]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/dax.c
Merge branch 'xfs-dio-fix-4.6' into for-next
[karo-tx-linux.git] / fs / dax.c
1 /*
2  * fs/dax.c - Direct Access filesystem code
3  * Copyright (c) 2013-2014 Intel Corporation
4  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  */
16
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/pmem.h>
29 #include <linux/sched.h>
30 #include <linux/uio.h>
31 #include <linux/vmstat.h>
32 #include <linux/pfn_t.h>
33 #include <linux/sizes.h>
34
35 static long dax_map_atomic(struct block_device *bdev, struct blk_dax_ctl *dax)
36 {
37         struct request_queue *q = bdev->bd_queue;
38         long rc = -EIO;
39
40         dax->addr = (void __pmem *) ERR_PTR(-EIO);
41         if (blk_queue_enter(q, true) != 0)
42                 return rc;
43
44         rc = bdev_direct_access(bdev, dax);
45         if (rc < 0) {
46                 dax->addr = (void __pmem *) ERR_PTR(rc);
47                 blk_queue_exit(q);
48                 return rc;
49         }
50         return rc;
51 }
52
53 static void dax_unmap_atomic(struct block_device *bdev,
54                 const struct blk_dax_ctl *dax)
55 {
56         if (IS_ERR(dax->addr))
57                 return;
58         blk_queue_exit(bdev->bd_queue);
59 }
60
61 /*
62  * dax_clear_blocks() is called from within transaction context from XFS,
63  * and hence this means the stack from this point must follow GFP_NOFS
64  * semantics for all operations.
65  */
66 int dax_clear_blocks(struct inode *inode, sector_t block, long _size)
67 {
68         struct block_device *bdev = inode->i_sb->s_bdev;
69         struct blk_dax_ctl dax = {
70                 .sector = block << (inode->i_blkbits - 9),
71                 .size = _size,
72         };
73
74         might_sleep();
75         do {
76                 long count, sz;
77
78                 count = dax_map_atomic(bdev, &dax);
79                 if (count < 0)
80                         return count;
81                 sz = min_t(long, count, SZ_128K);
82                 clear_pmem(dax.addr, sz);
83                 dax.size -= sz;
84                 dax.sector += sz / 512;
85                 dax_unmap_atomic(bdev, &dax);
86                 cond_resched();
87         } while (dax.size);
88
89         wmb_pmem();
90         return 0;
91 }
92 EXPORT_SYMBOL_GPL(dax_clear_blocks);
93
94 /* the clear_pmem() calls are ordered by a wmb_pmem() in the caller */
95 static void dax_new_buf(void __pmem *addr, unsigned size, unsigned first,
96                 loff_t pos, loff_t end)
97 {
98         loff_t final = end - pos + first; /* The final byte of the buffer */
99
100         if (first > 0)
101                 clear_pmem(addr, first);
102         if (final < size)
103                 clear_pmem(addr + final, size - final);
104 }
105
106 static bool buffer_written(struct buffer_head *bh)
107 {
108         return buffer_mapped(bh) && !buffer_unwritten(bh);
109 }
110
111 /*
112  * When ext4 encounters a hole, it returns without modifying the buffer_head
113  * which means that we can't trust b_size.  To cope with this, we set b_state
114  * to 0 before calling get_block and, if any bit is set, we know we can trust
115  * b_size.  Unfortunate, really, since ext4 knows precisely how long a hole is
116  * and would save us time calling get_block repeatedly.
117  */
118 static bool buffer_size_valid(struct buffer_head *bh)
119 {
120         return bh->b_state != 0;
121 }
122
123
124 static sector_t to_sector(const struct buffer_head *bh,
125                 const struct inode *inode)
126 {
127         sector_t sector = bh->b_blocknr << (inode->i_blkbits - 9);
128
129         return sector;
130 }
131
132 static ssize_t dax_io(struct inode *inode, struct iov_iter *iter,
133                       loff_t start, loff_t end, get_block_t get_block,
134                       struct buffer_head *bh)
135 {
136         loff_t pos = start, max = start, bh_max = start;
137         bool hole = false, need_wmb = false;
138         struct block_device *bdev = NULL;
139         int rw = iov_iter_rw(iter), rc;
140         long map_len = 0;
141         struct blk_dax_ctl dax = {
142                 .addr = (void __pmem *) ERR_PTR(-EIO),
143         };
144
145         if (rw == READ)
146                 end = min(end, i_size_read(inode));
147
148         while (pos < end) {
149                 size_t len;
150                 if (pos == max) {
151                         unsigned blkbits = inode->i_blkbits;
152                         long page = pos >> PAGE_SHIFT;
153                         sector_t block = page << (PAGE_SHIFT - blkbits);
154                         unsigned first = pos - (block << blkbits);
155                         long size;
156
157                         if (pos == bh_max) {
158                                 bh->b_size = PAGE_ALIGN(end - pos);
159                                 bh->b_state = 0;
160                                 rc = get_block(inode, block, bh, rw == WRITE);
161                                 if (rc)
162                                         break;
163                                 if (!buffer_size_valid(bh))
164                                         bh->b_size = 1 << blkbits;
165                                 bh_max = pos - first + bh->b_size;
166                                 bdev = bh->b_bdev;
167                         } else {
168                                 unsigned done = bh->b_size -
169                                                 (bh_max - (pos - first));
170                                 bh->b_blocknr += done >> blkbits;
171                                 bh->b_size -= done;
172                         }
173
174                         hole = rw == READ && !buffer_written(bh);
175                         if (hole) {
176                                 size = bh->b_size - first;
177                         } else {
178                                 dax_unmap_atomic(bdev, &dax);
179                                 dax.sector = to_sector(bh, inode);
180                                 dax.size = bh->b_size;
181                                 map_len = dax_map_atomic(bdev, &dax);
182                                 if (map_len < 0) {
183                                         rc = map_len;
184                                         break;
185                                 }
186                                 if (buffer_unwritten(bh) || buffer_new(bh)) {
187                                         dax_new_buf(dax.addr, map_len, first,
188                                                         pos, end);
189                                         need_wmb = true;
190                                 }
191                                 dax.addr += first;
192                                 size = map_len - first;
193                         }
194                         max = min(pos + size, end);
195                 }
196
197                 if (iov_iter_rw(iter) == WRITE) {
198                         len = copy_from_iter_pmem(dax.addr, max - pos, iter);
199                         need_wmb = true;
200                 } else if (!hole)
201                         len = copy_to_iter((void __force *) dax.addr, max - pos,
202                                         iter);
203                 else
204                         len = iov_iter_zero(max - pos, iter);
205
206                 if (!len) {
207                         rc = -EFAULT;
208                         break;
209                 }
210
211                 pos += len;
212                 if (!IS_ERR(dax.addr))
213                         dax.addr += len;
214         }
215
216         if (need_wmb)
217                 wmb_pmem();
218         dax_unmap_atomic(bdev, &dax);
219
220         return (pos == start) ? rc : pos - start;
221 }
222
223 /**
224  * dax_do_io - Perform I/O to a DAX file
225  * @iocb: The control block for this I/O
226  * @inode: The file which the I/O is directed at
227  * @iter: The addresses to do I/O from or to
228  * @pos: The file offset where the I/O starts
229  * @get_block: The filesystem method used to translate file offsets to blocks
230  * @end_io: A filesystem callback for I/O completion
231  * @flags: See below
232  *
233  * This function uses the same locking scheme as do_blockdev_direct_IO:
234  * If @flags has DIO_LOCKING set, we assume that the i_mutex is held by the
235  * caller for writes.  For reads, we take and release the i_mutex ourselves.
236  * If DIO_LOCKING is not set, the filesystem takes care of its own locking.
237  * As with do_blockdev_direct_IO(), we increment i_dio_count while the I/O
238  * is in progress.
239  */
240 ssize_t dax_do_io(struct kiocb *iocb, struct inode *inode,
241                   struct iov_iter *iter, loff_t pos, get_block_t get_block,
242                   dio_iodone_t end_io, int flags)
243 {
244         struct buffer_head bh;
245         ssize_t retval = -EINVAL;
246         loff_t end = pos + iov_iter_count(iter);
247
248         memset(&bh, 0, sizeof(bh));
249         bh.b_bdev = inode->i_sb->s_bdev;
250
251         if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ) {
252                 struct address_space *mapping = inode->i_mapping;
253                 inode_lock(inode);
254                 retval = filemap_write_and_wait_range(mapping, pos, end - 1);
255                 if (retval) {
256                         inode_unlock(inode);
257                         goto out;
258                 }
259         }
260
261         /* Protects against truncate */
262         if (!(flags & DIO_SKIP_DIO_COUNT))
263                 inode_dio_begin(inode);
264
265         retval = dax_io(inode, iter, pos, end, get_block, &bh);
266
267         if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ)
268                 inode_unlock(inode);
269
270         if (end_io) {
271                 int err;
272
273                 err = end_io(iocb, pos, retval, bh.b_private);
274                 if (err)
275                         retval = err;
276         }
277
278         if (!(flags & DIO_SKIP_DIO_COUNT))
279                 inode_dio_end(inode);
280  out:
281         return retval;
282 }
283 EXPORT_SYMBOL_GPL(dax_do_io);
284
285 /*
286  * The user has performed a load from a hole in the file.  Allocating
287  * a new page in the file would cause excessive storage usage for
288  * workloads with sparse files.  We allocate a page cache page instead.
289  * We'll kick it out of the page cache if it's ever written to,
290  * otherwise it will simply fall out of the page cache under memory
291  * pressure without ever having been dirtied.
292  */
293 static int dax_load_hole(struct address_space *mapping, struct page *page,
294                                                         struct vm_fault *vmf)
295 {
296         unsigned long size;
297         struct inode *inode = mapping->host;
298         if (!page)
299                 page = find_or_create_page(mapping, vmf->pgoff,
300                                                 GFP_KERNEL | __GFP_ZERO);
301         if (!page)
302                 return VM_FAULT_OOM;
303         /* Recheck i_size under page lock to avoid truncate race */
304         size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
305         if (vmf->pgoff >= size) {
306                 unlock_page(page);
307                 page_cache_release(page);
308                 return VM_FAULT_SIGBUS;
309         }
310
311         vmf->page = page;
312         return VM_FAULT_LOCKED;
313 }
314
315 static int copy_user_bh(struct page *to, struct inode *inode,
316                 struct buffer_head *bh, unsigned long vaddr)
317 {
318         struct blk_dax_ctl dax = {
319                 .sector = to_sector(bh, inode),
320                 .size = bh->b_size,
321         };
322         struct block_device *bdev = bh->b_bdev;
323         void *vto;
324
325         if (dax_map_atomic(bdev, &dax) < 0)
326                 return PTR_ERR(dax.addr);
327         vto = kmap_atomic(to);
328         copy_user_page(vto, (void __force *)dax.addr, vaddr, to);
329         kunmap_atomic(vto);
330         dax_unmap_atomic(bdev, &dax);
331         return 0;
332 }
333
334 #define NO_SECTOR -1
335 #define DAX_PMD_INDEX(page_index) (page_index & (PMD_MASK >> PAGE_CACHE_SHIFT))
336
337 static int dax_radix_entry(struct address_space *mapping, pgoff_t index,
338                 sector_t sector, bool pmd_entry, bool dirty)
339 {
340         struct radix_tree_root *page_tree = &mapping->page_tree;
341         pgoff_t pmd_index = DAX_PMD_INDEX(index);
342         int type, error = 0;
343         void *entry;
344
345         WARN_ON_ONCE(pmd_entry && !dirty);
346         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
347
348         spin_lock_irq(&mapping->tree_lock);
349
350         entry = radix_tree_lookup(page_tree, pmd_index);
351         if (entry && RADIX_DAX_TYPE(entry) == RADIX_DAX_PMD) {
352                 index = pmd_index;
353                 goto dirty;
354         }
355
356         entry = radix_tree_lookup(page_tree, index);
357         if (entry) {
358                 type = RADIX_DAX_TYPE(entry);
359                 if (WARN_ON_ONCE(type != RADIX_DAX_PTE &&
360                                         type != RADIX_DAX_PMD)) {
361                         error = -EIO;
362                         goto unlock;
363                 }
364
365                 if (!pmd_entry || type == RADIX_DAX_PMD)
366                         goto dirty;
367
368                 /*
369                  * We only insert dirty PMD entries into the radix tree.  This
370                  * means we don't need to worry about removing a dirty PTE
371                  * entry and inserting a clean PMD entry, thus reducing the
372                  * range we would flush with a follow-up fsync/msync call.
373                  */
374                 radix_tree_delete(&mapping->page_tree, index);
375                 mapping->nrexceptional--;
376         }
377
378         if (sector == NO_SECTOR) {
379                 /*
380                  * This can happen during correct operation if our pfn_mkwrite
381                  * fault raced against a hole punch operation.  If this
382                  * happens the pte that was hole punched will have been
383                  * unmapped and the radix tree entry will have been removed by
384                  * the time we are called, but the call will still happen.  We
385                  * will return all the way up to wp_pfn_shared(), where the
386                  * pte_same() check will fail, eventually causing page fault
387                  * to be retried by the CPU.
388                  */
389                 goto unlock;
390         }
391
392         error = radix_tree_insert(page_tree, index,
393                         RADIX_DAX_ENTRY(sector, pmd_entry));
394         if (error)
395                 goto unlock;
396
397         mapping->nrexceptional++;
398  dirty:
399         if (dirty)
400                 radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY);
401  unlock:
402         spin_unlock_irq(&mapping->tree_lock);
403         return error;
404 }
405
406 static int dax_writeback_one(struct block_device *bdev,
407                 struct address_space *mapping, pgoff_t index, void *entry)
408 {
409         struct radix_tree_root *page_tree = &mapping->page_tree;
410         int type = RADIX_DAX_TYPE(entry);
411         struct radix_tree_node *node;
412         struct blk_dax_ctl dax;
413         void **slot;
414         int ret = 0;
415
416         spin_lock_irq(&mapping->tree_lock);
417         /*
418          * Regular page slots are stabilized by the page lock even
419          * without the tree itself locked.  These unlocked entries
420          * need verification under the tree lock.
421          */
422         if (!__radix_tree_lookup(page_tree, index, &node, &slot))
423                 goto unlock;
424         if (*slot != entry)
425                 goto unlock;
426
427         /* another fsync thread may have already written back this entry */
428         if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
429                 goto unlock;
430
431         if (WARN_ON_ONCE(type != RADIX_DAX_PTE && type != RADIX_DAX_PMD)) {
432                 ret = -EIO;
433                 goto unlock;
434         }
435
436         dax.sector = RADIX_DAX_SECTOR(entry);
437         dax.size = (type == RADIX_DAX_PMD ? PMD_SIZE : PAGE_SIZE);
438         spin_unlock_irq(&mapping->tree_lock);
439
440         /*
441          * We cannot hold tree_lock while calling dax_map_atomic() because it
442          * eventually calls cond_resched().
443          */
444         ret = dax_map_atomic(bdev, &dax);
445         if (ret < 0)
446                 return ret;
447
448         if (WARN_ON_ONCE(ret < dax.size)) {
449                 ret = -EIO;
450                 goto unmap;
451         }
452
453         wb_cache_pmem(dax.addr, dax.size);
454
455         spin_lock_irq(&mapping->tree_lock);
456         radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE);
457         spin_unlock_irq(&mapping->tree_lock);
458  unmap:
459         dax_unmap_atomic(bdev, &dax);
460         return ret;
461
462  unlock:
463         spin_unlock_irq(&mapping->tree_lock);
464         return ret;
465 }
466
467 /*
468  * Flush the mapping to the persistent domain within the byte range of [start,
469  * end]. This is required by data integrity operations to ensure file data is
470  * on persistent storage prior to completion of the operation.
471  */
472 int dax_writeback_mapping_range(struct address_space *mapping, loff_t start,
473                 loff_t end)
474 {
475         struct inode *inode = mapping->host;
476         struct block_device *bdev = inode->i_sb->s_bdev;
477         pgoff_t start_index, end_index, pmd_index;
478         pgoff_t indices[PAGEVEC_SIZE];
479         struct pagevec pvec;
480         bool done = false;
481         int i, ret = 0;
482         void *entry;
483
484         if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
485                 return -EIO;
486
487         start_index = start >> PAGE_CACHE_SHIFT;
488         end_index = end >> PAGE_CACHE_SHIFT;
489         pmd_index = DAX_PMD_INDEX(start_index);
490
491         rcu_read_lock();
492         entry = radix_tree_lookup(&mapping->page_tree, pmd_index);
493         rcu_read_unlock();
494
495         /* see if the start of our range is covered by a PMD entry */
496         if (entry && RADIX_DAX_TYPE(entry) == RADIX_DAX_PMD)
497                 start_index = pmd_index;
498
499         tag_pages_for_writeback(mapping, start_index, end_index);
500
501         pagevec_init(&pvec, 0);
502         while (!done) {
503                 pvec.nr = find_get_entries_tag(mapping, start_index,
504                                 PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
505                                 pvec.pages, indices);
506
507                 if (pvec.nr == 0)
508                         break;
509
510                 for (i = 0; i < pvec.nr; i++) {
511                         if (indices[i] > end_index) {
512                                 done = true;
513                                 break;
514                         }
515
516                         ret = dax_writeback_one(bdev, mapping, indices[i],
517                                         pvec.pages[i]);
518                         if (ret < 0)
519                                 return ret;
520                 }
521         }
522         wmb_pmem();
523         return 0;
524 }
525 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
526
527 static int dax_insert_mapping(struct inode *inode, struct buffer_head *bh,
528                         struct vm_area_struct *vma, struct vm_fault *vmf)
529 {
530         unsigned long vaddr = (unsigned long)vmf->virtual_address;
531         struct address_space *mapping = inode->i_mapping;
532         struct block_device *bdev = bh->b_bdev;
533         struct blk_dax_ctl dax = {
534                 .sector = to_sector(bh, inode),
535                 .size = bh->b_size,
536         };
537         pgoff_t size;
538         int error;
539
540         i_mmap_lock_read(mapping);
541
542         /*
543          * Check truncate didn't happen while we were allocating a block.
544          * If it did, this block may or may not be still allocated to the
545          * file.  We can't tell the filesystem to free it because we can't
546          * take i_mutex here.  In the worst case, the file still has blocks
547          * allocated past the end of the file.
548          */
549         size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
550         if (unlikely(vmf->pgoff >= size)) {
551                 error = -EIO;
552                 goto out;
553         }
554
555         if (dax_map_atomic(bdev, &dax) < 0) {
556                 error = PTR_ERR(dax.addr);
557                 goto out;
558         }
559
560         if (buffer_unwritten(bh) || buffer_new(bh)) {
561                 clear_pmem(dax.addr, PAGE_SIZE);
562                 wmb_pmem();
563         }
564         dax_unmap_atomic(bdev, &dax);
565
566         error = dax_radix_entry(mapping, vmf->pgoff, dax.sector, false,
567                         vmf->flags & FAULT_FLAG_WRITE);
568         if (error)
569                 goto out;
570
571         error = vm_insert_mixed(vma, vaddr, dax.pfn);
572
573  out:
574         i_mmap_unlock_read(mapping);
575
576         return error;
577 }
578
579 /**
580  * __dax_fault - handle a page fault on a DAX file
581  * @vma: The virtual memory area where the fault occurred
582  * @vmf: The description of the fault
583  * @get_block: The filesystem method used to translate file offsets to blocks
584  * @complete_unwritten: The filesystem method used to convert unwritten blocks
585  *      to written so the data written to them is exposed. This is required for
586  *      required by write faults for filesystems that will return unwritten
587  *      extent mappings from @get_block, but it is optional for reads as
588  *      dax_insert_mapping() will always zero unwritten blocks. If the fs does
589  *      not support unwritten extents, the it should pass NULL.
590  *
591  * When a page fault occurs, filesystems may call this helper in their
592  * fault handler for DAX files. __dax_fault() assumes the caller has done all
593  * the necessary locking for the page fault to proceed successfully.
594  */
595 int __dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
596                         get_block_t get_block, dax_iodone_t complete_unwritten)
597 {
598         struct file *file = vma->vm_file;
599         struct address_space *mapping = file->f_mapping;
600         struct inode *inode = mapping->host;
601         struct page *page;
602         struct buffer_head bh;
603         unsigned long vaddr = (unsigned long)vmf->virtual_address;
604         unsigned blkbits = inode->i_blkbits;
605         sector_t block;
606         pgoff_t size;
607         int error;
608         int major = 0;
609
610         size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
611         if (vmf->pgoff >= size)
612                 return VM_FAULT_SIGBUS;
613
614         memset(&bh, 0, sizeof(bh));
615         block = (sector_t)vmf->pgoff << (PAGE_SHIFT - blkbits);
616         bh.b_bdev = inode->i_sb->s_bdev;
617         bh.b_size = PAGE_SIZE;
618
619  repeat:
620         page = find_get_page(mapping, vmf->pgoff);
621         if (page) {
622                 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
623                         page_cache_release(page);
624                         return VM_FAULT_RETRY;
625                 }
626                 if (unlikely(page->mapping != mapping)) {
627                         unlock_page(page);
628                         page_cache_release(page);
629                         goto repeat;
630                 }
631                 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
632                 if (unlikely(vmf->pgoff >= size)) {
633                         /*
634                          * We have a struct page covering a hole in the file
635                          * from a read fault and we've raced with a truncate
636                          */
637                         error = -EIO;
638                         goto unlock_page;
639                 }
640         }
641
642         error = get_block(inode, block, &bh, 0);
643         if (!error && (bh.b_size < PAGE_SIZE))
644                 error = -EIO;           /* fs corruption? */
645         if (error)
646                 goto unlock_page;
647
648         if (!buffer_mapped(&bh) && !buffer_unwritten(&bh) && !vmf->cow_page) {
649                 if (vmf->flags & FAULT_FLAG_WRITE) {
650                         error = get_block(inode, block, &bh, 1);
651                         count_vm_event(PGMAJFAULT);
652                         mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
653                         major = VM_FAULT_MAJOR;
654                         if (!error && (bh.b_size < PAGE_SIZE))
655                                 error = -EIO;
656                         if (error)
657                                 goto unlock_page;
658                 } else {
659                         return dax_load_hole(mapping, page, vmf);
660                 }
661         }
662
663         if (vmf->cow_page) {
664                 struct page *new_page = vmf->cow_page;
665                 if (buffer_written(&bh))
666                         error = copy_user_bh(new_page, inode, &bh, vaddr);
667                 else
668                         clear_user_highpage(new_page, vaddr);
669                 if (error)
670                         goto unlock_page;
671                 vmf->page = page;
672                 if (!page) {
673                         i_mmap_lock_read(mapping);
674                         /* Check we didn't race with truncate */
675                         size = (i_size_read(inode) + PAGE_SIZE - 1) >>
676                                                                 PAGE_SHIFT;
677                         if (vmf->pgoff >= size) {
678                                 i_mmap_unlock_read(mapping);
679                                 error = -EIO;
680                                 goto out;
681                         }
682                 }
683                 return VM_FAULT_LOCKED;
684         }
685
686         /* Check we didn't race with a read fault installing a new page */
687         if (!page && major)
688                 page = find_lock_page(mapping, vmf->pgoff);
689
690         if (page) {
691                 unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
692                                                         PAGE_CACHE_SIZE, 0);
693                 delete_from_page_cache(page);
694                 unlock_page(page);
695                 page_cache_release(page);
696                 page = NULL;
697         }
698
699         /*
700          * If we successfully insert the new mapping over an unwritten extent,
701          * we need to ensure we convert the unwritten extent. If there is an
702          * error inserting the mapping, the filesystem needs to leave it as
703          * unwritten to prevent exposure of the stale underlying data to
704          * userspace, but we still need to call the completion function so
705          * the private resources on the mapping buffer can be released. We
706          * indicate what the callback should do via the uptodate variable, same
707          * as for normal BH based IO completions.
708          */
709         error = dax_insert_mapping(inode, &bh, vma, vmf);
710         if (buffer_unwritten(&bh)) {
711                 if (complete_unwritten)
712                         complete_unwritten(&bh, !error);
713                 else
714                         WARN_ON_ONCE(!(vmf->flags & FAULT_FLAG_WRITE));
715         }
716
717  out:
718         if (error == -ENOMEM)
719                 return VM_FAULT_OOM | major;
720         /* -EBUSY is fine, somebody else faulted on the same PTE */
721         if ((error < 0) && (error != -EBUSY))
722                 return VM_FAULT_SIGBUS | major;
723         return VM_FAULT_NOPAGE | major;
724
725  unlock_page:
726         if (page) {
727                 unlock_page(page);
728                 page_cache_release(page);
729         }
730         goto out;
731 }
732 EXPORT_SYMBOL(__dax_fault);
733
734 /**
735  * dax_fault - handle a page fault on a DAX file
736  * @vma: The virtual memory area where the fault occurred
737  * @vmf: The description of the fault
738  * @get_block: The filesystem method used to translate file offsets to blocks
739  *
740  * When a page fault occurs, filesystems may call this helper in their
741  * fault handler for DAX files.
742  */
743 int dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
744               get_block_t get_block, dax_iodone_t complete_unwritten)
745 {
746         int result;
747         struct super_block *sb = file_inode(vma->vm_file)->i_sb;
748
749         if (vmf->flags & FAULT_FLAG_WRITE) {
750                 sb_start_pagefault(sb);
751                 file_update_time(vma->vm_file);
752         }
753         result = __dax_fault(vma, vmf, get_block, complete_unwritten);
754         if (vmf->flags & FAULT_FLAG_WRITE)
755                 sb_end_pagefault(sb);
756
757         return result;
758 }
759 EXPORT_SYMBOL_GPL(dax_fault);
760
761 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
762 /*
763  * The 'colour' (ie low bits) within a PMD of a page offset.  This comes up
764  * more often than one might expect in the below function.
765  */
766 #define PG_PMD_COLOUR   ((PMD_SIZE >> PAGE_SHIFT) - 1)
767
768 static void __dax_dbg(struct buffer_head *bh, unsigned long address,
769                 const char *reason, const char *fn)
770 {
771         if (bh) {
772                 char bname[BDEVNAME_SIZE];
773                 bdevname(bh->b_bdev, bname);
774                 pr_debug("%s: %s addr: %lx dev %s state %lx start %lld "
775                         "length %zd fallback: %s\n", fn, current->comm,
776                         address, bname, bh->b_state, (u64)bh->b_blocknr,
777                         bh->b_size, reason);
778         } else {
779                 pr_debug("%s: %s addr: %lx fallback: %s\n", fn,
780                         current->comm, address, reason);
781         }
782 }
783
784 #define dax_pmd_dbg(bh, address, reason)        __dax_dbg(bh, address, reason, "dax_pmd")
785
786 int __dax_pmd_fault(struct vm_area_struct *vma, unsigned long address,
787                 pmd_t *pmd, unsigned int flags, get_block_t get_block,
788                 dax_iodone_t complete_unwritten)
789 {
790         struct file *file = vma->vm_file;
791         struct address_space *mapping = file->f_mapping;
792         struct inode *inode = mapping->host;
793         struct buffer_head bh;
794         unsigned blkbits = inode->i_blkbits;
795         unsigned long pmd_addr = address & PMD_MASK;
796         bool write = flags & FAULT_FLAG_WRITE;
797         struct block_device *bdev;
798         pgoff_t size, pgoff;
799         sector_t block;
800         int error, result = 0;
801         bool alloc = false;
802
803         /* dax pmd mappings require pfn_t_devmap() */
804         if (!IS_ENABLED(CONFIG_FS_DAX_PMD))
805                 return VM_FAULT_FALLBACK;
806
807         /* Fall back to PTEs if we're going to COW */
808         if (write && !(vma->vm_flags & VM_SHARED)) {
809                 split_huge_pmd(vma, pmd, address);
810                 dax_pmd_dbg(NULL, address, "cow write");
811                 return VM_FAULT_FALLBACK;
812         }
813         /* If the PMD would extend outside the VMA */
814         if (pmd_addr < vma->vm_start) {
815                 dax_pmd_dbg(NULL, address, "vma start unaligned");
816                 return VM_FAULT_FALLBACK;
817         }
818         if ((pmd_addr + PMD_SIZE) > vma->vm_end) {
819                 dax_pmd_dbg(NULL, address, "vma end unaligned");
820                 return VM_FAULT_FALLBACK;
821         }
822
823         pgoff = linear_page_index(vma, pmd_addr);
824         size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
825         if (pgoff >= size)
826                 return VM_FAULT_SIGBUS;
827         /* If the PMD would cover blocks out of the file */
828         if ((pgoff | PG_PMD_COLOUR) >= size) {
829                 dax_pmd_dbg(NULL, address,
830                                 "offset + huge page size > file size");
831                 return VM_FAULT_FALLBACK;
832         }
833
834         memset(&bh, 0, sizeof(bh));
835         bh.b_bdev = inode->i_sb->s_bdev;
836         block = (sector_t)pgoff << (PAGE_SHIFT - blkbits);
837
838         bh.b_size = PMD_SIZE;
839
840         if (get_block(inode, block, &bh, 0) != 0)
841                 return VM_FAULT_SIGBUS;
842
843         if (!buffer_mapped(&bh) && write) {
844                 if (get_block(inode, block, &bh, 1) != 0)
845                         return VM_FAULT_SIGBUS;
846                 alloc = true;
847         }
848
849         bdev = bh.b_bdev;
850
851         /*
852          * If the filesystem isn't willing to tell us the length of a hole,
853          * just fall back to PTEs.  Calling get_block 512 times in a loop
854          * would be silly.
855          */
856         if (!buffer_size_valid(&bh) || bh.b_size < PMD_SIZE) {
857                 dax_pmd_dbg(&bh, address, "allocated block too small");
858                 return VM_FAULT_FALLBACK;
859         }
860
861         /*
862          * If we allocated new storage, make sure no process has any
863          * zero pages covering this hole
864          */
865         if (alloc) {
866                 loff_t lstart = pgoff << PAGE_SHIFT;
867                 loff_t lend = lstart + PMD_SIZE - 1; /* inclusive */
868
869                 truncate_pagecache_range(inode, lstart, lend);
870         }
871
872         i_mmap_lock_read(mapping);
873
874         /*
875          * If a truncate happened while we were allocating blocks, we may
876          * leave blocks allocated to the file that are beyond EOF.  We can't
877          * take i_mutex here, so just leave them hanging; they'll be freed
878          * when the file is deleted.
879          */
880         size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
881         if (pgoff >= size) {
882                 result = VM_FAULT_SIGBUS;
883                 goto out;
884         }
885         if ((pgoff | PG_PMD_COLOUR) >= size) {
886                 dax_pmd_dbg(&bh, address,
887                                 "offset + huge page size > file size");
888                 goto fallback;
889         }
890
891         if (!write && !buffer_mapped(&bh) && buffer_uptodate(&bh)) {
892                 spinlock_t *ptl;
893                 pmd_t entry;
894                 struct page *zero_page = get_huge_zero_page();
895
896                 if (unlikely(!zero_page)) {
897                         dax_pmd_dbg(&bh, address, "no zero page");
898                         goto fallback;
899                 }
900
901                 ptl = pmd_lock(vma->vm_mm, pmd);
902                 if (!pmd_none(*pmd)) {
903                         spin_unlock(ptl);
904                         dax_pmd_dbg(&bh, address, "pmd already present");
905                         goto fallback;
906                 }
907
908                 dev_dbg(part_to_dev(bdev->bd_part),
909                                 "%s: %s addr: %lx pfn: <zero> sect: %llx\n",
910                                 __func__, current->comm, address,
911                                 (unsigned long long) to_sector(&bh, inode));
912
913                 entry = mk_pmd(zero_page, vma->vm_page_prot);
914                 entry = pmd_mkhuge(entry);
915                 set_pmd_at(vma->vm_mm, pmd_addr, pmd, entry);
916                 result = VM_FAULT_NOPAGE;
917                 spin_unlock(ptl);
918         } else {
919                 struct blk_dax_ctl dax = {
920                         .sector = to_sector(&bh, inode),
921                         .size = PMD_SIZE,
922                 };
923                 long length = dax_map_atomic(bdev, &dax);
924
925                 if (length < 0) {
926                         result = VM_FAULT_SIGBUS;
927                         goto out;
928                 }
929                 if (length < PMD_SIZE) {
930                         dax_pmd_dbg(&bh, address, "dax-length too small");
931                         dax_unmap_atomic(bdev, &dax);
932                         goto fallback;
933                 }
934                 if (pfn_t_to_pfn(dax.pfn) & PG_PMD_COLOUR) {
935                         dax_pmd_dbg(&bh, address, "pfn unaligned");
936                         dax_unmap_atomic(bdev, &dax);
937                         goto fallback;
938                 }
939
940                 if (!pfn_t_devmap(dax.pfn)) {
941                         dax_unmap_atomic(bdev, &dax);
942                         dax_pmd_dbg(&bh, address, "pfn not in memmap");
943                         goto fallback;
944                 }
945
946                 if (buffer_unwritten(&bh) || buffer_new(&bh)) {
947                         clear_pmem(dax.addr, PMD_SIZE);
948                         wmb_pmem();
949                         count_vm_event(PGMAJFAULT);
950                         mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
951                         result |= VM_FAULT_MAJOR;
952                 }
953                 dax_unmap_atomic(bdev, &dax);
954
955                 /*
956                  * For PTE faults we insert a radix tree entry for reads, and
957                  * leave it clean.  Then on the first write we dirty the radix
958                  * tree entry via the dax_pfn_mkwrite() path.  This sequence
959                  * allows the dax_pfn_mkwrite() call to be simpler and avoid a
960                  * call into get_block() to translate the pgoff to a sector in
961                  * order to be able to create a new radix tree entry.
962                  *
963                  * The PMD path doesn't have an equivalent to
964                  * dax_pfn_mkwrite(), though, so for a read followed by a
965                  * write we traverse all the way through __dax_pmd_fault()
966                  * twice.  This means we can just skip inserting a radix tree
967                  * entry completely on the initial read and just wait until
968                  * the write to insert a dirty entry.
969                  */
970                 if (write) {
971                         error = dax_radix_entry(mapping, pgoff, dax.sector,
972                                         true, true);
973                         if (error) {
974                                 dax_pmd_dbg(&bh, address,
975                                                 "PMD radix insertion failed");
976                                 goto fallback;
977                         }
978                 }
979
980                 dev_dbg(part_to_dev(bdev->bd_part),
981                                 "%s: %s addr: %lx pfn: %lx sect: %llx\n",
982                                 __func__, current->comm, address,
983                                 pfn_t_to_pfn(dax.pfn),
984                                 (unsigned long long) dax.sector);
985                 result |= vmf_insert_pfn_pmd(vma, address, pmd,
986                                 dax.pfn, write);
987         }
988
989  out:
990         i_mmap_unlock_read(mapping);
991
992         if (buffer_unwritten(&bh))
993                 complete_unwritten(&bh, !(result & VM_FAULT_ERROR));
994
995         return result;
996
997  fallback:
998         count_vm_event(THP_FAULT_FALLBACK);
999         result = VM_FAULT_FALLBACK;
1000         goto out;
1001 }
1002 EXPORT_SYMBOL_GPL(__dax_pmd_fault);
1003
1004 /**
1005  * dax_pmd_fault - handle a PMD fault on a DAX file
1006  * @vma: The virtual memory area where the fault occurred
1007  * @vmf: The description of the fault
1008  * @get_block: The filesystem method used to translate file offsets to blocks
1009  *
1010  * When a page fault occurs, filesystems may call this helper in their
1011  * pmd_fault handler for DAX files.
1012  */
1013 int dax_pmd_fault(struct vm_area_struct *vma, unsigned long address,
1014                         pmd_t *pmd, unsigned int flags, get_block_t get_block,
1015                         dax_iodone_t complete_unwritten)
1016 {
1017         int result;
1018         struct super_block *sb = file_inode(vma->vm_file)->i_sb;
1019
1020         if (flags & FAULT_FLAG_WRITE) {
1021                 sb_start_pagefault(sb);
1022                 file_update_time(vma->vm_file);
1023         }
1024         result = __dax_pmd_fault(vma, address, pmd, flags, get_block,
1025                                 complete_unwritten);
1026         if (flags & FAULT_FLAG_WRITE)
1027                 sb_end_pagefault(sb);
1028
1029         return result;
1030 }
1031 EXPORT_SYMBOL_GPL(dax_pmd_fault);
1032 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1033
1034 /**
1035  * dax_pfn_mkwrite - handle first write to DAX page
1036  * @vma: The virtual memory area where the fault occurred
1037  * @vmf: The description of the fault
1038  */
1039 int dax_pfn_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
1040 {
1041         struct file *file = vma->vm_file;
1042
1043         /*
1044          * We pass NO_SECTOR to dax_radix_entry() because we expect that a
1045          * RADIX_DAX_PTE entry already exists in the radix tree from a
1046          * previous call to __dax_fault().  We just want to look up that PTE
1047          * entry using vmf->pgoff and make sure the dirty tag is set.  This
1048          * saves us from having to make a call to get_block() here to look
1049          * up the sector.
1050          */
1051         dax_radix_entry(file->f_mapping, vmf->pgoff, NO_SECTOR, false, true);
1052         return VM_FAULT_NOPAGE;
1053 }
1054 EXPORT_SYMBOL_GPL(dax_pfn_mkwrite);
1055
1056 /**
1057  * dax_zero_page_range - zero a range within a page of a DAX file
1058  * @inode: The file being truncated
1059  * @from: The file offset that is being truncated to
1060  * @length: The number of bytes to zero
1061  * @get_block: The filesystem method used to translate file offsets to blocks
1062  *
1063  * This function can be called by a filesystem when it is zeroing part of a
1064  * page in a DAX file.  This is intended for hole-punch operations.  If
1065  * you are truncating a file, the helper function dax_truncate_page() may be
1066  * more convenient.
1067  *
1068  * We work in terms of PAGE_CACHE_SIZE here for commonality with
1069  * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem
1070  * took care of disposing of the unnecessary blocks.  Even if the filesystem
1071  * block size is smaller than PAGE_SIZE, we have to zero the rest of the page
1072  * since the file might be mmapped.
1073  */
1074 int dax_zero_page_range(struct inode *inode, loff_t from, unsigned length,
1075                                                         get_block_t get_block)
1076 {
1077         struct buffer_head bh;
1078         pgoff_t index = from >> PAGE_CACHE_SHIFT;
1079         unsigned offset = from & (PAGE_CACHE_SIZE-1);
1080         int err;
1081
1082         /* Block boundary? Nothing to do */
1083         if (!length)
1084                 return 0;
1085         BUG_ON((offset + length) > PAGE_CACHE_SIZE);
1086
1087         memset(&bh, 0, sizeof(bh));
1088         bh.b_bdev = inode->i_sb->s_bdev;
1089         bh.b_size = PAGE_CACHE_SIZE;
1090         err = get_block(inode, index, &bh, 0);
1091         if (err < 0)
1092                 return err;
1093         if (buffer_written(&bh)) {
1094                 struct block_device *bdev = bh.b_bdev;
1095                 struct blk_dax_ctl dax = {
1096                         .sector = to_sector(&bh, inode),
1097                         .size = PAGE_CACHE_SIZE,
1098                 };
1099
1100                 if (dax_map_atomic(bdev, &dax) < 0)
1101                         return PTR_ERR(dax.addr);
1102                 clear_pmem(dax.addr + offset, length);
1103                 wmb_pmem();
1104                 dax_unmap_atomic(bdev, &dax);
1105         }
1106
1107         return 0;
1108 }
1109 EXPORT_SYMBOL_GPL(dax_zero_page_range);
1110
1111 /**
1112  * dax_truncate_page - handle a partial page being truncated in a DAX file
1113  * @inode: The file being truncated
1114  * @from: The file offset that is being truncated to
1115  * @get_block: The filesystem method used to translate file offsets to blocks
1116  *
1117  * Similar to block_truncate_page(), this function can be called by a
1118  * filesystem when it is truncating a DAX file to handle the partial page.
1119  *
1120  * We work in terms of PAGE_CACHE_SIZE here for commonality with
1121  * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem
1122  * took care of disposing of the unnecessary blocks.  Even if the filesystem
1123  * block size is smaller than PAGE_SIZE, we have to zero the rest of the page
1124  * since the file might be mmapped.
1125  */
1126 int dax_truncate_page(struct inode *inode, loff_t from, get_block_t get_block)
1127 {
1128         unsigned length = PAGE_CACHE_ALIGN(from) - from;
1129         return dax_zero_page_range(inode, from, length, get_block);
1130 }
1131 EXPORT_SYMBOL_GPL(dax_truncate_page);