2 * Copyright (C) 2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/blkdev.h>
22 #include <linux/list_sort.h>
26 #include "print-tree.h"
30 /* magic values for the inode_only field in btrfs_log_inode:
32 * LOG_INODE_ALL means to log everything
33 * LOG_INODE_EXISTS means to log just enough to recreate the inode
36 #define LOG_INODE_ALL 0
37 #define LOG_INODE_EXISTS 1
40 * directory trouble cases
42 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
43 * log, we must force a full commit before doing an fsync of the directory
44 * where the unlink was done.
45 * ---> record transid of last unlink/rename per directory
49 * rename foo/some_dir foo2/some_dir
51 * fsync foo/some_dir/some_file
53 * The fsync above will unlink the original some_dir without recording
54 * it in its new location (foo2). After a crash, some_dir will be gone
55 * unless the fsync of some_file forces a full commit
57 * 2) we must log any new names for any file or dir that is in the fsync
58 * log. ---> check inode while renaming/linking.
60 * 2a) we must log any new names for any file or dir during rename
61 * when the directory they are being removed from was logged.
62 * ---> check inode and old parent dir during rename
64 * 2a is actually the more important variant. With the extra logging
65 * a crash might unlink the old name without recreating the new one
67 * 3) after a crash, we must go through any directories with a link count
68 * of zero and redo the rm -rf
75 * The directory f1 was fully removed from the FS, but fsync was never
76 * called on f1, only its parent dir. After a crash the rm -rf must
77 * be replayed. This must be able to recurse down the entire
78 * directory tree. The inode link count fixup code takes care of the
83 * stages for the tree walking. The first
84 * stage (0) is to only pin down the blocks we find
85 * the second stage (1) is to make sure that all the inodes
86 * we find in the log are created in the subvolume.
88 * The last stage is to deal with directories and links and extents
89 * and all the other fun semantics
91 #define LOG_WALK_PIN_ONLY 0
92 #define LOG_WALK_REPLAY_INODES 1
93 #define LOG_WALK_REPLAY_DIR_INDEX 2
94 #define LOG_WALK_REPLAY_ALL 3
96 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
97 struct btrfs_root *root, struct inode *inode,
101 struct btrfs_log_ctx *ctx);
102 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
103 struct btrfs_root *root,
104 struct btrfs_path *path, u64 objectid);
105 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
106 struct btrfs_root *root,
107 struct btrfs_root *log,
108 struct btrfs_path *path,
109 u64 dirid, int del_all);
112 * tree logging is a special write ahead log used to make sure that
113 * fsyncs and O_SYNCs can happen without doing full tree commits.
115 * Full tree commits are expensive because they require commonly
116 * modified blocks to be recowed, creating many dirty pages in the
117 * extent tree an 4x-6x higher write load than ext3.
119 * Instead of doing a tree commit on every fsync, we use the
120 * key ranges and transaction ids to find items for a given file or directory
121 * that have changed in this transaction. Those items are copied into
122 * a special tree (one per subvolume root), that tree is written to disk
123 * and then the fsync is considered complete.
125 * After a crash, items are copied out of the log-tree back into the
126 * subvolume tree. Any file data extents found are recorded in the extent
127 * allocation tree, and the log-tree freed.
129 * The log tree is read three times, once to pin down all the extents it is
130 * using in ram and once, once to create all the inodes logged in the tree
131 * and once to do all the other items.
135 * start a sub transaction and setup the log tree
136 * this increments the log tree writer count to make the people
137 * syncing the tree wait for us to finish
139 static int start_log_trans(struct btrfs_trans_handle *trans,
140 struct btrfs_root *root,
141 struct btrfs_log_ctx *ctx)
146 mutex_lock(&root->log_mutex);
147 if (root->log_root) {
148 if (btrfs_need_log_full_commit(root->fs_info, trans)) {
152 if (!root->log_start_pid) {
153 root->log_start_pid = current->pid;
154 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
155 } else if (root->log_start_pid != current->pid) {
156 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
159 atomic_inc(&root->log_batch);
160 atomic_inc(&root->log_writers);
162 index = root->log_transid % 2;
163 list_add_tail(&ctx->list, &root->log_ctxs[index]);
164 ctx->log_transid = root->log_transid;
166 mutex_unlock(&root->log_mutex);
171 mutex_lock(&root->fs_info->tree_log_mutex);
172 if (!root->fs_info->log_root_tree)
173 ret = btrfs_init_log_root_tree(trans, root->fs_info);
174 mutex_unlock(&root->fs_info->tree_log_mutex);
178 if (!root->log_root) {
179 ret = btrfs_add_log_tree(trans, root);
183 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
184 root->log_start_pid = current->pid;
185 atomic_inc(&root->log_batch);
186 atomic_inc(&root->log_writers);
188 index = root->log_transid % 2;
189 list_add_tail(&ctx->list, &root->log_ctxs[index]);
190 ctx->log_transid = root->log_transid;
193 mutex_unlock(&root->log_mutex);
198 * returns 0 if there was a log transaction running and we were able
199 * to join, or returns -ENOENT if there were not transactions
202 static int join_running_log_trans(struct btrfs_root *root)
210 mutex_lock(&root->log_mutex);
211 if (root->log_root) {
213 atomic_inc(&root->log_writers);
215 mutex_unlock(&root->log_mutex);
220 * This either makes the current running log transaction wait
221 * until you call btrfs_end_log_trans() or it makes any future
222 * log transactions wait until you call btrfs_end_log_trans()
224 int btrfs_pin_log_trans(struct btrfs_root *root)
228 mutex_lock(&root->log_mutex);
229 atomic_inc(&root->log_writers);
230 mutex_unlock(&root->log_mutex);
235 * indicate we're done making changes to the log tree
236 * and wake up anyone waiting to do a sync
238 void btrfs_end_log_trans(struct btrfs_root *root)
240 if (atomic_dec_and_test(&root->log_writers)) {
242 if (waitqueue_active(&root->log_writer_wait))
243 wake_up(&root->log_writer_wait);
249 * the walk control struct is used to pass state down the chain when
250 * processing the log tree. The stage field tells us which part
251 * of the log tree processing we are currently doing. The others
252 * are state fields used for that specific part
254 struct walk_control {
255 /* should we free the extent on disk when done? This is used
256 * at transaction commit time while freeing a log tree
260 /* should we write out the extent buffer? This is used
261 * while flushing the log tree to disk during a sync
265 /* should we wait for the extent buffer io to finish? Also used
266 * while flushing the log tree to disk for a sync
270 /* pin only walk, we record which extents on disk belong to the
275 /* what stage of the replay code we're currently in */
278 /* the root we are currently replaying */
279 struct btrfs_root *replay_dest;
281 /* the trans handle for the current replay */
282 struct btrfs_trans_handle *trans;
284 /* the function that gets used to process blocks we find in the
285 * tree. Note the extent_buffer might not be up to date when it is
286 * passed in, and it must be checked or read if you need the data
289 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
290 struct walk_control *wc, u64 gen);
294 * process_func used to pin down extents, write them or wait on them
296 static int process_one_buffer(struct btrfs_root *log,
297 struct extent_buffer *eb,
298 struct walk_control *wc, u64 gen)
303 * If this fs is mixed then we need to be able to process the leaves to
304 * pin down any logged extents, so we have to read the block.
306 if (btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) {
307 ret = btrfs_read_buffer(eb, gen);
313 ret = btrfs_pin_extent_for_log_replay(log->fs_info->extent_root,
316 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
317 if (wc->pin && btrfs_header_level(eb) == 0)
318 ret = btrfs_exclude_logged_extents(log, eb);
320 btrfs_write_tree_block(eb);
322 btrfs_wait_tree_block_writeback(eb);
328 * Item overwrite used by replay and tree logging. eb, slot and key all refer
329 * to the src data we are copying out.
331 * root is the tree we are copying into, and path is a scratch
332 * path for use in this function (it should be released on entry and
333 * will be released on exit).
335 * If the key is already in the destination tree the existing item is
336 * overwritten. If the existing item isn't big enough, it is extended.
337 * If it is too large, it is truncated.
339 * If the key isn't in the destination yet, a new item is inserted.
341 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
342 struct btrfs_root *root,
343 struct btrfs_path *path,
344 struct extent_buffer *eb, int slot,
345 struct btrfs_key *key)
349 u64 saved_i_size = 0;
350 int save_old_i_size = 0;
351 unsigned long src_ptr;
352 unsigned long dst_ptr;
353 int overwrite_root = 0;
354 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
356 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
359 item_size = btrfs_item_size_nr(eb, slot);
360 src_ptr = btrfs_item_ptr_offset(eb, slot);
362 /* look for the key in the destination tree */
363 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
370 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
372 if (dst_size != item_size)
375 if (item_size == 0) {
376 btrfs_release_path(path);
379 dst_copy = kmalloc(item_size, GFP_NOFS);
380 src_copy = kmalloc(item_size, GFP_NOFS);
381 if (!dst_copy || !src_copy) {
382 btrfs_release_path(path);
388 read_extent_buffer(eb, src_copy, src_ptr, item_size);
390 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
391 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
393 ret = memcmp(dst_copy, src_copy, item_size);
398 * they have the same contents, just return, this saves
399 * us from cowing blocks in the destination tree and doing
400 * extra writes that may not have been done by a previous
404 btrfs_release_path(path);
409 * We need to load the old nbytes into the inode so when we
410 * replay the extents we've logged we get the right nbytes.
413 struct btrfs_inode_item *item;
417 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
418 struct btrfs_inode_item);
419 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
420 item = btrfs_item_ptr(eb, slot,
421 struct btrfs_inode_item);
422 btrfs_set_inode_nbytes(eb, item, nbytes);
425 * If this is a directory we need to reset the i_size to
426 * 0 so that we can set it up properly when replaying
427 * the rest of the items in this log.
429 mode = btrfs_inode_mode(eb, item);
431 btrfs_set_inode_size(eb, item, 0);
433 } else if (inode_item) {
434 struct btrfs_inode_item *item;
438 * New inode, set nbytes to 0 so that the nbytes comes out
439 * properly when we replay the extents.
441 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
442 btrfs_set_inode_nbytes(eb, item, 0);
445 * If this is a directory we need to reset the i_size to 0 so
446 * that we can set it up properly when replaying the rest of
447 * the items in this log.
449 mode = btrfs_inode_mode(eb, item);
451 btrfs_set_inode_size(eb, item, 0);
454 btrfs_release_path(path);
455 /* try to insert the key into the destination tree */
456 path->skip_release_on_error = 1;
457 ret = btrfs_insert_empty_item(trans, root, path,
459 path->skip_release_on_error = 0;
461 /* make sure any existing item is the correct size */
462 if (ret == -EEXIST || ret == -EOVERFLOW) {
464 found_size = btrfs_item_size_nr(path->nodes[0],
466 if (found_size > item_size)
467 btrfs_truncate_item(root, path, item_size, 1);
468 else if (found_size < item_size)
469 btrfs_extend_item(root, path,
470 item_size - found_size);
474 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
477 /* don't overwrite an existing inode if the generation number
478 * was logged as zero. This is done when the tree logging code
479 * is just logging an inode to make sure it exists after recovery.
481 * Also, don't overwrite i_size on directories during replay.
482 * log replay inserts and removes directory items based on the
483 * state of the tree found in the subvolume, and i_size is modified
486 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
487 struct btrfs_inode_item *src_item;
488 struct btrfs_inode_item *dst_item;
490 src_item = (struct btrfs_inode_item *)src_ptr;
491 dst_item = (struct btrfs_inode_item *)dst_ptr;
493 if (btrfs_inode_generation(eb, src_item) == 0) {
494 struct extent_buffer *dst_eb = path->nodes[0];
495 const u64 ino_size = btrfs_inode_size(eb, src_item);
498 * For regular files an ino_size == 0 is used only when
499 * logging that an inode exists, as part of a directory
500 * fsync, and the inode wasn't fsynced before. In this
501 * case don't set the size of the inode in the fs/subvol
502 * tree, otherwise we would be throwing valid data away.
504 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
505 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
507 struct btrfs_map_token token;
509 btrfs_init_map_token(&token);
510 btrfs_set_token_inode_size(dst_eb, dst_item,
516 if (overwrite_root &&
517 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
518 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
520 saved_i_size = btrfs_inode_size(path->nodes[0],
525 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
528 if (save_old_i_size) {
529 struct btrfs_inode_item *dst_item;
530 dst_item = (struct btrfs_inode_item *)dst_ptr;
531 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
534 /* make sure the generation is filled in */
535 if (key->type == BTRFS_INODE_ITEM_KEY) {
536 struct btrfs_inode_item *dst_item;
537 dst_item = (struct btrfs_inode_item *)dst_ptr;
538 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
539 btrfs_set_inode_generation(path->nodes[0], dst_item,
544 btrfs_mark_buffer_dirty(path->nodes[0]);
545 btrfs_release_path(path);
550 * simple helper to read an inode off the disk from a given root
551 * This can only be called for subvolume roots and not for the log
553 static noinline struct inode *read_one_inode(struct btrfs_root *root,
556 struct btrfs_key key;
559 key.objectid = objectid;
560 key.type = BTRFS_INODE_ITEM_KEY;
562 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
565 } else if (is_bad_inode(inode)) {
572 /* replays a single extent in 'eb' at 'slot' with 'key' into the
573 * subvolume 'root'. path is released on entry and should be released
576 * extents in the log tree have not been allocated out of the extent
577 * tree yet. So, this completes the allocation, taking a reference
578 * as required if the extent already exists or creating a new extent
579 * if it isn't in the extent allocation tree yet.
581 * The extent is inserted into the file, dropping any existing extents
582 * from the file that overlap the new one.
584 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
585 struct btrfs_root *root,
586 struct btrfs_path *path,
587 struct extent_buffer *eb, int slot,
588 struct btrfs_key *key)
592 u64 start = key->offset;
594 struct btrfs_file_extent_item *item;
595 struct inode *inode = NULL;
599 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
600 found_type = btrfs_file_extent_type(eb, item);
602 if (found_type == BTRFS_FILE_EXTENT_REG ||
603 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
604 nbytes = btrfs_file_extent_num_bytes(eb, item);
605 extent_end = start + nbytes;
608 * We don't add to the inodes nbytes if we are prealloc or a
611 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
613 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
614 size = btrfs_file_extent_inline_len(eb, slot, item);
615 nbytes = btrfs_file_extent_ram_bytes(eb, item);
616 extent_end = ALIGN(start + size, root->sectorsize);
622 inode = read_one_inode(root, key->objectid);
629 * first check to see if we already have this extent in the
630 * file. This must be done before the btrfs_drop_extents run
631 * so we don't try to drop this extent.
633 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
637 (found_type == BTRFS_FILE_EXTENT_REG ||
638 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
639 struct btrfs_file_extent_item cmp1;
640 struct btrfs_file_extent_item cmp2;
641 struct btrfs_file_extent_item *existing;
642 struct extent_buffer *leaf;
644 leaf = path->nodes[0];
645 existing = btrfs_item_ptr(leaf, path->slots[0],
646 struct btrfs_file_extent_item);
648 read_extent_buffer(eb, &cmp1, (unsigned long)item,
650 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
654 * we already have a pointer to this exact extent,
655 * we don't have to do anything
657 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
658 btrfs_release_path(path);
662 btrfs_release_path(path);
664 /* drop any overlapping extents */
665 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
669 if (found_type == BTRFS_FILE_EXTENT_REG ||
670 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
672 unsigned long dest_offset;
673 struct btrfs_key ins;
675 ret = btrfs_insert_empty_item(trans, root, path, key,
679 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
681 copy_extent_buffer(path->nodes[0], eb, dest_offset,
682 (unsigned long)item, sizeof(*item));
684 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
685 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
686 ins.type = BTRFS_EXTENT_ITEM_KEY;
687 offset = key->offset - btrfs_file_extent_offset(eb, item);
689 if (ins.objectid > 0) {
692 LIST_HEAD(ordered_sums);
694 * is this extent already allocated in the extent
695 * allocation tree? If so, just add a reference
697 ret = btrfs_lookup_data_extent(root, ins.objectid,
700 ret = btrfs_inc_extent_ref(trans, root,
701 ins.objectid, ins.offset,
702 0, root->root_key.objectid,
703 key->objectid, offset, 0);
708 * insert the extent pointer in the extent
711 ret = btrfs_alloc_logged_file_extent(trans,
712 root, root->root_key.objectid,
713 key->objectid, offset, &ins);
717 btrfs_release_path(path);
719 if (btrfs_file_extent_compression(eb, item)) {
720 csum_start = ins.objectid;
721 csum_end = csum_start + ins.offset;
723 csum_start = ins.objectid +
724 btrfs_file_extent_offset(eb, item);
725 csum_end = csum_start +
726 btrfs_file_extent_num_bytes(eb, item);
729 ret = btrfs_lookup_csums_range(root->log_root,
730 csum_start, csum_end - 1,
734 while (!list_empty(&ordered_sums)) {
735 struct btrfs_ordered_sum *sums;
736 sums = list_entry(ordered_sums.next,
737 struct btrfs_ordered_sum,
740 ret = btrfs_csum_file_blocks(trans,
741 root->fs_info->csum_root,
743 list_del(&sums->list);
749 btrfs_release_path(path);
751 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
752 /* inline extents are easy, we just overwrite them */
753 ret = overwrite_item(trans, root, path, eb, slot, key);
758 inode_add_bytes(inode, nbytes);
759 ret = btrfs_update_inode(trans, root, inode);
767 * when cleaning up conflicts between the directory names in the
768 * subvolume, directory names in the log and directory names in the
769 * inode back references, we may have to unlink inodes from directories.
771 * This is a helper function to do the unlink of a specific directory
774 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
775 struct btrfs_root *root,
776 struct btrfs_path *path,
778 struct btrfs_dir_item *di)
783 struct extent_buffer *leaf;
784 struct btrfs_key location;
787 leaf = path->nodes[0];
789 btrfs_dir_item_key_to_cpu(leaf, di, &location);
790 name_len = btrfs_dir_name_len(leaf, di);
791 name = kmalloc(name_len, GFP_NOFS);
795 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
796 btrfs_release_path(path);
798 inode = read_one_inode(root, location.objectid);
804 ret = link_to_fixup_dir(trans, root, path, location.objectid);
808 ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
812 ret = btrfs_run_delayed_items(trans, root);
820 * helper function to see if a given name and sequence number found
821 * in an inode back reference are already in a directory and correctly
822 * point to this inode
824 static noinline int inode_in_dir(struct btrfs_root *root,
825 struct btrfs_path *path,
826 u64 dirid, u64 objectid, u64 index,
827 const char *name, int name_len)
829 struct btrfs_dir_item *di;
830 struct btrfs_key location;
833 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
834 index, name, name_len, 0);
835 if (di && !IS_ERR(di)) {
836 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
837 if (location.objectid != objectid)
841 btrfs_release_path(path);
843 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
844 if (di && !IS_ERR(di)) {
845 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
846 if (location.objectid != objectid)
852 btrfs_release_path(path);
857 * helper function to check a log tree for a named back reference in
858 * an inode. This is used to decide if a back reference that is
859 * found in the subvolume conflicts with what we find in the log.
861 * inode backreferences may have multiple refs in a single item,
862 * during replay we process one reference at a time, and we don't
863 * want to delete valid links to a file from the subvolume if that
864 * link is also in the log.
866 static noinline int backref_in_log(struct btrfs_root *log,
867 struct btrfs_key *key,
869 const char *name, int namelen)
871 struct btrfs_path *path;
872 struct btrfs_inode_ref *ref;
874 unsigned long ptr_end;
875 unsigned long name_ptr;
881 path = btrfs_alloc_path();
885 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
889 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
891 if (key->type == BTRFS_INODE_EXTREF_KEY) {
892 if (btrfs_find_name_in_ext_backref(path, ref_objectid,
893 name, namelen, NULL))
899 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
900 ptr_end = ptr + item_size;
901 while (ptr < ptr_end) {
902 ref = (struct btrfs_inode_ref *)ptr;
903 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
904 if (found_name_len == namelen) {
905 name_ptr = (unsigned long)(ref + 1);
906 ret = memcmp_extent_buffer(path->nodes[0], name,
913 ptr = (unsigned long)(ref + 1) + found_name_len;
916 btrfs_free_path(path);
920 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
921 struct btrfs_root *root,
922 struct btrfs_path *path,
923 struct btrfs_root *log_root,
924 struct inode *dir, struct inode *inode,
925 struct extent_buffer *eb,
926 u64 inode_objectid, u64 parent_objectid,
927 u64 ref_index, char *name, int namelen,
933 struct extent_buffer *leaf;
934 struct btrfs_dir_item *di;
935 struct btrfs_key search_key;
936 struct btrfs_inode_extref *extref;
939 /* Search old style refs */
940 search_key.objectid = inode_objectid;
941 search_key.type = BTRFS_INODE_REF_KEY;
942 search_key.offset = parent_objectid;
943 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
945 struct btrfs_inode_ref *victim_ref;
947 unsigned long ptr_end;
949 leaf = path->nodes[0];
951 /* are we trying to overwrite a back ref for the root directory
952 * if so, just jump out, we're done
954 if (search_key.objectid == search_key.offset)
957 /* check all the names in this back reference to see
958 * if they are in the log. if so, we allow them to stay
959 * otherwise they must be unlinked as a conflict
961 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
962 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
963 while (ptr < ptr_end) {
964 victim_ref = (struct btrfs_inode_ref *)ptr;
965 victim_name_len = btrfs_inode_ref_name_len(leaf,
967 victim_name = kmalloc(victim_name_len, GFP_NOFS);
971 read_extent_buffer(leaf, victim_name,
972 (unsigned long)(victim_ref + 1),
975 if (!backref_in_log(log_root, &search_key,
980 btrfs_release_path(path);
982 ret = btrfs_unlink_inode(trans, root, dir,
988 ret = btrfs_run_delayed_items(trans, root);
996 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1000 * NOTE: we have searched root tree and checked the
1001 * coresponding ref, it does not need to check again.
1005 btrfs_release_path(path);
1007 /* Same search but for extended refs */
1008 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1009 inode_objectid, parent_objectid, 0,
1011 if (!IS_ERR_OR_NULL(extref)) {
1015 struct inode *victim_parent;
1017 leaf = path->nodes[0];
1019 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1020 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1022 while (cur_offset < item_size) {
1023 extref = (struct btrfs_inode_extref *)(base + cur_offset);
1025 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1027 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1030 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1033 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1036 search_key.objectid = inode_objectid;
1037 search_key.type = BTRFS_INODE_EXTREF_KEY;
1038 search_key.offset = btrfs_extref_hash(parent_objectid,
1042 if (!backref_in_log(log_root, &search_key,
1043 parent_objectid, victim_name,
1046 victim_parent = read_one_inode(root,
1048 if (victim_parent) {
1050 btrfs_release_path(path);
1052 ret = btrfs_unlink_inode(trans, root,
1058 ret = btrfs_run_delayed_items(
1061 iput(victim_parent);
1072 cur_offset += victim_name_len + sizeof(*extref);
1076 btrfs_release_path(path);
1078 /* look for a conflicting sequence number */
1079 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1080 ref_index, name, namelen, 0);
1081 if (di && !IS_ERR(di)) {
1082 ret = drop_one_dir_item(trans, root, path, dir, di);
1086 btrfs_release_path(path);
1088 /* look for a conflicing name */
1089 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1091 if (di && !IS_ERR(di)) {
1092 ret = drop_one_dir_item(trans, root, path, dir, di);
1096 btrfs_release_path(path);
1101 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1102 u32 *namelen, char **name, u64 *index,
1103 u64 *parent_objectid)
1105 struct btrfs_inode_extref *extref;
1107 extref = (struct btrfs_inode_extref *)ref_ptr;
1109 *namelen = btrfs_inode_extref_name_len(eb, extref);
1110 *name = kmalloc(*namelen, GFP_NOFS);
1114 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1117 *index = btrfs_inode_extref_index(eb, extref);
1118 if (parent_objectid)
1119 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1124 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1125 u32 *namelen, char **name, u64 *index)
1127 struct btrfs_inode_ref *ref;
1129 ref = (struct btrfs_inode_ref *)ref_ptr;
1131 *namelen = btrfs_inode_ref_name_len(eb, ref);
1132 *name = kmalloc(*namelen, GFP_NOFS);
1136 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1138 *index = btrfs_inode_ref_index(eb, ref);
1144 * replay one inode back reference item found in the log tree.
1145 * eb, slot and key refer to the buffer and key found in the log tree.
1146 * root is the destination we are replaying into, and path is for temp
1147 * use by this function. (it should be released on return).
1149 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1150 struct btrfs_root *root,
1151 struct btrfs_root *log,
1152 struct btrfs_path *path,
1153 struct extent_buffer *eb, int slot,
1154 struct btrfs_key *key)
1156 struct inode *dir = NULL;
1157 struct inode *inode = NULL;
1158 unsigned long ref_ptr;
1159 unsigned long ref_end;
1163 int search_done = 0;
1164 int log_ref_ver = 0;
1165 u64 parent_objectid;
1168 int ref_struct_size;
1170 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1171 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1173 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1174 struct btrfs_inode_extref *r;
1176 ref_struct_size = sizeof(struct btrfs_inode_extref);
1178 r = (struct btrfs_inode_extref *)ref_ptr;
1179 parent_objectid = btrfs_inode_extref_parent(eb, r);
1181 ref_struct_size = sizeof(struct btrfs_inode_ref);
1182 parent_objectid = key->offset;
1184 inode_objectid = key->objectid;
1187 * it is possible that we didn't log all the parent directories
1188 * for a given inode. If we don't find the dir, just don't
1189 * copy the back ref in. The link count fixup code will take
1192 dir = read_one_inode(root, parent_objectid);
1198 inode = read_one_inode(root, inode_objectid);
1204 while (ref_ptr < ref_end) {
1206 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1207 &ref_index, &parent_objectid);
1209 * parent object can change from one array
1213 dir = read_one_inode(root, parent_objectid);
1219 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1225 /* if we already have a perfect match, we're done */
1226 if (!inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
1227 ref_index, name, namelen)) {
1229 * look for a conflicting back reference in the
1230 * metadata. if we find one we have to unlink that name
1231 * of the file before we add our new link. Later on, we
1232 * overwrite any existing back reference, and we don't
1233 * want to create dangling pointers in the directory.
1237 ret = __add_inode_ref(trans, root, path, log,
1241 ref_index, name, namelen,
1250 /* insert our name */
1251 ret = btrfs_add_link(trans, dir, inode, name, namelen,
1256 btrfs_update_inode(trans, root, inode);
1259 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1268 /* finally write the back reference in the inode */
1269 ret = overwrite_item(trans, root, path, eb, slot, key);
1271 btrfs_release_path(path);
1278 static int insert_orphan_item(struct btrfs_trans_handle *trans,
1279 struct btrfs_root *root, u64 ino)
1283 ret = btrfs_insert_orphan_item(trans, root, ino);
1290 static int count_inode_extrefs(struct btrfs_root *root,
1291 struct inode *inode, struct btrfs_path *path)
1295 unsigned int nlink = 0;
1298 u64 inode_objectid = btrfs_ino(inode);
1301 struct btrfs_inode_extref *extref;
1302 struct extent_buffer *leaf;
1305 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1310 leaf = path->nodes[0];
1311 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1312 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1315 while (cur_offset < item_size) {
1316 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1317 name_len = btrfs_inode_extref_name_len(leaf, extref);
1321 cur_offset += name_len + sizeof(*extref);
1325 btrfs_release_path(path);
1327 btrfs_release_path(path);
1329 if (ret < 0 && ret != -ENOENT)
1334 static int count_inode_refs(struct btrfs_root *root,
1335 struct inode *inode, struct btrfs_path *path)
1338 struct btrfs_key key;
1339 unsigned int nlink = 0;
1341 unsigned long ptr_end;
1343 u64 ino = btrfs_ino(inode);
1346 key.type = BTRFS_INODE_REF_KEY;
1347 key.offset = (u64)-1;
1350 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1354 if (path->slots[0] == 0)
1359 btrfs_item_key_to_cpu(path->nodes[0], &key,
1361 if (key.objectid != ino ||
1362 key.type != BTRFS_INODE_REF_KEY)
1364 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1365 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1367 while (ptr < ptr_end) {
1368 struct btrfs_inode_ref *ref;
1370 ref = (struct btrfs_inode_ref *)ptr;
1371 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1373 ptr = (unsigned long)(ref + 1) + name_len;
1377 if (key.offset == 0)
1379 if (path->slots[0] > 0) {
1384 btrfs_release_path(path);
1386 btrfs_release_path(path);
1392 * There are a few corners where the link count of the file can't
1393 * be properly maintained during replay. So, instead of adding
1394 * lots of complexity to the log code, we just scan the backrefs
1395 * for any file that has been through replay.
1397 * The scan will update the link count on the inode to reflect the
1398 * number of back refs found. If it goes down to zero, the iput
1399 * will free the inode.
1401 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1402 struct btrfs_root *root,
1403 struct inode *inode)
1405 struct btrfs_path *path;
1408 u64 ino = btrfs_ino(inode);
1410 path = btrfs_alloc_path();
1414 ret = count_inode_refs(root, inode, path);
1420 ret = count_inode_extrefs(root, inode, path);
1428 if (nlink != inode->i_nlink) {
1429 set_nlink(inode, nlink);
1430 btrfs_update_inode(trans, root, inode);
1432 BTRFS_I(inode)->index_cnt = (u64)-1;
1434 if (inode->i_nlink == 0) {
1435 if (S_ISDIR(inode->i_mode)) {
1436 ret = replay_dir_deletes(trans, root, NULL, path,
1441 ret = insert_orphan_item(trans, root, ino);
1445 btrfs_free_path(path);
1449 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1450 struct btrfs_root *root,
1451 struct btrfs_path *path)
1454 struct btrfs_key key;
1455 struct inode *inode;
1457 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1458 key.type = BTRFS_ORPHAN_ITEM_KEY;
1459 key.offset = (u64)-1;
1461 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1466 if (path->slots[0] == 0)
1471 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1472 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1473 key.type != BTRFS_ORPHAN_ITEM_KEY)
1476 ret = btrfs_del_item(trans, root, path);
1480 btrfs_release_path(path);
1481 inode = read_one_inode(root, key.offset);
1485 ret = fixup_inode_link_count(trans, root, inode);
1491 * fixup on a directory may create new entries,
1492 * make sure we always look for the highset possible
1495 key.offset = (u64)-1;
1499 btrfs_release_path(path);
1505 * record a given inode in the fixup dir so we can check its link
1506 * count when replay is done. The link count is incremented here
1507 * so the inode won't go away until we check it
1509 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1510 struct btrfs_root *root,
1511 struct btrfs_path *path,
1514 struct btrfs_key key;
1516 struct inode *inode;
1518 inode = read_one_inode(root, objectid);
1522 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1523 key.type = BTRFS_ORPHAN_ITEM_KEY;
1524 key.offset = objectid;
1526 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1528 btrfs_release_path(path);
1530 if (!inode->i_nlink)
1531 set_nlink(inode, 1);
1534 ret = btrfs_update_inode(trans, root, inode);
1535 } else if (ret == -EEXIST) {
1538 BUG(); /* Logic Error */
1546 * when replaying the log for a directory, we only insert names
1547 * for inodes that actually exist. This means an fsync on a directory
1548 * does not implicitly fsync all the new files in it
1550 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1551 struct btrfs_root *root,
1552 struct btrfs_path *path,
1553 u64 dirid, u64 index,
1554 char *name, int name_len, u8 type,
1555 struct btrfs_key *location)
1557 struct inode *inode;
1561 inode = read_one_inode(root, location->objectid);
1565 dir = read_one_inode(root, dirid);
1571 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1573 /* FIXME, put inode into FIXUP list */
1581 * Return true if an inode reference exists in the log for the given name,
1582 * inode and parent inode.
1584 static bool name_in_log_ref(struct btrfs_root *log_root,
1585 const char *name, const int name_len,
1586 const u64 dirid, const u64 ino)
1588 struct btrfs_key search_key;
1590 search_key.objectid = ino;
1591 search_key.type = BTRFS_INODE_REF_KEY;
1592 search_key.offset = dirid;
1593 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1596 search_key.type = BTRFS_INODE_EXTREF_KEY;
1597 search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1598 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1605 * take a single entry in a log directory item and replay it into
1608 * if a conflicting item exists in the subdirectory already,
1609 * the inode it points to is unlinked and put into the link count
1612 * If a name from the log points to a file or directory that does
1613 * not exist in the FS, it is skipped. fsyncs on directories
1614 * do not force down inodes inside that directory, just changes to the
1615 * names or unlinks in a directory.
1617 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1618 struct btrfs_root *root,
1619 struct btrfs_path *path,
1620 struct extent_buffer *eb,
1621 struct btrfs_dir_item *di,
1622 struct btrfs_key *key)
1626 struct btrfs_dir_item *dst_di;
1627 struct btrfs_key found_key;
1628 struct btrfs_key log_key;
1633 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1635 dir = read_one_inode(root, key->objectid);
1639 name_len = btrfs_dir_name_len(eb, di);
1640 name = kmalloc(name_len, GFP_NOFS);
1646 log_type = btrfs_dir_type(eb, di);
1647 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1650 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1651 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1656 btrfs_release_path(path);
1658 if (key->type == BTRFS_DIR_ITEM_KEY) {
1659 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1661 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1662 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1671 if (IS_ERR_OR_NULL(dst_di)) {
1672 /* we need a sequence number to insert, so we only
1673 * do inserts for the BTRFS_DIR_INDEX_KEY types
1675 if (key->type != BTRFS_DIR_INDEX_KEY)
1680 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1681 /* the existing item matches the logged item */
1682 if (found_key.objectid == log_key.objectid &&
1683 found_key.type == log_key.type &&
1684 found_key.offset == log_key.offset &&
1685 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1686 update_size = false;
1691 * don't drop the conflicting directory entry if the inode
1692 * for the new entry doesn't exist
1697 ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1701 if (key->type == BTRFS_DIR_INDEX_KEY)
1704 btrfs_release_path(path);
1705 if (!ret && update_size) {
1706 btrfs_i_size_write(dir, dir->i_size + name_len * 2);
1707 ret = btrfs_update_inode(trans, root, dir);
1714 if (name_in_log_ref(root->log_root, name, name_len,
1715 key->objectid, log_key.objectid)) {
1716 /* The dentry will be added later. */
1718 update_size = false;
1721 btrfs_release_path(path);
1722 ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1723 name, name_len, log_type, &log_key);
1724 if (ret && ret != -ENOENT && ret != -EEXIST)
1726 update_size = false;
1732 * find all the names in a directory item and reconcile them into
1733 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1734 * one name in a directory item, but the same code gets used for
1735 * both directory index types
1737 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1738 struct btrfs_root *root,
1739 struct btrfs_path *path,
1740 struct extent_buffer *eb, int slot,
1741 struct btrfs_key *key)
1744 u32 item_size = btrfs_item_size_nr(eb, slot);
1745 struct btrfs_dir_item *di;
1748 unsigned long ptr_end;
1750 ptr = btrfs_item_ptr_offset(eb, slot);
1751 ptr_end = ptr + item_size;
1752 while (ptr < ptr_end) {
1753 di = (struct btrfs_dir_item *)ptr;
1754 if (verify_dir_item(root, eb, di))
1756 name_len = btrfs_dir_name_len(eb, di);
1757 ret = replay_one_name(trans, root, path, eb, di, key);
1760 ptr = (unsigned long)(di + 1);
1767 * directory replay has two parts. There are the standard directory
1768 * items in the log copied from the subvolume, and range items
1769 * created in the log while the subvolume was logged.
1771 * The range items tell us which parts of the key space the log
1772 * is authoritative for. During replay, if a key in the subvolume
1773 * directory is in a logged range item, but not actually in the log
1774 * that means it was deleted from the directory before the fsync
1775 * and should be removed.
1777 static noinline int find_dir_range(struct btrfs_root *root,
1778 struct btrfs_path *path,
1779 u64 dirid, int key_type,
1780 u64 *start_ret, u64 *end_ret)
1782 struct btrfs_key key;
1784 struct btrfs_dir_log_item *item;
1788 if (*start_ret == (u64)-1)
1791 key.objectid = dirid;
1792 key.type = key_type;
1793 key.offset = *start_ret;
1795 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1799 if (path->slots[0] == 0)
1804 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1806 if (key.type != key_type || key.objectid != dirid) {
1810 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1811 struct btrfs_dir_log_item);
1812 found_end = btrfs_dir_log_end(path->nodes[0], item);
1814 if (*start_ret >= key.offset && *start_ret <= found_end) {
1816 *start_ret = key.offset;
1817 *end_ret = found_end;
1822 /* check the next slot in the tree to see if it is a valid item */
1823 nritems = btrfs_header_nritems(path->nodes[0]);
1824 if (path->slots[0] >= nritems) {
1825 ret = btrfs_next_leaf(root, path);
1832 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1834 if (key.type != key_type || key.objectid != dirid) {
1838 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1839 struct btrfs_dir_log_item);
1840 found_end = btrfs_dir_log_end(path->nodes[0], item);
1841 *start_ret = key.offset;
1842 *end_ret = found_end;
1845 btrfs_release_path(path);
1850 * this looks for a given directory item in the log. If the directory
1851 * item is not in the log, the item is removed and the inode it points
1854 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1855 struct btrfs_root *root,
1856 struct btrfs_root *log,
1857 struct btrfs_path *path,
1858 struct btrfs_path *log_path,
1860 struct btrfs_key *dir_key)
1863 struct extent_buffer *eb;
1866 struct btrfs_dir_item *di;
1867 struct btrfs_dir_item *log_di;
1870 unsigned long ptr_end;
1872 struct inode *inode;
1873 struct btrfs_key location;
1876 eb = path->nodes[0];
1877 slot = path->slots[0];
1878 item_size = btrfs_item_size_nr(eb, slot);
1879 ptr = btrfs_item_ptr_offset(eb, slot);
1880 ptr_end = ptr + item_size;
1881 while (ptr < ptr_end) {
1882 di = (struct btrfs_dir_item *)ptr;
1883 if (verify_dir_item(root, eb, di)) {
1888 name_len = btrfs_dir_name_len(eb, di);
1889 name = kmalloc(name_len, GFP_NOFS);
1894 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1897 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
1898 log_di = btrfs_lookup_dir_item(trans, log, log_path,
1901 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
1902 log_di = btrfs_lookup_dir_index_item(trans, log,
1908 if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
1909 btrfs_dir_item_key_to_cpu(eb, di, &location);
1910 btrfs_release_path(path);
1911 btrfs_release_path(log_path);
1912 inode = read_one_inode(root, location.objectid);
1918 ret = link_to_fixup_dir(trans, root,
1919 path, location.objectid);
1927 ret = btrfs_unlink_inode(trans, root, dir, inode,
1930 ret = btrfs_run_delayed_items(trans, root);
1936 /* there might still be more names under this key
1937 * check and repeat if required
1939 ret = btrfs_search_slot(NULL, root, dir_key, path,
1945 } else if (IS_ERR(log_di)) {
1947 return PTR_ERR(log_di);
1949 btrfs_release_path(log_path);
1952 ptr = (unsigned long)(di + 1);
1957 btrfs_release_path(path);
1958 btrfs_release_path(log_path);
1962 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
1963 struct btrfs_root *root,
1964 struct btrfs_root *log,
1965 struct btrfs_path *path,
1968 struct btrfs_key search_key;
1969 struct btrfs_path *log_path;
1974 log_path = btrfs_alloc_path();
1978 search_key.objectid = ino;
1979 search_key.type = BTRFS_XATTR_ITEM_KEY;
1980 search_key.offset = 0;
1982 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1986 nritems = btrfs_header_nritems(path->nodes[0]);
1987 for (i = path->slots[0]; i < nritems; i++) {
1988 struct btrfs_key key;
1989 struct btrfs_dir_item *di;
1990 struct btrfs_dir_item *log_di;
1994 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
1995 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2000 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2001 total_size = btrfs_item_size_nr(path->nodes[0], i);
2003 while (cur < total_size) {
2004 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2005 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2006 u32 this_len = sizeof(*di) + name_len + data_len;
2009 name = kmalloc(name_len, GFP_NOFS);
2014 read_extent_buffer(path->nodes[0], name,
2015 (unsigned long)(di + 1), name_len);
2017 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2019 btrfs_release_path(log_path);
2021 /* Doesn't exist in log tree, so delete it. */
2022 btrfs_release_path(path);
2023 di = btrfs_lookup_xattr(trans, root, path, ino,
2024 name, name_len, -1);
2031 ret = btrfs_delete_one_dir_name(trans, root,
2035 btrfs_release_path(path);
2040 if (IS_ERR(log_di)) {
2041 ret = PTR_ERR(log_di);
2045 di = (struct btrfs_dir_item *)((char *)di + this_len);
2048 ret = btrfs_next_leaf(root, path);
2054 btrfs_free_path(log_path);
2055 btrfs_release_path(path);
2061 * deletion replay happens before we copy any new directory items
2062 * out of the log or out of backreferences from inodes. It
2063 * scans the log to find ranges of keys that log is authoritative for,
2064 * and then scans the directory to find items in those ranges that are
2065 * not present in the log.
2067 * Anything we don't find in the log is unlinked and removed from the
2070 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2071 struct btrfs_root *root,
2072 struct btrfs_root *log,
2073 struct btrfs_path *path,
2074 u64 dirid, int del_all)
2078 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2080 struct btrfs_key dir_key;
2081 struct btrfs_key found_key;
2082 struct btrfs_path *log_path;
2085 dir_key.objectid = dirid;
2086 dir_key.type = BTRFS_DIR_ITEM_KEY;
2087 log_path = btrfs_alloc_path();
2091 dir = read_one_inode(root, dirid);
2092 /* it isn't an error if the inode isn't there, that can happen
2093 * because we replay the deletes before we copy in the inode item
2097 btrfs_free_path(log_path);
2105 range_end = (u64)-1;
2107 ret = find_dir_range(log, path, dirid, key_type,
2108 &range_start, &range_end);
2113 dir_key.offset = range_start;
2116 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2121 nritems = btrfs_header_nritems(path->nodes[0]);
2122 if (path->slots[0] >= nritems) {
2123 ret = btrfs_next_leaf(root, path);
2127 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2129 if (found_key.objectid != dirid ||
2130 found_key.type != dir_key.type)
2133 if (found_key.offset > range_end)
2136 ret = check_item_in_log(trans, root, log, path,
2141 if (found_key.offset == (u64)-1)
2143 dir_key.offset = found_key.offset + 1;
2145 btrfs_release_path(path);
2146 if (range_end == (u64)-1)
2148 range_start = range_end + 1;
2153 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2154 key_type = BTRFS_DIR_LOG_INDEX_KEY;
2155 dir_key.type = BTRFS_DIR_INDEX_KEY;
2156 btrfs_release_path(path);
2160 btrfs_release_path(path);
2161 btrfs_free_path(log_path);
2167 * the process_func used to replay items from the log tree. This
2168 * gets called in two different stages. The first stage just looks
2169 * for inodes and makes sure they are all copied into the subvolume.
2171 * The second stage copies all the other item types from the log into
2172 * the subvolume. The two stage approach is slower, but gets rid of
2173 * lots of complexity around inodes referencing other inodes that exist
2174 * only in the log (references come from either directory items or inode
2177 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2178 struct walk_control *wc, u64 gen)
2181 struct btrfs_path *path;
2182 struct btrfs_root *root = wc->replay_dest;
2183 struct btrfs_key key;
2188 ret = btrfs_read_buffer(eb, gen);
2192 level = btrfs_header_level(eb);
2197 path = btrfs_alloc_path();
2201 nritems = btrfs_header_nritems(eb);
2202 for (i = 0; i < nritems; i++) {
2203 btrfs_item_key_to_cpu(eb, &key, i);
2205 /* inode keys are done during the first stage */
2206 if (key.type == BTRFS_INODE_ITEM_KEY &&
2207 wc->stage == LOG_WALK_REPLAY_INODES) {
2208 struct btrfs_inode_item *inode_item;
2211 inode_item = btrfs_item_ptr(eb, i,
2212 struct btrfs_inode_item);
2213 ret = replay_xattr_deletes(wc->trans, root, log,
2214 path, key.objectid);
2217 mode = btrfs_inode_mode(eb, inode_item);
2218 if (S_ISDIR(mode)) {
2219 ret = replay_dir_deletes(wc->trans,
2220 root, log, path, key.objectid, 0);
2224 ret = overwrite_item(wc->trans, root, path,
2229 /* for regular files, make sure corresponding
2230 * orhpan item exist. extents past the new EOF
2231 * will be truncated later by orphan cleanup.
2233 if (S_ISREG(mode)) {
2234 ret = insert_orphan_item(wc->trans, root,
2240 ret = link_to_fixup_dir(wc->trans, root,
2241 path, key.objectid);
2246 if (key.type == BTRFS_DIR_INDEX_KEY &&
2247 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2248 ret = replay_one_dir_item(wc->trans, root, path,
2254 if (wc->stage < LOG_WALK_REPLAY_ALL)
2257 /* these keys are simply copied */
2258 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2259 ret = overwrite_item(wc->trans, root, path,
2263 } else if (key.type == BTRFS_INODE_REF_KEY ||
2264 key.type == BTRFS_INODE_EXTREF_KEY) {
2265 ret = add_inode_ref(wc->trans, root, log, path,
2267 if (ret && ret != -ENOENT)
2270 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2271 ret = replay_one_extent(wc->trans, root, path,
2275 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
2276 ret = replay_one_dir_item(wc->trans, root, path,
2282 btrfs_free_path(path);
2286 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2287 struct btrfs_root *root,
2288 struct btrfs_path *path, int *level,
2289 struct walk_control *wc)
2294 struct extent_buffer *next;
2295 struct extent_buffer *cur;
2296 struct extent_buffer *parent;
2300 WARN_ON(*level < 0);
2301 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2303 while (*level > 0) {
2304 WARN_ON(*level < 0);
2305 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2306 cur = path->nodes[*level];
2308 WARN_ON(btrfs_header_level(cur) != *level);
2310 if (path->slots[*level] >=
2311 btrfs_header_nritems(cur))
2314 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2315 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2316 blocksize = root->nodesize;
2318 parent = path->nodes[*level];
2319 root_owner = btrfs_header_owner(parent);
2321 next = btrfs_find_create_tree_block(root, bytenr);
2326 ret = wc->process_func(root, next, wc, ptr_gen);
2328 free_extent_buffer(next);
2332 path->slots[*level]++;
2334 ret = btrfs_read_buffer(next, ptr_gen);
2336 free_extent_buffer(next);
2341 btrfs_tree_lock(next);
2342 btrfs_set_lock_blocking(next);
2343 clean_tree_block(trans, root->fs_info,
2345 btrfs_wait_tree_block_writeback(next);
2346 btrfs_tree_unlock(next);
2349 WARN_ON(root_owner !=
2350 BTRFS_TREE_LOG_OBJECTID);
2351 ret = btrfs_free_and_pin_reserved_extent(root,
2354 free_extent_buffer(next);
2358 free_extent_buffer(next);
2361 ret = btrfs_read_buffer(next, ptr_gen);
2363 free_extent_buffer(next);
2367 WARN_ON(*level <= 0);
2368 if (path->nodes[*level-1])
2369 free_extent_buffer(path->nodes[*level-1]);
2370 path->nodes[*level-1] = next;
2371 *level = btrfs_header_level(next);
2372 path->slots[*level] = 0;
2375 WARN_ON(*level < 0);
2376 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2378 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2384 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2385 struct btrfs_root *root,
2386 struct btrfs_path *path, int *level,
2387 struct walk_control *wc)
2394 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2395 slot = path->slots[i];
2396 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2399 WARN_ON(*level == 0);
2402 struct extent_buffer *parent;
2403 if (path->nodes[*level] == root->node)
2404 parent = path->nodes[*level];
2406 parent = path->nodes[*level + 1];
2408 root_owner = btrfs_header_owner(parent);
2409 ret = wc->process_func(root, path->nodes[*level], wc,
2410 btrfs_header_generation(path->nodes[*level]));
2415 struct extent_buffer *next;
2417 next = path->nodes[*level];
2420 btrfs_tree_lock(next);
2421 btrfs_set_lock_blocking(next);
2422 clean_tree_block(trans, root->fs_info,
2424 btrfs_wait_tree_block_writeback(next);
2425 btrfs_tree_unlock(next);
2428 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2429 ret = btrfs_free_and_pin_reserved_extent(root,
2430 path->nodes[*level]->start,
2431 path->nodes[*level]->len);
2435 free_extent_buffer(path->nodes[*level]);
2436 path->nodes[*level] = NULL;
2444 * drop the reference count on the tree rooted at 'snap'. This traverses
2445 * the tree freeing any blocks that have a ref count of zero after being
2448 static int walk_log_tree(struct btrfs_trans_handle *trans,
2449 struct btrfs_root *log, struct walk_control *wc)
2454 struct btrfs_path *path;
2457 path = btrfs_alloc_path();
2461 level = btrfs_header_level(log->node);
2463 path->nodes[level] = log->node;
2464 extent_buffer_get(log->node);
2465 path->slots[level] = 0;
2468 wret = walk_down_log_tree(trans, log, path, &level, wc);
2476 wret = walk_up_log_tree(trans, log, path, &level, wc);
2485 /* was the root node processed? if not, catch it here */
2486 if (path->nodes[orig_level]) {
2487 ret = wc->process_func(log, path->nodes[orig_level], wc,
2488 btrfs_header_generation(path->nodes[orig_level]));
2492 struct extent_buffer *next;
2494 next = path->nodes[orig_level];
2497 btrfs_tree_lock(next);
2498 btrfs_set_lock_blocking(next);
2499 clean_tree_block(trans, log->fs_info, next);
2500 btrfs_wait_tree_block_writeback(next);
2501 btrfs_tree_unlock(next);
2504 WARN_ON(log->root_key.objectid !=
2505 BTRFS_TREE_LOG_OBJECTID);
2506 ret = btrfs_free_and_pin_reserved_extent(log, next->start,
2514 btrfs_free_path(path);
2519 * helper function to update the item for a given subvolumes log root
2520 * in the tree of log roots
2522 static int update_log_root(struct btrfs_trans_handle *trans,
2523 struct btrfs_root *log)
2527 if (log->log_transid == 1) {
2528 /* insert root item on the first sync */
2529 ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
2530 &log->root_key, &log->root_item);
2532 ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
2533 &log->root_key, &log->root_item);
2538 static void wait_log_commit(struct btrfs_trans_handle *trans,
2539 struct btrfs_root *root, int transid)
2542 int index = transid % 2;
2545 * we only allow two pending log transactions at a time,
2546 * so we know that if ours is more than 2 older than the
2547 * current transaction, we're done
2550 prepare_to_wait(&root->log_commit_wait[index],
2551 &wait, TASK_UNINTERRUPTIBLE);
2552 mutex_unlock(&root->log_mutex);
2554 if (root->log_transid_committed < transid &&
2555 atomic_read(&root->log_commit[index]))
2558 finish_wait(&root->log_commit_wait[index], &wait);
2559 mutex_lock(&root->log_mutex);
2560 } while (root->log_transid_committed < transid &&
2561 atomic_read(&root->log_commit[index]));
2564 static void wait_for_writer(struct btrfs_trans_handle *trans,
2565 struct btrfs_root *root)
2569 while (atomic_read(&root->log_writers)) {
2570 prepare_to_wait(&root->log_writer_wait,
2571 &wait, TASK_UNINTERRUPTIBLE);
2572 mutex_unlock(&root->log_mutex);
2573 if (atomic_read(&root->log_writers))
2575 finish_wait(&root->log_writer_wait, &wait);
2576 mutex_lock(&root->log_mutex);
2580 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2581 struct btrfs_log_ctx *ctx)
2586 mutex_lock(&root->log_mutex);
2587 list_del_init(&ctx->list);
2588 mutex_unlock(&root->log_mutex);
2592 * Invoked in log mutex context, or be sure there is no other task which
2593 * can access the list.
2595 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2596 int index, int error)
2598 struct btrfs_log_ctx *ctx;
2601 INIT_LIST_HEAD(&root->log_ctxs[index]);
2605 list_for_each_entry(ctx, &root->log_ctxs[index], list)
2606 ctx->log_ret = error;
2608 INIT_LIST_HEAD(&root->log_ctxs[index]);
2612 * btrfs_sync_log does sends a given tree log down to the disk and
2613 * updates the super blocks to record it. When this call is done,
2614 * you know that any inodes previously logged are safely on disk only
2617 * Any other return value means you need to call btrfs_commit_transaction.
2618 * Some of the edge cases for fsyncing directories that have had unlinks
2619 * or renames done in the past mean that sometimes the only safe
2620 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2621 * that has happened.
2623 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2624 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2630 struct btrfs_root *log = root->log_root;
2631 struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
2632 int log_transid = 0;
2633 struct btrfs_log_ctx root_log_ctx;
2634 struct blk_plug plug;
2636 mutex_lock(&root->log_mutex);
2637 log_transid = ctx->log_transid;
2638 if (root->log_transid_committed >= log_transid) {
2639 mutex_unlock(&root->log_mutex);
2640 return ctx->log_ret;
2643 index1 = log_transid % 2;
2644 if (atomic_read(&root->log_commit[index1])) {
2645 wait_log_commit(trans, root, log_transid);
2646 mutex_unlock(&root->log_mutex);
2647 return ctx->log_ret;
2649 ASSERT(log_transid == root->log_transid);
2650 atomic_set(&root->log_commit[index1], 1);
2652 /* wait for previous tree log sync to complete */
2653 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2654 wait_log_commit(trans, root, log_transid - 1);
2657 int batch = atomic_read(&root->log_batch);
2658 /* when we're on an ssd, just kick the log commit out */
2659 if (!btrfs_test_opt(root, SSD) &&
2660 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2661 mutex_unlock(&root->log_mutex);
2662 schedule_timeout_uninterruptible(1);
2663 mutex_lock(&root->log_mutex);
2665 wait_for_writer(trans, root);
2666 if (batch == atomic_read(&root->log_batch))
2670 /* bail out if we need to do a full commit */
2671 if (btrfs_need_log_full_commit(root->fs_info, trans)) {
2673 btrfs_free_logged_extents(log, log_transid);
2674 mutex_unlock(&root->log_mutex);
2678 if (log_transid % 2 == 0)
2679 mark = EXTENT_DIRTY;
2683 /* we start IO on all the marked extents here, but we don't actually
2684 * wait for them until later.
2686 blk_start_plug(&plug);
2687 ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
2689 blk_finish_plug(&plug);
2690 btrfs_abort_transaction(trans, root, ret);
2691 btrfs_free_logged_extents(log, log_transid);
2692 btrfs_set_log_full_commit(root->fs_info, trans);
2693 mutex_unlock(&root->log_mutex);
2697 btrfs_set_root_node(&log->root_item, log->node);
2699 root->log_transid++;
2700 log->log_transid = root->log_transid;
2701 root->log_start_pid = 0;
2703 * IO has been started, blocks of the log tree have WRITTEN flag set
2704 * in their headers. new modifications of the log will be written to
2705 * new positions. so it's safe to allow log writers to go in.
2707 mutex_unlock(&root->log_mutex);
2709 btrfs_init_log_ctx(&root_log_ctx);
2711 mutex_lock(&log_root_tree->log_mutex);
2712 atomic_inc(&log_root_tree->log_batch);
2713 atomic_inc(&log_root_tree->log_writers);
2715 index2 = log_root_tree->log_transid % 2;
2716 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
2717 root_log_ctx.log_transid = log_root_tree->log_transid;
2719 mutex_unlock(&log_root_tree->log_mutex);
2721 ret = update_log_root(trans, log);
2723 mutex_lock(&log_root_tree->log_mutex);
2724 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2726 if (waitqueue_active(&log_root_tree->log_writer_wait))
2727 wake_up(&log_root_tree->log_writer_wait);
2731 if (!list_empty(&root_log_ctx.list))
2732 list_del_init(&root_log_ctx.list);
2734 blk_finish_plug(&plug);
2735 btrfs_set_log_full_commit(root->fs_info, trans);
2737 if (ret != -ENOSPC) {
2738 btrfs_abort_transaction(trans, root, ret);
2739 mutex_unlock(&log_root_tree->log_mutex);
2742 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2743 btrfs_free_logged_extents(log, log_transid);
2744 mutex_unlock(&log_root_tree->log_mutex);
2749 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
2750 blk_finish_plug(&plug);
2751 mutex_unlock(&log_root_tree->log_mutex);
2752 ret = root_log_ctx.log_ret;
2756 index2 = root_log_ctx.log_transid % 2;
2757 if (atomic_read(&log_root_tree->log_commit[index2])) {
2758 blk_finish_plug(&plug);
2759 ret = btrfs_wait_marked_extents(log, &log->dirty_log_pages,
2761 btrfs_wait_logged_extents(trans, log, log_transid);
2762 wait_log_commit(trans, log_root_tree,
2763 root_log_ctx.log_transid);
2764 mutex_unlock(&log_root_tree->log_mutex);
2766 ret = root_log_ctx.log_ret;
2769 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
2770 atomic_set(&log_root_tree->log_commit[index2], 1);
2772 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2773 wait_log_commit(trans, log_root_tree,
2774 root_log_ctx.log_transid - 1);
2777 wait_for_writer(trans, log_root_tree);
2780 * now that we've moved on to the tree of log tree roots,
2781 * check the full commit flag again
2783 if (btrfs_need_log_full_commit(root->fs_info, trans)) {
2784 blk_finish_plug(&plug);
2785 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2786 btrfs_free_logged_extents(log, log_transid);
2787 mutex_unlock(&log_root_tree->log_mutex);
2789 goto out_wake_log_root;
2792 ret = btrfs_write_marked_extents(log_root_tree,
2793 &log_root_tree->dirty_log_pages,
2794 EXTENT_DIRTY | EXTENT_NEW);
2795 blk_finish_plug(&plug);
2797 btrfs_set_log_full_commit(root->fs_info, trans);
2798 btrfs_abort_transaction(trans, root, ret);
2799 btrfs_free_logged_extents(log, log_transid);
2800 mutex_unlock(&log_root_tree->log_mutex);
2801 goto out_wake_log_root;
2803 ret = btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2805 ret = btrfs_wait_marked_extents(log_root_tree,
2806 &log_root_tree->dirty_log_pages,
2807 EXTENT_NEW | EXTENT_DIRTY);
2809 btrfs_set_log_full_commit(root->fs_info, trans);
2810 btrfs_free_logged_extents(log, log_transid);
2811 mutex_unlock(&log_root_tree->log_mutex);
2812 goto out_wake_log_root;
2814 btrfs_wait_logged_extents(trans, log, log_transid);
2816 btrfs_set_super_log_root(root->fs_info->super_for_commit,
2817 log_root_tree->node->start);
2818 btrfs_set_super_log_root_level(root->fs_info->super_for_commit,
2819 btrfs_header_level(log_root_tree->node));
2821 log_root_tree->log_transid++;
2822 mutex_unlock(&log_root_tree->log_mutex);
2825 * nobody else is going to jump in and write the the ctree
2826 * super here because the log_commit atomic below is protecting
2827 * us. We must be called with a transaction handle pinning
2828 * the running transaction open, so a full commit can't hop
2829 * in and cause problems either.
2831 ret = write_ctree_super(trans, root->fs_info->tree_root, 1);
2833 btrfs_set_log_full_commit(root->fs_info, trans);
2834 btrfs_abort_transaction(trans, root, ret);
2835 goto out_wake_log_root;
2838 mutex_lock(&root->log_mutex);
2839 if (root->last_log_commit < log_transid)
2840 root->last_log_commit = log_transid;
2841 mutex_unlock(&root->log_mutex);
2845 * We needn't get log_mutex here because we are sure all
2846 * the other tasks are blocked.
2848 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
2850 mutex_lock(&log_root_tree->log_mutex);
2851 log_root_tree->log_transid_committed++;
2852 atomic_set(&log_root_tree->log_commit[index2], 0);
2853 mutex_unlock(&log_root_tree->log_mutex);
2855 if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2856 wake_up(&log_root_tree->log_commit_wait[index2]);
2859 btrfs_remove_all_log_ctxs(root, index1, ret);
2861 mutex_lock(&root->log_mutex);
2862 root->log_transid_committed++;
2863 atomic_set(&root->log_commit[index1], 0);
2864 mutex_unlock(&root->log_mutex);
2866 if (waitqueue_active(&root->log_commit_wait[index1]))
2867 wake_up(&root->log_commit_wait[index1]);
2871 static void free_log_tree(struct btrfs_trans_handle *trans,
2872 struct btrfs_root *log)
2877 struct walk_control wc = {
2879 .process_func = process_one_buffer
2882 ret = walk_log_tree(trans, log, &wc);
2883 /* I don't think this can happen but just in case */
2885 btrfs_abort_transaction(trans, log, ret);
2888 ret = find_first_extent_bit(&log->dirty_log_pages,
2889 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
2894 clear_extent_bits(&log->dirty_log_pages, start, end,
2895 EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
2899 * We may have short-circuited the log tree with the full commit logic
2900 * and left ordered extents on our list, so clear these out to keep us
2901 * from leaking inodes and memory.
2903 btrfs_free_logged_extents(log, 0);
2904 btrfs_free_logged_extents(log, 1);
2906 free_extent_buffer(log->node);
2911 * free all the extents used by the tree log. This should be called
2912 * at commit time of the full transaction
2914 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2916 if (root->log_root) {
2917 free_log_tree(trans, root->log_root);
2918 root->log_root = NULL;
2923 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
2924 struct btrfs_fs_info *fs_info)
2926 if (fs_info->log_root_tree) {
2927 free_log_tree(trans, fs_info->log_root_tree);
2928 fs_info->log_root_tree = NULL;
2934 * If both a file and directory are logged, and unlinks or renames are
2935 * mixed in, we have a few interesting corners:
2937 * create file X in dir Y
2938 * link file X to X.link in dir Y
2940 * unlink file X but leave X.link
2943 * After a crash we would expect only X.link to exist. But file X
2944 * didn't get fsync'd again so the log has back refs for X and X.link.
2946 * We solve this by removing directory entries and inode backrefs from the
2947 * log when a file that was logged in the current transaction is
2948 * unlinked. Any later fsync will include the updated log entries, and
2949 * we'll be able to reconstruct the proper directory items from backrefs.
2951 * This optimizations allows us to avoid relogging the entire inode
2952 * or the entire directory.
2954 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2955 struct btrfs_root *root,
2956 const char *name, int name_len,
2957 struct inode *dir, u64 index)
2959 struct btrfs_root *log;
2960 struct btrfs_dir_item *di;
2961 struct btrfs_path *path;
2965 u64 dir_ino = btrfs_ino(dir);
2967 if (BTRFS_I(dir)->logged_trans < trans->transid)
2970 ret = join_running_log_trans(root);
2974 mutex_lock(&BTRFS_I(dir)->log_mutex);
2976 log = root->log_root;
2977 path = btrfs_alloc_path();
2983 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
2984 name, name_len, -1);
2990 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2991 bytes_del += name_len;
2997 btrfs_release_path(path);
2998 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
2999 index, name, name_len, -1);
3005 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3006 bytes_del += name_len;
3013 /* update the directory size in the log to reflect the names
3017 struct btrfs_key key;
3019 key.objectid = dir_ino;
3021 key.type = BTRFS_INODE_ITEM_KEY;
3022 btrfs_release_path(path);
3024 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
3030 struct btrfs_inode_item *item;
3033 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3034 struct btrfs_inode_item);
3035 i_size = btrfs_inode_size(path->nodes[0], item);
3036 if (i_size > bytes_del)
3037 i_size -= bytes_del;
3040 btrfs_set_inode_size(path->nodes[0], item, i_size);
3041 btrfs_mark_buffer_dirty(path->nodes[0]);
3044 btrfs_release_path(path);
3047 btrfs_free_path(path);
3049 mutex_unlock(&BTRFS_I(dir)->log_mutex);
3050 if (ret == -ENOSPC) {
3051 btrfs_set_log_full_commit(root->fs_info, trans);
3054 btrfs_abort_transaction(trans, root, ret);
3056 btrfs_end_log_trans(root);
3061 /* see comments for btrfs_del_dir_entries_in_log */
3062 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3063 struct btrfs_root *root,
3064 const char *name, int name_len,
3065 struct inode *inode, u64 dirid)
3067 struct btrfs_root *log;
3071 if (BTRFS_I(inode)->logged_trans < trans->transid)
3074 ret = join_running_log_trans(root);
3077 log = root->log_root;
3078 mutex_lock(&BTRFS_I(inode)->log_mutex);
3080 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3082 mutex_unlock(&BTRFS_I(inode)->log_mutex);
3083 if (ret == -ENOSPC) {
3084 btrfs_set_log_full_commit(root->fs_info, trans);
3086 } else if (ret < 0 && ret != -ENOENT)
3087 btrfs_abort_transaction(trans, root, ret);
3088 btrfs_end_log_trans(root);
3094 * creates a range item in the log for 'dirid'. first_offset and
3095 * last_offset tell us which parts of the key space the log should
3096 * be considered authoritative for.
3098 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3099 struct btrfs_root *log,
3100 struct btrfs_path *path,
3101 int key_type, u64 dirid,
3102 u64 first_offset, u64 last_offset)
3105 struct btrfs_key key;
3106 struct btrfs_dir_log_item *item;
3108 key.objectid = dirid;
3109 key.offset = first_offset;
3110 if (key_type == BTRFS_DIR_ITEM_KEY)
3111 key.type = BTRFS_DIR_LOG_ITEM_KEY;
3113 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3114 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3118 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3119 struct btrfs_dir_log_item);
3120 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3121 btrfs_mark_buffer_dirty(path->nodes[0]);
3122 btrfs_release_path(path);
3127 * log all the items included in the current transaction for a given
3128 * directory. This also creates the range items in the log tree required
3129 * to replay anything deleted before the fsync
3131 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3132 struct btrfs_root *root, struct inode *inode,
3133 struct btrfs_path *path,
3134 struct btrfs_path *dst_path, int key_type,
3135 struct btrfs_log_ctx *ctx,
3136 u64 min_offset, u64 *last_offset_ret)
3138 struct btrfs_key min_key;
3139 struct btrfs_root *log = root->log_root;
3140 struct extent_buffer *src;
3145 u64 first_offset = min_offset;
3146 u64 last_offset = (u64)-1;
3147 u64 ino = btrfs_ino(inode);
3149 log = root->log_root;
3151 min_key.objectid = ino;
3152 min_key.type = key_type;
3153 min_key.offset = min_offset;
3155 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3158 * we didn't find anything from this transaction, see if there
3159 * is anything at all
3161 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3162 min_key.objectid = ino;
3163 min_key.type = key_type;
3164 min_key.offset = (u64)-1;
3165 btrfs_release_path(path);
3166 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3168 btrfs_release_path(path);
3171 ret = btrfs_previous_item(root, path, ino, key_type);
3173 /* if ret == 0 there are items for this type,
3174 * create a range to tell us the last key of this type.
3175 * otherwise, there are no items in this directory after
3176 * *min_offset, and we create a range to indicate that.
3179 struct btrfs_key tmp;
3180 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3182 if (key_type == tmp.type)
3183 first_offset = max(min_offset, tmp.offset) + 1;
3188 /* go backward to find any previous key */
3189 ret = btrfs_previous_item(root, path, ino, key_type);
3191 struct btrfs_key tmp;
3192 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3193 if (key_type == tmp.type) {
3194 first_offset = tmp.offset;
3195 ret = overwrite_item(trans, log, dst_path,
3196 path->nodes[0], path->slots[0],
3204 btrfs_release_path(path);
3206 /* find the first key from this transaction again */
3207 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3208 if (WARN_ON(ret != 0))
3212 * we have a block from this transaction, log every item in it
3213 * from our directory
3216 struct btrfs_key tmp;
3217 src = path->nodes[0];
3218 nritems = btrfs_header_nritems(src);
3219 for (i = path->slots[0]; i < nritems; i++) {
3220 struct btrfs_dir_item *di;
3222 btrfs_item_key_to_cpu(src, &min_key, i);
3224 if (min_key.objectid != ino || min_key.type != key_type)
3226 ret = overwrite_item(trans, log, dst_path, src, i,
3234 * We must make sure that when we log a directory entry,
3235 * the corresponding inode, after log replay, has a
3236 * matching link count. For example:
3242 * xfs_io -c "fsync" mydir
3244 * <mount fs and log replay>
3246 * Would result in a fsync log that when replayed, our
3247 * file inode would have a link count of 1, but we get
3248 * two directory entries pointing to the same inode.
3249 * After removing one of the names, it would not be
3250 * possible to remove the other name, which resulted
3251 * always in stale file handle errors, and would not
3252 * be possible to rmdir the parent directory, since
3253 * its i_size could never decrement to the value
3254 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3256 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3257 btrfs_dir_item_key_to_cpu(src, di, &tmp);
3259 (btrfs_dir_transid(src, di) == trans->transid ||
3260 btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3261 tmp.type != BTRFS_ROOT_ITEM_KEY)
3262 ctx->log_new_dentries = true;
3264 path->slots[0] = nritems;
3267 * look ahead to the next item and see if it is also
3268 * from this directory and from this transaction
3270 ret = btrfs_next_leaf(root, path);
3272 last_offset = (u64)-1;
3275 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3276 if (tmp.objectid != ino || tmp.type != key_type) {
3277 last_offset = (u64)-1;
3280 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3281 ret = overwrite_item(trans, log, dst_path,
3282 path->nodes[0], path->slots[0],
3287 last_offset = tmp.offset;
3292 btrfs_release_path(path);
3293 btrfs_release_path(dst_path);
3296 *last_offset_ret = last_offset;
3298 * insert the log range keys to indicate where the log
3301 ret = insert_dir_log_key(trans, log, path, key_type,
3302 ino, first_offset, last_offset);
3310 * logging directories is very similar to logging inodes, We find all the items
3311 * from the current transaction and write them to the log.
3313 * The recovery code scans the directory in the subvolume, and if it finds a
3314 * key in the range logged that is not present in the log tree, then it means
3315 * that dir entry was unlinked during the transaction.
3317 * In order for that scan to work, we must include one key smaller than
3318 * the smallest logged by this transaction and one key larger than the largest
3319 * key logged by this transaction.
3321 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3322 struct btrfs_root *root, struct inode *inode,
3323 struct btrfs_path *path,
3324 struct btrfs_path *dst_path,
3325 struct btrfs_log_ctx *ctx)
3330 int key_type = BTRFS_DIR_ITEM_KEY;
3336 ret = log_dir_items(trans, root, inode, path,
3337 dst_path, key_type, ctx, min_key,
3341 if (max_key == (u64)-1)
3343 min_key = max_key + 1;
3346 if (key_type == BTRFS_DIR_ITEM_KEY) {
3347 key_type = BTRFS_DIR_INDEX_KEY;
3354 * a helper function to drop items from the log before we relog an
3355 * inode. max_key_type indicates the highest item type to remove.
3356 * This cannot be run for file data extents because it does not
3357 * free the extents they point to.
3359 static int drop_objectid_items(struct btrfs_trans_handle *trans,
3360 struct btrfs_root *log,
3361 struct btrfs_path *path,
3362 u64 objectid, int max_key_type)
3365 struct btrfs_key key;
3366 struct btrfs_key found_key;
3369 key.objectid = objectid;
3370 key.type = max_key_type;
3371 key.offset = (u64)-1;
3374 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3375 BUG_ON(ret == 0); /* Logic error */
3379 if (path->slots[0] == 0)
3383 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3386 if (found_key.objectid != objectid)
3389 found_key.offset = 0;
3391 ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3394 ret = btrfs_del_items(trans, log, path, start_slot,
3395 path->slots[0] - start_slot + 1);
3397 * If start slot isn't 0 then we don't need to re-search, we've
3398 * found the last guy with the objectid in this tree.
3400 if (ret || start_slot != 0)
3402 btrfs_release_path(path);
3404 btrfs_release_path(path);
3410 static void fill_inode_item(struct btrfs_trans_handle *trans,
3411 struct extent_buffer *leaf,
3412 struct btrfs_inode_item *item,
3413 struct inode *inode, int log_inode_only,
3416 struct btrfs_map_token token;
3418 btrfs_init_map_token(&token);
3420 if (log_inode_only) {
3421 /* set the generation to zero so the recover code
3422 * can tell the difference between an logging
3423 * just to say 'this inode exists' and a logging
3424 * to say 'update this inode with these values'
3426 btrfs_set_token_inode_generation(leaf, item, 0, &token);
3427 btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
3429 btrfs_set_token_inode_generation(leaf, item,
3430 BTRFS_I(inode)->generation,
3432 btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3435 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3436 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3437 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3438 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3440 btrfs_set_token_timespec_sec(leaf, &item->atime,
3441 inode->i_atime.tv_sec, &token);
3442 btrfs_set_token_timespec_nsec(leaf, &item->atime,
3443 inode->i_atime.tv_nsec, &token);
3445 btrfs_set_token_timespec_sec(leaf, &item->mtime,
3446 inode->i_mtime.tv_sec, &token);
3447 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3448 inode->i_mtime.tv_nsec, &token);
3450 btrfs_set_token_timespec_sec(leaf, &item->ctime,
3451 inode->i_ctime.tv_sec, &token);
3452 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3453 inode->i_ctime.tv_nsec, &token);
3455 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3458 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3459 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3460 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3461 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3462 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3465 static int log_inode_item(struct btrfs_trans_handle *trans,
3466 struct btrfs_root *log, struct btrfs_path *path,
3467 struct inode *inode)
3469 struct btrfs_inode_item *inode_item;
3472 ret = btrfs_insert_empty_item(trans, log, path,
3473 &BTRFS_I(inode)->location,
3474 sizeof(*inode_item));
3475 if (ret && ret != -EEXIST)
3477 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3478 struct btrfs_inode_item);
3479 fill_inode_item(trans, path->nodes[0], inode_item, inode, 0, 0);
3480 btrfs_release_path(path);
3484 static noinline int copy_items(struct btrfs_trans_handle *trans,
3485 struct inode *inode,
3486 struct btrfs_path *dst_path,
3487 struct btrfs_path *src_path, u64 *last_extent,
3488 int start_slot, int nr, int inode_only,
3491 unsigned long src_offset;
3492 unsigned long dst_offset;
3493 struct btrfs_root *log = BTRFS_I(inode)->root->log_root;
3494 struct btrfs_file_extent_item *extent;
3495 struct btrfs_inode_item *inode_item;
3496 struct extent_buffer *src = src_path->nodes[0];
3497 struct btrfs_key first_key, last_key, key;
3499 struct btrfs_key *ins_keys;
3503 struct list_head ordered_sums;
3504 int skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3505 bool has_extents = false;
3506 bool need_find_last_extent = true;
3509 INIT_LIST_HEAD(&ordered_sums);
3511 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3512 nr * sizeof(u32), GFP_NOFS);
3516 first_key.objectid = (u64)-1;
3518 ins_sizes = (u32 *)ins_data;
3519 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3521 for (i = 0; i < nr; i++) {
3522 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3523 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3525 ret = btrfs_insert_empty_items(trans, log, dst_path,
3526 ins_keys, ins_sizes, nr);
3532 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3533 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3534 dst_path->slots[0]);
3536 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3538 if ((i == (nr - 1)))
3539 last_key = ins_keys[i];
3541 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3542 inode_item = btrfs_item_ptr(dst_path->nodes[0],
3544 struct btrfs_inode_item);
3545 fill_inode_item(trans, dst_path->nodes[0], inode_item,
3546 inode, inode_only == LOG_INODE_EXISTS,
3549 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3550 src_offset, ins_sizes[i]);
3554 * We set need_find_last_extent here in case we know we were
3555 * processing other items and then walk into the first extent in
3556 * the inode. If we don't hit an extent then nothing changes,
3557 * we'll do the last search the next time around.
3559 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3561 if (first_key.objectid == (u64)-1)
3562 first_key = ins_keys[i];
3564 need_find_last_extent = false;
3567 /* take a reference on file data extents so that truncates
3568 * or deletes of this inode don't have to relog the inode
3571 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
3574 extent = btrfs_item_ptr(src, start_slot + i,
3575 struct btrfs_file_extent_item);
3577 if (btrfs_file_extent_generation(src, extent) < trans->transid)
3580 found_type = btrfs_file_extent_type(src, extent);
3581 if (found_type == BTRFS_FILE_EXTENT_REG) {
3583 ds = btrfs_file_extent_disk_bytenr(src,
3585 /* ds == 0 is a hole */
3589 dl = btrfs_file_extent_disk_num_bytes(src,
3591 cs = btrfs_file_extent_offset(src, extent);
3592 cl = btrfs_file_extent_num_bytes(src,
3594 if (btrfs_file_extent_compression(src,
3600 ret = btrfs_lookup_csums_range(
3601 log->fs_info->csum_root,
3602 ds + cs, ds + cs + cl - 1,
3605 btrfs_release_path(dst_path);
3613 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
3614 btrfs_release_path(dst_path);
3618 * we have to do this after the loop above to avoid changing the
3619 * log tree while trying to change the log tree.
3622 while (!list_empty(&ordered_sums)) {
3623 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3624 struct btrfs_ordered_sum,
3627 ret = btrfs_csum_file_blocks(trans, log, sums);
3628 list_del(&sums->list);
3635 if (need_find_last_extent && *last_extent == first_key.offset) {
3637 * We don't have any leafs between our current one and the one
3638 * we processed before that can have file extent items for our
3639 * inode (and have a generation number smaller than our current
3642 need_find_last_extent = false;
3646 * Because we use btrfs_search_forward we could skip leaves that were
3647 * not modified and then assume *last_extent is valid when it really
3648 * isn't. So back up to the previous leaf and read the end of the last
3649 * extent before we go and fill in holes.
3651 if (need_find_last_extent) {
3654 ret = btrfs_prev_leaf(BTRFS_I(inode)->root, src_path);
3659 if (src_path->slots[0])
3660 src_path->slots[0]--;
3661 src = src_path->nodes[0];
3662 btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
3663 if (key.objectid != btrfs_ino(inode) ||
3664 key.type != BTRFS_EXTENT_DATA_KEY)
3666 extent = btrfs_item_ptr(src, src_path->slots[0],
3667 struct btrfs_file_extent_item);
3668 if (btrfs_file_extent_type(src, extent) ==
3669 BTRFS_FILE_EXTENT_INLINE) {
3670 len = btrfs_file_extent_inline_len(src,
3673 *last_extent = ALIGN(key.offset + len,
3676 len = btrfs_file_extent_num_bytes(src, extent);
3677 *last_extent = key.offset + len;
3681 /* So we did prev_leaf, now we need to move to the next leaf, but a few
3682 * things could have happened
3684 * 1) A merge could have happened, so we could currently be on a leaf
3685 * that holds what we were copying in the first place.
3686 * 2) A split could have happened, and now not all of the items we want
3687 * are on the same leaf.
3689 * So we need to adjust how we search for holes, we need to drop the
3690 * path and re-search for the first extent key we found, and then walk
3691 * forward until we hit the last one we copied.
3693 if (need_find_last_extent) {
3694 /* btrfs_prev_leaf could return 1 without releasing the path */
3695 btrfs_release_path(src_path);
3696 ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &first_key,
3701 src = src_path->nodes[0];
3702 i = src_path->slots[0];
3708 * Ok so here we need to go through and fill in any holes we may have
3709 * to make sure that holes are punched for those areas in case they had
3710 * extents previously.
3716 if (i >= btrfs_header_nritems(src_path->nodes[0])) {
3717 ret = btrfs_next_leaf(BTRFS_I(inode)->root, src_path);
3721 src = src_path->nodes[0];
3725 btrfs_item_key_to_cpu(src, &key, i);
3726 if (!btrfs_comp_cpu_keys(&key, &last_key))
3728 if (key.objectid != btrfs_ino(inode) ||
3729 key.type != BTRFS_EXTENT_DATA_KEY) {
3733 extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
3734 if (btrfs_file_extent_type(src, extent) ==
3735 BTRFS_FILE_EXTENT_INLINE) {
3736 len = btrfs_file_extent_inline_len(src, i, extent);
3737 extent_end = ALIGN(key.offset + len, log->sectorsize);
3739 len = btrfs_file_extent_num_bytes(src, extent);
3740 extent_end = key.offset + len;
3744 if (*last_extent == key.offset) {
3745 *last_extent = extent_end;
3748 offset = *last_extent;
3749 len = key.offset - *last_extent;
3750 ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
3751 offset, 0, 0, len, 0, len, 0,
3755 *last_extent = extent_end;
3758 * Need to let the callers know we dropped the path so they should
3761 if (!ret && need_find_last_extent)
3766 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
3768 struct extent_map *em1, *em2;
3770 em1 = list_entry(a, struct extent_map, list);
3771 em2 = list_entry(b, struct extent_map, list);
3773 if (em1->start < em2->start)
3775 else if (em1->start > em2->start)
3780 static int wait_ordered_extents(struct btrfs_trans_handle *trans,
3781 struct inode *inode,
3782 struct btrfs_root *root,
3783 const struct extent_map *em,
3784 const struct list_head *logged_list,
3785 bool *ordered_io_error)
3787 struct btrfs_ordered_extent *ordered;
3788 struct btrfs_root *log = root->log_root;
3789 u64 mod_start = em->mod_start;
3790 u64 mod_len = em->mod_len;
3791 const bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3794 LIST_HEAD(ordered_sums);
3797 *ordered_io_error = false;
3799 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
3800 em->block_start == EXTENT_MAP_HOLE)
3804 * Wait far any ordered extent that covers our extent map. If it
3805 * finishes without an error, first check and see if our csums are on
3806 * our outstanding ordered extents.
3808 list_for_each_entry(ordered, logged_list, log_list) {
3809 struct btrfs_ordered_sum *sum;
3814 if (ordered->file_offset + ordered->len <= mod_start ||
3815 mod_start + mod_len <= ordered->file_offset)
3818 if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
3819 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
3820 !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
3821 const u64 start = ordered->file_offset;
3822 const u64 end = ordered->file_offset + ordered->len - 1;
3824 WARN_ON(ordered->inode != inode);
3825 filemap_fdatawrite_range(inode->i_mapping, start, end);
3828 wait_event(ordered->wait,
3829 (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) ||
3830 test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)));
3832 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) {
3834 * Clear the AS_EIO/AS_ENOSPC flags from the inode's
3835 * i_mapping flags, so that the next fsync won't get
3836 * an outdated io error too.
3838 btrfs_inode_check_errors(inode);
3839 *ordered_io_error = true;
3843 * We are going to copy all the csums on this ordered extent, so
3844 * go ahead and adjust mod_start and mod_len in case this
3845 * ordered extent has already been logged.
3847 if (ordered->file_offset > mod_start) {
3848 if (ordered->file_offset + ordered->len >=
3849 mod_start + mod_len)
3850 mod_len = ordered->file_offset - mod_start;
3852 * If we have this case
3854 * |--------- logged extent ---------|
3855 * |----- ordered extent ----|
3857 * Just don't mess with mod_start and mod_len, we'll
3858 * just end up logging more csums than we need and it
3862 if (ordered->file_offset + ordered->len <
3863 mod_start + mod_len) {
3864 mod_len = (mod_start + mod_len) -
3865 (ordered->file_offset + ordered->len);
3866 mod_start = ordered->file_offset +
3877 * To keep us from looping for the above case of an ordered
3878 * extent that falls inside of the logged extent.
3880 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
3884 list_for_each_entry(sum, &ordered->list, list) {
3885 ret = btrfs_csum_file_blocks(trans, log, sum);
3891 if (*ordered_io_error || !mod_len || ret || skip_csum)
3894 if (em->compress_type) {
3896 csum_len = max(em->block_len, em->orig_block_len);
3898 csum_offset = mod_start - em->start;
3902 /* block start is already adjusted for the file extent offset. */
3903 ret = btrfs_lookup_csums_range(log->fs_info->csum_root,
3904 em->block_start + csum_offset,
3905 em->block_start + csum_offset +
3906 csum_len - 1, &ordered_sums, 0);
3910 while (!list_empty(&ordered_sums)) {
3911 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3912 struct btrfs_ordered_sum,
3915 ret = btrfs_csum_file_blocks(trans, log, sums);
3916 list_del(&sums->list);
3923 static int log_one_extent(struct btrfs_trans_handle *trans,
3924 struct inode *inode, struct btrfs_root *root,
3925 const struct extent_map *em,
3926 struct btrfs_path *path,
3927 const struct list_head *logged_list,
3928 struct btrfs_log_ctx *ctx)
3930 struct btrfs_root *log = root->log_root;
3931 struct btrfs_file_extent_item *fi;
3932 struct extent_buffer *leaf;
3933 struct btrfs_map_token token;
3934 struct btrfs_key key;
3935 u64 extent_offset = em->start - em->orig_start;
3938 int extent_inserted = 0;
3939 bool ordered_io_err = false;
3941 ret = wait_ordered_extents(trans, inode, root, em, logged_list,
3946 if (ordered_io_err) {
3951 btrfs_init_map_token(&token);
3953 ret = __btrfs_drop_extents(trans, log, inode, path, em->start,
3954 em->start + em->len, NULL, 0, 1,
3955 sizeof(*fi), &extent_inserted);
3959 if (!extent_inserted) {
3960 key.objectid = btrfs_ino(inode);
3961 key.type = BTRFS_EXTENT_DATA_KEY;
3962 key.offset = em->start;
3964 ret = btrfs_insert_empty_item(trans, log, path, &key,
3969 leaf = path->nodes[0];
3970 fi = btrfs_item_ptr(leaf, path->slots[0],
3971 struct btrfs_file_extent_item);
3973 btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
3975 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3976 btrfs_set_token_file_extent_type(leaf, fi,
3977 BTRFS_FILE_EXTENT_PREALLOC,
3980 btrfs_set_token_file_extent_type(leaf, fi,
3981 BTRFS_FILE_EXTENT_REG,
3984 block_len = max(em->block_len, em->orig_block_len);
3985 if (em->compress_type != BTRFS_COMPRESS_NONE) {
3986 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3989 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3991 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
3992 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3994 extent_offset, &token);
3995 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3998 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
3999 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
4003 btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
4004 btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
4005 btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
4006 btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
4008 btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
4009 btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
4010 btrfs_mark_buffer_dirty(leaf);
4012 btrfs_release_path(path);
4017 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4018 struct btrfs_root *root,
4019 struct inode *inode,
4020 struct btrfs_path *path,
4021 struct list_head *logged_list,
4022 struct btrfs_log_ctx *ctx)
4024 struct extent_map *em, *n;
4025 struct list_head extents;
4026 struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
4031 INIT_LIST_HEAD(&extents);
4033 write_lock(&tree->lock);
4034 test_gen = root->fs_info->last_trans_committed;
4036 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4037 list_del_init(&em->list);
4040 * Just an arbitrary number, this can be really CPU intensive
4041 * once we start getting a lot of extents, and really once we
4042 * have a bunch of extents we just want to commit since it will
4045 if (++num > 32768) {
4046 list_del_init(&tree->modified_extents);
4051 if (em->generation <= test_gen)
4053 /* Need a ref to keep it from getting evicted from cache */
4054 atomic_inc(&em->refs);
4055 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4056 list_add_tail(&em->list, &extents);
4060 list_sort(NULL, &extents, extent_cmp);
4063 while (!list_empty(&extents)) {
4064 em = list_entry(extents.next, struct extent_map, list);
4066 list_del_init(&em->list);
4069 * If we had an error we just need to delete everybody from our
4073 clear_em_logging(tree, em);
4074 free_extent_map(em);
4078 write_unlock(&tree->lock);
4080 ret = log_one_extent(trans, inode, root, em, path, logged_list,
4082 write_lock(&tree->lock);
4083 clear_em_logging(tree, em);
4084 free_extent_map(em);
4086 WARN_ON(!list_empty(&extents));
4087 write_unlock(&tree->lock);
4089 btrfs_release_path(path);
4093 static int logged_inode_size(struct btrfs_root *log, struct inode *inode,
4094 struct btrfs_path *path, u64 *size_ret)
4096 struct btrfs_key key;
4099 key.objectid = btrfs_ino(inode);
4100 key.type = BTRFS_INODE_ITEM_KEY;
4103 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4106 } else if (ret > 0) {
4109 struct btrfs_inode_item *item;
4111 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4112 struct btrfs_inode_item);
4113 *size_ret = btrfs_inode_size(path->nodes[0], item);
4116 btrfs_release_path(path);
4120 /* log a single inode in the tree log.
4121 * At least one parent directory for this inode must exist in the tree
4122 * or be logged already.
4124 * Any items from this inode changed by the current transaction are copied
4125 * to the log tree. An extra reference is taken on any extents in this
4126 * file, allowing us to avoid a whole pile of corner cases around logging
4127 * blocks that have been removed from the tree.
4129 * See LOG_INODE_ALL and related defines for a description of what inode_only
4132 * This handles both files and directories.
4134 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
4135 struct btrfs_root *root, struct inode *inode,
4139 struct btrfs_log_ctx *ctx)
4141 struct btrfs_path *path;
4142 struct btrfs_path *dst_path;
4143 struct btrfs_key min_key;
4144 struct btrfs_key max_key;
4145 struct btrfs_root *log = root->log_root;
4146 struct extent_buffer *src = NULL;
4147 LIST_HEAD(logged_list);
4148 u64 last_extent = 0;
4152 int ins_start_slot = 0;
4154 bool fast_search = false;
4155 u64 ino = btrfs_ino(inode);
4156 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4157 u64 logged_isize = 0;
4159 path = btrfs_alloc_path();
4162 dst_path = btrfs_alloc_path();
4164 btrfs_free_path(path);
4168 min_key.objectid = ino;
4169 min_key.type = BTRFS_INODE_ITEM_KEY;
4172 max_key.objectid = ino;
4175 /* today the code can only do partial logging of directories */
4176 if (S_ISDIR(inode->i_mode) ||
4177 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4178 &BTRFS_I(inode)->runtime_flags) &&
4179 inode_only == LOG_INODE_EXISTS))
4180 max_key.type = BTRFS_XATTR_ITEM_KEY;
4182 max_key.type = (u8)-1;
4183 max_key.offset = (u64)-1;
4186 * Only run delayed items if we are a dir or a new file.
4187 * Otherwise commit the delayed inode only, which is needed in
4188 * order for the log replay code to mark inodes for link count
4189 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
4191 if (S_ISDIR(inode->i_mode) ||
4192 BTRFS_I(inode)->generation > root->fs_info->last_trans_committed)
4193 ret = btrfs_commit_inode_delayed_items(trans, inode);
4195 ret = btrfs_commit_inode_delayed_inode(inode);
4198 btrfs_free_path(path);
4199 btrfs_free_path(dst_path);
4203 mutex_lock(&BTRFS_I(inode)->log_mutex);
4205 btrfs_get_logged_extents(inode, &logged_list, start, end);
4208 * a brute force approach to making sure we get the most uptodate
4209 * copies of everything.
4211 if (S_ISDIR(inode->i_mode)) {
4212 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
4214 if (inode_only == LOG_INODE_EXISTS)
4215 max_key_type = BTRFS_XATTR_ITEM_KEY;
4216 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
4218 if (inode_only == LOG_INODE_EXISTS) {
4220 * Make sure the new inode item we write to the log has
4221 * the same isize as the current one (if it exists).
4222 * This is necessary to prevent data loss after log
4223 * replay, and also to prevent doing a wrong expanding
4224 * truncate - for e.g. create file, write 4K into offset
4225 * 0, fsync, write 4K into offset 4096, add hard link,
4226 * fsync some other file (to sync log), power fail - if
4227 * we use the inode's current i_size, after log replay
4228 * we get a 8Kb file, with the last 4Kb extent as a hole
4229 * (zeroes), as if an expanding truncate happened,
4230 * instead of getting a file of 4Kb only.
4232 err = logged_inode_size(log, inode, path,
4237 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4238 &BTRFS_I(inode)->runtime_flags)) {
4239 if (inode_only == LOG_INODE_EXISTS) {
4240 max_key.type = BTRFS_XATTR_ITEM_KEY;
4241 ret = drop_objectid_items(trans, log, path, ino,
4244 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4245 &BTRFS_I(inode)->runtime_flags);
4246 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4247 &BTRFS_I(inode)->runtime_flags);
4249 ret = btrfs_truncate_inode_items(trans,
4255 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4256 &BTRFS_I(inode)->runtime_flags) ||
4257 inode_only == LOG_INODE_EXISTS) {
4258 if (inode_only == LOG_INODE_ALL)
4260 max_key.type = BTRFS_XATTR_ITEM_KEY;
4261 ret = drop_objectid_items(trans, log, path, ino,
4264 if (inode_only == LOG_INODE_ALL)
4266 ret = log_inode_item(trans, log, dst_path, inode);
4282 ret = btrfs_search_forward(root, &min_key,
4283 path, trans->transid);
4287 /* note, ins_nr might be > 0 here, cleanup outside the loop */
4288 if (min_key.objectid != ino)
4290 if (min_key.type > max_key.type)
4293 src = path->nodes[0];
4294 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
4297 } else if (!ins_nr) {
4298 ins_start_slot = path->slots[0];
4303 ret = copy_items(trans, inode, dst_path, path, &last_extent,
4304 ins_start_slot, ins_nr, inode_only,
4312 btrfs_release_path(path);
4316 ins_start_slot = path->slots[0];
4319 nritems = btrfs_header_nritems(path->nodes[0]);
4321 if (path->slots[0] < nritems) {
4322 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
4327 ret = copy_items(trans, inode, dst_path, path,
4328 &last_extent, ins_start_slot,
4329 ins_nr, inode_only, logged_isize);
4337 btrfs_release_path(path);
4339 if (min_key.offset < (u64)-1) {
4341 } else if (min_key.type < max_key.type) {
4349 ret = copy_items(trans, inode, dst_path, path, &last_extent,
4350 ins_start_slot, ins_nr, inode_only,
4361 btrfs_release_path(path);
4362 btrfs_release_path(dst_path);
4365 * Some ordered extents started by fsync might have completed
4366 * before we collected the ordered extents in logged_list, which
4367 * means they're gone, not in our logged_list nor in the inode's
4368 * ordered tree. We want the application/user space to know an
4369 * error happened while attempting to persist file data so that
4370 * it can take proper action. If such error happened, we leave
4371 * without writing to the log tree and the fsync must report the
4372 * file data write error and not commit the current transaction.
4374 err = btrfs_inode_check_errors(inode);
4379 ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
4385 } else if (inode_only == LOG_INODE_ALL) {
4386 struct extent_map *em, *n;
4388 write_lock(&em_tree->lock);
4390 * We can't just remove every em if we're called for a ranged
4391 * fsync - that is, one that doesn't cover the whole possible
4392 * file range (0 to LLONG_MAX). This is because we can have
4393 * em's that fall outside the range we're logging and therefore
4394 * their ordered operations haven't completed yet
4395 * (btrfs_finish_ordered_io() not invoked yet). This means we
4396 * didn't get their respective file extent item in the fs/subvol
4397 * tree yet, and need to let the next fast fsync (one which
4398 * consults the list of modified extent maps) find the em so
4399 * that it logs a matching file extent item and waits for the
4400 * respective ordered operation to complete (if it's still
4403 * Removing every em outside the range we're logging would make
4404 * the next fast fsync not log their matching file extent items,
4405 * therefore making us lose data after a log replay.
4407 list_for_each_entry_safe(em, n, &em_tree->modified_extents,
4409 const u64 mod_end = em->mod_start + em->mod_len - 1;
4411 if (em->mod_start >= start && mod_end <= end)
4412 list_del_init(&em->list);
4414 write_unlock(&em_tree->lock);
4417 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
4418 ret = log_directory_changes(trans, root, inode, path, dst_path,
4426 spin_lock(&BTRFS_I(inode)->lock);
4427 BTRFS_I(inode)->logged_trans = trans->transid;
4428 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->last_sub_trans;
4429 spin_unlock(&BTRFS_I(inode)->lock);
4432 btrfs_put_logged_extents(&logged_list);
4434 btrfs_submit_logged_extents(&logged_list, log);
4435 mutex_unlock(&BTRFS_I(inode)->log_mutex);
4437 btrfs_free_path(path);
4438 btrfs_free_path(dst_path);
4443 * follow the dentry parent pointers up the chain and see if any
4444 * of the directories in it require a full commit before they can
4445 * be logged. Returns zero if nothing special needs to be done or 1 if
4446 * a full commit is required.
4448 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
4449 struct inode *inode,
4450 struct dentry *parent,
4451 struct super_block *sb,
4455 struct btrfs_root *root;
4456 struct dentry *old_parent = NULL;
4457 struct inode *orig_inode = inode;
4460 * for regular files, if its inode is already on disk, we don't
4461 * have to worry about the parents at all. This is because
4462 * we can use the last_unlink_trans field to record renames
4463 * and other fun in this file.
4465 if (S_ISREG(inode->i_mode) &&
4466 BTRFS_I(inode)->generation <= last_committed &&
4467 BTRFS_I(inode)->last_unlink_trans <= last_committed)
4470 if (!S_ISDIR(inode->i_mode)) {
4471 if (!parent || d_really_is_negative(parent) || sb != d_inode(parent)->i_sb)
4473 inode = d_inode(parent);
4478 * If we are logging a directory then we start with our inode,
4479 * not our parents inode, so we need to skipp setting the
4480 * logged_trans so that further down in the log code we don't
4481 * think this inode has already been logged.
4483 if (inode != orig_inode)
4484 BTRFS_I(inode)->logged_trans = trans->transid;
4487 if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
4488 root = BTRFS_I(inode)->root;
4491 * make sure any commits to the log are forced
4492 * to be full commits
4494 btrfs_set_log_full_commit(root->fs_info, trans);
4499 if (!parent || d_really_is_negative(parent) || sb != d_inode(parent)->i_sb)
4502 if (IS_ROOT(parent))
4505 parent = dget_parent(parent);
4507 old_parent = parent;
4508 inode = d_inode(parent);
4516 struct btrfs_dir_list {
4518 struct list_head list;
4522 * Log the inodes of the new dentries of a directory. See log_dir_items() for
4523 * details about the why it is needed.
4524 * This is a recursive operation - if an existing dentry corresponds to a
4525 * directory, that directory's new entries are logged too (same behaviour as
4526 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
4527 * the dentries point to we do not lock their i_mutex, otherwise lockdep
4528 * complains about the following circular lock dependency / possible deadlock:
4532 * lock(&type->i_mutex_dir_key#3/2);
4533 * lock(sb_internal#2);
4534 * lock(&type->i_mutex_dir_key#3/2);
4535 * lock(&sb->s_type->i_mutex_key#14);
4537 * Where sb_internal is the lock (a counter that works as a lock) acquired by
4538 * sb_start_intwrite() in btrfs_start_transaction().
4539 * Not locking i_mutex of the inodes is still safe because:
4541 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
4542 * that while logging the inode new references (names) are added or removed
4543 * from the inode, leaving the logged inode item with a link count that does
4544 * not match the number of logged inode reference items. This is fine because
4545 * at log replay time we compute the real number of links and correct the
4546 * link count in the inode item (see replay_one_buffer() and
4547 * link_to_fixup_dir());
4549 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
4550 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
4551 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
4552 * has a size that doesn't match the sum of the lengths of all the logged
4553 * names. This does not result in a problem because if a dir_item key is
4554 * logged but its matching dir_index key is not logged, at log replay time we
4555 * don't use it to replay the respective name (see replay_one_name()). On the
4556 * other hand if only the dir_index key ends up being logged, the respective
4557 * name is added to the fs/subvol tree with both the dir_item and dir_index
4558 * keys created (see replay_one_name()).
4559 * The directory's inode item with a wrong i_size is not a problem as well,
4560 * since we don't use it at log replay time to set the i_size in the inode
4561 * item of the fs/subvol tree (see overwrite_item()).
4563 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
4564 struct btrfs_root *root,
4565 struct inode *start_inode,
4566 struct btrfs_log_ctx *ctx)
4568 struct btrfs_root *log = root->log_root;
4569 struct btrfs_path *path;
4570 LIST_HEAD(dir_list);
4571 struct btrfs_dir_list *dir_elem;
4574 path = btrfs_alloc_path();
4578 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
4580 btrfs_free_path(path);
4583 dir_elem->ino = btrfs_ino(start_inode);
4584 list_add_tail(&dir_elem->list, &dir_list);
4586 while (!list_empty(&dir_list)) {
4587 struct extent_buffer *leaf;
4588 struct btrfs_key min_key;
4592 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
4595 goto next_dir_inode;
4597 min_key.objectid = dir_elem->ino;
4598 min_key.type = BTRFS_DIR_ITEM_KEY;
4601 btrfs_release_path(path);
4602 ret = btrfs_search_forward(log, &min_key, path, trans->transid);
4604 goto next_dir_inode;
4605 } else if (ret > 0) {
4607 goto next_dir_inode;
4611 leaf = path->nodes[0];
4612 nritems = btrfs_header_nritems(leaf);
4613 for (i = path->slots[0]; i < nritems; i++) {
4614 struct btrfs_dir_item *di;
4615 struct btrfs_key di_key;
4616 struct inode *di_inode;
4617 struct btrfs_dir_list *new_dir_elem;
4618 int log_mode = LOG_INODE_EXISTS;
4621 btrfs_item_key_to_cpu(leaf, &min_key, i);
4622 if (min_key.objectid != dir_elem->ino ||
4623 min_key.type != BTRFS_DIR_ITEM_KEY)
4624 goto next_dir_inode;
4626 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
4627 type = btrfs_dir_type(leaf, di);
4628 if (btrfs_dir_transid(leaf, di) < trans->transid &&
4629 type != BTRFS_FT_DIR)
4631 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
4632 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
4635 di_inode = btrfs_iget(root->fs_info->sb, &di_key,
4637 if (IS_ERR(di_inode)) {
4638 ret = PTR_ERR(di_inode);
4639 goto next_dir_inode;
4642 if (btrfs_inode_in_log(di_inode, trans->transid)) {
4647 ctx->log_new_dentries = false;
4648 if (type == BTRFS_FT_DIR)
4649 log_mode = LOG_INODE_ALL;
4650 btrfs_release_path(path);
4651 ret = btrfs_log_inode(trans, root, di_inode,
4652 log_mode, 0, LLONG_MAX, ctx);
4655 goto next_dir_inode;
4656 if (ctx->log_new_dentries) {
4657 new_dir_elem = kmalloc(sizeof(*new_dir_elem),
4659 if (!new_dir_elem) {
4661 goto next_dir_inode;
4663 new_dir_elem->ino = di_key.objectid;
4664 list_add_tail(&new_dir_elem->list, &dir_list);
4669 ret = btrfs_next_leaf(log, path);
4671 goto next_dir_inode;
4672 } else if (ret > 0) {
4674 goto next_dir_inode;
4678 if (min_key.offset < (u64)-1) {
4683 list_del(&dir_elem->list);
4687 btrfs_free_path(path);
4692 * helper function around btrfs_log_inode to make sure newly created
4693 * parent directories also end up in the log. A minimal inode and backref
4694 * only logging is done of any parent directories that are older than
4695 * the last committed transaction
4697 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
4698 struct btrfs_root *root, struct inode *inode,
4699 struct dentry *parent,
4703 struct btrfs_log_ctx *ctx)
4705 int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
4706 struct super_block *sb;
4707 struct dentry *old_parent = NULL;
4709 u64 last_committed = root->fs_info->last_trans_committed;
4710 const struct dentry * const first_parent = parent;
4711 const bool did_unlink = (BTRFS_I(inode)->last_unlink_trans >
4713 bool log_dentries = false;
4714 struct inode *orig_inode = inode;
4718 if (btrfs_test_opt(root, NOTREELOG)) {
4724 * The prev transaction commit doesn't complete, we need do
4725 * full commit by ourselves.
4727 if (root->fs_info->last_trans_log_full_commit >
4728 root->fs_info->last_trans_committed) {
4733 if (root != BTRFS_I(inode)->root ||
4734 btrfs_root_refs(&root->root_item) == 0) {
4739 ret = check_parent_dirs_for_sync(trans, inode, parent,
4740 sb, last_committed);
4744 if (btrfs_inode_in_log(inode, trans->transid)) {
4745 ret = BTRFS_NO_LOG_SYNC;
4749 ret = start_log_trans(trans, root, ctx);
4753 ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
4758 * for regular files, if its inode is already on disk, we don't
4759 * have to worry about the parents at all. This is because
4760 * we can use the last_unlink_trans field to record renames
4761 * and other fun in this file.
4763 if (S_ISREG(inode->i_mode) &&
4764 BTRFS_I(inode)->generation <= last_committed &&
4765 BTRFS_I(inode)->last_unlink_trans <= last_committed) {
4770 if (S_ISDIR(inode->i_mode) && ctx && ctx->log_new_dentries)
4771 log_dentries = true;
4774 if (!parent || d_really_is_negative(parent) || sb != d_inode(parent)->i_sb)
4777 inode = d_inode(parent);
4778 if (root != BTRFS_I(inode)->root)
4782 * On unlink we must make sure our immediate parent directory
4783 * inode is fully logged. This is to prevent leaving dangling
4784 * directory index entries and a wrong directory inode's i_size.
4785 * Not doing so can result in a directory being impossible to
4786 * delete after log replay (rmdir will always fail with error
4789 if (did_unlink && parent == first_parent)
4790 inode_only = LOG_INODE_ALL;
4792 inode_only = LOG_INODE_EXISTS;
4794 if (BTRFS_I(inode)->generation >
4795 root->fs_info->last_trans_committed ||
4796 inode_only == LOG_INODE_ALL) {
4797 ret = btrfs_log_inode(trans, root, inode, inode_only,
4802 if (IS_ROOT(parent))
4805 parent = dget_parent(parent);
4807 old_parent = parent;
4810 ret = log_new_dir_dentries(trans, root, orig_inode, ctx);
4816 btrfs_set_log_full_commit(root->fs_info, trans);
4821 btrfs_remove_log_ctx(root, ctx);
4822 btrfs_end_log_trans(root);
4828 * it is not safe to log dentry if the chunk root has added new
4829 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
4830 * If this returns 1, you must commit the transaction to safely get your
4833 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
4834 struct btrfs_root *root, struct dentry *dentry,
4837 struct btrfs_log_ctx *ctx)
4839 struct dentry *parent = dget_parent(dentry);
4842 ret = btrfs_log_inode_parent(trans, root, d_inode(dentry), parent,
4843 start, end, 0, ctx);
4850 * should be called during mount to recover any replay any log trees
4853 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
4856 struct btrfs_path *path;
4857 struct btrfs_trans_handle *trans;
4858 struct btrfs_key key;
4859 struct btrfs_key found_key;
4860 struct btrfs_key tmp_key;
4861 struct btrfs_root *log;
4862 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
4863 struct walk_control wc = {
4864 .process_func = process_one_buffer,
4868 path = btrfs_alloc_path();
4872 fs_info->log_root_recovering = 1;
4874 trans = btrfs_start_transaction(fs_info->tree_root, 0);
4875 if (IS_ERR(trans)) {
4876 ret = PTR_ERR(trans);
4883 ret = walk_log_tree(trans, log_root_tree, &wc);
4885 btrfs_error(fs_info, ret, "Failed to pin buffers while "
4886 "recovering log root tree.");
4891 key.objectid = BTRFS_TREE_LOG_OBJECTID;
4892 key.offset = (u64)-1;
4893 key.type = BTRFS_ROOT_ITEM_KEY;
4896 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
4899 btrfs_error(fs_info, ret,
4900 "Couldn't find tree log root.");
4904 if (path->slots[0] == 0)
4908 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4910 btrfs_release_path(path);
4911 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4914 log = btrfs_read_fs_root(log_root_tree, &found_key);
4917 btrfs_error(fs_info, ret,
4918 "Couldn't read tree log root.");
4922 tmp_key.objectid = found_key.offset;
4923 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
4924 tmp_key.offset = (u64)-1;
4926 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
4927 if (IS_ERR(wc.replay_dest)) {
4928 ret = PTR_ERR(wc.replay_dest);
4929 free_extent_buffer(log->node);
4930 free_extent_buffer(log->commit_root);
4932 btrfs_error(fs_info, ret, "Couldn't read target root "
4933 "for tree log recovery.");
4937 wc.replay_dest->log_root = log;
4938 btrfs_record_root_in_trans(trans, wc.replay_dest);
4939 ret = walk_log_tree(trans, log, &wc);
4941 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
4942 ret = fixup_inode_link_counts(trans, wc.replay_dest,
4946 key.offset = found_key.offset - 1;
4947 wc.replay_dest->log_root = NULL;
4948 free_extent_buffer(log->node);
4949 free_extent_buffer(log->commit_root);
4955 if (found_key.offset == 0)
4958 btrfs_release_path(path);
4960 /* step one is to pin it all, step two is to replay just inodes */
4963 wc.process_func = replay_one_buffer;
4964 wc.stage = LOG_WALK_REPLAY_INODES;
4967 /* step three is to replay everything */
4968 if (wc.stage < LOG_WALK_REPLAY_ALL) {
4973 btrfs_free_path(path);
4975 /* step 4: commit the transaction, which also unpins the blocks */
4976 ret = btrfs_commit_transaction(trans, fs_info->tree_root);
4980 free_extent_buffer(log_root_tree->node);
4981 log_root_tree->log_root = NULL;
4982 fs_info->log_root_recovering = 0;
4983 kfree(log_root_tree);
4988 btrfs_end_transaction(wc.trans, fs_info->tree_root);
4989 btrfs_free_path(path);
4994 * there are some corner cases where we want to force a full
4995 * commit instead of allowing a directory to be logged.
4997 * They revolve around files there were unlinked from the directory, and
4998 * this function updates the parent directory so that a full commit is
4999 * properly done if it is fsync'd later after the unlinks are done.
5001 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
5002 struct inode *dir, struct inode *inode,
5006 * when we're logging a file, if it hasn't been renamed
5007 * or unlinked, and its inode is fully committed on disk,
5008 * we don't have to worry about walking up the directory chain
5009 * to log its parents.
5011 * So, we use the last_unlink_trans field to put this transid
5012 * into the file. When the file is logged we check it and
5013 * don't log the parents if the file is fully on disk.
5015 if (S_ISREG(inode->i_mode))
5016 BTRFS_I(inode)->last_unlink_trans = trans->transid;
5019 * if this directory was already logged any new
5020 * names for this file/dir will get recorded
5023 if (BTRFS_I(dir)->logged_trans == trans->transid)
5027 * if the inode we're about to unlink was logged,
5028 * the log will be properly updated for any new names
5030 if (BTRFS_I(inode)->logged_trans == trans->transid)
5034 * when renaming files across directories, if the directory
5035 * there we're unlinking from gets fsync'd later on, there's
5036 * no way to find the destination directory later and fsync it
5037 * properly. So, we have to be conservative and force commits
5038 * so the new name gets discovered.
5043 /* we can safely do the unlink without any special recording */
5047 BTRFS_I(dir)->last_unlink_trans = trans->transid;
5051 * Call this after adding a new name for a file and it will properly
5052 * update the log to reflect the new name.
5054 * It will return zero if all goes well, and it will return 1 if a
5055 * full transaction commit is required.
5057 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
5058 struct inode *inode, struct inode *old_dir,
5059 struct dentry *parent)
5061 struct btrfs_root * root = BTRFS_I(inode)->root;
5064 * this will force the logging code to walk the dentry chain
5067 if (S_ISREG(inode->i_mode))
5068 BTRFS_I(inode)->last_unlink_trans = trans->transid;
5071 * if this inode hasn't been logged and directory we're renaming it
5072 * from hasn't been logged, we don't need to log it
5074 if (BTRFS_I(inode)->logged_trans <=
5075 root->fs_info->last_trans_committed &&
5076 (!old_dir || BTRFS_I(old_dir)->logged_trans <=
5077 root->fs_info->last_trans_committed))
5080 return btrfs_log_inode_parent(trans, root, inode, parent, 0,
5081 LLONG_MAX, 1, NULL);