]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/btrfs/tree-log.c
Merge tag 'v3.15' into next
[karo-tx-linux.git] / fs / btrfs / tree-log.c
1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/blkdev.h>
22 #include <linux/list_sort.h>
23 #include "ctree.h"
24 #include "transaction.h"
25 #include "disk-io.h"
26 #include "locking.h"
27 #include "print-tree.h"
28 #include "backref.h"
29 #include "tree-log.h"
30 #include "hash.h"
31
32 /* magic values for the inode_only field in btrfs_log_inode:
33  *
34  * LOG_INODE_ALL means to log everything
35  * LOG_INODE_EXISTS means to log just enough to recreate the inode
36  * during log replay
37  */
38 #define LOG_INODE_ALL 0
39 #define LOG_INODE_EXISTS 1
40
41 /*
42  * directory trouble cases
43  *
44  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
45  * log, we must force a full commit before doing an fsync of the directory
46  * where the unlink was done.
47  * ---> record transid of last unlink/rename per directory
48  *
49  * mkdir foo/some_dir
50  * normal commit
51  * rename foo/some_dir foo2/some_dir
52  * mkdir foo/some_dir
53  * fsync foo/some_dir/some_file
54  *
55  * The fsync above will unlink the original some_dir without recording
56  * it in its new location (foo2).  After a crash, some_dir will be gone
57  * unless the fsync of some_file forces a full commit
58  *
59  * 2) we must log any new names for any file or dir that is in the fsync
60  * log. ---> check inode while renaming/linking.
61  *
62  * 2a) we must log any new names for any file or dir during rename
63  * when the directory they are being removed from was logged.
64  * ---> check inode and old parent dir during rename
65  *
66  *  2a is actually the more important variant.  With the extra logging
67  *  a crash might unlink the old name without recreating the new one
68  *
69  * 3) after a crash, we must go through any directories with a link count
70  * of zero and redo the rm -rf
71  *
72  * mkdir f1/foo
73  * normal commit
74  * rm -rf f1/foo
75  * fsync(f1)
76  *
77  * The directory f1 was fully removed from the FS, but fsync was never
78  * called on f1, only its parent dir.  After a crash the rm -rf must
79  * be replayed.  This must be able to recurse down the entire
80  * directory tree.  The inode link count fixup code takes care of the
81  * ugly details.
82  */
83
84 /*
85  * stages for the tree walking.  The first
86  * stage (0) is to only pin down the blocks we find
87  * the second stage (1) is to make sure that all the inodes
88  * we find in the log are created in the subvolume.
89  *
90  * The last stage is to deal with directories and links and extents
91  * and all the other fun semantics
92  */
93 #define LOG_WALK_PIN_ONLY 0
94 #define LOG_WALK_REPLAY_INODES 1
95 #define LOG_WALK_REPLAY_DIR_INDEX 2
96 #define LOG_WALK_REPLAY_ALL 3
97
98 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
99                              struct btrfs_root *root, struct inode *inode,
100                              int inode_only);
101 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
102                              struct btrfs_root *root,
103                              struct btrfs_path *path, u64 objectid);
104 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
105                                        struct btrfs_root *root,
106                                        struct btrfs_root *log,
107                                        struct btrfs_path *path,
108                                        u64 dirid, int del_all);
109
110 /*
111  * tree logging is a special write ahead log used to make sure that
112  * fsyncs and O_SYNCs can happen without doing full tree commits.
113  *
114  * Full tree commits are expensive because they require commonly
115  * modified blocks to be recowed, creating many dirty pages in the
116  * extent tree an 4x-6x higher write load than ext3.
117  *
118  * Instead of doing a tree commit on every fsync, we use the
119  * key ranges and transaction ids to find items for a given file or directory
120  * that have changed in this transaction.  Those items are copied into
121  * a special tree (one per subvolume root), that tree is written to disk
122  * and then the fsync is considered complete.
123  *
124  * After a crash, items are copied out of the log-tree back into the
125  * subvolume tree.  Any file data extents found are recorded in the extent
126  * allocation tree, and the log-tree freed.
127  *
128  * The log tree is read three times, once to pin down all the extents it is
129  * using in ram and once, once to create all the inodes logged in the tree
130  * and once to do all the other items.
131  */
132
133 /*
134  * start a sub transaction and setup the log tree
135  * this increments the log tree writer count to make the people
136  * syncing the tree wait for us to finish
137  */
138 static int start_log_trans(struct btrfs_trans_handle *trans,
139                            struct btrfs_root *root,
140                            struct btrfs_log_ctx *ctx)
141 {
142         int index;
143         int ret;
144
145         mutex_lock(&root->log_mutex);
146         if (root->log_root) {
147                 if (ACCESS_ONCE(root->fs_info->last_trans_log_full_commit) ==
148                     trans->transid) {
149                         ret = -EAGAIN;
150                         goto out;
151                 }
152
153                 if (!root->log_start_pid) {
154                         root->log_start_pid = current->pid;
155                         root->log_multiple_pids = false;
156                 } else if (root->log_start_pid != current->pid) {
157                         root->log_multiple_pids = true;
158                 }
159
160                 atomic_inc(&root->log_batch);
161                 atomic_inc(&root->log_writers);
162                 if (ctx) {
163                         index = root->log_transid % 2;
164                         list_add_tail(&ctx->list, &root->log_ctxs[index]);
165                         ctx->log_transid = root->log_transid;
166                 }
167                 mutex_unlock(&root->log_mutex);
168                 return 0;
169         }
170
171         ret = 0;
172         mutex_lock(&root->fs_info->tree_log_mutex);
173         if (!root->fs_info->log_root_tree)
174                 ret = btrfs_init_log_root_tree(trans, root->fs_info);
175         mutex_unlock(&root->fs_info->tree_log_mutex);
176         if (ret)
177                 goto out;
178
179         if (!root->log_root) {
180                 ret = btrfs_add_log_tree(trans, root);
181                 if (ret)
182                         goto out;
183         }
184         root->log_multiple_pids = false;
185         root->log_start_pid = current->pid;
186         atomic_inc(&root->log_batch);
187         atomic_inc(&root->log_writers);
188         if (ctx) {
189                 index = root->log_transid % 2;
190                 list_add_tail(&ctx->list, &root->log_ctxs[index]);
191                 ctx->log_transid = root->log_transid;
192         }
193 out:
194         mutex_unlock(&root->log_mutex);
195         return ret;
196 }
197
198 /*
199  * returns 0 if there was a log transaction running and we were able
200  * to join, or returns -ENOENT if there were not transactions
201  * in progress
202  */
203 static int join_running_log_trans(struct btrfs_root *root)
204 {
205         int ret = -ENOENT;
206
207         smp_mb();
208         if (!root->log_root)
209                 return -ENOENT;
210
211         mutex_lock(&root->log_mutex);
212         if (root->log_root) {
213                 ret = 0;
214                 atomic_inc(&root->log_writers);
215         }
216         mutex_unlock(&root->log_mutex);
217         return ret;
218 }
219
220 /*
221  * This either makes the current running log transaction wait
222  * until you call btrfs_end_log_trans() or it makes any future
223  * log transactions wait until you call btrfs_end_log_trans()
224  */
225 int btrfs_pin_log_trans(struct btrfs_root *root)
226 {
227         int ret = -ENOENT;
228
229         mutex_lock(&root->log_mutex);
230         atomic_inc(&root->log_writers);
231         mutex_unlock(&root->log_mutex);
232         return ret;
233 }
234
235 /*
236  * indicate we're done making changes to the log tree
237  * and wake up anyone waiting to do a sync
238  */
239 void btrfs_end_log_trans(struct btrfs_root *root)
240 {
241         if (atomic_dec_and_test(&root->log_writers)) {
242                 smp_mb();
243                 if (waitqueue_active(&root->log_writer_wait))
244                         wake_up(&root->log_writer_wait);
245         }
246 }
247
248
249 /*
250  * the walk control struct is used to pass state down the chain when
251  * processing the log tree.  The stage field tells us which part
252  * of the log tree processing we are currently doing.  The others
253  * are state fields used for that specific part
254  */
255 struct walk_control {
256         /* should we free the extent on disk when done?  This is used
257          * at transaction commit time while freeing a log tree
258          */
259         int free;
260
261         /* should we write out the extent buffer?  This is used
262          * while flushing the log tree to disk during a sync
263          */
264         int write;
265
266         /* should we wait for the extent buffer io to finish?  Also used
267          * while flushing the log tree to disk for a sync
268          */
269         int wait;
270
271         /* pin only walk, we record which extents on disk belong to the
272          * log trees
273          */
274         int pin;
275
276         /* what stage of the replay code we're currently in */
277         int stage;
278
279         /* the root we are currently replaying */
280         struct btrfs_root *replay_dest;
281
282         /* the trans handle for the current replay */
283         struct btrfs_trans_handle *trans;
284
285         /* the function that gets used to process blocks we find in the
286          * tree.  Note the extent_buffer might not be up to date when it is
287          * passed in, and it must be checked or read if you need the data
288          * inside it
289          */
290         int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
291                             struct walk_control *wc, u64 gen);
292 };
293
294 /*
295  * process_func used to pin down extents, write them or wait on them
296  */
297 static int process_one_buffer(struct btrfs_root *log,
298                               struct extent_buffer *eb,
299                               struct walk_control *wc, u64 gen)
300 {
301         int ret = 0;
302
303         /*
304          * If this fs is mixed then we need to be able to process the leaves to
305          * pin down any logged extents, so we have to read the block.
306          */
307         if (btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) {
308                 ret = btrfs_read_buffer(eb, gen);
309                 if (ret)
310                         return ret;
311         }
312
313         if (wc->pin)
314                 ret = btrfs_pin_extent_for_log_replay(log->fs_info->extent_root,
315                                                       eb->start, eb->len);
316
317         if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
318                 if (wc->pin && btrfs_header_level(eb) == 0)
319                         ret = btrfs_exclude_logged_extents(log, eb);
320                 if (wc->write)
321                         btrfs_write_tree_block(eb);
322                 if (wc->wait)
323                         btrfs_wait_tree_block_writeback(eb);
324         }
325         return ret;
326 }
327
328 /*
329  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
330  * to the src data we are copying out.
331  *
332  * root is the tree we are copying into, and path is a scratch
333  * path for use in this function (it should be released on entry and
334  * will be released on exit).
335  *
336  * If the key is already in the destination tree the existing item is
337  * overwritten.  If the existing item isn't big enough, it is extended.
338  * If it is too large, it is truncated.
339  *
340  * If the key isn't in the destination yet, a new item is inserted.
341  */
342 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
343                                    struct btrfs_root *root,
344                                    struct btrfs_path *path,
345                                    struct extent_buffer *eb, int slot,
346                                    struct btrfs_key *key)
347 {
348         int ret;
349         u32 item_size;
350         u64 saved_i_size = 0;
351         int save_old_i_size = 0;
352         unsigned long src_ptr;
353         unsigned long dst_ptr;
354         int overwrite_root = 0;
355         bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
356
357         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
358                 overwrite_root = 1;
359
360         item_size = btrfs_item_size_nr(eb, slot);
361         src_ptr = btrfs_item_ptr_offset(eb, slot);
362
363         /* look for the key in the destination tree */
364         ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
365         if (ret < 0)
366                 return ret;
367
368         if (ret == 0) {
369                 char *src_copy;
370                 char *dst_copy;
371                 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
372                                                   path->slots[0]);
373                 if (dst_size != item_size)
374                         goto insert;
375
376                 if (item_size == 0) {
377                         btrfs_release_path(path);
378                         return 0;
379                 }
380                 dst_copy = kmalloc(item_size, GFP_NOFS);
381                 src_copy = kmalloc(item_size, GFP_NOFS);
382                 if (!dst_copy || !src_copy) {
383                         btrfs_release_path(path);
384                         kfree(dst_copy);
385                         kfree(src_copy);
386                         return -ENOMEM;
387                 }
388
389                 read_extent_buffer(eb, src_copy, src_ptr, item_size);
390
391                 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
392                 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
393                                    item_size);
394                 ret = memcmp(dst_copy, src_copy, item_size);
395
396                 kfree(dst_copy);
397                 kfree(src_copy);
398                 /*
399                  * they have the same contents, just return, this saves
400                  * us from cowing blocks in the destination tree and doing
401                  * extra writes that may not have been done by a previous
402                  * sync
403                  */
404                 if (ret == 0) {
405                         btrfs_release_path(path);
406                         return 0;
407                 }
408
409                 /*
410                  * We need to load the old nbytes into the inode so when we
411                  * replay the extents we've logged we get the right nbytes.
412                  */
413                 if (inode_item) {
414                         struct btrfs_inode_item *item;
415                         u64 nbytes;
416                         u32 mode;
417
418                         item = btrfs_item_ptr(path->nodes[0], path->slots[0],
419                                               struct btrfs_inode_item);
420                         nbytes = btrfs_inode_nbytes(path->nodes[0], item);
421                         item = btrfs_item_ptr(eb, slot,
422                                               struct btrfs_inode_item);
423                         btrfs_set_inode_nbytes(eb, item, nbytes);
424
425                         /*
426                          * If this is a directory we need to reset the i_size to
427                          * 0 so that we can set it up properly when replaying
428                          * the rest of the items in this log.
429                          */
430                         mode = btrfs_inode_mode(eb, item);
431                         if (S_ISDIR(mode))
432                                 btrfs_set_inode_size(eb, item, 0);
433                 }
434         } else if (inode_item) {
435                 struct btrfs_inode_item *item;
436                 u32 mode;
437
438                 /*
439                  * New inode, set nbytes to 0 so that the nbytes comes out
440                  * properly when we replay the extents.
441                  */
442                 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
443                 btrfs_set_inode_nbytes(eb, item, 0);
444
445                 /*
446                  * If this is a directory we need to reset the i_size to 0 so
447                  * that we can set it up properly when replaying the rest of
448                  * the items in this log.
449                  */
450                 mode = btrfs_inode_mode(eb, item);
451                 if (S_ISDIR(mode))
452                         btrfs_set_inode_size(eb, item, 0);
453         }
454 insert:
455         btrfs_release_path(path);
456         /* try to insert the key into the destination tree */
457         ret = btrfs_insert_empty_item(trans, root, path,
458                                       key, item_size);
459
460         /* make sure any existing item is the correct size */
461         if (ret == -EEXIST) {
462                 u32 found_size;
463                 found_size = btrfs_item_size_nr(path->nodes[0],
464                                                 path->slots[0]);
465                 if (found_size > item_size)
466                         btrfs_truncate_item(root, path, item_size, 1);
467                 else if (found_size < item_size)
468                         btrfs_extend_item(root, path,
469                                           item_size - found_size);
470         } else if (ret) {
471                 return ret;
472         }
473         dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
474                                         path->slots[0]);
475
476         /* don't overwrite an existing inode if the generation number
477          * was logged as zero.  This is done when the tree logging code
478          * is just logging an inode to make sure it exists after recovery.
479          *
480          * Also, don't overwrite i_size on directories during replay.
481          * log replay inserts and removes directory items based on the
482          * state of the tree found in the subvolume, and i_size is modified
483          * as it goes
484          */
485         if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
486                 struct btrfs_inode_item *src_item;
487                 struct btrfs_inode_item *dst_item;
488
489                 src_item = (struct btrfs_inode_item *)src_ptr;
490                 dst_item = (struct btrfs_inode_item *)dst_ptr;
491
492                 if (btrfs_inode_generation(eb, src_item) == 0)
493                         goto no_copy;
494
495                 if (overwrite_root &&
496                     S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
497                     S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
498                         save_old_i_size = 1;
499                         saved_i_size = btrfs_inode_size(path->nodes[0],
500                                                         dst_item);
501                 }
502         }
503
504         copy_extent_buffer(path->nodes[0], eb, dst_ptr,
505                            src_ptr, item_size);
506
507         if (save_old_i_size) {
508                 struct btrfs_inode_item *dst_item;
509                 dst_item = (struct btrfs_inode_item *)dst_ptr;
510                 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
511         }
512
513         /* make sure the generation is filled in */
514         if (key->type == BTRFS_INODE_ITEM_KEY) {
515                 struct btrfs_inode_item *dst_item;
516                 dst_item = (struct btrfs_inode_item *)dst_ptr;
517                 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
518                         btrfs_set_inode_generation(path->nodes[0], dst_item,
519                                                    trans->transid);
520                 }
521         }
522 no_copy:
523         btrfs_mark_buffer_dirty(path->nodes[0]);
524         btrfs_release_path(path);
525         return 0;
526 }
527
528 /*
529  * simple helper to read an inode off the disk from a given root
530  * This can only be called for subvolume roots and not for the log
531  */
532 static noinline struct inode *read_one_inode(struct btrfs_root *root,
533                                              u64 objectid)
534 {
535         struct btrfs_key key;
536         struct inode *inode;
537
538         key.objectid = objectid;
539         key.type = BTRFS_INODE_ITEM_KEY;
540         key.offset = 0;
541         inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
542         if (IS_ERR(inode)) {
543                 inode = NULL;
544         } else if (is_bad_inode(inode)) {
545                 iput(inode);
546                 inode = NULL;
547         }
548         return inode;
549 }
550
551 /* replays a single extent in 'eb' at 'slot' with 'key' into the
552  * subvolume 'root'.  path is released on entry and should be released
553  * on exit.
554  *
555  * extents in the log tree have not been allocated out of the extent
556  * tree yet.  So, this completes the allocation, taking a reference
557  * as required if the extent already exists or creating a new extent
558  * if it isn't in the extent allocation tree yet.
559  *
560  * The extent is inserted into the file, dropping any existing extents
561  * from the file that overlap the new one.
562  */
563 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
564                                       struct btrfs_root *root,
565                                       struct btrfs_path *path,
566                                       struct extent_buffer *eb, int slot,
567                                       struct btrfs_key *key)
568 {
569         int found_type;
570         u64 extent_end;
571         u64 start = key->offset;
572         u64 nbytes = 0;
573         struct btrfs_file_extent_item *item;
574         struct inode *inode = NULL;
575         unsigned long size;
576         int ret = 0;
577
578         item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
579         found_type = btrfs_file_extent_type(eb, item);
580
581         if (found_type == BTRFS_FILE_EXTENT_REG ||
582             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
583                 nbytes = btrfs_file_extent_num_bytes(eb, item);
584                 extent_end = start + nbytes;
585
586                 /*
587                  * We don't add to the inodes nbytes if we are prealloc or a
588                  * hole.
589                  */
590                 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
591                         nbytes = 0;
592         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
593                 size = btrfs_file_extent_inline_len(eb, slot, item);
594                 nbytes = btrfs_file_extent_ram_bytes(eb, item);
595                 extent_end = ALIGN(start + size, root->sectorsize);
596         } else {
597                 ret = 0;
598                 goto out;
599         }
600
601         inode = read_one_inode(root, key->objectid);
602         if (!inode) {
603                 ret = -EIO;
604                 goto out;
605         }
606
607         /*
608          * first check to see if we already have this extent in the
609          * file.  This must be done before the btrfs_drop_extents run
610          * so we don't try to drop this extent.
611          */
612         ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
613                                        start, 0);
614
615         if (ret == 0 &&
616             (found_type == BTRFS_FILE_EXTENT_REG ||
617              found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
618                 struct btrfs_file_extent_item cmp1;
619                 struct btrfs_file_extent_item cmp2;
620                 struct btrfs_file_extent_item *existing;
621                 struct extent_buffer *leaf;
622
623                 leaf = path->nodes[0];
624                 existing = btrfs_item_ptr(leaf, path->slots[0],
625                                           struct btrfs_file_extent_item);
626
627                 read_extent_buffer(eb, &cmp1, (unsigned long)item,
628                                    sizeof(cmp1));
629                 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
630                                    sizeof(cmp2));
631
632                 /*
633                  * we already have a pointer to this exact extent,
634                  * we don't have to do anything
635                  */
636                 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
637                         btrfs_release_path(path);
638                         goto out;
639                 }
640         }
641         btrfs_release_path(path);
642
643         /* drop any overlapping extents */
644         ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
645         if (ret)
646                 goto out;
647
648         if (found_type == BTRFS_FILE_EXTENT_REG ||
649             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
650                 u64 offset;
651                 unsigned long dest_offset;
652                 struct btrfs_key ins;
653
654                 ret = btrfs_insert_empty_item(trans, root, path, key,
655                                               sizeof(*item));
656                 if (ret)
657                         goto out;
658                 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
659                                                     path->slots[0]);
660                 copy_extent_buffer(path->nodes[0], eb, dest_offset,
661                                 (unsigned long)item,  sizeof(*item));
662
663                 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
664                 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
665                 ins.type = BTRFS_EXTENT_ITEM_KEY;
666                 offset = key->offset - btrfs_file_extent_offset(eb, item);
667
668                 if (ins.objectid > 0) {
669                         u64 csum_start;
670                         u64 csum_end;
671                         LIST_HEAD(ordered_sums);
672                         /*
673                          * is this extent already allocated in the extent
674                          * allocation tree?  If so, just add a reference
675                          */
676                         ret = btrfs_lookup_extent(root, ins.objectid,
677                                                 ins.offset);
678                         if (ret == 0) {
679                                 ret = btrfs_inc_extent_ref(trans, root,
680                                                 ins.objectid, ins.offset,
681                                                 0, root->root_key.objectid,
682                                                 key->objectid, offset, 0);
683                                 if (ret)
684                                         goto out;
685                         } else {
686                                 /*
687                                  * insert the extent pointer in the extent
688                                  * allocation tree
689                                  */
690                                 ret = btrfs_alloc_logged_file_extent(trans,
691                                                 root, root->root_key.objectid,
692                                                 key->objectid, offset, &ins);
693                                 if (ret)
694                                         goto out;
695                         }
696                         btrfs_release_path(path);
697
698                         if (btrfs_file_extent_compression(eb, item)) {
699                                 csum_start = ins.objectid;
700                                 csum_end = csum_start + ins.offset;
701                         } else {
702                                 csum_start = ins.objectid +
703                                         btrfs_file_extent_offset(eb, item);
704                                 csum_end = csum_start +
705                                         btrfs_file_extent_num_bytes(eb, item);
706                         }
707
708                         ret = btrfs_lookup_csums_range(root->log_root,
709                                                 csum_start, csum_end - 1,
710                                                 &ordered_sums, 0);
711                         if (ret)
712                                 goto out;
713                         while (!list_empty(&ordered_sums)) {
714                                 struct btrfs_ordered_sum *sums;
715                                 sums = list_entry(ordered_sums.next,
716                                                 struct btrfs_ordered_sum,
717                                                 list);
718                                 if (!ret)
719                                         ret = btrfs_csum_file_blocks(trans,
720                                                 root->fs_info->csum_root,
721                                                 sums);
722                                 list_del(&sums->list);
723                                 kfree(sums);
724                         }
725                         if (ret)
726                                 goto out;
727                 } else {
728                         btrfs_release_path(path);
729                 }
730         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
731                 /* inline extents are easy, we just overwrite them */
732                 ret = overwrite_item(trans, root, path, eb, slot, key);
733                 if (ret)
734                         goto out;
735         }
736
737         inode_add_bytes(inode, nbytes);
738         ret = btrfs_update_inode(trans, root, inode);
739 out:
740         if (inode)
741                 iput(inode);
742         return ret;
743 }
744
745 /*
746  * when cleaning up conflicts between the directory names in the
747  * subvolume, directory names in the log and directory names in the
748  * inode back references, we may have to unlink inodes from directories.
749  *
750  * This is a helper function to do the unlink of a specific directory
751  * item
752  */
753 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
754                                       struct btrfs_root *root,
755                                       struct btrfs_path *path,
756                                       struct inode *dir,
757                                       struct btrfs_dir_item *di)
758 {
759         struct inode *inode;
760         char *name;
761         int name_len;
762         struct extent_buffer *leaf;
763         struct btrfs_key location;
764         int ret;
765
766         leaf = path->nodes[0];
767
768         btrfs_dir_item_key_to_cpu(leaf, di, &location);
769         name_len = btrfs_dir_name_len(leaf, di);
770         name = kmalloc(name_len, GFP_NOFS);
771         if (!name)
772                 return -ENOMEM;
773
774         read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
775         btrfs_release_path(path);
776
777         inode = read_one_inode(root, location.objectid);
778         if (!inode) {
779                 ret = -EIO;
780                 goto out;
781         }
782
783         ret = link_to_fixup_dir(trans, root, path, location.objectid);
784         if (ret)
785                 goto out;
786
787         ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
788         if (ret)
789                 goto out;
790         else
791                 ret = btrfs_run_delayed_items(trans, root);
792 out:
793         kfree(name);
794         iput(inode);
795         return ret;
796 }
797
798 /*
799  * helper function to see if a given name and sequence number found
800  * in an inode back reference are already in a directory and correctly
801  * point to this inode
802  */
803 static noinline int inode_in_dir(struct btrfs_root *root,
804                                  struct btrfs_path *path,
805                                  u64 dirid, u64 objectid, u64 index,
806                                  const char *name, int name_len)
807 {
808         struct btrfs_dir_item *di;
809         struct btrfs_key location;
810         int match = 0;
811
812         di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
813                                          index, name, name_len, 0);
814         if (di && !IS_ERR(di)) {
815                 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
816                 if (location.objectid != objectid)
817                         goto out;
818         } else
819                 goto out;
820         btrfs_release_path(path);
821
822         di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
823         if (di && !IS_ERR(di)) {
824                 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
825                 if (location.objectid != objectid)
826                         goto out;
827         } else
828                 goto out;
829         match = 1;
830 out:
831         btrfs_release_path(path);
832         return match;
833 }
834
835 /*
836  * helper function to check a log tree for a named back reference in
837  * an inode.  This is used to decide if a back reference that is
838  * found in the subvolume conflicts with what we find in the log.
839  *
840  * inode backreferences may have multiple refs in a single item,
841  * during replay we process one reference at a time, and we don't
842  * want to delete valid links to a file from the subvolume if that
843  * link is also in the log.
844  */
845 static noinline int backref_in_log(struct btrfs_root *log,
846                                    struct btrfs_key *key,
847                                    u64 ref_objectid,
848                                    char *name, int namelen)
849 {
850         struct btrfs_path *path;
851         struct btrfs_inode_ref *ref;
852         unsigned long ptr;
853         unsigned long ptr_end;
854         unsigned long name_ptr;
855         int found_name_len;
856         int item_size;
857         int ret;
858         int match = 0;
859
860         path = btrfs_alloc_path();
861         if (!path)
862                 return -ENOMEM;
863
864         ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
865         if (ret != 0)
866                 goto out;
867
868         ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
869
870         if (key->type == BTRFS_INODE_EXTREF_KEY) {
871                 if (btrfs_find_name_in_ext_backref(path, ref_objectid,
872                                                    name, namelen, NULL))
873                         match = 1;
874
875                 goto out;
876         }
877
878         item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
879         ptr_end = ptr + item_size;
880         while (ptr < ptr_end) {
881                 ref = (struct btrfs_inode_ref *)ptr;
882                 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
883                 if (found_name_len == namelen) {
884                         name_ptr = (unsigned long)(ref + 1);
885                         ret = memcmp_extent_buffer(path->nodes[0], name,
886                                                    name_ptr, namelen);
887                         if (ret == 0) {
888                                 match = 1;
889                                 goto out;
890                         }
891                 }
892                 ptr = (unsigned long)(ref + 1) + found_name_len;
893         }
894 out:
895         btrfs_free_path(path);
896         return match;
897 }
898
899 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
900                                   struct btrfs_root *root,
901                                   struct btrfs_path *path,
902                                   struct btrfs_root *log_root,
903                                   struct inode *dir, struct inode *inode,
904                                   struct extent_buffer *eb,
905                                   u64 inode_objectid, u64 parent_objectid,
906                                   u64 ref_index, char *name, int namelen,
907                                   int *search_done)
908 {
909         int ret;
910         char *victim_name;
911         int victim_name_len;
912         struct extent_buffer *leaf;
913         struct btrfs_dir_item *di;
914         struct btrfs_key search_key;
915         struct btrfs_inode_extref *extref;
916
917 again:
918         /* Search old style refs */
919         search_key.objectid = inode_objectid;
920         search_key.type = BTRFS_INODE_REF_KEY;
921         search_key.offset = parent_objectid;
922         ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
923         if (ret == 0) {
924                 struct btrfs_inode_ref *victim_ref;
925                 unsigned long ptr;
926                 unsigned long ptr_end;
927
928                 leaf = path->nodes[0];
929
930                 /* are we trying to overwrite a back ref for the root directory
931                  * if so, just jump out, we're done
932                  */
933                 if (search_key.objectid == search_key.offset)
934                         return 1;
935
936                 /* check all the names in this back reference to see
937                  * if they are in the log.  if so, we allow them to stay
938                  * otherwise they must be unlinked as a conflict
939                  */
940                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
941                 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
942                 while (ptr < ptr_end) {
943                         victim_ref = (struct btrfs_inode_ref *)ptr;
944                         victim_name_len = btrfs_inode_ref_name_len(leaf,
945                                                                    victim_ref);
946                         victim_name = kmalloc(victim_name_len, GFP_NOFS);
947                         if (!victim_name)
948                                 return -ENOMEM;
949
950                         read_extent_buffer(leaf, victim_name,
951                                            (unsigned long)(victim_ref + 1),
952                                            victim_name_len);
953
954                         if (!backref_in_log(log_root, &search_key,
955                                             parent_objectid,
956                                             victim_name,
957                                             victim_name_len)) {
958                                 inc_nlink(inode);
959                                 btrfs_release_path(path);
960
961                                 ret = btrfs_unlink_inode(trans, root, dir,
962                                                          inode, victim_name,
963                                                          victim_name_len);
964                                 kfree(victim_name);
965                                 if (ret)
966                                         return ret;
967                                 ret = btrfs_run_delayed_items(trans, root);
968                                 if (ret)
969                                         return ret;
970                                 *search_done = 1;
971                                 goto again;
972                         }
973                         kfree(victim_name);
974
975                         ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
976                 }
977
978                 /*
979                  * NOTE: we have searched root tree and checked the
980                  * coresponding ref, it does not need to check again.
981                  */
982                 *search_done = 1;
983         }
984         btrfs_release_path(path);
985
986         /* Same search but for extended refs */
987         extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
988                                            inode_objectid, parent_objectid, 0,
989                                            0);
990         if (!IS_ERR_OR_NULL(extref)) {
991                 u32 item_size;
992                 u32 cur_offset = 0;
993                 unsigned long base;
994                 struct inode *victim_parent;
995
996                 leaf = path->nodes[0];
997
998                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
999                 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1000
1001                 while (cur_offset < item_size) {
1002                         extref = (struct btrfs_inode_extref *)base + cur_offset;
1003
1004                         victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1005
1006                         if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1007                                 goto next;
1008
1009                         victim_name = kmalloc(victim_name_len, GFP_NOFS);
1010                         if (!victim_name)
1011                                 return -ENOMEM;
1012                         read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1013                                            victim_name_len);
1014
1015                         search_key.objectid = inode_objectid;
1016                         search_key.type = BTRFS_INODE_EXTREF_KEY;
1017                         search_key.offset = btrfs_extref_hash(parent_objectid,
1018                                                               victim_name,
1019                                                               victim_name_len);
1020                         ret = 0;
1021                         if (!backref_in_log(log_root, &search_key,
1022                                             parent_objectid, victim_name,
1023                                             victim_name_len)) {
1024                                 ret = -ENOENT;
1025                                 victim_parent = read_one_inode(root,
1026                                                                parent_objectid);
1027                                 if (victim_parent) {
1028                                         inc_nlink(inode);
1029                                         btrfs_release_path(path);
1030
1031                                         ret = btrfs_unlink_inode(trans, root,
1032                                                                  victim_parent,
1033                                                                  inode,
1034                                                                  victim_name,
1035                                                                  victim_name_len);
1036                                         if (!ret)
1037                                                 ret = btrfs_run_delayed_items(
1038                                                                   trans, root);
1039                                 }
1040                                 iput(victim_parent);
1041                                 kfree(victim_name);
1042                                 if (ret)
1043                                         return ret;
1044                                 *search_done = 1;
1045                                 goto again;
1046                         }
1047                         kfree(victim_name);
1048                         if (ret)
1049                                 return ret;
1050 next:
1051                         cur_offset += victim_name_len + sizeof(*extref);
1052                 }
1053                 *search_done = 1;
1054         }
1055         btrfs_release_path(path);
1056
1057         /* look for a conflicting sequence number */
1058         di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1059                                          ref_index, name, namelen, 0);
1060         if (di && !IS_ERR(di)) {
1061                 ret = drop_one_dir_item(trans, root, path, dir, di);
1062                 if (ret)
1063                         return ret;
1064         }
1065         btrfs_release_path(path);
1066
1067         /* look for a conflicing name */
1068         di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1069                                    name, namelen, 0);
1070         if (di && !IS_ERR(di)) {
1071                 ret = drop_one_dir_item(trans, root, path, dir, di);
1072                 if (ret)
1073                         return ret;
1074         }
1075         btrfs_release_path(path);
1076
1077         return 0;
1078 }
1079
1080 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1081                              u32 *namelen, char **name, u64 *index,
1082                              u64 *parent_objectid)
1083 {
1084         struct btrfs_inode_extref *extref;
1085
1086         extref = (struct btrfs_inode_extref *)ref_ptr;
1087
1088         *namelen = btrfs_inode_extref_name_len(eb, extref);
1089         *name = kmalloc(*namelen, GFP_NOFS);
1090         if (*name == NULL)
1091                 return -ENOMEM;
1092
1093         read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1094                            *namelen);
1095
1096         *index = btrfs_inode_extref_index(eb, extref);
1097         if (parent_objectid)
1098                 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1099
1100         return 0;
1101 }
1102
1103 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1104                           u32 *namelen, char **name, u64 *index)
1105 {
1106         struct btrfs_inode_ref *ref;
1107
1108         ref = (struct btrfs_inode_ref *)ref_ptr;
1109
1110         *namelen = btrfs_inode_ref_name_len(eb, ref);
1111         *name = kmalloc(*namelen, GFP_NOFS);
1112         if (*name == NULL)
1113                 return -ENOMEM;
1114
1115         read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1116
1117         *index = btrfs_inode_ref_index(eb, ref);
1118
1119         return 0;
1120 }
1121
1122 /*
1123  * replay one inode back reference item found in the log tree.
1124  * eb, slot and key refer to the buffer and key found in the log tree.
1125  * root is the destination we are replaying into, and path is for temp
1126  * use by this function.  (it should be released on return).
1127  */
1128 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1129                                   struct btrfs_root *root,
1130                                   struct btrfs_root *log,
1131                                   struct btrfs_path *path,
1132                                   struct extent_buffer *eb, int slot,
1133                                   struct btrfs_key *key)
1134 {
1135         struct inode *dir = NULL;
1136         struct inode *inode = NULL;
1137         unsigned long ref_ptr;
1138         unsigned long ref_end;
1139         char *name = NULL;
1140         int namelen;
1141         int ret;
1142         int search_done = 0;
1143         int log_ref_ver = 0;
1144         u64 parent_objectid;
1145         u64 inode_objectid;
1146         u64 ref_index = 0;
1147         int ref_struct_size;
1148
1149         ref_ptr = btrfs_item_ptr_offset(eb, slot);
1150         ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1151
1152         if (key->type == BTRFS_INODE_EXTREF_KEY) {
1153                 struct btrfs_inode_extref *r;
1154
1155                 ref_struct_size = sizeof(struct btrfs_inode_extref);
1156                 log_ref_ver = 1;
1157                 r = (struct btrfs_inode_extref *)ref_ptr;
1158                 parent_objectid = btrfs_inode_extref_parent(eb, r);
1159         } else {
1160                 ref_struct_size = sizeof(struct btrfs_inode_ref);
1161                 parent_objectid = key->offset;
1162         }
1163         inode_objectid = key->objectid;
1164
1165         /*
1166          * it is possible that we didn't log all the parent directories
1167          * for a given inode.  If we don't find the dir, just don't
1168          * copy the back ref in.  The link count fixup code will take
1169          * care of the rest
1170          */
1171         dir = read_one_inode(root, parent_objectid);
1172         if (!dir) {
1173                 ret = -ENOENT;
1174                 goto out;
1175         }
1176
1177         inode = read_one_inode(root, inode_objectid);
1178         if (!inode) {
1179                 ret = -EIO;
1180                 goto out;
1181         }
1182
1183         while (ref_ptr < ref_end) {
1184                 if (log_ref_ver) {
1185                         ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1186                                                 &ref_index, &parent_objectid);
1187                         /*
1188                          * parent object can change from one array
1189                          * item to another.
1190                          */
1191                         if (!dir)
1192                                 dir = read_one_inode(root, parent_objectid);
1193                         if (!dir) {
1194                                 ret = -ENOENT;
1195                                 goto out;
1196                         }
1197                 } else {
1198                         ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1199                                              &ref_index);
1200                 }
1201                 if (ret)
1202                         goto out;
1203
1204                 /* if we already have a perfect match, we're done */
1205                 if (!inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
1206                                   ref_index, name, namelen)) {
1207                         /*
1208                          * look for a conflicting back reference in the
1209                          * metadata. if we find one we have to unlink that name
1210                          * of the file before we add our new link.  Later on, we
1211                          * overwrite any existing back reference, and we don't
1212                          * want to create dangling pointers in the directory.
1213                          */
1214
1215                         if (!search_done) {
1216                                 ret = __add_inode_ref(trans, root, path, log,
1217                                                       dir, inode, eb,
1218                                                       inode_objectid,
1219                                                       parent_objectid,
1220                                                       ref_index, name, namelen,
1221                                                       &search_done);
1222                                 if (ret) {
1223                                         if (ret == 1)
1224                                                 ret = 0;
1225                                         goto out;
1226                                 }
1227                         }
1228
1229                         /* insert our name */
1230                         ret = btrfs_add_link(trans, dir, inode, name, namelen,
1231                                              0, ref_index);
1232                         if (ret)
1233                                 goto out;
1234
1235                         btrfs_update_inode(trans, root, inode);
1236                 }
1237
1238                 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1239                 kfree(name);
1240                 name = NULL;
1241                 if (log_ref_ver) {
1242                         iput(dir);
1243                         dir = NULL;
1244                 }
1245         }
1246
1247         /* finally write the back reference in the inode */
1248         ret = overwrite_item(trans, root, path, eb, slot, key);
1249 out:
1250         btrfs_release_path(path);
1251         kfree(name);
1252         iput(dir);
1253         iput(inode);
1254         return ret;
1255 }
1256
1257 static int insert_orphan_item(struct btrfs_trans_handle *trans,
1258                               struct btrfs_root *root, u64 offset)
1259 {
1260         int ret;
1261         ret = btrfs_find_item(root, NULL, BTRFS_ORPHAN_OBJECTID,
1262                         offset, BTRFS_ORPHAN_ITEM_KEY, NULL);
1263         if (ret > 0)
1264                 ret = btrfs_insert_orphan_item(trans, root, offset);
1265         return ret;
1266 }
1267
1268 static int count_inode_extrefs(struct btrfs_root *root,
1269                                struct inode *inode, struct btrfs_path *path)
1270 {
1271         int ret = 0;
1272         int name_len;
1273         unsigned int nlink = 0;
1274         u32 item_size;
1275         u32 cur_offset = 0;
1276         u64 inode_objectid = btrfs_ino(inode);
1277         u64 offset = 0;
1278         unsigned long ptr;
1279         struct btrfs_inode_extref *extref;
1280         struct extent_buffer *leaf;
1281
1282         while (1) {
1283                 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1284                                             &extref, &offset);
1285                 if (ret)
1286                         break;
1287
1288                 leaf = path->nodes[0];
1289                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1290                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1291
1292                 while (cur_offset < item_size) {
1293                         extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1294                         name_len = btrfs_inode_extref_name_len(leaf, extref);
1295
1296                         nlink++;
1297
1298                         cur_offset += name_len + sizeof(*extref);
1299                 }
1300
1301                 offset++;
1302                 btrfs_release_path(path);
1303         }
1304         btrfs_release_path(path);
1305
1306         if (ret < 0)
1307                 return ret;
1308         return nlink;
1309 }
1310
1311 static int count_inode_refs(struct btrfs_root *root,
1312                                struct inode *inode, struct btrfs_path *path)
1313 {
1314         int ret;
1315         struct btrfs_key key;
1316         unsigned int nlink = 0;
1317         unsigned long ptr;
1318         unsigned long ptr_end;
1319         int name_len;
1320         u64 ino = btrfs_ino(inode);
1321
1322         key.objectid = ino;
1323         key.type = BTRFS_INODE_REF_KEY;
1324         key.offset = (u64)-1;
1325
1326         while (1) {
1327                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1328                 if (ret < 0)
1329                         break;
1330                 if (ret > 0) {
1331                         if (path->slots[0] == 0)
1332                                 break;
1333                         path->slots[0]--;
1334                 }
1335 process_slot:
1336                 btrfs_item_key_to_cpu(path->nodes[0], &key,
1337                                       path->slots[0]);
1338                 if (key.objectid != ino ||
1339                     key.type != BTRFS_INODE_REF_KEY)
1340                         break;
1341                 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1342                 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1343                                                    path->slots[0]);
1344                 while (ptr < ptr_end) {
1345                         struct btrfs_inode_ref *ref;
1346
1347                         ref = (struct btrfs_inode_ref *)ptr;
1348                         name_len = btrfs_inode_ref_name_len(path->nodes[0],
1349                                                             ref);
1350                         ptr = (unsigned long)(ref + 1) + name_len;
1351                         nlink++;
1352                 }
1353
1354                 if (key.offset == 0)
1355                         break;
1356                 if (path->slots[0] > 0) {
1357                         path->slots[0]--;
1358                         goto process_slot;
1359                 }
1360                 key.offset--;
1361                 btrfs_release_path(path);
1362         }
1363         btrfs_release_path(path);
1364
1365         return nlink;
1366 }
1367
1368 /*
1369  * There are a few corners where the link count of the file can't
1370  * be properly maintained during replay.  So, instead of adding
1371  * lots of complexity to the log code, we just scan the backrefs
1372  * for any file that has been through replay.
1373  *
1374  * The scan will update the link count on the inode to reflect the
1375  * number of back refs found.  If it goes down to zero, the iput
1376  * will free the inode.
1377  */
1378 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1379                                            struct btrfs_root *root,
1380                                            struct inode *inode)
1381 {
1382         struct btrfs_path *path;
1383         int ret;
1384         u64 nlink = 0;
1385         u64 ino = btrfs_ino(inode);
1386
1387         path = btrfs_alloc_path();
1388         if (!path)
1389                 return -ENOMEM;
1390
1391         ret = count_inode_refs(root, inode, path);
1392         if (ret < 0)
1393                 goto out;
1394
1395         nlink = ret;
1396
1397         ret = count_inode_extrefs(root, inode, path);
1398         if (ret == -ENOENT)
1399                 ret = 0;
1400
1401         if (ret < 0)
1402                 goto out;
1403
1404         nlink += ret;
1405
1406         ret = 0;
1407
1408         if (nlink != inode->i_nlink) {
1409                 set_nlink(inode, nlink);
1410                 btrfs_update_inode(trans, root, inode);
1411         }
1412         BTRFS_I(inode)->index_cnt = (u64)-1;
1413
1414         if (inode->i_nlink == 0) {
1415                 if (S_ISDIR(inode->i_mode)) {
1416                         ret = replay_dir_deletes(trans, root, NULL, path,
1417                                                  ino, 1);
1418                         if (ret)
1419                                 goto out;
1420                 }
1421                 ret = insert_orphan_item(trans, root, ino);
1422         }
1423
1424 out:
1425         btrfs_free_path(path);
1426         return ret;
1427 }
1428
1429 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1430                                             struct btrfs_root *root,
1431                                             struct btrfs_path *path)
1432 {
1433         int ret;
1434         struct btrfs_key key;
1435         struct inode *inode;
1436
1437         key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1438         key.type = BTRFS_ORPHAN_ITEM_KEY;
1439         key.offset = (u64)-1;
1440         while (1) {
1441                 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1442                 if (ret < 0)
1443                         break;
1444
1445                 if (ret == 1) {
1446                         if (path->slots[0] == 0)
1447                                 break;
1448                         path->slots[0]--;
1449                 }
1450
1451                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1452                 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1453                     key.type != BTRFS_ORPHAN_ITEM_KEY)
1454                         break;
1455
1456                 ret = btrfs_del_item(trans, root, path);
1457                 if (ret)
1458                         goto out;
1459
1460                 btrfs_release_path(path);
1461                 inode = read_one_inode(root, key.offset);
1462                 if (!inode)
1463                         return -EIO;
1464
1465                 ret = fixup_inode_link_count(trans, root, inode);
1466                 iput(inode);
1467                 if (ret)
1468                         goto out;
1469
1470                 /*
1471                  * fixup on a directory may create new entries,
1472                  * make sure we always look for the highset possible
1473                  * offset
1474                  */
1475                 key.offset = (u64)-1;
1476         }
1477         ret = 0;
1478 out:
1479         btrfs_release_path(path);
1480         return ret;
1481 }
1482
1483
1484 /*
1485  * record a given inode in the fixup dir so we can check its link
1486  * count when replay is done.  The link count is incremented here
1487  * so the inode won't go away until we check it
1488  */
1489 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1490                                       struct btrfs_root *root,
1491                                       struct btrfs_path *path,
1492                                       u64 objectid)
1493 {
1494         struct btrfs_key key;
1495         int ret = 0;
1496         struct inode *inode;
1497
1498         inode = read_one_inode(root, objectid);
1499         if (!inode)
1500                 return -EIO;
1501
1502         key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1503         btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1504         key.offset = objectid;
1505
1506         ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1507
1508         btrfs_release_path(path);
1509         if (ret == 0) {
1510                 if (!inode->i_nlink)
1511                         set_nlink(inode, 1);
1512                 else
1513                         inc_nlink(inode);
1514                 ret = btrfs_update_inode(trans, root, inode);
1515         } else if (ret == -EEXIST) {
1516                 ret = 0;
1517         } else {
1518                 BUG(); /* Logic Error */
1519         }
1520         iput(inode);
1521
1522         return ret;
1523 }
1524
1525 /*
1526  * when replaying the log for a directory, we only insert names
1527  * for inodes that actually exist.  This means an fsync on a directory
1528  * does not implicitly fsync all the new files in it
1529  */
1530 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1531                                     struct btrfs_root *root,
1532                                     struct btrfs_path *path,
1533                                     u64 dirid, u64 index,
1534                                     char *name, int name_len, u8 type,
1535                                     struct btrfs_key *location)
1536 {
1537         struct inode *inode;
1538         struct inode *dir;
1539         int ret;
1540
1541         inode = read_one_inode(root, location->objectid);
1542         if (!inode)
1543                 return -ENOENT;
1544
1545         dir = read_one_inode(root, dirid);
1546         if (!dir) {
1547                 iput(inode);
1548                 return -EIO;
1549         }
1550
1551         ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1552
1553         /* FIXME, put inode into FIXUP list */
1554
1555         iput(inode);
1556         iput(dir);
1557         return ret;
1558 }
1559
1560 /*
1561  * take a single entry in a log directory item and replay it into
1562  * the subvolume.
1563  *
1564  * if a conflicting item exists in the subdirectory already,
1565  * the inode it points to is unlinked and put into the link count
1566  * fix up tree.
1567  *
1568  * If a name from the log points to a file or directory that does
1569  * not exist in the FS, it is skipped.  fsyncs on directories
1570  * do not force down inodes inside that directory, just changes to the
1571  * names or unlinks in a directory.
1572  */
1573 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1574                                     struct btrfs_root *root,
1575                                     struct btrfs_path *path,
1576                                     struct extent_buffer *eb,
1577                                     struct btrfs_dir_item *di,
1578                                     struct btrfs_key *key)
1579 {
1580         char *name;
1581         int name_len;
1582         struct btrfs_dir_item *dst_di;
1583         struct btrfs_key found_key;
1584         struct btrfs_key log_key;
1585         struct inode *dir;
1586         u8 log_type;
1587         int exists;
1588         int ret = 0;
1589         bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1590
1591         dir = read_one_inode(root, key->objectid);
1592         if (!dir)
1593                 return -EIO;
1594
1595         name_len = btrfs_dir_name_len(eb, di);
1596         name = kmalloc(name_len, GFP_NOFS);
1597         if (!name) {
1598                 ret = -ENOMEM;
1599                 goto out;
1600         }
1601
1602         log_type = btrfs_dir_type(eb, di);
1603         read_extent_buffer(eb, name, (unsigned long)(di + 1),
1604                    name_len);
1605
1606         btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1607         exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1608         if (exists == 0)
1609                 exists = 1;
1610         else
1611                 exists = 0;
1612         btrfs_release_path(path);
1613
1614         if (key->type == BTRFS_DIR_ITEM_KEY) {
1615                 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1616                                        name, name_len, 1);
1617         } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1618                 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1619                                                      key->objectid,
1620                                                      key->offset, name,
1621                                                      name_len, 1);
1622         } else {
1623                 /* Corruption */
1624                 ret = -EINVAL;
1625                 goto out;
1626         }
1627         if (IS_ERR_OR_NULL(dst_di)) {
1628                 /* we need a sequence number to insert, so we only
1629                  * do inserts for the BTRFS_DIR_INDEX_KEY types
1630                  */
1631                 if (key->type != BTRFS_DIR_INDEX_KEY)
1632                         goto out;
1633                 goto insert;
1634         }
1635
1636         btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1637         /* the existing item matches the logged item */
1638         if (found_key.objectid == log_key.objectid &&
1639             found_key.type == log_key.type &&
1640             found_key.offset == log_key.offset &&
1641             btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1642                 goto out;
1643         }
1644
1645         /*
1646          * don't drop the conflicting directory entry if the inode
1647          * for the new entry doesn't exist
1648          */
1649         if (!exists)
1650                 goto out;
1651
1652         ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1653         if (ret)
1654                 goto out;
1655
1656         if (key->type == BTRFS_DIR_INDEX_KEY)
1657                 goto insert;
1658 out:
1659         btrfs_release_path(path);
1660         if (!ret && update_size) {
1661                 btrfs_i_size_write(dir, dir->i_size + name_len * 2);
1662                 ret = btrfs_update_inode(trans, root, dir);
1663         }
1664         kfree(name);
1665         iput(dir);
1666         return ret;
1667
1668 insert:
1669         btrfs_release_path(path);
1670         ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1671                               name, name_len, log_type, &log_key);
1672         if (ret && ret != -ENOENT)
1673                 goto out;
1674         update_size = false;
1675         ret = 0;
1676         goto out;
1677 }
1678
1679 /*
1680  * find all the names in a directory item and reconcile them into
1681  * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
1682  * one name in a directory item, but the same code gets used for
1683  * both directory index types
1684  */
1685 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1686                                         struct btrfs_root *root,
1687                                         struct btrfs_path *path,
1688                                         struct extent_buffer *eb, int slot,
1689                                         struct btrfs_key *key)
1690 {
1691         int ret;
1692         u32 item_size = btrfs_item_size_nr(eb, slot);
1693         struct btrfs_dir_item *di;
1694         int name_len;
1695         unsigned long ptr;
1696         unsigned long ptr_end;
1697
1698         ptr = btrfs_item_ptr_offset(eb, slot);
1699         ptr_end = ptr + item_size;
1700         while (ptr < ptr_end) {
1701                 di = (struct btrfs_dir_item *)ptr;
1702                 if (verify_dir_item(root, eb, di))
1703                         return -EIO;
1704                 name_len = btrfs_dir_name_len(eb, di);
1705                 ret = replay_one_name(trans, root, path, eb, di, key);
1706                 if (ret)
1707                         return ret;
1708                 ptr = (unsigned long)(di + 1);
1709                 ptr += name_len;
1710         }
1711         return 0;
1712 }
1713
1714 /*
1715  * directory replay has two parts.  There are the standard directory
1716  * items in the log copied from the subvolume, and range items
1717  * created in the log while the subvolume was logged.
1718  *
1719  * The range items tell us which parts of the key space the log
1720  * is authoritative for.  During replay, if a key in the subvolume
1721  * directory is in a logged range item, but not actually in the log
1722  * that means it was deleted from the directory before the fsync
1723  * and should be removed.
1724  */
1725 static noinline int find_dir_range(struct btrfs_root *root,
1726                                    struct btrfs_path *path,
1727                                    u64 dirid, int key_type,
1728                                    u64 *start_ret, u64 *end_ret)
1729 {
1730         struct btrfs_key key;
1731         u64 found_end;
1732         struct btrfs_dir_log_item *item;
1733         int ret;
1734         int nritems;
1735
1736         if (*start_ret == (u64)-1)
1737                 return 1;
1738
1739         key.objectid = dirid;
1740         key.type = key_type;
1741         key.offset = *start_ret;
1742
1743         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1744         if (ret < 0)
1745                 goto out;
1746         if (ret > 0) {
1747                 if (path->slots[0] == 0)
1748                         goto out;
1749                 path->slots[0]--;
1750         }
1751         if (ret != 0)
1752                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1753
1754         if (key.type != key_type || key.objectid != dirid) {
1755                 ret = 1;
1756                 goto next;
1757         }
1758         item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1759                               struct btrfs_dir_log_item);
1760         found_end = btrfs_dir_log_end(path->nodes[0], item);
1761
1762         if (*start_ret >= key.offset && *start_ret <= found_end) {
1763                 ret = 0;
1764                 *start_ret = key.offset;
1765                 *end_ret = found_end;
1766                 goto out;
1767         }
1768         ret = 1;
1769 next:
1770         /* check the next slot in the tree to see if it is a valid item */
1771         nritems = btrfs_header_nritems(path->nodes[0]);
1772         if (path->slots[0] >= nritems) {
1773                 ret = btrfs_next_leaf(root, path);
1774                 if (ret)
1775                         goto out;
1776         } else {
1777                 path->slots[0]++;
1778         }
1779
1780         btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1781
1782         if (key.type != key_type || key.objectid != dirid) {
1783                 ret = 1;
1784                 goto out;
1785         }
1786         item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1787                               struct btrfs_dir_log_item);
1788         found_end = btrfs_dir_log_end(path->nodes[0], item);
1789         *start_ret = key.offset;
1790         *end_ret = found_end;
1791         ret = 0;
1792 out:
1793         btrfs_release_path(path);
1794         return ret;
1795 }
1796
1797 /*
1798  * this looks for a given directory item in the log.  If the directory
1799  * item is not in the log, the item is removed and the inode it points
1800  * to is unlinked
1801  */
1802 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1803                                       struct btrfs_root *root,
1804                                       struct btrfs_root *log,
1805                                       struct btrfs_path *path,
1806                                       struct btrfs_path *log_path,
1807                                       struct inode *dir,
1808                                       struct btrfs_key *dir_key)
1809 {
1810         int ret;
1811         struct extent_buffer *eb;
1812         int slot;
1813         u32 item_size;
1814         struct btrfs_dir_item *di;
1815         struct btrfs_dir_item *log_di;
1816         int name_len;
1817         unsigned long ptr;
1818         unsigned long ptr_end;
1819         char *name;
1820         struct inode *inode;
1821         struct btrfs_key location;
1822
1823 again:
1824         eb = path->nodes[0];
1825         slot = path->slots[0];
1826         item_size = btrfs_item_size_nr(eb, slot);
1827         ptr = btrfs_item_ptr_offset(eb, slot);
1828         ptr_end = ptr + item_size;
1829         while (ptr < ptr_end) {
1830                 di = (struct btrfs_dir_item *)ptr;
1831                 if (verify_dir_item(root, eb, di)) {
1832                         ret = -EIO;
1833                         goto out;
1834                 }
1835
1836                 name_len = btrfs_dir_name_len(eb, di);
1837                 name = kmalloc(name_len, GFP_NOFS);
1838                 if (!name) {
1839                         ret = -ENOMEM;
1840                         goto out;
1841                 }
1842                 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1843                                   name_len);
1844                 log_di = NULL;
1845                 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
1846                         log_di = btrfs_lookup_dir_item(trans, log, log_path,
1847                                                        dir_key->objectid,
1848                                                        name, name_len, 0);
1849                 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
1850                         log_di = btrfs_lookup_dir_index_item(trans, log,
1851                                                      log_path,
1852                                                      dir_key->objectid,
1853                                                      dir_key->offset,
1854                                                      name, name_len, 0);
1855                 }
1856                 if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
1857                         btrfs_dir_item_key_to_cpu(eb, di, &location);
1858                         btrfs_release_path(path);
1859                         btrfs_release_path(log_path);
1860                         inode = read_one_inode(root, location.objectid);
1861                         if (!inode) {
1862                                 kfree(name);
1863                                 return -EIO;
1864                         }
1865
1866                         ret = link_to_fixup_dir(trans, root,
1867                                                 path, location.objectid);
1868                         if (ret) {
1869                                 kfree(name);
1870                                 iput(inode);
1871                                 goto out;
1872                         }
1873
1874                         inc_nlink(inode);
1875                         ret = btrfs_unlink_inode(trans, root, dir, inode,
1876                                                  name, name_len);
1877                         if (!ret)
1878                                 ret = btrfs_run_delayed_items(trans, root);
1879                         kfree(name);
1880                         iput(inode);
1881                         if (ret)
1882                                 goto out;
1883
1884                         /* there might still be more names under this key
1885                          * check and repeat if required
1886                          */
1887                         ret = btrfs_search_slot(NULL, root, dir_key, path,
1888                                                 0, 0);
1889                         if (ret == 0)
1890                                 goto again;
1891                         ret = 0;
1892                         goto out;
1893                 } else if (IS_ERR(log_di)) {
1894                         kfree(name);
1895                         return PTR_ERR(log_di);
1896                 }
1897                 btrfs_release_path(log_path);
1898                 kfree(name);
1899
1900                 ptr = (unsigned long)(di + 1);
1901                 ptr += name_len;
1902         }
1903         ret = 0;
1904 out:
1905         btrfs_release_path(path);
1906         btrfs_release_path(log_path);
1907         return ret;
1908 }
1909
1910 /*
1911  * deletion replay happens before we copy any new directory items
1912  * out of the log or out of backreferences from inodes.  It
1913  * scans the log to find ranges of keys that log is authoritative for,
1914  * and then scans the directory to find items in those ranges that are
1915  * not present in the log.
1916  *
1917  * Anything we don't find in the log is unlinked and removed from the
1918  * directory.
1919  */
1920 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1921                                        struct btrfs_root *root,
1922                                        struct btrfs_root *log,
1923                                        struct btrfs_path *path,
1924                                        u64 dirid, int del_all)
1925 {
1926         u64 range_start;
1927         u64 range_end;
1928         int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1929         int ret = 0;
1930         struct btrfs_key dir_key;
1931         struct btrfs_key found_key;
1932         struct btrfs_path *log_path;
1933         struct inode *dir;
1934
1935         dir_key.objectid = dirid;
1936         dir_key.type = BTRFS_DIR_ITEM_KEY;
1937         log_path = btrfs_alloc_path();
1938         if (!log_path)
1939                 return -ENOMEM;
1940
1941         dir = read_one_inode(root, dirid);
1942         /* it isn't an error if the inode isn't there, that can happen
1943          * because we replay the deletes before we copy in the inode item
1944          * from the log
1945          */
1946         if (!dir) {
1947                 btrfs_free_path(log_path);
1948                 return 0;
1949         }
1950 again:
1951         range_start = 0;
1952         range_end = 0;
1953         while (1) {
1954                 if (del_all)
1955                         range_end = (u64)-1;
1956                 else {
1957                         ret = find_dir_range(log, path, dirid, key_type,
1958                                              &range_start, &range_end);
1959                         if (ret != 0)
1960                                 break;
1961                 }
1962
1963                 dir_key.offset = range_start;
1964                 while (1) {
1965                         int nritems;
1966                         ret = btrfs_search_slot(NULL, root, &dir_key, path,
1967                                                 0, 0);
1968                         if (ret < 0)
1969                                 goto out;
1970
1971                         nritems = btrfs_header_nritems(path->nodes[0]);
1972                         if (path->slots[0] >= nritems) {
1973                                 ret = btrfs_next_leaf(root, path);
1974                                 if (ret)
1975                                         break;
1976                         }
1977                         btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1978                                               path->slots[0]);
1979                         if (found_key.objectid != dirid ||
1980                             found_key.type != dir_key.type)
1981                                 goto next_type;
1982
1983                         if (found_key.offset > range_end)
1984                                 break;
1985
1986                         ret = check_item_in_log(trans, root, log, path,
1987                                                 log_path, dir,
1988                                                 &found_key);
1989                         if (ret)
1990                                 goto out;
1991                         if (found_key.offset == (u64)-1)
1992                                 break;
1993                         dir_key.offset = found_key.offset + 1;
1994                 }
1995                 btrfs_release_path(path);
1996                 if (range_end == (u64)-1)
1997                         break;
1998                 range_start = range_end + 1;
1999         }
2000
2001 next_type:
2002         ret = 0;
2003         if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2004                 key_type = BTRFS_DIR_LOG_INDEX_KEY;
2005                 dir_key.type = BTRFS_DIR_INDEX_KEY;
2006                 btrfs_release_path(path);
2007                 goto again;
2008         }
2009 out:
2010         btrfs_release_path(path);
2011         btrfs_free_path(log_path);
2012         iput(dir);
2013         return ret;
2014 }
2015
2016 /*
2017  * the process_func used to replay items from the log tree.  This
2018  * gets called in two different stages.  The first stage just looks
2019  * for inodes and makes sure they are all copied into the subvolume.
2020  *
2021  * The second stage copies all the other item types from the log into
2022  * the subvolume.  The two stage approach is slower, but gets rid of
2023  * lots of complexity around inodes referencing other inodes that exist
2024  * only in the log (references come from either directory items or inode
2025  * back refs).
2026  */
2027 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2028                              struct walk_control *wc, u64 gen)
2029 {
2030         int nritems;
2031         struct btrfs_path *path;
2032         struct btrfs_root *root = wc->replay_dest;
2033         struct btrfs_key key;
2034         int level;
2035         int i;
2036         int ret;
2037
2038         ret = btrfs_read_buffer(eb, gen);
2039         if (ret)
2040                 return ret;
2041
2042         level = btrfs_header_level(eb);
2043
2044         if (level != 0)
2045                 return 0;
2046
2047         path = btrfs_alloc_path();
2048         if (!path)
2049                 return -ENOMEM;
2050
2051         nritems = btrfs_header_nritems(eb);
2052         for (i = 0; i < nritems; i++) {
2053                 btrfs_item_key_to_cpu(eb, &key, i);
2054
2055                 /* inode keys are done during the first stage */
2056                 if (key.type == BTRFS_INODE_ITEM_KEY &&
2057                     wc->stage == LOG_WALK_REPLAY_INODES) {
2058                         struct btrfs_inode_item *inode_item;
2059                         u32 mode;
2060
2061                         inode_item = btrfs_item_ptr(eb, i,
2062                                             struct btrfs_inode_item);
2063                         mode = btrfs_inode_mode(eb, inode_item);
2064                         if (S_ISDIR(mode)) {
2065                                 ret = replay_dir_deletes(wc->trans,
2066                                          root, log, path, key.objectid, 0);
2067                                 if (ret)
2068                                         break;
2069                         }
2070                         ret = overwrite_item(wc->trans, root, path,
2071                                              eb, i, &key);
2072                         if (ret)
2073                                 break;
2074
2075                         /* for regular files, make sure corresponding
2076                          * orhpan item exist. extents past the new EOF
2077                          * will be truncated later by orphan cleanup.
2078                          */
2079                         if (S_ISREG(mode)) {
2080                                 ret = insert_orphan_item(wc->trans, root,
2081                                                          key.objectid);
2082                                 if (ret)
2083                                         break;
2084                         }
2085
2086                         ret = link_to_fixup_dir(wc->trans, root,
2087                                                 path, key.objectid);
2088                         if (ret)
2089                                 break;
2090                 }
2091
2092                 if (key.type == BTRFS_DIR_INDEX_KEY &&
2093                     wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2094                         ret = replay_one_dir_item(wc->trans, root, path,
2095                                                   eb, i, &key);
2096                         if (ret)
2097                                 break;
2098                 }
2099
2100                 if (wc->stage < LOG_WALK_REPLAY_ALL)
2101                         continue;
2102
2103                 /* these keys are simply copied */
2104                 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2105                         ret = overwrite_item(wc->trans, root, path,
2106                                              eb, i, &key);
2107                         if (ret)
2108                                 break;
2109                 } else if (key.type == BTRFS_INODE_REF_KEY ||
2110                            key.type == BTRFS_INODE_EXTREF_KEY) {
2111                         ret = add_inode_ref(wc->trans, root, log, path,
2112                                             eb, i, &key);
2113                         if (ret && ret != -ENOENT)
2114                                 break;
2115                         ret = 0;
2116                 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2117                         ret = replay_one_extent(wc->trans, root, path,
2118                                                 eb, i, &key);
2119                         if (ret)
2120                                 break;
2121                 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
2122                         ret = replay_one_dir_item(wc->trans, root, path,
2123                                                   eb, i, &key);
2124                         if (ret)
2125                                 break;
2126                 }
2127         }
2128         btrfs_free_path(path);
2129         return ret;
2130 }
2131
2132 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2133                                    struct btrfs_root *root,
2134                                    struct btrfs_path *path, int *level,
2135                                    struct walk_control *wc)
2136 {
2137         u64 root_owner;
2138         u64 bytenr;
2139         u64 ptr_gen;
2140         struct extent_buffer *next;
2141         struct extent_buffer *cur;
2142         struct extent_buffer *parent;
2143         u32 blocksize;
2144         int ret = 0;
2145
2146         WARN_ON(*level < 0);
2147         WARN_ON(*level >= BTRFS_MAX_LEVEL);
2148
2149         while (*level > 0) {
2150                 WARN_ON(*level < 0);
2151                 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2152                 cur = path->nodes[*level];
2153
2154                 WARN_ON(btrfs_header_level(cur) != *level);
2155
2156                 if (path->slots[*level] >=
2157                     btrfs_header_nritems(cur))
2158                         break;
2159
2160                 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2161                 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2162                 blocksize = btrfs_level_size(root, *level - 1);
2163
2164                 parent = path->nodes[*level];
2165                 root_owner = btrfs_header_owner(parent);
2166
2167                 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
2168                 if (!next)
2169                         return -ENOMEM;
2170
2171                 if (*level == 1) {
2172                         ret = wc->process_func(root, next, wc, ptr_gen);
2173                         if (ret) {
2174                                 free_extent_buffer(next);
2175                                 return ret;
2176                         }
2177
2178                         path->slots[*level]++;
2179                         if (wc->free) {
2180                                 ret = btrfs_read_buffer(next, ptr_gen);
2181                                 if (ret) {
2182                                         free_extent_buffer(next);
2183                                         return ret;
2184                                 }
2185
2186                                 if (trans) {
2187                                         btrfs_tree_lock(next);
2188                                         btrfs_set_lock_blocking(next);
2189                                         clean_tree_block(trans, root, next);
2190                                         btrfs_wait_tree_block_writeback(next);
2191                                         btrfs_tree_unlock(next);
2192                                 }
2193
2194                                 WARN_ON(root_owner !=
2195                                         BTRFS_TREE_LOG_OBJECTID);
2196                                 ret = btrfs_free_and_pin_reserved_extent(root,
2197                                                          bytenr, blocksize);
2198                                 if (ret) {
2199                                         free_extent_buffer(next);
2200                                         return ret;
2201                                 }
2202                         }
2203                         free_extent_buffer(next);
2204                         continue;
2205                 }
2206                 ret = btrfs_read_buffer(next, ptr_gen);
2207                 if (ret) {
2208                         free_extent_buffer(next);
2209                         return ret;
2210                 }
2211
2212                 WARN_ON(*level <= 0);
2213                 if (path->nodes[*level-1])
2214                         free_extent_buffer(path->nodes[*level-1]);
2215                 path->nodes[*level-1] = next;
2216                 *level = btrfs_header_level(next);
2217                 path->slots[*level] = 0;
2218                 cond_resched();
2219         }
2220         WARN_ON(*level < 0);
2221         WARN_ON(*level >= BTRFS_MAX_LEVEL);
2222
2223         path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2224
2225         cond_resched();
2226         return 0;
2227 }
2228
2229 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2230                                  struct btrfs_root *root,
2231                                  struct btrfs_path *path, int *level,
2232                                  struct walk_control *wc)
2233 {
2234         u64 root_owner;
2235         int i;
2236         int slot;
2237         int ret;
2238
2239         for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2240                 slot = path->slots[i];
2241                 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2242                         path->slots[i]++;
2243                         *level = i;
2244                         WARN_ON(*level == 0);
2245                         return 0;
2246                 } else {
2247                         struct extent_buffer *parent;
2248                         if (path->nodes[*level] == root->node)
2249                                 parent = path->nodes[*level];
2250                         else
2251                                 parent = path->nodes[*level + 1];
2252
2253                         root_owner = btrfs_header_owner(parent);
2254                         ret = wc->process_func(root, path->nodes[*level], wc,
2255                                  btrfs_header_generation(path->nodes[*level]));
2256                         if (ret)
2257                                 return ret;
2258
2259                         if (wc->free) {
2260                                 struct extent_buffer *next;
2261
2262                                 next = path->nodes[*level];
2263
2264                                 if (trans) {
2265                                         btrfs_tree_lock(next);
2266                                         btrfs_set_lock_blocking(next);
2267                                         clean_tree_block(trans, root, next);
2268                                         btrfs_wait_tree_block_writeback(next);
2269                                         btrfs_tree_unlock(next);
2270                                 }
2271
2272                                 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2273                                 ret = btrfs_free_and_pin_reserved_extent(root,
2274                                                 path->nodes[*level]->start,
2275                                                 path->nodes[*level]->len);
2276                                 if (ret)
2277                                         return ret;
2278                         }
2279                         free_extent_buffer(path->nodes[*level]);
2280                         path->nodes[*level] = NULL;
2281                         *level = i + 1;
2282                 }
2283         }
2284         return 1;
2285 }
2286
2287 /*
2288  * drop the reference count on the tree rooted at 'snap'.  This traverses
2289  * the tree freeing any blocks that have a ref count of zero after being
2290  * decremented.
2291  */
2292 static int walk_log_tree(struct btrfs_trans_handle *trans,
2293                          struct btrfs_root *log, struct walk_control *wc)
2294 {
2295         int ret = 0;
2296         int wret;
2297         int level;
2298         struct btrfs_path *path;
2299         int orig_level;
2300
2301         path = btrfs_alloc_path();
2302         if (!path)
2303                 return -ENOMEM;
2304
2305         level = btrfs_header_level(log->node);
2306         orig_level = level;
2307         path->nodes[level] = log->node;
2308         extent_buffer_get(log->node);
2309         path->slots[level] = 0;
2310
2311         while (1) {
2312                 wret = walk_down_log_tree(trans, log, path, &level, wc);
2313                 if (wret > 0)
2314                         break;
2315                 if (wret < 0) {
2316                         ret = wret;
2317                         goto out;
2318                 }
2319
2320                 wret = walk_up_log_tree(trans, log, path, &level, wc);
2321                 if (wret > 0)
2322                         break;
2323                 if (wret < 0) {
2324                         ret = wret;
2325                         goto out;
2326                 }
2327         }
2328
2329         /* was the root node processed? if not, catch it here */
2330         if (path->nodes[orig_level]) {
2331                 ret = wc->process_func(log, path->nodes[orig_level], wc,
2332                          btrfs_header_generation(path->nodes[orig_level]));
2333                 if (ret)
2334                         goto out;
2335                 if (wc->free) {
2336                         struct extent_buffer *next;
2337
2338                         next = path->nodes[orig_level];
2339
2340                         if (trans) {
2341                                 btrfs_tree_lock(next);
2342                                 btrfs_set_lock_blocking(next);
2343                                 clean_tree_block(trans, log, next);
2344                                 btrfs_wait_tree_block_writeback(next);
2345                                 btrfs_tree_unlock(next);
2346                         }
2347
2348                         WARN_ON(log->root_key.objectid !=
2349                                 BTRFS_TREE_LOG_OBJECTID);
2350                         ret = btrfs_free_and_pin_reserved_extent(log, next->start,
2351                                                          next->len);
2352                         if (ret)
2353                                 goto out;
2354                 }
2355         }
2356
2357 out:
2358         btrfs_free_path(path);
2359         return ret;
2360 }
2361
2362 /*
2363  * helper function to update the item for a given subvolumes log root
2364  * in the tree of log roots
2365  */
2366 static int update_log_root(struct btrfs_trans_handle *trans,
2367                            struct btrfs_root *log)
2368 {
2369         int ret;
2370
2371         if (log->log_transid == 1) {
2372                 /* insert root item on the first sync */
2373                 ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
2374                                 &log->root_key, &log->root_item);
2375         } else {
2376                 ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
2377                                 &log->root_key, &log->root_item);
2378         }
2379         return ret;
2380 }
2381
2382 static void wait_log_commit(struct btrfs_trans_handle *trans,
2383                             struct btrfs_root *root, int transid)
2384 {
2385         DEFINE_WAIT(wait);
2386         int index = transid % 2;
2387
2388         /*
2389          * we only allow two pending log transactions at a time,
2390          * so we know that if ours is more than 2 older than the
2391          * current transaction, we're done
2392          */
2393         do {
2394                 prepare_to_wait(&root->log_commit_wait[index],
2395                                 &wait, TASK_UNINTERRUPTIBLE);
2396                 mutex_unlock(&root->log_mutex);
2397
2398                 if (root->log_transid_committed < transid &&
2399                     atomic_read(&root->log_commit[index]))
2400                         schedule();
2401
2402                 finish_wait(&root->log_commit_wait[index], &wait);
2403                 mutex_lock(&root->log_mutex);
2404         } while (root->log_transid_committed < transid &&
2405                  atomic_read(&root->log_commit[index]));
2406 }
2407
2408 static void wait_for_writer(struct btrfs_trans_handle *trans,
2409                             struct btrfs_root *root)
2410 {
2411         DEFINE_WAIT(wait);
2412
2413         while (atomic_read(&root->log_writers)) {
2414                 prepare_to_wait(&root->log_writer_wait,
2415                                 &wait, TASK_UNINTERRUPTIBLE);
2416                 mutex_unlock(&root->log_mutex);
2417                 if (atomic_read(&root->log_writers))
2418                         schedule();
2419                 mutex_lock(&root->log_mutex);
2420                 finish_wait(&root->log_writer_wait, &wait);
2421         }
2422 }
2423
2424 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2425                                         struct btrfs_log_ctx *ctx)
2426 {
2427         if (!ctx)
2428                 return;
2429
2430         mutex_lock(&root->log_mutex);
2431         list_del_init(&ctx->list);
2432         mutex_unlock(&root->log_mutex);
2433 }
2434
2435 /* 
2436  * Invoked in log mutex context, or be sure there is no other task which
2437  * can access the list.
2438  */
2439 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2440                                              int index, int error)
2441 {
2442         struct btrfs_log_ctx *ctx;
2443
2444         if (!error) {
2445                 INIT_LIST_HEAD(&root->log_ctxs[index]);
2446                 return;
2447         }
2448
2449         list_for_each_entry(ctx, &root->log_ctxs[index], list)
2450                 ctx->log_ret = error;
2451
2452         INIT_LIST_HEAD(&root->log_ctxs[index]);
2453 }
2454
2455 /*
2456  * btrfs_sync_log does sends a given tree log down to the disk and
2457  * updates the super blocks to record it.  When this call is done,
2458  * you know that any inodes previously logged are safely on disk only
2459  * if it returns 0.
2460  *
2461  * Any other return value means you need to call btrfs_commit_transaction.
2462  * Some of the edge cases for fsyncing directories that have had unlinks
2463  * or renames done in the past mean that sometimes the only safe
2464  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
2465  * that has happened.
2466  */
2467 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2468                    struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2469 {
2470         int index1;
2471         int index2;
2472         int mark;
2473         int ret;
2474         struct btrfs_root *log = root->log_root;
2475         struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
2476         int log_transid = 0;
2477         struct btrfs_log_ctx root_log_ctx;
2478         struct blk_plug plug;
2479
2480         mutex_lock(&root->log_mutex);
2481         log_transid = ctx->log_transid;
2482         if (root->log_transid_committed >= log_transid) {
2483                 mutex_unlock(&root->log_mutex);
2484                 return ctx->log_ret;
2485         }
2486
2487         index1 = log_transid % 2;
2488         if (atomic_read(&root->log_commit[index1])) {
2489                 wait_log_commit(trans, root, log_transid);
2490                 mutex_unlock(&root->log_mutex);
2491                 return ctx->log_ret;
2492         }
2493         ASSERT(log_transid == root->log_transid);
2494         atomic_set(&root->log_commit[index1], 1);
2495
2496         /* wait for previous tree log sync to complete */
2497         if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2498                 wait_log_commit(trans, root, log_transid - 1);
2499
2500         while (1) {
2501                 int batch = atomic_read(&root->log_batch);
2502                 /* when we're on an ssd, just kick the log commit out */
2503                 if (!btrfs_test_opt(root, SSD) && root->log_multiple_pids) {
2504                         mutex_unlock(&root->log_mutex);
2505                         schedule_timeout_uninterruptible(1);
2506                         mutex_lock(&root->log_mutex);
2507                 }
2508                 wait_for_writer(trans, root);
2509                 if (batch == atomic_read(&root->log_batch))
2510                         break;
2511         }
2512
2513         /* bail out if we need to do a full commit */
2514         if (ACCESS_ONCE(root->fs_info->last_trans_log_full_commit) ==
2515             trans->transid) {
2516                 ret = -EAGAIN;
2517                 btrfs_free_logged_extents(log, log_transid);
2518                 mutex_unlock(&root->log_mutex);
2519                 goto out;
2520         }
2521
2522         if (log_transid % 2 == 0)
2523                 mark = EXTENT_DIRTY;
2524         else
2525                 mark = EXTENT_NEW;
2526
2527         /* we start IO on  all the marked extents here, but we don't actually
2528          * wait for them until later.
2529          */
2530         blk_start_plug(&plug);
2531         ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
2532         if (ret) {
2533                 blk_finish_plug(&plug);
2534                 btrfs_abort_transaction(trans, root, ret);
2535                 btrfs_free_logged_extents(log, log_transid);
2536                 ACCESS_ONCE(root->fs_info->last_trans_log_full_commit) =
2537                                                                 trans->transid;
2538                 mutex_unlock(&root->log_mutex);
2539                 goto out;
2540         }
2541
2542         btrfs_set_root_node(&log->root_item, log->node);
2543
2544         root->log_transid++;
2545         log->log_transid = root->log_transid;
2546         root->log_start_pid = 0;
2547         /*
2548          * IO has been started, blocks of the log tree have WRITTEN flag set
2549          * in their headers. new modifications of the log will be written to
2550          * new positions. so it's safe to allow log writers to go in.
2551          */
2552         mutex_unlock(&root->log_mutex);
2553
2554         btrfs_init_log_ctx(&root_log_ctx);
2555
2556         mutex_lock(&log_root_tree->log_mutex);
2557         atomic_inc(&log_root_tree->log_batch);
2558         atomic_inc(&log_root_tree->log_writers);
2559
2560         index2 = log_root_tree->log_transid % 2;
2561         list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
2562         root_log_ctx.log_transid = log_root_tree->log_transid;
2563
2564         mutex_unlock(&log_root_tree->log_mutex);
2565
2566         ret = update_log_root(trans, log);
2567
2568         mutex_lock(&log_root_tree->log_mutex);
2569         if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2570                 smp_mb();
2571                 if (waitqueue_active(&log_root_tree->log_writer_wait))
2572                         wake_up(&log_root_tree->log_writer_wait);
2573         }
2574
2575         if (ret) {
2576                 if (!list_empty(&root_log_ctx.list))
2577                         list_del_init(&root_log_ctx.list);
2578
2579                 blk_finish_plug(&plug);
2580                 ACCESS_ONCE(root->fs_info->last_trans_log_full_commit) =
2581                                                                 trans->transid;
2582                 if (ret != -ENOSPC) {
2583                         btrfs_abort_transaction(trans, root, ret);
2584                         mutex_unlock(&log_root_tree->log_mutex);
2585                         goto out;
2586                 }
2587                 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2588                 btrfs_free_logged_extents(log, log_transid);
2589                 mutex_unlock(&log_root_tree->log_mutex);
2590                 ret = -EAGAIN;
2591                 goto out;
2592         }
2593
2594         if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
2595                 mutex_unlock(&log_root_tree->log_mutex);
2596                 ret = root_log_ctx.log_ret;
2597                 goto out;
2598         }
2599
2600         index2 = root_log_ctx.log_transid % 2;
2601         if (atomic_read(&log_root_tree->log_commit[index2])) {
2602                 blk_finish_plug(&plug);
2603                 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2604                 wait_log_commit(trans, log_root_tree,
2605                                 root_log_ctx.log_transid);
2606                 btrfs_free_logged_extents(log, log_transid);
2607                 mutex_unlock(&log_root_tree->log_mutex);
2608                 ret = root_log_ctx.log_ret;
2609                 goto out;
2610         }
2611         ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
2612         atomic_set(&log_root_tree->log_commit[index2], 1);
2613
2614         if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2615                 wait_log_commit(trans, log_root_tree,
2616                                 root_log_ctx.log_transid - 1);
2617         }
2618
2619         wait_for_writer(trans, log_root_tree);
2620
2621         /*
2622          * now that we've moved on to the tree of log tree roots,
2623          * check the full commit flag again
2624          */
2625         if (ACCESS_ONCE(root->fs_info->last_trans_log_full_commit) ==
2626             trans->transid) {
2627                 blk_finish_plug(&plug);
2628                 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2629                 btrfs_free_logged_extents(log, log_transid);
2630                 mutex_unlock(&log_root_tree->log_mutex);
2631                 ret = -EAGAIN;
2632                 goto out_wake_log_root;
2633         }
2634
2635         ret = btrfs_write_marked_extents(log_root_tree,
2636                                          &log_root_tree->dirty_log_pages,
2637                                          EXTENT_DIRTY | EXTENT_NEW);
2638         blk_finish_plug(&plug);
2639         if (ret) {
2640                 ACCESS_ONCE(root->fs_info->last_trans_log_full_commit) =
2641                                                                 trans->transid;
2642                 btrfs_abort_transaction(trans, root, ret);
2643                 btrfs_free_logged_extents(log, log_transid);
2644                 mutex_unlock(&log_root_tree->log_mutex);
2645                 goto out_wake_log_root;
2646         }
2647         btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2648         btrfs_wait_marked_extents(log_root_tree,
2649                                   &log_root_tree->dirty_log_pages,
2650                                   EXTENT_NEW | EXTENT_DIRTY);
2651         btrfs_wait_logged_extents(log, log_transid);
2652
2653         btrfs_set_super_log_root(root->fs_info->super_for_commit,
2654                                 log_root_tree->node->start);
2655         btrfs_set_super_log_root_level(root->fs_info->super_for_commit,
2656                                 btrfs_header_level(log_root_tree->node));
2657
2658         log_root_tree->log_transid++;
2659         mutex_unlock(&log_root_tree->log_mutex);
2660
2661         /*
2662          * nobody else is going to jump in and write the the ctree
2663          * super here because the log_commit atomic below is protecting
2664          * us.  We must be called with a transaction handle pinning
2665          * the running transaction open, so a full commit can't hop
2666          * in and cause problems either.
2667          */
2668         ret = write_ctree_super(trans, root->fs_info->tree_root, 1);
2669         if (ret) {
2670                 ACCESS_ONCE(root->fs_info->last_trans_log_full_commit) =
2671                                                                 trans->transid;
2672                 btrfs_abort_transaction(trans, root, ret);
2673                 goto out_wake_log_root;
2674         }
2675
2676         mutex_lock(&root->log_mutex);
2677         if (root->last_log_commit < log_transid)
2678                 root->last_log_commit = log_transid;
2679         mutex_unlock(&root->log_mutex);
2680
2681 out_wake_log_root:
2682         /*
2683          * We needn't get log_mutex here because we are sure all
2684          * the other tasks are blocked.
2685          */
2686         btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
2687
2688         mutex_lock(&log_root_tree->log_mutex);
2689         log_root_tree->log_transid_committed++;
2690         atomic_set(&log_root_tree->log_commit[index2], 0);
2691         mutex_unlock(&log_root_tree->log_mutex);
2692
2693         if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2694                 wake_up(&log_root_tree->log_commit_wait[index2]);
2695 out:
2696         /* See above. */
2697         btrfs_remove_all_log_ctxs(root, index1, ret);
2698
2699         mutex_lock(&root->log_mutex);
2700         root->log_transid_committed++;
2701         atomic_set(&root->log_commit[index1], 0);
2702         mutex_unlock(&root->log_mutex);
2703
2704         if (waitqueue_active(&root->log_commit_wait[index1]))
2705                 wake_up(&root->log_commit_wait[index1]);
2706         return ret;
2707 }
2708
2709 static void free_log_tree(struct btrfs_trans_handle *trans,
2710                           struct btrfs_root *log)
2711 {
2712         int ret;
2713         u64 start;
2714         u64 end;
2715         struct walk_control wc = {
2716                 .free = 1,
2717                 .process_func = process_one_buffer
2718         };
2719
2720         ret = walk_log_tree(trans, log, &wc);
2721         /* I don't think this can happen but just in case */
2722         if (ret)
2723                 btrfs_abort_transaction(trans, log, ret);
2724
2725         while (1) {
2726                 ret = find_first_extent_bit(&log->dirty_log_pages,
2727                                 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
2728                                 NULL);
2729                 if (ret)
2730                         break;
2731
2732                 clear_extent_bits(&log->dirty_log_pages, start, end,
2733                                   EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
2734         }
2735
2736         /*
2737          * We may have short-circuited the log tree with the full commit logic
2738          * and left ordered extents on our list, so clear these out to keep us
2739          * from leaking inodes and memory.
2740          */
2741         btrfs_free_logged_extents(log, 0);
2742         btrfs_free_logged_extents(log, 1);
2743
2744         free_extent_buffer(log->node);
2745         kfree(log);
2746 }
2747
2748 /*
2749  * free all the extents used by the tree log.  This should be called
2750  * at commit time of the full transaction
2751  */
2752 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2753 {
2754         if (root->log_root) {
2755                 free_log_tree(trans, root->log_root);
2756                 root->log_root = NULL;
2757         }
2758         return 0;
2759 }
2760
2761 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
2762                              struct btrfs_fs_info *fs_info)
2763 {
2764         if (fs_info->log_root_tree) {
2765                 free_log_tree(trans, fs_info->log_root_tree);
2766                 fs_info->log_root_tree = NULL;
2767         }
2768         return 0;
2769 }
2770
2771 /*
2772  * If both a file and directory are logged, and unlinks or renames are
2773  * mixed in, we have a few interesting corners:
2774  *
2775  * create file X in dir Y
2776  * link file X to X.link in dir Y
2777  * fsync file X
2778  * unlink file X but leave X.link
2779  * fsync dir Y
2780  *
2781  * After a crash we would expect only X.link to exist.  But file X
2782  * didn't get fsync'd again so the log has back refs for X and X.link.
2783  *
2784  * We solve this by removing directory entries and inode backrefs from the
2785  * log when a file that was logged in the current transaction is
2786  * unlinked.  Any later fsync will include the updated log entries, and
2787  * we'll be able to reconstruct the proper directory items from backrefs.
2788  *
2789  * This optimizations allows us to avoid relogging the entire inode
2790  * or the entire directory.
2791  */
2792 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2793                                  struct btrfs_root *root,
2794                                  const char *name, int name_len,
2795                                  struct inode *dir, u64 index)
2796 {
2797         struct btrfs_root *log;
2798         struct btrfs_dir_item *di;
2799         struct btrfs_path *path;
2800         int ret;
2801         int err = 0;
2802         int bytes_del = 0;
2803         u64 dir_ino = btrfs_ino(dir);
2804
2805         if (BTRFS_I(dir)->logged_trans < trans->transid)
2806                 return 0;
2807
2808         ret = join_running_log_trans(root);
2809         if (ret)
2810                 return 0;
2811
2812         mutex_lock(&BTRFS_I(dir)->log_mutex);
2813
2814         log = root->log_root;
2815         path = btrfs_alloc_path();
2816         if (!path) {
2817                 err = -ENOMEM;
2818                 goto out_unlock;
2819         }
2820
2821         di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
2822                                    name, name_len, -1);
2823         if (IS_ERR(di)) {
2824                 err = PTR_ERR(di);
2825                 goto fail;
2826         }
2827         if (di) {
2828                 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2829                 bytes_del += name_len;
2830                 if (ret) {
2831                         err = ret;
2832                         goto fail;
2833                 }
2834         }
2835         btrfs_release_path(path);
2836         di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
2837                                          index, name, name_len, -1);
2838         if (IS_ERR(di)) {
2839                 err = PTR_ERR(di);
2840                 goto fail;
2841         }
2842         if (di) {
2843                 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2844                 bytes_del += name_len;
2845                 if (ret) {
2846                         err = ret;
2847                         goto fail;
2848                 }
2849         }
2850
2851         /* update the directory size in the log to reflect the names
2852          * we have removed
2853          */
2854         if (bytes_del) {
2855                 struct btrfs_key key;
2856
2857                 key.objectid = dir_ino;
2858                 key.offset = 0;
2859                 key.type = BTRFS_INODE_ITEM_KEY;
2860                 btrfs_release_path(path);
2861
2862                 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2863                 if (ret < 0) {
2864                         err = ret;
2865                         goto fail;
2866                 }
2867                 if (ret == 0) {
2868                         struct btrfs_inode_item *item;
2869                         u64 i_size;
2870
2871                         item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2872                                               struct btrfs_inode_item);
2873                         i_size = btrfs_inode_size(path->nodes[0], item);
2874                         if (i_size > bytes_del)
2875                                 i_size -= bytes_del;
2876                         else
2877                                 i_size = 0;
2878                         btrfs_set_inode_size(path->nodes[0], item, i_size);
2879                         btrfs_mark_buffer_dirty(path->nodes[0]);
2880                 } else
2881                         ret = 0;
2882                 btrfs_release_path(path);
2883         }
2884 fail:
2885         btrfs_free_path(path);
2886 out_unlock:
2887         mutex_unlock(&BTRFS_I(dir)->log_mutex);
2888         if (ret == -ENOSPC) {
2889                 root->fs_info->last_trans_log_full_commit = trans->transid;
2890                 ret = 0;
2891         } else if (ret < 0)
2892                 btrfs_abort_transaction(trans, root, ret);
2893
2894         btrfs_end_log_trans(root);
2895
2896         return err;
2897 }
2898
2899 /* see comments for btrfs_del_dir_entries_in_log */
2900 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2901                                struct btrfs_root *root,
2902                                const char *name, int name_len,
2903                                struct inode *inode, u64 dirid)
2904 {
2905         struct btrfs_root *log;
2906         u64 index;
2907         int ret;
2908
2909         if (BTRFS_I(inode)->logged_trans < trans->transid)
2910                 return 0;
2911
2912         ret = join_running_log_trans(root);
2913         if (ret)
2914                 return 0;
2915         log = root->log_root;
2916         mutex_lock(&BTRFS_I(inode)->log_mutex);
2917
2918         ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
2919                                   dirid, &index);
2920         mutex_unlock(&BTRFS_I(inode)->log_mutex);
2921         if (ret == -ENOSPC) {
2922                 root->fs_info->last_trans_log_full_commit = trans->transid;
2923                 ret = 0;
2924         } else if (ret < 0 && ret != -ENOENT)
2925                 btrfs_abort_transaction(trans, root, ret);
2926         btrfs_end_log_trans(root);
2927
2928         return ret;
2929 }
2930
2931 /*
2932  * creates a range item in the log for 'dirid'.  first_offset and
2933  * last_offset tell us which parts of the key space the log should
2934  * be considered authoritative for.
2935  */
2936 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2937                                        struct btrfs_root *log,
2938                                        struct btrfs_path *path,
2939                                        int key_type, u64 dirid,
2940                                        u64 first_offset, u64 last_offset)
2941 {
2942         int ret;
2943         struct btrfs_key key;
2944         struct btrfs_dir_log_item *item;
2945
2946         key.objectid = dirid;
2947         key.offset = first_offset;
2948         if (key_type == BTRFS_DIR_ITEM_KEY)
2949                 key.type = BTRFS_DIR_LOG_ITEM_KEY;
2950         else
2951                 key.type = BTRFS_DIR_LOG_INDEX_KEY;
2952         ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2953         if (ret)
2954                 return ret;
2955
2956         item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2957                               struct btrfs_dir_log_item);
2958         btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2959         btrfs_mark_buffer_dirty(path->nodes[0]);
2960         btrfs_release_path(path);
2961         return 0;
2962 }
2963
2964 /*
2965  * log all the items included in the current transaction for a given
2966  * directory.  This also creates the range items in the log tree required
2967  * to replay anything deleted before the fsync
2968  */
2969 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2970                           struct btrfs_root *root, struct inode *inode,
2971                           struct btrfs_path *path,
2972                           struct btrfs_path *dst_path, int key_type,
2973                           u64 min_offset, u64 *last_offset_ret)
2974 {
2975         struct btrfs_key min_key;
2976         struct btrfs_root *log = root->log_root;
2977         struct extent_buffer *src;
2978         int err = 0;
2979         int ret;
2980         int i;
2981         int nritems;
2982         u64 first_offset = min_offset;
2983         u64 last_offset = (u64)-1;
2984         u64 ino = btrfs_ino(inode);
2985
2986         log = root->log_root;
2987
2988         min_key.objectid = ino;
2989         min_key.type = key_type;
2990         min_key.offset = min_offset;
2991
2992         path->keep_locks = 1;
2993
2994         ret = btrfs_search_forward(root, &min_key, path, trans->transid);
2995
2996         /*
2997          * we didn't find anything from this transaction, see if there
2998          * is anything at all
2999          */
3000         if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3001                 min_key.objectid = ino;
3002                 min_key.type = key_type;
3003                 min_key.offset = (u64)-1;
3004                 btrfs_release_path(path);
3005                 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3006                 if (ret < 0) {
3007                         btrfs_release_path(path);
3008                         return ret;
3009                 }
3010                 ret = btrfs_previous_item(root, path, ino, key_type);
3011
3012                 /* if ret == 0 there are items for this type,
3013                  * create a range to tell us the last key of this type.
3014                  * otherwise, there are no items in this directory after
3015                  * *min_offset, and we create a range to indicate that.
3016                  */
3017                 if (ret == 0) {
3018                         struct btrfs_key tmp;
3019                         btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3020                                               path->slots[0]);
3021                         if (key_type == tmp.type)
3022                                 first_offset = max(min_offset, tmp.offset) + 1;
3023                 }
3024                 goto done;
3025         }
3026
3027         /* go backward to find any previous key */
3028         ret = btrfs_previous_item(root, path, ino, key_type);
3029         if (ret == 0) {
3030                 struct btrfs_key tmp;
3031                 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3032                 if (key_type == tmp.type) {
3033                         first_offset = tmp.offset;
3034                         ret = overwrite_item(trans, log, dst_path,
3035                                              path->nodes[0], path->slots[0],
3036                                              &tmp);
3037                         if (ret) {
3038                                 err = ret;
3039                                 goto done;
3040                         }
3041                 }
3042         }
3043         btrfs_release_path(path);
3044
3045         /* find the first key from this transaction again */
3046         ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3047         if (WARN_ON(ret != 0))
3048                 goto done;
3049
3050         /*
3051          * we have a block from this transaction, log every item in it
3052          * from our directory
3053          */
3054         while (1) {
3055                 struct btrfs_key tmp;
3056                 src = path->nodes[0];
3057                 nritems = btrfs_header_nritems(src);
3058                 for (i = path->slots[0]; i < nritems; i++) {
3059                         btrfs_item_key_to_cpu(src, &min_key, i);
3060
3061                         if (min_key.objectid != ino || min_key.type != key_type)
3062                                 goto done;
3063                         ret = overwrite_item(trans, log, dst_path, src, i,
3064                                              &min_key);
3065                         if (ret) {
3066                                 err = ret;
3067                                 goto done;
3068                         }
3069                 }
3070                 path->slots[0] = nritems;
3071
3072                 /*
3073                  * look ahead to the next item and see if it is also
3074                  * from this directory and from this transaction
3075                  */
3076                 ret = btrfs_next_leaf(root, path);
3077                 if (ret == 1) {
3078                         last_offset = (u64)-1;
3079                         goto done;
3080                 }
3081                 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3082                 if (tmp.objectid != ino || tmp.type != key_type) {
3083                         last_offset = (u64)-1;
3084                         goto done;
3085                 }
3086                 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3087                         ret = overwrite_item(trans, log, dst_path,
3088                                              path->nodes[0], path->slots[0],
3089                                              &tmp);
3090                         if (ret)
3091                                 err = ret;
3092                         else
3093                                 last_offset = tmp.offset;
3094                         goto done;
3095                 }
3096         }
3097 done:
3098         btrfs_release_path(path);
3099         btrfs_release_path(dst_path);
3100
3101         if (err == 0) {
3102                 *last_offset_ret = last_offset;
3103                 /*
3104                  * insert the log range keys to indicate where the log
3105                  * is valid
3106                  */
3107                 ret = insert_dir_log_key(trans, log, path, key_type,
3108                                          ino, first_offset, last_offset);
3109                 if (ret)
3110                         err = ret;
3111         }
3112         return err;
3113 }
3114
3115 /*
3116  * logging directories is very similar to logging inodes, We find all the items
3117  * from the current transaction and write them to the log.
3118  *
3119  * The recovery code scans the directory in the subvolume, and if it finds a
3120  * key in the range logged that is not present in the log tree, then it means
3121  * that dir entry was unlinked during the transaction.
3122  *
3123  * In order for that scan to work, we must include one key smaller than
3124  * the smallest logged by this transaction and one key larger than the largest
3125  * key logged by this transaction.
3126  */
3127 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3128                           struct btrfs_root *root, struct inode *inode,
3129                           struct btrfs_path *path,
3130                           struct btrfs_path *dst_path)
3131 {
3132         u64 min_key;
3133         u64 max_key;
3134         int ret;
3135         int key_type = BTRFS_DIR_ITEM_KEY;
3136
3137 again:
3138         min_key = 0;
3139         max_key = 0;
3140         while (1) {
3141                 ret = log_dir_items(trans, root, inode, path,
3142                                     dst_path, key_type, min_key,
3143                                     &max_key);
3144                 if (ret)
3145                         return ret;
3146                 if (max_key == (u64)-1)
3147                         break;
3148                 min_key = max_key + 1;
3149         }
3150
3151         if (key_type == BTRFS_DIR_ITEM_KEY) {
3152                 key_type = BTRFS_DIR_INDEX_KEY;
3153                 goto again;
3154         }
3155         return 0;
3156 }
3157
3158 /*
3159  * a helper function to drop items from the log before we relog an
3160  * inode.  max_key_type indicates the highest item type to remove.
3161  * This cannot be run for file data extents because it does not
3162  * free the extents they point to.
3163  */
3164 static int drop_objectid_items(struct btrfs_trans_handle *trans,
3165                                   struct btrfs_root *log,
3166                                   struct btrfs_path *path,
3167                                   u64 objectid, int max_key_type)
3168 {
3169         int ret;
3170         struct btrfs_key key;
3171         struct btrfs_key found_key;
3172         int start_slot;
3173
3174         key.objectid = objectid;
3175         key.type = max_key_type;
3176         key.offset = (u64)-1;
3177
3178         while (1) {
3179                 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3180                 BUG_ON(ret == 0); /* Logic error */
3181                 if (ret < 0)
3182                         break;
3183
3184                 if (path->slots[0] == 0)
3185                         break;
3186
3187                 path->slots[0]--;
3188                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3189                                       path->slots[0]);
3190
3191                 if (found_key.objectid != objectid)
3192                         break;
3193
3194                 found_key.offset = 0;
3195                 found_key.type = 0;
3196                 ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3197                                        &start_slot);
3198
3199                 ret = btrfs_del_items(trans, log, path, start_slot,
3200                                       path->slots[0] - start_slot + 1);
3201                 /*
3202                  * If start slot isn't 0 then we don't need to re-search, we've
3203                  * found the last guy with the objectid in this tree.
3204                  */
3205                 if (ret || start_slot != 0)
3206                         break;
3207                 btrfs_release_path(path);
3208         }
3209         btrfs_release_path(path);
3210         if (ret > 0)
3211                 ret = 0;
3212         return ret;
3213 }
3214
3215 static void fill_inode_item(struct btrfs_trans_handle *trans,
3216                             struct extent_buffer *leaf,
3217                             struct btrfs_inode_item *item,
3218                             struct inode *inode, int log_inode_only)
3219 {
3220         struct btrfs_map_token token;
3221
3222         btrfs_init_map_token(&token);
3223
3224         if (log_inode_only) {
3225                 /* set the generation to zero so the recover code
3226                  * can tell the difference between an logging
3227                  * just to say 'this inode exists' and a logging
3228                  * to say 'update this inode with these values'
3229                  */
3230                 btrfs_set_token_inode_generation(leaf, item, 0, &token);
3231                 btrfs_set_token_inode_size(leaf, item, 0, &token);
3232         } else {
3233                 btrfs_set_token_inode_generation(leaf, item,
3234                                                  BTRFS_I(inode)->generation,
3235                                                  &token);
3236                 btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3237         }
3238
3239         btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3240         btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3241         btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3242         btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3243
3244         btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3245                                      inode->i_atime.tv_sec, &token);
3246         btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3247                                       inode->i_atime.tv_nsec, &token);
3248
3249         btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3250                                      inode->i_mtime.tv_sec, &token);
3251         btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3252                                       inode->i_mtime.tv_nsec, &token);
3253
3254         btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3255                                      inode->i_ctime.tv_sec, &token);
3256         btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3257                                       inode->i_ctime.tv_nsec, &token);
3258
3259         btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3260                                      &token);
3261
3262         btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3263         btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3264         btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3265         btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3266         btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3267 }
3268
3269 static int log_inode_item(struct btrfs_trans_handle *trans,
3270                           struct btrfs_root *log, struct btrfs_path *path,
3271                           struct inode *inode)
3272 {
3273         struct btrfs_inode_item *inode_item;
3274         int ret;
3275
3276         ret = btrfs_insert_empty_item(trans, log, path,
3277                                       &BTRFS_I(inode)->location,
3278                                       sizeof(*inode_item));
3279         if (ret && ret != -EEXIST)
3280                 return ret;
3281         inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3282                                     struct btrfs_inode_item);
3283         fill_inode_item(trans, path->nodes[0], inode_item, inode, 0);
3284         btrfs_release_path(path);
3285         return 0;
3286 }
3287
3288 static noinline int copy_items(struct btrfs_trans_handle *trans,
3289                                struct inode *inode,
3290                                struct btrfs_path *dst_path,
3291                                struct btrfs_path *src_path, u64 *last_extent,
3292                                int start_slot, int nr, int inode_only)
3293 {
3294         unsigned long src_offset;
3295         unsigned long dst_offset;
3296         struct btrfs_root *log = BTRFS_I(inode)->root->log_root;
3297         struct btrfs_file_extent_item *extent;
3298         struct btrfs_inode_item *inode_item;
3299         struct extent_buffer *src = src_path->nodes[0];
3300         struct btrfs_key first_key, last_key, key;
3301         int ret;
3302         struct btrfs_key *ins_keys;
3303         u32 *ins_sizes;
3304         char *ins_data;
3305         int i;
3306         struct list_head ordered_sums;
3307         int skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3308         bool has_extents = false;
3309         bool need_find_last_extent = (*last_extent == 0);
3310         bool done = false;
3311
3312         INIT_LIST_HEAD(&ordered_sums);
3313
3314         ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3315                            nr * sizeof(u32), GFP_NOFS);
3316         if (!ins_data)
3317                 return -ENOMEM;
3318
3319         first_key.objectid = (u64)-1;
3320
3321         ins_sizes = (u32 *)ins_data;
3322         ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3323
3324         for (i = 0; i < nr; i++) {
3325                 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3326                 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3327         }
3328         ret = btrfs_insert_empty_items(trans, log, dst_path,
3329                                        ins_keys, ins_sizes, nr);
3330         if (ret) {
3331                 kfree(ins_data);
3332                 return ret;
3333         }
3334
3335         for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3336                 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3337                                                    dst_path->slots[0]);
3338
3339                 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3340
3341                 if ((i == (nr - 1)))
3342                         last_key = ins_keys[i];
3343
3344                 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3345                         inode_item = btrfs_item_ptr(dst_path->nodes[0],
3346                                                     dst_path->slots[0],
3347                                                     struct btrfs_inode_item);
3348                         fill_inode_item(trans, dst_path->nodes[0], inode_item,
3349                                         inode, inode_only == LOG_INODE_EXISTS);
3350                 } else {
3351                         copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3352                                            src_offset, ins_sizes[i]);
3353                 }
3354
3355                 /*
3356                  * We set need_find_last_extent here in case we know we were
3357                  * processing other items and then walk into the first extent in
3358                  * the inode.  If we don't hit an extent then nothing changes,
3359                  * we'll do the last search the next time around.
3360                  */
3361                 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3362                         has_extents = true;
3363                         if (need_find_last_extent &&
3364                             first_key.objectid == (u64)-1)
3365                                 first_key = ins_keys[i];
3366                 } else {
3367                         need_find_last_extent = false;
3368                 }
3369
3370                 /* take a reference on file data extents so that truncates
3371                  * or deletes of this inode don't have to relog the inode
3372                  * again
3373                  */
3374                 if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY &&
3375                     !skip_csum) {
3376                         int found_type;
3377                         extent = btrfs_item_ptr(src, start_slot + i,
3378                                                 struct btrfs_file_extent_item);
3379
3380                         if (btrfs_file_extent_generation(src, extent) < trans->transid)
3381                                 continue;
3382
3383                         found_type = btrfs_file_extent_type(src, extent);
3384                         if (found_type == BTRFS_FILE_EXTENT_REG) {
3385                                 u64 ds, dl, cs, cl;
3386                                 ds = btrfs_file_extent_disk_bytenr(src,
3387                                                                 extent);
3388                                 /* ds == 0 is a hole */
3389                                 if (ds == 0)
3390                                         continue;
3391
3392                                 dl = btrfs_file_extent_disk_num_bytes(src,
3393                                                                 extent);
3394                                 cs = btrfs_file_extent_offset(src, extent);
3395                                 cl = btrfs_file_extent_num_bytes(src,
3396                                                                 extent);
3397                                 if (btrfs_file_extent_compression(src,
3398                                                                   extent)) {
3399                                         cs = 0;
3400                                         cl = dl;
3401                                 }
3402
3403                                 ret = btrfs_lookup_csums_range(
3404                                                 log->fs_info->csum_root,
3405                                                 ds + cs, ds + cs + cl - 1,
3406                                                 &ordered_sums, 0);
3407                                 if (ret) {
3408                                         btrfs_release_path(dst_path);
3409                                         kfree(ins_data);
3410                                         return ret;
3411                                 }
3412                         }
3413                 }
3414         }
3415
3416         btrfs_mark_buffer_dirty(dst_path->nodes[0]);
3417         btrfs_release_path(dst_path);
3418         kfree(ins_data);
3419
3420         /*
3421          * we have to do this after the loop above to avoid changing the
3422          * log tree while trying to change the log tree.
3423          */
3424         ret = 0;
3425         while (!list_empty(&ordered_sums)) {
3426                 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3427                                                    struct btrfs_ordered_sum,
3428                                                    list);
3429                 if (!ret)
3430                         ret = btrfs_csum_file_blocks(trans, log, sums);
3431                 list_del(&sums->list);
3432                 kfree(sums);
3433         }
3434
3435         if (!has_extents)
3436                 return ret;
3437
3438         /*
3439          * Because we use btrfs_search_forward we could skip leaves that were
3440          * not modified and then assume *last_extent is valid when it really
3441          * isn't.  So back up to the previous leaf and read the end of the last
3442          * extent before we go and fill in holes.
3443          */
3444         if (need_find_last_extent) {
3445                 u64 len;
3446
3447                 ret = btrfs_prev_leaf(BTRFS_I(inode)->root, src_path);
3448                 if (ret < 0)
3449                         return ret;
3450                 if (ret)
3451                         goto fill_holes;
3452                 if (src_path->slots[0])
3453                         src_path->slots[0]--;
3454                 src = src_path->nodes[0];
3455                 btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
3456                 if (key.objectid != btrfs_ino(inode) ||
3457                     key.type != BTRFS_EXTENT_DATA_KEY)
3458                         goto fill_holes;
3459                 extent = btrfs_item_ptr(src, src_path->slots[0],
3460                                         struct btrfs_file_extent_item);
3461                 if (btrfs_file_extent_type(src, extent) ==
3462                     BTRFS_FILE_EXTENT_INLINE) {
3463                         len = btrfs_file_extent_inline_len(src,
3464                                                            src_path->slots[0],
3465                                                            extent);
3466                         *last_extent = ALIGN(key.offset + len,
3467                                              log->sectorsize);
3468                 } else {
3469                         len = btrfs_file_extent_num_bytes(src, extent);
3470                         *last_extent = key.offset + len;
3471                 }
3472         }
3473 fill_holes:
3474         /* So we did prev_leaf, now we need to move to the next leaf, but a few
3475          * things could have happened
3476          *
3477          * 1) A merge could have happened, so we could currently be on a leaf
3478          * that holds what we were copying in the first place.
3479          * 2) A split could have happened, and now not all of the items we want
3480          * are on the same leaf.
3481          *
3482          * So we need to adjust how we search for holes, we need to drop the
3483          * path and re-search for the first extent key we found, and then walk
3484          * forward until we hit the last one we copied.
3485          */
3486         if (need_find_last_extent) {
3487                 /* btrfs_prev_leaf could return 1 without releasing the path */
3488                 btrfs_release_path(src_path);
3489                 ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &first_key,
3490                                         src_path, 0, 0);
3491                 if (ret < 0)
3492                         return ret;
3493                 ASSERT(ret == 0);
3494                 src = src_path->nodes[0];
3495                 i = src_path->slots[0];
3496         } else {
3497                 i = start_slot;
3498         }
3499
3500         /*
3501          * Ok so here we need to go through and fill in any holes we may have
3502          * to make sure that holes are punched for those areas in case they had
3503          * extents previously.
3504          */
3505         while (!done) {
3506                 u64 offset, len;
3507                 u64 extent_end;
3508
3509                 if (i >= btrfs_header_nritems(src_path->nodes[0])) {
3510                         ret = btrfs_next_leaf(BTRFS_I(inode)->root, src_path);
3511                         if (ret < 0)
3512                                 return ret;
3513                         ASSERT(ret == 0);
3514                         src = src_path->nodes[0];
3515                         i = 0;
3516                 }
3517
3518                 btrfs_item_key_to_cpu(src, &key, i);
3519                 if (!btrfs_comp_cpu_keys(&key, &last_key))
3520                         done = true;
3521                 if (key.objectid != btrfs_ino(inode) ||
3522                     key.type != BTRFS_EXTENT_DATA_KEY) {
3523                         i++;
3524                         continue;
3525                 }
3526                 extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
3527                 if (btrfs_file_extent_type(src, extent) ==
3528                     BTRFS_FILE_EXTENT_INLINE) {
3529                         len = btrfs_file_extent_inline_len(src, i, extent);
3530                         extent_end = ALIGN(key.offset + len, log->sectorsize);
3531                 } else {
3532                         len = btrfs_file_extent_num_bytes(src, extent);
3533                         extent_end = key.offset + len;
3534                 }
3535                 i++;
3536
3537                 if (*last_extent == key.offset) {
3538                         *last_extent = extent_end;
3539                         continue;
3540                 }
3541                 offset = *last_extent;
3542                 len = key.offset - *last_extent;
3543                 ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
3544                                                offset, 0, 0, len, 0, len, 0,
3545                                                0, 0);
3546                 if (ret)
3547                         break;
3548                 *last_extent = offset + len;
3549         }
3550         /*
3551          * Need to let the callers know we dropped the path so they should
3552          * re-search.
3553          */
3554         if (!ret && need_find_last_extent)
3555                 ret = 1;
3556         return ret;
3557 }
3558
3559 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
3560 {
3561         struct extent_map *em1, *em2;
3562
3563         em1 = list_entry(a, struct extent_map, list);
3564         em2 = list_entry(b, struct extent_map, list);
3565
3566         if (em1->start < em2->start)
3567                 return -1;
3568         else if (em1->start > em2->start)
3569                 return 1;
3570         return 0;
3571 }
3572
3573 static int log_one_extent(struct btrfs_trans_handle *trans,
3574                           struct inode *inode, struct btrfs_root *root,
3575                           struct extent_map *em, struct btrfs_path *path,
3576                           struct list_head *logged_list)
3577 {
3578         struct btrfs_root *log = root->log_root;
3579         struct btrfs_file_extent_item *fi;
3580         struct extent_buffer *leaf;
3581         struct btrfs_ordered_extent *ordered;
3582         struct list_head ordered_sums;
3583         struct btrfs_map_token token;
3584         struct btrfs_key key;
3585         u64 mod_start = em->mod_start;
3586         u64 mod_len = em->mod_len;
3587         u64 csum_offset;
3588         u64 csum_len;
3589         u64 extent_offset = em->start - em->orig_start;
3590         u64 block_len;
3591         int ret;
3592         bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3593         int extent_inserted = 0;
3594
3595         INIT_LIST_HEAD(&ordered_sums);
3596         btrfs_init_map_token(&token);
3597
3598         ret = __btrfs_drop_extents(trans, log, inode, path, em->start,
3599                                    em->start + em->len, NULL, 0, 1,
3600                                    sizeof(*fi), &extent_inserted);
3601         if (ret)
3602                 return ret;
3603
3604         if (!extent_inserted) {
3605                 key.objectid = btrfs_ino(inode);
3606                 key.type = BTRFS_EXTENT_DATA_KEY;
3607                 key.offset = em->start;
3608
3609                 ret = btrfs_insert_empty_item(trans, log, path, &key,
3610                                               sizeof(*fi));
3611                 if (ret)
3612                         return ret;
3613         }
3614         leaf = path->nodes[0];
3615         fi = btrfs_item_ptr(leaf, path->slots[0],
3616                             struct btrfs_file_extent_item);
3617
3618         btrfs_set_token_file_extent_generation(leaf, fi, em->generation,
3619                                                &token);
3620         if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3621                 skip_csum = true;
3622                 btrfs_set_token_file_extent_type(leaf, fi,
3623                                                  BTRFS_FILE_EXTENT_PREALLOC,
3624                                                  &token);
3625         } else {
3626                 btrfs_set_token_file_extent_type(leaf, fi,
3627                                                  BTRFS_FILE_EXTENT_REG,
3628                                                  &token);
3629                 if (em->block_start == EXTENT_MAP_HOLE)
3630                         skip_csum = true;
3631         }
3632
3633         block_len = max(em->block_len, em->orig_block_len);
3634         if (em->compress_type != BTRFS_COMPRESS_NONE) {
3635                 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3636                                                         em->block_start,
3637                                                         &token);
3638                 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3639                                                            &token);
3640         } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
3641                 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3642                                                         em->block_start -
3643                                                         extent_offset, &token);
3644                 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3645                                                            &token);
3646         } else {
3647                 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
3648                 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
3649                                                            &token);
3650         }
3651
3652         btrfs_set_token_file_extent_offset(leaf, fi,
3653                                            em->start - em->orig_start,
3654                                            &token);
3655         btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
3656         btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
3657         btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
3658                                                 &token);
3659         btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
3660         btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
3661         btrfs_mark_buffer_dirty(leaf);
3662
3663         btrfs_release_path(path);
3664         if (ret) {
3665                 return ret;
3666         }
3667
3668         if (skip_csum)
3669                 return 0;
3670
3671         /*
3672          * First check and see if our csums are on our outstanding ordered
3673          * extents.
3674          */
3675         list_for_each_entry(ordered, logged_list, log_list) {
3676                 struct btrfs_ordered_sum *sum;
3677
3678                 if (!mod_len)
3679                         break;
3680
3681                 if (ordered->file_offset + ordered->len <= mod_start ||
3682                     mod_start + mod_len <= ordered->file_offset)
3683                         continue;
3684
3685                 /*
3686                  * We are going to copy all the csums on this ordered extent, so
3687                  * go ahead and adjust mod_start and mod_len in case this
3688                  * ordered extent has already been logged.
3689                  */
3690                 if (ordered->file_offset > mod_start) {
3691                         if (ordered->file_offset + ordered->len >=
3692                             mod_start + mod_len)
3693                                 mod_len = ordered->file_offset - mod_start;
3694                         /*
3695                          * If we have this case
3696                          *
3697                          * |--------- logged extent ---------|
3698                          *       |----- ordered extent ----|
3699                          *
3700                          * Just don't mess with mod_start and mod_len, we'll
3701                          * just end up logging more csums than we need and it
3702                          * will be ok.
3703                          */
3704                 } else {
3705                         if (ordered->file_offset + ordered->len <
3706                             mod_start + mod_len) {
3707                                 mod_len = (mod_start + mod_len) -
3708                                         (ordered->file_offset + ordered->len);
3709                                 mod_start = ordered->file_offset +
3710                                         ordered->len;
3711                         } else {
3712                                 mod_len = 0;
3713                         }
3714                 }
3715
3716                 /*
3717                  * To keep us from looping for the above case of an ordered
3718                  * extent that falls inside of the logged extent.
3719                  */
3720                 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
3721                                      &ordered->flags))
3722                         continue;
3723
3724                 if (ordered->csum_bytes_left) {
3725                         btrfs_start_ordered_extent(inode, ordered, 0);
3726                         wait_event(ordered->wait,
3727                                    ordered->csum_bytes_left == 0);
3728                 }
3729
3730                 list_for_each_entry(sum, &ordered->list, list) {
3731                         ret = btrfs_csum_file_blocks(trans, log, sum);
3732                         if (ret)
3733                                 goto unlocked;
3734                 }
3735
3736         }
3737 unlocked:
3738
3739         if (!mod_len || ret)
3740                 return ret;
3741
3742         if (em->compress_type) {
3743                 csum_offset = 0;
3744                 csum_len = block_len;
3745         } else {
3746                 csum_offset = mod_start - em->start;
3747                 csum_len = mod_len;
3748         }
3749
3750         /* block start is already adjusted for the file extent offset. */
3751         ret = btrfs_lookup_csums_range(log->fs_info->csum_root,
3752                                        em->block_start + csum_offset,
3753                                        em->block_start + csum_offset +
3754                                        csum_len - 1, &ordered_sums, 0);
3755         if (ret)
3756                 return ret;
3757
3758         while (!list_empty(&ordered_sums)) {
3759                 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3760                                                    struct btrfs_ordered_sum,
3761                                                    list);
3762                 if (!ret)
3763                         ret = btrfs_csum_file_blocks(trans, log, sums);
3764                 list_del(&sums->list);
3765                 kfree(sums);
3766         }
3767
3768         return ret;
3769 }
3770
3771 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
3772                                      struct btrfs_root *root,
3773                                      struct inode *inode,
3774                                      struct btrfs_path *path,
3775                                      struct list_head *logged_list)
3776 {
3777         struct extent_map *em, *n;
3778         struct list_head extents;
3779         struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
3780         u64 test_gen;
3781         int ret = 0;
3782         int num = 0;
3783
3784         INIT_LIST_HEAD(&extents);
3785
3786         write_lock(&tree->lock);
3787         test_gen = root->fs_info->last_trans_committed;
3788
3789         list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
3790                 list_del_init(&em->list);
3791
3792                 /*
3793                  * Just an arbitrary number, this can be really CPU intensive
3794                  * once we start getting a lot of extents, and really once we
3795                  * have a bunch of extents we just want to commit since it will
3796                  * be faster.
3797                  */
3798                 if (++num > 32768) {
3799                         list_del_init(&tree->modified_extents);
3800                         ret = -EFBIG;
3801                         goto process;
3802                 }
3803
3804                 if (em->generation <= test_gen)
3805                         continue;
3806                 /* Need a ref to keep it from getting evicted from cache */
3807                 atomic_inc(&em->refs);
3808                 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
3809                 list_add_tail(&em->list, &extents);
3810                 num++;
3811         }
3812
3813         list_sort(NULL, &extents, extent_cmp);
3814
3815 process:
3816         while (!list_empty(&extents)) {
3817                 em = list_entry(extents.next, struct extent_map, list);
3818
3819                 list_del_init(&em->list);
3820
3821                 /*
3822                  * If we had an error we just need to delete everybody from our
3823                  * private list.
3824                  */
3825                 if (ret) {
3826                         clear_em_logging(tree, em);
3827                         free_extent_map(em);
3828                         continue;
3829                 }
3830
3831                 write_unlock(&tree->lock);
3832
3833                 ret = log_one_extent(trans, inode, root, em, path, logged_list);
3834                 write_lock(&tree->lock);
3835                 clear_em_logging(tree, em);
3836                 free_extent_map(em);
3837         }
3838         WARN_ON(!list_empty(&extents));
3839         write_unlock(&tree->lock);
3840
3841         btrfs_release_path(path);
3842         return ret;
3843 }
3844
3845 /* log a single inode in the tree log.
3846  * At least one parent directory for this inode must exist in the tree
3847  * or be logged already.
3848  *
3849  * Any items from this inode changed by the current transaction are copied
3850  * to the log tree.  An extra reference is taken on any extents in this
3851  * file, allowing us to avoid a whole pile of corner cases around logging
3852  * blocks that have been removed from the tree.
3853  *
3854  * See LOG_INODE_ALL and related defines for a description of what inode_only
3855  * does.
3856  *
3857  * This handles both files and directories.
3858  */
3859 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
3860                              struct btrfs_root *root, struct inode *inode,
3861                              int inode_only)
3862 {
3863         struct btrfs_path *path;
3864         struct btrfs_path *dst_path;
3865         struct btrfs_key min_key;
3866         struct btrfs_key max_key;
3867         struct btrfs_root *log = root->log_root;
3868         struct extent_buffer *src = NULL;
3869         LIST_HEAD(logged_list);
3870         u64 last_extent = 0;
3871         int err = 0;
3872         int ret;
3873         int nritems;
3874         int ins_start_slot = 0;
3875         int ins_nr;
3876         bool fast_search = false;
3877         u64 ino = btrfs_ino(inode);
3878
3879         path = btrfs_alloc_path();
3880         if (!path)
3881                 return -ENOMEM;
3882         dst_path = btrfs_alloc_path();
3883         if (!dst_path) {
3884                 btrfs_free_path(path);
3885                 return -ENOMEM;
3886         }
3887
3888         min_key.objectid = ino;
3889         min_key.type = BTRFS_INODE_ITEM_KEY;
3890         min_key.offset = 0;
3891
3892         max_key.objectid = ino;
3893
3894
3895         /* today the code can only do partial logging of directories */
3896         if (S_ISDIR(inode->i_mode) ||
3897             (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3898                        &BTRFS_I(inode)->runtime_flags) &&
3899              inode_only == LOG_INODE_EXISTS))
3900                 max_key.type = BTRFS_XATTR_ITEM_KEY;
3901         else
3902                 max_key.type = (u8)-1;
3903         max_key.offset = (u64)-1;
3904
3905         /* Only run delayed items if we are a dir or a new file */
3906         if (S_ISDIR(inode->i_mode) ||
3907             BTRFS_I(inode)->generation > root->fs_info->last_trans_committed) {
3908                 ret = btrfs_commit_inode_delayed_items(trans, inode);
3909                 if (ret) {
3910                         btrfs_free_path(path);
3911                         btrfs_free_path(dst_path);
3912                         return ret;
3913                 }
3914         }
3915
3916         mutex_lock(&BTRFS_I(inode)->log_mutex);
3917
3918         btrfs_get_logged_extents(inode, &logged_list);
3919
3920         /*
3921          * a brute force approach to making sure we get the most uptodate
3922          * copies of everything.
3923          */
3924         if (S_ISDIR(inode->i_mode)) {
3925                 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
3926
3927                 if (inode_only == LOG_INODE_EXISTS)
3928                         max_key_type = BTRFS_XATTR_ITEM_KEY;
3929                 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
3930         } else {
3931                 if (test_and_clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3932                                        &BTRFS_I(inode)->runtime_flags)) {
3933                         clear_bit(BTRFS_INODE_COPY_EVERYTHING,
3934                                   &BTRFS_I(inode)->runtime_flags);
3935                         ret = btrfs_truncate_inode_items(trans, log,
3936                                                          inode, 0, 0);
3937                 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
3938                                               &BTRFS_I(inode)->runtime_flags) ||
3939                            inode_only == LOG_INODE_EXISTS) {
3940                         if (inode_only == LOG_INODE_ALL)
3941                                 fast_search = true;
3942                         max_key.type = BTRFS_XATTR_ITEM_KEY;
3943                         ret = drop_objectid_items(trans, log, path, ino,
3944                                                   max_key.type);
3945                 } else {
3946                         if (inode_only == LOG_INODE_ALL)
3947                                 fast_search = true;
3948                         ret = log_inode_item(trans, log, dst_path, inode);
3949                         if (ret) {
3950                                 err = ret;
3951                                 goto out_unlock;
3952                         }
3953                         goto log_extents;
3954                 }
3955
3956         }
3957         if (ret) {
3958                 err = ret;
3959                 goto out_unlock;
3960         }
3961         path->keep_locks = 1;
3962
3963         while (1) {
3964                 ins_nr = 0;
3965                 ret = btrfs_search_forward(root, &min_key,
3966                                            path, trans->transid);
3967                 if (ret != 0)
3968                         break;
3969 again:
3970                 /* note, ins_nr might be > 0 here, cleanup outside the loop */
3971                 if (min_key.objectid != ino)
3972                         break;
3973                 if (min_key.type > max_key.type)
3974                         break;
3975
3976                 src = path->nodes[0];
3977                 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
3978                         ins_nr++;
3979                         goto next_slot;
3980                 } else if (!ins_nr) {
3981                         ins_start_slot = path->slots[0];
3982                         ins_nr = 1;
3983                         goto next_slot;
3984                 }
3985
3986                 ret = copy_items(trans, inode, dst_path, path, &last_extent,
3987                                  ins_start_slot, ins_nr, inode_only);
3988                 if (ret < 0) {
3989                         err = ret;
3990                         goto out_unlock;
3991                 } if (ret) {
3992                         ins_nr = 0;
3993                         btrfs_release_path(path);
3994                         continue;
3995                 }
3996                 ins_nr = 1;
3997                 ins_start_slot = path->slots[0];
3998 next_slot:
3999
4000                 nritems = btrfs_header_nritems(path->nodes[0]);
4001                 path->slots[0]++;
4002                 if (path->slots[0] < nritems) {
4003                         btrfs_item_key_to_cpu(path->nodes[0], &min_key,
4004                                               path->slots[0]);
4005                         goto again;
4006                 }
4007                 if (ins_nr) {
4008                         ret = copy_items(trans, inode, dst_path, path,
4009                                          &last_extent, ins_start_slot,
4010                                          ins_nr, inode_only);
4011                         if (ret < 0) {
4012                                 err = ret;
4013                                 goto out_unlock;
4014                         }
4015                         ret = 0;
4016                         ins_nr = 0;
4017                 }
4018                 btrfs_release_path(path);
4019
4020                 if (min_key.offset < (u64)-1) {
4021                         min_key.offset++;
4022                 } else if (min_key.type < max_key.type) {
4023                         min_key.type++;
4024                         min_key.offset = 0;
4025                 } else {
4026                         break;
4027                 }
4028         }
4029         if (ins_nr) {
4030                 ret = copy_items(trans, inode, dst_path, path, &last_extent,
4031                                  ins_start_slot, ins_nr, inode_only);
4032                 if (ret < 0) {
4033                         err = ret;
4034                         goto out_unlock;
4035                 }
4036                 ret = 0;
4037                 ins_nr = 0;
4038         }
4039
4040 log_extents:
4041         btrfs_release_path(path);
4042         btrfs_release_path(dst_path);
4043         if (fast_search) {
4044                 ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
4045                                                 &logged_list);
4046                 if (ret) {
4047                         err = ret;
4048                         goto out_unlock;
4049                 }
4050         } else if (inode_only == LOG_INODE_ALL) {
4051                 struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
4052                 struct extent_map *em, *n;
4053
4054                 write_lock(&tree->lock);
4055                 list_for_each_entry_safe(em, n, &tree->modified_extents, list)
4056                         list_del_init(&em->list);
4057                 write_unlock(&tree->lock);
4058         }
4059
4060         if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
4061                 ret = log_directory_changes(trans, root, inode, path, dst_path);
4062                 if (ret) {
4063                         err = ret;
4064                         goto out_unlock;
4065                 }
4066         }
4067         BTRFS_I(inode)->logged_trans = trans->transid;
4068         BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->last_sub_trans;
4069 out_unlock:
4070         if (unlikely(err))
4071                 btrfs_put_logged_extents(&logged_list);
4072         else
4073                 btrfs_submit_logged_extents(&logged_list, log);
4074         mutex_unlock(&BTRFS_I(inode)->log_mutex);
4075
4076         btrfs_free_path(path);
4077         btrfs_free_path(dst_path);
4078         return err;
4079 }
4080
4081 /*
4082  * follow the dentry parent pointers up the chain and see if any
4083  * of the directories in it require a full commit before they can
4084  * be logged.  Returns zero if nothing special needs to be done or 1 if
4085  * a full commit is required.
4086  */
4087 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
4088                                                struct inode *inode,
4089                                                struct dentry *parent,
4090                                                struct super_block *sb,
4091                                                u64 last_committed)
4092 {
4093         int ret = 0;
4094         struct btrfs_root *root;
4095         struct dentry *old_parent = NULL;
4096         struct inode *orig_inode = inode;
4097
4098         /*
4099          * for regular files, if its inode is already on disk, we don't
4100          * have to worry about the parents at all.  This is because
4101          * we can use the last_unlink_trans field to record renames
4102          * and other fun in this file.
4103          */
4104         if (S_ISREG(inode->i_mode) &&
4105             BTRFS_I(inode)->generation <= last_committed &&
4106             BTRFS_I(inode)->last_unlink_trans <= last_committed)
4107                         goto out;
4108
4109         if (!S_ISDIR(inode->i_mode)) {
4110                 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
4111                         goto out;
4112                 inode = parent->d_inode;
4113         }
4114
4115         while (1) {
4116                 /*
4117                  * If we are logging a directory then we start with our inode,
4118                  * not our parents inode, so we need to skipp setting the
4119                  * logged_trans so that further down in the log code we don't
4120                  * think this inode has already been logged.
4121                  */
4122                 if (inode != orig_inode)
4123                         BTRFS_I(inode)->logged_trans = trans->transid;
4124                 smp_mb();
4125
4126                 if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
4127                         root = BTRFS_I(inode)->root;
4128
4129                         /*
4130                          * make sure any commits to the log are forced
4131                          * to be full commits
4132                          */
4133                         root->fs_info->last_trans_log_full_commit =
4134                                 trans->transid;
4135                         ret = 1;
4136                         break;
4137                 }
4138
4139                 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
4140                         break;
4141
4142                 if (IS_ROOT(parent))
4143                         break;
4144
4145                 parent = dget_parent(parent);
4146                 dput(old_parent);
4147                 old_parent = parent;
4148                 inode = parent->d_inode;
4149
4150         }
4151         dput(old_parent);
4152 out:
4153         return ret;
4154 }
4155
4156 /*
4157  * helper function around btrfs_log_inode to make sure newly created
4158  * parent directories also end up in the log.  A minimal inode and backref
4159  * only logging is done of any parent directories that are older than
4160  * the last committed transaction
4161  */
4162 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
4163                                   struct btrfs_root *root, struct inode *inode,
4164                                   struct dentry *parent, int exists_only,
4165                                   struct btrfs_log_ctx *ctx)
4166 {
4167         int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
4168         struct super_block *sb;
4169         struct dentry *old_parent = NULL;
4170         int ret = 0;
4171         u64 last_committed = root->fs_info->last_trans_committed;
4172
4173         sb = inode->i_sb;
4174
4175         if (btrfs_test_opt(root, NOTREELOG)) {
4176                 ret = 1;
4177                 goto end_no_trans;
4178         }
4179
4180         if (root->fs_info->last_trans_log_full_commit >
4181             root->fs_info->last_trans_committed) {
4182                 ret = 1;
4183                 goto end_no_trans;
4184         }
4185
4186         if (root != BTRFS_I(inode)->root ||
4187             btrfs_root_refs(&root->root_item) == 0) {
4188                 ret = 1;
4189                 goto end_no_trans;
4190         }
4191
4192         ret = check_parent_dirs_for_sync(trans, inode, parent,
4193                                          sb, last_committed);
4194         if (ret)
4195                 goto end_no_trans;
4196
4197         if (btrfs_inode_in_log(inode, trans->transid)) {
4198                 ret = BTRFS_NO_LOG_SYNC;
4199                 goto end_no_trans;
4200         }
4201
4202         ret = start_log_trans(trans, root, ctx);
4203         if (ret)
4204                 goto end_no_trans;
4205
4206         ret = btrfs_log_inode(trans, root, inode, inode_only);
4207         if (ret)
4208                 goto end_trans;
4209
4210         /*
4211          * for regular files, if its inode is already on disk, we don't
4212          * have to worry about the parents at all.  This is because
4213          * we can use the last_unlink_trans field to record renames
4214          * and other fun in this file.
4215          */
4216         if (S_ISREG(inode->i_mode) &&
4217             BTRFS_I(inode)->generation <= last_committed &&
4218             BTRFS_I(inode)->last_unlink_trans <= last_committed) {
4219                 ret = 0;
4220                 goto end_trans;
4221         }
4222
4223         inode_only = LOG_INODE_EXISTS;
4224         while (1) {
4225                 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
4226                         break;
4227
4228                 inode = parent->d_inode;
4229                 if (root != BTRFS_I(inode)->root)
4230                         break;
4231
4232                 if (BTRFS_I(inode)->generation >
4233                     root->fs_info->last_trans_committed) {
4234                         ret = btrfs_log_inode(trans, root, inode, inode_only);
4235                         if (ret)
4236                                 goto end_trans;
4237                 }
4238                 if (IS_ROOT(parent))
4239                         break;
4240
4241                 parent = dget_parent(parent);
4242                 dput(old_parent);
4243                 old_parent = parent;
4244         }
4245         ret = 0;
4246 end_trans:
4247         dput(old_parent);
4248         if (ret < 0) {
4249                 root->fs_info->last_trans_log_full_commit = trans->transid;
4250                 ret = 1;
4251         }
4252
4253         if (ret)
4254                 btrfs_remove_log_ctx(root, ctx);
4255         btrfs_end_log_trans(root);
4256 end_no_trans:
4257         return ret;
4258 }
4259
4260 /*
4261  * it is not safe to log dentry if the chunk root has added new
4262  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
4263  * If this returns 1, you must commit the transaction to safely get your
4264  * data on disk.
4265  */
4266 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
4267                           struct btrfs_root *root, struct dentry *dentry,
4268                           struct btrfs_log_ctx *ctx)
4269 {
4270         struct dentry *parent = dget_parent(dentry);
4271         int ret;
4272
4273         ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent,
4274                                      0, ctx);
4275         dput(parent);
4276
4277         return ret;
4278 }
4279
4280 /*
4281  * should be called during mount to recover any replay any log trees
4282  * from the FS
4283  */
4284 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
4285 {
4286         int ret;
4287         struct btrfs_path *path;
4288         struct btrfs_trans_handle *trans;
4289         struct btrfs_key key;
4290         struct btrfs_key found_key;
4291         struct btrfs_key tmp_key;
4292         struct btrfs_root *log;
4293         struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
4294         struct walk_control wc = {
4295                 .process_func = process_one_buffer,
4296                 .stage = 0,
4297         };
4298
4299         path = btrfs_alloc_path();
4300         if (!path)
4301                 return -ENOMEM;
4302
4303         fs_info->log_root_recovering = 1;
4304
4305         trans = btrfs_start_transaction(fs_info->tree_root, 0);
4306         if (IS_ERR(trans)) {
4307                 ret = PTR_ERR(trans);
4308                 goto error;
4309         }
4310
4311         wc.trans = trans;
4312         wc.pin = 1;
4313
4314         ret = walk_log_tree(trans, log_root_tree, &wc);
4315         if (ret) {
4316                 btrfs_error(fs_info, ret, "Failed to pin buffers while "
4317                             "recovering log root tree.");
4318                 goto error;
4319         }
4320
4321 again:
4322         key.objectid = BTRFS_TREE_LOG_OBJECTID;
4323         key.offset = (u64)-1;
4324         btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
4325
4326         while (1) {
4327                 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
4328
4329                 if (ret < 0) {
4330                         btrfs_error(fs_info, ret,
4331                                     "Couldn't find tree log root.");
4332                         goto error;
4333                 }
4334                 if (ret > 0) {
4335                         if (path->slots[0] == 0)
4336                                 break;
4337                         path->slots[0]--;
4338                 }
4339                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4340                                       path->slots[0]);
4341                 btrfs_release_path(path);
4342                 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4343                         break;
4344
4345                 log = btrfs_read_fs_root(log_root_tree, &found_key);
4346                 if (IS_ERR(log)) {
4347                         ret = PTR_ERR(log);
4348                         btrfs_error(fs_info, ret,
4349                                     "Couldn't read tree log root.");
4350                         goto error;
4351                 }
4352
4353                 tmp_key.objectid = found_key.offset;
4354                 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
4355                 tmp_key.offset = (u64)-1;
4356
4357                 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
4358                 if (IS_ERR(wc.replay_dest)) {
4359                         ret = PTR_ERR(wc.replay_dest);
4360                         free_extent_buffer(log->node);
4361                         free_extent_buffer(log->commit_root);
4362                         kfree(log);
4363                         btrfs_error(fs_info, ret, "Couldn't read target root "
4364                                     "for tree log recovery.");
4365                         goto error;
4366                 }
4367
4368                 wc.replay_dest->log_root = log;
4369                 btrfs_record_root_in_trans(trans, wc.replay_dest);
4370                 ret = walk_log_tree(trans, log, &wc);
4371
4372                 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
4373                         ret = fixup_inode_link_counts(trans, wc.replay_dest,
4374                                                       path);
4375                 }
4376
4377                 key.offset = found_key.offset - 1;
4378                 wc.replay_dest->log_root = NULL;
4379                 free_extent_buffer(log->node);
4380                 free_extent_buffer(log->commit_root);
4381                 kfree(log);
4382
4383                 if (ret)
4384                         goto error;
4385
4386                 if (found_key.offset == 0)
4387                         break;
4388         }
4389         btrfs_release_path(path);
4390
4391         /* step one is to pin it all, step two is to replay just inodes */
4392         if (wc.pin) {
4393                 wc.pin = 0;
4394                 wc.process_func = replay_one_buffer;
4395                 wc.stage = LOG_WALK_REPLAY_INODES;
4396                 goto again;
4397         }
4398         /* step three is to replay everything */
4399         if (wc.stage < LOG_WALK_REPLAY_ALL) {
4400                 wc.stage++;
4401                 goto again;
4402         }
4403
4404         btrfs_free_path(path);
4405
4406         /* step 4: commit the transaction, which also unpins the blocks */
4407         ret = btrfs_commit_transaction(trans, fs_info->tree_root);
4408         if (ret)
4409                 return ret;
4410
4411         free_extent_buffer(log_root_tree->node);
4412         log_root_tree->log_root = NULL;
4413         fs_info->log_root_recovering = 0;
4414         kfree(log_root_tree);
4415
4416         return 0;
4417 error:
4418         if (wc.trans)
4419                 btrfs_end_transaction(wc.trans, fs_info->tree_root);
4420         btrfs_free_path(path);
4421         return ret;
4422 }
4423
4424 /*
4425  * there are some corner cases where we want to force a full
4426  * commit instead of allowing a directory to be logged.
4427  *
4428  * They revolve around files there were unlinked from the directory, and
4429  * this function updates the parent directory so that a full commit is
4430  * properly done if it is fsync'd later after the unlinks are done.
4431  */
4432 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
4433                              struct inode *dir, struct inode *inode,
4434                              int for_rename)
4435 {
4436         /*
4437          * when we're logging a file, if it hasn't been renamed
4438          * or unlinked, and its inode is fully committed on disk,
4439          * we don't have to worry about walking up the directory chain
4440          * to log its parents.
4441          *
4442          * So, we use the last_unlink_trans field to put this transid
4443          * into the file.  When the file is logged we check it and
4444          * don't log the parents if the file is fully on disk.
4445          */
4446         if (S_ISREG(inode->i_mode))
4447                 BTRFS_I(inode)->last_unlink_trans = trans->transid;
4448
4449         /*
4450          * if this directory was already logged any new
4451          * names for this file/dir will get recorded
4452          */
4453         smp_mb();
4454         if (BTRFS_I(dir)->logged_trans == trans->transid)
4455                 return;
4456
4457         /*
4458          * if the inode we're about to unlink was logged,
4459          * the log will be properly updated for any new names
4460          */
4461         if (BTRFS_I(inode)->logged_trans == trans->transid)
4462                 return;
4463
4464         /*
4465          * when renaming files across directories, if the directory
4466          * there we're unlinking from gets fsync'd later on, there's
4467          * no way to find the destination directory later and fsync it
4468          * properly.  So, we have to be conservative and force commits
4469          * so the new name gets discovered.
4470          */
4471         if (for_rename)
4472                 goto record;
4473
4474         /* we can safely do the unlink without any special recording */
4475         return;
4476
4477 record:
4478         BTRFS_I(dir)->last_unlink_trans = trans->transid;
4479 }
4480
4481 /*
4482  * Call this after adding a new name for a file and it will properly
4483  * update the log to reflect the new name.
4484  *
4485  * It will return zero if all goes well, and it will return 1 if a
4486  * full transaction commit is required.
4487  */
4488 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
4489                         struct inode *inode, struct inode *old_dir,
4490                         struct dentry *parent)
4491 {
4492         struct btrfs_root * root = BTRFS_I(inode)->root;
4493
4494         /*
4495          * this will force the logging code to walk the dentry chain
4496          * up for the file
4497          */
4498         if (S_ISREG(inode->i_mode))
4499                 BTRFS_I(inode)->last_unlink_trans = trans->transid;
4500
4501         /*
4502          * if this inode hasn't been logged and directory we're renaming it
4503          * from hasn't been logged, we don't need to log it
4504          */
4505         if (BTRFS_I(inode)->logged_trans <=
4506             root->fs_info->last_trans_committed &&
4507             (!old_dir || BTRFS_I(old_dir)->logged_trans <=
4508                     root->fs_info->last_trans_committed))
4509                 return 0;
4510
4511         return btrfs_log_inode_parent(trans, root, inode, parent, 1, NULL);
4512 }
4513