2 * eCryptfs: Linux filesystem encryption layer
4 * Copyright (C) 1997-2004 Erez Zadok
5 * Copyright (C) 2001-2004 Stony Brook University
6 * Copyright (C) 2004-2007 International Business Machines Corp.
7 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8 * Michael C. Thompson <mcthomps@us.ibm.com>
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 of the
13 * License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/random.h>
30 #include <linux/compiler.h>
31 #include <linux/key.h>
32 #include <linux/namei.h>
33 #include <linux/crypto.h>
34 #include <linux/file.h>
35 #include <linux/scatterlist.h>
36 #include <linux/slab.h>
37 #include <asm/unaligned.h>
38 #include "ecryptfs_kernel.h"
41 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
42 struct page *dst_page, int dst_offset,
43 struct page *src_page, int src_offset, int size,
46 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
47 struct page *dst_page, int dst_offset,
48 struct page *src_page, int src_offset, int size,
53 * @dst: Buffer to take hex character representation of contents of
54 * src; must be at least of size (src_size * 2)
55 * @src: Buffer to be converted to a hex string respresentation
56 * @src_size: number of bytes to convert
58 void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
62 for (x = 0; x < src_size; x++)
63 sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
68 * @dst: Buffer to take the bytes from src hex; must be at least of
70 * @src: Buffer to be converted from a hex string respresentation to raw value
71 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
73 void ecryptfs_from_hex(char *dst, char *src, int dst_size)
78 for (x = 0; x < dst_size; x++) {
80 tmp[1] = src[x * 2 + 1];
81 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
86 * ecryptfs_calculate_md5 - calculates the md5 of @src
87 * @dst: Pointer to 16 bytes of allocated memory
88 * @crypt_stat: Pointer to crypt_stat struct for the current inode
89 * @src: Data to be md5'd
90 * @len: Length of @src
92 * Uses the allocated crypto context that crypt_stat references to
93 * generate the MD5 sum of the contents of src.
95 static int ecryptfs_calculate_md5(char *dst,
96 struct ecryptfs_crypt_stat *crypt_stat,
99 struct scatterlist sg;
100 struct hash_desc desc = {
101 .tfm = crypt_stat->hash_tfm,
102 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
106 mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
107 sg_init_one(&sg, (u8 *)src, len);
109 desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
111 if (IS_ERR(desc.tfm)) {
112 rc = PTR_ERR(desc.tfm);
113 ecryptfs_printk(KERN_ERR, "Error attempting to "
114 "allocate crypto context; rc = [%d]\n",
118 crypt_stat->hash_tfm = desc.tfm;
120 rc = crypto_hash_init(&desc);
123 "%s: Error initializing crypto hash; rc = [%d]\n",
127 rc = crypto_hash_update(&desc, &sg, len);
130 "%s: Error updating crypto hash; rc = [%d]\n",
134 rc = crypto_hash_final(&desc, dst);
137 "%s: Error finalizing crypto hash; rc = [%d]\n",
142 mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
146 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
148 char *chaining_modifier)
150 int cipher_name_len = strlen(cipher_name);
151 int chaining_modifier_len = strlen(chaining_modifier);
152 int algified_name_len;
155 algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
156 (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
157 if (!(*algified_name)) {
161 snprintf((*algified_name), algified_name_len, "%s(%s)",
162 chaining_modifier, cipher_name);
170 * @iv: destination for the derived iv vale
171 * @crypt_stat: Pointer to crypt_stat struct for the current inode
172 * @offset: Offset of the extent whose IV we are to derive
174 * Generate the initialization vector from the given root IV and page
177 * Returns zero on success; non-zero on error.
179 int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
183 char dst[MD5_DIGEST_SIZE];
184 char src[ECRYPTFS_MAX_IV_BYTES + 16];
186 if (unlikely(ecryptfs_verbosity > 0)) {
187 ecryptfs_printk(KERN_DEBUG, "root iv:\n");
188 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
190 /* TODO: It is probably secure to just cast the least
191 * significant bits of the root IV into an unsigned long and
192 * add the offset to that rather than go through all this
193 * hashing business. -Halcrow */
194 memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
195 memset((src + crypt_stat->iv_bytes), 0, 16);
196 snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
197 if (unlikely(ecryptfs_verbosity > 0)) {
198 ecryptfs_printk(KERN_DEBUG, "source:\n");
199 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
201 rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
202 (crypt_stat->iv_bytes + 16));
204 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
205 "MD5 while generating IV for a page\n");
208 memcpy(iv, dst, crypt_stat->iv_bytes);
209 if (unlikely(ecryptfs_verbosity > 0)) {
210 ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
211 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
218 * ecryptfs_init_crypt_stat
219 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
221 * Initialize the crypt_stat structure.
224 ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
226 memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
227 INIT_LIST_HEAD(&crypt_stat->keysig_list);
228 mutex_init(&crypt_stat->keysig_list_mutex);
229 mutex_init(&crypt_stat->cs_mutex);
230 mutex_init(&crypt_stat->cs_tfm_mutex);
231 mutex_init(&crypt_stat->cs_hash_tfm_mutex);
232 crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
236 * ecryptfs_destroy_crypt_stat
237 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
239 * Releases all memory associated with a crypt_stat struct.
241 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
243 struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
246 crypto_free_blkcipher(crypt_stat->tfm);
247 if (crypt_stat->hash_tfm)
248 crypto_free_hash(crypt_stat->hash_tfm);
249 list_for_each_entry_safe(key_sig, key_sig_tmp,
250 &crypt_stat->keysig_list, crypt_stat_list) {
251 list_del(&key_sig->crypt_stat_list);
252 kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
254 memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
257 void ecryptfs_destroy_mount_crypt_stat(
258 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
260 struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
262 if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
264 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
265 list_for_each_entry_safe(auth_tok, auth_tok_tmp,
266 &mount_crypt_stat->global_auth_tok_list,
267 mount_crypt_stat_list) {
268 list_del(&auth_tok->mount_crypt_stat_list);
269 if (auth_tok->global_auth_tok_key
270 && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
271 key_put(auth_tok->global_auth_tok_key);
272 kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
274 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
275 memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
279 * virt_to_scatterlist
280 * @addr: Virtual address
281 * @size: Size of data; should be an even multiple of the block size
282 * @sg: Pointer to scatterlist array; set to NULL to obtain only
283 * the number of scatterlist structs required in array
284 * @sg_size: Max array size
286 * Fills in a scatterlist array with page references for a passed
289 * Returns the number of scatterlist structs in array used
291 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
297 int remainder_of_page;
299 sg_init_table(sg, sg_size);
301 while (size > 0 && i < sg_size) {
302 pg = virt_to_page(addr);
303 offset = offset_in_page(addr);
305 sg_set_page(&sg[i], pg, 0, offset);
306 remainder_of_page = PAGE_CACHE_SIZE - offset;
307 if (size >= remainder_of_page) {
309 sg[i].length = remainder_of_page;
310 addr += remainder_of_page;
311 size -= remainder_of_page;
326 * encrypt_scatterlist
327 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
328 * @dest_sg: Destination of encrypted data
329 * @src_sg: Data to be encrypted
330 * @size: Length of data to be encrypted
331 * @iv: iv to use during encryption
333 * Returns the number of bytes encrypted; negative value on error
335 static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
336 struct scatterlist *dest_sg,
337 struct scatterlist *src_sg, int size,
340 struct blkcipher_desc desc = {
341 .tfm = crypt_stat->tfm,
343 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
347 BUG_ON(!crypt_stat || !crypt_stat->tfm
348 || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
349 if (unlikely(ecryptfs_verbosity > 0)) {
350 ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
351 crypt_stat->key_size);
352 ecryptfs_dump_hex(crypt_stat->key,
353 crypt_stat->key_size);
355 /* Consider doing this once, when the file is opened */
356 mutex_lock(&crypt_stat->cs_tfm_mutex);
357 if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
358 rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
359 crypt_stat->key_size);
360 crypt_stat->flags |= ECRYPTFS_KEY_SET;
363 ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
365 mutex_unlock(&crypt_stat->cs_tfm_mutex);
369 ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size);
370 crypto_blkcipher_encrypt_iv(&desc, dest_sg, src_sg, size);
371 mutex_unlock(&crypt_stat->cs_tfm_mutex);
377 * ecryptfs_lower_offset_for_extent
379 * Convert an eCryptfs page index into a lower byte offset
381 static void ecryptfs_lower_offset_for_extent(loff_t *offset, loff_t extent_num,
382 struct ecryptfs_crypt_stat *crypt_stat)
384 (*offset) = ecryptfs_lower_header_size(crypt_stat)
385 + (crypt_stat->extent_size * extent_num);
389 * ecryptfs_encrypt_extent
390 * @enc_extent_page: Allocated page into which to encrypt the data in
392 * @crypt_stat: crypt_stat containing cryptographic context for the
393 * encryption operation
394 * @page: Page containing plaintext data extent to encrypt
395 * @extent_offset: Page extent offset for use in generating IV
397 * Encrypts one extent of data.
399 * Return zero on success; non-zero otherwise
401 static int ecryptfs_encrypt_extent(struct page *enc_extent_page,
402 struct ecryptfs_crypt_stat *crypt_stat,
404 unsigned long extent_offset)
407 char extent_iv[ECRYPTFS_MAX_IV_BYTES];
410 extent_base = (((loff_t)page->index)
411 * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
412 rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
413 (extent_base + extent_offset));
415 ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
416 "extent [0x%.16llx]; rc = [%d]\n",
417 (unsigned long long)(extent_base + extent_offset), rc);
420 if (unlikely(ecryptfs_verbosity > 0)) {
421 ecryptfs_printk(KERN_DEBUG, "Encrypting extent "
423 ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
424 ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
426 ecryptfs_dump_hex((char *)
428 + (extent_offset * crypt_stat->extent_size)),
431 rc = ecryptfs_encrypt_page_offset(crypt_stat, enc_extent_page, 0,
433 * crypt_stat->extent_size),
434 crypt_stat->extent_size, extent_iv);
436 printk(KERN_ERR "%s: Error attempting to encrypt page with "
437 "page->index = [%ld], extent_offset = [%ld]; "
438 "rc = [%d]\n", __func__, page->index, extent_offset,
443 if (unlikely(ecryptfs_verbosity > 0)) {
444 ecryptfs_printk(KERN_DEBUG, "Encrypt extent [0x%.16llx]; "
446 (unsigned long long)(extent_base + extent_offset), rc);
447 ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
449 ecryptfs_dump_hex((char *)(page_address(enc_extent_page)), 8);
456 * ecryptfs_encrypt_page
457 * @page: Page mapped from the eCryptfs inode for the file; contains
458 * decrypted content that needs to be encrypted (to a temporary
459 * page; not in place) and written out to the lower file
461 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
462 * that eCryptfs pages may straddle the lower pages -- for instance,
463 * if the file was created on a machine with an 8K page size
464 * (resulting in an 8K header), and then the file is copied onto a
465 * host with a 32K page size, then when reading page 0 of the eCryptfs
466 * file, 24K of page 0 of the lower file will be read and decrypted,
467 * and then 8K of page 1 of the lower file will be read and decrypted.
469 * Returns zero on success; negative on error
471 int ecryptfs_encrypt_page(struct page *page)
473 struct inode *ecryptfs_inode;
474 struct ecryptfs_crypt_stat *crypt_stat;
475 char *enc_extent_virt;
476 struct page *enc_extent_page = NULL;
477 loff_t extent_offset;
480 ecryptfs_inode = page->mapping->host;
482 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
483 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
484 enc_extent_page = alloc_page(GFP_USER);
485 if (!enc_extent_page) {
487 ecryptfs_printk(KERN_ERR, "Error allocating memory for "
488 "encrypted extent\n");
491 enc_extent_virt = kmap(enc_extent_page);
492 for (extent_offset = 0;
493 extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
497 rc = ecryptfs_encrypt_extent(enc_extent_page, crypt_stat, page,
500 printk(KERN_ERR "%s: Error encrypting extent; "
501 "rc = [%d]\n", __func__, rc);
504 ecryptfs_lower_offset_for_extent(
505 &offset, ((((loff_t)page->index)
507 / crypt_stat->extent_size))
508 + extent_offset), crypt_stat);
509 rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt,
510 offset, crypt_stat->extent_size);
512 ecryptfs_printk(KERN_ERR, "Error attempting "
513 "to write lower page; rc = [%d]"
520 if (enc_extent_page) {
521 kunmap(enc_extent_page);
522 __free_page(enc_extent_page);
527 static int ecryptfs_decrypt_extent(struct page *page,
528 struct ecryptfs_crypt_stat *crypt_stat,
529 struct page *enc_extent_page,
530 unsigned long extent_offset)
533 char extent_iv[ECRYPTFS_MAX_IV_BYTES];
536 extent_base = (((loff_t)page->index)
537 * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
538 rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
539 (extent_base + extent_offset));
541 ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
542 "extent [0x%.16llx]; rc = [%d]\n",
543 (unsigned long long)(extent_base + extent_offset), rc);
546 if (unlikely(ecryptfs_verbosity > 0)) {
547 ecryptfs_printk(KERN_DEBUG, "Decrypting extent "
549 ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
550 ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
552 ecryptfs_dump_hex((char *)
553 (page_address(enc_extent_page)
554 + (extent_offset * crypt_stat->extent_size)),
557 rc = ecryptfs_decrypt_page_offset(crypt_stat, page,
559 * crypt_stat->extent_size),
561 crypt_stat->extent_size, extent_iv);
563 printk(KERN_ERR "%s: Error attempting to decrypt to page with "
564 "page->index = [%ld], extent_offset = [%ld]; "
565 "rc = [%d]\n", __func__, page->index, extent_offset,
570 if (unlikely(ecryptfs_verbosity > 0)) {
571 ecryptfs_printk(KERN_DEBUG, "Decrypt extent [0x%.16llx]; "
573 (unsigned long long)(extent_base + extent_offset), rc);
574 ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
576 ecryptfs_dump_hex((char *)(page_address(page)
578 * crypt_stat->extent_size)), 8);
585 * ecryptfs_decrypt_page
586 * @page: Page mapped from the eCryptfs inode for the file; data read
587 * and decrypted from the lower file will be written into this
590 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
591 * that eCryptfs pages may straddle the lower pages -- for instance,
592 * if the file was created on a machine with an 8K page size
593 * (resulting in an 8K header), and then the file is copied onto a
594 * host with a 32K page size, then when reading page 0 of the eCryptfs
595 * file, 24K of page 0 of the lower file will be read and decrypted,
596 * and then 8K of page 1 of the lower file will be read and decrypted.
598 * Returns zero on success; negative on error
600 int ecryptfs_decrypt_page(struct page *page)
602 struct inode *ecryptfs_inode;
603 struct ecryptfs_crypt_stat *crypt_stat;
604 char *enc_extent_virt;
605 struct page *enc_extent_page = NULL;
606 unsigned long extent_offset;
609 ecryptfs_inode = page->mapping->host;
611 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
612 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
613 enc_extent_page = alloc_page(GFP_USER);
614 if (!enc_extent_page) {
616 ecryptfs_printk(KERN_ERR, "Error allocating memory for "
617 "encrypted extent\n");
620 enc_extent_virt = kmap(enc_extent_page);
621 for (extent_offset = 0;
622 extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
626 ecryptfs_lower_offset_for_extent(
627 &offset, ((page->index * (PAGE_CACHE_SIZE
628 / crypt_stat->extent_size))
629 + extent_offset), crypt_stat);
630 rc = ecryptfs_read_lower(enc_extent_virt, offset,
631 crypt_stat->extent_size,
634 ecryptfs_printk(KERN_ERR, "Error attempting "
635 "to read lower page; rc = [%d]"
639 rc = ecryptfs_decrypt_extent(page, crypt_stat, enc_extent_page,
642 printk(KERN_ERR "%s: Error encrypting extent; "
643 "rc = [%d]\n", __func__, rc);
648 if (enc_extent_page) {
649 kunmap(enc_extent_page);
650 __free_page(enc_extent_page);
656 * decrypt_scatterlist
657 * @crypt_stat: Cryptographic context
658 * @dest_sg: The destination scatterlist to decrypt into
659 * @src_sg: The source scatterlist to decrypt from
660 * @size: The number of bytes to decrypt
661 * @iv: The initialization vector to use for the decryption
663 * Returns the number of bytes decrypted; negative value on error
665 static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
666 struct scatterlist *dest_sg,
667 struct scatterlist *src_sg, int size,
670 struct blkcipher_desc desc = {
671 .tfm = crypt_stat->tfm,
673 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
677 /* Consider doing this once, when the file is opened */
678 mutex_lock(&crypt_stat->cs_tfm_mutex);
679 rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
680 crypt_stat->key_size);
682 ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
684 mutex_unlock(&crypt_stat->cs_tfm_mutex);
688 ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size);
689 rc = crypto_blkcipher_decrypt_iv(&desc, dest_sg, src_sg, size);
690 mutex_unlock(&crypt_stat->cs_tfm_mutex);
692 ecryptfs_printk(KERN_ERR, "Error decrypting; rc = [%d]\n",
702 * ecryptfs_encrypt_page_offset
703 * @crypt_stat: The cryptographic context
704 * @dst_page: The page to encrypt into
705 * @dst_offset: The offset in the page to encrypt into
706 * @src_page: The page to encrypt from
707 * @src_offset: The offset in the page to encrypt from
708 * @size: The number of bytes to encrypt
709 * @iv: The initialization vector to use for the encryption
711 * Returns the number of bytes encrypted
714 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
715 struct page *dst_page, int dst_offset,
716 struct page *src_page, int src_offset, int size,
719 struct scatterlist src_sg, dst_sg;
721 sg_init_table(&src_sg, 1);
722 sg_init_table(&dst_sg, 1);
724 sg_set_page(&src_sg, src_page, size, src_offset);
725 sg_set_page(&dst_sg, dst_page, size, dst_offset);
726 return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
730 * ecryptfs_decrypt_page_offset
731 * @crypt_stat: The cryptographic context
732 * @dst_page: The page to decrypt into
733 * @dst_offset: The offset in the page to decrypt into
734 * @src_page: The page to decrypt from
735 * @src_offset: The offset in the page to decrypt from
736 * @size: The number of bytes to decrypt
737 * @iv: The initialization vector to use for the decryption
739 * Returns the number of bytes decrypted
742 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
743 struct page *dst_page, int dst_offset,
744 struct page *src_page, int src_offset, int size,
747 struct scatterlist src_sg, dst_sg;
749 sg_init_table(&src_sg, 1);
750 sg_set_page(&src_sg, src_page, size, src_offset);
752 sg_init_table(&dst_sg, 1);
753 sg_set_page(&dst_sg, dst_page, size, dst_offset);
755 return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
758 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
761 * ecryptfs_init_crypt_ctx
762 * @crypt_stat: Uninitialized crypt stats structure
764 * Initialize the crypto context.
766 * TODO: Performance: Keep a cache of initialized cipher contexts;
767 * only init if needed
769 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
774 if (!crypt_stat->cipher) {
775 ecryptfs_printk(KERN_ERR, "No cipher specified\n");
778 ecryptfs_printk(KERN_DEBUG,
779 "Initializing cipher [%s]; strlen = [%d]; "
780 "key_size_bits = [%zd]\n",
781 crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
782 crypt_stat->key_size << 3);
783 if (crypt_stat->tfm) {
787 mutex_lock(&crypt_stat->cs_tfm_mutex);
788 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
789 crypt_stat->cipher, "cbc");
792 crypt_stat->tfm = crypto_alloc_blkcipher(full_alg_name, 0,
794 kfree(full_alg_name);
795 if (IS_ERR(crypt_stat->tfm)) {
796 rc = PTR_ERR(crypt_stat->tfm);
797 crypt_stat->tfm = NULL;
798 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
799 "Error initializing cipher [%s]\n",
803 crypto_blkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
806 mutex_unlock(&crypt_stat->cs_tfm_mutex);
811 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
815 crypt_stat->extent_mask = 0xFFFFFFFF;
816 crypt_stat->extent_shift = 0;
817 if (crypt_stat->extent_size == 0)
819 extent_size_tmp = crypt_stat->extent_size;
820 while ((extent_size_tmp & 0x01) == 0) {
821 extent_size_tmp >>= 1;
822 crypt_stat->extent_mask <<= 1;
823 crypt_stat->extent_shift++;
827 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
829 /* Default values; may be overwritten as we are parsing the
831 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
832 set_extent_mask_and_shift(crypt_stat);
833 crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
834 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
835 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
837 if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
838 crypt_stat->metadata_size =
839 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
841 crypt_stat->metadata_size = PAGE_CACHE_SIZE;
846 * ecryptfs_compute_root_iv
849 * On error, sets the root IV to all 0's.
851 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
854 char dst[MD5_DIGEST_SIZE];
856 BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
857 BUG_ON(crypt_stat->iv_bytes <= 0);
858 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
860 ecryptfs_printk(KERN_WARNING, "Session key not valid; "
861 "cannot generate root IV\n");
864 rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
865 crypt_stat->key_size);
867 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
868 "MD5 while generating root IV\n");
871 memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
874 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
875 crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
880 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
882 get_random_bytes(crypt_stat->key, crypt_stat->key_size);
883 crypt_stat->flags |= ECRYPTFS_KEY_VALID;
884 ecryptfs_compute_root_iv(crypt_stat);
885 if (unlikely(ecryptfs_verbosity > 0)) {
886 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
887 ecryptfs_dump_hex(crypt_stat->key,
888 crypt_stat->key_size);
893 * ecryptfs_copy_mount_wide_flags_to_inode_flags
894 * @crypt_stat: The inode's cryptographic context
895 * @mount_crypt_stat: The mount point's cryptographic context
897 * This function propagates the mount-wide flags to individual inode
900 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
901 struct ecryptfs_crypt_stat *crypt_stat,
902 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
904 if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
905 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
906 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
907 crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
908 if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
909 crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
910 if (mount_crypt_stat->flags
911 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
912 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
913 else if (mount_crypt_stat->flags
914 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
915 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
919 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
920 struct ecryptfs_crypt_stat *crypt_stat,
921 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
923 struct ecryptfs_global_auth_tok *global_auth_tok;
926 mutex_lock(&crypt_stat->keysig_list_mutex);
927 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
929 list_for_each_entry(global_auth_tok,
930 &mount_crypt_stat->global_auth_tok_list,
931 mount_crypt_stat_list) {
932 if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
934 rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
936 printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
942 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
943 mutex_unlock(&crypt_stat->keysig_list_mutex);
948 * ecryptfs_set_default_crypt_stat_vals
949 * @crypt_stat: The inode's cryptographic context
950 * @mount_crypt_stat: The mount point's cryptographic context
952 * Default values in the event that policy does not override them.
954 static void ecryptfs_set_default_crypt_stat_vals(
955 struct ecryptfs_crypt_stat *crypt_stat,
956 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
958 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
960 ecryptfs_set_default_sizes(crypt_stat);
961 strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
962 crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
963 crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
964 crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
965 crypt_stat->mount_crypt_stat = mount_crypt_stat;
969 * ecryptfs_new_file_context
970 * @ecryptfs_inode: The eCryptfs inode
972 * If the crypto context for the file has not yet been established,
973 * this is where we do that. Establishing a new crypto context
974 * involves the following decisions:
975 * - What cipher to use?
976 * - What set of authentication tokens to use?
977 * Here we just worry about getting enough information into the
978 * authentication tokens so that we know that they are available.
979 * We associate the available authentication tokens with the new file
980 * via the set of signatures in the crypt_stat struct. Later, when
981 * the headers are actually written out, we may again defer to
982 * userspace to perform the encryption of the session key; for the
983 * foreseeable future, this will be the case with public key packets.
985 * Returns zero on success; non-zero otherwise
987 int ecryptfs_new_file_context(struct inode *ecryptfs_inode)
989 struct ecryptfs_crypt_stat *crypt_stat =
990 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
991 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
992 &ecryptfs_superblock_to_private(
993 ecryptfs_inode->i_sb)->mount_crypt_stat;
997 ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
998 crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
999 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1001 rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
1004 printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
1005 "to the inode key sigs; rc = [%d]\n", rc);
1009 strlen(mount_crypt_stat->global_default_cipher_name);
1010 memcpy(crypt_stat->cipher,
1011 mount_crypt_stat->global_default_cipher_name,
1013 crypt_stat->cipher[cipher_name_len] = '\0';
1014 crypt_stat->key_size =
1015 mount_crypt_stat->global_default_cipher_key_size;
1016 ecryptfs_generate_new_key(crypt_stat);
1017 rc = ecryptfs_init_crypt_ctx(crypt_stat);
1019 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
1020 "context for cipher [%s]: rc = [%d]\n",
1021 crypt_stat->cipher, rc);
1027 * ecryptfs_validate_marker - check for the ecryptfs marker
1028 * @data: The data block in which to check
1030 * Returns zero if marker found; -EINVAL if not found
1032 static int ecryptfs_validate_marker(char *data)
1036 m_1 = get_unaligned_be32(data);
1037 m_2 = get_unaligned_be32(data + 4);
1038 if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
1040 ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
1041 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
1042 MAGIC_ECRYPTFS_MARKER);
1043 ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
1044 "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
1048 struct ecryptfs_flag_map_elem {
1053 /* Add support for additional flags by adding elements here. */
1054 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
1055 {0x00000001, ECRYPTFS_ENABLE_HMAC},
1056 {0x00000002, ECRYPTFS_ENCRYPTED},
1057 {0x00000004, ECRYPTFS_METADATA_IN_XATTR},
1058 {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
1062 * ecryptfs_process_flags
1063 * @crypt_stat: The cryptographic context
1064 * @page_virt: Source data to be parsed
1065 * @bytes_read: Updated with the number of bytes read
1067 * Returns zero on success; non-zero if the flag set is invalid
1069 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
1070 char *page_virt, int *bytes_read)
1076 flags = get_unaligned_be32(page_virt);
1077 for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1078 / sizeof(struct ecryptfs_flag_map_elem))); i++)
1079 if (flags & ecryptfs_flag_map[i].file_flag) {
1080 crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
1082 crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
1083 /* Version is in top 8 bits of the 32-bit flag vector */
1084 crypt_stat->file_version = ((flags >> 24) & 0xFF);
1090 * write_ecryptfs_marker
1091 * @page_virt: The pointer to in a page to begin writing the marker
1092 * @written: Number of bytes written
1094 * Marker = 0x3c81b7f5
1096 static void write_ecryptfs_marker(char *page_virt, size_t *written)
1100 get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1101 m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
1102 put_unaligned_be32(m_1, page_virt);
1103 page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
1104 put_unaligned_be32(m_2, page_virt);
1105 (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1108 void ecryptfs_write_crypt_stat_flags(char *page_virt,
1109 struct ecryptfs_crypt_stat *crypt_stat,
1115 for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1116 / sizeof(struct ecryptfs_flag_map_elem))); i++)
1117 if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
1118 flags |= ecryptfs_flag_map[i].file_flag;
1119 /* Version is in top 8 bits of the 32-bit flag vector */
1120 flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
1121 put_unaligned_be32(flags, page_virt);
1125 struct ecryptfs_cipher_code_str_map_elem {
1126 char cipher_str[16];
1130 /* Add support for additional ciphers by adding elements here. The
1131 * cipher_code is whatever OpenPGP applicatoins use to identify the
1132 * ciphers. List in order of probability. */
1133 static struct ecryptfs_cipher_code_str_map_elem
1134 ecryptfs_cipher_code_str_map[] = {
1135 {"aes",RFC2440_CIPHER_AES_128 },
1136 {"blowfish", RFC2440_CIPHER_BLOWFISH},
1137 {"des3_ede", RFC2440_CIPHER_DES3_EDE},
1138 {"cast5", RFC2440_CIPHER_CAST_5},
1139 {"twofish", RFC2440_CIPHER_TWOFISH},
1140 {"cast6", RFC2440_CIPHER_CAST_6},
1141 {"aes", RFC2440_CIPHER_AES_192},
1142 {"aes", RFC2440_CIPHER_AES_256}
1146 * ecryptfs_code_for_cipher_string
1147 * @cipher_name: The string alias for the cipher
1148 * @key_bytes: Length of key in bytes; used for AES code selection
1150 * Returns zero on no match, or the cipher code on match
1152 u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
1156 struct ecryptfs_cipher_code_str_map_elem *map =
1157 ecryptfs_cipher_code_str_map;
1159 if (strcmp(cipher_name, "aes") == 0) {
1160 switch (key_bytes) {
1162 code = RFC2440_CIPHER_AES_128;
1165 code = RFC2440_CIPHER_AES_192;
1168 code = RFC2440_CIPHER_AES_256;
1171 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1172 if (strcmp(cipher_name, map[i].cipher_str) == 0) {
1173 code = map[i].cipher_code;
1181 * ecryptfs_cipher_code_to_string
1182 * @str: Destination to write out the cipher name
1183 * @cipher_code: The code to convert to cipher name string
1185 * Returns zero on success
1187 int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
1193 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1194 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
1195 strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
1196 if (str[0] == '\0') {
1197 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
1198 "[%d]\n", cipher_code);
1204 int ecryptfs_read_and_validate_header_region(struct inode *inode)
1206 u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1207 u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1210 rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES,
1212 if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1213 return rc >= 0 ? -EINVAL : rc;
1214 rc = ecryptfs_validate_marker(marker);
1216 ecryptfs_i_size_init(file_size, inode);
1221 ecryptfs_write_header_metadata(char *virt,
1222 struct ecryptfs_crypt_stat *crypt_stat,
1225 u32 header_extent_size;
1226 u16 num_header_extents_at_front;
1228 header_extent_size = (u32)crypt_stat->extent_size;
1229 num_header_extents_at_front =
1230 (u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
1231 put_unaligned_be32(header_extent_size, virt);
1233 put_unaligned_be16(num_header_extents_at_front, virt);
1237 struct kmem_cache *ecryptfs_header_cache;
1240 * ecryptfs_write_headers_virt
1241 * @page_virt: The virtual address to write the headers to
1242 * @max: The size of memory allocated at page_virt
1243 * @size: Set to the number of bytes written by this function
1244 * @crypt_stat: The cryptographic context
1245 * @ecryptfs_dentry: The eCryptfs dentry
1250 * Octets 0-7: Unencrypted file size (big-endian)
1251 * Octets 8-15: eCryptfs special marker
1252 * Octets 16-19: Flags
1253 * Octet 16: File format version number (between 0 and 255)
1254 * Octets 17-18: Reserved
1255 * Octet 19: Bit 1 (lsb): Reserved
1257 * Bits 3-8: Reserved
1258 * Octets 20-23: Header extent size (big-endian)
1259 * Octets 24-25: Number of header extents at front of file
1261 * Octet 26: Begin RFC 2440 authentication token packet set
1263 * Lower data (CBC encrypted)
1265 * Lower data (CBC encrypted)
1268 * Returns zero on success
1270 static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1272 struct ecryptfs_crypt_stat *crypt_stat,
1273 struct dentry *ecryptfs_dentry)
1279 offset = ECRYPTFS_FILE_SIZE_BYTES;
1280 write_ecryptfs_marker((page_virt + offset), &written);
1282 ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
1285 ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1288 rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1289 ecryptfs_dentry, &written,
1292 ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1293 "set; rc = [%d]\n", rc);
1302 ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode,
1303 char *virt, size_t virt_len)
1307 rc = ecryptfs_write_lower(ecryptfs_inode, virt,
1310 printk(KERN_ERR "%s: Error attempting to write header "
1311 "information to lower file; rc = [%d]\n", __func__, rc);
1318 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1319 char *page_virt, size_t size)
1323 rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt,
1328 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1333 page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1335 return (unsigned long) page_address(page);
1340 * ecryptfs_write_metadata
1341 * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
1342 * @ecryptfs_inode: The newly created eCryptfs inode
1344 * Write the file headers out. This will likely involve a userspace
1345 * callout, in which the session key is encrypted with one or more
1346 * public keys and/or the passphrase necessary to do the encryption is
1347 * retrieved via a prompt. Exactly what happens at this point should
1348 * be policy-dependent.
1350 * Returns zero on success; non-zero on error
1352 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
1353 struct inode *ecryptfs_inode)
1355 struct ecryptfs_crypt_stat *crypt_stat =
1356 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1363 if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1364 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1365 printk(KERN_ERR "Key is invalid; bailing out\n");
1370 printk(KERN_WARNING "%s: Encrypted flag not set\n",
1375 virt_len = crypt_stat->metadata_size;
1376 order = get_order(virt_len);
1377 /* Released in this function */
1378 virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1380 printk(KERN_ERR "%s: Out of memory\n", __func__);
1384 /* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
1385 rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1388 printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1392 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1393 rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, virt,
1396 rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt,
1399 printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1400 "rc = [%d]\n", __func__, rc);
1404 free_pages((unsigned long)virt, order);
1409 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1410 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1411 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1412 char *virt, int *bytes_read,
1413 int validate_header_size)
1416 u32 header_extent_size;
1417 u16 num_header_extents_at_front;
1419 header_extent_size = get_unaligned_be32(virt);
1420 virt += sizeof(__be32);
1421 num_header_extents_at_front = get_unaligned_be16(virt);
1422 crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
1423 * (size_t)header_extent_size));
1424 (*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1425 if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1426 && (crypt_stat->metadata_size
1427 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1429 printk(KERN_WARNING "Invalid header size: [%zd]\n",
1430 crypt_stat->metadata_size);
1436 * set_default_header_data
1437 * @crypt_stat: The cryptographic context
1439 * For version 0 file format; this function is only for backwards
1440 * compatibility for files created with the prior versions of
1443 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1445 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1448 void ecryptfs_i_size_init(const char *page_virt, struct inode *inode)
1450 struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
1451 struct ecryptfs_crypt_stat *crypt_stat;
1454 crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
1456 &ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
1457 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) {
1458 file_size = i_size_read(ecryptfs_inode_to_lower(inode));
1459 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1460 file_size += crypt_stat->metadata_size;
1462 file_size = get_unaligned_be64(page_virt);
1463 i_size_write(inode, (loff_t)file_size);
1464 crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED;
1468 * ecryptfs_read_headers_virt
1469 * @page_virt: The virtual address into which to read the headers
1470 * @crypt_stat: The cryptographic context
1471 * @ecryptfs_dentry: The eCryptfs dentry
1472 * @validate_header_size: Whether to validate the header size while reading
1474 * Read/parse the header data. The header format is detailed in the
1475 * comment block for the ecryptfs_write_headers_virt() function.
1477 * Returns zero on success
1479 static int ecryptfs_read_headers_virt(char *page_virt,
1480 struct ecryptfs_crypt_stat *crypt_stat,
1481 struct dentry *ecryptfs_dentry,
1482 int validate_header_size)
1488 ecryptfs_set_default_sizes(crypt_stat);
1489 crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1490 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1491 offset = ECRYPTFS_FILE_SIZE_BYTES;
1492 rc = ecryptfs_validate_marker(page_virt + offset);
1495 if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED))
1496 ecryptfs_i_size_init(page_virt, ecryptfs_dentry->d_inode);
1497 offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1498 rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
1501 ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
1504 if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1505 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1506 "file version [%d] is supported by this "
1507 "version of eCryptfs\n",
1508 crypt_stat->file_version,
1509 ECRYPTFS_SUPPORTED_FILE_VERSION);
1513 offset += bytes_read;
1514 if (crypt_stat->file_version >= 1) {
1515 rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1516 &bytes_read, validate_header_size);
1518 ecryptfs_printk(KERN_WARNING, "Error reading header "
1519 "metadata; rc = [%d]\n", rc);
1521 offset += bytes_read;
1523 set_default_header_data(crypt_stat);
1524 rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1531 * ecryptfs_read_xattr_region
1532 * @page_virt: The vitual address into which to read the xattr data
1533 * @ecryptfs_inode: The eCryptfs inode
1535 * Attempts to read the crypto metadata from the extended attribute
1536 * region of the lower file.
1538 * Returns zero on success; non-zero on error
1540 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1542 struct dentry *lower_dentry =
1543 ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_dentry;
1547 size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME,
1548 page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1550 if (unlikely(ecryptfs_verbosity > 0))
1551 printk(KERN_INFO "Error attempting to read the [%s] "
1552 "xattr from the lower file; return value = "
1553 "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1561 int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry,
1562 struct inode *inode)
1564 u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1565 u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1568 rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
1569 ECRYPTFS_XATTR_NAME, file_size,
1570 ECRYPTFS_SIZE_AND_MARKER_BYTES);
1571 if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1572 return rc >= 0 ? -EINVAL : rc;
1573 rc = ecryptfs_validate_marker(marker);
1575 ecryptfs_i_size_init(file_size, inode);
1580 * ecryptfs_read_metadata
1582 * Common entry point for reading file metadata. From here, we could
1583 * retrieve the header information from the header region of the file,
1584 * the xattr region of the file, or some other repostory that is
1585 * stored separately from the file itself. The current implementation
1586 * supports retrieving the metadata information from the file contents
1587 * and from the xattr region.
1589 * Returns zero if valid headers found and parsed; non-zero otherwise
1591 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1594 char *page_virt = NULL;
1595 struct inode *ecryptfs_inode = ecryptfs_dentry->d_inode;
1596 struct ecryptfs_crypt_stat *crypt_stat =
1597 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1598 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1599 &ecryptfs_superblock_to_private(
1600 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1602 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1604 /* Read the first page from the underlying file */
1605 page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER);
1608 printk(KERN_ERR "%s: Unable to allocate page_virt\n",
1612 rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1615 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1617 ECRYPTFS_VALIDATE_HEADER_SIZE);
1619 memset(page_virt, 0, PAGE_CACHE_SIZE);
1620 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1622 printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1623 "file header region or xattr region\n");
1627 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1629 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1631 printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1632 "file xattr region either\n");
1635 if (crypt_stat->mount_crypt_stat->flags
1636 & ECRYPTFS_XATTR_METADATA_ENABLED) {
1637 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1639 printk(KERN_WARNING "Attempt to access file with "
1640 "crypto metadata only in the extended attribute "
1641 "region, but eCryptfs was mounted without "
1642 "xattr support enabled. eCryptfs will not treat "
1643 "this like an encrypted file.\n");
1649 memset(page_virt, 0, PAGE_CACHE_SIZE);
1650 kmem_cache_free(ecryptfs_header_cache, page_virt);
1656 * ecryptfs_encrypt_filename - encrypt filename
1658 * CBC-encrypts the filename. We do not want to encrypt the same
1659 * filename with the same key and IV, which may happen with hard
1660 * links, so we prepend random bits to each filename.
1662 * Returns zero on success; non-zero otherwise
1665 ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1666 struct ecryptfs_crypt_stat *crypt_stat,
1667 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1671 filename->encrypted_filename = NULL;
1672 filename->encrypted_filename_size = 0;
1673 if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
1674 || (mount_crypt_stat && (mount_crypt_stat->flags
1675 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
1677 size_t remaining_bytes;
1679 rc = ecryptfs_write_tag_70_packet(
1681 &filename->encrypted_filename_size,
1682 mount_crypt_stat, NULL,
1683 filename->filename_size);
1685 printk(KERN_ERR "%s: Error attempting to get packet "
1686 "size for tag 72; rc = [%d]\n", __func__,
1688 filename->encrypted_filename_size = 0;
1691 filename->encrypted_filename =
1692 kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1693 if (!filename->encrypted_filename) {
1694 printk(KERN_ERR "%s: Out of memory whilst attempting "
1695 "to kmalloc [%zd] bytes\n", __func__,
1696 filename->encrypted_filename_size);
1700 remaining_bytes = filename->encrypted_filename_size;
1701 rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1706 filename->filename_size);
1708 printk(KERN_ERR "%s: Error attempting to generate "
1709 "tag 70 packet; rc = [%d]\n", __func__,
1711 kfree(filename->encrypted_filename);
1712 filename->encrypted_filename = NULL;
1713 filename->encrypted_filename_size = 0;
1716 filename->encrypted_filename_size = packet_size;
1718 printk(KERN_ERR "%s: No support for requested filename "
1719 "encryption method in this release\n", __func__);
1727 static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1728 const char *name, size_t name_size)
1732 (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1733 if (!(*copied_name)) {
1737 memcpy((void *)(*copied_name), (void *)name, name_size);
1738 (*copied_name)[(name_size)] = '\0'; /* Only for convenience
1739 * in printing out the
1742 (*copied_name_size) = name_size;
1748 * ecryptfs_process_key_cipher - Perform key cipher initialization.
1749 * @key_tfm: Crypto context for key material, set by this function
1750 * @cipher_name: Name of the cipher
1751 * @key_size: Size of the key in bytes
1753 * Returns zero on success. Any crypto_tfm structs allocated here
1754 * should be released by other functions, such as on a superblock put
1755 * event, regardless of whether this function succeeds for fails.
1758 ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm,
1759 char *cipher_name, size_t *key_size)
1761 char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1762 char *full_alg_name = NULL;
1766 if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1768 printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1769 "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1772 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1776 *key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1777 if (IS_ERR(*key_tfm)) {
1778 rc = PTR_ERR(*key_tfm);
1779 printk(KERN_ERR "Unable to allocate crypto cipher with name "
1780 "[%s]; rc = [%d]\n", full_alg_name, rc);
1783 crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
1784 if (*key_size == 0) {
1785 struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);
1787 *key_size = alg->max_keysize;
1789 get_random_bytes(dummy_key, *key_size);
1790 rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
1792 printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1793 "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
1799 kfree(full_alg_name);
1803 struct kmem_cache *ecryptfs_key_tfm_cache;
1804 static struct list_head key_tfm_list;
1805 struct mutex key_tfm_list_mutex;
1807 int __init ecryptfs_init_crypto(void)
1809 mutex_init(&key_tfm_list_mutex);
1810 INIT_LIST_HEAD(&key_tfm_list);
1815 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1817 * Called only at module unload time
1819 int ecryptfs_destroy_crypto(void)
1821 struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1823 mutex_lock(&key_tfm_list_mutex);
1824 list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1826 list_del(&key_tfm->key_tfm_list);
1827 if (key_tfm->key_tfm)
1828 crypto_free_blkcipher(key_tfm->key_tfm);
1829 kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1831 mutex_unlock(&key_tfm_list_mutex);
1836 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1839 struct ecryptfs_key_tfm *tmp_tfm;
1842 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1844 tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1845 if (key_tfm != NULL)
1846 (*key_tfm) = tmp_tfm;
1849 printk(KERN_ERR "Error attempting to allocate from "
1850 "ecryptfs_key_tfm_cache\n");
1853 mutex_init(&tmp_tfm->key_tfm_mutex);
1854 strncpy(tmp_tfm->cipher_name, cipher_name,
1855 ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1856 tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1857 tmp_tfm->key_size = key_size;
1858 rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1859 tmp_tfm->cipher_name,
1860 &tmp_tfm->key_size);
1862 printk(KERN_ERR "Error attempting to initialize key TFM "
1863 "cipher with name = [%s]; rc = [%d]\n",
1864 tmp_tfm->cipher_name, rc);
1865 kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1866 if (key_tfm != NULL)
1870 list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1876 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1877 * @cipher_name: the name of the cipher to search for
1878 * @key_tfm: set to corresponding tfm if found
1880 * Searches for cached key_tfm matching @cipher_name
1881 * Must be called with &key_tfm_list_mutex held
1882 * Returns 1 if found, with @key_tfm set
1883 * Returns 0 if not found, with @key_tfm set to NULL
1885 int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1887 struct ecryptfs_key_tfm *tmp_key_tfm;
1889 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1891 list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1892 if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1894 (*key_tfm) = tmp_key_tfm;
1904 * ecryptfs_get_tfm_and_mutex_for_cipher_name
1906 * @tfm: set to cached tfm found, or new tfm created
1907 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1908 * @cipher_name: the name of the cipher to search for and/or add
1910 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1911 * Searches for cached item first, and creates new if not found.
1912 * Returns 0 on success, non-zero if adding new cipher failed
1914 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm,
1915 struct mutex **tfm_mutex,
1918 struct ecryptfs_key_tfm *key_tfm;
1922 (*tfm_mutex) = NULL;
1924 mutex_lock(&key_tfm_list_mutex);
1925 if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1926 rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1928 printk(KERN_ERR "Error adding new key_tfm to list; "
1933 (*tfm) = key_tfm->key_tfm;
1934 (*tfm_mutex) = &key_tfm->key_tfm_mutex;
1936 mutex_unlock(&key_tfm_list_mutex);
1940 /* 64 characters forming a 6-bit target field */
1941 static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1944 "klmnopqrstuvwxyz");
1946 /* We could either offset on every reverse map or just pad some 0x00's
1947 * at the front here */
1948 static const unsigned char filename_rev_map[256] = {
1949 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1950 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1951 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1952 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1953 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1954 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1955 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1956 0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1957 0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1958 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1959 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1960 0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1961 0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1962 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1963 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1964 0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
1968 * ecryptfs_encode_for_filename
1969 * @dst: Destination location for encoded filename
1970 * @dst_size: Size of the encoded filename in bytes
1971 * @src: Source location for the filename to encode
1972 * @src_size: Size of the source in bytes
1974 void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1975 unsigned char *src, size_t src_size)
1978 size_t block_num = 0;
1979 size_t dst_offset = 0;
1980 unsigned char last_block[3];
1982 if (src_size == 0) {
1986 num_blocks = (src_size / 3);
1987 if ((src_size % 3) == 0) {
1988 memcpy(last_block, (&src[src_size - 3]), 3);
1991 last_block[2] = 0x00;
1992 switch (src_size % 3) {
1994 last_block[0] = src[src_size - 1];
1995 last_block[1] = 0x00;
1998 last_block[0] = src[src_size - 2];
1999 last_block[1] = src[src_size - 1];
2002 (*dst_size) = (num_blocks * 4);
2005 while (block_num < num_blocks) {
2006 unsigned char *src_block;
2007 unsigned char dst_block[4];
2009 if (block_num == (num_blocks - 1))
2010 src_block = last_block;
2012 src_block = &src[block_num * 3];
2013 dst_block[0] = ((src_block[0] >> 2) & 0x3F);
2014 dst_block[1] = (((src_block[0] << 4) & 0x30)
2015 | ((src_block[1] >> 4) & 0x0F));
2016 dst_block[2] = (((src_block[1] << 2) & 0x3C)
2017 | ((src_block[2] >> 6) & 0x03));
2018 dst_block[3] = (src_block[2] & 0x3F);
2019 dst[dst_offset++] = portable_filename_chars[dst_block[0]];
2020 dst[dst_offset++] = portable_filename_chars[dst_block[1]];
2021 dst[dst_offset++] = portable_filename_chars[dst_block[2]];
2022 dst[dst_offset++] = portable_filename_chars[dst_block[3]];
2030 * ecryptfs_decode_from_filename
2031 * @dst: If NULL, this function only sets @dst_size and returns. If
2032 * non-NULL, this function decodes the encoded octets in @src
2033 * into the memory that @dst points to.
2034 * @dst_size: Set to the size of the decoded string.
2035 * @src: The encoded set of octets to decode.
2036 * @src_size: The size of the encoded set of octets to decode.
2039 ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
2040 const unsigned char *src, size_t src_size)
2042 u8 current_bit_offset = 0;
2043 size_t src_byte_offset = 0;
2044 size_t dst_byte_offset = 0;
2047 /* Not exact; conservatively long. Every block of 4
2048 * encoded characters decodes into a block of 3
2049 * decoded characters. This segment of code provides
2050 * the caller with the maximum amount of allocated
2051 * space that @dst will need to point to in a
2052 * subsequent call. */
2053 (*dst_size) = (((src_size + 1) * 3) / 4);
2056 while (src_byte_offset < src_size) {
2057 unsigned char src_byte =
2058 filename_rev_map[(int)src[src_byte_offset]];
2060 switch (current_bit_offset) {
2062 dst[dst_byte_offset] = (src_byte << 2);
2063 current_bit_offset = 6;
2066 dst[dst_byte_offset++] |= (src_byte >> 4);
2067 dst[dst_byte_offset] = ((src_byte & 0xF)
2069 current_bit_offset = 4;
2072 dst[dst_byte_offset++] |= (src_byte >> 2);
2073 dst[dst_byte_offset] = (src_byte << 6);
2074 current_bit_offset = 2;
2077 dst[dst_byte_offset++] |= (src_byte);
2078 dst[dst_byte_offset] = 0;
2079 current_bit_offset = 0;
2084 (*dst_size) = dst_byte_offset;
2090 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
2091 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
2092 * @name: The plaintext name
2093 * @length: The length of the plaintext
2094 * @encoded_name: The encypted name
2096 * Encrypts and encodes a filename into something that constitutes a
2097 * valid filename for a filesystem, with printable characters.
2099 * We assume that we have a properly initialized crypto context,
2100 * pointed to by crypt_stat->tfm.
2102 * Returns zero on success; non-zero on otherwise
2104 int ecryptfs_encrypt_and_encode_filename(
2105 char **encoded_name,
2106 size_t *encoded_name_size,
2107 struct ecryptfs_crypt_stat *crypt_stat,
2108 struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
2109 const char *name, size_t name_size)
2111 size_t encoded_name_no_prefix_size;
2114 (*encoded_name) = NULL;
2115 (*encoded_name_size) = 0;
2116 if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCRYPT_FILENAMES))
2117 || (mount_crypt_stat && (mount_crypt_stat->flags
2118 & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES))) {
2119 struct ecryptfs_filename *filename;
2121 filename = kzalloc(sizeof(*filename), GFP_KERNEL);
2123 printk(KERN_ERR "%s: Out of memory whilst attempting "
2124 "to kzalloc [%zd] bytes\n", __func__,
2129 filename->filename = (char *)name;
2130 filename->filename_size = name_size;
2131 rc = ecryptfs_encrypt_filename(filename, crypt_stat,
2134 printk(KERN_ERR "%s: Error attempting to encrypt "
2135 "filename; rc = [%d]\n", __func__, rc);
2139 ecryptfs_encode_for_filename(
2140 NULL, &encoded_name_no_prefix_size,
2141 filename->encrypted_filename,
2142 filename->encrypted_filename_size);
2143 if ((crypt_stat && (crypt_stat->flags
2144 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2145 || (mount_crypt_stat
2146 && (mount_crypt_stat->flags
2147 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)))
2148 (*encoded_name_size) =
2149 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2150 + encoded_name_no_prefix_size);
2152 (*encoded_name_size) =
2153 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2154 + encoded_name_no_prefix_size);
2155 (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
2156 if (!(*encoded_name)) {
2157 printk(KERN_ERR "%s: Out of memory whilst attempting "
2158 "to kzalloc [%zd] bytes\n", __func__,
2159 (*encoded_name_size));
2161 kfree(filename->encrypted_filename);
2165 if ((crypt_stat && (crypt_stat->flags
2166 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2167 || (mount_crypt_stat
2168 && (mount_crypt_stat->flags
2169 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
2170 memcpy((*encoded_name),
2171 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2172 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
2173 ecryptfs_encode_for_filename(
2175 + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
2176 &encoded_name_no_prefix_size,
2177 filename->encrypted_filename,
2178 filename->encrypted_filename_size);
2179 (*encoded_name_size) =
2180 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2181 + encoded_name_no_prefix_size);
2182 (*encoded_name)[(*encoded_name_size)] = '\0';
2187 printk(KERN_ERR "%s: Error attempting to encode "
2188 "encrypted filename; rc = [%d]\n", __func__,
2190 kfree((*encoded_name));
2191 (*encoded_name) = NULL;
2192 (*encoded_name_size) = 0;
2194 kfree(filename->encrypted_filename);
2197 rc = ecryptfs_copy_filename(encoded_name,
2206 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2207 * @plaintext_name: The plaintext name
2208 * @plaintext_name_size: The plaintext name size
2209 * @ecryptfs_dir_dentry: eCryptfs directory dentry
2210 * @name: The filename in cipher text
2211 * @name_size: The cipher text name size
2213 * Decrypts and decodes the filename.
2215 * Returns zero on error; non-zero otherwise
2217 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
2218 size_t *plaintext_name_size,
2219 struct dentry *ecryptfs_dir_dentry,
2220 const char *name, size_t name_size)
2222 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2223 &ecryptfs_superblock_to_private(
2224 ecryptfs_dir_dentry->d_sb)->mount_crypt_stat;
2226 size_t decoded_name_size;
2230 if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
2231 && !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
2232 && (name_size > ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)
2233 && (strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2234 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) == 0)) {
2235 const char *orig_name = name;
2236 size_t orig_name_size = name_size;
2238 name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2239 name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2240 ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2242 decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2243 if (!decoded_name) {
2244 printk(KERN_ERR "%s: Out of memory whilst attempting "
2245 "to kmalloc [%zd] bytes\n", __func__,
2250 ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2252 rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2253 plaintext_name_size,
2259 printk(KERN_INFO "%s: Could not parse tag 70 packet "
2260 "from filename; copying through filename "
2261 "as-is\n", __func__);
2262 rc = ecryptfs_copy_filename(plaintext_name,
2263 plaintext_name_size,
2264 orig_name, orig_name_size);
2268 rc = ecryptfs_copy_filename(plaintext_name,
2269 plaintext_name_size,
2274 kfree(decoded_name);