]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/ext2/inode.c
Merge remote-tracking branch 'asoc/topic/wm8770' into asoc-next
[karo-tx-linux.git] / fs / ext2 / inode.c
1 /*
2  *  linux/fs/ext2/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@dcs.ed.ac.uk), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/time.h>
26 #include <linux/highuid.h>
27 #include <linux/pagemap.h>
28 #include <linux/quotaops.h>
29 #include <linux/writeback.h>
30 #include <linux/buffer_head.h>
31 #include <linux/mpage.h>
32 #include <linux/fiemap.h>
33 #include <linux/namei.h>
34 #include "ext2.h"
35 #include "acl.h"
36 #include "xip.h"
37
38 static int __ext2_write_inode(struct inode *inode, int do_sync);
39
40 /*
41  * Test whether an inode is a fast symlink.
42  */
43 static inline int ext2_inode_is_fast_symlink(struct inode *inode)
44 {
45         int ea_blocks = EXT2_I(inode)->i_file_acl ?
46                 (inode->i_sb->s_blocksize >> 9) : 0;
47
48         return (S_ISLNK(inode->i_mode) &&
49                 inode->i_blocks - ea_blocks == 0);
50 }
51
52 static void ext2_truncate_blocks(struct inode *inode, loff_t offset);
53
54 static void ext2_write_failed(struct address_space *mapping, loff_t to)
55 {
56         struct inode *inode = mapping->host;
57
58         if (to > inode->i_size) {
59                 truncate_pagecache(inode, to, inode->i_size);
60                 ext2_truncate_blocks(inode, inode->i_size);
61         }
62 }
63
64 /*
65  * Called at the last iput() if i_nlink is zero.
66  */
67 void ext2_evict_inode(struct inode * inode)
68 {
69         struct ext2_block_alloc_info *rsv;
70         int want_delete = 0;
71
72         if (!inode->i_nlink && !is_bad_inode(inode)) {
73                 want_delete = 1;
74                 dquot_initialize(inode);
75         } else {
76                 dquot_drop(inode);
77         }
78
79         truncate_inode_pages(&inode->i_data, 0);
80
81         if (want_delete) {
82                 sb_start_intwrite(inode->i_sb);
83                 /* set dtime */
84                 EXT2_I(inode)->i_dtime  = get_seconds();
85                 mark_inode_dirty(inode);
86                 __ext2_write_inode(inode, inode_needs_sync(inode));
87                 /* truncate to 0 */
88                 inode->i_size = 0;
89                 if (inode->i_blocks)
90                         ext2_truncate_blocks(inode, 0);
91         }
92
93         invalidate_inode_buffers(inode);
94         clear_inode(inode);
95
96         ext2_discard_reservation(inode);
97         rsv = EXT2_I(inode)->i_block_alloc_info;
98         EXT2_I(inode)->i_block_alloc_info = NULL;
99         if (unlikely(rsv))
100                 kfree(rsv);
101
102         if (want_delete) {
103                 ext2_free_inode(inode);
104                 sb_end_intwrite(inode->i_sb);
105         }
106 }
107
108 typedef struct {
109         __le32  *p;
110         __le32  key;
111         struct buffer_head *bh;
112 } Indirect;
113
114 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
115 {
116         p->key = *(p->p = v);
117         p->bh = bh;
118 }
119
120 static inline int verify_chain(Indirect *from, Indirect *to)
121 {
122         while (from <= to && from->key == *from->p)
123                 from++;
124         return (from > to);
125 }
126
127 /**
128  *      ext2_block_to_path - parse the block number into array of offsets
129  *      @inode: inode in question (we are only interested in its superblock)
130  *      @i_block: block number to be parsed
131  *      @offsets: array to store the offsets in
132  *      @boundary: set this non-zero if the referred-to block is likely to be
133  *             followed (on disk) by an indirect block.
134  *      To store the locations of file's data ext2 uses a data structure common
135  *      for UNIX filesystems - tree of pointers anchored in the inode, with
136  *      data blocks at leaves and indirect blocks in intermediate nodes.
137  *      This function translates the block number into path in that tree -
138  *      return value is the path length and @offsets[n] is the offset of
139  *      pointer to (n+1)th node in the nth one. If @block is out of range
140  *      (negative or too large) warning is printed and zero returned.
141  *
142  *      Note: function doesn't find node addresses, so no IO is needed. All
143  *      we need to know is the capacity of indirect blocks (taken from the
144  *      inode->i_sb).
145  */
146
147 /*
148  * Portability note: the last comparison (check that we fit into triple
149  * indirect block) is spelled differently, because otherwise on an
150  * architecture with 32-bit longs and 8Kb pages we might get into trouble
151  * if our filesystem had 8Kb blocks. We might use long long, but that would
152  * kill us on x86. Oh, well, at least the sign propagation does not matter -
153  * i_block would have to be negative in the very beginning, so we would not
154  * get there at all.
155  */
156
157 static int ext2_block_to_path(struct inode *inode,
158                         long i_block, int offsets[4], int *boundary)
159 {
160         int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb);
161         int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb);
162         const long direct_blocks = EXT2_NDIR_BLOCKS,
163                 indirect_blocks = ptrs,
164                 double_blocks = (1 << (ptrs_bits * 2));
165         int n = 0;
166         int final = 0;
167
168         if (i_block < 0) {
169                 ext2_msg(inode->i_sb, KERN_WARNING,
170                         "warning: %s: block < 0", __func__);
171         } else if (i_block < direct_blocks) {
172                 offsets[n++] = i_block;
173                 final = direct_blocks;
174         } else if ( (i_block -= direct_blocks) < indirect_blocks) {
175                 offsets[n++] = EXT2_IND_BLOCK;
176                 offsets[n++] = i_block;
177                 final = ptrs;
178         } else if ((i_block -= indirect_blocks) < double_blocks) {
179                 offsets[n++] = EXT2_DIND_BLOCK;
180                 offsets[n++] = i_block >> ptrs_bits;
181                 offsets[n++] = i_block & (ptrs - 1);
182                 final = ptrs;
183         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
184                 offsets[n++] = EXT2_TIND_BLOCK;
185                 offsets[n++] = i_block >> (ptrs_bits * 2);
186                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
187                 offsets[n++] = i_block & (ptrs - 1);
188                 final = ptrs;
189         } else {
190                 ext2_msg(inode->i_sb, KERN_WARNING,
191                         "warning: %s: block is too big", __func__);
192         }
193         if (boundary)
194                 *boundary = final - 1 - (i_block & (ptrs - 1));
195
196         return n;
197 }
198
199 /**
200  *      ext2_get_branch - read the chain of indirect blocks leading to data
201  *      @inode: inode in question
202  *      @depth: depth of the chain (1 - direct pointer, etc.)
203  *      @offsets: offsets of pointers in inode/indirect blocks
204  *      @chain: place to store the result
205  *      @err: here we store the error value
206  *
207  *      Function fills the array of triples <key, p, bh> and returns %NULL
208  *      if everything went OK or the pointer to the last filled triple
209  *      (incomplete one) otherwise. Upon the return chain[i].key contains
210  *      the number of (i+1)-th block in the chain (as it is stored in memory,
211  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
212  *      number (it points into struct inode for i==0 and into the bh->b_data
213  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
214  *      block for i>0 and NULL for i==0. In other words, it holds the block
215  *      numbers of the chain, addresses they were taken from (and where we can
216  *      verify that chain did not change) and buffer_heads hosting these
217  *      numbers.
218  *
219  *      Function stops when it stumbles upon zero pointer (absent block)
220  *              (pointer to last triple returned, *@err == 0)
221  *      or when it gets an IO error reading an indirect block
222  *              (ditto, *@err == -EIO)
223  *      or when it notices that chain had been changed while it was reading
224  *              (ditto, *@err == -EAGAIN)
225  *      or when it reads all @depth-1 indirect blocks successfully and finds
226  *      the whole chain, all way to the data (returns %NULL, *err == 0).
227  */
228 static Indirect *ext2_get_branch(struct inode *inode,
229                                  int depth,
230                                  int *offsets,
231                                  Indirect chain[4],
232                                  int *err)
233 {
234         struct super_block *sb = inode->i_sb;
235         Indirect *p = chain;
236         struct buffer_head *bh;
237
238         *err = 0;
239         /* i_data is not going away, no lock needed */
240         add_chain (chain, NULL, EXT2_I(inode)->i_data + *offsets);
241         if (!p->key)
242                 goto no_block;
243         while (--depth) {
244                 bh = sb_bread(sb, le32_to_cpu(p->key));
245                 if (!bh)
246                         goto failure;
247                 read_lock(&EXT2_I(inode)->i_meta_lock);
248                 if (!verify_chain(chain, p))
249                         goto changed;
250                 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
251                 read_unlock(&EXT2_I(inode)->i_meta_lock);
252                 if (!p->key)
253                         goto no_block;
254         }
255         return NULL;
256
257 changed:
258         read_unlock(&EXT2_I(inode)->i_meta_lock);
259         brelse(bh);
260         *err = -EAGAIN;
261         goto no_block;
262 failure:
263         *err = -EIO;
264 no_block:
265         return p;
266 }
267
268 /**
269  *      ext2_find_near - find a place for allocation with sufficient locality
270  *      @inode: owner
271  *      @ind: descriptor of indirect block.
272  *
273  *      This function returns the preferred place for block allocation.
274  *      It is used when heuristic for sequential allocation fails.
275  *      Rules are:
276  *        + if there is a block to the left of our position - allocate near it.
277  *        + if pointer will live in indirect block - allocate near that block.
278  *        + if pointer will live in inode - allocate in the same cylinder group.
279  *
280  * In the latter case we colour the starting block by the callers PID to
281  * prevent it from clashing with concurrent allocations for a different inode
282  * in the same block group.   The PID is used here so that functionally related
283  * files will be close-by on-disk.
284  *
285  *      Caller must make sure that @ind is valid and will stay that way.
286  */
287
288 static ext2_fsblk_t ext2_find_near(struct inode *inode, Indirect *ind)
289 {
290         struct ext2_inode_info *ei = EXT2_I(inode);
291         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
292         __le32 *p;
293         ext2_fsblk_t bg_start;
294         ext2_fsblk_t colour;
295
296         /* Try to find previous block */
297         for (p = ind->p - 1; p >= start; p--)
298                 if (*p)
299                         return le32_to_cpu(*p);
300
301         /* No such thing, so let's try location of indirect block */
302         if (ind->bh)
303                 return ind->bh->b_blocknr;
304
305         /*
306          * It is going to be referred from inode itself? OK, just put it into
307          * the same cylinder group then.
308          */
309         bg_start = ext2_group_first_block_no(inode->i_sb, ei->i_block_group);
310         colour = (current->pid % 16) *
311                         (EXT2_BLOCKS_PER_GROUP(inode->i_sb) / 16);
312         return bg_start + colour;
313 }
314
315 /**
316  *      ext2_find_goal - find a preferred place for allocation.
317  *      @inode: owner
318  *      @block:  block we want
319  *      @partial: pointer to the last triple within a chain
320  *
321  *      Returns preferred place for a block (the goal).
322  */
323
324 static inline ext2_fsblk_t ext2_find_goal(struct inode *inode, long block,
325                                           Indirect *partial)
326 {
327         struct ext2_block_alloc_info *block_i;
328
329         block_i = EXT2_I(inode)->i_block_alloc_info;
330
331         /*
332          * try the heuristic for sequential allocation,
333          * failing that at least try to get decent locality.
334          */
335         if (block_i && (block == block_i->last_alloc_logical_block + 1)
336                 && (block_i->last_alloc_physical_block != 0)) {
337                 return block_i->last_alloc_physical_block + 1;
338         }
339
340         return ext2_find_near(inode, partial);
341 }
342
343 /**
344  *      ext2_blks_to_allocate: Look up the block map and count the number
345  *      of direct blocks need to be allocated for the given branch.
346  *
347  *      @branch: chain of indirect blocks
348  *      @k: number of blocks need for indirect blocks
349  *      @blks: number of data blocks to be mapped.
350  *      @blocks_to_boundary:  the offset in the indirect block
351  *
352  *      return the total number of blocks to be allocate, including the
353  *      direct and indirect blocks.
354  */
355 static int
356 ext2_blks_to_allocate(Indirect * branch, int k, unsigned long blks,
357                 int blocks_to_boundary)
358 {
359         unsigned long count = 0;
360
361         /*
362          * Simple case, [t,d]Indirect block(s) has not allocated yet
363          * then it's clear blocks on that path have not allocated
364          */
365         if (k > 0) {
366                 /* right now don't hanel cross boundary allocation */
367                 if (blks < blocks_to_boundary + 1)
368                         count += blks;
369                 else
370                         count += blocks_to_boundary + 1;
371                 return count;
372         }
373
374         count++;
375         while (count < blks && count <= blocks_to_boundary
376                 && le32_to_cpu(*(branch[0].p + count)) == 0) {
377                 count++;
378         }
379         return count;
380 }
381
382 /**
383  *      ext2_alloc_blocks: multiple allocate blocks needed for a branch
384  *      @indirect_blks: the number of blocks need to allocate for indirect
385  *                      blocks
386  *
387  *      @new_blocks: on return it will store the new block numbers for
388  *      the indirect blocks(if needed) and the first direct block,
389  *      @blks:  on return it will store the total number of allocated
390  *              direct blocks
391  */
392 static int ext2_alloc_blocks(struct inode *inode,
393                         ext2_fsblk_t goal, int indirect_blks, int blks,
394                         ext2_fsblk_t new_blocks[4], int *err)
395 {
396         int target, i;
397         unsigned long count = 0;
398         int index = 0;
399         ext2_fsblk_t current_block = 0;
400         int ret = 0;
401
402         /*
403          * Here we try to allocate the requested multiple blocks at once,
404          * on a best-effort basis.
405          * To build a branch, we should allocate blocks for
406          * the indirect blocks(if not allocated yet), and at least
407          * the first direct block of this branch.  That's the
408          * minimum number of blocks need to allocate(required)
409          */
410         target = blks + indirect_blks;
411
412         while (1) {
413                 count = target;
414                 /* allocating blocks for indirect blocks and direct blocks */
415                 current_block = ext2_new_blocks(inode,goal,&count,err);
416                 if (*err)
417                         goto failed_out;
418
419                 target -= count;
420                 /* allocate blocks for indirect blocks */
421                 while (index < indirect_blks && count) {
422                         new_blocks[index++] = current_block++;
423                         count--;
424                 }
425
426                 if (count > 0)
427                         break;
428         }
429
430         /* save the new block number for the first direct block */
431         new_blocks[index] = current_block;
432
433         /* total number of blocks allocated for direct blocks */
434         ret = count;
435         *err = 0;
436         return ret;
437 failed_out:
438         for (i = 0; i <index; i++)
439                 ext2_free_blocks(inode, new_blocks[i], 1);
440         if (index)
441                 mark_inode_dirty(inode);
442         return ret;
443 }
444
445 /**
446  *      ext2_alloc_branch - allocate and set up a chain of blocks.
447  *      @inode: owner
448  *      @num: depth of the chain (number of blocks to allocate)
449  *      @offsets: offsets (in the blocks) to store the pointers to next.
450  *      @branch: place to store the chain in.
451  *
452  *      This function allocates @num blocks, zeroes out all but the last one,
453  *      links them into chain and (if we are synchronous) writes them to disk.
454  *      In other words, it prepares a branch that can be spliced onto the
455  *      inode. It stores the information about that chain in the branch[], in
456  *      the same format as ext2_get_branch() would do. We are calling it after
457  *      we had read the existing part of chain and partial points to the last
458  *      triple of that (one with zero ->key). Upon the exit we have the same
459  *      picture as after the successful ext2_get_block(), except that in one
460  *      place chain is disconnected - *branch->p is still zero (we did not
461  *      set the last link), but branch->key contains the number that should
462  *      be placed into *branch->p to fill that gap.
463  *
464  *      If allocation fails we free all blocks we've allocated (and forget
465  *      their buffer_heads) and return the error value the from failed
466  *      ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain
467  *      as described above and return 0.
468  */
469
470 static int ext2_alloc_branch(struct inode *inode,
471                         int indirect_blks, int *blks, ext2_fsblk_t goal,
472                         int *offsets, Indirect *branch)
473 {
474         int blocksize = inode->i_sb->s_blocksize;
475         int i, n = 0;
476         int err = 0;
477         struct buffer_head *bh;
478         int num;
479         ext2_fsblk_t new_blocks[4];
480         ext2_fsblk_t current_block;
481
482         num = ext2_alloc_blocks(inode, goal, indirect_blks,
483                                 *blks, new_blocks, &err);
484         if (err)
485                 return err;
486
487         branch[0].key = cpu_to_le32(new_blocks[0]);
488         /*
489          * metadata blocks and data blocks are allocated.
490          */
491         for (n = 1; n <= indirect_blks;  n++) {
492                 /*
493                  * Get buffer_head for parent block, zero it out
494                  * and set the pointer to new one, then send
495                  * parent to disk.
496                  */
497                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
498                 branch[n].bh = bh;
499                 lock_buffer(bh);
500                 memset(bh->b_data, 0, blocksize);
501                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
502                 branch[n].key = cpu_to_le32(new_blocks[n]);
503                 *branch[n].p = branch[n].key;
504                 if ( n == indirect_blks) {
505                         current_block = new_blocks[n];
506                         /*
507                          * End of chain, update the last new metablock of
508                          * the chain to point to the new allocated
509                          * data blocks numbers
510                          */
511                         for (i=1; i < num; i++)
512                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
513                 }
514                 set_buffer_uptodate(bh);
515                 unlock_buffer(bh);
516                 mark_buffer_dirty_inode(bh, inode);
517                 /* We used to sync bh here if IS_SYNC(inode).
518                  * But we now rely upon generic_write_sync()
519                  * and b_inode_buffers.  But not for directories.
520                  */
521                 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
522                         sync_dirty_buffer(bh);
523         }
524         *blks = num;
525         return err;
526 }
527
528 /**
529  * ext2_splice_branch - splice the allocated branch onto inode.
530  * @inode: owner
531  * @block: (logical) number of block we are adding
532  * @where: location of missing link
533  * @num:   number of indirect blocks we are adding
534  * @blks:  number of direct blocks we are adding
535  *
536  * This function fills the missing link and does all housekeeping needed in
537  * inode (->i_blocks, etc.). In case of success we end up with the full
538  * chain to new block and return 0.
539  */
540 static void ext2_splice_branch(struct inode *inode,
541                         long block, Indirect *where, int num, int blks)
542 {
543         int i;
544         struct ext2_block_alloc_info *block_i;
545         ext2_fsblk_t current_block;
546
547         block_i = EXT2_I(inode)->i_block_alloc_info;
548
549         /* XXX LOCKING probably should have i_meta_lock ?*/
550         /* That's it */
551
552         *where->p = where->key;
553
554         /*
555          * Update the host buffer_head or inode to point to more just allocated
556          * direct blocks blocks
557          */
558         if (num == 0 && blks > 1) {
559                 current_block = le32_to_cpu(where->key) + 1;
560                 for (i = 1; i < blks; i++)
561                         *(where->p + i ) = cpu_to_le32(current_block++);
562         }
563
564         /*
565          * update the most recently allocated logical & physical block
566          * in i_block_alloc_info, to assist find the proper goal block for next
567          * allocation
568          */
569         if (block_i) {
570                 block_i->last_alloc_logical_block = block + blks - 1;
571                 block_i->last_alloc_physical_block =
572                                 le32_to_cpu(where[num].key) + blks - 1;
573         }
574
575         /* We are done with atomic stuff, now do the rest of housekeeping */
576
577         /* had we spliced it onto indirect block? */
578         if (where->bh)
579                 mark_buffer_dirty_inode(where->bh, inode);
580
581         inode->i_ctime = CURRENT_TIME_SEC;
582         mark_inode_dirty(inode);
583 }
584
585 /*
586  * Allocation strategy is simple: if we have to allocate something, we will
587  * have to go the whole way to leaf. So let's do it before attaching anything
588  * to tree, set linkage between the newborn blocks, write them if sync is
589  * required, recheck the path, free and repeat if check fails, otherwise
590  * set the last missing link (that will protect us from any truncate-generated
591  * removals - all blocks on the path are immune now) and possibly force the
592  * write on the parent block.
593  * That has a nice additional property: no special recovery from the failed
594  * allocations is needed - we simply release blocks and do not touch anything
595  * reachable from inode.
596  *
597  * `handle' can be NULL if create == 0.
598  *
599  * return > 0, # of blocks mapped or allocated.
600  * return = 0, if plain lookup failed.
601  * return < 0, error case.
602  */
603 static int ext2_get_blocks(struct inode *inode,
604                            sector_t iblock, unsigned long maxblocks,
605                            struct buffer_head *bh_result,
606                            int create)
607 {
608         int err = -EIO;
609         int offsets[4];
610         Indirect chain[4];
611         Indirect *partial;
612         ext2_fsblk_t goal;
613         int indirect_blks;
614         int blocks_to_boundary = 0;
615         int depth;
616         struct ext2_inode_info *ei = EXT2_I(inode);
617         int count = 0;
618         ext2_fsblk_t first_block = 0;
619
620         depth = ext2_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
621
622         if (depth == 0)
623                 return (err);
624
625         partial = ext2_get_branch(inode, depth, offsets, chain, &err);
626         /* Simplest case - block found, no allocation needed */
627         if (!partial) {
628                 first_block = le32_to_cpu(chain[depth - 1].key);
629                 clear_buffer_new(bh_result); /* What's this do? */
630                 count++;
631                 /*map more blocks*/
632                 while (count < maxblocks && count <= blocks_to_boundary) {
633                         ext2_fsblk_t blk;
634
635                         if (!verify_chain(chain, chain + depth - 1)) {
636                                 /*
637                                  * Indirect block might be removed by
638                                  * truncate while we were reading it.
639                                  * Handling of that case: forget what we've
640                                  * got now, go to reread.
641                                  */
642                                 err = -EAGAIN;
643                                 count = 0;
644                                 break;
645                         }
646                         blk = le32_to_cpu(*(chain[depth-1].p + count));
647                         if (blk == first_block + count)
648                                 count++;
649                         else
650                                 break;
651                 }
652                 if (err != -EAGAIN)
653                         goto got_it;
654         }
655
656         /* Next simple case - plain lookup or failed read of indirect block */
657         if (!create || err == -EIO)
658                 goto cleanup;
659
660         mutex_lock(&ei->truncate_mutex);
661         /*
662          * If the indirect block is missing while we are reading
663          * the chain(ext2_get_branch() returns -EAGAIN err), or
664          * if the chain has been changed after we grab the semaphore,
665          * (either because another process truncated this branch, or
666          * another get_block allocated this branch) re-grab the chain to see if
667          * the request block has been allocated or not.
668          *
669          * Since we already block the truncate/other get_block
670          * at this point, we will have the current copy of the chain when we
671          * splice the branch into the tree.
672          */
673         if (err == -EAGAIN || !verify_chain(chain, partial)) {
674                 while (partial > chain) {
675                         brelse(partial->bh);
676                         partial--;
677                 }
678                 partial = ext2_get_branch(inode, depth, offsets, chain, &err);
679                 if (!partial) {
680                         count++;
681                         mutex_unlock(&ei->truncate_mutex);
682                         if (err)
683                                 goto cleanup;
684                         clear_buffer_new(bh_result);
685                         goto got_it;
686                 }
687         }
688
689         /*
690          * Okay, we need to do block allocation.  Lazily initialize the block
691          * allocation info here if necessary
692         */
693         if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
694                 ext2_init_block_alloc_info(inode);
695
696         goal = ext2_find_goal(inode, iblock, partial);
697
698         /* the number of blocks need to allocate for [d,t]indirect blocks */
699         indirect_blks = (chain + depth) - partial - 1;
700         /*
701          * Next look up the indirect map to count the totoal number of
702          * direct blocks to allocate for this branch.
703          */
704         count = ext2_blks_to_allocate(partial, indirect_blks,
705                                         maxblocks, blocks_to_boundary);
706         /*
707          * XXX ???? Block out ext2_truncate while we alter the tree
708          */
709         err = ext2_alloc_branch(inode, indirect_blks, &count, goal,
710                                 offsets + (partial - chain), partial);
711
712         if (err) {
713                 mutex_unlock(&ei->truncate_mutex);
714                 goto cleanup;
715         }
716
717         if (ext2_use_xip(inode->i_sb)) {
718                 /*
719                  * we need to clear the block
720                  */
721                 err = ext2_clear_xip_target (inode,
722                         le32_to_cpu(chain[depth-1].key));
723                 if (err) {
724                         mutex_unlock(&ei->truncate_mutex);
725                         goto cleanup;
726                 }
727         }
728
729         ext2_splice_branch(inode, iblock, partial, indirect_blks, count);
730         mutex_unlock(&ei->truncate_mutex);
731         set_buffer_new(bh_result);
732 got_it:
733         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
734         if (count > blocks_to_boundary)
735                 set_buffer_boundary(bh_result);
736         err = count;
737         /* Clean up and exit */
738         partial = chain + depth - 1;    /* the whole chain */
739 cleanup:
740         while (partial > chain) {
741                 brelse(partial->bh);
742                 partial--;
743         }
744         return err;
745 }
746
747 int ext2_get_block(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create)
748 {
749         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
750         int ret = ext2_get_blocks(inode, iblock, max_blocks,
751                               bh_result, create);
752         if (ret > 0) {
753                 bh_result->b_size = (ret << inode->i_blkbits);
754                 ret = 0;
755         }
756         return ret;
757
758 }
759
760 int ext2_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
761                 u64 start, u64 len)
762 {
763         return generic_block_fiemap(inode, fieinfo, start, len,
764                                     ext2_get_block);
765 }
766
767 static int ext2_writepage(struct page *page, struct writeback_control *wbc)
768 {
769         return block_write_full_page(page, ext2_get_block, wbc);
770 }
771
772 static int ext2_readpage(struct file *file, struct page *page)
773 {
774         return mpage_readpage(page, ext2_get_block);
775 }
776
777 static int
778 ext2_readpages(struct file *file, struct address_space *mapping,
779                 struct list_head *pages, unsigned nr_pages)
780 {
781         return mpage_readpages(mapping, pages, nr_pages, ext2_get_block);
782 }
783
784 static int
785 ext2_write_begin(struct file *file, struct address_space *mapping,
786                 loff_t pos, unsigned len, unsigned flags,
787                 struct page **pagep, void **fsdata)
788 {
789         int ret;
790
791         ret = block_write_begin(mapping, pos, len, flags, pagep,
792                                 ext2_get_block);
793         if (ret < 0)
794                 ext2_write_failed(mapping, pos + len);
795         return ret;
796 }
797
798 static int ext2_write_end(struct file *file, struct address_space *mapping,
799                         loff_t pos, unsigned len, unsigned copied,
800                         struct page *page, void *fsdata)
801 {
802         int ret;
803
804         ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
805         if (ret < len)
806                 ext2_write_failed(mapping, pos + len);
807         return ret;
808 }
809
810 static int
811 ext2_nobh_write_begin(struct file *file, struct address_space *mapping,
812                 loff_t pos, unsigned len, unsigned flags,
813                 struct page **pagep, void **fsdata)
814 {
815         int ret;
816
817         ret = nobh_write_begin(mapping, pos, len, flags, pagep, fsdata,
818                                ext2_get_block);
819         if (ret < 0)
820                 ext2_write_failed(mapping, pos + len);
821         return ret;
822 }
823
824 static int ext2_nobh_writepage(struct page *page,
825                         struct writeback_control *wbc)
826 {
827         return nobh_writepage(page, ext2_get_block, wbc);
828 }
829
830 static sector_t ext2_bmap(struct address_space *mapping, sector_t block)
831 {
832         return generic_block_bmap(mapping,block,ext2_get_block);
833 }
834
835 static ssize_t
836 ext2_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
837                         loff_t offset, unsigned long nr_segs)
838 {
839         struct file *file = iocb->ki_filp;
840         struct address_space *mapping = file->f_mapping;
841         struct inode *inode = mapping->host;
842         ssize_t ret;
843
844         ret = blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
845                                  ext2_get_block);
846         if (ret < 0 && (rw & WRITE))
847                 ext2_write_failed(mapping, offset + iov_length(iov, nr_segs));
848         return ret;
849 }
850
851 static int
852 ext2_writepages(struct address_space *mapping, struct writeback_control *wbc)
853 {
854         return mpage_writepages(mapping, wbc, ext2_get_block);
855 }
856
857 const struct address_space_operations ext2_aops = {
858         .readpage               = ext2_readpage,
859         .readpages              = ext2_readpages,
860         .writepage              = ext2_writepage,
861         .write_begin            = ext2_write_begin,
862         .write_end              = ext2_write_end,
863         .bmap                   = ext2_bmap,
864         .direct_IO              = ext2_direct_IO,
865         .writepages             = ext2_writepages,
866         .migratepage            = buffer_migrate_page,
867         .is_partially_uptodate  = block_is_partially_uptodate,
868         .error_remove_page      = generic_error_remove_page,
869 };
870
871 const struct address_space_operations ext2_aops_xip = {
872         .bmap                   = ext2_bmap,
873         .get_xip_mem            = ext2_get_xip_mem,
874 };
875
876 const struct address_space_operations ext2_nobh_aops = {
877         .readpage               = ext2_readpage,
878         .readpages              = ext2_readpages,
879         .writepage              = ext2_nobh_writepage,
880         .write_begin            = ext2_nobh_write_begin,
881         .write_end              = nobh_write_end,
882         .bmap                   = ext2_bmap,
883         .direct_IO              = ext2_direct_IO,
884         .writepages             = ext2_writepages,
885         .migratepage            = buffer_migrate_page,
886         .error_remove_page      = generic_error_remove_page,
887 };
888
889 /*
890  * Probably it should be a library function... search for first non-zero word
891  * or memcmp with zero_page, whatever is better for particular architecture.
892  * Linus?
893  */
894 static inline int all_zeroes(__le32 *p, __le32 *q)
895 {
896         while (p < q)
897                 if (*p++)
898                         return 0;
899         return 1;
900 }
901
902 /**
903  *      ext2_find_shared - find the indirect blocks for partial truncation.
904  *      @inode:   inode in question
905  *      @depth:   depth of the affected branch
906  *      @offsets: offsets of pointers in that branch (see ext2_block_to_path)
907  *      @chain:   place to store the pointers to partial indirect blocks
908  *      @top:     place to the (detached) top of branch
909  *
910  *      This is a helper function used by ext2_truncate().
911  *
912  *      When we do truncate() we may have to clean the ends of several indirect
913  *      blocks but leave the blocks themselves alive. Block is partially
914  *      truncated if some data below the new i_size is referred from it (and
915  *      it is on the path to the first completely truncated data block, indeed).
916  *      We have to free the top of that path along with everything to the right
917  *      of the path. Since no allocation past the truncation point is possible
918  *      until ext2_truncate() finishes, we may safely do the latter, but top
919  *      of branch may require special attention - pageout below the truncation
920  *      point might try to populate it.
921  *
922  *      We atomically detach the top of branch from the tree, store the block
923  *      number of its root in *@top, pointers to buffer_heads of partially
924  *      truncated blocks - in @chain[].bh and pointers to their last elements
925  *      that should not be removed - in @chain[].p. Return value is the pointer
926  *      to last filled element of @chain.
927  *
928  *      The work left to caller to do the actual freeing of subtrees:
929  *              a) free the subtree starting from *@top
930  *              b) free the subtrees whose roots are stored in
931  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
932  *              c) free the subtrees growing from the inode past the @chain[0].p
933  *                      (no partially truncated stuff there).
934  */
935
936 static Indirect *ext2_find_shared(struct inode *inode,
937                                 int depth,
938                                 int offsets[4],
939                                 Indirect chain[4],
940                                 __le32 *top)
941 {
942         Indirect *partial, *p;
943         int k, err;
944
945         *top = 0;
946         for (k = depth; k > 1 && !offsets[k-1]; k--)
947                 ;
948         partial = ext2_get_branch(inode, k, offsets, chain, &err);
949         if (!partial)
950                 partial = chain + k-1;
951         /*
952          * If the branch acquired continuation since we've looked at it -
953          * fine, it should all survive and (new) top doesn't belong to us.
954          */
955         write_lock(&EXT2_I(inode)->i_meta_lock);
956         if (!partial->key && *partial->p) {
957                 write_unlock(&EXT2_I(inode)->i_meta_lock);
958                 goto no_top;
959         }
960         for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
961                 ;
962         /*
963          * OK, we've found the last block that must survive. The rest of our
964          * branch should be detached before unlocking. However, if that rest
965          * of branch is all ours and does not grow immediately from the inode
966          * it's easier to cheat and just decrement partial->p.
967          */
968         if (p == chain + k - 1 && p > chain) {
969                 p->p--;
970         } else {
971                 *top = *p->p;
972                 *p->p = 0;
973         }
974         write_unlock(&EXT2_I(inode)->i_meta_lock);
975
976         while(partial > p)
977         {
978                 brelse(partial->bh);
979                 partial--;
980         }
981 no_top:
982         return partial;
983 }
984
985 /**
986  *      ext2_free_data - free a list of data blocks
987  *      @inode: inode we are dealing with
988  *      @p:     array of block numbers
989  *      @q:     points immediately past the end of array
990  *
991  *      We are freeing all blocks referred from that array (numbers are
992  *      stored as little-endian 32-bit) and updating @inode->i_blocks
993  *      appropriately.
994  */
995 static inline void ext2_free_data(struct inode *inode, __le32 *p, __le32 *q)
996 {
997         unsigned long block_to_free = 0, count = 0;
998         unsigned long nr;
999
1000         for ( ; p < q ; p++) {
1001                 nr = le32_to_cpu(*p);
1002                 if (nr) {
1003                         *p = 0;
1004                         /* accumulate blocks to free if they're contiguous */
1005                         if (count == 0)
1006                                 goto free_this;
1007                         else if (block_to_free == nr - count)
1008                                 count++;
1009                         else {
1010                                 ext2_free_blocks (inode, block_to_free, count);
1011                                 mark_inode_dirty(inode);
1012                         free_this:
1013                                 block_to_free = nr;
1014                                 count = 1;
1015                         }
1016                 }
1017         }
1018         if (count > 0) {
1019                 ext2_free_blocks (inode, block_to_free, count);
1020                 mark_inode_dirty(inode);
1021         }
1022 }
1023
1024 /**
1025  *      ext2_free_branches - free an array of branches
1026  *      @inode: inode we are dealing with
1027  *      @p:     array of block numbers
1028  *      @q:     pointer immediately past the end of array
1029  *      @depth: depth of the branches to free
1030  *
1031  *      We are freeing all blocks referred from these branches (numbers are
1032  *      stored as little-endian 32-bit) and updating @inode->i_blocks
1033  *      appropriately.
1034  */
1035 static void ext2_free_branches(struct inode *inode, __le32 *p, __le32 *q, int depth)
1036 {
1037         struct buffer_head * bh;
1038         unsigned long nr;
1039
1040         if (depth--) {
1041                 int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1042                 for ( ; p < q ; p++) {
1043                         nr = le32_to_cpu(*p);
1044                         if (!nr)
1045                                 continue;
1046                         *p = 0;
1047                         bh = sb_bread(inode->i_sb, nr);
1048                         /*
1049                          * A read failure? Report error and clear slot
1050                          * (should be rare).
1051                          */ 
1052                         if (!bh) {
1053                                 ext2_error(inode->i_sb, "ext2_free_branches",
1054                                         "Read failure, inode=%ld, block=%ld",
1055                                         inode->i_ino, nr);
1056                                 continue;
1057                         }
1058                         ext2_free_branches(inode,
1059                                            (__le32*)bh->b_data,
1060                                            (__le32*)bh->b_data + addr_per_block,
1061                                            depth);
1062                         bforget(bh);
1063                         ext2_free_blocks(inode, nr, 1);
1064                         mark_inode_dirty(inode);
1065                 }
1066         } else
1067                 ext2_free_data(inode, p, q);
1068 }
1069
1070 static void __ext2_truncate_blocks(struct inode *inode, loff_t offset)
1071 {
1072         __le32 *i_data = EXT2_I(inode)->i_data;
1073         struct ext2_inode_info *ei = EXT2_I(inode);
1074         int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1075         int offsets[4];
1076         Indirect chain[4];
1077         Indirect *partial;
1078         __le32 nr = 0;
1079         int n;
1080         long iblock;
1081         unsigned blocksize;
1082         blocksize = inode->i_sb->s_blocksize;
1083         iblock = (offset + blocksize-1) >> EXT2_BLOCK_SIZE_BITS(inode->i_sb);
1084
1085         n = ext2_block_to_path(inode, iblock, offsets, NULL);
1086         if (n == 0)
1087                 return;
1088
1089         /*
1090          * From here we block out all ext2_get_block() callers who want to
1091          * modify the block allocation tree.
1092          */
1093         mutex_lock(&ei->truncate_mutex);
1094
1095         if (n == 1) {
1096                 ext2_free_data(inode, i_data+offsets[0],
1097                                         i_data + EXT2_NDIR_BLOCKS);
1098                 goto do_indirects;
1099         }
1100
1101         partial = ext2_find_shared(inode, n, offsets, chain, &nr);
1102         /* Kill the top of shared branch (already detached) */
1103         if (nr) {
1104                 if (partial == chain)
1105                         mark_inode_dirty(inode);
1106                 else
1107                         mark_buffer_dirty_inode(partial->bh, inode);
1108                 ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial);
1109         }
1110         /* Clear the ends of indirect blocks on the shared branch */
1111         while (partial > chain) {
1112                 ext2_free_branches(inode,
1113                                    partial->p + 1,
1114                                    (__le32*)partial->bh->b_data+addr_per_block,
1115                                    (chain+n-1) - partial);
1116                 mark_buffer_dirty_inode(partial->bh, inode);
1117                 brelse (partial->bh);
1118                 partial--;
1119         }
1120 do_indirects:
1121         /* Kill the remaining (whole) subtrees */
1122         switch (offsets[0]) {
1123                 default:
1124                         nr = i_data[EXT2_IND_BLOCK];
1125                         if (nr) {
1126                                 i_data[EXT2_IND_BLOCK] = 0;
1127                                 mark_inode_dirty(inode);
1128                                 ext2_free_branches(inode, &nr, &nr+1, 1);
1129                         }
1130                 case EXT2_IND_BLOCK:
1131                         nr = i_data[EXT2_DIND_BLOCK];
1132                         if (nr) {
1133                                 i_data[EXT2_DIND_BLOCK] = 0;
1134                                 mark_inode_dirty(inode);
1135                                 ext2_free_branches(inode, &nr, &nr+1, 2);
1136                         }
1137                 case EXT2_DIND_BLOCK:
1138                         nr = i_data[EXT2_TIND_BLOCK];
1139                         if (nr) {
1140                                 i_data[EXT2_TIND_BLOCK] = 0;
1141                                 mark_inode_dirty(inode);
1142                                 ext2_free_branches(inode, &nr, &nr+1, 3);
1143                         }
1144                 case EXT2_TIND_BLOCK:
1145                         ;
1146         }
1147
1148         ext2_discard_reservation(inode);
1149
1150         mutex_unlock(&ei->truncate_mutex);
1151 }
1152
1153 static void ext2_truncate_blocks(struct inode *inode, loff_t offset)
1154 {
1155         /*
1156          * XXX: it seems like a bug here that we don't allow
1157          * IS_APPEND inode to have blocks-past-i_size trimmed off.
1158          * review and fix this.
1159          *
1160          * Also would be nice to be able to handle IO errors and such,
1161          * but that's probably too much to ask.
1162          */
1163         if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1164             S_ISLNK(inode->i_mode)))
1165                 return;
1166         if (ext2_inode_is_fast_symlink(inode))
1167                 return;
1168         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1169                 return;
1170         __ext2_truncate_blocks(inode, offset);
1171 }
1172
1173 static int ext2_setsize(struct inode *inode, loff_t newsize)
1174 {
1175         int error;
1176
1177         if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1178             S_ISLNK(inode->i_mode)))
1179                 return -EINVAL;
1180         if (ext2_inode_is_fast_symlink(inode))
1181                 return -EINVAL;
1182         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1183                 return -EPERM;
1184
1185         inode_dio_wait(inode);
1186
1187         if (mapping_is_xip(inode->i_mapping))
1188                 error = xip_truncate_page(inode->i_mapping, newsize);
1189         else if (test_opt(inode->i_sb, NOBH))
1190                 error = nobh_truncate_page(inode->i_mapping,
1191                                 newsize, ext2_get_block);
1192         else
1193                 error = block_truncate_page(inode->i_mapping,
1194                                 newsize, ext2_get_block);
1195         if (error)
1196                 return error;
1197
1198         truncate_setsize(inode, newsize);
1199         __ext2_truncate_blocks(inode, newsize);
1200
1201         inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
1202         if (inode_needs_sync(inode)) {
1203                 sync_mapping_buffers(inode->i_mapping);
1204                 sync_inode_metadata(inode, 1);
1205         } else {
1206                 mark_inode_dirty(inode);
1207         }
1208
1209         return 0;
1210 }
1211
1212 static struct ext2_inode *ext2_get_inode(struct super_block *sb, ino_t ino,
1213                                         struct buffer_head **p)
1214 {
1215         struct buffer_head * bh;
1216         unsigned long block_group;
1217         unsigned long block;
1218         unsigned long offset;
1219         struct ext2_group_desc * gdp;
1220
1221         *p = NULL;
1222         if ((ino != EXT2_ROOT_INO && ino < EXT2_FIRST_INO(sb)) ||
1223             ino > le32_to_cpu(EXT2_SB(sb)->s_es->s_inodes_count))
1224                 goto Einval;
1225
1226         block_group = (ino - 1) / EXT2_INODES_PER_GROUP(sb);
1227         gdp = ext2_get_group_desc(sb, block_group, NULL);
1228         if (!gdp)
1229                 goto Egdp;
1230         /*
1231          * Figure out the offset within the block group inode table
1232          */
1233         offset = ((ino - 1) % EXT2_INODES_PER_GROUP(sb)) * EXT2_INODE_SIZE(sb);
1234         block = le32_to_cpu(gdp->bg_inode_table) +
1235                 (offset >> EXT2_BLOCK_SIZE_BITS(sb));
1236         if (!(bh = sb_bread(sb, block)))
1237                 goto Eio;
1238
1239         *p = bh;
1240         offset &= (EXT2_BLOCK_SIZE(sb) - 1);
1241         return (struct ext2_inode *) (bh->b_data + offset);
1242
1243 Einval:
1244         ext2_error(sb, "ext2_get_inode", "bad inode number: %lu",
1245                    (unsigned long) ino);
1246         return ERR_PTR(-EINVAL);
1247 Eio:
1248         ext2_error(sb, "ext2_get_inode",
1249                    "unable to read inode block - inode=%lu, block=%lu",
1250                    (unsigned long) ino, block);
1251 Egdp:
1252         return ERR_PTR(-EIO);
1253 }
1254
1255 void ext2_set_inode_flags(struct inode *inode)
1256 {
1257         unsigned int flags = EXT2_I(inode)->i_flags;
1258
1259         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
1260         if (flags & EXT2_SYNC_FL)
1261                 inode->i_flags |= S_SYNC;
1262         if (flags & EXT2_APPEND_FL)
1263                 inode->i_flags |= S_APPEND;
1264         if (flags & EXT2_IMMUTABLE_FL)
1265                 inode->i_flags |= S_IMMUTABLE;
1266         if (flags & EXT2_NOATIME_FL)
1267                 inode->i_flags |= S_NOATIME;
1268         if (flags & EXT2_DIRSYNC_FL)
1269                 inode->i_flags |= S_DIRSYNC;
1270 }
1271
1272 /* Propagate flags from i_flags to EXT2_I(inode)->i_flags */
1273 void ext2_get_inode_flags(struct ext2_inode_info *ei)
1274 {
1275         unsigned int flags = ei->vfs_inode.i_flags;
1276
1277         ei->i_flags &= ~(EXT2_SYNC_FL|EXT2_APPEND_FL|
1278                         EXT2_IMMUTABLE_FL|EXT2_NOATIME_FL|EXT2_DIRSYNC_FL);
1279         if (flags & S_SYNC)
1280                 ei->i_flags |= EXT2_SYNC_FL;
1281         if (flags & S_APPEND)
1282                 ei->i_flags |= EXT2_APPEND_FL;
1283         if (flags & S_IMMUTABLE)
1284                 ei->i_flags |= EXT2_IMMUTABLE_FL;
1285         if (flags & S_NOATIME)
1286                 ei->i_flags |= EXT2_NOATIME_FL;
1287         if (flags & S_DIRSYNC)
1288                 ei->i_flags |= EXT2_DIRSYNC_FL;
1289 }
1290
1291 struct inode *ext2_iget (struct super_block *sb, unsigned long ino)
1292 {
1293         struct ext2_inode_info *ei;
1294         struct buffer_head * bh;
1295         struct ext2_inode *raw_inode;
1296         struct inode *inode;
1297         long ret = -EIO;
1298         int n;
1299         uid_t i_uid;
1300         gid_t i_gid;
1301
1302         inode = iget_locked(sb, ino);
1303         if (!inode)
1304                 return ERR_PTR(-ENOMEM);
1305         if (!(inode->i_state & I_NEW))
1306                 return inode;
1307
1308         ei = EXT2_I(inode);
1309         ei->i_block_alloc_info = NULL;
1310
1311         raw_inode = ext2_get_inode(inode->i_sb, ino, &bh);
1312         if (IS_ERR(raw_inode)) {
1313                 ret = PTR_ERR(raw_inode);
1314                 goto bad_inode;
1315         }
1316
1317         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
1318         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
1319         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
1320         if (!(test_opt (inode->i_sb, NO_UID32))) {
1321                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
1322                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
1323         }
1324         i_uid_write(inode, i_uid);
1325         i_gid_write(inode, i_gid);
1326         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
1327         inode->i_size = le32_to_cpu(raw_inode->i_size);
1328         inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
1329         inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
1330         inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
1331         inode->i_atime.tv_nsec = inode->i_mtime.tv_nsec = inode->i_ctime.tv_nsec = 0;
1332         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
1333         /* We now have enough fields to check if the inode was active or not.
1334          * This is needed because nfsd might try to access dead inodes
1335          * the test is that same one that e2fsck uses
1336          * NeilBrown 1999oct15
1337          */
1338         if (inode->i_nlink == 0 && (inode->i_mode == 0 || ei->i_dtime)) {
1339                 /* this inode is deleted */
1340                 brelse (bh);
1341                 ret = -ESTALE;
1342                 goto bad_inode;
1343         }
1344         inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
1345         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
1346         ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
1347         ei->i_frag_no = raw_inode->i_frag;
1348         ei->i_frag_size = raw_inode->i_fsize;
1349         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
1350         ei->i_dir_acl = 0;
1351         if (S_ISREG(inode->i_mode))
1352                 inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
1353         else
1354                 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
1355         ei->i_dtime = 0;
1356         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
1357         ei->i_state = 0;
1358         ei->i_block_group = (ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb);
1359         ei->i_dir_start_lookup = 0;
1360
1361         /*
1362          * NOTE! The in-memory inode i_data array is in little-endian order
1363          * even on big-endian machines: we do NOT byteswap the block numbers!
1364          */
1365         for (n = 0; n < EXT2_N_BLOCKS; n++)
1366                 ei->i_data[n] = raw_inode->i_block[n];
1367
1368         if (S_ISREG(inode->i_mode)) {
1369                 inode->i_op = &ext2_file_inode_operations;
1370                 if (ext2_use_xip(inode->i_sb)) {
1371                         inode->i_mapping->a_ops = &ext2_aops_xip;
1372                         inode->i_fop = &ext2_xip_file_operations;
1373                 } else if (test_opt(inode->i_sb, NOBH)) {
1374                         inode->i_mapping->a_ops = &ext2_nobh_aops;
1375                         inode->i_fop = &ext2_file_operations;
1376                 } else {
1377                         inode->i_mapping->a_ops = &ext2_aops;
1378                         inode->i_fop = &ext2_file_operations;
1379                 }
1380         } else if (S_ISDIR(inode->i_mode)) {
1381                 inode->i_op = &ext2_dir_inode_operations;
1382                 inode->i_fop = &ext2_dir_operations;
1383                 if (test_opt(inode->i_sb, NOBH))
1384                         inode->i_mapping->a_ops = &ext2_nobh_aops;
1385                 else
1386                         inode->i_mapping->a_ops = &ext2_aops;
1387         } else if (S_ISLNK(inode->i_mode)) {
1388                 if (ext2_inode_is_fast_symlink(inode)) {
1389                         inode->i_op = &ext2_fast_symlink_inode_operations;
1390                         nd_terminate_link(ei->i_data, inode->i_size,
1391                                 sizeof(ei->i_data) - 1);
1392                 } else {
1393                         inode->i_op = &ext2_symlink_inode_operations;
1394                         if (test_opt(inode->i_sb, NOBH))
1395                                 inode->i_mapping->a_ops = &ext2_nobh_aops;
1396                         else
1397                                 inode->i_mapping->a_ops = &ext2_aops;
1398                 }
1399         } else {
1400                 inode->i_op = &ext2_special_inode_operations;
1401                 if (raw_inode->i_block[0])
1402                         init_special_inode(inode, inode->i_mode,
1403                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
1404                 else 
1405                         init_special_inode(inode, inode->i_mode,
1406                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
1407         }
1408         brelse (bh);
1409         ext2_set_inode_flags(inode);
1410         unlock_new_inode(inode);
1411         return inode;
1412         
1413 bad_inode:
1414         iget_failed(inode);
1415         return ERR_PTR(ret);
1416 }
1417
1418 static int __ext2_write_inode(struct inode *inode, int do_sync)
1419 {
1420         struct ext2_inode_info *ei = EXT2_I(inode);
1421         struct super_block *sb = inode->i_sb;
1422         ino_t ino = inode->i_ino;
1423         uid_t uid = i_uid_read(inode);
1424         gid_t gid = i_gid_read(inode);
1425         struct buffer_head * bh;
1426         struct ext2_inode * raw_inode = ext2_get_inode(sb, ino, &bh);
1427         int n;
1428         int err = 0;
1429
1430         if (IS_ERR(raw_inode))
1431                 return -EIO;
1432
1433         /* For fields not not tracking in the in-memory inode,
1434          * initialise them to zero for new inodes. */
1435         if (ei->i_state & EXT2_STATE_NEW)
1436                 memset(raw_inode, 0, EXT2_SB(sb)->s_inode_size);
1437
1438         ext2_get_inode_flags(ei);
1439         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
1440         if (!(test_opt(sb, NO_UID32))) {
1441                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid));
1442                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid));
1443 /*
1444  * Fix up interoperability with old kernels. Otherwise, old inodes get
1445  * re-used with the upper 16 bits of the uid/gid intact
1446  */
1447                 if (!ei->i_dtime) {
1448                         raw_inode->i_uid_high = cpu_to_le16(high_16_bits(uid));
1449                         raw_inode->i_gid_high = cpu_to_le16(high_16_bits(gid));
1450                 } else {
1451                         raw_inode->i_uid_high = 0;
1452                         raw_inode->i_gid_high = 0;
1453                 }
1454         } else {
1455                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(uid));
1456                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(gid));
1457                 raw_inode->i_uid_high = 0;
1458                 raw_inode->i_gid_high = 0;
1459         }
1460         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
1461         raw_inode->i_size = cpu_to_le32(inode->i_size);
1462         raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
1463         raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
1464         raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
1465
1466         raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
1467         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1468         raw_inode->i_flags = cpu_to_le32(ei->i_flags);
1469         raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
1470         raw_inode->i_frag = ei->i_frag_no;
1471         raw_inode->i_fsize = ei->i_frag_size;
1472         raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
1473         if (!S_ISREG(inode->i_mode))
1474                 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
1475         else {
1476                 raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32);
1477                 if (inode->i_size > 0x7fffffffULL) {
1478                         if (!EXT2_HAS_RO_COMPAT_FEATURE(sb,
1479                                         EXT2_FEATURE_RO_COMPAT_LARGE_FILE) ||
1480                             EXT2_SB(sb)->s_es->s_rev_level ==
1481                                         cpu_to_le32(EXT2_GOOD_OLD_REV)) {
1482                                /* If this is the first large file
1483                                 * created, add a flag to the superblock.
1484                                 */
1485                                 spin_lock(&EXT2_SB(sb)->s_lock);
1486                                 ext2_update_dynamic_rev(sb);
1487                                 EXT2_SET_RO_COMPAT_FEATURE(sb,
1488                                         EXT2_FEATURE_RO_COMPAT_LARGE_FILE);
1489                                 spin_unlock(&EXT2_SB(sb)->s_lock);
1490                                 ext2_write_super(sb);
1491                         }
1492                 }
1493         }
1494         
1495         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
1496         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1497                 if (old_valid_dev(inode->i_rdev)) {
1498                         raw_inode->i_block[0] =
1499                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
1500                         raw_inode->i_block[1] = 0;
1501                 } else {
1502                         raw_inode->i_block[0] = 0;
1503                         raw_inode->i_block[1] =
1504                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
1505                         raw_inode->i_block[2] = 0;
1506                 }
1507         } else for (n = 0; n < EXT2_N_BLOCKS; n++)
1508                 raw_inode->i_block[n] = ei->i_data[n];
1509         mark_buffer_dirty(bh);
1510         if (do_sync) {
1511                 sync_dirty_buffer(bh);
1512                 if (buffer_req(bh) && !buffer_uptodate(bh)) {
1513                         printk ("IO error syncing ext2 inode [%s:%08lx]\n",
1514                                 sb->s_id, (unsigned long) ino);
1515                         err = -EIO;
1516                 }
1517         }
1518         ei->i_state &= ~EXT2_STATE_NEW;
1519         brelse (bh);
1520         return err;
1521 }
1522
1523 int ext2_write_inode(struct inode *inode, struct writeback_control *wbc)
1524 {
1525         return __ext2_write_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1526 }
1527
1528 int ext2_setattr(struct dentry *dentry, struct iattr *iattr)
1529 {
1530         struct inode *inode = dentry->d_inode;
1531         int error;
1532
1533         error = inode_change_ok(inode, iattr);
1534         if (error)
1535                 return error;
1536
1537         if (is_quota_modification(inode, iattr))
1538                 dquot_initialize(inode);
1539         if ((iattr->ia_valid & ATTR_UID && !uid_eq(iattr->ia_uid, inode->i_uid)) ||
1540             (iattr->ia_valid & ATTR_GID && !gid_eq(iattr->ia_gid, inode->i_gid))) {
1541                 error = dquot_transfer(inode, iattr);
1542                 if (error)
1543                         return error;
1544         }
1545         if (iattr->ia_valid & ATTR_SIZE && iattr->ia_size != inode->i_size) {
1546                 error = ext2_setsize(inode, iattr->ia_size);
1547                 if (error)
1548                         return error;
1549         }
1550         setattr_copy(inode, iattr);
1551         if (iattr->ia_valid & ATTR_MODE)
1552                 error = ext2_acl_chmod(inode);
1553         mark_inode_dirty(inode);
1554
1555         return error;
1556 }