]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/btrfs/volumes.c
e4ef0f2fdb739016c711b01af0a9f81c6237399e
[karo-tx-linux.git] / fs / btrfs / volumes.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/random.h>
24 #include <linux/iocontext.h>
25 #include <linux/capability.h>
26 #include <linux/kthread.h>
27 #include <asm/div64.h>
28 #include "compat.h"
29 #include "ctree.h"
30 #include "extent_map.h"
31 #include "disk-io.h"
32 #include "transaction.h"
33 #include "print-tree.h"
34 #include "volumes.h"
35 #include "async-thread.h"
36 #include "check-integrity.h"
37
38 static int init_first_rw_device(struct btrfs_trans_handle *trans,
39                                 struct btrfs_root *root,
40                                 struct btrfs_device *device);
41 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
42
43 static DEFINE_MUTEX(uuid_mutex);
44 static LIST_HEAD(fs_uuids);
45
46 static void lock_chunks(struct btrfs_root *root)
47 {
48         mutex_lock(&root->fs_info->chunk_mutex);
49 }
50
51 static void unlock_chunks(struct btrfs_root *root)
52 {
53         mutex_unlock(&root->fs_info->chunk_mutex);
54 }
55
56 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
57 {
58         struct btrfs_device *device;
59         WARN_ON(fs_devices->opened);
60         while (!list_empty(&fs_devices->devices)) {
61                 device = list_entry(fs_devices->devices.next,
62                                     struct btrfs_device, dev_list);
63                 list_del(&device->dev_list);
64                 kfree(device->name);
65                 kfree(device);
66         }
67         kfree(fs_devices);
68 }
69
70 int btrfs_cleanup_fs_uuids(void)
71 {
72         struct btrfs_fs_devices *fs_devices;
73
74         while (!list_empty(&fs_uuids)) {
75                 fs_devices = list_entry(fs_uuids.next,
76                                         struct btrfs_fs_devices, list);
77                 list_del(&fs_devices->list);
78                 free_fs_devices(fs_devices);
79         }
80         return 0;
81 }
82
83 static noinline struct btrfs_device *__find_device(struct list_head *head,
84                                                    u64 devid, u8 *uuid)
85 {
86         struct btrfs_device *dev;
87
88         list_for_each_entry(dev, head, dev_list) {
89                 if (dev->devid == devid &&
90                     (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
91                         return dev;
92                 }
93         }
94         return NULL;
95 }
96
97 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
98 {
99         struct btrfs_fs_devices *fs_devices;
100
101         list_for_each_entry(fs_devices, &fs_uuids, list) {
102                 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
103                         return fs_devices;
104         }
105         return NULL;
106 }
107
108 static void requeue_list(struct btrfs_pending_bios *pending_bios,
109                         struct bio *head, struct bio *tail)
110 {
111
112         struct bio *old_head;
113
114         old_head = pending_bios->head;
115         pending_bios->head = head;
116         if (pending_bios->tail)
117                 tail->bi_next = old_head;
118         else
119                 pending_bios->tail = tail;
120 }
121
122 /*
123  * we try to collect pending bios for a device so we don't get a large
124  * number of procs sending bios down to the same device.  This greatly
125  * improves the schedulers ability to collect and merge the bios.
126  *
127  * But, it also turns into a long list of bios to process and that is sure
128  * to eventually make the worker thread block.  The solution here is to
129  * make some progress and then put this work struct back at the end of
130  * the list if the block device is congested.  This way, multiple devices
131  * can make progress from a single worker thread.
132  */
133 static noinline int run_scheduled_bios(struct btrfs_device *device)
134 {
135         struct bio *pending;
136         struct backing_dev_info *bdi;
137         struct btrfs_fs_info *fs_info;
138         struct btrfs_pending_bios *pending_bios;
139         struct bio *tail;
140         struct bio *cur;
141         int again = 0;
142         unsigned long num_run;
143         unsigned long batch_run = 0;
144         unsigned long limit;
145         unsigned long last_waited = 0;
146         int force_reg = 0;
147         int sync_pending = 0;
148         struct blk_plug plug;
149
150         /*
151          * this function runs all the bios we've collected for
152          * a particular device.  We don't want to wander off to
153          * another device without first sending all of these down.
154          * So, setup a plug here and finish it off before we return
155          */
156         blk_start_plug(&plug);
157
158         bdi = blk_get_backing_dev_info(device->bdev);
159         fs_info = device->dev_root->fs_info;
160         limit = btrfs_async_submit_limit(fs_info);
161         limit = limit * 2 / 3;
162
163 loop:
164         spin_lock(&device->io_lock);
165
166 loop_lock:
167         num_run = 0;
168
169         /* take all the bios off the list at once and process them
170          * later on (without the lock held).  But, remember the
171          * tail and other pointers so the bios can be properly reinserted
172          * into the list if we hit congestion
173          */
174         if (!force_reg && device->pending_sync_bios.head) {
175                 pending_bios = &device->pending_sync_bios;
176                 force_reg = 1;
177         } else {
178                 pending_bios = &device->pending_bios;
179                 force_reg = 0;
180         }
181
182         pending = pending_bios->head;
183         tail = pending_bios->tail;
184         WARN_ON(pending && !tail);
185
186         /*
187          * if pending was null this time around, no bios need processing
188          * at all and we can stop.  Otherwise it'll loop back up again
189          * and do an additional check so no bios are missed.
190          *
191          * device->running_pending is used to synchronize with the
192          * schedule_bio code.
193          */
194         if (device->pending_sync_bios.head == NULL &&
195             device->pending_bios.head == NULL) {
196                 again = 0;
197                 device->running_pending = 0;
198         } else {
199                 again = 1;
200                 device->running_pending = 1;
201         }
202
203         pending_bios->head = NULL;
204         pending_bios->tail = NULL;
205
206         spin_unlock(&device->io_lock);
207
208         while (pending) {
209
210                 rmb();
211                 /* we want to work on both lists, but do more bios on the
212                  * sync list than the regular list
213                  */
214                 if ((num_run > 32 &&
215                     pending_bios != &device->pending_sync_bios &&
216                     device->pending_sync_bios.head) ||
217                    (num_run > 64 && pending_bios == &device->pending_sync_bios &&
218                     device->pending_bios.head)) {
219                         spin_lock(&device->io_lock);
220                         requeue_list(pending_bios, pending, tail);
221                         goto loop_lock;
222                 }
223
224                 cur = pending;
225                 pending = pending->bi_next;
226                 cur->bi_next = NULL;
227                 atomic_dec(&fs_info->nr_async_bios);
228
229                 if (atomic_read(&fs_info->nr_async_bios) < limit &&
230                     waitqueue_active(&fs_info->async_submit_wait))
231                         wake_up(&fs_info->async_submit_wait);
232
233                 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
234
235                 /*
236                  * if we're doing the sync list, record that our
237                  * plug has some sync requests on it
238                  *
239                  * If we're doing the regular list and there are
240                  * sync requests sitting around, unplug before
241                  * we add more
242                  */
243                 if (pending_bios == &device->pending_sync_bios) {
244                         sync_pending = 1;
245                 } else if (sync_pending) {
246                         blk_finish_plug(&plug);
247                         blk_start_plug(&plug);
248                         sync_pending = 0;
249                 }
250
251                 btrfsic_submit_bio(cur->bi_rw, cur);
252                 num_run++;
253                 batch_run++;
254                 if (need_resched())
255                         cond_resched();
256
257                 /*
258                  * we made progress, there is more work to do and the bdi
259                  * is now congested.  Back off and let other work structs
260                  * run instead
261                  */
262                 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
263                     fs_info->fs_devices->open_devices > 1) {
264                         struct io_context *ioc;
265
266                         ioc = current->io_context;
267
268                         /*
269                          * the main goal here is that we don't want to
270                          * block if we're going to be able to submit
271                          * more requests without blocking.
272                          *
273                          * This code does two great things, it pokes into
274                          * the elevator code from a filesystem _and_
275                          * it makes assumptions about how batching works.
276                          */
277                         if (ioc && ioc->nr_batch_requests > 0 &&
278                             time_before(jiffies, ioc->last_waited + HZ/50UL) &&
279                             (last_waited == 0 ||
280                              ioc->last_waited == last_waited)) {
281                                 /*
282                                  * we want to go through our batch of
283                                  * requests and stop.  So, we copy out
284                                  * the ioc->last_waited time and test
285                                  * against it before looping
286                                  */
287                                 last_waited = ioc->last_waited;
288                                 if (need_resched())
289                                         cond_resched();
290                                 continue;
291                         }
292                         spin_lock(&device->io_lock);
293                         requeue_list(pending_bios, pending, tail);
294                         device->running_pending = 1;
295
296                         spin_unlock(&device->io_lock);
297                         btrfs_requeue_work(&device->work);
298                         goto done;
299                 }
300                 /* unplug every 64 requests just for good measure */
301                 if (batch_run % 64 == 0) {
302                         blk_finish_plug(&plug);
303                         blk_start_plug(&plug);
304                         sync_pending = 0;
305                 }
306         }
307
308         cond_resched();
309         if (again)
310                 goto loop;
311
312         spin_lock(&device->io_lock);
313         if (device->pending_bios.head || device->pending_sync_bios.head)
314                 goto loop_lock;
315         spin_unlock(&device->io_lock);
316
317 done:
318         blk_finish_plug(&plug);
319         return 0;
320 }
321
322 static void pending_bios_fn(struct btrfs_work *work)
323 {
324         struct btrfs_device *device;
325
326         device = container_of(work, struct btrfs_device, work);
327         run_scheduled_bios(device);
328 }
329
330 static noinline int device_list_add(const char *path,
331                            struct btrfs_super_block *disk_super,
332                            u64 devid, struct btrfs_fs_devices **fs_devices_ret)
333 {
334         struct btrfs_device *device;
335         struct btrfs_fs_devices *fs_devices;
336         u64 found_transid = btrfs_super_generation(disk_super);
337         char *name;
338
339         fs_devices = find_fsid(disk_super->fsid);
340         if (!fs_devices) {
341                 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
342                 if (!fs_devices)
343                         return -ENOMEM;
344                 INIT_LIST_HEAD(&fs_devices->devices);
345                 INIT_LIST_HEAD(&fs_devices->alloc_list);
346                 list_add(&fs_devices->list, &fs_uuids);
347                 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
348                 fs_devices->latest_devid = devid;
349                 fs_devices->latest_trans = found_transid;
350                 mutex_init(&fs_devices->device_list_mutex);
351                 device = NULL;
352         } else {
353                 device = __find_device(&fs_devices->devices, devid,
354                                        disk_super->dev_item.uuid);
355         }
356         if (!device) {
357                 if (fs_devices->opened)
358                         return -EBUSY;
359
360                 device = kzalloc(sizeof(*device), GFP_NOFS);
361                 if (!device) {
362                         /* we can safely leave the fs_devices entry around */
363                         return -ENOMEM;
364                 }
365                 device->devid = devid;
366                 device->work.func = pending_bios_fn;
367                 memcpy(device->uuid, disk_super->dev_item.uuid,
368                        BTRFS_UUID_SIZE);
369                 spin_lock_init(&device->io_lock);
370                 device->name = kstrdup(path, GFP_NOFS);
371                 if (!device->name) {
372                         kfree(device);
373                         return -ENOMEM;
374                 }
375                 INIT_LIST_HEAD(&device->dev_alloc_list);
376
377                 /* init readahead state */
378                 spin_lock_init(&device->reada_lock);
379                 device->reada_curr_zone = NULL;
380                 atomic_set(&device->reada_in_flight, 0);
381                 device->reada_next = 0;
382                 INIT_RADIX_TREE(&device->reada_zones, GFP_NOFS & ~__GFP_WAIT);
383                 INIT_RADIX_TREE(&device->reada_extents, GFP_NOFS & ~__GFP_WAIT);
384
385                 mutex_lock(&fs_devices->device_list_mutex);
386                 list_add_rcu(&device->dev_list, &fs_devices->devices);
387                 mutex_unlock(&fs_devices->device_list_mutex);
388
389                 device->fs_devices = fs_devices;
390                 fs_devices->num_devices++;
391         } else if (!device->name || strcmp(device->name, path)) {
392                 name = kstrdup(path, GFP_NOFS);
393                 if (!name)
394                         return -ENOMEM;
395                 kfree(device->name);
396                 device->name = name;
397                 if (device->missing) {
398                         fs_devices->missing_devices--;
399                         device->missing = 0;
400                 }
401         }
402
403         if (found_transid > fs_devices->latest_trans) {
404                 fs_devices->latest_devid = devid;
405                 fs_devices->latest_trans = found_transid;
406         }
407         *fs_devices_ret = fs_devices;
408         return 0;
409 }
410
411 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
412 {
413         struct btrfs_fs_devices *fs_devices;
414         struct btrfs_device *device;
415         struct btrfs_device *orig_dev;
416
417         fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
418         if (!fs_devices)
419                 return ERR_PTR(-ENOMEM);
420
421         INIT_LIST_HEAD(&fs_devices->devices);
422         INIT_LIST_HEAD(&fs_devices->alloc_list);
423         INIT_LIST_HEAD(&fs_devices->list);
424         mutex_init(&fs_devices->device_list_mutex);
425         fs_devices->latest_devid = orig->latest_devid;
426         fs_devices->latest_trans = orig->latest_trans;
427         memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid));
428
429         /* We have held the volume lock, it is safe to get the devices. */
430         list_for_each_entry(orig_dev, &orig->devices, dev_list) {
431                 device = kzalloc(sizeof(*device), GFP_NOFS);
432                 if (!device)
433                         goto error;
434
435                 device->name = kstrdup(orig_dev->name, GFP_NOFS);
436                 if (!device->name) {
437                         kfree(device);
438                         goto error;
439                 }
440
441                 device->devid = orig_dev->devid;
442                 device->work.func = pending_bios_fn;
443                 memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid));
444                 spin_lock_init(&device->io_lock);
445                 INIT_LIST_HEAD(&device->dev_list);
446                 INIT_LIST_HEAD(&device->dev_alloc_list);
447
448                 list_add(&device->dev_list, &fs_devices->devices);
449                 device->fs_devices = fs_devices;
450                 fs_devices->num_devices++;
451         }
452         return fs_devices;
453 error:
454         free_fs_devices(fs_devices);
455         return ERR_PTR(-ENOMEM);
456 }
457
458 int btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
459 {
460         struct btrfs_device *device, *next;
461
462         struct block_device *latest_bdev = NULL;
463         u64 latest_devid = 0;
464         u64 latest_transid = 0;
465
466         mutex_lock(&uuid_mutex);
467 again:
468         /* This is the initialized path, it is safe to release the devices. */
469         list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
470                 if (device->in_fs_metadata) {
471                         if (!latest_transid ||
472                             device->generation > latest_transid) {
473                                 latest_devid = device->devid;
474                                 latest_transid = device->generation;
475                                 latest_bdev = device->bdev;
476                         }
477                         continue;
478                 }
479
480                 if (device->bdev) {
481                         blkdev_put(device->bdev, device->mode);
482                         device->bdev = NULL;
483                         fs_devices->open_devices--;
484                 }
485                 if (device->writeable) {
486                         list_del_init(&device->dev_alloc_list);
487                         device->writeable = 0;
488                         fs_devices->rw_devices--;
489                 }
490                 list_del_init(&device->dev_list);
491                 fs_devices->num_devices--;
492                 kfree(device->name);
493                 kfree(device);
494         }
495
496         if (fs_devices->seed) {
497                 fs_devices = fs_devices->seed;
498                 goto again;
499         }
500
501         fs_devices->latest_bdev = latest_bdev;
502         fs_devices->latest_devid = latest_devid;
503         fs_devices->latest_trans = latest_transid;
504
505         mutex_unlock(&uuid_mutex);
506         return 0;
507 }
508
509 static void __free_device(struct work_struct *work)
510 {
511         struct btrfs_device *device;
512
513         device = container_of(work, struct btrfs_device, rcu_work);
514
515         if (device->bdev)
516                 blkdev_put(device->bdev, device->mode);
517
518         kfree(device->name);
519         kfree(device);
520 }
521
522 static void free_device(struct rcu_head *head)
523 {
524         struct btrfs_device *device;
525
526         device = container_of(head, struct btrfs_device, rcu);
527
528         INIT_WORK(&device->rcu_work, __free_device);
529         schedule_work(&device->rcu_work);
530 }
531
532 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
533 {
534         struct btrfs_device *device;
535
536         if (--fs_devices->opened > 0)
537                 return 0;
538
539         mutex_lock(&fs_devices->device_list_mutex);
540         list_for_each_entry(device, &fs_devices->devices, dev_list) {
541                 struct btrfs_device *new_device;
542
543                 if (device->bdev)
544                         fs_devices->open_devices--;
545
546                 if (device->writeable) {
547                         list_del_init(&device->dev_alloc_list);
548                         fs_devices->rw_devices--;
549                 }
550
551                 if (device->can_discard)
552                         fs_devices->num_can_discard--;
553
554                 new_device = kmalloc(sizeof(*new_device), GFP_NOFS);
555                 BUG_ON(!new_device);
556                 memcpy(new_device, device, sizeof(*new_device));
557                 new_device->name = kstrdup(device->name, GFP_NOFS);
558                 BUG_ON(device->name && !new_device->name);
559                 new_device->bdev = NULL;
560                 new_device->writeable = 0;
561                 new_device->in_fs_metadata = 0;
562                 new_device->can_discard = 0;
563                 list_replace_rcu(&device->dev_list, &new_device->dev_list);
564
565                 call_rcu(&device->rcu, free_device);
566         }
567         mutex_unlock(&fs_devices->device_list_mutex);
568
569         WARN_ON(fs_devices->open_devices);
570         WARN_ON(fs_devices->rw_devices);
571         fs_devices->opened = 0;
572         fs_devices->seeding = 0;
573
574         return 0;
575 }
576
577 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
578 {
579         struct btrfs_fs_devices *seed_devices = NULL;
580         int ret;
581
582         mutex_lock(&uuid_mutex);
583         ret = __btrfs_close_devices(fs_devices);
584         if (!fs_devices->opened) {
585                 seed_devices = fs_devices->seed;
586                 fs_devices->seed = NULL;
587         }
588         mutex_unlock(&uuid_mutex);
589
590         while (seed_devices) {
591                 fs_devices = seed_devices;
592                 seed_devices = fs_devices->seed;
593                 __btrfs_close_devices(fs_devices);
594                 free_fs_devices(fs_devices);
595         }
596         return ret;
597 }
598
599 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
600                                 fmode_t flags, void *holder)
601 {
602         struct request_queue *q;
603         struct block_device *bdev;
604         struct list_head *head = &fs_devices->devices;
605         struct btrfs_device *device;
606         struct block_device *latest_bdev = NULL;
607         struct buffer_head *bh;
608         struct btrfs_super_block *disk_super;
609         u64 latest_devid = 0;
610         u64 latest_transid = 0;
611         u64 devid;
612         int seeding = 1;
613         int ret = 0;
614
615         flags |= FMODE_EXCL;
616
617         list_for_each_entry(device, head, dev_list) {
618                 if (device->bdev)
619                         continue;
620                 if (!device->name)
621                         continue;
622
623                 bdev = blkdev_get_by_path(device->name, flags, holder);
624                 if (IS_ERR(bdev)) {
625                         printk(KERN_INFO "open %s failed\n", device->name);
626                         goto error;
627                 }
628                 set_blocksize(bdev, 4096);
629
630                 bh = btrfs_read_dev_super(bdev);
631                 if (!bh)
632                         goto error_close;
633
634                 disk_super = (struct btrfs_super_block *)bh->b_data;
635                 devid = btrfs_stack_device_id(&disk_super->dev_item);
636                 if (devid != device->devid)
637                         goto error_brelse;
638
639                 if (memcmp(device->uuid, disk_super->dev_item.uuid,
640                            BTRFS_UUID_SIZE))
641                         goto error_brelse;
642
643                 device->generation = btrfs_super_generation(disk_super);
644                 if (!latest_transid || device->generation > latest_transid) {
645                         latest_devid = devid;
646                         latest_transid = device->generation;
647                         latest_bdev = bdev;
648                 }
649
650                 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
651                         device->writeable = 0;
652                 } else {
653                         device->writeable = !bdev_read_only(bdev);
654                         seeding = 0;
655                 }
656
657                 q = bdev_get_queue(bdev);
658                 if (blk_queue_discard(q)) {
659                         device->can_discard = 1;
660                         fs_devices->num_can_discard++;
661                 }
662
663                 device->bdev = bdev;
664                 device->in_fs_metadata = 0;
665                 device->mode = flags;
666
667                 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
668                         fs_devices->rotating = 1;
669
670                 fs_devices->open_devices++;
671                 if (device->writeable) {
672                         fs_devices->rw_devices++;
673                         list_add(&device->dev_alloc_list,
674                                  &fs_devices->alloc_list);
675                 }
676                 brelse(bh);
677                 continue;
678
679 error_brelse:
680                 brelse(bh);
681 error_close:
682                 blkdev_put(bdev, flags);
683 error:
684                 continue;
685         }
686         if (fs_devices->open_devices == 0) {
687                 ret = -EINVAL;
688                 goto out;
689         }
690         fs_devices->seeding = seeding;
691         fs_devices->opened = 1;
692         fs_devices->latest_bdev = latest_bdev;
693         fs_devices->latest_devid = latest_devid;
694         fs_devices->latest_trans = latest_transid;
695         fs_devices->total_rw_bytes = 0;
696 out:
697         return ret;
698 }
699
700 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
701                        fmode_t flags, void *holder)
702 {
703         int ret;
704
705         mutex_lock(&uuid_mutex);
706         if (fs_devices->opened) {
707                 fs_devices->opened++;
708                 ret = 0;
709         } else {
710                 ret = __btrfs_open_devices(fs_devices, flags, holder);
711         }
712         mutex_unlock(&uuid_mutex);
713         return ret;
714 }
715
716 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
717                           struct btrfs_fs_devices **fs_devices_ret)
718 {
719         struct btrfs_super_block *disk_super;
720         struct block_device *bdev;
721         struct buffer_head *bh;
722         int ret;
723         u64 devid;
724         u64 transid;
725
726         flags |= FMODE_EXCL;
727         bdev = blkdev_get_by_path(path, flags, holder);
728
729         if (IS_ERR(bdev)) {
730                 ret = PTR_ERR(bdev);
731                 goto error;
732         }
733
734         mutex_lock(&uuid_mutex);
735         ret = set_blocksize(bdev, 4096);
736         if (ret)
737                 goto error_close;
738         bh = btrfs_read_dev_super(bdev);
739         if (!bh) {
740                 ret = -EINVAL;
741                 goto error_close;
742         }
743         disk_super = (struct btrfs_super_block *)bh->b_data;
744         devid = btrfs_stack_device_id(&disk_super->dev_item);
745         transid = btrfs_super_generation(disk_super);
746         if (disk_super->label[0])
747                 printk(KERN_INFO "device label %s ", disk_super->label);
748         else
749                 printk(KERN_INFO "device fsid %pU ", disk_super->fsid);
750         printk(KERN_CONT "devid %llu transid %llu %s\n",
751                (unsigned long long)devid, (unsigned long long)transid, path);
752         ret = device_list_add(path, disk_super, devid, fs_devices_ret);
753
754         brelse(bh);
755 error_close:
756         mutex_unlock(&uuid_mutex);
757         blkdev_put(bdev, flags);
758 error:
759         return ret;
760 }
761
762 /* helper to account the used device space in the range */
763 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
764                                    u64 end, u64 *length)
765 {
766         struct btrfs_key key;
767         struct btrfs_root *root = device->dev_root;
768         struct btrfs_dev_extent *dev_extent;
769         struct btrfs_path *path;
770         u64 extent_end;
771         int ret;
772         int slot;
773         struct extent_buffer *l;
774
775         *length = 0;
776
777         if (start >= device->total_bytes)
778                 return 0;
779
780         path = btrfs_alloc_path();
781         if (!path)
782                 return -ENOMEM;
783         path->reada = 2;
784
785         key.objectid = device->devid;
786         key.offset = start;
787         key.type = BTRFS_DEV_EXTENT_KEY;
788
789         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
790         if (ret < 0)
791                 goto out;
792         if (ret > 0) {
793                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
794                 if (ret < 0)
795                         goto out;
796         }
797
798         while (1) {
799                 l = path->nodes[0];
800                 slot = path->slots[0];
801                 if (slot >= btrfs_header_nritems(l)) {
802                         ret = btrfs_next_leaf(root, path);
803                         if (ret == 0)
804                                 continue;
805                         if (ret < 0)
806                                 goto out;
807
808                         break;
809                 }
810                 btrfs_item_key_to_cpu(l, &key, slot);
811
812                 if (key.objectid < device->devid)
813                         goto next;
814
815                 if (key.objectid > device->devid)
816                         break;
817
818                 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
819                         goto next;
820
821                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
822                 extent_end = key.offset + btrfs_dev_extent_length(l,
823                                                                   dev_extent);
824                 if (key.offset <= start && extent_end > end) {
825                         *length = end - start + 1;
826                         break;
827                 } else if (key.offset <= start && extent_end > start)
828                         *length += extent_end - start;
829                 else if (key.offset > start && extent_end <= end)
830                         *length += extent_end - key.offset;
831                 else if (key.offset > start && key.offset <= end) {
832                         *length += end - key.offset + 1;
833                         break;
834                 } else if (key.offset > end)
835                         break;
836
837 next:
838                 path->slots[0]++;
839         }
840         ret = 0;
841 out:
842         btrfs_free_path(path);
843         return ret;
844 }
845
846 /*
847  * find_free_dev_extent - find free space in the specified device
848  * @device:     the device which we search the free space in
849  * @num_bytes:  the size of the free space that we need
850  * @start:      store the start of the free space.
851  * @len:        the size of the free space. that we find, or the size of the max
852  *              free space if we don't find suitable free space
853  *
854  * this uses a pretty simple search, the expectation is that it is
855  * called very infrequently and that a given device has a small number
856  * of extents
857  *
858  * @start is used to store the start of the free space if we find. But if we
859  * don't find suitable free space, it will be used to store the start position
860  * of the max free space.
861  *
862  * @len is used to store the size of the free space that we find.
863  * But if we don't find suitable free space, it is used to store the size of
864  * the max free space.
865  */
866 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
867                          u64 *start, u64 *len)
868 {
869         struct btrfs_key key;
870         struct btrfs_root *root = device->dev_root;
871         struct btrfs_dev_extent *dev_extent;
872         struct btrfs_path *path;
873         u64 hole_size;
874         u64 max_hole_start;
875         u64 max_hole_size;
876         u64 extent_end;
877         u64 search_start;
878         u64 search_end = device->total_bytes;
879         int ret;
880         int slot;
881         struct extent_buffer *l;
882
883         /* FIXME use last free of some kind */
884
885         /* we don't want to overwrite the superblock on the drive,
886          * so we make sure to start at an offset of at least 1MB
887          */
888         search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
889
890         max_hole_start = search_start;
891         max_hole_size = 0;
892         hole_size = 0;
893
894         if (search_start >= search_end) {
895                 ret = -ENOSPC;
896                 goto error;
897         }
898
899         path = btrfs_alloc_path();
900         if (!path) {
901                 ret = -ENOMEM;
902                 goto error;
903         }
904         path->reada = 2;
905
906         key.objectid = device->devid;
907         key.offset = search_start;
908         key.type = BTRFS_DEV_EXTENT_KEY;
909
910         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
911         if (ret < 0)
912                 goto out;
913         if (ret > 0) {
914                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
915                 if (ret < 0)
916                         goto out;
917         }
918
919         while (1) {
920                 l = path->nodes[0];
921                 slot = path->slots[0];
922                 if (slot >= btrfs_header_nritems(l)) {
923                         ret = btrfs_next_leaf(root, path);
924                         if (ret == 0)
925                                 continue;
926                         if (ret < 0)
927                                 goto out;
928
929                         break;
930                 }
931                 btrfs_item_key_to_cpu(l, &key, slot);
932
933                 if (key.objectid < device->devid)
934                         goto next;
935
936                 if (key.objectid > device->devid)
937                         break;
938
939                 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
940                         goto next;
941
942                 if (key.offset > search_start) {
943                         hole_size = key.offset - search_start;
944
945                         if (hole_size > max_hole_size) {
946                                 max_hole_start = search_start;
947                                 max_hole_size = hole_size;
948                         }
949
950                         /*
951                          * If this free space is greater than which we need,
952                          * it must be the max free space that we have found
953                          * until now, so max_hole_start must point to the start
954                          * of this free space and the length of this free space
955                          * is stored in max_hole_size. Thus, we return
956                          * max_hole_start and max_hole_size and go back to the
957                          * caller.
958                          */
959                         if (hole_size >= num_bytes) {
960                                 ret = 0;
961                                 goto out;
962                         }
963                 }
964
965                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
966                 extent_end = key.offset + btrfs_dev_extent_length(l,
967                                                                   dev_extent);
968                 if (extent_end > search_start)
969                         search_start = extent_end;
970 next:
971                 path->slots[0]++;
972                 cond_resched();
973         }
974
975         /*
976          * At this point, search_start should be the end of
977          * allocated dev extents, and when shrinking the device,
978          * search_end may be smaller than search_start.
979          */
980         if (search_end > search_start)
981                 hole_size = search_end - search_start;
982
983         if (hole_size > max_hole_size) {
984                 max_hole_start = search_start;
985                 max_hole_size = hole_size;
986         }
987
988         /* See above. */
989         if (hole_size < num_bytes)
990                 ret = -ENOSPC;
991         else
992                 ret = 0;
993
994 out:
995         btrfs_free_path(path);
996 error:
997         *start = max_hole_start;
998         if (len)
999                 *len = max_hole_size;
1000         return ret;
1001 }
1002
1003 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1004                           struct btrfs_device *device,
1005                           u64 start)
1006 {
1007         int ret;
1008         struct btrfs_path *path;
1009         struct btrfs_root *root = device->dev_root;
1010         struct btrfs_key key;
1011         struct btrfs_key found_key;
1012         struct extent_buffer *leaf = NULL;
1013         struct btrfs_dev_extent *extent = NULL;
1014
1015         path = btrfs_alloc_path();
1016         if (!path)
1017                 return -ENOMEM;
1018
1019         key.objectid = device->devid;
1020         key.offset = start;
1021         key.type = BTRFS_DEV_EXTENT_KEY;
1022 again:
1023         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1024         if (ret > 0) {
1025                 ret = btrfs_previous_item(root, path, key.objectid,
1026                                           BTRFS_DEV_EXTENT_KEY);
1027                 if (ret)
1028                         goto out;
1029                 leaf = path->nodes[0];
1030                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1031                 extent = btrfs_item_ptr(leaf, path->slots[0],
1032                                         struct btrfs_dev_extent);
1033                 BUG_ON(found_key.offset > start || found_key.offset +
1034                        btrfs_dev_extent_length(leaf, extent) < start);
1035                 key = found_key;
1036                 btrfs_release_path(path);
1037                 goto again;
1038         } else if (ret == 0) {
1039                 leaf = path->nodes[0];
1040                 extent = btrfs_item_ptr(leaf, path->slots[0],
1041                                         struct btrfs_dev_extent);
1042         }
1043         BUG_ON(ret);
1044
1045         if (device->bytes_used > 0) {
1046                 u64 len = btrfs_dev_extent_length(leaf, extent);
1047                 device->bytes_used -= len;
1048                 spin_lock(&root->fs_info->free_chunk_lock);
1049                 root->fs_info->free_chunk_space += len;
1050                 spin_unlock(&root->fs_info->free_chunk_lock);
1051         }
1052         ret = btrfs_del_item(trans, root, path);
1053
1054 out:
1055         btrfs_free_path(path);
1056         return ret;
1057 }
1058
1059 int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1060                            struct btrfs_device *device,
1061                            u64 chunk_tree, u64 chunk_objectid,
1062                            u64 chunk_offset, u64 start, u64 num_bytes)
1063 {
1064         int ret;
1065         struct btrfs_path *path;
1066         struct btrfs_root *root = device->dev_root;
1067         struct btrfs_dev_extent *extent;
1068         struct extent_buffer *leaf;
1069         struct btrfs_key key;
1070
1071         WARN_ON(!device->in_fs_metadata);
1072         path = btrfs_alloc_path();
1073         if (!path)
1074                 return -ENOMEM;
1075
1076         key.objectid = device->devid;
1077         key.offset = start;
1078         key.type = BTRFS_DEV_EXTENT_KEY;
1079         ret = btrfs_insert_empty_item(trans, root, path, &key,
1080                                       sizeof(*extent));
1081         BUG_ON(ret);
1082
1083         leaf = path->nodes[0];
1084         extent = btrfs_item_ptr(leaf, path->slots[0],
1085                                 struct btrfs_dev_extent);
1086         btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1087         btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1088         btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1089
1090         write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1091                     (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
1092                     BTRFS_UUID_SIZE);
1093
1094         btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1095         btrfs_mark_buffer_dirty(leaf);
1096         btrfs_free_path(path);
1097         return ret;
1098 }
1099
1100 static noinline int find_next_chunk(struct btrfs_root *root,
1101                                     u64 objectid, u64 *offset)
1102 {
1103         struct btrfs_path *path;
1104         int ret;
1105         struct btrfs_key key;
1106         struct btrfs_chunk *chunk;
1107         struct btrfs_key found_key;
1108
1109         path = btrfs_alloc_path();
1110         if (!path)
1111                 return -ENOMEM;
1112
1113         key.objectid = objectid;
1114         key.offset = (u64)-1;
1115         key.type = BTRFS_CHUNK_ITEM_KEY;
1116
1117         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1118         if (ret < 0)
1119                 goto error;
1120
1121         BUG_ON(ret == 0);
1122
1123         ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
1124         if (ret) {
1125                 *offset = 0;
1126         } else {
1127                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1128                                       path->slots[0]);
1129                 if (found_key.objectid != objectid)
1130                         *offset = 0;
1131                 else {
1132                         chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
1133                                                struct btrfs_chunk);
1134                         *offset = found_key.offset +
1135                                 btrfs_chunk_length(path->nodes[0], chunk);
1136                 }
1137         }
1138         ret = 0;
1139 error:
1140         btrfs_free_path(path);
1141         return ret;
1142 }
1143
1144 static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid)
1145 {
1146         int ret;
1147         struct btrfs_key key;
1148         struct btrfs_key found_key;
1149         struct btrfs_path *path;
1150
1151         root = root->fs_info->chunk_root;
1152
1153         path = btrfs_alloc_path();
1154         if (!path)
1155                 return -ENOMEM;
1156
1157         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1158         key.type = BTRFS_DEV_ITEM_KEY;
1159         key.offset = (u64)-1;
1160
1161         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1162         if (ret < 0)
1163                 goto error;
1164
1165         BUG_ON(ret == 0);
1166
1167         ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
1168                                   BTRFS_DEV_ITEM_KEY);
1169         if (ret) {
1170                 *objectid = 1;
1171         } else {
1172                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1173                                       path->slots[0]);
1174                 *objectid = found_key.offset + 1;
1175         }
1176         ret = 0;
1177 error:
1178         btrfs_free_path(path);
1179         return ret;
1180 }
1181
1182 /*
1183  * the device information is stored in the chunk root
1184  * the btrfs_device struct should be fully filled in
1185  */
1186 int btrfs_add_device(struct btrfs_trans_handle *trans,
1187                      struct btrfs_root *root,
1188                      struct btrfs_device *device)
1189 {
1190         int ret;
1191         struct btrfs_path *path;
1192         struct btrfs_dev_item *dev_item;
1193         struct extent_buffer *leaf;
1194         struct btrfs_key key;
1195         unsigned long ptr;
1196
1197         root = root->fs_info->chunk_root;
1198
1199         path = btrfs_alloc_path();
1200         if (!path)
1201                 return -ENOMEM;
1202
1203         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1204         key.type = BTRFS_DEV_ITEM_KEY;
1205         key.offset = device->devid;
1206
1207         ret = btrfs_insert_empty_item(trans, root, path, &key,
1208                                       sizeof(*dev_item));
1209         if (ret)
1210                 goto out;
1211
1212         leaf = path->nodes[0];
1213         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1214
1215         btrfs_set_device_id(leaf, dev_item, device->devid);
1216         btrfs_set_device_generation(leaf, dev_item, 0);
1217         btrfs_set_device_type(leaf, dev_item, device->type);
1218         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1219         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1220         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1221         btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1222         btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1223         btrfs_set_device_group(leaf, dev_item, 0);
1224         btrfs_set_device_seek_speed(leaf, dev_item, 0);
1225         btrfs_set_device_bandwidth(leaf, dev_item, 0);
1226         btrfs_set_device_start_offset(leaf, dev_item, 0);
1227
1228         ptr = (unsigned long)btrfs_device_uuid(dev_item);
1229         write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1230         ptr = (unsigned long)btrfs_device_fsid(dev_item);
1231         write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1232         btrfs_mark_buffer_dirty(leaf);
1233
1234         ret = 0;
1235 out:
1236         btrfs_free_path(path);
1237         return ret;
1238 }
1239
1240 static int btrfs_rm_dev_item(struct btrfs_root *root,
1241                              struct btrfs_device *device)
1242 {
1243         int ret;
1244         struct btrfs_path *path;
1245         struct btrfs_key key;
1246         struct btrfs_trans_handle *trans;
1247
1248         root = root->fs_info->chunk_root;
1249
1250         path = btrfs_alloc_path();
1251         if (!path)
1252                 return -ENOMEM;
1253
1254         trans = btrfs_start_transaction(root, 0);
1255         if (IS_ERR(trans)) {
1256                 btrfs_free_path(path);
1257                 return PTR_ERR(trans);
1258         }
1259         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1260         key.type = BTRFS_DEV_ITEM_KEY;
1261         key.offset = device->devid;
1262         lock_chunks(root);
1263
1264         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1265         if (ret < 0)
1266                 goto out;
1267
1268         if (ret > 0) {
1269                 ret = -ENOENT;
1270                 goto out;
1271         }
1272
1273         ret = btrfs_del_item(trans, root, path);
1274         if (ret)
1275                 goto out;
1276 out:
1277         btrfs_free_path(path);
1278         unlock_chunks(root);
1279         btrfs_commit_transaction(trans, root);
1280         return ret;
1281 }
1282
1283 int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1284 {
1285         struct btrfs_device *device;
1286         struct btrfs_device *next_device;
1287         struct block_device *bdev;
1288         struct buffer_head *bh = NULL;
1289         struct btrfs_super_block *disk_super;
1290         struct btrfs_fs_devices *cur_devices;
1291         u64 all_avail;
1292         u64 devid;
1293         u64 num_devices;
1294         u8 *dev_uuid;
1295         int ret = 0;
1296         bool clear_super = false;
1297
1298         mutex_lock(&uuid_mutex);
1299
1300         all_avail = root->fs_info->avail_data_alloc_bits |
1301                 root->fs_info->avail_system_alloc_bits |
1302                 root->fs_info->avail_metadata_alloc_bits;
1303
1304         if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
1305             root->fs_info->fs_devices->num_devices <= 4) {
1306                 printk(KERN_ERR "btrfs: unable to go below four devices "
1307                        "on raid10\n");
1308                 ret = -EINVAL;
1309                 goto out;
1310         }
1311
1312         if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
1313             root->fs_info->fs_devices->num_devices <= 2) {
1314                 printk(KERN_ERR "btrfs: unable to go below two "
1315                        "devices on raid1\n");
1316                 ret = -EINVAL;
1317                 goto out;
1318         }
1319
1320         if (strcmp(device_path, "missing") == 0) {
1321                 struct list_head *devices;
1322                 struct btrfs_device *tmp;
1323
1324                 device = NULL;
1325                 devices = &root->fs_info->fs_devices->devices;
1326                 /*
1327                  * It is safe to read the devices since the volume_mutex
1328                  * is held.
1329                  */
1330                 list_for_each_entry(tmp, devices, dev_list) {
1331                         if (tmp->in_fs_metadata && !tmp->bdev) {
1332                                 device = tmp;
1333                                 break;
1334                         }
1335                 }
1336                 bdev = NULL;
1337                 bh = NULL;
1338                 disk_super = NULL;
1339                 if (!device) {
1340                         printk(KERN_ERR "btrfs: no missing devices found to "
1341                                "remove\n");
1342                         goto out;
1343                 }
1344         } else {
1345                 bdev = blkdev_get_by_path(device_path, FMODE_READ | FMODE_EXCL,
1346                                           root->fs_info->bdev_holder);
1347                 if (IS_ERR(bdev)) {
1348                         ret = PTR_ERR(bdev);
1349                         goto out;
1350                 }
1351
1352                 set_blocksize(bdev, 4096);
1353                 bh = btrfs_read_dev_super(bdev);
1354                 if (!bh) {
1355                         ret = -EINVAL;
1356                         goto error_close;
1357                 }
1358                 disk_super = (struct btrfs_super_block *)bh->b_data;
1359                 devid = btrfs_stack_device_id(&disk_super->dev_item);
1360                 dev_uuid = disk_super->dev_item.uuid;
1361                 device = btrfs_find_device(root, devid, dev_uuid,
1362                                            disk_super->fsid);
1363                 if (!device) {
1364                         ret = -ENOENT;
1365                         goto error_brelse;
1366                 }
1367         }
1368
1369         if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1370                 printk(KERN_ERR "btrfs: unable to remove the only writeable "
1371                        "device\n");
1372                 ret = -EINVAL;
1373                 goto error_brelse;
1374         }
1375
1376         if (device->writeable) {
1377                 lock_chunks(root);
1378                 list_del_init(&device->dev_alloc_list);
1379                 unlock_chunks(root);
1380                 root->fs_info->fs_devices->rw_devices--;
1381                 clear_super = true;
1382         }
1383
1384         ret = btrfs_shrink_device(device, 0);
1385         if (ret)
1386                 goto error_undo;
1387
1388         ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1389         if (ret)
1390                 goto error_undo;
1391
1392         spin_lock(&root->fs_info->free_chunk_lock);
1393         root->fs_info->free_chunk_space = device->total_bytes -
1394                 device->bytes_used;
1395         spin_unlock(&root->fs_info->free_chunk_lock);
1396
1397         device->in_fs_metadata = 0;
1398         btrfs_scrub_cancel_dev(root, device);
1399
1400         /*
1401          * the device list mutex makes sure that we don't change
1402          * the device list while someone else is writing out all
1403          * the device supers.
1404          */
1405
1406         cur_devices = device->fs_devices;
1407         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1408         list_del_rcu(&device->dev_list);
1409
1410         device->fs_devices->num_devices--;
1411
1412         if (device->missing)
1413                 root->fs_info->fs_devices->missing_devices--;
1414
1415         next_device = list_entry(root->fs_info->fs_devices->devices.next,
1416                                  struct btrfs_device, dev_list);
1417         if (device->bdev == root->fs_info->sb->s_bdev)
1418                 root->fs_info->sb->s_bdev = next_device->bdev;
1419         if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1420                 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1421
1422         if (device->bdev)
1423                 device->fs_devices->open_devices--;
1424
1425         call_rcu(&device->rcu, free_device);
1426         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1427
1428         num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1429         btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1430
1431         if (cur_devices->open_devices == 0) {
1432                 struct btrfs_fs_devices *fs_devices;
1433                 fs_devices = root->fs_info->fs_devices;
1434                 while (fs_devices) {
1435                         if (fs_devices->seed == cur_devices)
1436                                 break;
1437                         fs_devices = fs_devices->seed;
1438                 }
1439                 fs_devices->seed = cur_devices->seed;
1440                 cur_devices->seed = NULL;
1441                 lock_chunks(root);
1442                 __btrfs_close_devices(cur_devices);
1443                 unlock_chunks(root);
1444                 free_fs_devices(cur_devices);
1445         }
1446
1447         /*
1448          * at this point, the device is zero sized.  We want to
1449          * remove it from the devices list and zero out the old super
1450          */
1451         if (clear_super) {
1452                 /* make sure this device isn't detected as part of
1453                  * the FS anymore
1454                  */
1455                 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1456                 set_buffer_dirty(bh);
1457                 sync_dirty_buffer(bh);
1458         }
1459
1460         ret = 0;
1461
1462 error_brelse:
1463         brelse(bh);
1464 error_close:
1465         if (bdev)
1466                 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1467 out:
1468         mutex_unlock(&uuid_mutex);
1469         return ret;
1470 error_undo:
1471         if (device->writeable) {
1472                 lock_chunks(root);
1473                 list_add(&device->dev_alloc_list,
1474                          &root->fs_info->fs_devices->alloc_list);
1475                 unlock_chunks(root);
1476                 root->fs_info->fs_devices->rw_devices++;
1477         }
1478         goto error_brelse;
1479 }
1480
1481 /*
1482  * does all the dirty work required for changing file system's UUID.
1483  */
1484 static int btrfs_prepare_sprout(struct btrfs_root *root)
1485 {
1486         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1487         struct btrfs_fs_devices *old_devices;
1488         struct btrfs_fs_devices *seed_devices;
1489         struct btrfs_super_block *disk_super = root->fs_info->super_copy;
1490         struct btrfs_device *device;
1491         u64 super_flags;
1492
1493         BUG_ON(!mutex_is_locked(&uuid_mutex));
1494         if (!fs_devices->seeding)
1495                 return -EINVAL;
1496
1497         seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
1498         if (!seed_devices)
1499                 return -ENOMEM;
1500
1501         old_devices = clone_fs_devices(fs_devices);
1502         if (IS_ERR(old_devices)) {
1503                 kfree(seed_devices);
1504                 return PTR_ERR(old_devices);
1505         }
1506
1507         list_add(&old_devices->list, &fs_uuids);
1508
1509         memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1510         seed_devices->opened = 1;
1511         INIT_LIST_HEAD(&seed_devices->devices);
1512         INIT_LIST_HEAD(&seed_devices->alloc_list);
1513         mutex_init(&seed_devices->device_list_mutex);
1514
1515         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1516         list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
1517                               synchronize_rcu);
1518         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1519
1520         list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1521         list_for_each_entry(device, &seed_devices->devices, dev_list) {
1522                 device->fs_devices = seed_devices;
1523         }
1524
1525         fs_devices->seeding = 0;
1526         fs_devices->num_devices = 0;
1527         fs_devices->open_devices = 0;
1528         fs_devices->seed = seed_devices;
1529
1530         generate_random_uuid(fs_devices->fsid);
1531         memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1532         memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1533         super_flags = btrfs_super_flags(disk_super) &
1534                       ~BTRFS_SUPER_FLAG_SEEDING;
1535         btrfs_set_super_flags(disk_super, super_flags);
1536
1537         return 0;
1538 }
1539
1540 /*
1541  * strore the expected generation for seed devices in device items.
1542  */
1543 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1544                                struct btrfs_root *root)
1545 {
1546         struct btrfs_path *path;
1547         struct extent_buffer *leaf;
1548         struct btrfs_dev_item *dev_item;
1549         struct btrfs_device *device;
1550         struct btrfs_key key;
1551         u8 fs_uuid[BTRFS_UUID_SIZE];
1552         u8 dev_uuid[BTRFS_UUID_SIZE];
1553         u64 devid;
1554         int ret;
1555
1556         path = btrfs_alloc_path();
1557         if (!path)
1558                 return -ENOMEM;
1559
1560         root = root->fs_info->chunk_root;
1561         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1562         key.offset = 0;
1563         key.type = BTRFS_DEV_ITEM_KEY;
1564
1565         while (1) {
1566                 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1567                 if (ret < 0)
1568                         goto error;
1569
1570                 leaf = path->nodes[0];
1571 next_slot:
1572                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1573                         ret = btrfs_next_leaf(root, path);
1574                         if (ret > 0)
1575                                 break;
1576                         if (ret < 0)
1577                                 goto error;
1578                         leaf = path->nodes[0];
1579                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1580                         btrfs_release_path(path);
1581                         continue;
1582                 }
1583
1584                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1585                 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1586                     key.type != BTRFS_DEV_ITEM_KEY)
1587                         break;
1588
1589                 dev_item = btrfs_item_ptr(leaf, path->slots[0],
1590                                           struct btrfs_dev_item);
1591                 devid = btrfs_device_id(leaf, dev_item);
1592                 read_extent_buffer(leaf, dev_uuid,
1593                                    (unsigned long)btrfs_device_uuid(dev_item),
1594                                    BTRFS_UUID_SIZE);
1595                 read_extent_buffer(leaf, fs_uuid,
1596                                    (unsigned long)btrfs_device_fsid(dev_item),
1597                                    BTRFS_UUID_SIZE);
1598                 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
1599                 BUG_ON(!device);
1600
1601                 if (device->fs_devices->seeding) {
1602                         btrfs_set_device_generation(leaf, dev_item,
1603                                                     device->generation);
1604                         btrfs_mark_buffer_dirty(leaf);
1605                 }
1606
1607                 path->slots[0]++;
1608                 goto next_slot;
1609         }
1610         ret = 0;
1611 error:
1612         btrfs_free_path(path);
1613         return ret;
1614 }
1615
1616 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1617 {
1618         struct request_queue *q;
1619         struct btrfs_trans_handle *trans;
1620         struct btrfs_device *device;
1621         struct block_device *bdev;
1622         struct list_head *devices;
1623         struct super_block *sb = root->fs_info->sb;
1624         u64 total_bytes;
1625         int seeding_dev = 0;
1626         int ret = 0;
1627
1628         if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
1629                 return -EINVAL;
1630
1631         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
1632                                   root->fs_info->bdev_holder);
1633         if (IS_ERR(bdev))
1634                 return PTR_ERR(bdev);
1635
1636         if (root->fs_info->fs_devices->seeding) {
1637                 seeding_dev = 1;
1638                 down_write(&sb->s_umount);
1639                 mutex_lock(&uuid_mutex);
1640         }
1641
1642         filemap_write_and_wait(bdev->bd_inode->i_mapping);
1643
1644         devices = &root->fs_info->fs_devices->devices;
1645         /*
1646          * we have the volume lock, so we don't need the extra
1647          * device list mutex while reading the list here.
1648          */
1649         list_for_each_entry(device, devices, dev_list) {
1650                 if (device->bdev == bdev) {
1651                         ret = -EEXIST;
1652                         goto error;
1653                 }
1654         }
1655
1656         device = kzalloc(sizeof(*device), GFP_NOFS);
1657         if (!device) {
1658                 /* we can safely leave the fs_devices entry around */
1659                 ret = -ENOMEM;
1660                 goto error;
1661         }
1662
1663         device->name = kstrdup(device_path, GFP_NOFS);
1664         if (!device->name) {
1665                 kfree(device);
1666                 ret = -ENOMEM;
1667                 goto error;
1668         }
1669
1670         ret = find_next_devid(root, &device->devid);
1671         if (ret) {
1672                 kfree(device->name);
1673                 kfree(device);
1674                 goto error;
1675         }
1676
1677         trans = btrfs_start_transaction(root, 0);
1678         if (IS_ERR(trans)) {
1679                 kfree(device->name);
1680                 kfree(device);
1681                 ret = PTR_ERR(trans);
1682                 goto error;
1683         }
1684
1685         lock_chunks(root);
1686
1687         q = bdev_get_queue(bdev);
1688         if (blk_queue_discard(q))
1689                 device->can_discard = 1;
1690         device->writeable = 1;
1691         device->work.func = pending_bios_fn;
1692         generate_random_uuid(device->uuid);
1693         spin_lock_init(&device->io_lock);
1694         device->generation = trans->transid;
1695         device->io_width = root->sectorsize;
1696         device->io_align = root->sectorsize;
1697         device->sector_size = root->sectorsize;
1698         device->total_bytes = i_size_read(bdev->bd_inode);
1699         device->disk_total_bytes = device->total_bytes;
1700         device->dev_root = root->fs_info->dev_root;
1701         device->bdev = bdev;
1702         device->in_fs_metadata = 1;
1703         device->mode = FMODE_EXCL;
1704         set_blocksize(device->bdev, 4096);
1705
1706         if (seeding_dev) {
1707                 sb->s_flags &= ~MS_RDONLY;
1708                 ret = btrfs_prepare_sprout(root);
1709                 BUG_ON(ret);
1710         }
1711
1712         device->fs_devices = root->fs_info->fs_devices;
1713
1714         /*
1715          * we don't want write_supers to jump in here with our device
1716          * half setup
1717          */
1718         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1719         list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
1720         list_add(&device->dev_alloc_list,
1721                  &root->fs_info->fs_devices->alloc_list);
1722         root->fs_info->fs_devices->num_devices++;
1723         root->fs_info->fs_devices->open_devices++;
1724         root->fs_info->fs_devices->rw_devices++;
1725         if (device->can_discard)
1726                 root->fs_info->fs_devices->num_can_discard++;
1727         root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
1728
1729         spin_lock(&root->fs_info->free_chunk_lock);
1730         root->fs_info->free_chunk_space += device->total_bytes;
1731         spin_unlock(&root->fs_info->free_chunk_lock);
1732
1733         if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1734                 root->fs_info->fs_devices->rotating = 1;
1735
1736         total_bytes = btrfs_super_total_bytes(root->fs_info->super_copy);
1737         btrfs_set_super_total_bytes(root->fs_info->super_copy,
1738                                     total_bytes + device->total_bytes);
1739
1740         total_bytes = btrfs_super_num_devices(root->fs_info->super_copy);
1741         btrfs_set_super_num_devices(root->fs_info->super_copy,
1742                                     total_bytes + 1);
1743         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1744
1745         if (seeding_dev) {
1746                 ret = init_first_rw_device(trans, root, device);
1747                 BUG_ON(ret);
1748                 ret = btrfs_finish_sprout(trans, root);
1749                 BUG_ON(ret);
1750         } else {
1751                 ret = btrfs_add_device(trans, root, device);
1752         }
1753
1754         /*
1755          * we've got more storage, clear any full flags on the space
1756          * infos
1757          */
1758         btrfs_clear_space_info_full(root->fs_info);
1759
1760         unlock_chunks(root);
1761         btrfs_commit_transaction(trans, root);
1762
1763         if (seeding_dev) {
1764                 mutex_unlock(&uuid_mutex);
1765                 up_write(&sb->s_umount);
1766
1767                 ret = btrfs_relocate_sys_chunks(root);
1768                 BUG_ON(ret);
1769         }
1770
1771         return ret;
1772 error:
1773         blkdev_put(bdev, FMODE_EXCL);
1774         if (seeding_dev) {
1775                 mutex_unlock(&uuid_mutex);
1776                 up_write(&sb->s_umount);
1777         }
1778         return ret;
1779 }
1780
1781 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
1782                                         struct btrfs_device *device)
1783 {
1784         int ret;
1785         struct btrfs_path *path;
1786         struct btrfs_root *root;
1787         struct btrfs_dev_item *dev_item;
1788         struct extent_buffer *leaf;
1789         struct btrfs_key key;
1790
1791         root = device->dev_root->fs_info->chunk_root;
1792
1793         path = btrfs_alloc_path();
1794         if (!path)
1795                 return -ENOMEM;
1796
1797         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1798         key.type = BTRFS_DEV_ITEM_KEY;
1799         key.offset = device->devid;
1800
1801         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1802         if (ret < 0)
1803                 goto out;
1804
1805         if (ret > 0) {
1806                 ret = -ENOENT;
1807                 goto out;
1808         }
1809
1810         leaf = path->nodes[0];
1811         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1812
1813         btrfs_set_device_id(leaf, dev_item, device->devid);
1814         btrfs_set_device_type(leaf, dev_item, device->type);
1815         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1816         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1817         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1818         btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
1819         btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1820         btrfs_mark_buffer_dirty(leaf);
1821
1822 out:
1823         btrfs_free_path(path);
1824         return ret;
1825 }
1826
1827 static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
1828                       struct btrfs_device *device, u64 new_size)
1829 {
1830         struct btrfs_super_block *super_copy =
1831                 device->dev_root->fs_info->super_copy;
1832         u64 old_total = btrfs_super_total_bytes(super_copy);
1833         u64 diff = new_size - device->total_bytes;
1834
1835         if (!device->writeable)
1836                 return -EACCES;
1837         if (new_size <= device->total_bytes)
1838                 return -EINVAL;
1839
1840         btrfs_set_super_total_bytes(super_copy, old_total + diff);
1841         device->fs_devices->total_rw_bytes += diff;
1842
1843         device->total_bytes = new_size;
1844         device->disk_total_bytes = new_size;
1845         btrfs_clear_space_info_full(device->dev_root->fs_info);
1846
1847         return btrfs_update_device(trans, device);
1848 }
1849
1850 int btrfs_grow_device(struct btrfs_trans_handle *trans,
1851                       struct btrfs_device *device, u64 new_size)
1852 {
1853         int ret;
1854         lock_chunks(device->dev_root);
1855         ret = __btrfs_grow_device(trans, device, new_size);
1856         unlock_chunks(device->dev_root);
1857         return ret;
1858 }
1859
1860 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
1861                             struct btrfs_root *root,
1862                             u64 chunk_tree, u64 chunk_objectid,
1863                             u64 chunk_offset)
1864 {
1865         int ret;
1866         struct btrfs_path *path;
1867         struct btrfs_key key;
1868
1869         root = root->fs_info->chunk_root;
1870         path = btrfs_alloc_path();
1871         if (!path)
1872                 return -ENOMEM;
1873
1874         key.objectid = chunk_objectid;
1875         key.offset = chunk_offset;
1876         key.type = BTRFS_CHUNK_ITEM_KEY;
1877
1878         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1879         BUG_ON(ret);
1880
1881         ret = btrfs_del_item(trans, root, path);
1882
1883         btrfs_free_path(path);
1884         return ret;
1885 }
1886
1887 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
1888                         chunk_offset)
1889 {
1890         struct btrfs_super_block *super_copy = root->fs_info->super_copy;
1891         struct btrfs_disk_key *disk_key;
1892         struct btrfs_chunk *chunk;
1893         u8 *ptr;
1894         int ret = 0;
1895         u32 num_stripes;
1896         u32 array_size;
1897         u32 len = 0;
1898         u32 cur;
1899         struct btrfs_key key;
1900
1901         array_size = btrfs_super_sys_array_size(super_copy);
1902
1903         ptr = super_copy->sys_chunk_array;
1904         cur = 0;
1905
1906         while (cur < array_size) {
1907                 disk_key = (struct btrfs_disk_key *)ptr;
1908                 btrfs_disk_key_to_cpu(&key, disk_key);
1909
1910                 len = sizeof(*disk_key);
1911
1912                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1913                         chunk = (struct btrfs_chunk *)(ptr + len);
1914                         num_stripes = btrfs_stack_chunk_num_stripes(chunk);
1915                         len += btrfs_chunk_item_size(num_stripes);
1916                 } else {
1917                         ret = -EIO;
1918                         break;
1919                 }
1920                 if (key.objectid == chunk_objectid &&
1921                     key.offset == chunk_offset) {
1922                         memmove(ptr, ptr + len, array_size - (cur + len));
1923                         array_size -= len;
1924                         btrfs_set_super_sys_array_size(super_copy, array_size);
1925                 } else {
1926                         ptr += len;
1927                         cur += len;
1928                 }
1929         }
1930         return ret;
1931 }
1932
1933 static int btrfs_relocate_chunk(struct btrfs_root *root,
1934                          u64 chunk_tree, u64 chunk_objectid,
1935                          u64 chunk_offset)
1936 {
1937         struct extent_map_tree *em_tree;
1938         struct btrfs_root *extent_root;
1939         struct btrfs_trans_handle *trans;
1940         struct extent_map *em;
1941         struct map_lookup *map;
1942         int ret;
1943         int i;
1944
1945         root = root->fs_info->chunk_root;
1946         extent_root = root->fs_info->extent_root;
1947         em_tree = &root->fs_info->mapping_tree.map_tree;
1948
1949         ret = btrfs_can_relocate(extent_root, chunk_offset);
1950         if (ret)
1951                 return -ENOSPC;
1952
1953         /* step one, relocate all the extents inside this chunk */
1954         ret = btrfs_relocate_block_group(extent_root, chunk_offset);
1955         if (ret)
1956                 return ret;
1957
1958         trans = btrfs_start_transaction(root, 0);
1959         BUG_ON(IS_ERR(trans));
1960
1961         lock_chunks(root);
1962
1963         /*
1964          * step two, delete the device extents and the
1965          * chunk tree entries
1966          */
1967         read_lock(&em_tree->lock);
1968         em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1969         read_unlock(&em_tree->lock);
1970
1971         BUG_ON(!em || em->start > chunk_offset ||
1972                em->start + em->len < chunk_offset);
1973         map = (struct map_lookup *)em->bdev;
1974
1975         for (i = 0; i < map->num_stripes; i++) {
1976                 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
1977                                             map->stripes[i].physical);
1978                 BUG_ON(ret);
1979
1980                 if (map->stripes[i].dev) {
1981                         ret = btrfs_update_device(trans, map->stripes[i].dev);
1982                         BUG_ON(ret);
1983                 }
1984         }
1985         ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
1986                                chunk_offset);
1987
1988         BUG_ON(ret);
1989
1990         trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
1991
1992         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
1993                 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
1994                 BUG_ON(ret);
1995         }
1996
1997         ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
1998         BUG_ON(ret);
1999
2000         write_lock(&em_tree->lock);
2001         remove_extent_mapping(em_tree, em);
2002         write_unlock(&em_tree->lock);
2003
2004         kfree(map);
2005         em->bdev = NULL;
2006
2007         /* once for the tree */
2008         free_extent_map(em);
2009         /* once for us */
2010         free_extent_map(em);
2011
2012         unlock_chunks(root);
2013         btrfs_end_transaction(trans, root);
2014         return 0;
2015 }
2016
2017 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2018 {
2019         struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2020         struct btrfs_path *path;
2021         struct extent_buffer *leaf;
2022         struct btrfs_chunk *chunk;
2023         struct btrfs_key key;
2024         struct btrfs_key found_key;
2025         u64 chunk_tree = chunk_root->root_key.objectid;
2026         u64 chunk_type;
2027         bool retried = false;
2028         int failed = 0;
2029         int ret;
2030
2031         path = btrfs_alloc_path();
2032         if (!path)
2033                 return -ENOMEM;
2034
2035 again:
2036         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2037         key.offset = (u64)-1;
2038         key.type = BTRFS_CHUNK_ITEM_KEY;
2039
2040         while (1) {
2041                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2042                 if (ret < 0)
2043                         goto error;
2044                 BUG_ON(ret == 0);
2045
2046                 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2047                                           key.type);
2048                 if (ret < 0)
2049                         goto error;
2050                 if (ret > 0)
2051                         break;
2052
2053                 leaf = path->nodes[0];
2054                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2055
2056                 chunk = btrfs_item_ptr(leaf, path->slots[0],
2057                                        struct btrfs_chunk);
2058                 chunk_type = btrfs_chunk_type(leaf, chunk);
2059                 btrfs_release_path(path);
2060
2061                 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2062                         ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
2063                                                    found_key.objectid,
2064                                                    found_key.offset);
2065                         if (ret == -ENOSPC)
2066                                 failed++;
2067                         else if (ret)
2068                                 BUG();
2069                 }
2070
2071                 if (found_key.offset == 0)
2072                         break;
2073                 key.offset = found_key.offset - 1;
2074         }
2075         ret = 0;
2076         if (failed && !retried) {
2077                 failed = 0;
2078                 retried = true;
2079                 goto again;
2080         } else if (failed && retried) {
2081                 WARN_ON(1);
2082                 ret = -ENOSPC;
2083         }
2084 error:
2085         btrfs_free_path(path);
2086         return ret;
2087 }
2088
2089 static int insert_balance_item(struct btrfs_root *root,
2090                                struct btrfs_balance_control *bctl)
2091 {
2092         struct btrfs_trans_handle *trans;
2093         struct btrfs_balance_item *item;
2094         struct btrfs_disk_balance_args disk_bargs;
2095         struct btrfs_path *path;
2096         struct extent_buffer *leaf;
2097         struct btrfs_key key;
2098         int ret, err;
2099
2100         path = btrfs_alloc_path();
2101         if (!path)
2102                 return -ENOMEM;
2103
2104         trans = btrfs_start_transaction(root, 0);
2105         if (IS_ERR(trans)) {
2106                 btrfs_free_path(path);
2107                 return PTR_ERR(trans);
2108         }
2109
2110         key.objectid = BTRFS_BALANCE_OBJECTID;
2111         key.type = BTRFS_BALANCE_ITEM_KEY;
2112         key.offset = 0;
2113
2114         ret = btrfs_insert_empty_item(trans, root, path, &key,
2115                                       sizeof(*item));
2116         if (ret)
2117                 goto out;
2118
2119         leaf = path->nodes[0];
2120         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2121
2122         memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2123
2124         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2125         btrfs_set_balance_data(leaf, item, &disk_bargs);
2126         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2127         btrfs_set_balance_meta(leaf, item, &disk_bargs);
2128         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2129         btrfs_set_balance_sys(leaf, item, &disk_bargs);
2130
2131         btrfs_set_balance_flags(leaf, item, bctl->flags);
2132
2133         btrfs_mark_buffer_dirty(leaf);
2134 out:
2135         btrfs_free_path(path);
2136         err = btrfs_commit_transaction(trans, root);
2137         if (err && !ret)
2138                 ret = err;
2139         return ret;
2140 }
2141
2142 static int del_balance_item(struct btrfs_root *root)
2143 {
2144         struct btrfs_trans_handle *trans;
2145         struct btrfs_path *path;
2146         struct btrfs_key key;
2147         int ret, err;
2148
2149         path = btrfs_alloc_path();
2150         if (!path)
2151                 return -ENOMEM;
2152
2153         trans = btrfs_start_transaction(root, 0);
2154         if (IS_ERR(trans)) {
2155                 btrfs_free_path(path);
2156                 return PTR_ERR(trans);
2157         }
2158
2159         key.objectid = BTRFS_BALANCE_OBJECTID;
2160         key.type = BTRFS_BALANCE_ITEM_KEY;
2161         key.offset = 0;
2162
2163         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2164         if (ret < 0)
2165                 goto out;
2166         if (ret > 0) {
2167                 ret = -ENOENT;
2168                 goto out;
2169         }
2170
2171         ret = btrfs_del_item(trans, root, path);
2172 out:
2173         btrfs_free_path(path);
2174         err = btrfs_commit_transaction(trans, root);
2175         if (err && !ret)
2176                 ret = err;
2177         return ret;
2178 }
2179
2180 /*
2181  * This is a heuristic used to reduce the number of chunks balanced on
2182  * resume after balance was interrupted.
2183  */
2184 static void update_balance_args(struct btrfs_balance_control *bctl)
2185 {
2186         /*
2187          * Turn on soft mode for chunk types that were being converted.
2188          */
2189         if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
2190                 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
2191         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
2192                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
2193         if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
2194                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
2195
2196         /*
2197          * Turn on usage filter if is not already used.  The idea is
2198          * that chunks that we have already balanced should be
2199          * reasonably full.  Don't do it for chunks that are being
2200          * converted - that will keep us from relocating unconverted
2201          * (albeit full) chunks.
2202          */
2203         if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2204             !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2205                 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
2206                 bctl->data.usage = 90;
2207         }
2208         if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2209             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2210                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
2211                 bctl->sys.usage = 90;
2212         }
2213         if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2214             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2215                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
2216                 bctl->meta.usage = 90;
2217         }
2218 }
2219
2220 /*
2221  * Should be called with both balance and volume mutexes held to
2222  * serialize other volume operations (add_dev/rm_dev/resize) with
2223  * restriper.  Same goes for unset_balance_control.
2224  */
2225 static void set_balance_control(struct btrfs_balance_control *bctl)
2226 {
2227         struct btrfs_fs_info *fs_info = bctl->fs_info;
2228
2229         BUG_ON(fs_info->balance_ctl);
2230
2231         spin_lock(&fs_info->balance_lock);
2232         fs_info->balance_ctl = bctl;
2233         spin_unlock(&fs_info->balance_lock);
2234 }
2235
2236 static void unset_balance_control(struct btrfs_fs_info *fs_info)
2237 {
2238         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2239
2240         BUG_ON(!fs_info->balance_ctl);
2241
2242         spin_lock(&fs_info->balance_lock);
2243         fs_info->balance_ctl = NULL;
2244         spin_unlock(&fs_info->balance_lock);
2245
2246         kfree(bctl);
2247 }
2248
2249 /*
2250  * Balance filters.  Return 1 if chunk should be filtered out
2251  * (should not be balanced).
2252  */
2253 static int chunk_profiles_filter(u64 chunk_type,
2254                                  struct btrfs_balance_args *bargs)
2255 {
2256         chunk_type = chunk_to_extended(chunk_type) &
2257                                 BTRFS_EXTENDED_PROFILE_MASK;
2258
2259         if (bargs->profiles & chunk_type)
2260                 return 0;
2261
2262         return 1;
2263 }
2264
2265 static u64 div_factor_fine(u64 num, int factor)
2266 {
2267         if (factor <= 0)
2268                 return 0;
2269         if (factor >= 100)
2270                 return num;
2271
2272         num *= factor;
2273         do_div(num, 100);
2274         return num;
2275 }
2276
2277 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
2278                               struct btrfs_balance_args *bargs)
2279 {
2280         struct btrfs_block_group_cache *cache;
2281         u64 chunk_used, user_thresh;
2282         int ret = 1;
2283
2284         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2285         chunk_used = btrfs_block_group_used(&cache->item);
2286
2287         user_thresh = div_factor_fine(cache->key.offset, bargs->usage);
2288         if (chunk_used < user_thresh)
2289                 ret = 0;
2290
2291         btrfs_put_block_group(cache);
2292         return ret;
2293 }
2294
2295 static int chunk_devid_filter(struct extent_buffer *leaf,
2296                               struct btrfs_chunk *chunk,
2297                               struct btrfs_balance_args *bargs)
2298 {
2299         struct btrfs_stripe *stripe;
2300         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2301         int i;
2302
2303         for (i = 0; i < num_stripes; i++) {
2304                 stripe = btrfs_stripe_nr(chunk, i);
2305                 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
2306                         return 0;
2307         }
2308
2309         return 1;
2310 }
2311
2312 /* [pstart, pend) */
2313 static int chunk_drange_filter(struct extent_buffer *leaf,
2314                                struct btrfs_chunk *chunk,
2315                                u64 chunk_offset,
2316                                struct btrfs_balance_args *bargs)
2317 {
2318         struct btrfs_stripe *stripe;
2319         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2320         u64 stripe_offset;
2321         u64 stripe_length;
2322         int factor;
2323         int i;
2324
2325         if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
2326                 return 0;
2327
2328         if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
2329              BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10))
2330                 factor = 2;
2331         else
2332                 factor = 1;
2333         factor = num_stripes / factor;
2334
2335         for (i = 0; i < num_stripes; i++) {
2336                 stripe = btrfs_stripe_nr(chunk, i);
2337                 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
2338                         continue;
2339
2340                 stripe_offset = btrfs_stripe_offset(leaf, stripe);
2341                 stripe_length = btrfs_chunk_length(leaf, chunk);
2342                 do_div(stripe_length, factor);
2343
2344                 if (stripe_offset < bargs->pend &&
2345                     stripe_offset + stripe_length > bargs->pstart)
2346                         return 0;
2347         }
2348
2349         return 1;
2350 }
2351
2352 /* [vstart, vend) */
2353 static int chunk_vrange_filter(struct extent_buffer *leaf,
2354                                struct btrfs_chunk *chunk,
2355                                u64 chunk_offset,
2356                                struct btrfs_balance_args *bargs)
2357 {
2358         if (chunk_offset < bargs->vend &&
2359             chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
2360                 /* at least part of the chunk is inside this vrange */
2361                 return 0;
2362
2363         return 1;
2364 }
2365
2366 static int chunk_soft_convert_filter(u64 chunk_type,
2367                                      struct btrfs_balance_args *bargs)
2368 {
2369         if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
2370                 return 0;
2371
2372         chunk_type = chunk_to_extended(chunk_type) &
2373                                 BTRFS_EXTENDED_PROFILE_MASK;
2374
2375         if (bargs->target == chunk_type)
2376                 return 1;
2377
2378         return 0;
2379 }
2380
2381 static int should_balance_chunk(struct btrfs_root *root,
2382                                 struct extent_buffer *leaf,
2383                                 struct btrfs_chunk *chunk, u64 chunk_offset)
2384 {
2385         struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
2386         struct btrfs_balance_args *bargs = NULL;
2387         u64 chunk_type = btrfs_chunk_type(leaf, chunk);
2388
2389         /* type filter */
2390         if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
2391               (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
2392                 return 0;
2393         }
2394
2395         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
2396                 bargs = &bctl->data;
2397         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
2398                 bargs = &bctl->sys;
2399         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
2400                 bargs = &bctl->meta;
2401
2402         /* profiles filter */
2403         if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
2404             chunk_profiles_filter(chunk_type, bargs)) {
2405                 return 0;
2406         }
2407
2408         /* usage filter */
2409         if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
2410             chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
2411                 return 0;
2412         }
2413
2414         /* devid filter */
2415         if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
2416             chunk_devid_filter(leaf, chunk, bargs)) {
2417                 return 0;
2418         }
2419
2420         /* drange filter, makes sense only with devid filter */
2421         if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
2422             chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
2423                 return 0;
2424         }
2425
2426         /* vrange filter */
2427         if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
2428             chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
2429                 return 0;
2430         }
2431
2432         /* soft profile changing mode */
2433         if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
2434             chunk_soft_convert_filter(chunk_type, bargs)) {
2435                 return 0;
2436         }
2437
2438         return 1;
2439 }
2440
2441 static u64 div_factor(u64 num, int factor)
2442 {
2443         if (factor == 10)
2444                 return num;
2445         num *= factor;
2446         do_div(num, 10);
2447         return num;
2448 }
2449
2450 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
2451 {
2452         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2453         struct btrfs_root *chunk_root = fs_info->chunk_root;
2454         struct btrfs_root *dev_root = fs_info->dev_root;
2455         struct list_head *devices;
2456         struct btrfs_device *device;
2457         u64 old_size;
2458         u64 size_to_free;
2459         struct btrfs_chunk *chunk;
2460         struct btrfs_path *path;
2461         struct btrfs_key key;
2462         struct btrfs_key found_key;
2463         struct btrfs_trans_handle *trans;
2464         struct extent_buffer *leaf;
2465         int slot;
2466         int ret;
2467         int enospc_errors = 0;
2468         bool counting = true;
2469
2470         /* step one make some room on all the devices */
2471         devices = &fs_info->fs_devices->devices;
2472         list_for_each_entry(device, devices, dev_list) {
2473                 old_size = device->total_bytes;
2474                 size_to_free = div_factor(old_size, 1);
2475                 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
2476                 if (!device->writeable ||
2477                     device->total_bytes - device->bytes_used > size_to_free)
2478                         continue;
2479
2480                 ret = btrfs_shrink_device(device, old_size - size_to_free);
2481                 if (ret == -ENOSPC)
2482                         break;
2483                 BUG_ON(ret);
2484
2485                 trans = btrfs_start_transaction(dev_root, 0);
2486                 BUG_ON(IS_ERR(trans));
2487
2488                 ret = btrfs_grow_device(trans, device, old_size);
2489                 BUG_ON(ret);
2490
2491                 btrfs_end_transaction(trans, dev_root);
2492         }
2493
2494         /* step two, relocate all the chunks */
2495         path = btrfs_alloc_path();
2496         if (!path) {
2497                 ret = -ENOMEM;
2498                 goto error;
2499         }
2500
2501         /* zero out stat counters */
2502         spin_lock(&fs_info->balance_lock);
2503         memset(&bctl->stat, 0, sizeof(bctl->stat));
2504         spin_unlock(&fs_info->balance_lock);
2505 again:
2506         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2507         key.offset = (u64)-1;
2508         key.type = BTRFS_CHUNK_ITEM_KEY;
2509
2510         while (1) {
2511                 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
2512                     atomic_read(&fs_info->balance_cancel_req)) {
2513                         ret = -ECANCELED;
2514                         goto error;
2515                 }
2516
2517                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2518                 if (ret < 0)
2519                         goto error;
2520
2521                 /*
2522                  * this shouldn't happen, it means the last relocate
2523                  * failed
2524                  */
2525                 if (ret == 0)
2526                         BUG(); /* FIXME break ? */
2527
2528                 ret = btrfs_previous_item(chunk_root, path, 0,
2529                                           BTRFS_CHUNK_ITEM_KEY);
2530                 if (ret) {
2531                         ret = 0;
2532                         break;
2533                 }
2534
2535                 leaf = path->nodes[0];
2536                 slot = path->slots[0];
2537                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2538
2539                 if (found_key.objectid != key.objectid)
2540                         break;
2541
2542                 /* chunk zero is special */
2543                 if (found_key.offset == 0)
2544                         break;
2545
2546                 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
2547
2548                 if (!counting) {
2549                         spin_lock(&fs_info->balance_lock);
2550                         bctl->stat.considered++;
2551                         spin_unlock(&fs_info->balance_lock);
2552                 }
2553
2554                 ret = should_balance_chunk(chunk_root, leaf, chunk,
2555                                            found_key.offset);
2556                 btrfs_release_path(path);
2557                 if (!ret)
2558                         goto loop;
2559
2560                 if (counting) {
2561                         spin_lock(&fs_info->balance_lock);
2562                         bctl->stat.expected++;
2563                         spin_unlock(&fs_info->balance_lock);
2564                         goto loop;
2565                 }
2566
2567                 ret = btrfs_relocate_chunk(chunk_root,
2568                                            chunk_root->root_key.objectid,
2569                                            found_key.objectid,
2570                                            found_key.offset);
2571                 if (ret && ret != -ENOSPC)
2572                         goto error;
2573                 if (ret == -ENOSPC) {
2574                         enospc_errors++;
2575                 } else {
2576                         spin_lock(&fs_info->balance_lock);
2577                         bctl->stat.completed++;
2578                         spin_unlock(&fs_info->balance_lock);
2579                 }
2580 loop:
2581                 key.offset = found_key.offset - 1;
2582         }
2583
2584         if (counting) {
2585                 btrfs_release_path(path);
2586                 counting = false;
2587                 goto again;
2588         }
2589 error:
2590         btrfs_free_path(path);
2591         if (enospc_errors) {
2592                 printk(KERN_INFO "btrfs: %d enospc errors during balance\n",
2593                        enospc_errors);
2594                 if (!ret)
2595                         ret = -ENOSPC;
2596         }
2597
2598         return ret;
2599 }
2600
2601 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
2602 {
2603         /* cancel requested || normal exit path */
2604         return atomic_read(&fs_info->balance_cancel_req) ||
2605                 (atomic_read(&fs_info->balance_pause_req) == 0 &&
2606                  atomic_read(&fs_info->balance_cancel_req) == 0);
2607 }
2608
2609 static void __cancel_balance(struct btrfs_fs_info *fs_info)
2610 {
2611         int ret;
2612
2613         unset_balance_control(fs_info);
2614         ret = del_balance_item(fs_info->tree_root);
2615         BUG_ON(ret);
2616 }
2617
2618 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
2619                                struct btrfs_ioctl_balance_args *bargs);
2620
2621 /*
2622  * Should be called with both balance and volume mutexes held
2623  */
2624 int btrfs_balance(struct btrfs_balance_control *bctl,
2625                   struct btrfs_ioctl_balance_args *bargs)
2626 {
2627         struct btrfs_fs_info *fs_info = bctl->fs_info;
2628         u64 allowed;
2629         int ret;
2630
2631         if (btrfs_fs_closing(fs_info) ||
2632             atomic_read(&fs_info->balance_pause_req) ||
2633             atomic_read(&fs_info->balance_cancel_req)) {
2634                 ret = -EINVAL;
2635                 goto out;
2636         }
2637
2638         /*
2639          * In case of mixed groups both data and meta should be picked,
2640          * and identical options should be given for both of them.
2641          */
2642         allowed = btrfs_super_incompat_flags(fs_info->super_copy);
2643         if ((allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2644             (bctl->flags & (BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA))) {
2645                 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
2646                     !(bctl->flags & BTRFS_BALANCE_METADATA) ||
2647                     memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
2648                         printk(KERN_ERR "btrfs: with mixed groups data and "
2649                                "metadata balance options must be the same\n");
2650                         ret = -EINVAL;
2651                         goto out;
2652                 }
2653         }
2654
2655         /*
2656          * Profile changing sanity checks.  Skip them if a simple
2657          * balance is requested.
2658          */
2659         if (!((bctl->data.flags | bctl->sys.flags | bctl->meta.flags) &
2660               BTRFS_BALANCE_ARGS_CONVERT))
2661                 goto do_balance;
2662
2663         allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
2664         if (fs_info->fs_devices->num_devices == 1)
2665                 allowed |= BTRFS_BLOCK_GROUP_DUP;
2666         else if (fs_info->fs_devices->num_devices < 4)
2667                 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
2668         else
2669                 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
2670                                 BTRFS_BLOCK_GROUP_RAID10);
2671
2672         if (!alloc_profile_is_valid(bctl->data.target, 1) ||
2673             bctl->data.target & ~allowed) {
2674                 printk(KERN_ERR "btrfs: unable to start balance with target "
2675                        "data profile %llu\n",
2676                        (unsigned long long)bctl->data.target);
2677                 ret = -EINVAL;
2678                 goto out;
2679         }
2680         if (!alloc_profile_is_valid(bctl->meta.target, 1) ||
2681             bctl->meta.target & ~allowed) {
2682                 printk(KERN_ERR "btrfs: unable to start balance with target "
2683                        "metadata profile %llu\n",
2684                        (unsigned long long)bctl->meta.target);
2685                 ret = -EINVAL;
2686                 goto out;
2687         }
2688         if (!alloc_profile_is_valid(bctl->sys.target, 1) ||
2689             bctl->sys.target & ~allowed) {
2690                 printk(KERN_ERR "btrfs: unable to start balance with target "
2691                        "system profile %llu\n",
2692                        (unsigned long long)bctl->sys.target);
2693                 ret = -EINVAL;
2694                 goto out;
2695         }
2696
2697         if (bctl->data.target & BTRFS_BLOCK_GROUP_DUP) {
2698                 printk(KERN_ERR "btrfs: dup for data is not allowed\n");
2699                 ret = -EINVAL;
2700                 goto out;
2701         }
2702
2703         /* allow to reduce meta or sys integrity only if force set */
2704         allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
2705                         BTRFS_BLOCK_GROUP_RAID10;
2706         if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2707              (fs_info->avail_system_alloc_bits & allowed) &&
2708              !(bctl->sys.target & allowed)) ||
2709             ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2710              (fs_info->avail_metadata_alloc_bits & allowed) &&
2711              !(bctl->meta.target & allowed))) {
2712                 if (bctl->flags & BTRFS_BALANCE_FORCE) {
2713                         printk(KERN_INFO "btrfs: force reducing metadata "
2714                                "integrity\n");
2715                 } else {
2716                         printk(KERN_ERR "btrfs: balance will reduce metadata "
2717                                "integrity, use force if you want this\n");
2718                         ret = -EINVAL;
2719                         goto out;
2720                 }
2721         }
2722
2723 do_balance:
2724         ret = insert_balance_item(fs_info->tree_root, bctl);
2725         if (ret && ret != -EEXIST)
2726                 goto out;
2727
2728         if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
2729                 BUG_ON(ret == -EEXIST);
2730                 set_balance_control(bctl);
2731         } else {
2732                 BUG_ON(ret != -EEXIST);
2733                 spin_lock(&fs_info->balance_lock);
2734                 update_balance_args(bctl);
2735                 spin_unlock(&fs_info->balance_lock);
2736         }
2737
2738         atomic_inc(&fs_info->balance_running);
2739         mutex_unlock(&fs_info->balance_mutex);
2740
2741         ret = __btrfs_balance(fs_info);
2742
2743         mutex_lock(&fs_info->balance_mutex);
2744         atomic_dec(&fs_info->balance_running);
2745
2746         if (bargs) {
2747                 memset(bargs, 0, sizeof(*bargs));
2748                 update_ioctl_balance_args(fs_info, 0, bargs);
2749         }
2750
2751         if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
2752             balance_need_close(fs_info)) {
2753                 __cancel_balance(fs_info);
2754         }
2755
2756         wake_up(&fs_info->balance_wait_q);
2757
2758         return ret;
2759 out:
2760         if (bctl->flags & BTRFS_BALANCE_RESUME)
2761                 __cancel_balance(fs_info);
2762         else
2763                 kfree(bctl);
2764         return ret;
2765 }
2766
2767 static int balance_kthread(void *data)
2768 {
2769         struct btrfs_balance_control *bctl =
2770                         (struct btrfs_balance_control *)data;
2771         struct btrfs_fs_info *fs_info = bctl->fs_info;
2772         int ret = 0;
2773
2774         mutex_lock(&fs_info->volume_mutex);
2775         mutex_lock(&fs_info->balance_mutex);
2776
2777         set_balance_control(bctl);
2778
2779         if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
2780                 printk(KERN_INFO "btrfs: force skipping balance\n");
2781         } else {
2782                 printk(KERN_INFO "btrfs: continuing balance\n");
2783                 ret = btrfs_balance(bctl, NULL);
2784         }
2785
2786         mutex_unlock(&fs_info->balance_mutex);
2787         mutex_unlock(&fs_info->volume_mutex);
2788         return ret;
2789 }
2790
2791 int btrfs_recover_balance(struct btrfs_root *tree_root)
2792 {
2793         struct task_struct *tsk;
2794         struct btrfs_balance_control *bctl;
2795         struct btrfs_balance_item *item;
2796         struct btrfs_disk_balance_args disk_bargs;
2797         struct btrfs_path *path;
2798         struct extent_buffer *leaf;
2799         struct btrfs_key key;
2800         int ret;
2801
2802         path = btrfs_alloc_path();
2803         if (!path)
2804                 return -ENOMEM;
2805
2806         bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
2807         if (!bctl) {
2808                 ret = -ENOMEM;
2809                 goto out;
2810         }
2811
2812         key.objectid = BTRFS_BALANCE_OBJECTID;
2813         key.type = BTRFS_BALANCE_ITEM_KEY;
2814         key.offset = 0;
2815
2816         ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2817         if (ret < 0)
2818                 goto out_bctl;
2819         if (ret > 0) { /* ret = -ENOENT; */
2820                 ret = 0;
2821                 goto out_bctl;
2822         }
2823
2824         leaf = path->nodes[0];
2825         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2826
2827         bctl->fs_info = tree_root->fs_info;
2828         bctl->flags = btrfs_balance_flags(leaf, item) | BTRFS_BALANCE_RESUME;
2829
2830         btrfs_balance_data(leaf, item, &disk_bargs);
2831         btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
2832         btrfs_balance_meta(leaf, item, &disk_bargs);
2833         btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
2834         btrfs_balance_sys(leaf, item, &disk_bargs);
2835         btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
2836
2837         tsk = kthread_run(balance_kthread, bctl, "btrfs-balance");
2838         if (IS_ERR(tsk))
2839                 ret = PTR_ERR(tsk);
2840         else
2841                 goto out;
2842
2843 out_bctl:
2844         kfree(bctl);
2845 out:
2846         btrfs_free_path(path);
2847         return ret;
2848 }
2849
2850 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
2851 {
2852         int ret = 0;
2853
2854         mutex_lock(&fs_info->balance_mutex);
2855         if (!fs_info->balance_ctl) {
2856                 mutex_unlock(&fs_info->balance_mutex);
2857                 return -ENOTCONN;
2858         }
2859
2860         if (atomic_read(&fs_info->balance_running)) {
2861                 atomic_inc(&fs_info->balance_pause_req);
2862                 mutex_unlock(&fs_info->balance_mutex);
2863
2864                 wait_event(fs_info->balance_wait_q,
2865                            atomic_read(&fs_info->balance_running) == 0);
2866
2867                 mutex_lock(&fs_info->balance_mutex);
2868                 /* we are good with balance_ctl ripped off from under us */
2869                 BUG_ON(atomic_read(&fs_info->balance_running));
2870                 atomic_dec(&fs_info->balance_pause_req);
2871         } else {
2872                 ret = -ENOTCONN;
2873         }
2874
2875         mutex_unlock(&fs_info->balance_mutex);
2876         return ret;
2877 }
2878
2879 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
2880 {
2881         mutex_lock(&fs_info->balance_mutex);
2882         if (!fs_info->balance_ctl) {
2883                 mutex_unlock(&fs_info->balance_mutex);
2884                 return -ENOTCONN;
2885         }
2886
2887         atomic_inc(&fs_info->balance_cancel_req);
2888         /*
2889          * if we are running just wait and return, balance item is
2890          * deleted in btrfs_balance in this case
2891          */
2892         if (atomic_read(&fs_info->balance_running)) {
2893                 mutex_unlock(&fs_info->balance_mutex);
2894                 wait_event(fs_info->balance_wait_q,
2895                            atomic_read(&fs_info->balance_running) == 0);
2896                 mutex_lock(&fs_info->balance_mutex);
2897         } else {
2898                 /* __cancel_balance needs volume_mutex */
2899                 mutex_unlock(&fs_info->balance_mutex);
2900                 mutex_lock(&fs_info->volume_mutex);
2901                 mutex_lock(&fs_info->balance_mutex);
2902
2903                 if (fs_info->balance_ctl)
2904                         __cancel_balance(fs_info);
2905
2906                 mutex_unlock(&fs_info->volume_mutex);
2907         }
2908
2909         BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
2910         atomic_dec(&fs_info->balance_cancel_req);
2911         mutex_unlock(&fs_info->balance_mutex);
2912         return 0;
2913 }
2914
2915 /*
2916  * shrinking a device means finding all of the device extents past
2917  * the new size, and then following the back refs to the chunks.
2918  * The chunk relocation code actually frees the device extent
2919  */
2920 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
2921 {
2922         struct btrfs_trans_handle *trans;
2923         struct btrfs_root *root = device->dev_root;
2924         struct btrfs_dev_extent *dev_extent = NULL;
2925         struct btrfs_path *path;
2926         u64 length;
2927         u64 chunk_tree;
2928         u64 chunk_objectid;
2929         u64 chunk_offset;
2930         int ret;
2931         int slot;
2932         int failed = 0;
2933         bool retried = false;
2934         struct extent_buffer *l;
2935         struct btrfs_key key;
2936         struct btrfs_super_block *super_copy = root->fs_info->super_copy;
2937         u64 old_total = btrfs_super_total_bytes(super_copy);
2938         u64 old_size = device->total_bytes;
2939         u64 diff = device->total_bytes - new_size;
2940
2941         if (new_size >= device->total_bytes)
2942                 return -EINVAL;
2943
2944         path = btrfs_alloc_path();
2945         if (!path)
2946                 return -ENOMEM;
2947
2948         path->reada = 2;
2949
2950         lock_chunks(root);
2951
2952         device->total_bytes = new_size;
2953         if (device->writeable) {
2954                 device->fs_devices->total_rw_bytes -= diff;
2955                 spin_lock(&root->fs_info->free_chunk_lock);
2956                 root->fs_info->free_chunk_space -= diff;
2957                 spin_unlock(&root->fs_info->free_chunk_lock);
2958         }
2959         unlock_chunks(root);
2960
2961 again:
2962         key.objectid = device->devid;
2963         key.offset = (u64)-1;
2964         key.type = BTRFS_DEV_EXTENT_KEY;
2965
2966         while (1) {
2967                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2968                 if (ret < 0)
2969                         goto done;
2970
2971                 ret = btrfs_previous_item(root, path, 0, key.type);
2972                 if (ret < 0)
2973                         goto done;
2974                 if (ret) {
2975                         ret = 0;
2976                         btrfs_release_path(path);
2977                         break;
2978                 }
2979
2980                 l = path->nodes[0];
2981                 slot = path->slots[0];
2982                 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
2983
2984                 if (key.objectid != device->devid) {
2985                         btrfs_release_path(path);
2986                         break;
2987                 }
2988
2989                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2990                 length = btrfs_dev_extent_length(l, dev_extent);
2991
2992                 if (key.offset + length <= new_size) {
2993                         btrfs_release_path(path);
2994                         break;
2995                 }
2996
2997                 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2998                 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2999                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3000                 btrfs_release_path(path);
3001
3002                 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
3003                                            chunk_offset);
3004                 if (ret && ret != -ENOSPC)
3005                         goto done;
3006                 if (ret == -ENOSPC)
3007                         failed++;
3008                 key.offset -= 1;
3009         }
3010
3011         if (failed && !retried) {
3012                 failed = 0;
3013                 retried = true;
3014                 goto again;
3015         } else if (failed && retried) {
3016                 ret = -ENOSPC;
3017                 lock_chunks(root);
3018
3019                 device->total_bytes = old_size;
3020                 if (device->writeable)
3021                         device->fs_devices->total_rw_bytes += diff;
3022                 spin_lock(&root->fs_info->free_chunk_lock);
3023                 root->fs_info->free_chunk_space += diff;
3024                 spin_unlock(&root->fs_info->free_chunk_lock);
3025                 unlock_chunks(root);
3026                 goto done;
3027         }
3028
3029         /* Shrinking succeeded, else we would be at "done". */
3030         trans = btrfs_start_transaction(root, 0);
3031         if (IS_ERR(trans)) {
3032                 ret = PTR_ERR(trans);
3033                 goto done;
3034         }
3035
3036         lock_chunks(root);
3037
3038         device->disk_total_bytes = new_size;
3039         /* Now btrfs_update_device() will change the on-disk size. */
3040         ret = btrfs_update_device(trans, device);
3041         if (ret) {
3042                 unlock_chunks(root);
3043                 btrfs_end_transaction(trans, root);
3044                 goto done;
3045         }
3046         WARN_ON(diff > old_total);
3047         btrfs_set_super_total_bytes(super_copy, old_total - diff);
3048         unlock_chunks(root);
3049         btrfs_end_transaction(trans, root);
3050 done:
3051         btrfs_free_path(path);
3052         return ret;
3053 }
3054
3055 static int btrfs_add_system_chunk(struct btrfs_root *root,
3056                            struct btrfs_key *key,
3057                            struct btrfs_chunk *chunk, int item_size)
3058 {
3059         struct btrfs_super_block *super_copy = root->fs_info->super_copy;
3060         struct btrfs_disk_key disk_key;
3061         u32 array_size;
3062         u8 *ptr;
3063
3064         array_size = btrfs_super_sys_array_size(super_copy);
3065         if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
3066                 return -EFBIG;
3067
3068         ptr = super_copy->sys_chunk_array + array_size;
3069         btrfs_cpu_key_to_disk(&disk_key, key);
3070         memcpy(ptr, &disk_key, sizeof(disk_key));
3071         ptr += sizeof(disk_key);
3072         memcpy(ptr, chunk, item_size);
3073         item_size += sizeof(disk_key);
3074         btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
3075         return 0;
3076 }
3077
3078 /*
3079  * sort the devices in descending order by max_avail, total_avail
3080  */
3081 static int btrfs_cmp_device_info(const void *a, const void *b)
3082 {
3083         const struct btrfs_device_info *di_a = a;
3084         const struct btrfs_device_info *di_b = b;
3085
3086         if (di_a->max_avail > di_b->max_avail)
3087                 return -1;
3088         if (di_a->max_avail < di_b->max_avail)
3089                 return 1;
3090         if (di_a->total_avail > di_b->total_avail)
3091                 return -1;
3092         if (di_a->total_avail < di_b->total_avail)
3093                 return 1;
3094         return 0;
3095 }
3096
3097 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
3098                                struct btrfs_root *extent_root,
3099                                struct map_lookup **map_ret,
3100                                u64 *num_bytes_out, u64 *stripe_size_out,
3101                                u64 start, u64 type)
3102 {
3103         struct btrfs_fs_info *info = extent_root->fs_info;
3104         struct btrfs_fs_devices *fs_devices = info->fs_devices;
3105         struct list_head *cur;
3106         struct map_lookup *map = NULL;
3107         struct extent_map_tree *em_tree;
3108         struct extent_map *em;
3109         struct btrfs_device_info *devices_info = NULL;
3110         u64 total_avail;
3111         int num_stripes;        /* total number of stripes to allocate */
3112         int sub_stripes;        /* sub_stripes info for map */
3113         int dev_stripes;        /* stripes per dev */
3114         int devs_max;           /* max devs to use */
3115         int devs_min;           /* min devs needed */
3116         int devs_increment;     /* ndevs has to be a multiple of this */
3117         int ncopies;            /* how many copies to data has */
3118         int ret;
3119         u64 max_stripe_size;
3120         u64 max_chunk_size;
3121         u64 stripe_size;
3122         u64 num_bytes;
3123         int ndevs;
3124         int i;
3125         int j;
3126
3127         if ((type & BTRFS_BLOCK_GROUP_RAID1) &&
3128             (type & BTRFS_BLOCK_GROUP_DUP)) {
3129                 WARN_ON(1);
3130                 type &= ~BTRFS_BLOCK_GROUP_DUP;
3131         }
3132
3133         if (list_empty(&fs_devices->alloc_list))
3134                 return -ENOSPC;
3135
3136         sub_stripes = 1;
3137         dev_stripes = 1;
3138         devs_increment = 1;
3139         ncopies = 1;
3140         devs_max = 0;   /* 0 == as many as possible */
3141         devs_min = 1;
3142
3143         /*
3144          * define the properties of each RAID type.
3145          * FIXME: move this to a global table and use it in all RAID
3146          * calculation code
3147          */
3148         if (type & (BTRFS_BLOCK_GROUP_DUP)) {
3149                 dev_stripes = 2;
3150                 ncopies = 2;
3151                 devs_max = 1;
3152         } else if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
3153                 devs_min = 2;
3154         } else if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
3155                 devs_increment = 2;
3156                 ncopies = 2;
3157                 devs_max = 2;
3158                 devs_min = 2;
3159         } else if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
3160                 sub_stripes = 2;
3161                 devs_increment = 2;
3162                 ncopies = 2;
3163                 devs_min = 4;
3164         } else {
3165                 devs_max = 1;
3166         }
3167
3168         if (type & BTRFS_BLOCK_GROUP_DATA) {
3169                 max_stripe_size = 1024 * 1024 * 1024;
3170                 max_chunk_size = 10 * max_stripe_size;
3171         } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
3172                 /* for larger filesystems, use larger metadata chunks */
3173                 if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
3174                         max_stripe_size = 1024 * 1024 * 1024;
3175                 else
3176                         max_stripe_size = 256 * 1024 * 1024;
3177                 max_chunk_size = max_stripe_size;
3178         } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
3179                 max_stripe_size = 32 * 1024 * 1024;
3180                 max_chunk_size = 2 * max_stripe_size;
3181         } else {
3182                 printk(KERN_ERR "btrfs: invalid chunk type 0x%llx requested\n",
3183                        type);
3184                 BUG_ON(1);
3185         }
3186
3187         /* we don't want a chunk larger than 10% of writeable space */
3188         max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
3189                              max_chunk_size);
3190
3191         devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
3192                                GFP_NOFS);
3193         if (!devices_info)
3194                 return -ENOMEM;
3195
3196         cur = fs_devices->alloc_list.next;
3197
3198         /*
3199          * in the first pass through the devices list, we gather information
3200          * about the available holes on each device.
3201          */
3202         ndevs = 0;
3203         while (cur != &fs_devices->alloc_list) {
3204                 struct btrfs_device *device;
3205                 u64 max_avail;
3206                 u64 dev_offset;
3207
3208                 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
3209
3210                 cur = cur->next;
3211
3212                 if (!device->writeable) {
3213                         printk(KERN_ERR
3214                                "btrfs: read-only device in alloc_list\n");
3215                         WARN_ON(1);
3216                         continue;
3217                 }
3218
3219                 if (!device->in_fs_metadata)
3220                         continue;
3221
3222                 if (device->total_bytes > device->bytes_used)
3223                         total_avail = device->total_bytes - device->bytes_used;
3224                 else
3225                         total_avail = 0;
3226
3227                 /* If there is no space on this device, skip it. */
3228                 if (total_avail == 0)
3229                         continue;
3230
3231                 ret = find_free_dev_extent(device,
3232                                            max_stripe_size * dev_stripes,
3233                                            &dev_offset, &max_avail);
3234                 if (ret && ret != -ENOSPC)
3235                         goto error;
3236
3237                 if (ret == 0)
3238                         max_avail = max_stripe_size * dev_stripes;
3239
3240                 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
3241                         continue;
3242
3243                 devices_info[ndevs].dev_offset = dev_offset;
3244                 devices_info[ndevs].max_avail = max_avail;
3245                 devices_info[ndevs].total_avail = total_avail;
3246                 devices_info[ndevs].dev = device;
3247                 ++ndevs;
3248         }
3249
3250         /*
3251          * now sort the devices by hole size / available space
3252          */
3253         sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
3254              btrfs_cmp_device_info, NULL);
3255
3256         /* round down to number of usable stripes */
3257         ndevs -= ndevs % devs_increment;
3258
3259         if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
3260                 ret = -ENOSPC;
3261                 goto error;
3262         }
3263
3264         if (devs_max && ndevs > devs_max)
3265                 ndevs = devs_max;
3266         /*
3267          * the primary goal is to maximize the number of stripes, so use as many
3268          * devices as possible, even if the stripes are not maximum sized.
3269          */
3270         stripe_size = devices_info[ndevs-1].max_avail;
3271         num_stripes = ndevs * dev_stripes;
3272
3273         if (stripe_size * num_stripes > max_chunk_size * ncopies) {
3274                 stripe_size = max_chunk_size * ncopies;
3275                 do_div(stripe_size, num_stripes);
3276         }
3277
3278         do_div(stripe_size, dev_stripes);
3279         do_div(stripe_size, BTRFS_STRIPE_LEN);
3280         stripe_size *= BTRFS_STRIPE_LEN;
3281
3282         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
3283         if (!map) {
3284                 ret = -ENOMEM;
3285                 goto error;
3286         }
3287         map->num_stripes = num_stripes;
3288
3289         for (i = 0; i < ndevs; ++i) {
3290                 for (j = 0; j < dev_stripes; ++j) {
3291                         int s = i * dev_stripes + j;
3292                         map->stripes[s].dev = devices_info[i].dev;
3293                         map->stripes[s].physical = devices_info[i].dev_offset +
3294                                                    j * stripe_size;
3295                 }
3296         }
3297         map->sector_size = extent_root->sectorsize;
3298         map->stripe_len = BTRFS_STRIPE_LEN;
3299         map->io_align = BTRFS_STRIPE_LEN;
3300         map->io_width = BTRFS_STRIPE_LEN;
3301         map->type = type;
3302         map->sub_stripes = sub_stripes;
3303
3304         *map_ret = map;
3305         num_bytes = stripe_size * (num_stripes / ncopies);
3306
3307         *stripe_size_out = stripe_size;
3308         *num_bytes_out = num_bytes;
3309
3310         trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
3311
3312         em = alloc_extent_map();
3313         if (!em) {
3314                 ret = -ENOMEM;
3315                 goto error;
3316         }
3317         em->bdev = (struct block_device *)map;
3318         em->start = start;
3319         em->len = num_bytes;
3320         em->block_start = 0;
3321         em->block_len = em->len;
3322
3323         em_tree = &extent_root->fs_info->mapping_tree.map_tree;
3324         write_lock(&em_tree->lock);
3325         ret = add_extent_mapping(em_tree, em);
3326         write_unlock(&em_tree->lock);
3327         BUG_ON(ret);
3328         free_extent_map(em);
3329
3330         ret = btrfs_make_block_group(trans, extent_root, 0, type,
3331                                      BTRFS_FIRST_CHUNK_TREE_OBJECTID,
3332                                      start, num_bytes);
3333         BUG_ON(ret);
3334
3335         for (i = 0; i < map->num_stripes; ++i) {
3336                 struct btrfs_device *device;
3337                 u64 dev_offset;
3338
3339                 device = map->stripes[i].dev;
3340                 dev_offset = map->stripes[i].physical;
3341
3342                 ret = btrfs_alloc_dev_extent(trans, device,
3343                                 info->chunk_root->root_key.objectid,
3344                                 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
3345                                 start, dev_offset, stripe_size);
3346                 BUG_ON(ret);
3347         }
3348
3349         kfree(devices_info);
3350         return 0;
3351
3352 error:
3353         kfree(map);
3354         kfree(devices_info);
3355         return ret;
3356 }
3357
3358 static int __finish_chunk_alloc(struct btrfs_trans_handle *trans,
3359                                 struct btrfs_root *extent_root,
3360                                 struct map_lookup *map, u64 chunk_offset,
3361                                 u64 chunk_size, u64 stripe_size)
3362 {
3363         u64 dev_offset;
3364         struct btrfs_key key;
3365         struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
3366         struct btrfs_device *device;
3367         struct btrfs_chunk *chunk;
3368         struct btrfs_stripe *stripe;
3369         size_t item_size = btrfs_chunk_item_size(map->num_stripes);
3370         int index = 0;
3371         int ret;
3372
3373         chunk = kzalloc(item_size, GFP_NOFS);
3374         if (!chunk)
3375                 return -ENOMEM;
3376
3377         index = 0;
3378         while (index < map->num_stripes) {
3379                 device = map->stripes[index].dev;
3380                 device->bytes_used += stripe_size;
3381                 ret = btrfs_update_device(trans, device);
3382                 BUG_ON(ret);
3383                 index++;
3384         }
3385
3386         spin_lock(&extent_root->fs_info->free_chunk_lock);
3387         extent_root->fs_info->free_chunk_space -= (stripe_size *
3388                                                    map->num_stripes);
3389         spin_unlock(&extent_root->fs_info->free_chunk_lock);
3390
3391         index = 0;
3392         stripe = &chunk->stripe;
3393         while (index < map->num_stripes) {
3394                 device = map->stripes[index].dev;
3395                 dev_offset = map->stripes[index].physical;
3396
3397                 btrfs_set_stack_stripe_devid(stripe, device->devid);
3398                 btrfs_set_stack_stripe_offset(stripe, dev_offset);
3399                 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
3400                 stripe++;
3401                 index++;
3402         }
3403
3404         btrfs_set_stack_chunk_length(chunk, chunk_size);
3405         btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
3406         btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
3407         btrfs_set_stack_chunk_type(chunk, map->type);
3408         btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
3409         btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
3410         btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
3411         btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
3412         btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
3413
3414         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3415         key.type = BTRFS_CHUNK_ITEM_KEY;
3416         key.offset = chunk_offset;
3417
3418         ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
3419         BUG_ON(ret);
3420
3421         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3422                 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
3423                                              item_size);
3424                 BUG_ON(ret);
3425         }
3426
3427         kfree(chunk);
3428         return 0;
3429 }
3430
3431 /*
3432  * Chunk allocation falls into two parts. The first part does works
3433  * that make the new allocated chunk useable, but not do any operation
3434  * that modifies the chunk tree. The second part does the works that
3435  * require modifying the chunk tree. This division is important for the
3436  * bootstrap process of adding storage to a seed btrfs.
3437  */
3438 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
3439                       struct btrfs_root *extent_root, u64 type)
3440 {
3441         u64 chunk_offset;
3442         u64 chunk_size;
3443         u64 stripe_size;
3444         struct map_lookup *map;
3445         struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
3446         int ret;
3447
3448         ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
3449                               &chunk_offset);
3450         if (ret)
3451                 return ret;
3452
3453         ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
3454                                   &stripe_size, chunk_offset, type);
3455         if (ret)
3456                 return ret;
3457
3458         ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
3459                                    chunk_size, stripe_size);
3460         BUG_ON(ret);
3461         return 0;
3462 }
3463
3464 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
3465                                          struct btrfs_root *root,
3466                                          struct btrfs_device *device)
3467 {
3468         u64 chunk_offset;
3469         u64 sys_chunk_offset;
3470         u64 chunk_size;
3471         u64 sys_chunk_size;
3472         u64 stripe_size;
3473         u64 sys_stripe_size;
3474         u64 alloc_profile;
3475         struct map_lookup *map;
3476         struct map_lookup *sys_map;
3477         struct btrfs_fs_info *fs_info = root->fs_info;
3478         struct btrfs_root *extent_root = fs_info->extent_root;
3479         int ret;
3480
3481         ret = find_next_chunk(fs_info->chunk_root,
3482                               BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset);
3483         if (ret)
3484                 return ret;
3485
3486         alloc_profile = BTRFS_BLOCK_GROUP_METADATA |
3487                                 fs_info->avail_metadata_alloc_bits;
3488         alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
3489
3490         ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
3491                                   &stripe_size, chunk_offset, alloc_profile);
3492         BUG_ON(ret);
3493
3494         sys_chunk_offset = chunk_offset + chunk_size;
3495
3496         alloc_profile = BTRFS_BLOCK_GROUP_SYSTEM |
3497                                 fs_info->avail_system_alloc_bits;
3498         alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
3499
3500         ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map,
3501                                   &sys_chunk_size, &sys_stripe_size,
3502                                   sys_chunk_offset, alloc_profile);
3503         BUG_ON(ret);
3504
3505         ret = btrfs_add_device(trans, fs_info->chunk_root, device);
3506         BUG_ON(ret);
3507
3508         /*
3509          * Modifying chunk tree needs allocating new blocks from both
3510          * system block group and metadata block group. So we only can
3511          * do operations require modifying the chunk tree after both
3512          * block groups were created.
3513          */
3514         ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
3515                                    chunk_size, stripe_size);
3516         BUG_ON(ret);
3517
3518         ret = __finish_chunk_alloc(trans, extent_root, sys_map,
3519                                    sys_chunk_offset, sys_chunk_size,
3520                                    sys_stripe_size);
3521         BUG_ON(ret);
3522         return 0;
3523 }
3524
3525 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
3526 {
3527         struct extent_map *em;
3528         struct map_lookup *map;
3529         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
3530         int readonly = 0;
3531         int i;
3532
3533         read_lock(&map_tree->map_tree.lock);
3534         em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
3535         read_unlock(&map_tree->map_tree.lock);
3536         if (!em)
3537                 return 1;
3538
3539         if (btrfs_test_opt(root, DEGRADED)) {
3540                 free_extent_map(em);
3541                 return 0;
3542         }
3543
3544         map = (struct map_lookup *)em->bdev;
3545         for (i = 0; i < map->num_stripes; i++) {
3546                 if (!map->stripes[i].dev->writeable) {
3547                         readonly = 1;
3548                         break;
3549                 }
3550         }
3551         free_extent_map(em);
3552         return readonly;
3553 }
3554
3555 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
3556 {
3557         extent_map_tree_init(&tree->map_tree);
3558 }
3559
3560 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
3561 {
3562         struct extent_map *em;
3563
3564         while (1) {
3565                 write_lock(&tree->map_tree.lock);
3566                 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
3567                 if (em)
3568                         remove_extent_mapping(&tree->map_tree, em);
3569                 write_unlock(&tree->map_tree.lock);
3570                 if (!em)
3571                         break;
3572                 kfree(em->bdev);
3573                 /* once for us */
3574                 free_extent_map(em);
3575                 /* once for the tree */
3576                 free_extent_map(em);
3577         }
3578 }
3579
3580 int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
3581 {
3582         struct extent_map *em;
3583         struct map_lookup *map;
3584         struct extent_map_tree *em_tree = &map_tree->map_tree;
3585         int ret;
3586
3587         read_lock(&em_tree->lock);
3588         em = lookup_extent_mapping(em_tree, logical, len);
3589         read_unlock(&em_tree->lock);
3590         BUG_ON(!em);
3591
3592         BUG_ON(em->start > logical || em->start + em->len < logical);
3593         map = (struct map_lookup *)em->bdev;
3594         if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
3595                 ret = map->num_stripes;
3596         else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
3597                 ret = map->sub_stripes;
3598         else
3599                 ret = 1;
3600         free_extent_map(em);
3601         return ret;
3602 }
3603
3604 static int find_live_mirror(struct map_lookup *map, int first, int num,
3605                             int optimal)
3606 {
3607         int i;
3608         if (map->stripes[optimal].dev->bdev)
3609                 return optimal;
3610         for (i = first; i < first + num; i++) {
3611                 if (map->stripes[i].dev->bdev)
3612                         return i;
3613         }
3614         /* we couldn't find one that doesn't fail.  Just return something
3615          * and the io error handling code will clean up eventually
3616          */
3617         return optimal;
3618 }
3619
3620 static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
3621                              u64 logical, u64 *length,
3622                              struct btrfs_bio **bbio_ret,
3623                              int mirror_num)
3624 {
3625         struct extent_map *em;
3626         struct map_lookup *map;
3627         struct extent_map_tree *em_tree = &map_tree->map_tree;
3628         u64 offset;
3629         u64 stripe_offset;
3630         u64 stripe_end_offset;
3631         u64 stripe_nr;
3632         u64 stripe_nr_orig;
3633         u64 stripe_nr_end;
3634         int stripe_index;
3635         int i;
3636         int ret = 0;
3637         int num_stripes;
3638         int max_errors = 0;
3639         struct btrfs_bio *bbio = NULL;
3640
3641         read_lock(&em_tree->lock);
3642         em = lookup_extent_mapping(em_tree, logical, *length);
3643         read_unlock(&em_tree->lock);
3644
3645         if (!em) {
3646                 printk(KERN_CRIT "unable to find logical %llu len %llu\n",
3647                        (unsigned long long)logical,
3648                        (unsigned long long)*length);
3649                 BUG();
3650         }
3651
3652         BUG_ON(em->start > logical || em->start + em->len < logical);
3653         map = (struct map_lookup *)em->bdev;
3654         offset = logical - em->start;
3655
3656         if (mirror_num > map->num_stripes)
3657                 mirror_num = 0;
3658
3659         stripe_nr = offset;
3660         /*
3661          * stripe_nr counts the total number of stripes we have to stride
3662          * to get to this block
3663          */
3664         do_div(stripe_nr, map->stripe_len);
3665
3666         stripe_offset = stripe_nr * map->stripe_len;
3667         BUG_ON(offset < stripe_offset);
3668
3669         /* stripe_offset is the offset of this block in its stripe*/
3670         stripe_offset = offset - stripe_offset;
3671
3672         if (rw & REQ_DISCARD)
3673                 *length = min_t(u64, em->len - offset, *length);
3674         else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
3675                 /* we limit the length of each bio to what fits in a stripe */
3676                 *length = min_t(u64, em->len - offset,
3677                                 map->stripe_len - stripe_offset);
3678         } else {
3679                 *length = em->len - offset;
3680         }
3681
3682         if (!bbio_ret)
3683                 goto out;
3684
3685         num_stripes = 1;
3686         stripe_index = 0;
3687         stripe_nr_orig = stripe_nr;
3688         stripe_nr_end = (offset + *length + map->stripe_len - 1) &
3689                         (~(map->stripe_len - 1));
3690         do_div(stripe_nr_end, map->stripe_len);
3691         stripe_end_offset = stripe_nr_end * map->stripe_len -
3692                             (offset + *length);
3693         if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3694                 if (rw & REQ_DISCARD)
3695                         num_stripes = min_t(u64, map->num_stripes,
3696                                             stripe_nr_end - stripe_nr_orig);
3697                 stripe_index = do_div(stripe_nr, map->num_stripes);
3698         } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
3699                 if (rw & (REQ_WRITE | REQ_DISCARD))
3700                         num_stripes = map->num_stripes;
3701                 else if (mirror_num)
3702                         stripe_index = mirror_num - 1;
3703                 else {
3704                         stripe_index = find_live_mirror(map, 0,
3705                                             map->num_stripes,
3706                                             current->pid % map->num_stripes);
3707                         mirror_num = stripe_index + 1;
3708                 }
3709
3710         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3711                 if (rw & (REQ_WRITE | REQ_DISCARD)) {
3712                         num_stripes = map->num_stripes;
3713                 } else if (mirror_num) {
3714                         stripe_index = mirror_num - 1;
3715                 } else {
3716                         mirror_num = 1;
3717                 }
3718
3719         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3720                 int factor = map->num_stripes / map->sub_stripes;
3721
3722                 stripe_index = do_div(stripe_nr, factor);
3723                 stripe_index *= map->sub_stripes;
3724
3725                 if (rw & REQ_WRITE)
3726                         num_stripes = map->sub_stripes;
3727                 else if (rw & REQ_DISCARD)
3728                         num_stripes = min_t(u64, map->sub_stripes *
3729                                             (stripe_nr_end - stripe_nr_orig),
3730                                             map->num_stripes);
3731                 else if (mirror_num)
3732                         stripe_index += mirror_num - 1;
3733                 else {
3734                         stripe_index = find_live_mirror(map, stripe_index,
3735                                               map->sub_stripes, stripe_index +
3736                                               current->pid % map->sub_stripes);
3737                         mirror_num = stripe_index + 1;
3738                 }
3739         } else {
3740                 /*
3741                  * after this do_div call, stripe_nr is the number of stripes
3742                  * on this device we have to walk to find the data, and
3743                  * stripe_index is the number of our device in the stripe array
3744                  */
3745                 stripe_index = do_div(stripe_nr, map->num_stripes);
3746                 mirror_num = stripe_index + 1;
3747         }
3748         BUG_ON(stripe_index >= map->num_stripes);
3749
3750         bbio = kzalloc(btrfs_bio_size(num_stripes), GFP_NOFS);
3751         if (!bbio) {
3752                 ret = -ENOMEM;
3753                 goto out;
3754         }
3755         atomic_set(&bbio->error, 0);
3756
3757         if (rw & REQ_DISCARD) {
3758                 int factor = 0;
3759                 int sub_stripes = 0;
3760                 u64 stripes_per_dev = 0;
3761                 u32 remaining_stripes = 0;
3762
3763                 if (map->type &
3764                     (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
3765                         if (map->type & BTRFS_BLOCK_GROUP_RAID0)
3766                                 sub_stripes = 1;
3767                         else
3768                                 sub_stripes = map->sub_stripes;
3769
3770                         factor = map->num_stripes / sub_stripes;
3771                         stripes_per_dev = div_u64_rem(stripe_nr_end -
3772                                                       stripe_nr_orig,
3773                                                       factor,
3774                                                       &remaining_stripes);
3775                 }
3776
3777                 for (i = 0; i < num_stripes; i++) {
3778                         bbio->stripes[i].physical =
3779                                 map->stripes[stripe_index].physical +
3780                                 stripe_offset + stripe_nr * map->stripe_len;
3781                         bbio->stripes[i].dev = map->stripes[stripe_index].dev;
3782
3783                         if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
3784                                          BTRFS_BLOCK_GROUP_RAID10)) {
3785                                 bbio->stripes[i].length = stripes_per_dev *
3786                                                           map->stripe_len;
3787                                 if (i / sub_stripes < remaining_stripes)
3788                                         bbio->stripes[i].length +=
3789                                                 map->stripe_len;
3790                                 if (i < sub_stripes)
3791                                         bbio->stripes[i].length -=
3792                                                 stripe_offset;
3793                                 if ((i / sub_stripes + 1) %
3794                                     sub_stripes == remaining_stripes)
3795                                         bbio->stripes[i].length -=
3796                                                 stripe_end_offset;
3797                                 if (i == sub_stripes - 1)
3798                                         stripe_offset = 0;
3799                         } else
3800                                 bbio->stripes[i].length = *length;
3801
3802                         stripe_index++;
3803                         if (stripe_index == map->num_stripes) {
3804                                 /* This could only happen for RAID0/10 */
3805                                 stripe_index = 0;
3806                                 stripe_nr++;
3807                         }
3808                 }
3809         } else {
3810                 for (i = 0; i < num_stripes; i++) {
3811                         bbio->stripes[i].physical =
3812                                 map->stripes[stripe_index].physical +
3813                                 stripe_offset +
3814                                 stripe_nr * map->stripe_len;
3815                         bbio->stripes[i].dev =
3816                                 map->stripes[stripe_index].dev;
3817                         stripe_index++;
3818                 }
3819         }
3820
3821         if (rw & REQ_WRITE) {
3822                 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
3823                                  BTRFS_BLOCK_GROUP_RAID10 |
3824                                  BTRFS_BLOCK_GROUP_DUP)) {
3825                         max_errors = 1;
3826                 }
3827         }
3828
3829         *bbio_ret = bbio;
3830         bbio->num_stripes = num_stripes;
3831         bbio->max_errors = max_errors;
3832         bbio->mirror_num = mirror_num;
3833 out:
3834         free_extent_map(em);
3835         return ret;
3836 }
3837
3838 int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
3839                       u64 logical, u64 *length,
3840                       struct btrfs_bio **bbio_ret, int mirror_num)
3841 {
3842         return __btrfs_map_block(map_tree, rw, logical, length, bbio_ret,
3843                                  mirror_num);
3844 }
3845
3846 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
3847                      u64 chunk_start, u64 physical, u64 devid,
3848                      u64 **logical, int *naddrs, int *stripe_len)
3849 {
3850         struct extent_map_tree *em_tree = &map_tree->map_tree;
3851         struct extent_map *em;
3852         struct map_lookup *map;
3853         u64 *buf;
3854         u64 bytenr;
3855         u64 length;
3856         u64 stripe_nr;
3857         int i, j, nr = 0;
3858
3859         read_lock(&em_tree->lock);
3860         em = lookup_extent_mapping(em_tree, chunk_start, 1);
3861         read_unlock(&em_tree->lock);
3862
3863         BUG_ON(!em || em->start != chunk_start);
3864         map = (struct map_lookup *)em->bdev;
3865
3866         length = em->len;
3867         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
3868                 do_div(length, map->num_stripes / map->sub_stripes);
3869         else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
3870                 do_div(length, map->num_stripes);
3871
3872         buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
3873         BUG_ON(!buf);
3874
3875         for (i = 0; i < map->num_stripes; i++) {
3876                 if (devid && map->stripes[i].dev->devid != devid)
3877                         continue;
3878                 if (map->stripes[i].physical > physical ||
3879                     map->stripes[i].physical + length <= physical)
3880                         continue;
3881
3882                 stripe_nr = physical - map->stripes[i].physical;
3883                 do_div(stripe_nr, map->stripe_len);
3884
3885                 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3886                         stripe_nr = stripe_nr * map->num_stripes + i;
3887                         do_div(stripe_nr, map->sub_stripes);
3888                 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3889                         stripe_nr = stripe_nr * map->num_stripes + i;
3890                 }
3891                 bytenr = chunk_start + stripe_nr * map->stripe_len;
3892                 WARN_ON(nr >= map->num_stripes);
3893                 for (j = 0; j < nr; j++) {
3894                         if (buf[j] == bytenr)
3895                                 break;
3896                 }
3897                 if (j == nr) {
3898                         WARN_ON(nr >= map->num_stripes);
3899                         buf[nr++] = bytenr;
3900                 }
3901         }
3902
3903         *logical = buf;
3904         *naddrs = nr;
3905         *stripe_len = map->stripe_len;
3906
3907         free_extent_map(em);
3908         return 0;
3909 }
3910
3911 static void btrfs_end_bio(struct bio *bio, int err)
3912 {
3913         struct btrfs_bio *bbio = bio->bi_private;
3914         int is_orig_bio = 0;
3915
3916         if (err)
3917                 atomic_inc(&bbio->error);
3918
3919         if (bio == bbio->orig_bio)
3920                 is_orig_bio = 1;
3921
3922         if (atomic_dec_and_test(&bbio->stripes_pending)) {
3923                 if (!is_orig_bio) {
3924                         bio_put(bio);
3925                         bio = bbio->orig_bio;
3926                 }
3927                 bio->bi_private = bbio->private;
3928                 bio->bi_end_io = bbio->end_io;
3929                 bio->bi_bdev = (struct block_device *)
3930                                         (unsigned long)bbio->mirror_num;
3931                 /* only send an error to the higher layers if it is
3932                  * beyond the tolerance of the multi-bio
3933                  */
3934                 if (atomic_read(&bbio->error) > bbio->max_errors) {
3935                         err = -EIO;
3936                 } else {
3937                         /*
3938                          * this bio is actually up to date, we didn't
3939                          * go over the max number of errors
3940                          */
3941                         set_bit(BIO_UPTODATE, &bio->bi_flags);
3942                         err = 0;
3943                 }
3944                 kfree(bbio);
3945
3946                 bio_endio(bio, err);
3947         } else if (!is_orig_bio) {
3948                 bio_put(bio);
3949         }
3950 }
3951
3952 struct async_sched {
3953         struct bio *bio;
3954         int rw;
3955         struct btrfs_fs_info *info;
3956         struct btrfs_work work;
3957 };
3958
3959 /*
3960  * see run_scheduled_bios for a description of why bios are collected for
3961  * async submit.
3962  *
3963  * This will add one bio to the pending list for a device and make sure
3964  * the work struct is scheduled.
3965  */
3966 static noinline int schedule_bio(struct btrfs_root *root,
3967                                  struct btrfs_device *device,
3968                                  int rw, struct bio *bio)
3969 {
3970         int should_queue = 1;
3971         struct btrfs_pending_bios *pending_bios;
3972
3973         /* don't bother with additional async steps for reads, right now */
3974         if (!(rw & REQ_WRITE)) {
3975                 bio_get(bio);
3976                 btrfsic_submit_bio(rw, bio);
3977                 bio_put(bio);
3978                 return 0;
3979         }
3980
3981         /*
3982          * nr_async_bios allows us to reliably return congestion to the
3983          * higher layers.  Otherwise, the async bio makes it appear we have
3984          * made progress against dirty pages when we've really just put it
3985          * on a queue for later
3986          */
3987         atomic_inc(&root->fs_info->nr_async_bios);
3988         WARN_ON(bio->bi_next);
3989         bio->bi_next = NULL;
3990         bio->bi_rw |= rw;
3991
3992         spin_lock(&device->io_lock);
3993         if (bio->bi_rw & REQ_SYNC)
3994                 pending_bios = &device->pending_sync_bios;
3995         else
3996                 pending_bios = &device->pending_bios;
3997
3998         if (pending_bios->tail)
3999                 pending_bios->tail->bi_next = bio;
4000
4001         pending_bios->tail = bio;
4002         if (!pending_bios->head)
4003                 pending_bios->head = bio;
4004         if (device->running_pending)
4005                 should_queue = 0;
4006
4007         spin_unlock(&device->io_lock);
4008
4009         if (should_queue)
4010                 btrfs_queue_worker(&root->fs_info->submit_workers,
4011                                    &device->work);
4012         return 0;
4013 }
4014
4015 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
4016                   int mirror_num, int async_submit)
4017 {
4018         struct btrfs_mapping_tree *map_tree;
4019         struct btrfs_device *dev;
4020         struct bio *first_bio = bio;
4021         u64 logical = (u64)bio->bi_sector << 9;
4022         u64 length = 0;
4023         u64 map_length;
4024         int ret;
4025         int dev_nr = 0;
4026         int total_devs = 1;
4027         struct btrfs_bio *bbio = NULL;
4028
4029         length = bio->bi_size;
4030         map_tree = &root->fs_info->mapping_tree;
4031         map_length = length;
4032
4033         ret = btrfs_map_block(map_tree, rw, logical, &map_length, &bbio,
4034                               mirror_num);
4035         BUG_ON(ret);
4036
4037         total_devs = bbio->num_stripes;
4038         if (map_length < length) {
4039                 printk(KERN_CRIT "mapping failed logical %llu bio len %llu "
4040                        "len %llu\n", (unsigned long long)logical,
4041                        (unsigned long long)length,
4042                        (unsigned long long)map_length);
4043                 BUG();
4044         }
4045
4046         bbio->orig_bio = first_bio;
4047         bbio->private = first_bio->bi_private;
4048         bbio->end_io = first_bio->bi_end_io;
4049         atomic_set(&bbio->stripes_pending, bbio->num_stripes);
4050
4051         while (dev_nr < total_devs) {
4052                 if (dev_nr < total_devs - 1) {
4053                         bio = bio_clone(first_bio, GFP_NOFS);
4054                         BUG_ON(!bio);
4055                 } else {
4056                         bio = first_bio;
4057                 }
4058                 bio->bi_private = bbio;
4059                 bio->bi_end_io = btrfs_end_bio;
4060                 bio->bi_sector = bbio->stripes[dev_nr].physical >> 9;
4061                 dev = bbio->stripes[dev_nr].dev;
4062                 if (dev && dev->bdev && (rw != WRITE || dev->writeable)) {
4063                         pr_debug("btrfs_map_bio: rw %d, secor=%llu, dev=%lu "
4064                                  "(%s id %llu), size=%u\n", rw,
4065                                  (u64)bio->bi_sector, (u_long)dev->bdev->bd_dev,
4066                                  dev->name, dev->devid, bio->bi_size);
4067                         bio->bi_bdev = dev->bdev;
4068                         if (async_submit)
4069                                 schedule_bio(root, dev, rw, bio);
4070                         else
4071                                 btrfsic_submit_bio(rw, bio);
4072                 } else {
4073                         bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
4074                         bio->bi_sector = logical >> 9;
4075                         bio_endio(bio, -EIO);
4076                 }
4077                 dev_nr++;
4078         }
4079         return 0;
4080 }
4081
4082 struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
4083                                        u8 *uuid, u8 *fsid)
4084 {
4085         struct btrfs_device *device;
4086         struct btrfs_fs_devices *cur_devices;
4087
4088         cur_devices = root->fs_info->fs_devices;
4089         while (cur_devices) {
4090                 if (!fsid ||
4091                     !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
4092                         device = __find_device(&cur_devices->devices,
4093                                                devid, uuid);
4094                         if (device)
4095                                 return device;
4096                 }
4097                 cur_devices = cur_devices->seed;
4098         }
4099         return NULL;
4100 }
4101
4102 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
4103                                             u64 devid, u8 *dev_uuid)
4104 {
4105         struct btrfs_device *device;
4106         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
4107
4108         device = kzalloc(sizeof(*device), GFP_NOFS);
4109         if (!device)
4110                 return NULL;
4111         list_add(&device->dev_list,
4112                  &fs_devices->devices);
4113         device->dev_root = root->fs_info->dev_root;
4114         device->devid = devid;
4115         device->work.func = pending_bios_fn;
4116         device->fs_devices = fs_devices;
4117         device->missing = 1;
4118         fs_devices->num_devices++;
4119         fs_devices->missing_devices++;
4120         spin_lock_init(&device->io_lock);
4121         INIT_LIST_HEAD(&device->dev_alloc_list);
4122         memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
4123         return device;
4124 }
4125
4126 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
4127                           struct extent_buffer *leaf,
4128                           struct btrfs_chunk *chunk)
4129 {
4130         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4131         struct map_lookup *map;
4132         struct extent_map *em;
4133         u64 logical;
4134         u64 length;
4135         u64 devid;
4136         u8 uuid[BTRFS_UUID_SIZE];
4137         int num_stripes;
4138         int ret;
4139         int i;
4140
4141         logical = key->offset;
4142         length = btrfs_chunk_length(leaf, chunk);
4143
4144         read_lock(&map_tree->map_tree.lock);
4145         em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
4146         read_unlock(&map_tree->map_tree.lock);
4147
4148         /* already mapped? */
4149         if (em && em->start <= logical && em->start + em->len > logical) {
4150                 free_extent_map(em);
4151                 return 0;
4152         } else if (em) {
4153                 free_extent_map(em);
4154         }
4155
4156         em = alloc_extent_map();
4157         if (!em)
4158                 return -ENOMEM;
4159         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
4160         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4161         if (!map) {
4162                 free_extent_map(em);
4163                 return -ENOMEM;
4164         }
4165
4166         em->bdev = (struct block_device *)map;
4167         em->start = logical;
4168         em->len = length;
4169         em->block_start = 0;
4170         em->block_len = em->len;
4171
4172         map->num_stripes = num_stripes;
4173         map->io_width = btrfs_chunk_io_width(leaf, chunk);
4174         map->io_align = btrfs_chunk_io_align(leaf, chunk);
4175         map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
4176         map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
4177         map->type = btrfs_chunk_type(leaf, chunk);
4178         map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
4179         for (i = 0; i < num_stripes; i++) {
4180                 map->stripes[i].physical =
4181                         btrfs_stripe_offset_nr(leaf, chunk, i);
4182                 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
4183                 read_extent_buffer(leaf, uuid, (unsigned long)
4184                                    btrfs_stripe_dev_uuid_nr(chunk, i),
4185                                    BTRFS_UUID_SIZE);
4186                 map->stripes[i].dev = btrfs_find_device(root, devid, uuid,
4187                                                         NULL);
4188                 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
4189                         kfree(map);
4190                         free_extent_map(em);
4191                         return -EIO;
4192                 }
4193                 if (!map->stripes[i].dev) {
4194                         map->stripes[i].dev =
4195                                 add_missing_dev(root, devid, uuid);
4196                         if (!map->stripes[i].dev) {
4197                                 kfree(map);
4198                                 free_extent_map(em);
4199                                 return -EIO;
4200                         }
4201                 }
4202                 map->stripes[i].dev->in_fs_metadata = 1;
4203         }
4204
4205         write_lock(&map_tree->map_tree.lock);
4206         ret = add_extent_mapping(&map_tree->map_tree, em);
4207         write_unlock(&map_tree->map_tree.lock);
4208         BUG_ON(ret);
4209         free_extent_map(em);
4210
4211         return 0;
4212 }
4213
4214 static int fill_device_from_item(struct extent_buffer *leaf,
4215                                  struct btrfs_dev_item *dev_item,
4216                                  struct btrfs_device *device)
4217 {
4218         unsigned long ptr;
4219
4220         device->devid = btrfs_device_id(leaf, dev_item);
4221         device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
4222         device->total_bytes = device->disk_total_bytes;
4223         device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
4224         device->type = btrfs_device_type(leaf, dev_item);
4225         device->io_align = btrfs_device_io_align(leaf, dev_item);
4226         device->io_width = btrfs_device_io_width(leaf, dev_item);
4227         device->sector_size = btrfs_device_sector_size(leaf, dev_item);
4228
4229         ptr = (unsigned long)btrfs_device_uuid(dev_item);
4230         read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
4231
4232         return 0;
4233 }
4234
4235 static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
4236 {
4237         struct btrfs_fs_devices *fs_devices;
4238         int ret;
4239
4240         BUG_ON(!mutex_is_locked(&uuid_mutex));
4241
4242         fs_devices = root->fs_info->fs_devices->seed;
4243         while (fs_devices) {
4244                 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
4245                         ret = 0;
4246                         goto out;
4247                 }
4248                 fs_devices = fs_devices->seed;
4249         }
4250
4251         fs_devices = find_fsid(fsid);
4252         if (!fs_devices) {
4253                 ret = -ENOENT;
4254                 goto out;
4255         }
4256
4257         fs_devices = clone_fs_devices(fs_devices);
4258         if (IS_ERR(fs_devices)) {
4259                 ret = PTR_ERR(fs_devices);
4260                 goto out;
4261         }
4262
4263         ret = __btrfs_open_devices(fs_devices, FMODE_READ,
4264                                    root->fs_info->bdev_holder);
4265         if (ret)
4266                 goto out;
4267
4268         if (!fs_devices->seeding) {
4269                 __btrfs_close_devices(fs_devices);
4270                 free_fs_devices(fs_devices);
4271                 ret = -EINVAL;
4272                 goto out;
4273         }
4274
4275         fs_devices->seed = root->fs_info->fs_devices->seed;
4276         root->fs_info->fs_devices->seed = fs_devices;
4277 out:
4278         return ret;
4279 }
4280
4281 static int read_one_dev(struct btrfs_root *root,
4282                         struct extent_buffer *leaf,
4283                         struct btrfs_dev_item *dev_item)
4284 {
4285         struct btrfs_device *device;
4286         u64 devid;
4287         int ret;
4288         u8 fs_uuid[BTRFS_UUID_SIZE];
4289         u8 dev_uuid[BTRFS_UUID_SIZE];
4290
4291         devid = btrfs_device_id(leaf, dev_item);
4292         read_extent_buffer(leaf, dev_uuid,
4293                            (unsigned long)btrfs_device_uuid(dev_item),
4294                            BTRFS_UUID_SIZE);
4295         read_extent_buffer(leaf, fs_uuid,
4296                            (unsigned long)btrfs_device_fsid(dev_item),
4297                            BTRFS_UUID_SIZE);
4298
4299         if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
4300                 ret = open_seed_devices(root, fs_uuid);
4301                 if (ret && !btrfs_test_opt(root, DEGRADED))
4302                         return ret;
4303         }
4304
4305         device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
4306         if (!device || !device->bdev) {
4307                 if (!btrfs_test_opt(root, DEGRADED))
4308                         return -EIO;
4309
4310                 if (!device) {
4311                         printk(KERN_WARNING "warning devid %llu missing\n",
4312                                (unsigned long long)devid);
4313                         device = add_missing_dev(root, devid, dev_uuid);
4314                         if (!device)
4315                                 return -ENOMEM;
4316                 } else if (!device->missing) {
4317                         /*
4318                          * this happens when a device that was properly setup
4319                          * in the device info lists suddenly goes bad.
4320                          * device->bdev is NULL, and so we have to set
4321                          * device->missing to one here
4322                          */
4323                         root->fs_info->fs_devices->missing_devices++;
4324                         device->missing = 1;
4325                 }
4326         }
4327
4328         if (device->fs_devices != root->fs_info->fs_devices) {
4329                 BUG_ON(device->writeable);
4330                 if (device->generation !=
4331                     btrfs_device_generation(leaf, dev_item))
4332                         return -EINVAL;
4333         }
4334
4335         fill_device_from_item(leaf, dev_item, device);
4336         device->dev_root = root->fs_info->dev_root;
4337         device->in_fs_metadata = 1;
4338         if (device->writeable) {
4339                 device->fs_devices->total_rw_bytes += device->total_bytes;
4340                 spin_lock(&root->fs_info->free_chunk_lock);
4341                 root->fs_info->free_chunk_space += device->total_bytes -
4342                         device->bytes_used;
4343                 spin_unlock(&root->fs_info->free_chunk_lock);
4344         }
4345         ret = 0;
4346         return ret;
4347 }
4348
4349 int btrfs_read_sys_array(struct btrfs_root *root)
4350 {
4351         struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4352         struct extent_buffer *sb;
4353         struct btrfs_disk_key *disk_key;
4354         struct btrfs_chunk *chunk;
4355         u8 *ptr;
4356         unsigned long sb_ptr;
4357         int ret = 0;
4358         u32 num_stripes;
4359         u32 array_size;
4360         u32 len = 0;
4361         u32 cur;
4362         struct btrfs_key key;
4363
4364         sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
4365                                           BTRFS_SUPER_INFO_SIZE);
4366         if (!sb)
4367                 return -ENOMEM;
4368         btrfs_set_buffer_uptodate(sb);
4369         btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
4370         /*
4371          * The sb extent buffer is artifical and just used to read the system array.
4372          * btrfs_set_buffer_uptodate() call does not properly mark all it's
4373          * pages up-to-date when the page is larger: extent does not cover the
4374          * whole page and consequently check_page_uptodate does not find all
4375          * the page's extents up-to-date (the hole beyond sb),
4376          * write_extent_buffer then triggers a WARN_ON.
4377          *
4378          * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
4379          * but sb spans only this function. Add an explicit SetPageUptodate call
4380          * to silence the warning eg. on PowerPC 64.
4381          */
4382         if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
4383                 SetPageUptodate(sb->pages[0]);
4384
4385         write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
4386         array_size = btrfs_super_sys_array_size(super_copy);
4387
4388         ptr = super_copy->sys_chunk_array;
4389         sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
4390         cur = 0;
4391
4392         while (cur < array_size) {
4393                 disk_key = (struct btrfs_disk_key *)ptr;
4394                 btrfs_disk_key_to_cpu(&key, disk_key);
4395
4396                 len = sizeof(*disk_key); ptr += len;
4397                 sb_ptr += len;
4398                 cur += len;
4399
4400                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
4401                         chunk = (struct btrfs_chunk *)sb_ptr;
4402                         ret = read_one_chunk(root, &key, sb, chunk);
4403                         if (ret)
4404                                 break;
4405                         num_stripes = btrfs_chunk_num_stripes(sb, chunk);
4406                         len = btrfs_chunk_item_size(num_stripes);
4407                 } else {
4408                         ret = -EIO;
4409                         break;
4410                 }
4411                 ptr += len;
4412                 sb_ptr += len;
4413                 cur += len;
4414         }
4415         free_extent_buffer(sb);
4416         return ret;
4417 }
4418
4419 int btrfs_read_chunk_tree(struct btrfs_root *root)
4420 {
4421         struct btrfs_path *path;
4422         struct extent_buffer *leaf;
4423         struct btrfs_key key;
4424         struct btrfs_key found_key;
4425         int ret;
4426         int slot;
4427
4428         root = root->fs_info->chunk_root;
4429
4430         path = btrfs_alloc_path();
4431         if (!path)
4432                 return -ENOMEM;
4433
4434         mutex_lock(&uuid_mutex);
4435         lock_chunks(root);
4436
4437         /* first we search for all of the device items, and then we
4438          * read in all of the chunk items.  This way we can create chunk
4439          * mappings that reference all of the devices that are afound
4440          */
4441         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
4442         key.offset = 0;
4443         key.type = 0;
4444 again:
4445         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4446         if (ret < 0)
4447                 goto error;
4448         while (1) {
4449                 leaf = path->nodes[0];
4450                 slot = path->slots[0];
4451                 if (slot >= btrfs_header_nritems(leaf)) {
4452                         ret = btrfs_next_leaf(root, path);
4453                         if (ret == 0)
4454                                 continue;
4455                         if (ret < 0)
4456                                 goto error;
4457                         break;
4458                 }
4459                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4460                 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
4461                         if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
4462                                 break;
4463                         if (found_key.type == BTRFS_DEV_ITEM_KEY) {
4464                                 struct btrfs_dev_item *dev_item;
4465                                 dev_item = btrfs_item_ptr(leaf, slot,
4466                                                   struct btrfs_dev_item);
4467                                 ret = read_one_dev(root, leaf, dev_item);
4468                                 if (ret)
4469                                         goto error;
4470                         }
4471                 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
4472                         struct btrfs_chunk *chunk;
4473                         chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
4474                         ret = read_one_chunk(root, &found_key, leaf, chunk);
4475                         if (ret)
4476                                 goto error;
4477                 }
4478                 path->slots[0]++;
4479         }
4480         if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
4481                 key.objectid = 0;
4482                 btrfs_release_path(path);
4483                 goto again;
4484         }
4485         ret = 0;
4486 error:
4487         unlock_chunks(root);
4488         mutex_unlock(&uuid_mutex);
4489
4490         btrfs_free_path(path);
4491         return ret;
4492 }