u64 mapped_size;
1800         void *p;
1801         u32 crc = ~(u32)0;
1802         int fail_gen = 0;
1803         int fail_cor = 0;
1804         u64 len;
1805         int index;
1806
1807         BUG_ON(sblock->page_count < 1);
1808         page = sblock->pagev[0]->page;
1809         mapped_buffer = kmap_atomic(page);
1810         s = (struct btrfs_super_block *)mapped_buffer;
1811         memcpy(on_disk_csum, s->csum, sctx->csum_size);
1812
1813         if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1814                 ++fail_cor;
1815
1816         if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1817                 ++fail_gen;
1818
1819         if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1820                 ++fail_cor;
1821
1822         len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1823         mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1824         p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1825         index = 0;
1826         for (;;) {
1827                 u64 l = min_t(u64, len, mapped_size);
1828
1829                 crc = btrfs_csum_data(p, crc, l);
1830                 kunmap_atomic(mapped_buffer);
1831                 len -= l;
1832                 if (len == 0)
1833                         break;
1834                 index++;
1835                 BUG_ON(index >= sblock->page_count);
1836                 BUG_ON(!sblock->pagev[index]->page);
1837                 page = sblock->pagev[index]->page;
1838                 mapped_buffer = kmap_atomic(page);
1839                 mapped_size = PAGE_SIZE;
1840                 p = mapped_buffer;
1841         }
1842
1843         btrfs_csum_final(crc, calculated_csum);
1844         if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1845                 ++fail_cor;
1846
1847         if (fail_cor + fail_gen) {
1848                 /*
1849                  * if we find an error in a super block, we just report it.
1850                  * They will get written with the next transaction commit
1851                  * anyway
1852                  */
1853                 spin_lock(&sctx->stat_lock);
1854                 ++sctx->stat.super_errors;
1855                 spin_unlock(&sctx->stat_lock);
1856                 if (fail_cor)
1857                         btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1858                                 BTRFS_DEV_STAT_CORRUPTION_ERRS);
1859                 else
1860                         btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1861                                 BTRFS_DEV_STAT_GENERATION_ERRS);
1862         }
1863
1864         return fail_cor + fail_gen;
1865 }
1866
1867 static void scrub_block_get(struct scrub_block *sblock)
1868 {
1869         atomic_inc(&sblock->ref_count);
1870 }
1871
1872 static void scrub_block_put(struct scrub_block *sblock)
1873 {
1874         if (atomic_dec_and_test(&sblock->ref_count)) {
1875                 int i;
1876
1877                 for (i = 0; i < sblock->page_count; i++)
1878                         scrub_page_put(sblock->pagev[i]);
1879                 kfree(sblock);
1880         }
1881 }
1882
1883 static void scrub_page_get(struct scrub_page *spage)
1884 {
1885         atomic_inc(&spage->ref_count);
1886 }
1887
1888 static void scrub_page_put(struct scrub_page *spage)
1889 {
1890         if (atomic_dec_and_test(&spage->ref_count)) {
1891                 if (spage->page)
1892                         __free_page(spage->page);
1893                 kfree(spage);
1894         }
1895 }
1896
1897 static void scrub_submit(struct scrub_ctx *sctx)
1898 {
1899         struct scrub_bio *sbio;
1900
1901         if (sctx->curr == -1)
1902                 return;
1903
1904         sbio = sctx->bios[sctx->curr];
1905         sctx->curr = -1;
1906         scrub_pending_bio_inc(sctx);
1907
1908         if (!sbio->bio->bi_bdev) {
1909                 /*
1910                  * this case should not happen. If btrfs_map_block() is
1911                  * wrong, it could happen for dev-replace operations on
1912                  * missing devices when no mirrors are available, but in
1913                  * this case it should already fail the mount.
1914                  * This case is handled correctly (but _very_ slowly).
1915                  */
1916                 printk_ratelimited(KERN_WARNING
1917                         "BTRFS: scrub_submit(bio bdev == NULL) is unexpected!\n");
1918                 bio_endio(sbio->bio, -EIO);
1919         } else {
1920                 btrfsic_submit_bio(READ, sbio->bio);
1921         }
1922 }
1923
1924 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
1925                                     struct scrub_page *spage)
1926 {
1927         struct scrub_block *sblock = spage->sblock;
1928         struct scrub_bio *sbio;
1929         int ret;
1930
1931 again:
1932         /*
1933          * grab a fresh bio or wait for one to become available
1934          */
1935         while (sctx->curr == -1) {
1936                 spin_lock(&sctx->list_lock);
1937                 sctx->curr = sctx->first_free;
1938                 if (sctx->curr != -1) {
1939                         sctx->first_free = sctx->bios[sctx->curr]->next_free;
1940                         sctx->bios[sctx->curr]->next_free = -1;
1941                         sctx->bios[sctx->curr]->page_count = 0;
1942                         spin_unlock(&sctx->list_lock);
1943                 } else {
1944                         spin_unlock(&sctx->list_lock);
1945                         wait_event(sctx->list_wait, sctx->first_free != -1);
1946                 }
1947         }
1948         sbio = sctx->bios[sctx->curr];
1949         if (sbio->page_count == 0) {
1950                 struct bio *bio;
1951
1952                 sbio->physical = spage->physical;
1953                 sbio->logical = spage->logical;
1954                 sbio->dev = spage->dev;
1955                 bio = sbio->bio;
1956                 if (!bio) {
1957                         bio = btrfs_io_bio_alloc(GFP_NOFS, sctx->pages_per_rd_bio);
1958                         if (!bio)
1959                                 return -ENOMEM;
1960                         sbio->bio = bio;
1961                 }
1962
1963                 bio->bi_private = sbio;
1964                 bio->bi_end_io = scrub_bio_end_io;
1965                 bio->bi_bdev = sbio->dev->bdev;
1966                 bio->bi_iter.bi_sector = sbio->physical >> 9;
1967                 sbio->err = 0;
1968         } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1969                    spage->physical ||
1970                    sbio->logical + sbio->page_count * PAGE_SIZE !=
1971                    spage->logical ||
1972                    sbio->dev != spage->dev) {
1973                 scrub_submit(sctx);
1974                 goto again;
1975         }
1976
1977         sbio->pagev[sbio->page_count] = spage;
1978         ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1979         if (ret != PAGE_SIZE) {
1980                 if (sbio->page_count < 1) {
1981                         bio_put(sbio->bio);
1982                         sbio->bio = NULL;
1983                         return -EIO;
1984                 }
1985                 scrub_submit(sctx);
1986                 goto again;
1987         }
1988
1989         scrub_block_get(sblock); /* one for the page added to the bio */
1990         atomic_inc(&sblock->outstanding_pages);
1991         sbio->page_count++;
1992         if (sbio->page_count == sctx->pages_per_rd_bio)
1993                 scrub_submit(sctx);
1994
1995         return 0;
1996 }
1997
1998 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
1999                        u64 physical, struct btrfs_device *dev, u64 flags,
2000                        u64 gen, int mirror_num, u8 *csum, int force,
2001                        u64 physical_for_dev_replace)
2002 {
2003         struct scrub_block *sblock;
2004         int index;
2005
2006         sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
2007         if (!sblock) {
2008                 spin_lock(&sctx->stat_lock);
2009                 sctx->stat.malloc_errors++;
2010                 spin_unlock(&sctx->stat_lock);
2011                 return -ENOMEM;
2012         }
2013
2014         /* one ref inside this function, plus one for each page added to
2015          * a bio later on */
2016         atomic_set(&sblock->ref_count, 1);
2017         sblock->sctx = sctx;
2018         sblock->no_io_error_seen = 1;
2019
2020         for (index = 0; len > 0; index++) {
2021                 struct scrub_page *spage;
2022                 u64 l = min_t(u64, len, PAGE_SIZE);
2023
2024                 spage = kzalloc(sizeof(*spage), GFP_NOFS);
2025                 if (!spage) {
2026 leave_nomem:
2027                         spin_lock(&sctx->stat_lock);
2028                         sctx->stat.malloc_errors++;
2029                         spin_unlock(&sctx->stat_lock);
2030                         scrub_block_put(sblock);
2031                         return -ENOMEM;
2032                 }
2033                 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2034                 scrub_page_get(spage);
2035                 sblock->pagev[index] = spage;
2036                 spage->sblock = sblock;
2037                 spage->dev = dev;
2038                 spage->flags = flags;
2039                 spage->generation = gen;
2040                 spage->logical = logical;
2041                 spage->physical = physical;
2042                 spage->physical_for_dev_replace = physical_for_dev_replace;
2043                 spage->mirror_num = mirror_num;
2044                 if (csum) {
2045                         spage->have_csum = 1;
2046                         memcpy(spage->csum, csum, sctx->csum_size);
2047                 } else {
2048                         spage->have_csum = 0;
2049                 }
2050                 sblock->page_count++;
2051                 spage->page = alloc_page(GFP_NOFS);
2052                 if (!spage->page)
2053                         goto leave_nomem;
2054                 len -= l;
2055                 logical += l;
2056                 physical += l;
2057                 physical_for_dev_replace += l;
2058         }
2059
2060         WARN_ON(sblock->page_count == 0);
2061         for (index = 0; index < sblock->page_count; index++) {
2062                 struct scrub_page *spage = sblock->pagev[index];
2063                 int ret;
2064
2065                 ret = scrub_add_page_to_rd_bio(sctx, spage);
2066                 if (ret) {
2067                         scrub_block_put(sblock);
2068                         return ret;
2069                 }
2070         }
2071
2072         if (force)
2073                 scrub_submit(sctx);
2074
2075         /* last one frees, either here or in bio completion for last page */
2076         scrub_block_put(sblock);
2077         return 0;
2078 }
2079
2080 static void scrub_bio_end_io(struct bio *bio, int err)
2081 {
2082         struct scrub_bio *sbio = bio->bi_private;
2083         struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
2084
2085         sbio->err = err;
2086         sbio->bio = bio;
2087
2088         btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2089 }
2090
2091 static void scrub_bio_end_io_worker(struct btrfs_work *work)
2092 {
2093         struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2094         struct scrub_ctx *sctx = sbio->sctx;
2095         int i;
2096
2097         BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2098         if (sbio->err) {
2099                 for (i = 0; i < sbio->page_count; i++) {
2100                         struct scrub_page *spage = sbio->pagev[i];
2101
2102                         spage->io_error = 1;
2103                         spage->sblock->no_io_error_seen = 0;
2104                 }
2105         }
2106
2107         /* now complete the scrub_block items that have all pages completed */
2108         for (i = 0; i < sbio->page_count; i++) {
2109                 struct scrub_page *spage = sbio->pagev[i];
2110                 struct scrub_block *sblock = spage->sblock;
2111
2112                 if (atomic_dec_and_test(&sblock->outstanding_pages))
2113                         scrub_block_complete(sblock);
2114                 scrub_block_put(sblock);
2115         }
2116
2117         bio_put(sbio->bio);
2118         sbio->bio = NULL;
2119         spin_lock(&sctx->list_lock);
2120         sbio->next_free = sctx->first_free;
2121         sctx->first_free = sbio->index;
2122         spin_unlock(&sctx->list_lock);
2123
2124         if (sctx->is_dev_replace &&
2125             atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2126                 mutex_lock(&sctx->wr_ctx.wr_lock);
2127                 scrub_wr_submit(sctx);
2128                 mutex_unlock(&sctx->wr_ctx.wr_lock);
2129         }
2130
2131         scrub_pending_bio_dec(sctx);
2132 }
2133
2134 static void scrub_block_complete(struct scrub_block *sblock)
2135 {
2136         if (!sblock->no_io_error_seen) {
2137                 scrub_handle_errored_block(sblock);
2138         } else {
2139                 /*
2140                  * if has checksum error, write via repair mechanism in
2141                  * dev replace case, otherwise write here in dev replace
2142                  * case.
2143                  */
2144                 if (!scrub_checksum(sblock) && sblock->sctx->is_dev_replace)
2145                         scrub_write_block_to_dev_replace(sblock);
2146         }
2147 }
2148
2149 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u64 len,
2150                            u8 *csum)
2151 {
2152         struct btrfs_ordered_sum *sum = NULL;
2153         unsigned long index;
2154         unsigned long num_sectors;
2155
2156         while (!list_empty(&sctx->csum_list)) {
2157                 sum = list_first_entry(&sctx->csum_list,
2158                                        struct btrfs_ordered_sum, list);
2159                 if (sum->bytenr > logical)
2160                         return 0;
2161                 if (sum->bytenr + sum->len > logical)
2162                         break;
2163
2164                 ++sctx->stat.csum_discards;
2165                 list_del(&sum->list);
2166                 kfree(sum);
2167                 sum = NULL;
2168         }
2169         if (!sum)
2170                 return 0;
2171
2172         index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
2173         num_sectors = sum->len / sctx->sectorsize;
2174         memcpy(csum, sum->sums + index, sctx->csum_size);
2175         if (index == num_sectors - 1) {
2176                 list_del(&sum->list);
2177                 kfree(sum);
2178         }
2179         return 1;
2180 }
2181
2182 /* scrub extent tries to collect up to 64 kB for each bio */
2183 static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2184                         u64 physical, struct btrfs_device *dev, u64 flags,
2185                         u64 gen, int mirror_num, u64 physical_for_dev_replace)
2186 {
2187         int ret;
2188         u8 csum[BTRFS_CSUM_SIZE];
2189         u32 blocksize;
2190
2191         if (flags & BTRFS_EXTENT_FLAG_DATA) {
2192                 blocksize = sctx->sectorsize;
2193                 spin_lock(&sctx->stat_lock);
2194                 sctx->stat.data_extents_scrubbed++;
2195                 sctx->stat.data_bytes_scrubbed += len;
2196                 spin_unlock(&sctx->stat_lock);
2197         } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2198                 WARN_ON(sctx->nodesize != sctx->leafsize);
2199                 blocksize = sctx->nodesize;
2200                 spin_lock(&sctx->stat_lock);
2201                 sctx->stat.tree_extents_scrubbed++;
2202                 sctx->stat.tree_bytes_scrubbed += len;
2203                 spin_unlock(&sctx->stat_lock);
2204         } else {
2205                 blocksize = sctx->sectorsize;
2206                 WARN_ON(1);
2207         }
2208
2209         while (len) {
2210                 u64 l = min_t(u64, len, blocksize);
2211                 int have_csum = 0;
2212
2213                 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2214                         /* push csums to sbio */
2215                         have_csum = scrub_find_csum(sctx, logical, l, csum);
2216                         if (have_csum == 0)
2217                                 ++sctx->stat.no_csum;
2218                         if (sctx->is_dev_replace && !have_csum) {
2219                                 ret = copy_nocow_pages(sctx, logical, l,
2220                                                        mirror_num,
2221                                                       physical_for_dev_replace);
2222                                 goto behind_scrub_pages;
2223                         }
2224                 }
2225                 ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2226                                   mirror_num, have_csum ? csum : NULL, 0,
2227                                   physical_for_dev_replace);
2228 behind_scrub_pages:
2229                 if (ret)
2230                         return ret;
2231                 len -= l;
2232                 logical += l;
2233                 physical += l;
2234                 physical_for_dev_replace += l;
2235         }
2236         return 0;
2237 }
2238
2239 /*
2240  * Given a physical address, this will calculate it's
2241  * logical offset. if this is a parity stripe, it will return
2242  * the most left data stripe's logical offset.
2243  *
2244  * return 0 if it is a data stripe, 1 means parity stripe.
2245  */
2246 static int get_raid56_logic_offset(u64 physical, int num,
2247                                    struct map_lookup *map, u64 *offset)
2248 {
2249         int i;
2250         int j = 0;
2251         u64 stripe_nr;
2252         u64 last_offset;
2253         int stripe_index;
2254         int rot;
2255
2256         last_offset = (physical - map->stripes[num].physical) *
2257                       nr_data_stripes(map);
2258         *offset = last_offset;
2259         for (i = 0; i < nr_data_stripes(map); i++) {
2260                 *offset = last_offset + i * map->stripe_len;
2261
2262                 stripe_nr = *offset;
2263                 do_div(stripe_nr, map->stripe_len);
2264                 do_div(stripe_nr, nr_data_stripes(map));
2265
2266                 /* Work out the disk rotation on this stripe-set */
2267                 rot = do_div(stripe_nr, map->num_stripes);
2268                 /* calculate which stripe this data locates */
2269                 rot += i;
2270                 stripe_index = rot % map->num_stripes;
2271                 if (stripe_index == num)
2272                         return 0;
2273                 if (stripe_index < num)
2274                         j++;
2275         }
2276         *offset = last_offset + j * map->stripe_len;
2277         return 1;
2278 }
2279
2280 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2281                                            struct map_lookup *map,
2282                                            struct btrfs_device *scrub_dev,
2283                                            int num, u64 base, u64 length,
2284                                            int is_dev_replace)
2285 {
2286         struct btrfs_path *path;
2287         struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
2288         struct btrfs_root *root = fs_info->extent_root;
2289         struct btrfs_root *csum_root = fs_info->csum_root;
2290         struct btrfs_extent_item *extent;
2291         struct blk_plug plug;
2292         u64 flags;
2293         int ret;
2294         int slot;
2295         u64 nstripes;
2296         struct extent_buffer *l;
2297         struct btrfs_key key;
2298         u64 physical;
2299         u64 logical;
2300         u64 logic_end;
2301         u64 physical_end;
2302         u64 generation;
2303         int mirror_num;
2304         struct reada_control *reada1;
2305         struct reada_control *reada2;
2306         struct btrfs_key key_start;
2307         struct btrfs_key key_end;
2308         u64 increment = map->stripe_len;
2309         u64 offset;
2310         u64 extent_logical;
2311         u64 extent_physical;
2312         u64 extent_len;
2313         struct btrfs_device *extent_dev;
2314         int extent_mirror_num;
2315         int stop_loop = 0;
2316
2317         nstripes = length;
2318         physical = map->stripes[num].physical;
2319         offset = 0;
2320         do_div(nstripes, map->stripe_len);
2321         if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
2322                 offset = map->stripe_len * num;
2323                 increment = map->stripe_len * map->num_stripes;
2324                 mirror_num = 1;
2325         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2326                 int factor = map->num_stripes / map->sub_stripes;
2327                 offset = map->stripe_len * (num / map->sub_stripes);
2328                 increment = map->stripe_len * factor;
2329                 mirror_num = num % map->sub_stripes + 1;
2330         } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
2331                 increment = map->stripe_len;
2332                 mirror_num = num % map->num_stripes + 1;
2333         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
2334                 increment = map->stripe_len;
2335                 mirror_num = num % map->num_stripes + 1;
2336         } else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2337                                 BTRFS_BLOCK_GROUP_RAID6)) {
2338                 get_raid56_logic_offset(physical, num, map, &offset);
2339                 increment = map->stripe_len * nr_data_stripes(map);
2340                 mirror_num = 1;
2341         } else {
2342                 increment = map->stripe_len;
2343                 mirror_num = 1;
2344         }
2345
2346         path = btrfs_alloc_path();
2347         if (!path)
2348                 return -ENOMEM;
2349
2350         /*
2351          * work on commit root. The related disk blocks are static as
2352          * long as COW is applied. This means, it is save to rewrite
2353          * them to repair disk errors without any race conditions
2354          */
2355         path->search_commit_root = 1;
2356         path->skip_locking = 1;
2357
2358         /*
2359          * trigger the readahead for extent tree csum tree and wait for
2360          * completion. During readahead, the scrub is officially paused
2361          * to not hold off transaction commits
2362          */
2363         logical = base + offset;
2364         physical_end = physical + nstripes * map->stripe_len;
2365         if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2366                          BTRFS_BLOCK_GROUP_RAID6)) {
2367                 get_raid56_logic_offset(physical_end, num,
2368                                         map, &logic_end);
2369                 logic_end += base;
2370         } else {
2371                 logic_end = logical + increment * nstripes;
2372         }
2373         wait_event(sctx->list_wait,
2374                    atomic_read(&sctx->bios_in_flight) == 0);
2375         scrub_blocked_if_needed(fs_info);
2376
2377         /* FIXME it might be better to start readahead at commit root */
2378         key_start.objectid = logical;
2379         key_start.type = BTRFS_EXTENT_ITEM_KEY;
2380         key_start.offset = (u64)0;
2381         key_end.objectid = logic_end;
2382         key_end.type = BTRFS_METADATA_ITEM_KEY;
2383         key_end.offset = (u64)-1;
2384         reada1 = btrfs_reada_add(root, &key_start, &key_end);
2385
2386         key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
2387         key_start.type = BTRFS_EXTENT_CSUM_KEY;
2388         key_start.offset = logical;
2389         key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
2390         key_end.type = BTRFS_EXTENT_CSUM_KEY;
2391         key_end.offset = logic_end;
2392         reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);
2393
2394         if (!IS_ERR(reada1))
2395                 btrfs_reada_wait(reada1);
2396         if (!IS_ERR(reada2))
2397                 btrfs_reada_wait(reada2);
2398
2399
2400         /*
2401          * collect all data csums for the stripe to avoid seeking during
2402          * the scrub. This might currently (crc32) end up to be about 1MB
2403          */
2404         blk_start_plug(&plug);
2405
2406         /*
2407          * now find all extents for each stripe and scrub them
2408          */
2409         ret = 0;
2410         while (physical < physical_end) {
2411                 /* for raid56, we skip parity stripe */
2412                 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2413                                 BTRFS_BLOCK_GROUP_RAID6)) {
2414                         ret = get_raid56_logic_offset(physical, num,
2415                                         map, &logical);
2416                         logical += base;
2417                         if (ret)
2418                                 goto skip;
2419                 }
2420                 /*
2421                  * canceled?
2422                  */
2423                 if (atomic_read(&fs_info->scrub_cancel_req) ||
2424                     atomic_read(&sctx->cancel_req)) {
2425                         ret = -ECANCELED;
2426                         goto out;
2427                 }
2428                 /*
2429                  * check to see if we have to pause
2430                  */
2431                 if (atomic_read(&fs_info->scrub_pause_req)) {
2432                         /* push queued extents */
2433                         atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
2434                         scrub_submit(sctx);
2435                         mutex_lock(&sctx->wr_ctx.wr_lock);
2436                         scrub_wr_submit(sctx);
2437                         mutex_unlock(&sctx->wr_ctx.wr_lock);
2438                         wait_event(sctx->list_wait,
2439                                    atomic_read(&sctx->bios_in_flight) == 0);
2440                         atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
2441                         scrub_blocked_if_needed(fs_info);
2442                 }
2443
2444                 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2445                         key.type = BTRFS_METADATA_ITEM_KEY;
2446                 else
2447                         key.type = BTRFS_EXTENT_ITEM_KEY;
2448                 key.objectid = logical;
2449                 key.offset = (u64)-1;
2450
2451                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2452                 if (ret < 0)
2453                         goto out;
2454
2455                 if (ret > 0) {
2456                         ret = btrfs_previous_extent_item(root, path, 0);
2457                         if (ret < 0)
2458                                 goto out;
2459                         if (ret > 0) {
2460                                 /* there's no smaller item, so stick with the
2461                                  * larger one */
2462                                 btrfs_release_path(path);
2463                                 ret = btrfs_search_slot(NULL, root, &key,
2464                                                         path, 0, 0);
2465                                 if (ret < 0)
2466                                         goto out;
2467                         }
2468                 }
2469
2470                 stop_loop = 0;
2471                 while (1) {
2472                         u64 bytes;
2473
2474                         l = path->nodes[0];
2475                         slot = path->slots[0];
2476                         if (slot >= btrfs_header_nritems(l)) {
2477                                 ret = btrfs_next_leaf(root, path);
2478                                 if (ret == 0)
2479                                         continue;
2480                                 if (ret < 0)
2481                                         goto out;
2482
2483                                 stop_loop = 1;
2484                                 break;
2485                         }
2486                         btrfs_item_key_to_cpu(l, &key, slot);
2487
2488                         if (key.type == BTRFS_METADATA_ITEM_KEY)
2489                                 bytes = root->leafsize;
2490                         else
2491                                 bytes = key.offset;
2492
2493                         if (key.objectid + bytes <= logical)
2494                                 goto next;
2495
2496                         if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2497                             key.type != BTRFS_METADATA_ITEM_KEY)
2498                                 goto next;
2499
2500                         if (key.objectid >= logical + map->stripe_len) {
2501                                 /* out of this device extent */
2502                                 if (key.objectid >= logic_end)
2503                                         stop_loop = 1;
2504                                 break;
2505                         }
2506
2507                         extent = btrfs_item_ptr(l, slot,
2508                                                 struct btrfs_extent_item);
2509                         flags = btrfs_extent_flags(l, extent);
2510                         generation = btrfs_extent_generation(l, extent);
2511
2512                         if (key.objectid < logical &&
2513                             (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
2514                                 btrfs_err(fs_info,
2515                                            "scrub: tree block %llu spanning "
2516                                            "stripes, ignored. logical=%llu",
2517                                        key.objectid, logical);
2518                                 goto next;
2519                         }
2520
2521 again:
2522                         extent_logical = key.objectid;
2523                         extent_len = bytes;
2524
2525                         /*
2526                          * trim extent to this stripe
2527                          */
2528                         if (extent_logical < logical) {
2529                                 extent_len -= logical - extent_logical;
2530                                 extent_logical = logical;
2531                         }
2532                         if (extent_logical + extent_len >
2533                             logical + map->stripe_len) {
2534                                 extent_len = logical + map->stripe_len -
2535                                              extent_logical;
2536                         }
2537
2538                         extent_physical = extent_logical - logical + physical;
2539                         extent_dev = scrub_dev;
2540                         extent_mirror_num = mirror_num;
2541                         if (is_dev_replace)
2542                                 scrub_remap_extent(fs_info, extent_logical,
2543                                                    extent_len, &extent_physical,
2544                                                    &extent_dev,
2545                                                    &extent_mirror_num);
2546
2547                         ret = btrfs_lookup_csums_range(csum_root, logical,
2548                                                 logical + map->stripe_len - 1,
2549                                                 &sctx->csum_list, 1);
2550                         if (ret)
2551                                 goto out;
2552
2553                         ret = scrub_extent(sctx, extent_logical, extent_len,
2554                                            extent_physical, extent_dev, flags,
2555                                            generation, extent_mirror_num,
2556                                            extent_logical - logical + physical);
2557                         if (ret)
2558                                 goto out;
2559
2560                         scrub_free_csums(sctx);
2561                         if (extent_logical + extent_len <
2562                             key.objectid + bytes) {
2563                                 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2564                                         BTRFS_BLOCK_GROUP_RAID6)) {
2565                                         /*
2566                                          * loop until we find next data stripe
2567                                          * or we have finished all stripes.
2568                                          */
2569                                         do {
2570                                                 physical += map->stripe_len;
2571                                                 ret = get_raid56_logic_offset(
2572                                                                 physical, num,
2573                                                                 map, &logical);
2574                                                 logical += base;
2575                                         } while (physical < physical_end && ret);
2576                                 } else {
2577                                         physical += map->stripe_len;
2578                                         logical += increment;
2579                                 }
2580                                 if (logical < key.objectid + bytes) {
2581                                         cond_resched();
2582                                         goto again;
2583                                 }
2584
2585                                 if (physical >= physical_end) {
2586                                         stop_loop = 1;
2587                                         break;
2588                                 }
2589                         }
2590 next:
2591                         path->slots[0]++;
2592                 }
2593                 btrfs_release_path(path);
2594 skip:
2595                 logical += increment;
2596                 physical += map->stripe_len;
2597                 spin_lock(&sctx->stat_lock);
2598                 if (stop_loop)
2599                         sctx->stat.last_physical = map->stripes[num].physical +
2600                                                    length;
2601                 else
2602                         sctx->stat.last_physical = physical;
2603                 spin_unlock(&sctx->stat_lock);
2604                 if (stop_loop)
2605                         break;
2606         }
2607 out:
2608         /* push queued extents */
2609         scrub_submit(sctx);
2610         mutex_lock(&sctx->wr_ctx.wr_lock);
2611         scrub_wr_submit(sctx);
2612         mutex_unlock(&sctx->wr_ctx.wr_lock);
2613
2614         blk_finish_plug(&plug);
2615         btrfs_free_path(path);
2616         return ret < 0 ? ret : 0;
2617 }
2618
2619 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
2620                                           struct btrfs_device *scrub_dev,
2621                                           u64 chunk_tree, u64 chunk_objectid,
2622                                           u64 chunk_offset, u64 length,
2623                                           u64 dev_offset, int is_dev_replace)
2624 {
2625         struct btrfs_mapping_tree *map_tree =
2626                 &sctx->dev_root->fs_info->mapping_tree;
2627         struct map_lookup *map;
2628         struct extent_map *em;
2629         int i;
2630         int ret = 0;
2631
2632         read_lock(&map_tree->map_tree.lock);
2633         em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2634         read_unlock(&map_tree->map_tree.lock);
2635
2636         if (!em)
2637                 return -EINVAL;
2638
2639         map = (struct map_lookup *)em->bdev;
2640         if (em->start != chunk_offset)
2641                 goto out;
2642
2643         if (em->len < length)
2644                 goto out;
2645
2646         for (i = 0; i < map->num_stripes; ++i) {
2647                 if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
2648                     map->stripes[i].physical == dev_offset) {
2649                         ret = scrub_stripe(sctx, map, scrub_dev, i,
2650                                            chunk_offset, length,
2651                                            is_dev_replace);
2652                         if (ret)
2653                                 goto out;
2654                 }
2655         }
2656 out:
2657         free_extent_map(em);
2658
2659         return ret;
2660 }
2661
2662 static noinline_for_stack
2663 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
2664                            struct btrfs_device *scrub_dev, u64 start, u64 end,
2665                            int is_dev_replace)
2666 {
2667         struct btrfs_dev_extent *dev_extent = NULL;
2668         struct btrfs_path *path;
2669         struct btrfs_root *root = sctx->dev_root;
2670         struct btrfs_fs_info *fs_info = root->fs_info;
2671         u64 length;
2672         u64 chunk_tree;
2673         u64 chunk_objectid;
2674         u64 chunk_offset;
2675         int ret;
2676         int slot;
2677         struct extent_buffer *l;
2678         struct btrfs_key key;
2679         struct btrfs_key found_key;
2680         struct btrfs_block_group_cache *cache;
2681         struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2682
2683         path = btrfs_alloc_path();
2684         if (!path)
2685                 return -ENOMEM;
2686
2687         path->reada = 2;
2688         path->search_commit_root = 1;
2689         path->skip_locking = 1;
2690
2691         key.objectid = scrub_dev->devid;
2692         key.offset = 0ull;
2693         key.type = BTRFS_DEV_EXTENT_KEY;
2694
2695         while (1) {
2696                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2697                 if (ret < 0)
2698                         break;
2699                 if (ret > 0) {
2700                         if (path->slots[0] >=
2701                             btrfs_header_nritems(path->nodes[0])) {
2702                                 ret = btrfs_next_leaf(root, path);
2703                                 if (ret)
2704                                         break;
2705                         }
2706                 }
2707
2708                 l = path->nodes[0];
2709                 slot = path->slots[0];
2710
2711                 btrfs_item_key_to_cpu(l, &found_key, slot);
2712
2713                 if (found_key.objectid != scrub_dev->devid)
2714                         break;
2715
2716                 if (btrfs_key_type(&found_key) != BTRFS_DEV_EXTENT_KEY)
2717                         break;
2718
2719                 if (found_key.offset >= end)
2720                         break;
2721
2722                 if (found_key.offset < key.offset)
2723                         break;
2724
2725                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2726                 length = btrfs_dev_extent_length(l, dev_extent);
2727
2728                 if (found_key.offset + length <= start)
2729                         goto skip;
2730
2731                 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2732                 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2733                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2734
2735                 /*
2736                  * get a reference on the corresponding block group to prevent
2737                  * the chunk from going away while we scrub it
2738                  */
2739                 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2740
2741                 /* some chunks are removed but not committed to disk yet,
2742                  * continue scrubbing */
2743                 if (!cache)
2744                         goto skip;
2745
2746                 dev_replace->cursor_right = found_key.offset + length;
2747                 dev_replace->cursor_left = found_key.offset;
2748                 dev_replace->item_needs_writeback = 1;
2749                 ret = scrub_chunk(sctx, scrub_dev, chunk_tree, chunk_objectid,
2750                                   chunk_offset, length, found_key.offset,
2751                                   is_dev_replace);
2752
2753                 /*
2754                  * flush, submit all pending read and write bios, afterwards
2755                  * wait for them.
2756                  * Note that in the dev replace case, a read request causes
2757                  * write requests that are submitted in the read completion
2758                  * worker. Therefore in the current situation, it is required
2759                  * that all write requests are flushed, so that all read and
2760                  * write requests are really completed when bios_in_flight
2761                  * changes to 0.
2762                  */
2763                 atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
2764                 scrub_submit(sctx);
2765                 mutex_lock(&sctx->wr_ctx.wr_lock);
2766                 scrub_wr_submit(sctx);
2767                 mutex_unlock(&sctx->wr_ctx.wr_lock);
2768
2769                 wait_event(sctx->list_wait,
2770                            atomic_read(&sctx->bios_in_flight) == 0);
2771                 atomic_inc(&fs_info->scrubs_paused);
2772                 wake_up(&fs_info->scrub_pause_wait);
2773
2774                 /*
2775                  * must be called before we decrease @scrub_paused.
2776                  * make sure we don't block transaction commit while
2777                  * we are waiting pending workers finished.
2778                  */
2779                 wait_event(sctx->list_wait,
2780                            atomic_read(&sctx->workers_pending) == 0);
2781                 atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
2782
2783                 mutex_lock(&fs_info->scrub_lock);
2784                 __scrub_blocked_if_needed(fs_info);
2785                 atomic_dec(&fs_info->scrubs_paused);
2786                 mutex_unlock(&fs_info->scrub_lock);
2787                 wake_up(&fs_info->scrub_pause_wait);
2788
2789                 btrfs_put_block_group(cache);
2790                 if (ret)
2791                         break;
2792                 if (is_dev_replace &&
2793                     atomic64_read(&dev_replace->num_write_errors) > 0) {
2794                         ret = -EIO;
2795                         break;
2796                 }
2797                 if (sctx->stat.malloc_errors > 0) {
2798                         ret = -ENOMEM;
2799                         break;
2800                 }
2801
2802                 dev_replace->cursor_left = dev_replace->cursor_right;
2803                 dev_replace->item_needs_writeback = 1;
2804 skip:
2805                 key.offset = found_key.offset + length;
2806                 btrfs_release_path(path);
2807         }
2808
2809         btrfs_free_path(path);
2810
2811         /*
2812          * ret can still be 1 from search_slot or next_leaf,
2813          * that's not an error
2814          */
2815         return ret < 0 ? ret : 0;
2816 }
2817
2818 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
2819                                            struct btrfs_device *scrub_dev)
2820 {
2821         int     i;
2822         u64     bytenr;
2823         u64     gen;
2824         int     ret;
2825         struct btrfs_root *root = sctx->dev_root;
2826
2827         if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
2828                 return -EIO;
2829
2830         gen = root->fs_info->last_trans_committed;
2831
2832         for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2833                 bytenr = btrfs_sb_offset(i);
2834                 if (bytenr + BTRFS_SUPER_INFO_SIZE > scrub_dev->total_bytes)
2835                         break;
2836
2837                 ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
2838                                   scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
2839                                   NULL, 1, bytenr);
2840                 if (ret)
2841                         return ret;
2842         }
2843         wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
2844
2845         return 0;
2846 }
2847
2848 /*
2849  * get a reference count on fs_info->scrub_workers. start worker if necessary
2850  */
2851 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
2852                                                 int is_dev_replace)
2853 {
2854         int ret = 0;
2855         int flags = WQ_FREEZABLE | WQ_UNBOUND;
2856         int max_active = fs_info->thread_pool_size;
2857
2858         if (fs_info->scrub_workers_refcnt == 0) {
2859                 if (is_dev_replace)
2860                         fs_info->scrub_workers =
2861                                 btrfs_alloc_workqueue("btrfs-scrub", flags,
2862                                                       1, 4);
2863                 else
2864                         fs_info->scrub_workers =
2865                                 btrfs_alloc_workqueue("btrfs-scrub", flags,
2866                                                       max_active, 4);
2867                 if (!fs_info->scrub_workers) {
2868                         ret = -ENOMEM;
2869                         goto out;
2870                 }
2871                 fs_info->scrub_wr_completion_workers =
2872                         btrfs_alloc_workqueue("btrfs-scrubwrc", flags,
2873                                               max_active, 2);
2874                 if (!fs_info->scrub_wr_completion_workers) {
2875                         ret = -ENOMEM;
2876                         goto out;
2877                 }
2878                 fs_info->scrub_nocow_workers =
2879                         btrfs_alloc_workqueue("btrfs-scrubnc", flags, 1, 0);
2880                 if (!fs_info->scrub_nocow_workers) {
2881                         ret = -ENOMEM;
2882                         goto out;
2883                 }
2884         }
2885         ++fs_info->scrub_workers_refcnt;
2886 out:
2887         return ret;
2888 }
2889
2890 static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
2891 {
2892         if (--fs_info->scrub_workers_refcnt == 0) {
2893                 btrfs_destroy_workqueue(fs_info->scrub_workers);
2894                 btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
2895                 btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
2896         }
2897         WARN_ON(fs_info->scrub_workers_refcnt < 0);
2898 }
2899
2900 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
2901                     u64 end, struct btrfs_scrub_progress *progress,
2902                     int readonly, int is_dev_replace)
2903 {
2904         struct scrub_ctx *sctx;
2905         int ret;
2906         struct btrfs_device *dev;
2907
2908         if (btrfs_fs_closing(fs_info))
2909                 return -EINVAL;
2910
2911         /*
2912          * check some assumptions
2913          */
2914         if (fs_info->chunk_root->nodesize != fs_info->chunk_root->leafsize) {
2915                 btrfs_err(fs_info,
2916                            "scrub: size assumption nodesize == leafsize (%d == %d) fails",
2917                        fs_info->chunk_root->nodesize,
2918                        fs_info->chunk_root->leafsize);
2919                 return -EINVAL;
2920         }
2921
2922         if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) {
2923                 /*
2924                  * in this case scrub is unable to calculate the checksum
2925                  * the way scrub is implemented. Do not handle this
2926                  * situation at all because it won't ever happen.
2927                  */
2928                 btrfs_err(fs_info,
2929                            "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
2930                        fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN);
2931                 return -EINVAL;
2932         }
2933
2934         if (fs_info->chunk_root->sectorsize != PAGE_SIZE) {
2935                 /* not supported for data w/o checksums */
2936                 btrfs_err(fs_info,
2937                            "scrub: size assumption sectorsize != PAGE_SIZE "
2938                            "(%d != %lu) fails",
2939                        fs_info->chunk_root->sectorsize, PAGE_SIZE);
2940                 return -EINVAL;
2941         }
2942
2943         if (fs_info->chunk_root->nodesize >
2944             PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
2945             fs_info->chunk_root->sectorsize >
2946             PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
2947                 /*
2948                  * would exhaust the array bounds of pagev member in
2949                  * struct scrub_block
2950                  */
2951                 btrfs_err(fs_info, "scrub: size assumption nodesize and sectorsize "
2952                            "<= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
2953                        fs_info->chunk_root->nodesize,
2954                        SCRUB_MAX_PAGES_PER_BLOCK,
2955                        fs_info->chunk_root->sectorsize,
2956                        SCRUB_MAX_PAGES_PER_BLOCK);
2957                 return -EINVAL;
2958         }
2959
2960
2961         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2962         dev = btrfs_find_device(fs_info, devid, NULL, NULL);
2963         if (!dev || (dev->missing && !is_dev_replace)) {
2964                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2965                 return -ENODEV;
2966         }
2967
2968         mutex_lock(&fs_info->scrub_lock);
2969         if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
2970                 mutex_unlock(&fs_info->scrub_lock);
2971                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2972                 return -EIO;
2973         }
2974
2975         btrfs_dev_replace_lock(&fs_info->dev_replace);
2976         if (dev->scrub_device ||
2977             (!is_dev_replace &&
2978              btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
2979                 btrfs_dev_replace_unlock(&fs_info->dev_replace);
2980                 mutex_unlock(&fs_info->scrub_lock);
2981                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2982                 return -EINPROGRESS;
2983         }
2984         btrfs_dev_replace_unlock(&fs_info->dev_replace);
2985
2986         ret = scrub_workers_get(fs_info, is_dev_replace);
2987         if (ret) {
2988                 mutex_unlock(&fs_info->scrub_lock);
2989                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2990                 return ret;
2991         }
2992
2993         sctx = scrub_setup_ctx(dev, is_dev_replace);
2994         if (IS_ERR(sctx)) {
2995                 mutex_unlock(&fs_info->scrub_lock);
2996                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2997                 scrub_workers_put(fs_info);
2998                 return PTR_ERR(sctx);
2999         }
3000         sctx->readonly = readonly;
3001         dev->scrub_device = sctx;
3002         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3003
3004         /*
3005          * checking @scrub_pause_req here, we can avoid
3006          * race between committing transaction and scrubbing.
3007          */
3008         __scrub_blocked_if_needed(fs_info);
3009         atomic_inc(&fs_info->scrubs_running);
3010         mutex_unlock(&fs_info->scrub_lock);
3011
3012         if (!is_dev_replace) {
3013                 /*
3014                  * by holding device list mutex, we can
3015                  * kick off writing super in log tree sync.
3016                  */
3017                 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3018                 ret = scrub_supers(sctx, dev);
3019                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3020         }
3021
3022         if (!ret)
3023                 ret = scrub_enumerate_chunks(sctx, dev, start, end,
3024                                              is_dev_replace);
3025
3026         wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3027         atomic_dec(&fs_info->scrubs_running);
3028         wake_up(&fs_info->scrub_pause_wait);
3029
3030         wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3031
3032         if (progress)
3033                 memcpy(progress, &sctx->stat, sizeof(*progress));
3034
3035         mutex_lock(&fs_info->scrub_lock);
3036         dev->scrub_device = NULL;
3037         scrub_workers_put(fs_info);
3038         mutex_unlock(&fs_info->scrub_lock);
3039
3040         scrub_free_ctx(sctx);
3041
3042         return ret;
3043 }
3044
3045 void btrfs_scrub_pause(struct btrfs_root *root)
3046 {
3047         struct btrfs_fs_info *fs_info = root->fs_info;
3048
3049         mutex_lock(&fs_info->scrub_lock);
3050         atomic_inc(&fs_info->scrub_pause_req);
3051         while (atomic_read(&fs_info->scrubs_paused) !=
3052                atomic_read(&fs_info->scrubs_running)) {
3053                 mutex_unlock(&fs_info->scrub_lock);
3054                 wait_event(fs_info->scrub_pause_wait,
3055                            atomic_read(&fs_info->scrubs_paused) ==
3056                            atomic_read(&fs_info->scrubs_running));
3057                 mutex_lock(&fs_info->scrub_lock);
3058         }
3059         mutex_unlock(&fs_info->scrub_lock);
3060 }
3061
3062 void btrfs_scrub_continue(struct btrfs_root *root)
3063 {
3064         struct btrfs_fs_info *fs_info = root->fs_info;
3065
3066         atomic_dec(&fs_info->scrub_pause_req);
3067         wake_up(&fs_info->scrub_pause_wait);
3068 }
3069
3070 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
3071 {
3072         mutex_lock(&fs_info->scrub_lock);
3073         if (!atomic_read(&fs_info->scrubs_running)) {
3074                 mutex_unlock(&fs_info->scrub_lock);
3075                 return -ENOTCONN;
3076         }
3077
3078         atomic_inc(&fs_info->scrub_cancel_req);
3079         while (atomic_read(&fs_info->scrubs_running)) {
3080                 mutex_unlock(&fs_info->scrub_lock);
3081                 wait_event(fs_info->scrub_pause_wait,
3082                            atomic_read(&fs_info->scrubs_running) == 0);
3083                 mutex_lock(&fs_info->scrub_lock);
3084         }
3085         atomic_dec(&fs_info->scrub_cancel_req);
3086         mutex_unlock(&fs_info->scrub_lock);
3087
3088         return 0;
3089 }
3090
3091 int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
3092                            struct btrfs_device *dev)
3093 {
3094         struct scrub_ctx *sctx;
3095
3096         mutex_lock(&fs_info->scrub_lock);
3097         sctx = dev->scrub_device;
3098         if (!sctx) {
3099                 mutex_unlock(&fs_info->scrub_lock);
3100                 return -ENOTCONN;
3101         }
3102         atomic_inc(&sctx->cancel_req);
3103         while (dev->scrub_device) {
3104                 mutex_unlock(&fs_info->scrub_lock);
3105                 wait_event(fs_info->scrub_pause_wait,
3106                            dev->scrub_device == NULL);
3107                 mutex_lock(&fs_info->scrub_lock);
3108         }
3109         mutex_unlock(&fs_info->scrub_lock);
3110
3111         return 0;
3112 }
3113
3114 int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
3115                          struct btrfs_scrub_progress *progress)
3116 {
3117         struct btrfs_device *dev;
3118         struct scrub_ctx *sctx = NULL;
3119
3120         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3121         dev = btrfs_find_device(root->fs_info, devid, NULL, NULL);
3122         if (dev)
3123                 sctx = dev->scrub_device;
3124         if (sctx)
3125                 memcpy(progress, &sctx->stat, sizeof(*progress));
3126         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3127
3128         return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
3129 }
3130
3131 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
3132                                u64 extent_logical, u64 extent_len,
3133                                u64 *extent_physical,
3134                                struct btrfs_device **extent_dev,
3135                                int *extent_mirror_num)
3136 {
3137         u64 mapped_length;
3138         struct btrfs_bio *bbio = NULL;
3139         int ret;
3140
3141         mapped_length = extent_len;
3142         ret = btrfs_map_block(fs_info, READ, extent_logical,
3143                               &mapped_length, &bbio, 0);
3144         if (ret || !bbio || mapped_length < extent_len ||
3145             !bbio->stripes[0].dev->bdev) {
3146                 kfree(bbio);
3147                 return;
3148         }
3149
3150         *extent_physical = bbio->stripes[0].physical;
3151         *extent_mirror_num = bbio->mirror_num;
3152         *extent_dev = bbio->stripes[0].dev;
3153         kfree(bbio);
3154 }
3155
3156 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
3157                               struct scrub_wr_ctx *wr_ctx,
3158                               struct btrfs_fs_info *fs_info,
3159                               struct btrfs_device *dev,
3160                               int is_dev_replace)
3161 {
3162         WARN_ON(wr_ctx->wr_curr_bio != NULL);
3163
3164         mutex_init(&wr_ctx->wr_lock);
3165         wr_ctx->wr_curr_bio = NULL;
3166         if (!is_dev_replace)
3167                 return 0;
3168
3169         WARN_ON(!dev->bdev);
3170         wr_ctx->pages_per_wr_bio = min_t(int, SCRUB_PAGES_PER_WR_BIO,
3171                                          bio_get_nr_vecs(dev->bdev));
3172         wr_ctx->tgtdev = dev;
3173         atomic_set(&wr_ctx->flush_all_writes, 0);
3174         return 0;
3175 }
3176
3177 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
3178 {
3179         mutex_lock(&wr_ctx->wr_lock);
3180         kfree(wr_ctx->wr_curr_bio);
3181         wr_ctx->wr_curr_bio = NULL;
3182         mutex_unlock(&wr_ctx->wr_lock);
3183 }
3184
3185 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
3186                             int mirror_num, u64 physical_for_dev_replace)
3187 {
3188         struct scrub_copy_nocow_ctx *nocow_ctx;
3189         struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
3190
3191         nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
3192         if (!nocow_ctx) {
3193                 spin_lock(&sctx->stat_lock);
3194                 sctx->stat.malloc_errors++;
3195                 spin_unlock(&sctx->stat_lock);
3196                 return -ENOMEM;
3197         }
3198
3199         scrub_pending_trans_workers_inc(sctx);
3200
3201         nocow_ctx->sctx = sctx;
3202         nocow_ctx->logical = logical;
3203         nocow_ctx->len = len;
3204         nocow_ctx->mirror_num = mirror_num;
3205         nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
3206         btrfs_init_work(&nocow_ctx->work, copy_nocow_pages_worker, NULL, NULL);
3207         INIT_LIST_HEAD(&nocow_ctx->inodes);
3208         btrfs_queue_work(fs_info->scrub_nocow_workers,
3209                          &nocow_ctx->work);
3210
3211         return 0;
3212 }
3213
3214 static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
3215 {
3216         struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
3217         struct scrub_nocow_inode *nocow_inode;
3218
3219         nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
3220         if (!nocow_inode)
3221                 return -ENOMEM;
3222         nocow_inode->inum = inum;
3223         nocow_inode->offset = offset;
3224         nocow_inode->root = root;
3225         list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
3226         return 0;
3227 }
3228
3229 #define COPY_COMPLETE 1
3230
3231 static void copy_nocow_pages_worker(struct btrfs_work *work)
3232 {
3233         struct scrub_copy_nocow_ctx *nocow_ctx =
3234                 container_of(work, struct scrub_copy_nocow_ctx, work);
3235         struct scrub_ctx *sctx = nocow_ctx->sctx;
3236         u64 logical = nocow_ctx->logical;
3237         u64 len = nocow_ctx->len;
3238         int mirror_num = nocow_ctx->mirror_num;
3239         u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3240         int ret;
3241         struct btrfs_trans_handle *trans = NULL;
3242         struct btrfs_fs_info *fs_info;
3243         struct btrfs_path *path;
3244         struct btrfs_root *root;
3245         int not_written = 0;
3246
3247         fs_info = sctx->dev_root->fs_info;
3248         root = fs_info->extent_root;
3249
3250         path = btrfs_alloc_path();
3251         if (!path) {
3252                 spin_lock(&sctx->stat_lock);
3253                 sctx->stat.malloc_errors++;
3254                 spin_unlock(&sctx->stat_lock);
3255                 not_written = 1;
3256                 goto out;
3257         }
3258
3259         trans = btrfs_join_transaction(root);
3260         if (IS_ERR(trans)) {
3261                 not_written = 1;
3262                 goto out;
3263         }
3264
3265         ret = iterate_inodes_from_logical(logical, fs_info, path,
3266                                           record_inode_for_nocow, nocow_ctx);
3267         if (ret != 0 && ret != -ENOENT) {
3268                 btrfs_warn(fs_info, "iterate_inodes_from_logical() failed: log %llu, "
3269                         "phys %llu, len %llu, mir %u, ret %d",
3270                         logical, physical_for_dev_replace, len, mirror_num,
3271                         ret);
3272                 not_written = 1;
3273                 goto out;
3274         }
3275
3276         btrfs_end_transaction(trans, root);
3277         trans = NULL;
3278         while (!list_empty(&nocow_ctx->inodes)) {
3279                 struct scrub_nocow_inode *entry;
3280                 entry = list_first_entry(&nocow_ctx->inodes,
3281                                          struct scrub_nocow_inode,
3282                                          list);
3283                 list_del_init(&entry->list);
3284                 ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
3285                                                  entry->root, nocow_ctx);
3286                 kfree(entry);
3287                 if (ret == COPY_COMPLETE) {
3288                         ret = 0;
3289                         break;
3290                 } else if (ret) {
3291                         break;
3292                 }
3293         }
3294 out:
3295         while (!list_empty(&nocow_ctx->inodes)) {
3296                 struct scrub_nocow_inode *entry;
3297                 entry = list_first_entry(&nocow_ctx->inodes,
3298                                          struct scrub_nocow_inode,
3299                                          list);
3300                 list_del_init(&entry->list);
3301                 kfree(entry);
3302         }
3303         if (trans && !IS_ERR(trans))
3304                 btrfs_end_transaction(trans, root);
3305         if (not_written)
3306                 btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
3307                                             num_uncorrectable_read_errors);
3308
3309         btrfs_free_path(path);
3310         kfree(nocow_ctx);
3311
3312         scrub_pending_trans_workers_dec(sctx);
3313 }
3314
3315 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
3316                                       struct scrub_copy_nocow_ctx *nocow_ctx)
3317 {
3318         struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info;
3319         struct btrfs_key key;
3320         struct inode *inode;
3321         struct page *page;
3322         struct btrfs_root *local_root;
3323         struct btrfs_ordered_extent *ordered;
3324         struct extent_map *em;
3325         struct extent_state *cached_state = NULL;
3326         struct extent_io_tree *io_tree;
3327         u64 physical_for_dev_replace;
3328         u64 len = nocow_ctx->len;
3329         u64 lockstart = offset, lockend = offset + len - 1;
3330         unsigned long index;
3331         int srcu_index;
3332         int ret = 0;
3333         int err = 0;
3334
3335         key.objectid = root;
3336         key.type = BTRFS_ROOT_ITEM_KEY;
3337         key.offset = (u64)-1;
3338
3339         srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
3340
3341         local_root = btrfs_read_fs_root_no_name(fs_info, &key);
3342         if (IS_ERR(local_root)) {
3343                 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
3344                 return PTR_ERR(local_root);
3345         }
3346
3347         key.type = BTRFS_INODE_ITEM_KEY;
3348         key.objectid = inum;
3349         key.offset = 0;
3350         inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
3351         srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
3352         if (IS_ERR(inode))
3353                 return PTR_ERR(inode);
3354
3355         /* Avoid truncate/dio/punch hole.. */
3356         mutex_lock(&inode->i_mutex);
3357         inode_dio_wait(inode);
3358
3359         physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3360         io_tree = &BTRFS_I(inode)->io_tree;
3361
3362         lock_extent_bits(io_tree, lockstart, lockend, 0, &cached_state);
3363         ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
3364         if (ordered) {
3365                 btrfs_put_ordered_extent(ordered);
3366                 goto out_unlock;
3367         }
3368
3369         em = btrfs_get_extent(inode, NULL, 0, lockstart, len, 0);
3370         if (IS_ERR(em)) {
3371                 ret = PTR_ERR(em);
3372                 goto out_unlock;
3373         }
3374
3375         /*
3376          * This extent does not actually cover the logical extent anymore,
3377          * move on to the next inode.
3378          */
3379         if (em->block_start > nocow_ctx->logical ||
3380             em->block_start + em->block_len < nocow_ctx->logical + len) {
3381                 free_extent_map(em);
3382                 goto out_unlock;
3383         }
3384         free_extent_map(em);
3385
3386         while (len >= PAGE_CACHE_SIZE) {
3387                 index = offset >> PAGE_CACHE_SHIFT;
3388 again:
3389                 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
3390                 if (!page) {
3391                         btrfs_err(fs_info, "find_or_create_page() failed");
3392                         ret = -ENOMEM;
3393                         goto out;
3394                 }
3395
3396                 if (PageUptodate(page)) {
3397                         if (PageDirty(page))
3398                                 goto next_page;
3399                 } else {
3400                         ClearPageError(page);
3401                         err = extent_read_full_page_nolock(io_tree, page,
3402                                                            btrfs_get_extent,
3403                                                            nocow_ctx->mirror_num);
3404                         if (err) {
3405                                 ret = err;
3406                                 goto next_page;
3407                         }
3408
3409                         lock_page(page);
3410                         /*
3411                          * If the page has been remove from the page cache,
3412                          * the data on it is meaningless, because it may be
3413                          * old one, the new data may be written into the new
3414                          * page in the page cache.
3415                          */
3416                         if (page->mapping != inode->i_mapping) {
3417                                 unlock_page(page);
3418                                 page_cache_release(page);
3419                                 goto again;
3420                         }
3421                         if (!PageUptodate(page)) {
3422                                 ret = -EIO;
3423                                 goto next_page;
3424                         }
3425                 }
3426                 err = write_page_nocow(nocow_ctx->sctx,
3427                                        physical_for_dev_replace, page);
3428                 if (err)
3429                         ret = err;
3430 next_page:
3431                 unlock_page(page);
3432                 page_cache_release(page);
3433
3434                 if (ret)
3435                         break;
3436
3437                 offset += PAGE_CACHE_SIZE;
3438                 physical_for_dev_replace += PAGE_CACHE_SIZE;
3439                 len -= PAGE_CACHE_SIZE;
3440         }
3441         ret = COPY_COMPLETE;
3442 out_unlock:
3443         unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
3444                              GFP_NOFS);
3445 out:
3446         mutex_unlock(&inode->i_mutex);
3447         iput(inode);
3448         return ret;
3449 }
3450
3451 static int write_page_nocow(struct scrub_ctx *sctx,
3452                             u64 physical_for_dev_replace, struct page *page)
3453 {
3454         struct bio *bio;
3455         struct btrfs_device *dev;
3456         int ret;
3457
3458         dev = sctx->wr_ctx.tgtdev;
3459         if (!dev)
3460                 return -EIO;
3461         if (!dev->bdev) {
3462                 printk_ratelimited(KERN_WARNING
3463                         "BTRFS: scrub write_page_nocow(bdev == NULL) is unexpected!\n");
3464                 return -EIO;
3465         }
3466         bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
3467         if (!bio) {
3468                 spin_lock(&sctx->stat_lock);
3469                 sctx->stat.malloc_errors++;
3470                 spin_unlock(&sctx->stat_lock);
3471                 return -ENOMEM;
3472         }
3473         bio->bi_iter.bi_size = 0;
3474         bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
3475         bio->bi_bdev = dev->bdev;
3476         ret = bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
3477         if (ret != PAGE_CACHE_SIZE) {
3478 leave_with_eio:
3479                 bio_put(bio);
3480                 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
3481                 return -EIO;
3482         }
3483
3484         if (btrfsic_submit_bio_wait(WRITE_SYNC, bio))
3485                 goto leave_with_eio;
3486
3487         bio_put(bio);
3488         return 0;
3489 }