]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/ext4/inode.c
008c4b03e7c56fdacc8aacb393bd79f5965791ae
[karo-tx-linux.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/uio.h>
38 #include <linux/bio.h>
39 #include "ext4_jbd2.h"
40 #include "xattr.h"
41 #include "acl.h"
42 #include "ext4_extents.h"
43
44 #define MPAGE_DA_EXTENT_TAIL 0x01
45
46 static inline int ext4_begin_ordered_truncate(struct inode *inode,
47                                               loff_t new_size)
48 {
49         return jbd2_journal_begin_ordered_truncate(&EXT4_I(inode)->jinode,
50                                                    new_size);
51 }
52
53 static void ext4_invalidatepage(struct page *page, unsigned long offset);
54
55 /*
56  * Test whether an inode is a fast symlink.
57  */
58 static int ext4_inode_is_fast_symlink(struct inode *inode)
59 {
60         int ea_blocks = EXT4_I(inode)->i_file_acl ?
61                 (inode->i_sb->s_blocksize >> 9) : 0;
62
63         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
64 }
65
66 /*
67  * The ext4 forget function must perform a revoke if we are freeing data
68  * which has been journaled.  Metadata (eg. indirect blocks) must be
69  * revoked in all cases.
70  *
71  * "bh" may be NULL: a metadata block may have been freed from memory
72  * but there may still be a record of it in the journal, and that record
73  * still needs to be revoked.
74  */
75 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
76                         struct buffer_head *bh, ext4_fsblk_t blocknr)
77 {
78         int err;
79
80         might_sleep();
81
82         BUFFER_TRACE(bh, "enter");
83
84         jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
85                   "data mode %lx\n",
86                   bh, is_metadata, inode->i_mode,
87                   test_opt(inode->i_sb, DATA_FLAGS));
88
89         /* Never use the revoke function if we are doing full data
90          * journaling: there is no need to, and a V1 superblock won't
91          * support it.  Otherwise, only skip the revoke on un-journaled
92          * data blocks. */
93
94         if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
95             (!is_metadata && !ext4_should_journal_data(inode))) {
96                 if (bh) {
97                         BUFFER_TRACE(bh, "call jbd2_journal_forget");
98                         return ext4_journal_forget(handle, bh);
99                 }
100                 return 0;
101         }
102
103         /*
104          * data!=journal && (is_metadata || should_journal_data(inode))
105          */
106         BUFFER_TRACE(bh, "call ext4_journal_revoke");
107         err = ext4_journal_revoke(handle, blocknr, bh);
108         if (err)
109                 ext4_abort(inode->i_sb, __func__,
110                            "error %d when attempting revoke", err);
111         BUFFER_TRACE(bh, "exit");
112         return err;
113 }
114
115 /*
116  * Work out how many blocks we need to proceed with the next chunk of a
117  * truncate transaction.
118  */
119 static unsigned long blocks_for_truncate(struct inode *inode)
120 {
121         ext4_lblk_t needed;
122
123         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
124
125         /* Give ourselves just enough room to cope with inodes in which
126          * i_blocks is corrupt: we've seen disk corruptions in the past
127          * which resulted in random data in an inode which looked enough
128          * like a regular file for ext4 to try to delete it.  Things
129          * will go a bit crazy if that happens, but at least we should
130          * try not to panic the whole kernel. */
131         if (needed < 2)
132                 needed = 2;
133
134         /* But we need to bound the transaction so we don't overflow the
135          * journal. */
136         if (needed > EXT4_MAX_TRANS_DATA)
137                 needed = EXT4_MAX_TRANS_DATA;
138
139         return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
140 }
141
142 /*
143  * Truncate transactions can be complex and absolutely huge.  So we need to
144  * be able to restart the transaction at a conventient checkpoint to make
145  * sure we don't overflow the journal.
146  *
147  * start_transaction gets us a new handle for a truncate transaction,
148  * and extend_transaction tries to extend the existing one a bit.  If
149  * extend fails, we need to propagate the failure up and restart the
150  * transaction in the top-level truncate loop. --sct
151  */
152 static handle_t *start_transaction(struct inode *inode)
153 {
154         handle_t *result;
155
156         result = ext4_journal_start(inode, blocks_for_truncate(inode));
157         if (!IS_ERR(result))
158                 return result;
159
160         ext4_std_error(inode->i_sb, PTR_ERR(result));
161         return result;
162 }
163
164 /*
165  * Try to extend this transaction for the purposes of truncation.
166  *
167  * Returns 0 if we managed to create more room.  If we can't create more
168  * room, and the transaction must be restarted we return 1.
169  */
170 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
171 {
172         if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
173                 return 0;
174         if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
175                 return 0;
176         return 1;
177 }
178
179 /*
180  * Restart the transaction associated with *handle.  This does a commit,
181  * so before we call here everything must be consistently dirtied against
182  * this transaction.
183  */
184 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
185 {
186         jbd_debug(2, "restarting handle %p\n", handle);
187         return ext4_journal_restart(handle, blocks_for_truncate(inode));
188 }
189
190 /*
191  * Called at the last iput() if i_nlink is zero.
192  */
193 void ext4_delete_inode(struct inode *inode)
194 {
195         handle_t *handle;
196         int err;
197
198         if (ext4_should_order_data(inode))
199                 ext4_begin_ordered_truncate(inode, 0);
200         truncate_inode_pages(&inode->i_data, 0);
201
202         if (is_bad_inode(inode))
203                 goto no_delete;
204
205         handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
206         if (IS_ERR(handle)) {
207                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
208                 /*
209                  * If we're going to skip the normal cleanup, we still need to
210                  * make sure that the in-core orphan linked list is properly
211                  * cleaned up.
212                  */
213                 ext4_orphan_del(NULL, inode);
214                 goto no_delete;
215         }
216
217         if (IS_SYNC(inode))
218                 handle->h_sync = 1;
219         inode->i_size = 0;
220         err = ext4_mark_inode_dirty(handle, inode);
221         if (err) {
222                 ext4_warning(inode->i_sb, __func__,
223                              "couldn't mark inode dirty (err %d)", err);
224                 goto stop_handle;
225         }
226         if (inode->i_blocks)
227                 ext4_truncate(inode);
228
229         /*
230          * ext4_ext_truncate() doesn't reserve any slop when it
231          * restarts journal transactions; therefore there may not be
232          * enough credits left in the handle to remove the inode from
233          * the orphan list and set the dtime field.
234          */
235         if (handle->h_buffer_credits < 3) {
236                 err = ext4_journal_extend(handle, 3);
237                 if (err > 0)
238                         err = ext4_journal_restart(handle, 3);
239                 if (err != 0) {
240                         ext4_warning(inode->i_sb, __func__,
241                                      "couldn't extend journal (err %d)", err);
242                 stop_handle:
243                         ext4_journal_stop(handle);
244                         goto no_delete;
245                 }
246         }
247
248         /*
249          * Kill off the orphan record which ext4_truncate created.
250          * AKPM: I think this can be inside the above `if'.
251          * Note that ext4_orphan_del() has to be able to cope with the
252          * deletion of a non-existent orphan - this is because we don't
253          * know if ext4_truncate() actually created an orphan record.
254          * (Well, we could do this if we need to, but heck - it works)
255          */
256         ext4_orphan_del(handle, inode);
257         EXT4_I(inode)->i_dtime  = get_seconds();
258
259         /*
260          * One subtle ordering requirement: if anything has gone wrong
261          * (transaction abort, IO errors, whatever), then we can still
262          * do these next steps (the fs will already have been marked as
263          * having errors), but we can't free the inode if the mark_dirty
264          * fails.
265          */
266         if (ext4_mark_inode_dirty(handle, inode))
267                 /* If that failed, just do the required in-core inode clear. */
268                 clear_inode(inode);
269         else
270                 ext4_free_inode(handle, inode);
271         ext4_journal_stop(handle);
272         return;
273 no_delete:
274         clear_inode(inode);     /* We must guarantee clearing of inode... */
275 }
276
277 typedef struct {
278         __le32  *p;
279         __le32  key;
280         struct buffer_head *bh;
281 } Indirect;
282
283 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
284 {
285         p->key = *(p->p = v);
286         p->bh = bh;
287 }
288
289 /**
290  *      ext4_block_to_path - parse the block number into array of offsets
291  *      @inode: inode in question (we are only interested in its superblock)
292  *      @i_block: block number to be parsed
293  *      @offsets: array to store the offsets in
294  *      @boundary: set this non-zero if the referred-to block is likely to be
295  *             followed (on disk) by an indirect block.
296  *
297  *      To store the locations of file's data ext4 uses a data structure common
298  *      for UNIX filesystems - tree of pointers anchored in the inode, with
299  *      data blocks at leaves and indirect blocks in intermediate nodes.
300  *      This function translates the block number into path in that tree -
301  *      return value is the path length and @offsets[n] is the offset of
302  *      pointer to (n+1)th node in the nth one. If @block is out of range
303  *      (negative or too large) warning is printed and zero returned.
304  *
305  *      Note: function doesn't find node addresses, so no IO is needed. All
306  *      we need to know is the capacity of indirect blocks (taken from the
307  *      inode->i_sb).
308  */
309
310 /*
311  * Portability note: the last comparison (check that we fit into triple
312  * indirect block) is spelled differently, because otherwise on an
313  * architecture with 32-bit longs and 8Kb pages we might get into trouble
314  * if our filesystem had 8Kb blocks. We might use long long, but that would
315  * kill us on x86. Oh, well, at least the sign propagation does not matter -
316  * i_block would have to be negative in the very beginning, so we would not
317  * get there at all.
318  */
319
320 static int ext4_block_to_path(struct inode *inode,
321                         ext4_lblk_t i_block,
322                         ext4_lblk_t offsets[4], int *boundary)
323 {
324         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
325         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
326         const long direct_blocks = EXT4_NDIR_BLOCKS,
327                 indirect_blocks = ptrs,
328                 double_blocks = (1 << (ptrs_bits * 2));
329         int n = 0;
330         int final = 0;
331
332         if (i_block < 0) {
333                 ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
334         } else if (i_block < direct_blocks) {
335                 offsets[n++] = i_block;
336                 final = direct_blocks;
337         } else if ((i_block -= direct_blocks) < indirect_blocks) {
338                 offsets[n++] = EXT4_IND_BLOCK;
339                 offsets[n++] = i_block;
340                 final = ptrs;
341         } else if ((i_block -= indirect_blocks) < double_blocks) {
342                 offsets[n++] = EXT4_DIND_BLOCK;
343                 offsets[n++] = i_block >> ptrs_bits;
344                 offsets[n++] = i_block & (ptrs - 1);
345                 final = ptrs;
346         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
347                 offsets[n++] = EXT4_TIND_BLOCK;
348                 offsets[n++] = i_block >> (ptrs_bits * 2);
349                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
350                 offsets[n++] = i_block & (ptrs - 1);
351                 final = ptrs;
352         } else {
353                 ext4_warning(inode->i_sb, "ext4_block_to_path",
354                                 "block %lu > max",
355                                 i_block + direct_blocks +
356                                 indirect_blocks + double_blocks);
357         }
358         if (boundary)
359                 *boundary = final - 1 - (i_block & (ptrs - 1));
360         return n;
361 }
362
363 /**
364  *      ext4_get_branch - read the chain of indirect blocks leading to data
365  *      @inode: inode in question
366  *      @depth: depth of the chain (1 - direct pointer, etc.)
367  *      @offsets: offsets of pointers in inode/indirect blocks
368  *      @chain: place to store the result
369  *      @err: here we store the error value
370  *
371  *      Function fills the array of triples <key, p, bh> and returns %NULL
372  *      if everything went OK or the pointer to the last filled triple
373  *      (incomplete one) otherwise. Upon the return chain[i].key contains
374  *      the number of (i+1)-th block in the chain (as it is stored in memory,
375  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
376  *      number (it points into struct inode for i==0 and into the bh->b_data
377  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
378  *      block for i>0 and NULL for i==0. In other words, it holds the block
379  *      numbers of the chain, addresses they were taken from (and where we can
380  *      verify that chain did not change) and buffer_heads hosting these
381  *      numbers.
382  *
383  *      Function stops when it stumbles upon zero pointer (absent block)
384  *              (pointer to last triple returned, *@err == 0)
385  *      or when it gets an IO error reading an indirect block
386  *              (ditto, *@err == -EIO)
387  *      or when it reads all @depth-1 indirect blocks successfully and finds
388  *      the whole chain, all way to the data (returns %NULL, *err == 0).
389  *
390  *      Need to be called with
391  *      down_read(&EXT4_I(inode)->i_data_sem)
392  */
393 static Indirect *ext4_get_branch(struct inode *inode, int depth,
394                                  ext4_lblk_t  *offsets,
395                                  Indirect chain[4], int *err)
396 {
397         struct super_block *sb = inode->i_sb;
398         Indirect *p = chain;
399         struct buffer_head *bh;
400
401         *err = 0;
402         /* i_data is not going away, no lock needed */
403         add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
404         if (!p->key)
405                 goto no_block;
406         while (--depth) {
407                 bh = sb_bread(sb, le32_to_cpu(p->key));
408                 if (!bh)
409                         goto failure;
410                 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
411                 /* Reader: end */
412                 if (!p->key)
413                         goto no_block;
414         }
415         return NULL;
416
417 failure:
418         *err = -EIO;
419 no_block:
420         return p;
421 }
422
423 /**
424  *      ext4_find_near - find a place for allocation with sufficient locality
425  *      @inode: owner
426  *      @ind: descriptor of indirect block.
427  *
428  *      This function returns the preferred place for block allocation.
429  *      It is used when heuristic for sequential allocation fails.
430  *      Rules are:
431  *        + if there is a block to the left of our position - allocate near it.
432  *        + if pointer will live in indirect block - allocate near that block.
433  *        + if pointer will live in inode - allocate in the same
434  *          cylinder group.
435  *
436  * In the latter case we colour the starting block by the callers PID to
437  * prevent it from clashing with concurrent allocations for a different inode
438  * in the same block group.   The PID is used here so that functionally related
439  * files will be close-by on-disk.
440  *
441  *      Caller must make sure that @ind is valid and will stay that way.
442  */
443 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
444 {
445         struct ext4_inode_info *ei = EXT4_I(inode);
446         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
447         __le32 *p;
448         ext4_fsblk_t bg_start;
449         ext4_fsblk_t last_block;
450         ext4_grpblk_t colour;
451
452         /* Try to find previous block */
453         for (p = ind->p - 1; p >= start; p--) {
454                 if (*p)
455                         return le32_to_cpu(*p);
456         }
457
458         /* No such thing, so let's try location of indirect block */
459         if (ind->bh)
460                 return ind->bh->b_blocknr;
461
462         /*
463          * It is going to be referred to from the inode itself? OK, just put it
464          * into the same cylinder group then.
465          */
466         bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
467         last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
468
469         if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
470                 colour = (current->pid % 16) *
471                         (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
472         else
473                 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
474         return bg_start + colour;
475 }
476
477 /**
478  *      ext4_find_goal - find a preferred place for allocation.
479  *      @inode: owner
480  *      @block:  block we want
481  *      @partial: pointer to the last triple within a chain
482  *
483  *      Normally this function find the preferred place for block allocation,
484  *      returns it.
485  */
486 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
487                 Indirect *partial)
488 {
489         /*
490          * XXX need to get goal block from mballoc's data structures
491          */
492
493         return ext4_find_near(inode, partial);
494 }
495
496 /**
497  *      ext4_blks_to_allocate: Look up the block map and count the number
498  *      of direct blocks need to be allocated for the given branch.
499  *
500  *      @branch: chain of indirect blocks
501  *      @k: number of blocks need for indirect blocks
502  *      @blks: number of data blocks to be mapped.
503  *      @blocks_to_boundary:  the offset in the indirect block
504  *
505  *      return the total number of blocks to be allocate, including the
506  *      direct and indirect blocks.
507  */
508 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
509                 int blocks_to_boundary)
510 {
511         unsigned long count = 0;
512
513         /*
514          * Simple case, [t,d]Indirect block(s) has not allocated yet
515          * then it's clear blocks on that path have not allocated
516          */
517         if (k > 0) {
518                 /* right now we don't handle cross boundary allocation */
519                 if (blks < blocks_to_boundary + 1)
520                         count += blks;
521                 else
522                         count += blocks_to_boundary + 1;
523                 return count;
524         }
525
526         count++;
527         while (count < blks && count <= blocks_to_boundary &&
528                 le32_to_cpu(*(branch[0].p + count)) == 0) {
529                 count++;
530         }
531         return count;
532 }
533
534 /**
535  *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
536  *      @indirect_blks: the number of blocks need to allocate for indirect
537  *                      blocks
538  *
539  *      @new_blocks: on return it will store the new block numbers for
540  *      the indirect blocks(if needed) and the first direct block,
541  *      @blks:  on return it will store the total number of allocated
542  *              direct blocks
543  */
544 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
545                                 ext4_lblk_t iblock, ext4_fsblk_t goal,
546                                 int indirect_blks, int blks,
547                                 ext4_fsblk_t new_blocks[4], int *err)
548 {
549         int target, i;
550         unsigned long count = 0, blk_allocated = 0;
551         int index = 0;
552         ext4_fsblk_t current_block = 0;
553         int ret = 0;
554
555         /*
556          * Here we try to allocate the requested multiple blocks at once,
557          * on a best-effort basis.
558          * To build a branch, we should allocate blocks for
559          * the indirect blocks(if not allocated yet), and at least
560          * the first direct block of this branch.  That's the
561          * minimum number of blocks need to allocate(required)
562          */
563         /* first we try to allocate the indirect blocks */
564         target = indirect_blks;
565         while (target > 0) {
566                 count = target;
567                 /* allocating blocks for indirect blocks and direct blocks */
568                 current_block = ext4_new_meta_blocks(handle, inode,
569                                                         goal, &count, err);
570                 if (*err)
571                         goto failed_out;
572
573                 target -= count;
574                 /* allocate blocks for indirect blocks */
575                 while (index < indirect_blks && count) {
576                         new_blocks[index++] = current_block++;
577                         count--;
578                 }
579                 if (count > 0) {
580                         /*
581                          * save the new block number
582                          * for the first direct block
583                          */
584                         new_blocks[index] = current_block;
585                         printk(KERN_INFO "%s returned more blocks than "
586                                                 "requested\n", __func__);
587                         WARN_ON(1);
588                         break;
589                 }
590         }
591
592         target = blks - count ;
593         blk_allocated = count;
594         if (!target)
595                 goto allocated;
596         /* Now allocate data blocks */
597         count = target;
598         /* allocating blocks for data blocks */
599         current_block = ext4_new_blocks(handle, inode, iblock,
600                                                 goal, &count, err);
601         if (*err && (target == blks)) {
602                 /*
603                  * if the allocation failed and we didn't allocate
604                  * any blocks before
605                  */
606                 goto failed_out;
607         }
608         if (!*err) {
609                 if (target == blks) {
610                 /*
611                  * save the new block number
612                  * for the first direct block
613                  */
614                         new_blocks[index] = current_block;
615                 }
616                 blk_allocated += count;
617         }
618 allocated:
619         /* total number of blocks allocated for direct blocks */
620         ret = blk_allocated;
621         *err = 0;
622         return ret;
623 failed_out:
624         for (i = 0; i < index; i++)
625                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
626         return ret;
627 }
628
629 /**
630  *      ext4_alloc_branch - allocate and set up a chain of blocks.
631  *      @inode: owner
632  *      @indirect_blks: number of allocated indirect blocks
633  *      @blks: number of allocated direct blocks
634  *      @offsets: offsets (in the blocks) to store the pointers to next.
635  *      @branch: place to store the chain in.
636  *
637  *      This function allocates blocks, zeroes out all but the last one,
638  *      links them into chain and (if we are synchronous) writes them to disk.
639  *      In other words, it prepares a branch that can be spliced onto the
640  *      inode. It stores the information about that chain in the branch[], in
641  *      the same format as ext4_get_branch() would do. We are calling it after
642  *      we had read the existing part of chain and partial points to the last
643  *      triple of that (one with zero ->key). Upon the exit we have the same
644  *      picture as after the successful ext4_get_block(), except that in one
645  *      place chain is disconnected - *branch->p is still zero (we did not
646  *      set the last link), but branch->key contains the number that should
647  *      be placed into *branch->p to fill that gap.
648  *
649  *      If allocation fails we free all blocks we've allocated (and forget
650  *      their buffer_heads) and return the error value the from failed
651  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
652  *      as described above and return 0.
653  */
654 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
655                                 ext4_lblk_t iblock, int indirect_blks,
656                                 int *blks, ext4_fsblk_t goal,
657                                 ext4_lblk_t *offsets, Indirect *branch)
658 {
659         int blocksize = inode->i_sb->s_blocksize;
660         int i, n = 0;
661         int err = 0;
662         struct buffer_head *bh;
663         int num;
664         ext4_fsblk_t new_blocks[4];
665         ext4_fsblk_t current_block;
666
667         num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
668                                 *blks, new_blocks, &err);
669         if (err)
670                 return err;
671
672         branch[0].key = cpu_to_le32(new_blocks[0]);
673         /*
674          * metadata blocks and data blocks are allocated.
675          */
676         for (n = 1; n <= indirect_blks;  n++) {
677                 /*
678                  * Get buffer_head for parent block, zero it out
679                  * and set the pointer to new one, then send
680                  * parent to disk.
681                  */
682                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
683                 branch[n].bh = bh;
684                 lock_buffer(bh);
685                 BUFFER_TRACE(bh, "call get_create_access");
686                 err = ext4_journal_get_create_access(handle, bh);
687                 if (err) {
688                         unlock_buffer(bh);
689                         brelse(bh);
690                         goto failed;
691                 }
692
693                 memset(bh->b_data, 0, blocksize);
694                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
695                 branch[n].key = cpu_to_le32(new_blocks[n]);
696                 *branch[n].p = branch[n].key;
697                 if (n == indirect_blks) {
698                         current_block = new_blocks[n];
699                         /*
700                          * End of chain, update the last new metablock of
701                          * the chain to point to the new allocated
702                          * data blocks numbers
703                          */
704                         for (i=1; i < num; i++)
705                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
706                 }
707                 BUFFER_TRACE(bh, "marking uptodate");
708                 set_buffer_uptodate(bh);
709                 unlock_buffer(bh);
710
711                 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
712                 err = ext4_journal_dirty_metadata(handle, bh);
713                 if (err)
714                         goto failed;
715         }
716         *blks = num;
717         return err;
718 failed:
719         /* Allocation failed, free what we already allocated */
720         for (i = 1; i <= n ; i++) {
721                 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
722                 ext4_journal_forget(handle, branch[i].bh);
723         }
724         for (i = 0; i < indirect_blks; i++)
725                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
726
727         ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
728
729         return err;
730 }
731
732 /**
733  * ext4_splice_branch - splice the allocated branch onto inode.
734  * @inode: owner
735  * @block: (logical) number of block we are adding
736  * @chain: chain of indirect blocks (with a missing link - see
737  *      ext4_alloc_branch)
738  * @where: location of missing link
739  * @num:   number of indirect blocks we are adding
740  * @blks:  number of direct blocks we are adding
741  *
742  * This function fills the missing link and does all housekeeping needed in
743  * inode (->i_blocks, etc.). In case of success we end up with the full
744  * chain to new block and return 0.
745  */
746 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
747                         ext4_lblk_t block, Indirect *where, int num, int blks)
748 {
749         int i;
750         int err = 0;
751         ext4_fsblk_t current_block;
752
753         /*
754          * If we're splicing into a [td]indirect block (as opposed to the
755          * inode) then we need to get write access to the [td]indirect block
756          * before the splice.
757          */
758         if (where->bh) {
759                 BUFFER_TRACE(where->bh, "get_write_access");
760                 err = ext4_journal_get_write_access(handle, where->bh);
761                 if (err)
762                         goto err_out;
763         }
764         /* That's it */
765
766         *where->p = where->key;
767
768         /*
769          * Update the host buffer_head or inode to point to more just allocated
770          * direct blocks blocks
771          */
772         if (num == 0 && blks > 1) {
773                 current_block = le32_to_cpu(where->key) + 1;
774                 for (i = 1; i < blks; i++)
775                         *(where->p + i) = cpu_to_le32(current_block++);
776         }
777
778         /* We are done with atomic stuff, now do the rest of housekeeping */
779
780         inode->i_ctime = ext4_current_time(inode);
781         ext4_mark_inode_dirty(handle, inode);
782
783         /* had we spliced it onto indirect block? */
784         if (where->bh) {
785                 /*
786                  * If we spliced it onto an indirect block, we haven't
787                  * altered the inode.  Note however that if it is being spliced
788                  * onto an indirect block at the very end of the file (the
789                  * file is growing) then we *will* alter the inode to reflect
790                  * the new i_size.  But that is not done here - it is done in
791                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
792                  */
793                 jbd_debug(5, "splicing indirect only\n");
794                 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
795                 err = ext4_journal_dirty_metadata(handle, where->bh);
796                 if (err)
797                         goto err_out;
798         } else {
799                 /*
800                  * OK, we spliced it into the inode itself on a direct block.
801                  * Inode was dirtied above.
802                  */
803                 jbd_debug(5, "splicing direct\n");
804         }
805         return err;
806
807 err_out:
808         for (i = 1; i <= num; i++) {
809                 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
810                 ext4_journal_forget(handle, where[i].bh);
811                 ext4_free_blocks(handle, inode,
812                                         le32_to_cpu(where[i-1].key), 1, 0);
813         }
814         ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
815
816         return err;
817 }
818
819 /*
820  * Allocation strategy is simple: if we have to allocate something, we will
821  * have to go the whole way to leaf. So let's do it before attaching anything
822  * to tree, set linkage between the newborn blocks, write them if sync is
823  * required, recheck the path, free and repeat if check fails, otherwise
824  * set the last missing link (that will protect us from any truncate-generated
825  * removals - all blocks on the path are immune now) and possibly force the
826  * write on the parent block.
827  * That has a nice additional property: no special recovery from the failed
828  * allocations is needed - we simply release blocks and do not touch anything
829  * reachable from inode.
830  *
831  * `handle' can be NULL if create == 0.
832  *
833  * return > 0, # of blocks mapped or allocated.
834  * return = 0, if plain lookup failed.
835  * return < 0, error case.
836  *
837  *
838  * Need to be called with
839  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
840  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
841  */
842 int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
843                 ext4_lblk_t iblock, unsigned long maxblocks,
844                 struct buffer_head *bh_result,
845                 int create, int extend_disksize)
846 {
847         int err = -EIO;
848         ext4_lblk_t offsets[4];
849         Indirect chain[4];
850         Indirect *partial;
851         ext4_fsblk_t goal;
852         int indirect_blks;
853         int blocks_to_boundary = 0;
854         int depth;
855         struct ext4_inode_info *ei = EXT4_I(inode);
856         int count = 0;
857         ext4_fsblk_t first_block = 0;
858         loff_t disksize;
859
860
861         J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
862         J_ASSERT(handle != NULL || create == 0);
863         depth = ext4_block_to_path(inode, iblock, offsets,
864                                         &blocks_to_boundary);
865
866         if (depth == 0)
867                 goto out;
868
869         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
870
871         /* Simplest case - block found, no allocation needed */
872         if (!partial) {
873                 first_block = le32_to_cpu(chain[depth - 1].key);
874                 clear_buffer_new(bh_result);
875                 count++;
876                 /*map more blocks*/
877                 while (count < maxblocks && count <= blocks_to_boundary) {
878                         ext4_fsblk_t blk;
879
880                         blk = le32_to_cpu(*(chain[depth-1].p + count));
881
882                         if (blk == first_block + count)
883                                 count++;
884                         else
885                                 break;
886                 }
887                 goto got_it;
888         }
889
890         /* Next simple case - plain lookup or failed read of indirect block */
891         if (!create || err == -EIO)
892                 goto cleanup;
893
894         /*
895          * Okay, we need to do block allocation.
896         */
897         goal = ext4_find_goal(inode, iblock, partial);
898
899         /* the number of blocks need to allocate for [d,t]indirect blocks */
900         indirect_blks = (chain + depth) - partial - 1;
901
902         /*
903          * Next look up the indirect map to count the totoal number of
904          * direct blocks to allocate for this branch.
905          */
906         count = ext4_blks_to_allocate(partial, indirect_blks,
907                                         maxblocks, blocks_to_boundary);
908         /*
909          * Block out ext4_truncate while we alter the tree
910          */
911         err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
912                                         &count, goal,
913                                         offsets + (partial - chain), partial);
914
915         /*
916          * The ext4_splice_branch call will free and forget any buffers
917          * on the new chain if there is a failure, but that risks using
918          * up transaction credits, especially for bitmaps where the
919          * credits cannot be returned.  Can we handle this somehow?  We
920          * may need to return -EAGAIN upwards in the worst case.  --sct
921          */
922         if (!err)
923                 err = ext4_splice_branch(handle, inode, iblock,
924                                         partial, indirect_blks, count);
925         /*
926          * i_disksize growing is protected by i_data_sem.  Don't forget to
927          * protect it if you're about to implement concurrent
928          * ext4_get_block() -bzzz
929         */
930         if (!err && extend_disksize) {
931                 disksize = ((loff_t) iblock + count) << inode->i_blkbits;
932                 if (disksize > i_size_read(inode))
933                         disksize = i_size_read(inode);
934                 if (disksize > ei->i_disksize)
935                         ei->i_disksize = disksize;
936         }
937         if (err)
938                 goto cleanup;
939
940         set_buffer_new(bh_result);
941 got_it:
942         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
943         if (count > blocks_to_boundary)
944                 set_buffer_boundary(bh_result);
945         err = count;
946         /* Clean up and exit */
947         partial = chain + depth - 1;    /* the whole chain */
948 cleanup:
949         while (partial > chain) {
950                 BUFFER_TRACE(partial->bh, "call brelse");
951                 brelse(partial->bh);
952                 partial--;
953         }
954         BUFFER_TRACE(bh_result, "returned");
955 out:
956         return err;
957 }
958
959 /*
960  * Calculate the number of metadata blocks need to reserve
961  * to allocate @blocks for non extent file based file
962  */
963 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
964 {
965         int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
966         int ind_blks, dind_blks, tind_blks;
967
968         /* number of new indirect blocks needed */
969         ind_blks = (blocks + icap - 1) / icap;
970
971         dind_blks = (ind_blks + icap - 1) / icap;
972
973         tind_blks = 1;
974
975         return ind_blks + dind_blks + tind_blks;
976 }
977
978 /*
979  * Calculate the number of metadata blocks need to reserve
980  * to allocate given number of blocks
981  */
982 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
983 {
984         if (!blocks)
985                 return 0;
986
987         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
988                 return ext4_ext_calc_metadata_amount(inode, blocks);
989
990         return ext4_indirect_calc_metadata_amount(inode, blocks);
991 }
992
993 static void ext4_da_update_reserve_space(struct inode *inode, int used)
994 {
995         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
996         int total, mdb, mdb_free;
997
998         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
999         /* recalculate the number of metablocks still need to be reserved */
1000         total = EXT4_I(inode)->i_reserved_data_blocks - used;
1001         mdb = ext4_calc_metadata_amount(inode, total);
1002
1003         /* figure out how many metablocks to release */
1004         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1005         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1006
1007         if (mdb_free) {
1008                 /* Account for allocated meta_blocks */
1009                 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1010
1011                 /* update fs dirty blocks counter */
1012                 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1013                 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1014                 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1015         }
1016
1017         /* update per-inode reservations */
1018         BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
1019         EXT4_I(inode)->i_reserved_data_blocks -= used;
1020
1021         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1022 }
1023
1024 /*
1025  * The ext4_get_blocks_wrap() function try to look up the requested blocks,
1026  * and returns if the blocks are already mapped.
1027  *
1028  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1029  * and store the allocated blocks in the result buffer head and mark it
1030  * mapped.
1031  *
1032  * If file type is extents based, it will call ext4_ext_get_blocks(),
1033  * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
1034  * based files
1035  *
1036  * On success, it returns the number of blocks being mapped or allocate.
1037  * if create==0 and the blocks are pre-allocated and uninitialized block,
1038  * the result buffer head is unmapped. If the create ==1, it will make sure
1039  * the buffer head is mapped.
1040  *
1041  * It returns 0 if plain look up failed (blocks have not been allocated), in
1042  * that casem, buffer head is unmapped
1043  *
1044  * It returns the error in case of allocation failure.
1045  */
1046 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
1047                         unsigned long max_blocks, struct buffer_head *bh,
1048                         int create, int extend_disksize, int flag)
1049 {
1050         int retval;
1051
1052         clear_buffer_mapped(bh);
1053
1054         /*
1055          * Try to see if we can get  the block without requesting
1056          * for new file system block.
1057          */
1058         down_read((&EXT4_I(inode)->i_data_sem));
1059         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1060                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1061                                 bh, 0, 0);
1062         } else {
1063                 retval = ext4_get_blocks_handle(handle,
1064                                 inode, block, max_blocks, bh, 0, 0);
1065         }
1066         up_read((&EXT4_I(inode)->i_data_sem));
1067
1068         /* If it is only a block(s) look up */
1069         if (!create)
1070                 return retval;
1071
1072         /*
1073          * Returns if the blocks have already allocated
1074          *
1075          * Note that if blocks have been preallocated
1076          * ext4_ext_get_block() returns th create = 0
1077          * with buffer head unmapped.
1078          */
1079         if (retval > 0 && buffer_mapped(bh))
1080                 return retval;
1081
1082         /*
1083          * New blocks allocate and/or writing to uninitialized extent
1084          * will possibly result in updating i_data, so we take
1085          * the write lock of i_data_sem, and call get_blocks()
1086          * with create == 1 flag.
1087          */
1088         down_write((&EXT4_I(inode)->i_data_sem));
1089
1090         /*
1091          * if the caller is from delayed allocation writeout path
1092          * we have already reserved fs blocks for allocation
1093          * let the underlying get_block() function know to
1094          * avoid double accounting
1095          */
1096         if (flag)
1097                 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1098         /*
1099          * We need to check for EXT4 here because migrate
1100          * could have changed the inode type in between
1101          */
1102         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1103                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1104                                 bh, create, extend_disksize);
1105         } else {
1106                 retval = ext4_get_blocks_handle(handle, inode, block,
1107                                 max_blocks, bh, create, extend_disksize);
1108
1109                 if (retval > 0 && buffer_new(bh)) {
1110                         /*
1111                          * We allocated new blocks which will result in
1112                          * i_data's format changing.  Force the migrate
1113                          * to fail by clearing migrate flags
1114                          */
1115                         EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1116                                                         ~EXT4_EXT_MIGRATE;
1117                 }
1118         }
1119
1120         if (flag) {
1121                 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1122                 /*
1123                  * Update reserved blocks/metadata blocks
1124                  * after successful block allocation
1125                  * which were deferred till now
1126                  */
1127                 if ((retval > 0) && buffer_delay(bh))
1128                         ext4_da_update_reserve_space(inode, retval);
1129         }
1130
1131         up_write((&EXT4_I(inode)->i_data_sem));
1132         return retval;
1133 }
1134
1135 /* Maximum number of blocks we map for direct IO at once. */
1136 #define DIO_MAX_BLOCKS 4096
1137
1138 int ext4_get_block(struct inode *inode, sector_t iblock,
1139                    struct buffer_head *bh_result, int create)
1140 {
1141         handle_t *handle = ext4_journal_current_handle();
1142         int ret = 0, started = 0;
1143         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1144         int dio_credits;
1145
1146         if (create && !handle) {
1147                 /* Direct IO write... */
1148                 if (max_blocks > DIO_MAX_BLOCKS)
1149                         max_blocks = DIO_MAX_BLOCKS;
1150                 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1151                 handle = ext4_journal_start(inode, dio_credits);
1152                 if (IS_ERR(handle)) {
1153                         ret = PTR_ERR(handle);
1154                         goto out;
1155                 }
1156                 started = 1;
1157         }
1158
1159         ret = ext4_get_blocks_wrap(handle, inode, iblock,
1160                                         max_blocks, bh_result, create, 0, 0);
1161         if (ret > 0) {
1162                 bh_result->b_size = (ret << inode->i_blkbits);
1163                 ret = 0;
1164         }
1165         if (started)
1166                 ext4_journal_stop(handle);
1167 out:
1168         return ret;
1169 }
1170
1171 /*
1172  * `handle' can be NULL if create is zero
1173  */
1174 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1175                                 ext4_lblk_t block, int create, int *errp)
1176 {
1177         struct buffer_head dummy;
1178         int fatal = 0, err;
1179
1180         J_ASSERT(handle != NULL || create == 0);
1181
1182         dummy.b_state = 0;
1183         dummy.b_blocknr = -1000;
1184         buffer_trace_init(&dummy.b_history);
1185         err = ext4_get_blocks_wrap(handle, inode, block, 1,
1186                                         &dummy, create, 1, 0);
1187         /*
1188          * ext4_get_blocks_handle() returns number of blocks
1189          * mapped. 0 in case of a HOLE.
1190          */
1191         if (err > 0) {
1192                 if (err > 1)
1193                         WARN_ON(1);
1194                 err = 0;
1195         }
1196         *errp = err;
1197         if (!err && buffer_mapped(&dummy)) {
1198                 struct buffer_head *bh;
1199                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1200                 if (!bh) {
1201                         *errp = -EIO;
1202                         goto err;
1203                 }
1204                 if (buffer_new(&dummy)) {
1205                         J_ASSERT(create != 0);
1206                         J_ASSERT(handle != NULL);
1207
1208                         /*
1209                          * Now that we do not always journal data, we should
1210                          * keep in mind whether this should always journal the
1211                          * new buffer as metadata.  For now, regular file
1212                          * writes use ext4_get_block instead, so it's not a
1213                          * problem.
1214                          */
1215                         lock_buffer(bh);
1216                         BUFFER_TRACE(bh, "call get_create_access");
1217                         fatal = ext4_journal_get_create_access(handle, bh);
1218                         if (!fatal && !buffer_uptodate(bh)) {
1219                                 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1220                                 set_buffer_uptodate(bh);
1221                         }
1222                         unlock_buffer(bh);
1223                         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1224                         err = ext4_journal_dirty_metadata(handle, bh);
1225                         if (!fatal)
1226                                 fatal = err;
1227                 } else {
1228                         BUFFER_TRACE(bh, "not a new buffer");
1229                 }
1230                 if (fatal) {
1231                         *errp = fatal;
1232                         brelse(bh);
1233                         bh = NULL;
1234                 }
1235                 return bh;
1236         }
1237 err:
1238         return NULL;
1239 }
1240
1241 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1242                                ext4_lblk_t block, int create, int *err)
1243 {
1244         struct buffer_head *bh;
1245
1246         bh = ext4_getblk(handle, inode, block, create, err);
1247         if (!bh)
1248                 return bh;
1249         if (buffer_uptodate(bh))
1250                 return bh;
1251         ll_rw_block(READ_META, 1, &bh);
1252         wait_on_buffer(bh);
1253         if (buffer_uptodate(bh))
1254                 return bh;
1255         put_bh(bh);
1256         *err = -EIO;
1257         return NULL;
1258 }
1259
1260 static int walk_page_buffers(handle_t *handle,
1261                              struct buffer_head *head,
1262                              unsigned from,
1263                              unsigned to,
1264                              int *partial,
1265                              int (*fn)(handle_t *handle,
1266                                        struct buffer_head *bh))
1267 {
1268         struct buffer_head *bh;
1269         unsigned block_start, block_end;
1270         unsigned blocksize = head->b_size;
1271         int err, ret = 0;
1272         struct buffer_head *next;
1273
1274         for (bh = head, block_start = 0;
1275              ret == 0 && (bh != head || !block_start);
1276              block_start = block_end, bh = next)
1277         {
1278                 next = bh->b_this_page;
1279                 block_end = block_start + blocksize;
1280                 if (block_end <= from || block_start >= to) {
1281                         if (partial && !buffer_uptodate(bh))
1282                                 *partial = 1;
1283                         continue;
1284                 }
1285                 err = (*fn)(handle, bh);
1286                 if (!ret)
1287                         ret = err;
1288         }
1289         return ret;
1290 }
1291
1292 /*
1293  * To preserve ordering, it is essential that the hole instantiation and
1294  * the data write be encapsulated in a single transaction.  We cannot
1295  * close off a transaction and start a new one between the ext4_get_block()
1296  * and the commit_write().  So doing the jbd2_journal_start at the start of
1297  * prepare_write() is the right place.
1298  *
1299  * Also, this function can nest inside ext4_writepage() ->
1300  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1301  * has generated enough buffer credits to do the whole page.  So we won't
1302  * block on the journal in that case, which is good, because the caller may
1303  * be PF_MEMALLOC.
1304  *
1305  * By accident, ext4 can be reentered when a transaction is open via
1306  * quota file writes.  If we were to commit the transaction while thus
1307  * reentered, there can be a deadlock - we would be holding a quota
1308  * lock, and the commit would never complete if another thread had a
1309  * transaction open and was blocking on the quota lock - a ranking
1310  * violation.
1311  *
1312  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1313  * will _not_ run commit under these circumstances because handle->h_ref
1314  * is elevated.  We'll still have enough credits for the tiny quotafile
1315  * write.
1316  */
1317 static int do_journal_get_write_access(handle_t *handle,
1318                                         struct buffer_head *bh)
1319 {
1320         if (!buffer_mapped(bh) || buffer_freed(bh))
1321                 return 0;
1322         return ext4_journal_get_write_access(handle, bh);
1323 }
1324
1325 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1326                                 loff_t pos, unsigned len, unsigned flags,
1327                                 struct page **pagep, void **fsdata)
1328 {
1329         struct inode *inode = mapping->host;
1330         int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1331         handle_t *handle;
1332         int retries = 0;
1333         struct page *page;
1334         pgoff_t index;
1335         unsigned from, to;
1336
1337         index = pos >> PAGE_CACHE_SHIFT;
1338         from = pos & (PAGE_CACHE_SIZE - 1);
1339         to = from + len;
1340
1341 retry:
1342         handle = ext4_journal_start(inode, needed_blocks);
1343         if (IS_ERR(handle)) {
1344                 ret = PTR_ERR(handle);
1345                 goto out;
1346         }
1347
1348         page = grab_cache_page_write_begin(mapping, index, flags);
1349         if (!page) {
1350                 ext4_journal_stop(handle);
1351                 ret = -ENOMEM;
1352                 goto out;
1353         }
1354         *pagep = page;
1355
1356         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1357                                                         ext4_get_block);
1358
1359         if (!ret && ext4_should_journal_data(inode)) {
1360                 ret = walk_page_buffers(handle, page_buffers(page),
1361                                 from, to, NULL, do_journal_get_write_access);
1362         }
1363
1364         if (ret) {
1365                 unlock_page(page);
1366                 ext4_journal_stop(handle);
1367                 page_cache_release(page);
1368                 /*
1369                  * block_write_begin may have instantiated a few blocks
1370                  * outside i_size.  Trim these off again. Don't need
1371                  * i_size_read because we hold i_mutex.
1372                  */
1373                 if (pos + len > inode->i_size)
1374                         vmtruncate(inode, inode->i_size);
1375         }
1376
1377         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1378                 goto retry;
1379 out:
1380         return ret;
1381 }
1382
1383 /* For write_end() in data=journal mode */
1384 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1385 {
1386         if (!buffer_mapped(bh) || buffer_freed(bh))
1387                 return 0;
1388         set_buffer_uptodate(bh);
1389         return ext4_journal_dirty_metadata(handle, bh);
1390 }
1391
1392 /*
1393  * We need to pick up the new inode size which generic_commit_write gave us
1394  * `file' can be NULL - eg, when called from page_symlink().
1395  *
1396  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1397  * buffers are managed internally.
1398  */
1399 static int ext4_ordered_write_end(struct file *file,
1400                                 struct address_space *mapping,
1401                                 loff_t pos, unsigned len, unsigned copied,
1402                                 struct page *page, void *fsdata)
1403 {
1404         handle_t *handle = ext4_journal_current_handle();
1405         struct inode *inode = mapping->host;
1406         int ret = 0, ret2;
1407
1408         ret = ext4_jbd2_file_inode(handle, inode);
1409
1410         if (ret == 0) {
1411                 loff_t new_i_size;
1412
1413                 new_i_size = pos + copied;
1414                 if (new_i_size > EXT4_I(inode)->i_disksize) {
1415                         ext4_update_i_disksize(inode, new_i_size);
1416                         /* We need to mark inode dirty even if
1417                          * new_i_size is less that inode->i_size
1418                          * bu greater than i_disksize.(hint delalloc)
1419                          */
1420                         ext4_mark_inode_dirty(handle, inode);
1421                 }
1422
1423                 ret2 = generic_write_end(file, mapping, pos, len, copied,
1424                                                         page, fsdata);
1425                 copied = ret2;
1426                 if (ret2 < 0)
1427                         ret = ret2;
1428         }
1429         ret2 = ext4_journal_stop(handle);
1430         if (!ret)
1431                 ret = ret2;
1432
1433         return ret ? ret : copied;
1434 }
1435
1436 static int ext4_writeback_write_end(struct file *file,
1437                                 struct address_space *mapping,
1438                                 loff_t pos, unsigned len, unsigned copied,
1439                                 struct page *page, void *fsdata)
1440 {
1441         handle_t *handle = ext4_journal_current_handle();
1442         struct inode *inode = mapping->host;
1443         int ret = 0, ret2;
1444         loff_t new_i_size;
1445
1446         new_i_size = pos + copied;
1447         if (new_i_size > EXT4_I(inode)->i_disksize) {
1448                 ext4_update_i_disksize(inode, new_i_size);
1449                 /* We need to mark inode dirty even if
1450                  * new_i_size is less that inode->i_size
1451                  * bu greater than i_disksize.(hint delalloc)
1452                  */
1453                 ext4_mark_inode_dirty(handle, inode);
1454         }
1455
1456         ret2 = generic_write_end(file, mapping, pos, len, copied,
1457                                                         page, fsdata);
1458         copied = ret2;
1459         if (ret2 < 0)
1460                 ret = ret2;
1461
1462         ret2 = ext4_journal_stop(handle);
1463         if (!ret)
1464                 ret = ret2;
1465
1466         return ret ? ret : copied;
1467 }
1468
1469 static int ext4_journalled_write_end(struct file *file,
1470                                 struct address_space *mapping,
1471                                 loff_t pos, unsigned len, unsigned copied,
1472                                 struct page *page, void *fsdata)
1473 {
1474         handle_t *handle = ext4_journal_current_handle();
1475         struct inode *inode = mapping->host;
1476         int ret = 0, ret2;
1477         int partial = 0;
1478         unsigned from, to;
1479         loff_t new_i_size;
1480
1481         from = pos & (PAGE_CACHE_SIZE - 1);
1482         to = from + len;
1483
1484         if (copied < len) {
1485                 if (!PageUptodate(page))
1486                         copied = 0;
1487                 page_zero_new_buffers(page, from+copied, to);
1488         }
1489
1490         ret = walk_page_buffers(handle, page_buffers(page), from,
1491                                 to, &partial, write_end_fn);
1492         if (!partial)
1493                 SetPageUptodate(page);
1494         new_i_size = pos + copied;
1495         if (new_i_size > inode->i_size)
1496                 i_size_write(inode, pos+copied);
1497         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1498         if (new_i_size > EXT4_I(inode)->i_disksize) {
1499                 ext4_update_i_disksize(inode, new_i_size);
1500                 ret2 = ext4_mark_inode_dirty(handle, inode);
1501                 if (!ret)
1502                         ret = ret2;
1503         }
1504
1505         unlock_page(page);
1506         ret2 = ext4_journal_stop(handle);
1507         if (!ret)
1508                 ret = ret2;
1509         page_cache_release(page);
1510
1511         return ret ? ret : copied;
1512 }
1513
1514 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1515 {
1516         int retries = 0;
1517        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1518        unsigned long md_needed, mdblocks, total = 0;
1519
1520         /*
1521          * recalculate the amount of metadata blocks to reserve
1522          * in order to allocate nrblocks
1523          * worse case is one extent per block
1524          */
1525 repeat:
1526         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1527         total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1528         mdblocks = ext4_calc_metadata_amount(inode, total);
1529         BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1530
1531         md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1532         total = md_needed + nrblocks;
1533
1534         if (ext4_claim_free_blocks(sbi, total)) {
1535                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1536                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1537                         yield();
1538                         goto repeat;
1539                 }
1540                 return -ENOSPC;
1541         }
1542         EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1543         EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1544
1545         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1546         return 0;       /* success */
1547 }
1548
1549 static void ext4_da_release_space(struct inode *inode, int to_free)
1550 {
1551         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1552         int total, mdb, mdb_free, release;
1553
1554         if (!to_free)
1555                 return;         /* Nothing to release, exit */
1556
1557         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1558
1559         if (!EXT4_I(inode)->i_reserved_data_blocks) {
1560                 /*
1561                  * if there is no reserved blocks, but we try to free some
1562                  * then the counter is messed up somewhere.
1563                  * but since this function is called from invalidate
1564                  * page, it's harmless to return without any action
1565                  */
1566                 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1567                             "blocks for inode %lu, but there is no reserved "
1568                             "data blocks\n", to_free, inode->i_ino);
1569                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1570                 return;
1571         }
1572
1573         /* recalculate the number of metablocks still need to be reserved */
1574         total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1575         mdb = ext4_calc_metadata_amount(inode, total);
1576
1577         /* figure out how many metablocks to release */
1578         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1579         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1580
1581         release = to_free + mdb_free;
1582
1583         /* update fs dirty blocks counter for truncate case */
1584         percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1585
1586         /* update per-inode reservations */
1587         BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1588         EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1589
1590         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1591         EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1592         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1593 }
1594
1595 static void ext4_da_page_release_reservation(struct page *page,
1596                                                 unsigned long offset)
1597 {
1598         int to_release = 0;
1599         struct buffer_head *head, *bh;
1600         unsigned int curr_off = 0;
1601
1602         head = page_buffers(page);
1603         bh = head;
1604         do {
1605                 unsigned int next_off = curr_off + bh->b_size;
1606
1607                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1608                         to_release++;
1609                         clear_buffer_delay(bh);
1610                 }
1611                 curr_off = next_off;
1612         } while ((bh = bh->b_this_page) != head);
1613         ext4_da_release_space(page->mapping->host, to_release);
1614 }
1615
1616 /*
1617  * Delayed allocation stuff
1618  */
1619
1620 struct mpage_da_data {
1621         struct inode *inode;
1622         struct buffer_head lbh;                 /* extent of blocks */
1623         unsigned long first_page, next_page;    /* extent of pages */
1624         get_block_t *get_block;
1625         struct writeback_control *wbc;
1626         int io_done;
1627         long pages_written;
1628         int retval;
1629 };
1630
1631 /*
1632  * mpage_da_submit_io - walks through extent of pages and try to write
1633  * them with writepage() call back
1634  *
1635  * @mpd->inode: inode
1636  * @mpd->first_page: first page of the extent
1637  * @mpd->next_page: page after the last page of the extent
1638  * @mpd->get_block: the filesystem's block mapper function
1639  *
1640  * By the time mpage_da_submit_io() is called we expect all blocks
1641  * to be allocated. this may be wrong if allocation failed.
1642  *
1643  * As pages are already locked by write_cache_pages(), we can't use it
1644  */
1645 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1646 {
1647         long pages_skipped;
1648         struct pagevec pvec;
1649         unsigned long index, end;
1650         int ret = 0, err, nr_pages, i;
1651         struct inode *inode = mpd->inode;
1652         struct address_space *mapping = inode->i_mapping;
1653
1654         BUG_ON(mpd->next_page <= mpd->first_page);
1655         /*
1656          * We need to start from the first_page to the next_page - 1
1657          * to make sure we also write the mapped dirty buffer_heads.
1658          * If we look at mpd->lbh.b_blocknr we would only be looking
1659          * at the currently mapped buffer_heads.
1660          */
1661         index = mpd->first_page;
1662         end = mpd->next_page - 1;
1663
1664         pagevec_init(&pvec, 0);
1665         while (index <= end) {
1666                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1667                 if (nr_pages == 0)
1668                         break;
1669                 for (i = 0; i < nr_pages; i++) {
1670                         struct page *page = pvec.pages[i];
1671
1672                         index = page->index;
1673                         if (index > end)
1674                                 break;
1675                         index++;
1676
1677                         BUG_ON(!PageLocked(page));
1678                         BUG_ON(PageWriteback(page));
1679
1680                         pages_skipped = mpd->wbc->pages_skipped;
1681                         err = mapping->a_ops->writepage(page, mpd->wbc);
1682                         if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1683                                 /*
1684                                  * have successfully written the page
1685                                  * without skipping the same
1686                                  */
1687                                 mpd->pages_written++;
1688                         /*
1689                          * In error case, we have to continue because
1690                          * remaining pages are still locked
1691                          * XXX: unlock and re-dirty them?
1692                          */
1693                         if (ret == 0)
1694                                 ret = err;
1695                 }
1696                 pagevec_release(&pvec);
1697         }
1698         return ret;
1699 }
1700
1701 /*
1702  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1703  *
1704  * @mpd->inode - inode to walk through
1705  * @exbh->b_blocknr - first block on a disk
1706  * @exbh->b_size - amount of space in bytes
1707  * @logical - first logical block to start assignment with
1708  *
1709  * the function goes through all passed space and put actual disk
1710  * block numbers into buffer heads, dropping BH_Delay
1711  */
1712 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1713                                  struct buffer_head *exbh)
1714 {
1715         struct inode *inode = mpd->inode;
1716         struct address_space *mapping = inode->i_mapping;
1717         int blocks = exbh->b_size >> inode->i_blkbits;
1718         sector_t pblock = exbh->b_blocknr, cur_logical;
1719         struct buffer_head *head, *bh;
1720         pgoff_t index, end;
1721         struct pagevec pvec;
1722         int nr_pages, i;
1723
1724         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1725         end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1726         cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1727
1728         pagevec_init(&pvec, 0);
1729
1730         while (index <= end) {
1731                 /* XXX: optimize tail */
1732                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1733                 if (nr_pages == 0)
1734                         break;
1735                 for (i = 0; i < nr_pages; i++) {
1736                         struct page *page = pvec.pages[i];
1737
1738                         index = page->index;
1739                         if (index > end)
1740                                 break;
1741                         index++;
1742
1743                         BUG_ON(!PageLocked(page));
1744                         BUG_ON(PageWriteback(page));
1745                         BUG_ON(!page_has_buffers(page));
1746
1747                         bh = page_buffers(page);
1748                         head = bh;
1749
1750                         /* skip blocks out of the range */
1751                         do {
1752                                 if (cur_logical >= logical)
1753                                         break;
1754                                 cur_logical++;
1755                         } while ((bh = bh->b_this_page) != head);
1756
1757                         do {
1758                                 if (cur_logical >= logical + blocks)
1759                                         break;
1760                                 if (buffer_delay(bh)) {
1761                                         bh->b_blocknr = pblock;
1762                                         clear_buffer_delay(bh);
1763                                         bh->b_bdev = inode->i_sb->s_bdev;
1764                                 } else if (buffer_unwritten(bh)) {
1765                                         bh->b_blocknr = pblock;
1766                                         clear_buffer_unwritten(bh);
1767                                         set_buffer_mapped(bh);
1768                                         set_buffer_new(bh);
1769                                         bh->b_bdev = inode->i_sb->s_bdev;
1770                                 } else if (buffer_mapped(bh))
1771                                         BUG_ON(bh->b_blocknr != pblock);
1772
1773                                 cur_logical++;
1774                                 pblock++;
1775                         } while ((bh = bh->b_this_page) != head);
1776                 }
1777                 pagevec_release(&pvec);
1778         }
1779 }
1780
1781
1782 /*
1783  * __unmap_underlying_blocks - just a helper function to unmap
1784  * set of blocks described by @bh
1785  */
1786 static inline void __unmap_underlying_blocks(struct inode *inode,
1787                                              struct buffer_head *bh)
1788 {
1789         struct block_device *bdev = inode->i_sb->s_bdev;
1790         int blocks, i;
1791
1792         blocks = bh->b_size >> inode->i_blkbits;
1793         for (i = 0; i < blocks; i++)
1794                 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1795 }
1796
1797 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
1798                                         sector_t logical, long blk_cnt)
1799 {
1800         int nr_pages, i;
1801         pgoff_t index, end;
1802         struct pagevec pvec;
1803         struct inode *inode = mpd->inode;
1804         struct address_space *mapping = inode->i_mapping;
1805
1806         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1807         end   = (logical + blk_cnt - 1) >>
1808                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1809         while (index <= end) {
1810                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1811                 if (nr_pages == 0)
1812                         break;
1813                 for (i = 0; i < nr_pages; i++) {
1814                         struct page *page = pvec.pages[i];
1815                         index = page->index;
1816                         if (index > end)
1817                                 break;
1818                         index++;
1819
1820                         BUG_ON(!PageLocked(page));
1821                         BUG_ON(PageWriteback(page));
1822                         block_invalidatepage(page, 0);
1823                         ClearPageUptodate(page);
1824                         unlock_page(page);
1825                 }
1826         }
1827         return;
1828 }
1829
1830 static void ext4_print_free_blocks(struct inode *inode)
1831 {
1832         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1833         printk(KERN_EMERG "Total free blocks count %lld\n",
1834                         ext4_count_free_blocks(inode->i_sb));
1835         printk(KERN_EMERG "Free/Dirty block details\n");
1836         printk(KERN_EMERG "free_blocks=%lld\n",
1837                         percpu_counter_sum(&sbi->s_freeblocks_counter));
1838         printk(KERN_EMERG "dirty_blocks=%lld\n",
1839                         percpu_counter_sum(&sbi->s_dirtyblocks_counter));
1840         printk(KERN_EMERG "Block reservation details\n");
1841         printk(KERN_EMERG "i_reserved_data_blocks=%lu\n",
1842                         EXT4_I(inode)->i_reserved_data_blocks);
1843         printk(KERN_EMERG "i_reserved_meta_blocks=%lu\n",
1844                         EXT4_I(inode)->i_reserved_meta_blocks);
1845         return;
1846 }
1847
1848 /*
1849  * mpage_da_map_blocks - go through given space
1850  *
1851  * @mpd->lbh - bh describing space
1852  * @mpd->get_block - the filesystem's block mapper function
1853  *
1854  * The function skips space we know is already mapped to disk blocks.
1855  *
1856  */
1857 static int  mpage_da_map_blocks(struct mpage_da_data *mpd)
1858 {
1859         int err = 0;
1860         struct buffer_head new;
1861         struct buffer_head *lbh = &mpd->lbh;
1862         sector_t next;
1863
1864         /*
1865          * We consider only non-mapped and non-allocated blocks
1866          */
1867         if (buffer_mapped(lbh) && !buffer_delay(lbh))
1868                 return 0;
1869         new.b_state = lbh->b_state;
1870         new.b_blocknr = 0;
1871         new.b_size = lbh->b_size;
1872         next = lbh->b_blocknr;
1873         /*
1874          * If we didn't accumulate anything
1875          * to write simply return
1876          */
1877         if (!new.b_size)
1878                 return 0;
1879         err = mpd->get_block(mpd->inode, next, &new, 1);
1880         if (err) {
1881
1882                 /* If get block returns with error
1883                  * we simply return. Later writepage
1884                  * will redirty the page and writepages
1885                  * will find the dirty page again
1886                  */
1887                 if (err == -EAGAIN)
1888                         return 0;
1889
1890                 if (err == -ENOSPC &&
1891                                 ext4_count_free_blocks(mpd->inode->i_sb)) {
1892                         mpd->retval = err;
1893                         return 0;
1894                 }
1895
1896                 /*
1897                  * get block failure will cause us
1898                  * to loop in writepages. Because
1899                  * a_ops->writepage won't be able to
1900                  * make progress. The page will be redirtied
1901                  * by writepage and writepages will again
1902                  * try to write the same.
1903                  */
1904                 printk(KERN_EMERG "%s block allocation failed for inode %lu "
1905                                   "at logical offset %llu with max blocks "
1906                                   "%zd with error %d\n",
1907                                   __func__, mpd->inode->i_ino,
1908                                   (unsigned long long)next,
1909                                   lbh->b_size >> mpd->inode->i_blkbits, err);
1910                 printk(KERN_EMERG "This should not happen.!! "
1911                                         "Data will be lost\n");
1912                 if (err == -ENOSPC) {
1913                         ext4_print_free_blocks(mpd->inode);
1914                 }
1915                 /* invlaidate all the pages */
1916                 ext4_da_block_invalidatepages(mpd, next,
1917                                 lbh->b_size >> mpd->inode->i_blkbits);
1918                 return err;
1919         }
1920         BUG_ON(new.b_size == 0);
1921
1922         if (buffer_new(&new))
1923                 __unmap_underlying_blocks(mpd->inode, &new);
1924
1925         /*
1926          * If blocks are delayed marked, we need to
1927          * put actual blocknr and drop delayed bit
1928          */
1929         if (buffer_delay(lbh) || buffer_unwritten(lbh))
1930                 mpage_put_bnr_to_bhs(mpd, next, &new);
1931
1932         return 0;
1933 }
1934
1935 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1936                 (1 << BH_Delay) | (1 << BH_Unwritten))
1937
1938 /*
1939  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1940  *
1941  * @mpd->lbh - extent of blocks
1942  * @logical - logical number of the block in the file
1943  * @bh - bh of the block (used to access block's state)
1944  *
1945  * the function is used to collect contig. blocks in same state
1946  */
1947 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1948                                    sector_t logical, struct buffer_head *bh)
1949 {
1950         sector_t next;
1951         size_t b_size = bh->b_size;
1952         struct buffer_head *lbh = &mpd->lbh;
1953         int nrblocks = lbh->b_size >> mpd->inode->i_blkbits;
1954
1955         /* check if thereserved journal credits might overflow */
1956         if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
1957                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1958                         /*
1959                          * With non-extent format we are limited by the journal
1960                          * credit available.  Total credit needed to insert
1961                          * nrblocks contiguous blocks is dependent on the
1962                          * nrblocks.  So limit nrblocks.
1963                          */
1964                         goto flush_it;
1965                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1966                                 EXT4_MAX_TRANS_DATA) {
1967                         /*
1968                          * Adding the new buffer_head would make it cross the
1969                          * allowed limit for which we have journal credit
1970                          * reserved. So limit the new bh->b_size
1971                          */
1972                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1973                                                 mpd->inode->i_blkbits;
1974                         /* we will do mpage_da_submit_io in the next loop */
1975                 }
1976         }
1977         /*
1978          * First block in the extent
1979          */
1980         if (lbh->b_size == 0) {
1981                 lbh->b_blocknr = logical;
1982                 lbh->b_size = b_size;
1983                 lbh->b_state = bh->b_state & BH_FLAGS;
1984                 return;
1985         }
1986
1987         next = lbh->b_blocknr + nrblocks;
1988         /*
1989          * Can we merge the block to our big extent?
1990          */
1991         if (logical == next && (bh->b_state & BH_FLAGS) == lbh->b_state) {
1992                 lbh->b_size += b_size;
1993                 return;
1994         }
1995
1996 flush_it:
1997         /*
1998          * We couldn't merge the block to our extent, so we
1999          * need to flush current  extent and start new one
2000          */
2001         if (mpage_da_map_blocks(mpd) == 0)
2002                 mpage_da_submit_io(mpd);
2003         mpd->io_done = 1;
2004         return;
2005 }
2006
2007 /*
2008  * __mpage_da_writepage - finds extent of pages and blocks
2009  *
2010  * @page: page to consider
2011  * @wbc: not used, we just follow rules
2012  * @data: context
2013  *
2014  * The function finds extents of pages and scan them for all blocks.
2015  */
2016 static int __mpage_da_writepage(struct page *page,
2017                                 struct writeback_control *wbc, void *data)
2018 {
2019         struct mpage_da_data *mpd = data;
2020         struct inode *inode = mpd->inode;
2021         struct buffer_head *bh, *head, fake;
2022         sector_t logical;
2023
2024         if (mpd->io_done) {
2025                 /*
2026                  * Rest of the page in the page_vec
2027                  * redirty then and skip then. We will
2028                  * try to to write them again after
2029                  * starting a new transaction
2030                  */
2031                 redirty_page_for_writepage(wbc, page);
2032                 unlock_page(page);
2033                 return MPAGE_DA_EXTENT_TAIL;
2034         }
2035         /*
2036          * Can we merge this page to current extent?
2037          */
2038         if (mpd->next_page != page->index) {
2039                 /*
2040                  * Nope, we can't. So, we map non-allocated blocks
2041                  * and start IO on them using writepage()
2042                  */
2043                 if (mpd->next_page != mpd->first_page) {
2044                         if (mpage_da_map_blocks(mpd) == 0)
2045                                 mpage_da_submit_io(mpd);
2046                         /*
2047                          * skip rest of the page in the page_vec
2048                          */
2049                         mpd->io_done = 1;
2050                         redirty_page_for_writepage(wbc, page);
2051                         unlock_page(page);
2052                         return MPAGE_DA_EXTENT_TAIL;
2053                 }
2054
2055                 /*
2056                  * Start next extent of pages ...
2057                  */
2058                 mpd->first_page = page->index;
2059
2060                 /*
2061                  * ... and blocks
2062                  */
2063                 mpd->lbh.b_size = 0;
2064                 mpd->lbh.b_state = 0;
2065                 mpd->lbh.b_blocknr = 0;
2066         }
2067
2068         mpd->next_page = page->index + 1;
2069         logical = (sector_t) page->index <<
2070                   (PAGE_CACHE_SHIFT - inode->i_blkbits);
2071
2072         if (!page_has_buffers(page)) {
2073                 /*
2074                  * There is no attached buffer heads yet (mmap?)
2075                  * we treat the page asfull of dirty blocks
2076                  */
2077                 bh = &fake;
2078                 bh->b_size = PAGE_CACHE_SIZE;
2079                 bh->b_state = 0;
2080                 set_buffer_dirty(bh);
2081                 set_buffer_uptodate(bh);
2082                 mpage_add_bh_to_extent(mpd, logical, bh);
2083                 if (mpd->io_done)
2084                         return MPAGE_DA_EXTENT_TAIL;
2085         } else {
2086                 /*
2087                  * Page with regular buffer heads, just add all dirty ones
2088                  */
2089                 head = page_buffers(page);
2090                 bh = head;
2091                 do {
2092                         BUG_ON(buffer_locked(bh));
2093                         /*
2094                          * We need to try to allocate
2095                          * unmapped blocks in the same page.
2096                          * Otherwise we won't make progress
2097                          * with the page in ext4_da_writepage
2098                          */
2099                         if (buffer_dirty(bh) &&
2100                                 (!buffer_mapped(bh) || buffer_delay(bh))) {
2101                                 mpage_add_bh_to_extent(mpd, logical, bh);
2102                                 if (mpd->io_done)
2103                                         return MPAGE_DA_EXTENT_TAIL;
2104                         } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2105                                 /*
2106                                  * mapped dirty buffer. We need to update
2107                                  * the b_state because we look at
2108                                  * b_state in mpage_da_map_blocks. We don't
2109                                  * update b_size because if we find an
2110                                  * unmapped buffer_head later we need to
2111                                  * use the b_state flag of that buffer_head.
2112                                  */
2113                                 if (mpd->lbh.b_size == 0)
2114                                         mpd->lbh.b_state =
2115                                                 bh->b_state & BH_FLAGS;
2116                         }
2117                         logical++;
2118                 } while ((bh = bh->b_this_page) != head);
2119         }
2120
2121         return 0;
2122 }
2123
2124 /*
2125  * mpage_da_writepages - walk the list of dirty pages of the given
2126  * address space, allocates non-allocated blocks, maps newly-allocated
2127  * blocks to existing bhs and issue IO them
2128  *
2129  * @mapping: address space structure to write
2130  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2131  * @get_block: the filesystem's block mapper function.
2132  *
2133  * This is a library function, which implements the writepages()
2134  * address_space_operation.
2135  */
2136 static int mpage_da_writepages(struct address_space *mapping,
2137                                struct writeback_control *wbc,
2138                                struct mpage_da_data *mpd)
2139 {
2140         int ret;
2141
2142         if (!mpd->get_block)
2143                 return generic_writepages(mapping, wbc);
2144
2145         mpd->lbh.b_size = 0;
2146         mpd->lbh.b_state = 0;
2147         mpd->lbh.b_blocknr = 0;
2148         mpd->first_page = 0;
2149         mpd->next_page = 0;
2150         mpd->io_done = 0;
2151         mpd->pages_written = 0;
2152         mpd->retval = 0;
2153
2154         ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, mpd);
2155         /*
2156          * Handle last extent of pages
2157          */
2158         if (!mpd->io_done && mpd->next_page != mpd->first_page) {
2159                 if (mpage_da_map_blocks(mpd) == 0)
2160                         mpage_da_submit_io(mpd);
2161
2162                 mpd->io_done = 1;
2163                 ret = MPAGE_DA_EXTENT_TAIL;
2164         }
2165         wbc->nr_to_write -= mpd->pages_written;
2166         return ret;
2167 }
2168
2169 /*
2170  * this is a special callback for ->write_begin() only
2171  * it's intention is to return mapped block or reserve space
2172  */
2173 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2174                                   struct buffer_head *bh_result, int create)
2175 {
2176         int ret = 0;
2177
2178         BUG_ON(create == 0);
2179         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2180
2181         /*
2182          * first, we need to know whether the block is allocated already
2183          * preallocated blocks are unmapped but should treated
2184          * the same as allocated blocks.
2185          */
2186         ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1,  bh_result, 0, 0, 0);
2187         if ((ret == 0) && !buffer_delay(bh_result)) {
2188                 /* the block isn't (pre)allocated yet, let's reserve space */
2189                 /*
2190                  * XXX: __block_prepare_write() unmaps passed block,
2191                  * is it OK?
2192                  */
2193                 ret = ext4_da_reserve_space(inode, 1);
2194                 if (ret)
2195                         /* not enough space to reserve */
2196                         return ret;
2197
2198                 map_bh(bh_result, inode->i_sb, 0);
2199                 set_buffer_new(bh_result);
2200                 set_buffer_delay(bh_result);
2201         } else if (ret > 0) {
2202                 bh_result->b_size = (ret << inode->i_blkbits);
2203                 ret = 0;
2204         }
2205
2206         return ret;
2207 }
2208 #define         EXT4_DELALLOC_RSVED     1
2209 static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
2210                                    struct buffer_head *bh_result, int create)
2211 {
2212         int ret;
2213         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2214         loff_t disksize = EXT4_I(inode)->i_disksize;
2215         handle_t *handle = NULL;
2216
2217         handle = ext4_journal_current_handle();
2218         BUG_ON(!handle);
2219         ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2220                         bh_result, create, 0, EXT4_DELALLOC_RSVED);
2221         if (ret > 0) {
2222
2223                 bh_result->b_size = (ret << inode->i_blkbits);
2224
2225                 if (ext4_should_order_data(inode)) {
2226                         int retval;
2227                         retval = ext4_jbd2_file_inode(handle, inode);
2228                         if (retval)
2229                                 /*
2230                                  * Failed to add inode for ordered
2231                                  * mode. Don't update file size
2232                                  */
2233                                 return retval;
2234                 }
2235
2236                 /*
2237                  * Update on-disk size along with block allocation
2238                  * we don't use 'extend_disksize' as size may change
2239                  * within already allocated block -bzzz
2240                  */
2241                 disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
2242                 if (disksize > i_size_read(inode))
2243                         disksize = i_size_read(inode);
2244                 if (disksize > EXT4_I(inode)->i_disksize) {
2245                         ext4_update_i_disksize(inode, disksize);
2246                         ret = ext4_mark_inode_dirty(handle, inode);
2247                         return ret;
2248                 }
2249                 ret = 0;
2250         }
2251         return ret;
2252 }
2253
2254 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2255 {
2256         /*
2257          * unmapped buffer is possible for holes.
2258          * delay buffer is possible with delayed allocation
2259          */
2260         return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh));
2261 }
2262
2263 static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
2264                                    struct buffer_head *bh_result, int create)
2265 {
2266         int ret = 0;
2267         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2268
2269         /*
2270          * we don't want to do block allocation in writepage
2271          * so call get_block_wrap with create = 0
2272          */
2273         ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
2274                                    bh_result, 0, 0, 0);
2275         if (ret > 0) {
2276                 bh_result->b_size = (ret << inode->i_blkbits);
2277                 ret = 0;
2278         }
2279         return ret;
2280 }
2281
2282 /*
2283  * get called vi ext4_da_writepages after taking page lock (have journal handle)
2284  * get called via journal_submit_inode_data_buffers (no journal handle)
2285  * get called via shrink_page_list via pdflush (no journal handle)
2286  * or grab_page_cache when doing write_begin (have journal handle)
2287  */
2288 static int ext4_da_writepage(struct page *page,
2289                                 struct writeback_control *wbc)
2290 {
2291         int ret = 0;
2292         loff_t size;
2293         unsigned long len;
2294         struct buffer_head *page_bufs;
2295         struct inode *inode = page->mapping->host;
2296
2297         size = i_size_read(inode);
2298         if (page->index == size >> PAGE_CACHE_SHIFT)
2299                 len = size & ~PAGE_CACHE_MASK;
2300         else
2301                 len = PAGE_CACHE_SIZE;
2302
2303         if (page_has_buffers(page)) {
2304                 page_bufs = page_buffers(page);
2305                 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2306                                         ext4_bh_unmapped_or_delay)) {
2307                         /*
2308                          * We don't want to do  block allocation
2309                          * So redirty the page and return
2310                          * We may reach here when we do a journal commit
2311                          * via journal_submit_inode_data_buffers.
2312                          * If we don't have mapping block we just ignore
2313                          * them. We can also reach here via shrink_page_list
2314                          */
2315                         redirty_page_for_writepage(wbc, page);
2316                         unlock_page(page);
2317                         return 0;
2318                 }
2319         } else {
2320                 /*
2321                  * The test for page_has_buffers() is subtle:
2322                  * We know the page is dirty but it lost buffers. That means
2323                  * that at some moment in time after write_begin()/write_end()
2324                  * has been called all buffers have been clean and thus they
2325                  * must have been written at least once. So they are all
2326                  * mapped and we can happily proceed with mapping them
2327                  * and writing the page.
2328                  *
2329                  * Try to initialize the buffer_heads and check whether
2330                  * all are mapped and non delay. We don't want to
2331                  * do block allocation here.
2332                  */
2333                 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2334                                                 ext4_normal_get_block_write);
2335                 if (!ret) {
2336                         page_bufs = page_buffers(page);
2337                         /* check whether all are mapped and non delay */
2338                         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2339                                                 ext4_bh_unmapped_or_delay)) {
2340                                 redirty_page_for_writepage(wbc, page);
2341                                 unlock_page(page);
2342                                 return 0;
2343                         }
2344                 } else {
2345                         /*
2346                          * We can't do block allocation here
2347                          * so just redity the page and unlock
2348                          * and return
2349                          */
2350                         redirty_page_for_writepage(wbc, page);
2351                         unlock_page(page);
2352                         return 0;
2353                 }
2354                 /* now mark the buffer_heads as dirty and uptodate */
2355                 block_commit_write(page, 0, PAGE_CACHE_SIZE);
2356         }
2357
2358         if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2359                 ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
2360         else
2361                 ret = block_write_full_page(page,
2362                                                 ext4_normal_get_block_write,
2363                                                 wbc);
2364
2365         return ret;
2366 }
2367
2368 /*
2369  * This is called via ext4_da_writepages() to
2370  * calulate the total number of credits to reserve to fit
2371  * a single extent allocation into a single transaction,
2372  * ext4_da_writpeages() will loop calling this before
2373  * the block allocation.
2374  */
2375
2376 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2377 {
2378         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2379
2380         /*
2381          * With non-extent format the journal credit needed to
2382          * insert nrblocks contiguous block is dependent on
2383          * number of contiguous block. So we will limit
2384          * number of contiguous block to a sane value
2385          */
2386         if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2387             (max_blocks > EXT4_MAX_TRANS_DATA))
2388                 max_blocks = EXT4_MAX_TRANS_DATA;
2389
2390         return ext4_chunk_trans_blocks(inode, max_blocks);
2391 }
2392
2393 static int ext4_da_writepages(struct address_space *mapping,
2394                               struct writeback_control *wbc)
2395 {
2396         pgoff_t index;
2397         int range_whole = 0;
2398         handle_t *handle = NULL;
2399         struct mpage_da_data mpd;
2400         struct inode *inode = mapping->host;
2401         int no_nrwrite_index_update;
2402         long pages_written = 0, pages_skipped;
2403         int needed_blocks, ret = 0, nr_to_writebump = 0;
2404         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2405
2406         /*
2407          * No pages to write? This is mainly a kludge to avoid starting
2408          * a transaction for special inodes like journal inode on last iput()
2409          * because that could violate lock ordering on umount
2410          */
2411         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2412                 return 0;
2413
2414         /*
2415          * If the filesystem has aborted, it is read-only, so return
2416          * right away instead of dumping stack traces later on that
2417          * will obscure the real source of the problem.  We test
2418          * EXT4_MOUNT_ABORT instead of sb->s_flag's MS_RDONLY because
2419          * the latter could be true if the filesystem is mounted
2420          * read-only, and in that case, ext4_da_writepages should
2421          * *never* be called, so if that ever happens, we would want
2422          * the stack trace.
2423          */
2424         if (unlikely(sbi->s_mount_opt & EXT4_MOUNT_ABORT))
2425                 return -EROFS;
2426
2427         /*
2428          * Make sure nr_to_write is >= sbi->s_mb_stream_request
2429          * This make sure small files blocks are allocated in
2430          * single attempt. This ensure that small files
2431          * get less fragmented.
2432          */
2433         if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2434                 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2435                 wbc->nr_to_write = sbi->s_mb_stream_request;
2436         }
2437         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2438                 range_whole = 1;
2439
2440         if (wbc->range_cyclic)
2441                 index = mapping->writeback_index;
2442         else
2443                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2444
2445         mpd.wbc = wbc;
2446         mpd.inode = mapping->host;
2447
2448         /*
2449          * we don't want write_cache_pages to update
2450          * nr_to_write and writeback_index
2451          */
2452         no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2453         wbc->no_nrwrite_index_update = 1;
2454         pages_skipped = wbc->pages_skipped;
2455
2456         while (!ret && wbc->nr_to_write > 0) {
2457
2458                 /*
2459                  * we  insert one extent at a time. So we need
2460                  * credit needed for single extent allocation.
2461                  * journalled mode is currently not supported
2462                  * by delalloc
2463                  */
2464                 BUG_ON(ext4_should_journal_data(inode));
2465                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2466
2467                 /* start a new transaction*/
2468                 handle = ext4_journal_start(inode, needed_blocks);
2469                 if (IS_ERR(handle)) {
2470                         ret = PTR_ERR(handle);
2471                         printk(KERN_CRIT "%s: jbd2_start: "
2472                                "%ld pages, ino %lu; err %d\n", __func__,
2473                                 wbc->nr_to_write, inode->i_ino, ret);
2474                         dump_stack();
2475                         goto out_writepages;
2476                 }
2477                 mpd.get_block = ext4_da_get_block_write;
2478                 ret = mpage_da_writepages(mapping, wbc, &mpd);
2479
2480                 ext4_journal_stop(handle);
2481
2482                 if (mpd.retval == -ENOSPC) {
2483                         /* commit the transaction which would
2484                          * free blocks released in the transaction
2485                          * and try again
2486                          */
2487                         jbd2_journal_force_commit_nested(sbi->s_journal);
2488                         wbc->pages_skipped = pages_skipped;
2489                         ret = 0;
2490                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2491                         /*
2492                          * got one extent now try with
2493                          * rest of the pages
2494                          */
2495                         pages_written += mpd.pages_written;
2496                         wbc->pages_skipped = pages_skipped;
2497                         ret = 0;
2498                 } else if (wbc->nr_to_write)
2499                         /*
2500                          * There is no more writeout needed
2501                          * or we requested for a noblocking writeout
2502                          * and we found the device congested
2503                          */
2504                         break;
2505         }
2506         if (pages_skipped != wbc->pages_skipped)
2507                 printk(KERN_EMERG "This should not happen leaving %s "
2508                                 "with nr_to_write = %ld ret = %d\n",
2509                                 __func__, wbc->nr_to_write, ret);
2510
2511         /* Update index */
2512         index += pages_written;
2513         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2514                 /*
2515                  * set the writeback_index so that range_cyclic
2516                  * mode will write it back later
2517                  */
2518                 mapping->writeback_index = index;
2519
2520 out_writepages:
2521         if (!no_nrwrite_index_update)
2522                 wbc->no_nrwrite_index_update = 0;
2523         wbc->nr_to_write -= nr_to_writebump;
2524         return ret;
2525 }
2526
2527 #define FALL_BACK_TO_NONDELALLOC 1
2528 static int ext4_nonda_switch(struct super_block *sb)
2529 {
2530         s64 free_blocks, dirty_blocks;
2531         struct ext4_sb_info *sbi = EXT4_SB(sb);
2532
2533         /*
2534          * switch to non delalloc mode if we are running low
2535          * on free block. The free block accounting via percpu
2536          * counters can get slightly wrong with FBC_BATCH getting
2537          * accumulated on each CPU without updating global counters
2538          * Delalloc need an accurate free block accounting. So switch
2539          * to non delalloc when we are near to error range.
2540          */
2541         free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2542         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2543         if (2 * free_blocks < 3 * dirty_blocks ||
2544                 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2545                 /*
2546                  * free block count is less that 150% of dirty blocks
2547                  * or free blocks is less that watermark
2548                  */
2549                 return 1;
2550         }
2551         return 0;
2552 }
2553
2554 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2555                                 loff_t pos, unsigned len, unsigned flags,
2556                                 struct page **pagep, void **fsdata)
2557 {
2558         int ret, retries = 0;
2559         struct page *page;
2560         pgoff_t index;
2561         unsigned from, to;
2562         struct inode *inode = mapping->host;
2563         handle_t *handle;
2564
2565         index = pos >> PAGE_CACHE_SHIFT;
2566         from = pos & (PAGE_CACHE_SIZE - 1);
2567         to = from + len;
2568
2569         if (ext4_nonda_switch(inode->i_sb)) {
2570                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2571                 return ext4_write_begin(file, mapping, pos,
2572                                         len, flags, pagep, fsdata);
2573         }
2574         *fsdata = (void *)0;
2575 retry:
2576         /*
2577          * With delayed allocation, we don't log the i_disksize update
2578          * if there is delayed block allocation. But we still need
2579          * to journalling the i_disksize update if writes to the end
2580          * of file which has an already mapped buffer.
2581          */
2582         handle = ext4_journal_start(inode, 1);
2583         if (IS_ERR(handle)) {
2584                 ret = PTR_ERR(handle);
2585                 goto out;
2586         }
2587
2588         page = grab_cache_page_write_begin(mapping, index, flags);
2589         if (!page) {
2590                 ext4_journal_stop(handle);
2591                 ret = -ENOMEM;
2592                 goto out;
2593         }
2594         *pagep = page;
2595
2596         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2597                                                         ext4_da_get_block_prep);
2598         if (ret < 0) {
2599                 unlock_page(page);
2600                 ext4_journal_stop(handle);
2601                 page_cache_release(page);
2602                 /*
2603                  * block_write_begin may have instantiated a few blocks
2604                  * outside i_size.  Trim these off again. Don't need
2605                  * i_size_read because we hold i_mutex.
2606                  */
2607                 if (pos + len > inode->i_size)
2608                         vmtruncate(inode, inode->i_size);
2609         }
2610
2611         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2612                 goto retry;
2613 out:
2614         return ret;
2615 }
2616
2617 /*
2618  * Check if we should update i_disksize
2619  * when write to the end of file but not require block allocation
2620  */
2621 static int ext4_da_should_update_i_disksize(struct page *page,
2622                                          unsigned long offset)
2623 {
2624         struct buffer_head *bh;
2625         struct inode *inode = page->mapping->host;
2626         unsigned int idx;
2627         int i;
2628
2629         bh = page_buffers(page);
2630         idx = offset >> inode->i_blkbits;
2631
2632         for (i = 0; i < idx; i++)
2633                 bh = bh->b_this_page;
2634
2635         if (!buffer_mapped(bh) || (buffer_delay(bh)))
2636                 return 0;
2637         return 1;
2638 }
2639
2640 static int ext4_da_write_end(struct file *file,
2641                                 struct address_space *mapping,
2642                                 loff_t pos, unsigned len, unsigned copied,
2643                                 struct page *page, void *fsdata)
2644 {
2645         struct inode *inode = mapping->host;
2646         int ret = 0, ret2;
2647         handle_t *handle = ext4_journal_current_handle();
2648         loff_t new_i_size;
2649         unsigned long start, end;
2650         int write_mode = (int)(unsigned long)fsdata;
2651
2652         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2653                 if (ext4_should_order_data(inode)) {
2654                         return ext4_ordered_write_end(file, mapping, pos,
2655                                         len, copied, page, fsdata);
2656                 } else if (ext4_should_writeback_data(inode)) {
2657                         return ext4_writeback_write_end(file, mapping, pos,
2658                                         len, copied, page, fsdata);
2659                 } else {
2660                         BUG();
2661                 }
2662         }
2663
2664         start = pos & (PAGE_CACHE_SIZE - 1);
2665         end = start + copied - 1;
2666
2667         /*
2668          * generic_write_end() will run mark_inode_dirty() if i_size
2669          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2670          * into that.
2671          */
2672
2673         new_i_size = pos + copied;
2674         if (new_i_size > EXT4_I(inode)->i_disksize) {
2675                 if (ext4_da_should_update_i_disksize(page, end)) {
2676                         down_write(&EXT4_I(inode)->i_data_sem);
2677                         if (new_i_size > EXT4_I(inode)->i_disksize) {
2678                                 /*
2679                                  * Updating i_disksize when extending file
2680                                  * without needing block allocation
2681                                  */
2682                                 if (ext4_should_order_data(inode))
2683                                         ret = ext4_jbd2_file_inode(handle,
2684                                                                    inode);
2685
2686                                 EXT4_I(inode)->i_disksize = new_i_size;
2687                         }
2688                         up_write(&EXT4_I(inode)->i_data_sem);
2689                         /* We need to mark inode dirty even if
2690                          * new_i_size is less that inode->i_size
2691                          * bu greater than i_disksize.(hint delalloc)
2692                          */
2693                         ext4_mark_inode_dirty(handle, inode);
2694                 }
2695         }
2696         ret2 = generic_write_end(file, mapping, pos, len, copied,
2697                                                         page, fsdata);
2698         copied = ret2;
2699         if (ret2 < 0)
2700                 ret = ret2;
2701         ret2 = ext4_journal_stop(handle);
2702         if (!ret)
2703                 ret = ret2;
2704
2705         return ret ? ret : copied;
2706 }
2707
2708 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2709 {
2710         /*
2711          * Drop reserved blocks
2712          */
2713         BUG_ON(!PageLocked(page));
2714         if (!page_has_buffers(page))
2715                 goto out;
2716
2717         ext4_da_page_release_reservation(page, offset);
2718
2719 out:
2720         ext4_invalidatepage(page, offset);
2721
2722         return;
2723 }
2724
2725
2726 /*
2727  * bmap() is special.  It gets used by applications such as lilo and by
2728  * the swapper to find the on-disk block of a specific piece of data.
2729  *
2730  * Naturally, this is dangerous if the block concerned is still in the
2731  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2732  * filesystem and enables swap, then they may get a nasty shock when the
2733  * data getting swapped to that swapfile suddenly gets overwritten by
2734  * the original zero's written out previously to the journal and
2735  * awaiting writeback in the kernel's buffer cache.
2736  *
2737  * So, if we see any bmap calls here on a modified, data-journaled file,
2738  * take extra steps to flush any blocks which might be in the cache.
2739  */
2740 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2741 {
2742         struct inode *inode = mapping->host;
2743         journal_t *journal;
2744         int err;
2745
2746         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2747                         test_opt(inode->i_sb, DELALLOC)) {
2748                 /*
2749                  * With delalloc we want to sync the file
2750                  * so that we can make sure we allocate
2751                  * blocks for file
2752                  */
2753                 filemap_write_and_wait(mapping);
2754         }
2755
2756         if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
2757                 /*
2758                  * This is a REALLY heavyweight approach, but the use of
2759                  * bmap on dirty files is expected to be extremely rare:
2760                  * only if we run lilo or swapon on a freshly made file
2761                  * do we expect this to happen.
2762                  *
2763                  * (bmap requires CAP_SYS_RAWIO so this does not
2764                  * represent an unprivileged user DOS attack --- we'd be
2765                  * in trouble if mortal users could trigger this path at
2766                  * will.)
2767                  *
2768                  * NB. EXT4_STATE_JDATA is not set on files other than
2769                  * regular files.  If somebody wants to bmap a directory
2770                  * or symlink and gets confused because the buffer
2771                  * hasn't yet been flushed to disk, they deserve
2772                  * everything they get.
2773                  */
2774
2775                 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
2776                 journal = EXT4_JOURNAL(inode);
2777                 jbd2_journal_lock_updates(journal);
2778                 err = jbd2_journal_flush(journal);
2779                 jbd2_journal_unlock_updates(journal);
2780
2781                 if (err)
2782                         return 0;
2783         }
2784
2785         return generic_block_bmap(mapping, block, ext4_get_block);
2786 }
2787
2788 static int bget_one(handle_t *handle, struct buffer_head *bh)
2789 {
2790         get_bh(bh);
2791         return 0;
2792 }
2793
2794 static int bput_one(handle_t *handle, struct buffer_head *bh)
2795 {
2796         put_bh(bh);
2797         return 0;
2798 }
2799
2800 /*
2801  * Note that we don't need to start a transaction unless we're journaling data
2802  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2803  * need to file the inode to the transaction's list in ordered mode because if
2804  * we are writing back data added by write(), the inode is already there and if
2805  * we are writing back data modified via mmap(), noone guarantees in which
2806  * transaction the data will hit the disk. In case we are journaling data, we
2807  * cannot start transaction directly because transaction start ranks above page
2808  * lock so we have to do some magic.
2809  *
2810  * In all journaling modes block_write_full_page() will start the I/O.
2811  *
2812  * Problem:
2813  *
2814  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2815  *              ext4_writepage()
2816  *
2817  * Similar for:
2818  *
2819  *      ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
2820  *
2821  * Same applies to ext4_get_block().  We will deadlock on various things like
2822  * lock_journal and i_data_sem
2823  *
2824  * Setting PF_MEMALLOC here doesn't work - too many internal memory
2825  * allocations fail.
2826  *
2827  * 16May01: If we're reentered then journal_current_handle() will be
2828  *          non-zero. We simply *return*.
2829  *
2830  * 1 July 2001: @@@ FIXME:
2831  *   In journalled data mode, a data buffer may be metadata against the
2832  *   current transaction.  But the same file is part of a shared mapping
2833  *   and someone does a writepage() on it.
2834  *
2835  *   We will move the buffer onto the async_data list, but *after* it has
2836  *   been dirtied. So there's a small window where we have dirty data on
2837  *   BJ_Metadata.
2838  *
2839  *   Note that this only applies to the last partial page in the file.  The
2840  *   bit which block_write_full_page() uses prepare/commit for.  (That's
2841  *   broken code anyway: it's wrong for msync()).
2842  *
2843  *   It's a rare case: affects the final partial page, for journalled data
2844  *   where the file is subject to bith write() and writepage() in the same
2845  *   transction.  To fix it we'll need a custom block_write_full_page().
2846  *   We'll probably need that anyway for journalling writepage() output.
2847  *
2848  * We don't honour synchronous mounts for writepage().  That would be
2849  * disastrous.  Any write() or metadata operation will sync the fs for
2850  * us.
2851  *
2852  */
2853 static int __ext4_normal_writepage(struct page *page,
2854                                 struct writeback_control *wbc)
2855 {
2856         struct inode *inode = page->mapping->host;
2857
2858         if (test_opt(inode->i_sb, NOBH))
2859                 return nobh_writepage(page,
2860                                         ext4_normal_get_block_write, wbc);
2861         else
2862                 return block_write_full_page(page,
2863                                                 ext4_normal_get_block_write,
2864                                                 wbc);
2865 }
2866
2867 static int ext4_normal_writepage(struct page *page,
2868                                 struct writeback_control *wbc)
2869 {
2870         struct inode *inode = page->mapping->host;
2871         loff_t size = i_size_read(inode);
2872         loff_t len;
2873
2874         J_ASSERT(PageLocked(page));
2875         if (page->index == size >> PAGE_CACHE_SHIFT)
2876                 len = size & ~PAGE_CACHE_MASK;
2877         else
2878                 len = PAGE_CACHE_SIZE;
2879
2880         if (page_has_buffers(page)) {
2881                 /* if page has buffers it should all be mapped
2882                  * and allocated. If there are not buffers attached
2883                  * to the page we know the page is dirty but it lost
2884                  * buffers. That means that at some moment in time
2885                  * after write_begin() / write_end() has been called
2886                  * all buffers have been clean and thus they must have been
2887                  * written at least once. So they are all mapped and we can
2888                  * happily proceed with mapping them and writing the page.
2889                  */
2890                 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2891                                         ext4_bh_unmapped_or_delay));
2892         }
2893
2894         if (!ext4_journal_current_handle())
2895                 return __ext4_normal_writepage(page, wbc);
2896
2897         redirty_page_for_writepage(wbc, page);
2898         unlock_page(page);
2899         return 0;
2900 }
2901
2902 static int __ext4_journalled_writepage(struct page *page,
2903                                 struct writeback_control *wbc)
2904 {
2905         struct address_space *mapping = page->mapping;
2906         struct inode *inode = mapping->host;
2907         struct buffer_head *page_bufs;
2908         handle_t *handle = NULL;
2909         int ret = 0;
2910         int err;
2911
2912         ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2913                                         ext4_normal_get_block_write);
2914         if (ret != 0)
2915                 goto out_unlock;
2916
2917         page_bufs = page_buffers(page);
2918         walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
2919                                                                 bget_one);
2920         /* As soon as we unlock the page, it can go away, but we have
2921          * references to buffers so we are safe */
2922         unlock_page(page);
2923
2924         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2925         if (IS_ERR(handle)) {
2926                 ret = PTR_ERR(handle);
2927                 goto out;
2928         }
2929
2930         ret = walk_page_buffers(handle, page_bufs, 0,
2931                         PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
2932
2933         err = walk_page_buffers(handle, page_bufs, 0,
2934                                 PAGE_CACHE_SIZE, NULL, write_end_fn);
2935         if (ret == 0)
2936                 ret = err;
2937         err = ext4_journal_stop(handle);
2938         if (!ret)
2939                 ret = err;
2940
2941         walk_page_buffers(handle, page_bufs, 0,
2942                                 PAGE_CACHE_SIZE, NULL, bput_one);
2943         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2944         goto out;
2945
2946 out_unlock:
2947         unlock_page(page);
2948 out:
2949         return ret;
2950 }
2951
2952 static int ext4_journalled_writepage(struct page *page,
2953                                 struct writeback_control *wbc)
2954 {
2955         struct inode *inode = page->mapping->host;
2956         loff_t size = i_size_read(inode);
2957         loff_t len;
2958
2959         J_ASSERT(PageLocked(page));
2960         if (page->index == size >> PAGE_CACHE_SHIFT)
2961                 len = size & ~PAGE_CACHE_MASK;
2962         else
2963                 len = PAGE_CACHE_SIZE;
2964
2965         if (page_has_buffers(page)) {
2966                 /* if page has buffers it should all be mapped
2967                  * and allocated. If there are not buffers attached
2968                  * to the page we know the page is dirty but it lost
2969                  * buffers. That means that at some moment in time
2970                  * after write_begin() / write_end() has been called
2971                  * all buffers have been clean and thus they must have been
2972                  * written at least once. So they are all mapped and we can
2973                  * happily proceed with mapping them and writing the page.
2974                  */
2975                 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2976                                         ext4_bh_unmapped_or_delay));
2977         }
2978
2979         if (ext4_journal_current_handle())
2980                 goto no_write;
2981
2982         if (PageChecked(page)) {
2983                 /*
2984                  * It's mmapped pagecache.  Add buffers and journal it.  There
2985                  * doesn't seem much point in redirtying the page here.
2986                  */
2987                 ClearPageChecked(page);
2988                 return __ext4_journalled_writepage(page, wbc);
2989         } else {
2990                 /*
2991                  * It may be a page full of checkpoint-mode buffers.  We don't
2992                  * really know unless we go poke around in the buffer_heads.
2993                  * But block_write_full_page will do the right thing.
2994                  */
2995                 return block_write_full_page(page,
2996                                                 ext4_normal_get_block_write,
2997                                                 wbc);
2998         }
2999 no_write:
3000         redirty_page_for_writepage(wbc, page);
3001         unlock_page(page);
3002         return 0;
3003 }
3004
3005 static int ext4_readpage(struct file *file, struct page *page)
3006 {
3007         return mpage_readpage(page, ext4_get_block);
3008 }
3009
3010 static int
3011 ext4_readpages(struct file *file, struct address_space *mapping,
3012                 struct list_head *pages, unsigned nr_pages)
3013 {
3014         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3015 }
3016
3017 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3018 {
3019         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3020
3021         /*
3022          * If it's a full truncate we just forget about the pending dirtying
3023          */
3024         if (offset == 0)
3025                 ClearPageChecked(page);
3026
3027         jbd2_journal_invalidatepage(journal, page, offset);
3028 }
3029
3030 static int ext4_releasepage(struct page *page, gfp_t wait)
3031 {
3032         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3033
3034         WARN_ON(PageChecked(page));
3035         if (!page_has_buffers(page))
3036                 return 0;
3037         return jbd2_journal_try_to_free_buffers(journal, page, wait);
3038 }
3039
3040 /*
3041  * If the O_DIRECT write will extend the file then add this inode to the
3042  * orphan list.  So recovery will truncate it back to the original size
3043  * if the machine crashes during the write.
3044  *
3045  * If the O_DIRECT write is intantiating holes inside i_size and the machine
3046  * crashes then stale disk data _may_ be exposed inside the file. But current
3047  * VFS code falls back into buffered path in that case so we are safe.
3048  */
3049 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3050                         const struct iovec *iov, loff_t offset,
3051                         unsigned long nr_segs)
3052 {
3053         struct file *file = iocb->ki_filp;
3054         struct inode *inode = file->f_mapping->host;
3055         struct ext4_inode_info *ei = EXT4_I(inode);
3056         handle_t *handle;
3057         ssize_t ret;
3058         int orphan = 0;
3059         size_t count = iov_length(iov, nr_segs);
3060
3061         if (rw == WRITE) {
3062                 loff_t final_size = offset + count;
3063
3064                 if (final_size > inode->i_size) {
3065                         /* Credits for sb + inode write */
3066                         handle = ext4_journal_start(inode, 2);
3067                         if (IS_ERR(handle)) {
3068                                 ret = PTR_ERR(handle);
3069                                 goto out;
3070                         }
3071                         ret = ext4_orphan_add(handle, inode);
3072                         if (ret) {
3073                                 ext4_journal_stop(handle);
3074                                 goto out;
3075                         }
3076                         orphan = 1;
3077                         ei->i_disksize = inode->i_size;
3078                         ext4_journal_stop(handle);
3079                 }
3080         }
3081
3082         ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3083                                  offset, nr_segs,
3084                                  ext4_get_block, NULL);
3085
3086         if (orphan) {
3087                 int err;
3088
3089                 /* Credits for sb + inode write */
3090                 handle = ext4_journal_start(inode, 2);
3091                 if (IS_ERR(handle)) {
3092                         /* This is really bad luck. We've written the data
3093                          * but cannot extend i_size. Bail out and pretend
3094                          * the write failed... */
3095                         ret = PTR_ERR(handle);
3096                         goto out;
3097                 }
3098                 if (inode->i_nlink)
3099                         ext4_orphan_del(handle, inode);
3100                 if (ret > 0) {
3101                         loff_t end = offset + ret;
3102                         if (end > inode->i_size) {
3103                                 ei->i_disksize = end;
3104                                 i_size_write(inode, end);
3105                                 /*
3106                                  * We're going to return a positive `ret'
3107                                  * here due to non-zero-length I/O, so there's
3108                                  * no way of reporting error returns from
3109                                  * ext4_mark_inode_dirty() to userspace.  So
3110                                  * ignore it.
3111                                  */
3112                                 ext4_mark_inode_dirty(handle, inode);
3113                         }
3114                 }
3115                 err = ext4_journal_stop(handle);
3116                 if (ret == 0)
3117                         ret = err;
3118         }
3119 out:
3120         return ret;
3121 }
3122
3123 /*
3124  * Pages can be marked dirty completely asynchronously from ext4's journalling
3125  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3126  * much here because ->set_page_dirty is called under VFS locks.  The page is
3127  * not necessarily locked.
3128  *
3129  * We cannot just dirty the page and leave attached buffers clean, because the
3130  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3131  * or jbddirty because all the journalling code will explode.
3132  *
3133  * So what we do is to mark the page "pending dirty" and next time writepage
3134  * is called, propagate that into the buffers appropriately.
3135  */
3136 static int ext4_journalled_set_page_dirty(struct page *page)
3137 {
3138         SetPageChecked(page);
3139         return __set_page_dirty_nobuffers(page);
3140 }
3141
3142 static const struct address_space_operations ext4_ordered_aops = {
3143         .readpage               = ext4_readpage,
3144         .readpages              = ext4_readpages,
3145         .writepage              = ext4_normal_writepage,
3146         .sync_page              = block_sync_page,
3147         .write_begin            = ext4_write_begin,
3148         .write_end              = ext4_ordered_write_end,
3149         .bmap                   = ext4_bmap,
3150         .invalidatepage         = ext4_invalidatepage,
3151         .releasepage            = ext4_releasepage,
3152         .direct_IO              = ext4_direct_IO,
3153         .migratepage            = buffer_migrate_page,
3154         .is_partially_uptodate  = block_is_partially_uptodate,
3155 };
3156
3157 static const struct address_space_operations ext4_writeback_aops = {
3158         .readpage               = ext4_readpage,
3159         .readpages              = ext4_readpages,
3160         .writepage              = ext4_normal_writepage,
3161         .sync_page              = block_sync_page,
3162         .write_begin            = ext4_write_begin,
3163         .write_end              = ext4_writeback_write_end,
3164         .bmap                   = ext4_bmap,
3165         .invalidatepage         = ext4_invalidatepage,
3166         .releasepage            = ext4_releasepage,
3167         .direct_IO              = ext4_direct_IO,
3168         .migratepage            = buffer_migrate_page,
3169         .is_partially_uptodate  = block_is_partially_uptodate,
3170 };
3171
3172 static const struct address_space_operations ext4_journalled_aops = {
3173         .readpage               = ext4_readpage,
3174         .readpages              = ext4_readpages,
3175         .writepage              = ext4_journalled_writepage,
3176         .sync_page              = block_sync_page,
3177         .write_begin            = ext4_write_begin,
3178         .write_end              = ext4_journalled_write_end,
3179         .set_page_dirty         = ext4_journalled_set_page_dirty,
3180         .bmap                   = ext4_bmap,
3181         .invalidatepage         = ext4_invalidatepage,
3182         .releasepage            = ext4_releasepage,
3183         .is_partially_uptodate  = block_is_partially_uptodate,
3184 };
3185
3186 static const struct address_space_operations ext4_da_aops = {
3187         .readpage               = ext4_readpage,
3188         .readpages              = ext4_readpages,
3189         .writepage              = ext4_da_writepage,
3190         .writepages             = ext4_da_writepages,
3191         .sync_page              = block_sync_page,
3192         .write_begin            = ext4_da_write_begin,
3193         .write_end              = ext4_da_write_end,
3194         .bmap                   = ext4_bmap,
3195         .invalidatepage         = ext4_da_invalidatepage,
3196         .releasepage            = ext4_releasepage,
3197         .direct_IO              = ext4_direct_IO,
3198         .migratepage            = buffer_migrate_page,
3199         .is_partially_uptodate  = block_is_partially_uptodate,
3200 };
3201
3202 void ext4_set_aops(struct inode *inode)
3203 {
3204         if (ext4_should_order_data(inode) &&
3205                 test_opt(inode->i_sb, DELALLOC))
3206                 inode->i_mapping->a_ops = &ext4_da_aops;
3207         else if (ext4_should_order_data(inode))
3208                 inode->i_mapping->a_ops = &ext4_ordered_aops;
3209         else if (ext4_should_writeback_data(inode) &&
3210                  test_opt(inode->i_sb, DELALLOC))
3211                 inode->i_mapping->a_ops = &ext4_da_aops;
3212         else if (ext4_should_writeback_data(inode))
3213                 inode->i_mapping->a_ops = &ext4_writeback_aops;
3214         else
3215                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3216 }
3217
3218 /*
3219  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3220  * up to the end of the block which corresponds to `from'.
3221  * This required during truncate. We need to physically zero the tail end
3222  * of that block so it doesn't yield old data if the file is later grown.
3223  */
3224 int ext4_block_truncate_page(handle_t *handle,
3225                 struct address_space *mapping, loff_t from)
3226 {
3227         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3228         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3229         unsigned blocksize, length, pos;
3230         ext4_lblk_t iblock;
3231         struct inode *inode = mapping->host;
3232         struct buffer_head *bh;
3233         struct page *page;
3234         int err = 0;
3235
3236         page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3237         if (!page)
3238                 return -EINVAL;
3239
3240         blocksize = inode->i_sb->s_blocksize;
3241         length = blocksize - (offset & (blocksize - 1));
3242         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3243
3244         /*
3245          * For "nobh" option,  we can only work if we don't need to
3246          * read-in the page - otherwise we create buffers to do the IO.
3247          */
3248         if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3249              ext4_should_writeback_data(inode) && PageUptodate(page)) {
3250                 zero_user(page, offset, length);
3251                 set_page_dirty(page);
3252                 goto unlock;
3253         }
3254
3255         if (!page_has_buffers(page))
3256                 create_empty_buffers(page, blocksize, 0);
3257
3258         /* Find the buffer that contains "offset" */
3259         bh = page_buffers(page);
3260         pos = blocksize;
3261         while (offset >= pos) {
3262                 bh = bh->b_this_page;
3263                 iblock++;
3264                 pos += blocksize;
3265         }
3266
3267         err = 0;
3268         if (buffer_freed(bh)) {
3269                 BUFFER_TRACE(bh, "freed: skip");
3270                 goto unlock;
3271         }
3272
3273         if (!buffer_mapped(bh)) {
3274                 BUFFER_TRACE(bh, "unmapped");
3275                 ext4_get_block(inode, iblock, bh, 0);
3276                 /* unmapped? It's a hole - nothing to do */
3277                 if (!buffer_mapped(bh)) {
3278                         BUFFER_TRACE(bh, "still unmapped");
3279                         goto unlock;
3280                 }
3281         }
3282
3283         /* Ok, it's mapped. Make sure it's up-to-date */
3284         if (PageUptodate(page))
3285                 set_buffer_uptodate(bh);
3286
3287         if (!buffer_uptodate(bh)) {
3288                 err = -EIO;
3289                 ll_rw_block(READ, 1, &bh);
3290                 wait_on_buffer(bh);
3291                 /* Uhhuh. Read error. Complain and punt. */
3292                 if (!buffer_uptodate(bh))
3293                         goto unlock;
3294         }
3295
3296         if (ext4_should_journal_data(inode)) {
3297                 BUFFER_TRACE(bh, "get write access");
3298                 err = ext4_journal_get_write_access(handle, bh);
3299                 if (err)
3300                         goto unlock;
3301         }
3302
3303         zero_user(page, offset, length);
3304
3305         BUFFER_TRACE(bh, "zeroed end of block");
3306
3307         err = 0;
3308         if (ext4_should_journal_data(inode)) {
3309                 err = ext4_journal_dirty_metadata(handle, bh);
3310         } else {
3311                 if (ext4_should_order_data(inode))
3312                         err = ext4_jbd2_file_inode(handle, inode);
3313                 mark_buffer_dirty(bh);
3314         }
3315
3316 unlock:
3317         unlock_page(page);
3318         page_cache_release(page);
3319         return err;
3320 }
3321
3322 /*
3323  * Probably it should be a library function... search for first non-zero word
3324  * or memcmp with zero_page, whatever is better for particular architecture.
3325  * Linus?
3326  */
3327 static inline int all_zeroes(__le32 *p, __le32 *q)
3328 {
3329         while (p < q)
3330                 if (*p++)
3331                         return 0;
3332         return 1;
3333 }
3334
3335 /**
3336  *      ext4_find_shared - find the indirect blocks for partial truncation.
3337  *      @inode:   inode in question
3338  *      @depth:   depth of the affected branch
3339  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
3340  *      @chain:   place to store the pointers to partial indirect blocks
3341  *      @top:     place to the (detached) top of branch
3342  *
3343  *      This is a helper function used by ext4_truncate().
3344  *
3345  *      When we do truncate() we may have to clean the ends of several
3346  *      indirect blocks but leave the blocks themselves alive. Block is
3347  *      partially truncated if some data below the new i_size is refered
3348  *      from it (and it is on the path to the first completely truncated
3349  *      data block, indeed).  We have to free the top of that path along
3350  *      with everything to the right of the path. Since no allocation
3351  *      past the truncation point is possible until ext4_truncate()
3352  *      finishes, we may safely do the latter, but top of branch may
3353  *      require special attention - pageout below the truncation point
3354  *      might try to populate it.
3355  *
3356  *      We atomically detach the top of branch from the tree, store the
3357  *      block number of its root in *@top, pointers to buffer_heads of
3358  *      partially truncated blocks - in @chain[].bh and pointers to
3359  *      their last elements that should not be removed - in
3360  *      @chain[].p. Return value is the pointer to last filled element
3361  *      of @chain.
3362  *
3363  *      The work left to caller to do the actual freeing of subtrees:
3364  *              a) free the subtree starting from *@top
3365  *              b) free the subtrees whose roots are stored in
3366  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3367  *              c) free the subtrees growing from the inode past the @chain[0].
3368  *                      (no partially truncated stuff there).  */
3369
3370 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3371                         ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3372 {
3373         Indirect *partial, *p;
3374         int k, err;
3375
3376         *top = 0;
3377         /* Make k index the deepest non-null offest + 1 */
3378         for (k = depth; k > 1 && !offsets[k-1]; k--)
3379                 ;
3380         partial = ext4_get_branch(inode, k, offsets, chain, &err);
3381         /* Writer: pointers */
3382         if (!partial)
3383                 partial = chain + k-1;
3384         /*
3385          * If the branch acquired continuation since we've looked at it -
3386          * fine, it should all survive and (new) top doesn't belong to us.
3387          */
3388         if (!partial->key && *partial->p)
3389                 /* Writer: end */
3390                 goto no_top;
3391         for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3392                 ;
3393         /*
3394          * OK, we've found the last block that must survive. The rest of our
3395          * branch should be detached before unlocking. However, if that rest
3396          * of branch is all ours and does not grow immediately from the inode
3397          * it's easier to cheat and just decrement partial->p.
3398          */
3399         if (p == chain + k - 1 && p > chain) {
3400                 p->p--;
3401         } else {
3402                 *top = *p->p;
3403                 /* Nope, don't do this in ext4.  Must leave the tree intact */
3404 #if 0
3405                 *p->p = 0;
3406 #endif
3407         }
3408         /* Writer: end */
3409
3410         while (partial > p) {
3411                 brelse(partial->bh);
3412                 partial--;
3413         }
3414 no_top:
3415         return partial;
3416 }
3417
3418 /*
3419  * Zero a number of block pointers in either an inode or an indirect block.
3420  * If we restart the transaction we must again get write access to the
3421  * indirect block for further modification.
3422  *
3423  * We release `count' blocks on disk, but (last - first) may be greater
3424  * than `count' because there can be holes in there.
3425  */
3426 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3427                 struct buffer_head *bh, ext4_fsblk_t block_to_free,
3428                 unsigned long count, __le32 *first, __le32 *last)
3429 {
3430         __le32 *p;
3431         if (try_to_extend_transaction(handle, inode)) {
3432                 if (bh) {
3433                         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
3434                         ext4_journal_dirty_metadata(handle, bh);
3435                 }
3436                 ext4_mark_inode_dirty(handle, inode);
3437                 ext4_journal_test_restart(handle, inode);
3438                 if (bh) {
3439                         BUFFER_TRACE(bh, "retaking write access");
3440                         ext4_journal_get_write_access(handle, bh);
3441                 }
3442         }
3443
3444         /*
3445          * Any buffers which are on the journal will be in memory. We find
3446          * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3447          * on them.  We've already detached each block from the file, so
3448          * bforget() in jbd2_journal_forget() should be safe.
3449          *
3450          * AKPM: turn on bforget in jbd2_journal_forget()!!!
3451          */
3452         for (p = first; p < last; p++) {
3453                 u32 nr = le32_to_cpu(*p);
3454                 if (nr) {
3455                         struct buffer_head *tbh;
3456
3457                         *p = 0;
3458                         tbh = sb_find_get_block(inode->i_sb, nr);
3459                         ext4_forget(handle, 0, inode, tbh, nr);
3460                 }
3461         }
3462
3463         ext4_free_blocks(handle, inode, block_to_free, count, 0);
3464 }
3465
3466 /**
3467  * ext4_free_data - free a list of data blocks
3468  * @handle:     handle for this transaction
3469  * @inode:      inode we are dealing with
3470  * @this_bh:    indirect buffer_head which contains *@first and *@last
3471  * @first:      array of block numbers
3472  * @last:       points immediately past the end of array
3473  *
3474  * We are freeing all blocks refered from that array (numbers are stored as
3475  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3476  *
3477  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
3478  * blocks are contiguous then releasing them at one time will only affect one
3479  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3480  * actually use a lot of journal space.
3481  *
3482  * @this_bh will be %NULL if @first and @last point into the inode's direct
3483  * block pointers.
3484  */
3485 static void ext4_free_data(handle_t *handle, struct inode *inode,
3486                            struct buffer_head *this_bh,
3487                            __le32 *first, __le32 *last)
3488 {
3489         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
3490         unsigned long count = 0;            /* Number of blocks in the run */
3491         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
3492                                                corresponding to
3493                                                block_to_free */
3494         ext4_fsblk_t nr;                    /* Current block # */
3495         __le32 *p;                          /* Pointer into inode/ind
3496                                                for current block */
3497         int err;
3498
3499         if (this_bh) {                          /* For indirect block */
3500                 BUFFER_TRACE(this_bh, "get_write_access");
3501                 err = ext4_journal_get_write_access(handle, this_bh);
3502                 /* Important: if we can't update the indirect pointers
3503                  * to the blocks, we can't free them. */
3504                 if (err)
3505                         return;
3506         }
3507
3508         for (p = first; p < last; p++) {
3509                 nr = le32_to_cpu(*p);
3510                 if (nr) {
3511                         /* accumulate blocks to free if they're contiguous */
3512                         if (count == 0) {
3513                                 block_to_free = nr;
3514                                 block_to_free_p = p;
3515                                 count = 1;
3516                         } else if (nr == block_to_free + count) {
3517                                 count++;
3518                         } else {
3519                                 ext4_clear_blocks(handle, inode, this_bh,
3520                                                   block_to_free,
3521                                                   count, block_to_free_p, p);
3522                                 block_to_free = nr;
3523                                 block_to_free_p = p;
3524                                 count = 1;
3525                         }
3526                 }
3527         }
3528
3529         if (count > 0)
3530                 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3531                                   count, block_to_free_p, p);
3532
3533         if (this_bh) {
3534                 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
3535
3536                 /*
3537                  * The buffer head should have an attached journal head at this
3538                  * point. However, if the data is corrupted and an indirect
3539                  * block pointed to itself, it would have been detached when
3540                  * the block was cleared. Check for this instead of OOPSing.
3541                  */
3542                 if (bh2jh(this_bh))
3543                         ext4_journal_dirty_metadata(handle, this_bh);
3544                 else
3545                         ext4_error(inode->i_sb, __func__,
3546                                    "circular indirect block detected, "
3547                                    "inode=%lu, block=%llu",
3548                                    inode->i_ino,
3549                                    (unsigned long long) this_bh->b_blocknr);
3550         }
3551 }
3552
3553 /**
3554  *      ext4_free_branches - free an array of branches
3555  *      @handle: JBD handle for this transaction
3556  *      @inode: inode we are dealing with
3557  *      @parent_bh: the buffer_head which contains *@first and *@last
3558  *      @first: array of block numbers
3559  *      @last:  pointer immediately past the end of array
3560  *      @depth: depth of the branches to free
3561  *
3562  *      We are freeing all blocks refered from these branches (numbers are
3563  *      stored as little-endian 32-bit) and updating @inode->i_blocks
3564  *      appropriately.
3565  */
3566 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3567                                struct buffer_head *parent_bh,
3568                                __le32 *first, __le32 *last, int depth)
3569 {
3570         ext4_fsblk_t nr;
3571         __le32 *p;
3572
3573         if (is_handle_aborted(handle))
3574                 return;
3575
3576         if (depth--) {
3577                 struct buffer_head *bh;
3578                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3579                 p = last;
3580                 while (--p >= first) {
3581                         nr = le32_to_cpu(*p);
3582                         if (!nr)
3583                                 continue;               /* A hole */
3584
3585                         /* Go read the buffer for the next level down */
3586                         bh = sb_bread(inode->i_sb, nr);
3587
3588                         /*
3589                          * A read failure? Report error and clear slot
3590                          * (should be rare).
3591                          */
3592                         if (!bh) {
3593                                 ext4_error(inode->i_sb, "ext4_free_branches",
3594                                            "Read failure, inode=%lu, block=%llu",
3595                                            inode->i_ino, nr);
3596                                 continue;
3597                         }
3598
3599                         /* This zaps the entire block.  Bottom up. */
3600                         BUFFER_TRACE(bh, "free child branches");
3601                         ext4_free_branches(handle, inode, bh,
3602                                         (__le32 *) bh->b_data,
3603                                         (__le32 *) bh->b_data + addr_per_block,
3604                                         depth);
3605
3606                         /*
3607                          * We've probably journalled the indirect block several
3608                          * times during the truncate.  But it's no longer
3609                          * needed and we now drop it from the transaction via
3610                          * jbd2_journal_revoke().
3611                          *
3612                          * That's easy if it's exclusively part of this
3613                          * transaction.  But if it's part of the committing
3614                          * transaction then jbd2_journal_forget() will simply
3615                          * brelse() it.  That means that if the underlying
3616                          * block is reallocated in ext4_get_block(),
3617                          * unmap_underlying_metadata() will find this block
3618                          * and will try to get rid of it.  damn, damn.
3619                          *
3620                          * If this block has already been committed to the
3621                          * journal, a revoke record will be written.  And
3622                          * revoke records must be emitted *before* clearing
3623                          * this block's bit in the bitmaps.
3624                          */
3625                         ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3626
3627                         /*
3628                          * Everything below this this pointer has been
3629                          * released.  Now let this top-of-subtree go.
3630                          *
3631                          * We want the freeing of this indirect block to be
3632                          * atomic in the journal with the updating of the
3633                          * bitmap block which owns it.  So make some room in
3634                          * the journal.
3635                          *
3636                          * We zero the parent pointer *after* freeing its
3637                          * pointee in the bitmaps, so if extend_transaction()
3638                          * for some reason fails to put the bitmap changes and
3639                          * the release into the same transaction, recovery
3640                          * will merely complain about releasing a free block,
3641                          * rather than leaking blocks.
3642                          */
3643                         if (is_handle_aborted(handle))
3644                                 return;
3645                         if (try_to_extend_transaction(handle, inode)) {
3646                                 ext4_mark_inode_dirty(handle, inode);
3647                                 ext4_journal_test_restart(handle, inode);
3648                         }
3649
3650                         ext4_free_blocks(handle, inode, nr, 1, 1);
3651
3652                         if (parent_bh) {
3653                                 /*
3654                                  * The block which we have just freed is
3655                                  * pointed to by an indirect block: journal it
3656                                  */
3657                                 BUFFER_TRACE(parent_bh, "get_write_access");
3658                                 if (!ext4_journal_get_write_access(handle,
3659                                                                    parent_bh)){
3660                                         *p = 0;
3661                                         BUFFER_TRACE(parent_bh,
3662                                         "call ext4_journal_dirty_metadata");
3663                                         ext4_journal_dirty_metadata(handle,
3664                                                                     parent_bh);
3665                                 }
3666                         }
3667                 }
3668         } else {
3669                 /* We have reached the bottom of the tree. */
3670                 BUFFER_TRACE(parent_bh, "free data blocks");
3671                 ext4_free_data(handle, inode, parent_bh, first, last);
3672         }
3673 }
3674
3675 int ext4_can_truncate(struct inode *inode)
3676 {
3677         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3678                 return 0;
3679         if (S_ISREG(inode->i_mode))
3680                 return 1;
3681         if (S_ISDIR(inode->i_mode))
3682                 return 1;
3683         if (S_ISLNK(inode->i_mode))
3684                 return !ext4_inode_is_fast_symlink(inode);
3685         return 0;
3686 }
3687
3688 /*
3689  * ext4_truncate()
3690  *
3691  * We block out ext4_get_block() block instantiations across the entire
3692  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3693  * simultaneously on behalf of the same inode.
3694  *
3695  * As we work through the truncate and commmit bits of it to the journal there
3696  * is one core, guiding principle: the file's tree must always be consistent on
3697  * disk.  We must be able to restart the truncate after a crash.
3698  *
3699  * The file's tree may be transiently inconsistent in memory (although it
3700  * probably isn't), but whenever we close off and commit a journal transaction,
3701  * the contents of (the filesystem + the journal) must be consistent and
3702  * restartable.  It's pretty simple, really: bottom up, right to left (although
3703  * left-to-right works OK too).
3704  *
3705  * Note that at recovery time, journal replay occurs *before* the restart of
3706  * truncate against the orphan inode list.
3707  *
3708  * The committed inode has the new, desired i_size (which is the same as
3709  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3710  * that this inode's truncate did not complete and it will again call
3711  * ext4_truncate() to have another go.  So there will be instantiated blocks
3712  * to the right of the truncation point in a crashed ext4 filesystem.  But
3713  * that's fine - as long as they are linked from the inode, the post-crash
3714  * ext4_truncate() run will find them and release them.
3715  */
3716 void ext4_truncate(struct inode *inode)
3717 {
3718         handle_t *handle;
3719         struct ext4_inode_info *ei = EXT4_I(inode);
3720         __le32 *i_data = ei->i_data;
3721         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3722         struct address_space *mapping = inode->i_mapping;
3723         ext4_lblk_t offsets[4];
3724         Indirect chain[4];
3725         Indirect *partial;
3726         __le32 nr = 0;
3727         int n;
3728         ext4_lblk_t last_block;
3729         unsigned blocksize = inode->i_sb->s_blocksize;
3730
3731         if (!ext4_can_truncate(inode))
3732                 return;
3733
3734         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
3735                 ext4_ext_truncate(inode);
3736                 return;
3737         }
3738
3739         handle = start_transaction(inode);
3740         if (IS_ERR(handle))
3741                 return;         /* AKPM: return what? */
3742
3743         last_block = (inode->i_size + blocksize-1)
3744                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
3745
3746         if (inode->i_size & (blocksize - 1))
3747                 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3748                         goto out_stop;
3749
3750         n = ext4_block_to_path(inode, last_block, offsets, NULL);
3751         if (n == 0)
3752                 goto out_stop;  /* error */
3753
3754         /*
3755          * OK.  This truncate is going to happen.  We add the inode to the
3756          * orphan list, so that if this truncate spans multiple transactions,
3757          * and we crash, we will resume the truncate when the filesystem
3758          * recovers.  It also marks the inode dirty, to catch the new size.
3759          *
3760          * Implication: the file must always be in a sane, consistent
3761          * truncatable state while each transaction commits.
3762          */
3763         if (ext4_orphan_add(handle, inode))
3764                 goto out_stop;
3765
3766         /*
3767          * From here we block out all ext4_get_block() callers who want to
3768          * modify the block allocation tree.
3769          */
3770         down_write(&ei->i_data_sem);
3771
3772         ext4_discard_preallocations(inode);
3773
3774         /*
3775          * The orphan list entry will now protect us from any crash which
3776          * occurs before the truncate completes, so it is now safe to propagate
3777          * the new, shorter inode size (held for now in i_size) into the
3778          * on-disk inode. We do this via i_disksize, which is the value which
3779          * ext4 *really* writes onto the disk inode.
3780          */
3781         ei->i_disksize = inode->i_size;
3782
3783         if (n == 1) {           /* direct blocks */
3784                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
3785                                i_data + EXT4_NDIR_BLOCKS);
3786                 goto do_indirects;
3787         }
3788
3789         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
3790         /* Kill the top of shared branch (not detached) */
3791         if (nr) {
3792                 if (partial == chain) {
3793                         /* Shared branch grows from the inode */
3794                         ext4_free_branches(handle, inode, NULL,
3795                                            &nr, &nr+1, (chain+n-1) - partial);
3796                         *partial->p = 0;
3797                         /*
3798                          * We mark the inode dirty prior to restart,
3799                          * and prior to stop.  No need for it here.
3800                          */
3801                 } else {
3802                         /* Shared branch grows from an indirect block */
3803                         BUFFER_TRACE(partial->bh, "get_write_access");
3804                         ext4_free_branches(handle, inode, partial->bh,
3805                                         partial->p,
3806                                         partial->p+1, (chain+n-1) - partial);
3807                 }
3808         }
3809         /* Clear the ends of indirect blocks on the shared branch */
3810         while (partial > chain) {
3811                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
3812                                    (__le32*)partial->bh->b_data+addr_per_block,
3813                                    (chain+n-1) - partial);
3814                 BUFFER_TRACE(partial->bh, "call brelse");
3815                 brelse (partial->bh);
3816                 partial--;
3817         }
3818 do_indirects:
3819         /* Kill the remaining (whole) subtrees */
3820         switch (offsets[0]) {
3821         default:
3822                 nr = i_data[EXT4_IND_BLOCK];
3823                 if (nr) {
3824                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
3825                         i_data[EXT4_IND_BLOCK] = 0;
3826                 }
3827         case EXT4_IND_BLOCK:
3828                 nr = i_data[EXT4_DIND_BLOCK];
3829                 if (nr) {
3830                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
3831                         i_data[EXT4_DIND_BLOCK] = 0;
3832                 }
3833         case EXT4_DIND_BLOCK:
3834                 nr = i_data[EXT4_TIND_BLOCK];
3835                 if (nr) {
3836                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
3837                         i_data[EXT4_TIND_BLOCK] = 0;
3838                 }
3839         case EXT4_TIND_BLOCK:
3840                 ;
3841         }
3842
3843         up_write(&ei->i_data_sem);
3844         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3845         ext4_mark_inode_dirty(handle, inode);
3846
3847         /*
3848          * In a multi-transaction truncate, we only make the final transaction
3849          * synchronous
3850          */
3851         if (IS_SYNC(inode))
3852                 handle->h_sync = 1;
3853 out_stop:
3854         /*
3855          * If this was a simple ftruncate(), and the file will remain alive
3856          * then we need to clear up the orphan record which we created above.
3857          * However, if this was a real unlink then we were called by
3858          * ext4_delete_inode(), and we allow that function to clean up the
3859          * orphan info for us.
3860          */
3861         if (inode->i_nlink)
3862                 ext4_orphan_del(handle, inode);
3863
3864         ext4_journal_stop(handle);
3865 }
3866
3867 /*
3868  * ext4_get_inode_loc returns with an extra refcount against the inode's
3869  * underlying buffer_head on success. If 'in_mem' is true, we have all
3870  * data in memory that is needed to recreate the on-disk version of this
3871  * inode.
3872  */
3873 static int __ext4_get_inode_loc(struct inode *inode,
3874                                 struct ext4_iloc *iloc, int in_mem)
3875 {
3876         struct ext4_group_desc  *gdp;
3877         struct buffer_head      *bh;
3878         struct super_block      *sb = inode->i_sb;
3879         ext4_fsblk_t            block;
3880         int                     inodes_per_block, inode_offset;
3881
3882         iloc->bh = 0;
3883         if (!ext4_valid_inum(sb, inode->i_ino))
3884                 return -EIO;
3885
3886         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3887         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3888         if (!gdp)
3889                 return -EIO;
3890
3891         /*
3892          * Figure out the offset within the block group inode table
3893          */
3894         inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
3895         inode_offset = ((inode->i_ino - 1) %
3896                         EXT4_INODES_PER_GROUP(sb));
3897         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3898         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3899
3900         bh = sb_getblk(sb, block);
3901         if (!bh) {
3902                 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
3903                            "inode block - inode=%lu, block=%llu",
3904                            inode->i_ino, block);
3905                 return -EIO;
3906         }
3907         if (!buffer_uptodate(bh)) {
3908                 lock_buffer(bh);
3909
3910                 /*
3911                  * If the buffer has the write error flag, we have failed
3912                  * to write out another inode in the same block.  In this
3913                  * case, we don't have to read the block because we may
3914                  * read the old inode data successfully.
3915                  */
3916                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3917                         set_buffer_uptodate(bh);
3918
3919                 if (buffer_uptodate(bh)) {
3920                         /* someone brought it uptodate while we waited */
3921                         unlock_buffer(bh);
3922                         goto has_buffer;
3923                 }
3924
3925                 /*
3926                  * If we have all information of the inode in memory and this
3927                  * is the only valid inode in the block, we need not read the
3928                  * block.
3929                  */
3930                 if (in_mem) {
3931                         struct buffer_head *bitmap_bh;
3932                         int i, start;
3933
3934                         start = inode_offset & ~(inodes_per_block - 1);
3935
3936                         /* Is the inode bitmap in cache? */
3937                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3938                         if (!bitmap_bh)
3939                                 goto make_io;
3940
3941                         /*
3942                          * If the inode bitmap isn't in cache then the
3943                          * optimisation may end up performing two reads instead
3944                          * of one, so skip it.
3945                          */
3946                         if (!buffer_uptodate(bitmap_bh)) {
3947                                 brelse(bitmap_bh);
3948                                 goto make_io;
3949                         }
3950                         for (i = start; i < start + inodes_per_block; i++) {
3951                                 if (i == inode_offset)
3952                                         continue;
3953                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3954                                         break;
3955                         }
3956                         brelse(bitmap_bh);
3957                         if (i == start + inodes_per_block) {
3958                                 /* all other inodes are free, so skip I/O */
3959                                 memset(bh->b_data, 0, bh->b_size);
3960                                 set_buffer_uptodate(bh);
3961                                 unlock_buffer(bh);
3962                                 goto has_buffer;
3963                         }
3964                 }
3965
3966 make_io:
3967                 /*
3968                  * If we need to do any I/O, try to pre-readahead extra
3969                  * blocks from the inode table.
3970                  */
3971                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3972                         ext4_fsblk_t b, end, table;
3973                         unsigned num;
3974
3975                         table = ext4_inode_table(sb, gdp);
3976                         /* Make sure s_inode_readahead_blks is a power of 2 */
3977                         while (EXT4_SB(sb)->s_inode_readahead_blks &
3978                                (EXT4_SB(sb)->s_inode_readahead_blks-1))
3979                                 EXT4_SB(sb)->s_inode_readahead_blks = 
3980                                    (EXT4_SB(sb)->s_inode_readahead_blks &
3981                                     (EXT4_SB(sb)->s_inode_readahead_blks-1));
3982                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3983                         if (table > b)
3984                                 b = table;
3985                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3986                         num = EXT4_INODES_PER_GROUP(sb);
3987                         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3988                                        EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3989                                 num -= le16_to_cpu(gdp->bg_itable_unused);
3990                         table += num / inodes_per_block;
3991                         if (end > table)
3992                                 end = table;
3993                         while (b <= end)
3994                                 sb_breadahead(sb, b++);
3995                 }
3996
3997                 /*
3998                  * There are other valid inodes in the buffer, this inode
3999                  * has in-inode xattrs, or we don't have this inode in memory.
4000                  * Read the block from disk.
4001                  */
4002                 get_bh(bh);
4003                 bh->b_end_io = end_buffer_read_sync;
4004                 submit_bh(READ_META, bh);
4005                 wait_on_buffer(bh);
4006                 if (!buffer_uptodate(bh)) {
4007                         ext4_error(sb, __func__,
4008                                    "unable to read inode block - inode=%lu, "
4009                                    "block=%llu", inode->i_ino, block);
4010                         brelse(bh);
4011                         return -EIO;
4012                 }
4013         }
4014 has_buffer:
4015         iloc->bh = bh;
4016         return 0;
4017 }
4018
4019 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4020 {
4021         /* We have all inode data except xattrs in memory here. */
4022         return __ext4_get_inode_loc(inode, iloc,
4023                 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4024 }
4025
4026 void ext4_set_inode_flags(struct inode *inode)
4027 {
4028         unsigned int flags = EXT4_I(inode)->i_flags;
4029
4030         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4031         if (flags & EXT4_SYNC_FL)
4032                 inode->i_flags |= S_SYNC;
4033         if (flags & EXT4_APPEND_FL)
4034                 inode->i_flags |= S_APPEND;
4035         if (flags & EXT4_IMMUTABLE_FL)
4036                 inode->i_flags |= S_IMMUTABLE;
4037         if (flags & EXT4_NOATIME_FL)
4038                 inode->i_flags |= S_NOATIME;
4039         if (flags & EXT4_DIRSYNC_FL)
4040                 inode->i_flags |= S_DIRSYNC;
4041 }
4042
4043 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4044 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4045 {
4046         unsigned int flags = ei->vfs_inode.i_flags;
4047
4048         ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4049                         EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4050         if (flags & S_SYNC)
4051                 ei->i_flags |= EXT4_SYNC_FL;
4052         if (flags & S_APPEND)
4053                 ei->i_flags |= EXT4_APPEND_FL;
4054         if (flags & S_IMMUTABLE)
4055                 ei->i_flags |= EXT4_IMMUTABLE_FL;
4056         if (flags & S_NOATIME)
4057                 ei->i_flags |= EXT4_NOATIME_FL;
4058         if (flags & S_DIRSYNC)
4059                 ei->i_flags |= EXT4_DIRSYNC_FL;
4060 }
4061 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4062                                         struct ext4_inode_info *ei)
4063 {
4064         blkcnt_t i_blocks ;
4065         struct inode *inode = &(ei->vfs_inode);
4066         struct super_block *sb = inode->i_sb;
4067
4068         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4069                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4070                 /* we are using combined 48 bit field */
4071                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4072                                         le32_to_cpu(raw_inode->i_blocks_lo);
4073                 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4074                         /* i_blocks represent file system block size */
4075                         return i_blocks  << (inode->i_blkbits - 9);
4076                 } else {
4077                         return i_blocks;
4078                 }
4079         } else {
4080                 return le32_to_cpu(raw_inode->i_blocks_lo);
4081         }
4082 }
4083
4084 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4085 {
4086         struct ext4_iloc iloc;
4087         struct ext4_inode *raw_inode;
4088         struct ext4_inode_info *ei;
4089         struct buffer_head *bh;
4090         struct inode *inode;
4091         long ret;
4092         int block;
4093
4094         inode = iget_locked(sb, ino);
4095         if (!inode)
4096                 return ERR_PTR(-ENOMEM);
4097         if (!(inode->i_state & I_NEW))
4098                 return inode;
4099
4100         ei = EXT4_I(inode);
4101 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4102         ei->i_acl = EXT4_ACL_NOT_CACHED;
4103         ei->i_default_acl = EXT4_ACL_NOT_CACHED;
4104 #endif
4105
4106         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4107         if (ret < 0)
4108                 goto bad_inode;
4109         bh = iloc.bh;
4110         raw_inode = ext4_raw_inode(&iloc);
4111         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4112         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4113         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4114         if (!(test_opt(inode->i_sb, NO_UID32))) {
4115                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4116                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4117         }
4118         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4119
4120         ei->i_state = 0;
4121         ei->i_dir_start_lookup = 0;
4122         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4123         /* We now have enough fields to check if the inode was active or not.
4124          * This is needed because nfsd might try to access dead inodes
4125          * the test is that same one that e2fsck uses
4126          * NeilBrown 1999oct15
4127          */
4128         if (inode->i_nlink == 0) {
4129                 if (inode->i_mode == 0 ||
4130                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4131                         /* this inode is deleted */
4132                         brelse(bh);
4133                         ret = -ESTALE;
4134                         goto bad_inode;
4135                 }
4136                 /* The only unlinked inodes we let through here have
4137                  * valid i_mode and are being read by the orphan
4138                  * recovery code: that's fine, we're about to complete
4139                  * the process of deleting those. */
4140         }
4141         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4142         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4143         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4144         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4145             cpu_to_le32(EXT4_OS_HURD)) {
4146                 ei->i_file_acl |=
4147                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4148         }
4149         inode->i_size = ext4_isize(raw_inode);
4150         ei->i_disksize = inode->i_size;
4151         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4152         ei->i_block_group = iloc.block_group;
4153         /*
4154          * NOTE! The in-memory inode i_data array is in little-endian order
4155          * even on big-endian machines: we do NOT byteswap the block numbers!
4156          */
4157         for (block = 0; block < EXT4_N_BLOCKS; block++)
4158                 ei->i_data[block] = raw_inode->i_block[block];
4159         INIT_LIST_HEAD(&ei->i_orphan);
4160
4161         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4162                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4163                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4164                     EXT4_INODE_SIZE(inode->i_sb)) {
4165                         brelse(bh);
4166                         ret = -EIO;
4167                         goto bad_inode;
4168                 }
4169                 if (ei->i_extra_isize == 0) {
4170                         /* The extra space is currently unused. Use it. */
4171                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4172                                             EXT4_GOOD_OLD_INODE_SIZE;
4173                 } else {
4174                         __le32 *magic = (void *)raw_inode +
4175                                         EXT4_GOOD_OLD_INODE_SIZE +
4176                                         ei->i_extra_isize;
4177                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4178                                  ei->i_state |= EXT4_STATE_XATTR;
4179                 }
4180         } else
4181                 ei->i_extra_isize = 0;
4182
4183         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4184         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4185         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4186         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4187
4188         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4189         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4190                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4191                         inode->i_version |=
4192                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4193         }
4194
4195         if (S_ISREG(inode->i_mode)) {
4196                 inode->i_op = &ext4_file_inode_operations;
4197                 inode->i_fop = &ext4_file_operations;
4198                 ext4_set_aops(inode);
4199         } else if (S_ISDIR(inode->i_mode)) {
4200                 inode->i_op = &ext4_dir_inode_operations;
4201                 inode->i_fop = &ext4_dir_operations;
4202         } else if (S_ISLNK(inode->i_mode)) {
4203                 if (ext4_inode_is_fast_symlink(inode))
4204                         inode->i_op = &ext4_fast_symlink_inode_operations;
4205                 else {
4206                         inode->i_op = &ext4_symlink_inode_operations;
4207                         ext4_set_aops(inode);
4208                 }
4209         } else {
4210                 inode->i_op = &ext4_special_inode_operations;
4211                 if (raw_inode->i_block[0])
4212                         init_special_inode(inode, inode->i_mode,
4213                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4214                 else
4215                         init_special_inode(inode, inode->i_mode,
4216                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4217         }
4218         brelse(iloc.bh);
4219         ext4_set_inode_flags(inode);
4220         unlock_new_inode(inode);
4221         return inode;
4222
4223 bad_inode:
4224         iget_failed(inode);
4225         return ERR_PTR(ret);
4226 }
4227
4228 static int ext4_inode_blocks_set(handle_t *handle,
4229                                 struct ext4_inode *raw_inode,
4230                                 struct ext4_inode_info *ei)
4231 {
4232         struct inode *inode = &(ei->vfs_inode);
4233         u64 i_blocks = inode->i_blocks;
4234         struct super_block *sb = inode->i_sb;
4235
4236         if (i_blocks <= ~0U) {
4237                 /*
4238                  * i_blocks can be represnted in a 32 bit variable
4239                  * as multiple of 512 bytes
4240                  */
4241                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4242                 raw_inode->i_blocks_high = 0;
4243                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4244                 return 0;
4245         }
4246         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4247                 return -EFBIG;
4248
4249         if (i_blocks <= 0xffffffffffffULL) {
4250                 /*
4251                  * i_blocks can be represented in a 48 bit variable
4252                  * as multiple of 512 bytes
4253                  */
4254                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4255                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4256                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4257         } else {
4258                 ei->i_flags |= EXT4_HUGE_FILE_FL;
4259                 /* i_block is stored in file system block size */
4260                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4261                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4262                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4263         }
4264         return 0;
4265 }
4266
4267 /*
4268  * Post the struct inode info into an on-disk inode location in the
4269  * buffer-cache.  This gobbles the caller's reference to the
4270  * buffer_head in the inode location struct.
4271  *
4272  * The caller must have write access to iloc->bh.
4273  */
4274 static int ext4_do_update_inode(handle_t *handle,
4275                                 struct inode *inode,
4276                                 struct ext4_iloc *iloc)
4277 {
4278         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4279         struct ext4_inode_info *ei = EXT4_I(inode);
4280         struct buffer_head *bh = iloc->bh;
4281         int err = 0, rc, block;
4282
4283         /* For fields not not tracking in the in-memory inode,
4284          * initialise them to zero for new inodes. */
4285         if (ei->i_state & EXT4_STATE_NEW)
4286                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4287
4288         ext4_get_inode_flags(ei);
4289         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4290         if (!(test_opt(inode->i_sb, NO_UID32))) {
4291                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4292                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4293 /*
4294  * Fix up interoperability with old kernels. Otherwise, old inodes get
4295  * re-used with the upper 16 bits of the uid/gid intact
4296  */
4297                 if (!ei->i_dtime) {
4298                         raw_inode->i_uid_high =
4299                                 cpu_to_le16(high_16_bits(inode->i_uid));
4300                         raw_inode->i_gid_high =
4301                                 cpu_to_le16(high_16_bits(inode->i_gid));
4302                 } else {
4303                         raw_inode->i_uid_high = 0;
4304                         raw_inode->i_gid_high = 0;
4305                 }
4306         } else {
4307                 raw_inode->i_uid_low =
4308                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
4309                 raw_inode->i_gid_low =
4310                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
4311                 raw_inode->i_uid_high = 0;
4312                 raw_inode->i_gid_high = 0;
4313         }
4314         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4315
4316         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4317         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4318         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4319         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4320
4321         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4322                 goto out_brelse;
4323         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4324         /* clear the migrate flag in the raw_inode */
4325         raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4326         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4327             cpu_to_le32(EXT4_OS_HURD))
4328                 raw_inode->i_file_acl_high =
4329                         cpu_to_le16(ei->i_file_acl >> 32);
4330         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4331         ext4_isize_set(raw_inode, ei->i_disksize);
4332         if (ei->i_disksize > 0x7fffffffULL) {
4333                 struct super_block *sb = inode->i_sb;
4334                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4335                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4336                                 EXT4_SB(sb)->s_es->s_rev_level ==
4337                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4338                         /* If this is the first large file
4339                          * created, add a flag to the superblock.
4340                          */
4341                         err = ext4_journal_get_write_access(handle,
4342                                         EXT4_SB(sb)->s_sbh);
4343                         if (err)
4344                                 goto out_brelse;
4345                         ext4_update_dynamic_rev(sb);
4346                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4347                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4348                         sb->s_dirt = 1;
4349                         handle->h_sync = 1;
4350                         err = ext4_journal_dirty_metadata(handle,
4351                                         EXT4_SB(sb)->s_sbh);
4352                 }
4353         }
4354         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4355         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4356                 if (old_valid_dev(inode->i_rdev)) {
4357                         raw_inode->i_block[0] =
4358                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4359                         raw_inode->i_block[1] = 0;
4360                 } else {
4361                         raw_inode->i_block[0] = 0;
4362                         raw_inode->i_block[1] =
4363                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4364                         raw_inode->i_block[2] = 0;
4365                 }
4366         } else for (block = 0; block < EXT4_N_BLOCKS; block++)
4367                 raw_inode->i_block[block] = ei->i_data[block];
4368
4369         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4370         if (ei->i_extra_isize) {
4371                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4372                         raw_inode->i_version_hi =
4373                         cpu_to_le32(inode->i_version >> 32);
4374                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4375         }
4376
4377
4378         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
4379         rc = ext4_journal_dirty_metadata(handle, bh);
4380         if (!err)
4381                 err = rc;
4382         ei->i_state &= ~EXT4_STATE_NEW;
4383
4384 out_brelse:
4385         brelse(bh);
4386         ext4_std_error(inode->i_sb, err);
4387         return err;
4388 }
4389
4390 /*
4391  * ext4_write_inode()
4392  *
4393  * We are called from a few places:
4394  *
4395  * - Within generic_file_write() for O_SYNC files.
4396  *   Here, there will be no transaction running. We wait for any running
4397  *   trasnaction to commit.
4398  *
4399  * - Within sys_sync(), kupdate and such.
4400  *   We wait on commit, if tol to.
4401  *
4402  * - Within prune_icache() (PF_MEMALLOC == true)
4403  *   Here we simply return.  We can't afford to block kswapd on the
4404  *   journal commit.
4405  *
4406  * In all cases it is actually safe for us to return without doing anything,
4407  * because the inode has been copied into a raw inode buffer in
4408  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4409  * knfsd.
4410  *
4411  * Note that we are absolutely dependent upon all inode dirtiers doing the
4412  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4413  * which we are interested.
4414  *
4415  * It would be a bug for them to not do this.  The code:
4416  *
4417  *      mark_inode_dirty(inode)
4418  *      stuff();
4419  *      inode->i_size = expr;
4420  *
4421  * is in error because a kswapd-driven write_inode() could occur while
4422  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4423  * will no longer be on the superblock's dirty inode list.
4424  */
4425 int ext4_write_inode(struct inode *inode, int wait)
4426 {
4427         if (current->flags & PF_MEMALLOC)
4428                 return 0;
4429
4430         if (ext4_journal_current_handle()) {
4431                 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4432                 dump_stack();
4433                 return -EIO;
4434         }
4435
4436         if (!wait)
4437                 return 0;
4438
4439         return ext4_force_commit(inode->i_sb);
4440 }
4441
4442 /*
4443  * ext4_setattr()
4444  *
4445  * Called from notify_change.
4446  *
4447  * We want to trap VFS attempts to truncate the file as soon as
4448  * possible.  In particular, we want to make sure that when the VFS
4449  * shrinks i_size, we put the inode on the orphan list and modify
4450  * i_disksize immediately, so that during the subsequent flushing of
4451  * dirty pages and freeing of disk blocks, we can guarantee that any
4452  * commit will leave the blocks being flushed in an unused state on
4453  * disk.  (On recovery, the inode will get truncated and the blocks will
4454  * be freed, so we have a strong guarantee that no future commit will
4455  * leave these blocks visible to the user.)
4456  *
4457  * Another thing we have to assure is that if we are in ordered mode
4458  * and inode is still attached to the committing transaction, we must
4459  * we start writeout of all the dirty pages which are being truncated.
4460  * This way we are sure that all the data written in the previous
4461  * transaction are already on disk (truncate waits for pages under
4462  * writeback).
4463  *
4464  * Called with inode->i_mutex down.
4465  */
4466 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4467 {
4468         struct inode *inode = dentry->d_inode;
4469         int error, rc = 0;
4470         const unsigned int ia_valid = attr->ia_valid;
4471
4472         error = inode_change_ok(inode, attr);
4473         if (error)
4474                 return error;
4475
4476         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4477                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4478                 handle_t *handle;
4479
4480                 /* (user+group)*(old+new) structure, inode write (sb,
4481                  * inode block, ? - but truncate inode update has it) */
4482                 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4483                                         EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4484                 if (IS_ERR(handle)) {
4485                         error = PTR_ERR(handle);
4486                         goto err_out;
4487                 }
4488                 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
4489                 if (error) {
4490                         ext4_journal_stop(handle);
4491                         return error;
4492                 }
4493                 /* Update corresponding info in inode so that everything is in
4494                  * one transaction */
4495                 if (attr->ia_valid & ATTR_UID)
4496                         inode->i_uid = attr->ia_uid;
4497                 if (attr->ia_valid & ATTR_GID)
4498                         inode->i_gid = attr->ia_gid;
4499                 error = ext4_mark_inode_dirty(handle, inode);
4500                 ext4_journal_stop(handle);
4501         }
4502
4503         if (attr->ia_valid & ATTR_SIZE) {
4504                 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4505                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4506
4507                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4508                                 error = -EFBIG;
4509                                 goto err_out;
4510                         }
4511                 }
4512         }
4513
4514         if (S_ISREG(inode->i_mode) &&
4515             attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4516                 handle_t *handle;
4517
4518                 handle = ext4_journal_start(inode, 3);
4519                 if (IS_ERR(handle)) {
4520                         error = PTR_ERR(handle);
4521                         goto err_out;
4522                 }
4523
4524                 error = ext4_orphan_add(handle, inode);
4525                 EXT4_I(inode)->i_disksize = attr->ia_size;
4526                 rc = ext4_mark_inode_dirty(handle, inode);
4527                 if (!error)
4528                         error = rc;
4529                 ext4_journal_stop(handle);
4530
4531                 if (ext4_should_order_data(inode)) {
4532                         error = ext4_begin_ordered_truncate(inode,
4533                                                             attr->ia_size);
4534                         if (error) {
4535                                 /* Do as much error cleanup as possible */
4536                                 handle = ext4_journal_start(inode, 3);
4537                                 if (IS_ERR(handle)) {
4538                                         ext4_orphan_del(NULL, inode);
4539                                         goto err_out;
4540                                 }
4541                                 ext4_orphan_del(handle, inode);
4542                                 ext4_journal_stop(handle);
4543                                 goto err_out;
4544                         }
4545                 }
4546         }
4547
4548         rc = inode_setattr(inode, attr);
4549
4550         /* If inode_setattr's call to ext4_truncate failed to get a
4551          * transaction handle at all, we need to clean up the in-core
4552          * orphan list manually. */
4553         if (inode->i_nlink)
4554                 ext4_orphan_del(NULL, inode);
4555
4556         if (!rc && (ia_valid & ATTR_MODE))
4557                 rc = ext4_acl_chmod(inode);
4558
4559 err_out:
4560         ext4_std_error(inode->i_sb, error);
4561         if (!error)
4562                 error = rc;
4563         return error;
4564 }
4565
4566 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4567                  struct kstat *stat)
4568 {
4569         struct inode *inode;
4570         unsigned long delalloc_blocks;
4571
4572         inode = dentry->d_inode;
4573         generic_fillattr(inode, stat);
4574
4575         /*
4576          * We can't update i_blocks if the block allocation is delayed
4577          * otherwise in the case of system crash before the real block
4578          * allocation is done, we will have i_blocks inconsistent with
4579          * on-disk file blocks.
4580          * We always keep i_blocks updated together with real
4581          * allocation. But to not confuse with user, stat
4582          * will return the blocks that include the delayed allocation
4583          * blocks for this file.
4584          */
4585         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4586         delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4587         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4588
4589         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4590         return 0;
4591 }
4592
4593 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4594                                       int chunk)
4595 {
4596         int indirects;
4597
4598         /* if nrblocks are contiguous */
4599         if (chunk) {
4600                 /*
4601                  * With N contiguous data blocks, it need at most
4602                  * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4603                  * 2 dindirect blocks
4604                  * 1 tindirect block
4605                  */
4606                 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4607                 return indirects + 3;
4608         }
4609         /*
4610          * if nrblocks are not contiguous, worse case, each block touch
4611          * a indirect block, and each indirect block touch a double indirect
4612          * block, plus a triple indirect block
4613          */
4614         indirects = nrblocks * 2 + 1;
4615         return indirects;
4616 }
4617
4618 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4619 {
4620         if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4621                 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
4622         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4623 }
4624
4625 /*
4626  * Account for index blocks, block groups bitmaps and block group
4627  * descriptor blocks if modify datablocks and index blocks
4628  * worse case, the indexs blocks spread over different block groups
4629  *
4630  * If datablocks are discontiguous, they are possible to spread over
4631  * different block groups too. If they are contiugous, with flexbg,
4632  * they could still across block group boundary.
4633  *
4634  * Also account for superblock, inode, quota and xattr blocks
4635  */
4636 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4637 {
4638         int groups, gdpblocks;
4639         int idxblocks;
4640         int ret = 0;
4641
4642         /*
4643          * How many index blocks need to touch to modify nrblocks?
4644          * The "Chunk" flag indicating whether the nrblocks is
4645          * physically contiguous on disk
4646          *
4647          * For Direct IO and fallocate, they calls get_block to allocate
4648          * one single extent at a time, so they could set the "Chunk" flag
4649          */
4650         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4651
4652         ret = idxblocks;
4653
4654         /*
4655          * Now let's see how many group bitmaps and group descriptors need
4656          * to account
4657          */
4658         groups = idxblocks;
4659         if (chunk)
4660                 groups += 1;
4661         else
4662                 groups += nrblocks;
4663
4664         gdpblocks = groups;
4665         if (groups > EXT4_SB(inode->i_sb)->s_groups_count)
4666                 groups = EXT4_SB(inode->i_sb)->s_groups_count;
4667         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4668                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4669
4670         /* bitmaps and block group descriptor blocks */
4671         ret += groups + gdpblocks;
4672
4673         /* Blocks for super block, inode, quota and xattr blocks */
4674         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4675
4676         return ret;
4677 }
4678
4679 /*
4680  * Calulate the total number of credits to reserve to fit
4681  * the modification of a single pages into a single transaction,
4682  * which may include multiple chunks of block allocations.
4683  *
4684  * This could be called via ext4_write_begin()
4685  *
4686  * We need to consider the worse case, when
4687  * one new block per extent.
4688  */
4689 int ext4_writepage_trans_blocks(struct inode *inode)
4690 {
4691         int bpp = ext4_journal_blocks_per_page(inode);
4692         int ret;
4693
4694         ret = ext4_meta_trans_blocks(inode, bpp, 0);
4695
4696         /* Account for data blocks for journalled mode */
4697         if (ext4_should_journal_data(inode))
4698                 ret += bpp;
4699         return ret;
4700 }
4701
4702 /*
4703  * Calculate the journal credits for a chunk of data modification.
4704  *
4705  * This is called from DIO, fallocate or whoever calling
4706  * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks.
4707  *
4708  * journal buffers for data blocks are not included here, as DIO
4709  * and fallocate do no need to journal data buffers.
4710  */
4711 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4712 {
4713         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4714 }
4715
4716 /*
4717  * The caller must have previously called ext4_reserve_inode_write().
4718  * Give this, we know that the caller already has write access to iloc->bh.
4719  */
4720 int ext4_mark_iloc_dirty(handle_t *handle,
4721                 struct inode *inode, struct ext4_iloc *iloc)
4722 {
4723         int err = 0;
4724
4725         if (test_opt(inode->i_sb, I_VERSION))
4726                 inode_inc_iversion(inode);
4727
4728         /* the do_update_inode consumes one bh->b_count */
4729         get_bh(iloc->bh);
4730
4731         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4732         err = ext4_do_update_inode(handle, inode, iloc);
4733         put_bh(iloc->bh);
4734         return err;
4735 }
4736
4737 /*
4738  * On success, We end up with an outstanding reference count against
4739  * iloc->bh.  This _must_ be cleaned up later.
4740  */
4741
4742 int
4743 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4744                          struct ext4_iloc *iloc)
4745 {
4746         int err = 0;
4747         if (handle) {
4748                 err = ext4_get_inode_loc(inode, iloc);
4749                 if (!err) {
4750                         BUFFER_TRACE(iloc->bh, "get_write_access");
4751                         err = ext4_journal_get_write_access(handle, iloc->bh);
4752                         if (err) {
4753                                 brelse(iloc->bh);
4754                                 iloc->bh = NULL;
4755                         }
4756                 }
4757         }
4758         ext4_std_error(inode->i_sb, err);
4759         return err;
4760 }
4761
4762 /*
4763  * Expand an inode by new_extra_isize bytes.
4764  * Returns 0 on success or negative error number on failure.
4765  */
4766 static int ext4_expand_extra_isize(struct inode *inode,
4767                                    unsigned int new_extra_isize,
4768                                    struct ext4_iloc iloc,
4769                                    handle_t *handle)
4770 {
4771         struct ext4_inode *raw_inode;
4772         struct ext4_xattr_ibody_header *header;
4773         struct ext4_xattr_entry *entry;
4774
4775         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4776                 return 0;
4777
4778         raw_inode = ext4_raw_inode(&iloc);
4779
4780         header = IHDR(inode, raw_inode);
4781         entry = IFIRST(header);
4782
4783         /* No extended attributes present */
4784         if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
4785                 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4786                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4787                         new_extra_isize);
4788                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4789                 return 0;
4790         }
4791
4792         /* try to expand with EAs present */
4793         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4794                                           raw_inode, handle);
4795 }
4796
4797 /*
4798  * What we do here is to mark the in-core inode as clean with respect to inode
4799  * dirtiness (it may still be data-dirty).
4800  * This means that the in-core inode may be reaped by prune_icache
4801  * without having to perform any I/O.  This is a very good thing,
4802  * because *any* task may call prune_icache - even ones which
4803  * have a transaction open against a different journal.
4804  *
4805  * Is this cheating?  Not really.  Sure, we haven't written the
4806  * inode out, but prune_icache isn't a user-visible syncing function.
4807  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4808  * we start and wait on commits.
4809  *
4810  * Is this efficient/effective?  Well, we're being nice to the system
4811  * by cleaning up our inodes proactively so they can be reaped
4812  * without I/O.  But we are potentially leaving up to five seconds'
4813  * worth of inodes floating about which prune_icache wants us to
4814  * write out.  One way to fix that would be to get prune_icache()
4815  * to do a write_super() to free up some memory.  It has the desired
4816  * effect.
4817  */
4818 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4819 {
4820         struct ext4_iloc iloc;
4821         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4822         static unsigned int mnt_count;
4823         int err, ret;
4824
4825         might_sleep();
4826         err = ext4_reserve_inode_write(handle, inode, &iloc);
4827         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4828             !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
4829                 /*
4830                  * We need extra buffer credits since we may write into EA block
4831                  * with this same handle. If journal_extend fails, then it will
4832                  * only result in a minor loss of functionality for that inode.
4833                  * If this is felt to be critical, then e2fsck should be run to
4834                  * force a large enough s_min_extra_isize.
4835                  */
4836                 if ((jbd2_journal_extend(handle,
4837                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4838                         ret = ext4_expand_extra_isize(inode,
4839                                                       sbi->s_want_extra_isize,
4840                                                       iloc, handle);
4841                         if (ret) {
4842                                 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
4843                                 if (mnt_count !=
4844                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4845                                         ext4_warning(inode->i_sb, __func__,
4846                                         "Unable to expand inode %lu. Delete"
4847                                         " some EAs or run e2fsck.",
4848                                         inode->i_ino);
4849                                         mnt_count =
4850                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4851                                 }
4852                         }
4853                 }
4854         }
4855         if (!err)
4856                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4857         return err;
4858 }
4859
4860 /*
4861  * ext4_dirty_inode() is called from __mark_inode_dirty()
4862  *
4863  * We're really interested in the case where a file is being extended.
4864  * i_size has been changed by generic_commit_write() and we thus need
4865  * to include the updated inode in the current transaction.
4866  *
4867  * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
4868  * are allocated to the file.
4869  *
4870  * If the inode is marked synchronous, we don't honour that here - doing
4871  * so would cause a commit on atime updates, which we don't bother doing.
4872  * We handle synchronous inodes at the highest possible level.
4873  */
4874 void ext4_dirty_inode(struct inode *inode)
4875 {
4876         handle_t *current_handle = ext4_journal_current_handle();
4877         handle_t *handle;
4878
4879         handle = ext4_journal_start(inode, 2);
4880         if (IS_ERR(handle))
4881                 goto out;
4882         if (current_handle &&
4883                 current_handle->h_transaction != handle->h_transaction) {
4884                 /* This task has a transaction open against a different fs */
4885                 printk(KERN_EMERG "%s: transactions do not match!\n",
4886                        __func__);
4887         } else {
4888                 jbd_debug(5, "marking dirty.  outer handle=%p\n",
4889                                 current_handle);
4890                 ext4_mark_inode_dirty(handle, inode);
4891         }
4892         ext4_journal_stop(handle);
4893 out:
4894         return;
4895 }
4896
4897 #if 0
4898 /*
4899  * Bind an inode's backing buffer_head into this transaction, to prevent
4900  * it from being flushed to disk early.  Unlike
4901  * ext4_reserve_inode_write, this leaves behind no bh reference and
4902  * returns no iloc structure, so the caller needs to repeat the iloc
4903  * lookup to mark the inode dirty later.
4904  */
4905 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4906 {
4907         struct ext4_iloc iloc;
4908
4909         int err = 0;
4910         if (handle) {
4911                 err = ext4_get_inode_loc(inode, &iloc);
4912                 if (!err) {
4913                         BUFFER_TRACE(iloc.bh, "get_write_access");
4914                         err = jbd2_journal_get_write_access(handle, iloc.bh);
4915                         if (!err)
4916                                 err = ext4_journal_dirty_metadata(handle,
4917                                                                   iloc.bh);
4918                         brelse(iloc.bh);
4919                 }
4920         }
4921         ext4_std_error(inode->i_sb, err);
4922         return err;
4923 }
4924 #endif
4925
4926 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4927 {
4928         journal_t *journal;
4929         handle_t *handle;
4930         int err;
4931
4932         /*
4933          * We have to be very careful here: changing a data block's
4934          * journaling status dynamically is dangerous.  If we write a
4935          * data block to the journal, change the status and then delete
4936          * that block, we risk forgetting to revoke the old log record
4937          * from the journal and so a subsequent replay can corrupt data.
4938          * So, first we make sure that the journal is empty and that
4939          * nobody is changing anything.
4940          */
4941
4942         journal = EXT4_JOURNAL(inode);
4943         if (is_journal_aborted(journal))
4944                 return -EROFS;
4945
4946         jbd2_journal_lock_updates(journal);
4947         jbd2_journal_flush(journal);
4948
4949         /*
4950          * OK, there are no updates running now, and all cached data is
4951          * synced to disk.  We are now in a completely consistent state
4952          * which doesn't have anything in the journal, and we know that
4953          * no filesystem updates are running, so it is safe to modify
4954          * the inode's in-core data-journaling state flag now.
4955          */
4956
4957         if (val)
4958                 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
4959         else
4960                 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
4961         ext4_set_aops(inode);
4962
4963         jbd2_journal_unlock_updates(journal);
4964
4965         /* Finally we can mark the inode as dirty. */
4966
4967         handle = ext4_journal_start(inode, 1);
4968         if (IS_ERR(handle))
4969                 return PTR_ERR(handle);
4970
4971         err = ext4_mark_inode_dirty(handle, inode);
4972         handle->h_sync = 1;
4973         ext4_journal_stop(handle);
4974         ext4_std_error(inode->i_sb, err);
4975
4976         return err;
4977 }
4978
4979 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4980 {
4981         return !buffer_mapped(bh);
4982 }
4983
4984 int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page)
4985 {
4986         loff_t size;
4987         unsigned long len;
4988         int ret = -EINVAL;
4989         void *fsdata;
4990         struct file *file = vma->vm_file;
4991         struct inode *inode = file->f_path.dentry->d_inode;
4992         struct address_space *mapping = inode->i_mapping;
4993
4994         /*
4995          * Get i_alloc_sem to stop truncates messing with the inode. We cannot
4996          * get i_mutex because we are already holding mmap_sem.
4997          */
4998         down_read(&inode->i_alloc_sem);
4999         size = i_size_read(inode);
5000         if (page->mapping != mapping || size <= page_offset(page)
5001             || !PageUptodate(page)) {
5002                 /* page got truncated from under us? */
5003                 goto out_unlock;
5004         }
5005         ret = 0;
5006         if (PageMappedToDisk(page))
5007                 goto out_unlock;
5008
5009         if (page->index == size >> PAGE_CACHE_SHIFT)
5010                 len = size & ~PAGE_CACHE_MASK;
5011         else
5012                 len = PAGE_CACHE_SIZE;
5013
5014         if (page_has_buffers(page)) {
5015                 /* return if we have all the buffers mapped */
5016                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5017                                        ext4_bh_unmapped))
5018                         goto out_unlock;
5019         }
5020         /*
5021          * OK, we need to fill the hole... Do write_begin write_end
5022          * to do block allocation/reservation.We are not holding
5023          * inode.i__mutex here. That allow * parallel write_begin,
5024          * write_end call. lock_page prevent this from happening
5025          * on the same page though
5026          */
5027         ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5028                         len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5029         if (ret < 0)
5030                 goto out_unlock;
5031         ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5032                         len, len, page, fsdata);
5033         if (ret < 0)
5034                 goto out_unlock;
5035         ret = 0;
5036 out_unlock:
5037         up_read(&inode->i_alloc_sem);
5038         return ret;
5039 }