2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
41 #include "ext4_jbd2.h"
46 #include <trace/events/ext4.h>
48 #define MPAGE_DA_EXTENT_TAIL 0x01
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51 struct ext4_inode_info *ei)
53 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
58 csum_lo = le16_to_cpu(raw->i_checksum_lo);
59 raw->i_checksum_lo = 0;
60 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62 csum_hi = le16_to_cpu(raw->i_checksum_hi);
63 raw->i_checksum_hi = 0;
66 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67 EXT4_INODE_SIZE(inode->i_sb));
69 raw->i_checksum_lo = cpu_to_le16(csum_lo);
70 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72 raw->i_checksum_hi = cpu_to_le16(csum_hi);
77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78 struct ext4_inode_info *ei)
80 __u32 provided, calculated;
82 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83 cpu_to_le32(EXT4_OS_LINUX) ||
84 !ext4_has_metadata_csum(inode->i_sb))
87 provided = le16_to_cpu(raw->i_checksum_lo);
88 calculated = ext4_inode_csum(inode, raw, ei);
89 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
90 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
91 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
95 return provided == calculated;
98 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
99 struct ext4_inode_info *ei)
103 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
104 cpu_to_le32(EXT4_OS_LINUX) ||
105 !ext4_has_metadata_csum(inode->i_sb))
108 csum = ext4_inode_csum(inode, raw, ei);
109 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
110 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
111 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
112 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
115 static inline int ext4_begin_ordered_truncate(struct inode *inode,
118 trace_ext4_begin_ordered_truncate(inode, new_size);
120 * If jinode is zero, then we never opened the file for
121 * writing, so there's no need to call
122 * jbd2_journal_begin_ordered_truncate() since there's no
123 * outstanding writes we need to flush.
125 if (!EXT4_I(inode)->jinode)
127 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
128 EXT4_I(inode)->jinode,
132 static void ext4_invalidatepage(struct page *page, unsigned int offset,
133 unsigned int length);
134 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
135 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
136 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
140 * Test whether an inode is a fast symlink.
142 int ext4_inode_is_fast_symlink(struct inode *inode)
144 int ea_blocks = EXT4_I(inode)->i_file_acl ?
145 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
147 if (ext4_has_inline_data(inode))
150 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
154 * Restart the transaction associated with *handle. This does a commit,
155 * so before we call here everything must be consistently dirtied against
158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
164 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
165 * moment, get_block can be called only for blocks inside i_size since
166 * page cache has been already dropped and writes are blocked by
167 * i_mutex. So we can safely drop the i_data_sem here.
169 BUG_ON(EXT4_JOURNAL(inode) == NULL);
170 jbd_debug(2, "restarting handle %p\n", handle);
171 up_write(&EXT4_I(inode)->i_data_sem);
172 ret = ext4_journal_restart(handle, nblocks);
173 down_write(&EXT4_I(inode)->i_data_sem);
174 ext4_discard_preallocations(inode);
180 * Called at the last iput() if i_nlink is zero.
182 void ext4_evict_inode(struct inode *inode)
187 trace_ext4_evict_inode(inode);
189 if (inode->i_nlink) {
191 * When journalling data dirty buffers are tracked only in the
192 * journal. So although mm thinks everything is clean and
193 * ready for reaping the inode might still have some pages to
194 * write in the running transaction or waiting to be
195 * checkpointed. Thus calling jbd2_journal_invalidatepage()
196 * (via truncate_inode_pages()) to discard these buffers can
197 * cause data loss. Also even if we did not discard these
198 * buffers, we would have no way to find them after the inode
199 * is reaped and thus user could see stale data if he tries to
200 * read them before the transaction is checkpointed. So be
201 * careful and force everything to disk here... We use
202 * ei->i_datasync_tid to store the newest transaction
203 * containing inode's data.
205 * Note that directories do not have this problem because they
206 * don't use page cache.
208 if (ext4_should_journal_data(inode) &&
209 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210 inode->i_ino != EXT4_JOURNAL_INO) {
211 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
214 jbd2_complete_transaction(journal, commit_tid);
215 filemap_write_and_wait(&inode->i_data);
217 truncate_inode_pages_final(&inode->i_data);
219 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
223 if (is_bad_inode(inode))
225 dquot_initialize(inode);
227 if (ext4_should_order_data(inode))
228 ext4_begin_ordered_truncate(inode, 0);
229 truncate_inode_pages_final(&inode->i_data);
231 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
234 * Protect us against freezing - iput() caller didn't have to have any
235 * protection against it
237 sb_start_intwrite(inode->i_sb);
238 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
239 ext4_blocks_for_truncate(inode)+3);
240 if (IS_ERR(handle)) {
241 ext4_std_error(inode->i_sb, PTR_ERR(handle));
243 * If we're going to skip the normal cleanup, we still need to
244 * make sure that the in-core orphan linked list is properly
247 ext4_orphan_del(NULL, inode);
248 sb_end_intwrite(inode->i_sb);
253 ext4_handle_sync(handle);
255 err = ext4_mark_inode_dirty(handle, inode);
257 ext4_warning(inode->i_sb,
258 "couldn't mark inode dirty (err %d)", err);
262 ext4_truncate(inode);
265 * ext4_ext_truncate() doesn't reserve any slop when it
266 * restarts journal transactions; therefore there may not be
267 * enough credits left in the handle to remove the inode from
268 * the orphan list and set the dtime field.
270 if (!ext4_handle_has_enough_credits(handle, 3)) {
271 err = ext4_journal_extend(handle, 3);
273 err = ext4_journal_restart(handle, 3);
275 ext4_warning(inode->i_sb,
276 "couldn't extend journal (err %d)", err);
278 ext4_journal_stop(handle);
279 ext4_orphan_del(NULL, inode);
280 sb_end_intwrite(inode->i_sb);
286 * Kill off the orphan record which ext4_truncate created.
287 * AKPM: I think this can be inside the above `if'.
288 * Note that ext4_orphan_del() has to be able to cope with the
289 * deletion of a non-existent orphan - this is because we don't
290 * know if ext4_truncate() actually created an orphan record.
291 * (Well, we could do this if we need to, but heck - it works)
293 ext4_orphan_del(handle, inode);
294 EXT4_I(inode)->i_dtime = get_seconds();
297 * One subtle ordering requirement: if anything has gone wrong
298 * (transaction abort, IO errors, whatever), then we can still
299 * do these next steps (the fs will already have been marked as
300 * having errors), but we can't free the inode if the mark_dirty
303 if (ext4_mark_inode_dirty(handle, inode))
304 /* If that failed, just do the required in-core inode clear. */
305 ext4_clear_inode(inode);
307 ext4_free_inode(handle, inode);
308 ext4_journal_stop(handle);
309 sb_end_intwrite(inode->i_sb);
312 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
316 qsize_t *ext4_get_reserved_space(struct inode *inode)
318 return &EXT4_I(inode)->i_reserved_quota;
323 * Called with i_data_sem down, which is important since we can call
324 * ext4_discard_preallocations() from here.
326 void ext4_da_update_reserve_space(struct inode *inode,
327 int used, int quota_claim)
329 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
330 struct ext4_inode_info *ei = EXT4_I(inode);
332 spin_lock(&ei->i_block_reservation_lock);
333 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
334 if (unlikely(used > ei->i_reserved_data_blocks)) {
335 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
336 "with only %d reserved data blocks",
337 __func__, inode->i_ino, used,
338 ei->i_reserved_data_blocks);
340 used = ei->i_reserved_data_blocks;
343 /* Update per-inode reservations */
344 ei->i_reserved_data_blocks -= used;
345 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
347 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
349 /* Update quota subsystem for data blocks */
351 dquot_claim_block(inode, EXT4_C2B(sbi, used));
354 * We did fallocate with an offset that is already delayed
355 * allocated. So on delayed allocated writeback we should
356 * not re-claim the quota for fallocated blocks.
358 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
362 * If we have done all the pending block allocations and if
363 * there aren't any writers on the inode, we can discard the
364 * inode's preallocations.
366 if ((ei->i_reserved_data_blocks == 0) &&
367 (atomic_read(&inode->i_writecount) == 0))
368 ext4_discard_preallocations(inode);
371 static int __check_block_validity(struct inode *inode, const char *func,
373 struct ext4_map_blocks *map)
375 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
377 ext4_error_inode(inode, func, line, map->m_pblk,
378 "lblock %lu mapped to illegal pblock "
379 "(length %d)", (unsigned long) map->m_lblk,
386 #define check_block_validity(inode, map) \
387 __check_block_validity((inode), __func__, __LINE__, (map))
389 #ifdef ES_AGGRESSIVE_TEST
390 static void ext4_map_blocks_es_recheck(handle_t *handle,
392 struct ext4_map_blocks *es_map,
393 struct ext4_map_blocks *map,
400 * There is a race window that the result is not the same.
401 * e.g. xfstests #223 when dioread_nolock enables. The reason
402 * is that we lookup a block mapping in extent status tree with
403 * out taking i_data_sem. So at the time the unwritten extent
404 * could be converted.
406 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
407 down_read(&EXT4_I(inode)->i_data_sem);
408 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
409 retval = ext4_ext_map_blocks(handle, inode, map, flags &
410 EXT4_GET_BLOCKS_KEEP_SIZE);
412 retval = ext4_ind_map_blocks(handle, inode, map, flags &
413 EXT4_GET_BLOCKS_KEEP_SIZE);
415 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
416 up_read((&EXT4_I(inode)->i_data_sem));
419 * We don't check m_len because extent will be collpased in status
420 * tree. So the m_len might not equal.
422 if (es_map->m_lblk != map->m_lblk ||
423 es_map->m_flags != map->m_flags ||
424 es_map->m_pblk != map->m_pblk) {
425 printk("ES cache assertion failed for inode: %lu "
426 "es_cached ex [%d/%d/%llu/%x] != "
427 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
428 inode->i_ino, es_map->m_lblk, es_map->m_len,
429 es_map->m_pblk, es_map->m_flags, map->m_lblk,
430 map->m_len, map->m_pblk, map->m_flags,
434 #endif /* ES_AGGRESSIVE_TEST */
437 * The ext4_map_blocks() function tries to look up the requested blocks,
438 * and returns if the blocks are already mapped.
440 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
441 * and store the allocated blocks in the result buffer head and mark it
444 * If file type is extents based, it will call ext4_ext_map_blocks(),
445 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
448 * On success, it returns the number of blocks being mapped or allocated.
449 * if create==0 and the blocks are pre-allocated and unwritten block,
450 * the result buffer head is unmapped. If the create ==1, it will make sure
451 * the buffer head is mapped.
453 * It returns 0 if plain look up failed (blocks have not been allocated), in
454 * that case, buffer head is unmapped
456 * It returns the error in case of allocation failure.
458 int ext4_map_blocks(handle_t *handle, struct inode *inode,
459 struct ext4_map_blocks *map, int flags)
461 struct extent_status es;
464 #ifdef ES_AGGRESSIVE_TEST
465 struct ext4_map_blocks orig_map;
467 memcpy(&orig_map, map, sizeof(*map));
471 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
472 "logical block %lu\n", inode->i_ino, flags, map->m_len,
473 (unsigned long) map->m_lblk);
476 * ext4_map_blocks returns an int, and m_len is an unsigned int
478 if (unlikely(map->m_len > INT_MAX))
479 map->m_len = INT_MAX;
481 /* We can handle the block number less than EXT_MAX_BLOCKS */
482 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
485 /* Lookup extent status tree firstly */
486 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
487 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
488 map->m_pblk = ext4_es_pblock(&es) +
489 map->m_lblk - es.es_lblk;
490 map->m_flags |= ext4_es_is_written(&es) ?
491 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
492 retval = es.es_len - (map->m_lblk - es.es_lblk);
493 if (retval > map->m_len)
496 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
501 #ifdef ES_AGGRESSIVE_TEST
502 ext4_map_blocks_es_recheck(handle, inode, map,
509 * Try to see if we can get the block without requesting a new
512 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
513 down_read(&EXT4_I(inode)->i_data_sem);
514 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
515 retval = ext4_ext_map_blocks(handle, inode, map, flags &
516 EXT4_GET_BLOCKS_KEEP_SIZE);
518 retval = ext4_ind_map_blocks(handle, inode, map, flags &
519 EXT4_GET_BLOCKS_KEEP_SIZE);
524 if (unlikely(retval != map->m_len)) {
525 ext4_warning(inode->i_sb,
526 "ES len assertion failed for inode "
527 "%lu: retval %d != map->m_len %d",
528 inode->i_ino, retval, map->m_len);
532 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
533 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
534 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
535 !(status & EXTENT_STATUS_WRITTEN) &&
536 ext4_find_delalloc_range(inode, map->m_lblk,
537 map->m_lblk + map->m_len - 1))
538 status |= EXTENT_STATUS_DELAYED;
539 ret = ext4_es_insert_extent(inode, map->m_lblk,
540 map->m_len, map->m_pblk, status);
544 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
545 up_read((&EXT4_I(inode)->i_data_sem));
548 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
549 ret = check_block_validity(inode, map);
554 /* If it is only a block(s) look up */
555 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
559 * Returns if the blocks have already allocated
561 * Note that if blocks have been preallocated
562 * ext4_ext_get_block() returns the create = 0
563 * with buffer head unmapped.
565 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
567 * If we need to convert extent to unwritten
568 * we continue and do the actual work in
569 * ext4_ext_map_blocks()
571 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
575 * Here we clear m_flags because after allocating an new extent,
576 * it will be set again.
578 map->m_flags &= ~EXT4_MAP_FLAGS;
581 * New blocks allocate and/or writing to unwritten extent
582 * will possibly result in updating i_data, so we take
583 * the write lock of i_data_sem, and call get_block()
584 * with create == 1 flag.
586 down_write(&EXT4_I(inode)->i_data_sem);
589 * We need to check for EXT4 here because migrate
590 * could have changed the inode type in between
592 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
593 retval = ext4_ext_map_blocks(handle, inode, map, flags);
595 retval = ext4_ind_map_blocks(handle, inode, map, flags);
597 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
599 * We allocated new blocks which will result in
600 * i_data's format changing. Force the migrate
601 * to fail by clearing migrate flags
603 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
607 * Update reserved blocks/metadata blocks after successful
608 * block allocation which had been deferred till now. We don't
609 * support fallocate for non extent files. So we can update
610 * reserve space here.
613 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
614 ext4_da_update_reserve_space(inode, retval, 1);
620 if (unlikely(retval != map->m_len)) {
621 ext4_warning(inode->i_sb,
622 "ES len assertion failed for inode "
623 "%lu: retval %d != map->m_len %d",
624 inode->i_ino, retval, map->m_len);
629 * If the extent has been zeroed out, we don't need to update
630 * extent status tree.
632 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
633 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
634 if (ext4_es_is_written(&es))
637 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
638 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
639 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
640 !(status & EXTENT_STATUS_WRITTEN) &&
641 ext4_find_delalloc_range(inode, map->m_lblk,
642 map->m_lblk + map->m_len - 1))
643 status |= EXTENT_STATUS_DELAYED;
644 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
645 map->m_pblk, status);
651 up_write((&EXT4_I(inode)->i_data_sem));
652 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
653 ret = check_block_validity(inode, map);
660 /* Maximum number of blocks we map for direct IO at once. */
661 #define DIO_MAX_BLOCKS 4096
663 static int _ext4_get_block(struct inode *inode, sector_t iblock,
664 struct buffer_head *bh, int flags)
666 handle_t *handle = ext4_journal_current_handle();
667 struct ext4_map_blocks map;
668 int ret = 0, started = 0;
671 if (ext4_has_inline_data(inode))
675 map.m_len = bh->b_size >> inode->i_blkbits;
677 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
678 /* Direct IO write... */
679 if (map.m_len > DIO_MAX_BLOCKS)
680 map.m_len = DIO_MAX_BLOCKS;
681 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
682 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
684 if (IS_ERR(handle)) {
685 ret = PTR_ERR(handle);
691 ret = ext4_map_blocks(handle, inode, &map, flags);
693 ext4_io_end_t *io_end = ext4_inode_aio(inode);
695 map_bh(bh, inode->i_sb, map.m_pblk);
696 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
697 if (IS_DAX(inode) && buffer_unwritten(bh)) {
699 * dgc: I suspect unwritten conversion on ext4+DAX is
700 * fundamentally broken here when there are concurrent
701 * read/write in progress on this inode.
703 WARN_ON_ONCE(io_end);
704 bh->b_assoc_map = inode->i_mapping;
705 bh->b_private = (void *)(unsigned long)iblock;
707 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
708 set_buffer_defer_completion(bh);
709 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
713 ext4_journal_stop(handle);
717 int ext4_get_block(struct inode *inode, sector_t iblock,
718 struct buffer_head *bh, int create)
720 return _ext4_get_block(inode, iblock, bh,
721 create ? EXT4_GET_BLOCKS_CREATE : 0);
725 * `handle' can be NULL if create is zero
727 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
728 ext4_lblk_t block, int map_flags)
730 struct ext4_map_blocks map;
731 struct buffer_head *bh;
732 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
735 J_ASSERT(handle != NULL || create == 0);
739 err = ext4_map_blocks(handle, inode, &map, map_flags);
742 return create ? ERR_PTR(-ENOSPC) : NULL;
746 bh = sb_getblk(inode->i_sb, map.m_pblk);
748 return ERR_PTR(-ENOMEM);
749 if (map.m_flags & EXT4_MAP_NEW) {
750 J_ASSERT(create != 0);
751 J_ASSERT(handle != NULL);
754 * Now that we do not always journal data, we should
755 * keep in mind whether this should always journal the
756 * new buffer as metadata. For now, regular file
757 * writes use ext4_get_block instead, so it's not a
761 BUFFER_TRACE(bh, "call get_create_access");
762 err = ext4_journal_get_create_access(handle, bh);
767 if (!buffer_uptodate(bh)) {
768 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
769 set_buffer_uptodate(bh);
772 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
773 err = ext4_handle_dirty_metadata(handle, inode, bh);
777 BUFFER_TRACE(bh, "not a new buffer");
784 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
785 ext4_lblk_t block, int map_flags)
787 struct buffer_head *bh;
789 bh = ext4_getblk(handle, inode, block, map_flags);
792 if (!bh || buffer_uptodate(bh))
794 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
796 if (buffer_uptodate(bh))
799 return ERR_PTR(-EIO);
802 int ext4_walk_page_buffers(handle_t *handle,
803 struct buffer_head *head,
807 int (*fn)(handle_t *handle,
808 struct buffer_head *bh))
810 struct buffer_head *bh;
811 unsigned block_start, block_end;
812 unsigned blocksize = head->b_size;
814 struct buffer_head *next;
816 for (bh = head, block_start = 0;
817 ret == 0 && (bh != head || !block_start);
818 block_start = block_end, bh = next) {
819 next = bh->b_this_page;
820 block_end = block_start + blocksize;
821 if (block_end <= from || block_start >= to) {
822 if (partial && !buffer_uptodate(bh))
826 err = (*fn)(handle, bh);
834 * To preserve ordering, it is essential that the hole instantiation and
835 * the data write be encapsulated in a single transaction. We cannot
836 * close off a transaction and start a new one between the ext4_get_block()
837 * and the commit_write(). So doing the jbd2_journal_start at the start of
838 * prepare_write() is the right place.
840 * Also, this function can nest inside ext4_writepage(). In that case, we
841 * *know* that ext4_writepage() has generated enough buffer credits to do the
842 * whole page. So we won't block on the journal in that case, which is good,
843 * because the caller may be PF_MEMALLOC.
845 * By accident, ext4 can be reentered when a transaction is open via
846 * quota file writes. If we were to commit the transaction while thus
847 * reentered, there can be a deadlock - we would be holding a quota
848 * lock, and the commit would never complete if another thread had a
849 * transaction open and was blocking on the quota lock - a ranking
852 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
853 * will _not_ run commit under these circumstances because handle->h_ref
854 * is elevated. We'll still have enough credits for the tiny quotafile
857 int do_journal_get_write_access(handle_t *handle,
858 struct buffer_head *bh)
860 int dirty = buffer_dirty(bh);
863 if (!buffer_mapped(bh) || buffer_freed(bh))
866 * __block_write_begin() could have dirtied some buffers. Clean
867 * the dirty bit as jbd2_journal_get_write_access() could complain
868 * otherwise about fs integrity issues. Setting of the dirty bit
869 * by __block_write_begin() isn't a real problem here as we clear
870 * the bit before releasing a page lock and thus writeback cannot
871 * ever write the buffer.
874 clear_buffer_dirty(bh);
875 BUFFER_TRACE(bh, "get write access");
876 ret = ext4_journal_get_write_access(handle, bh);
878 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
882 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
883 struct buffer_head *bh_result, int create);
885 #ifdef CONFIG_EXT4_FS_ENCRYPTION
886 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
887 get_block_t *get_block)
889 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
890 unsigned to = from + len;
891 struct inode *inode = page->mapping->host;
892 unsigned block_start, block_end;
895 unsigned blocksize = inode->i_sb->s_blocksize;
897 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
898 bool decrypt = false;
900 BUG_ON(!PageLocked(page));
901 BUG_ON(from > PAGE_CACHE_SIZE);
902 BUG_ON(to > PAGE_CACHE_SIZE);
905 if (!page_has_buffers(page))
906 create_empty_buffers(page, blocksize, 0);
907 head = page_buffers(page);
908 bbits = ilog2(blocksize);
909 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
911 for (bh = head, block_start = 0; bh != head || !block_start;
912 block++, block_start = block_end, bh = bh->b_this_page) {
913 block_end = block_start + blocksize;
914 if (block_end <= from || block_start >= to) {
915 if (PageUptodate(page)) {
916 if (!buffer_uptodate(bh))
917 set_buffer_uptodate(bh);
922 clear_buffer_new(bh);
923 if (!buffer_mapped(bh)) {
924 WARN_ON(bh->b_size != blocksize);
925 err = get_block(inode, block, bh, 1);
928 if (buffer_new(bh)) {
929 unmap_underlying_metadata(bh->b_bdev,
931 if (PageUptodate(page)) {
932 clear_buffer_new(bh);
933 set_buffer_uptodate(bh);
934 mark_buffer_dirty(bh);
937 if (block_end > to || block_start < from)
938 zero_user_segments(page, to, block_end,
943 if (PageUptodate(page)) {
944 if (!buffer_uptodate(bh))
945 set_buffer_uptodate(bh);
948 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
949 !buffer_unwritten(bh) &&
950 (block_start < from || block_end > to)) {
951 ll_rw_block(READ, 1, &bh);
953 decrypt = ext4_encrypted_inode(inode) &&
954 S_ISREG(inode->i_mode);
958 * If we issued read requests, let them complete.
960 while (wait_bh > wait) {
961 wait_on_buffer(*--wait_bh);
962 if (!buffer_uptodate(*wait_bh))
966 page_zero_new_buffers(page, from, to);
968 err = ext4_decrypt_one(inode, page);
973 static int ext4_write_begin(struct file *file, struct address_space *mapping,
974 loff_t pos, unsigned len, unsigned flags,
975 struct page **pagep, void **fsdata)
977 struct inode *inode = mapping->host;
978 int ret, needed_blocks;
985 trace_ext4_write_begin(inode, pos, len, flags);
987 * Reserve one block more for addition to orphan list in case
988 * we allocate blocks but write fails for some reason
990 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
991 index = pos >> PAGE_CACHE_SHIFT;
992 from = pos & (PAGE_CACHE_SIZE - 1);
995 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
996 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1005 * grab_cache_page_write_begin() can take a long time if the
1006 * system is thrashing due to memory pressure, or if the page
1007 * is being written back. So grab it first before we start
1008 * the transaction handle. This also allows us to allocate
1009 * the page (if needed) without using GFP_NOFS.
1012 page = grab_cache_page_write_begin(mapping, index, flags);
1018 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1019 if (IS_ERR(handle)) {
1020 page_cache_release(page);
1021 return PTR_ERR(handle);
1025 if (page->mapping != mapping) {
1026 /* The page got truncated from under us */
1028 page_cache_release(page);
1029 ext4_journal_stop(handle);
1032 /* In case writeback began while the page was unlocked */
1033 wait_for_stable_page(page);
1035 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1036 if (ext4_should_dioread_nolock(inode))
1037 ret = ext4_block_write_begin(page, pos, len,
1038 ext4_get_block_write);
1040 ret = ext4_block_write_begin(page, pos, len,
1043 if (ext4_should_dioread_nolock(inode))
1044 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1046 ret = __block_write_begin(page, pos, len, ext4_get_block);
1048 if (!ret && ext4_should_journal_data(inode)) {
1049 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1051 do_journal_get_write_access);
1057 * __block_write_begin may have instantiated a few blocks
1058 * outside i_size. Trim these off again. Don't need
1059 * i_size_read because we hold i_mutex.
1061 * Add inode to orphan list in case we crash before
1064 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1065 ext4_orphan_add(handle, inode);
1067 ext4_journal_stop(handle);
1068 if (pos + len > inode->i_size) {
1069 ext4_truncate_failed_write(inode);
1071 * If truncate failed early the inode might
1072 * still be on the orphan list; we need to
1073 * make sure the inode is removed from the
1074 * orphan list in that case.
1077 ext4_orphan_del(NULL, inode);
1080 if (ret == -ENOSPC &&
1081 ext4_should_retry_alloc(inode->i_sb, &retries))
1083 page_cache_release(page);
1090 /* For write_end() in data=journal mode */
1091 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1094 if (!buffer_mapped(bh) || buffer_freed(bh))
1096 set_buffer_uptodate(bh);
1097 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1098 clear_buffer_meta(bh);
1099 clear_buffer_prio(bh);
1104 * We need to pick up the new inode size which generic_commit_write gave us
1105 * `file' can be NULL - eg, when called from page_symlink().
1107 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1108 * buffers are managed internally.
1110 static int ext4_write_end(struct file *file,
1111 struct address_space *mapping,
1112 loff_t pos, unsigned len, unsigned copied,
1113 struct page *page, void *fsdata)
1115 handle_t *handle = ext4_journal_current_handle();
1116 struct inode *inode = mapping->host;
1117 loff_t old_size = inode->i_size;
1119 int i_size_changed = 0;
1121 trace_ext4_write_end(inode, pos, len, copied);
1122 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1123 ret = ext4_jbd2_file_inode(handle, inode);
1126 page_cache_release(page);
1131 if (ext4_has_inline_data(inode)) {
1132 ret = ext4_write_inline_data_end(inode, pos, len,
1138 copied = block_write_end(file, mapping, pos,
1139 len, copied, page, fsdata);
1141 * it's important to update i_size while still holding page lock:
1142 * page writeout could otherwise come in and zero beyond i_size.
1144 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1146 page_cache_release(page);
1149 pagecache_isize_extended(inode, old_size, pos);
1151 * Don't mark the inode dirty under page lock. First, it unnecessarily
1152 * makes the holding time of page lock longer. Second, it forces lock
1153 * ordering of page lock and transaction start for journaling
1157 ext4_mark_inode_dirty(handle, inode);
1159 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1160 /* if we have allocated more blocks and copied
1161 * less. We will have blocks allocated outside
1162 * inode->i_size. So truncate them
1164 ext4_orphan_add(handle, inode);
1166 ret2 = ext4_journal_stop(handle);
1170 if (pos + len > inode->i_size) {
1171 ext4_truncate_failed_write(inode);
1173 * If truncate failed early the inode might still be
1174 * on the orphan list; we need to make sure the inode
1175 * is removed from the orphan list in that case.
1178 ext4_orphan_del(NULL, inode);
1181 return ret ? ret : copied;
1184 static int ext4_journalled_write_end(struct file *file,
1185 struct address_space *mapping,
1186 loff_t pos, unsigned len, unsigned copied,
1187 struct page *page, void *fsdata)
1189 handle_t *handle = ext4_journal_current_handle();
1190 struct inode *inode = mapping->host;
1191 loff_t old_size = inode->i_size;
1195 int size_changed = 0;
1197 trace_ext4_journalled_write_end(inode, pos, len, copied);
1198 from = pos & (PAGE_CACHE_SIZE - 1);
1201 BUG_ON(!ext4_handle_valid(handle));
1203 if (ext4_has_inline_data(inode))
1204 copied = ext4_write_inline_data_end(inode, pos, len,
1208 if (!PageUptodate(page))
1210 page_zero_new_buffers(page, from+copied, to);
1213 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1214 to, &partial, write_end_fn);
1216 SetPageUptodate(page);
1218 size_changed = ext4_update_inode_size(inode, pos + copied);
1219 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1220 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1222 page_cache_release(page);
1225 pagecache_isize_extended(inode, old_size, pos);
1228 ret2 = ext4_mark_inode_dirty(handle, inode);
1233 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1234 /* if we have allocated more blocks and copied
1235 * less. We will have blocks allocated outside
1236 * inode->i_size. So truncate them
1238 ext4_orphan_add(handle, inode);
1240 ret2 = ext4_journal_stop(handle);
1243 if (pos + len > inode->i_size) {
1244 ext4_truncate_failed_write(inode);
1246 * If truncate failed early the inode might still be
1247 * on the orphan list; we need to make sure the inode
1248 * is removed from the orphan list in that case.
1251 ext4_orphan_del(NULL, inode);
1254 return ret ? ret : copied;
1258 * Reserve space for a single cluster
1260 static int ext4_da_reserve_space(struct inode *inode)
1262 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1263 struct ext4_inode_info *ei = EXT4_I(inode);
1267 * We will charge metadata quota at writeout time; this saves
1268 * us from metadata over-estimation, though we may go over by
1269 * a small amount in the end. Here we just reserve for data.
1271 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1275 spin_lock(&ei->i_block_reservation_lock);
1276 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1277 spin_unlock(&ei->i_block_reservation_lock);
1278 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1281 ei->i_reserved_data_blocks++;
1282 trace_ext4_da_reserve_space(inode);
1283 spin_unlock(&ei->i_block_reservation_lock);
1285 return 0; /* success */
1288 static void ext4_da_release_space(struct inode *inode, int to_free)
1290 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1291 struct ext4_inode_info *ei = EXT4_I(inode);
1294 return; /* Nothing to release, exit */
1296 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1298 trace_ext4_da_release_space(inode, to_free);
1299 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1301 * if there aren't enough reserved blocks, then the
1302 * counter is messed up somewhere. Since this
1303 * function is called from invalidate page, it's
1304 * harmless to return without any action.
1306 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1307 "ino %lu, to_free %d with only %d reserved "
1308 "data blocks", inode->i_ino, to_free,
1309 ei->i_reserved_data_blocks);
1311 to_free = ei->i_reserved_data_blocks;
1313 ei->i_reserved_data_blocks -= to_free;
1315 /* update fs dirty data blocks counter */
1316 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1318 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1320 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1323 static void ext4_da_page_release_reservation(struct page *page,
1324 unsigned int offset,
1325 unsigned int length)
1327 int to_release = 0, contiguous_blks = 0;
1328 struct buffer_head *head, *bh;
1329 unsigned int curr_off = 0;
1330 struct inode *inode = page->mapping->host;
1331 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1332 unsigned int stop = offset + length;
1336 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1338 head = page_buffers(page);
1341 unsigned int next_off = curr_off + bh->b_size;
1343 if (next_off > stop)
1346 if ((offset <= curr_off) && (buffer_delay(bh))) {
1349 clear_buffer_delay(bh);
1350 } else if (contiguous_blks) {
1351 lblk = page->index <<
1352 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1353 lblk += (curr_off >> inode->i_blkbits) -
1355 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1356 contiguous_blks = 0;
1358 curr_off = next_off;
1359 } while ((bh = bh->b_this_page) != head);
1361 if (contiguous_blks) {
1362 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1363 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1364 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1367 /* If we have released all the blocks belonging to a cluster, then we
1368 * need to release the reserved space for that cluster. */
1369 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1370 while (num_clusters > 0) {
1371 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1372 ((num_clusters - 1) << sbi->s_cluster_bits);
1373 if (sbi->s_cluster_ratio == 1 ||
1374 !ext4_find_delalloc_cluster(inode, lblk))
1375 ext4_da_release_space(inode, 1);
1382 * Delayed allocation stuff
1385 struct mpage_da_data {
1386 struct inode *inode;
1387 struct writeback_control *wbc;
1389 pgoff_t first_page; /* The first page to write */
1390 pgoff_t next_page; /* Current page to examine */
1391 pgoff_t last_page; /* Last page to examine */
1393 * Extent to map - this can be after first_page because that can be
1394 * fully mapped. We somewhat abuse m_flags to store whether the extent
1395 * is delalloc or unwritten.
1397 struct ext4_map_blocks map;
1398 struct ext4_io_submit io_submit; /* IO submission data */
1401 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1406 struct pagevec pvec;
1407 struct inode *inode = mpd->inode;
1408 struct address_space *mapping = inode->i_mapping;
1410 /* This is necessary when next_page == 0. */
1411 if (mpd->first_page >= mpd->next_page)
1414 index = mpd->first_page;
1415 end = mpd->next_page - 1;
1417 ext4_lblk_t start, last;
1418 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1419 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1420 ext4_es_remove_extent(inode, start, last - start + 1);
1423 pagevec_init(&pvec, 0);
1424 while (index <= end) {
1425 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1428 for (i = 0; i < nr_pages; i++) {
1429 struct page *page = pvec.pages[i];
1430 if (page->index > end)
1432 BUG_ON(!PageLocked(page));
1433 BUG_ON(PageWriteback(page));
1435 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1436 ClearPageUptodate(page);
1440 index = pvec.pages[nr_pages - 1]->index + 1;
1441 pagevec_release(&pvec);
1445 static void ext4_print_free_blocks(struct inode *inode)
1447 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1448 struct super_block *sb = inode->i_sb;
1449 struct ext4_inode_info *ei = EXT4_I(inode);
1451 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1452 EXT4_C2B(EXT4_SB(inode->i_sb),
1453 ext4_count_free_clusters(sb)));
1454 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1455 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1456 (long long) EXT4_C2B(EXT4_SB(sb),
1457 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1458 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1459 (long long) EXT4_C2B(EXT4_SB(sb),
1460 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1461 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1462 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1463 ei->i_reserved_data_blocks);
1467 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1469 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1473 * This function is grabs code from the very beginning of
1474 * ext4_map_blocks, but assumes that the caller is from delayed write
1475 * time. This function looks up the requested blocks and sets the
1476 * buffer delay bit under the protection of i_data_sem.
1478 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1479 struct ext4_map_blocks *map,
1480 struct buffer_head *bh)
1482 struct extent_status es;
1484 sector_t invalid_block = ~((sector_t) 0xffff);
1485 #ifdef ES_AGGRESSIVE_TEST
1486 struct ext4_map_blocks orig_map;
1488 memcpy(&orig_map, map, sizeof(*map));
1491 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1495 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1496 "logical block %lu\n", inode->i_ino, map->m_len,
1497 (unsigned long) map->m_lblk);
1499 /* Lookup extent status tree firstly */
1500 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1501 if (ext4_es_is_hole(&es)) {
1503 down_read(&EXT4_I(inode)->i_data_sem);
1508 * Delayed extent could be allocated by fallocate.
1509 * So we need to check it.
1511 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1512 map_bh(bh, inode->i_sb, invalid_block);
1514 set_buffer_delay(bh);
1518 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1519 retval = es.es_len - (iblock - es.es_lblk);
1520 if (retval > map->m_len)
1521 retval = map->m_len;
1522 map->m_len = retval;
1523 if (ext4_es_is_written(&es))
1524 map->m_flags |= EXT4_MAP_MAPPED;
1525 else if (ext4_es_is_unwritten(&es))
1526 map->m_flags |= EXT4_MAP_UNWRITTEN;
1530 #ifdef ES_AGGRESSIVE_TEST
1531 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1537 * Try to see if we can get the block without requesting a new
1538 * file system block.
1540 down_read(&EXT4_I(inode)->i_data_sem);
1541 if (ext4_has_inline_data(inode))
1543 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1544 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1546 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1552 * XXX: __block_prepare_write() unmaps passed block,
1556 * If the block was allocated from previously allocated cluster,
1557 * then we don't need to reserve it again. However we still need
1558 * to reserve metadata for every block we're going to write.
1560 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1561 !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1562 ret = ext4_da_reserve_space(inode);
1564 /* not enough space to reserve */
1570 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1571 ~0, EXTENT_STATUS_DELAYED);
1577 map_bh(bh, inode->i_sb, invalid_block);
1579 set_buffer_delay(bh);
1580 } else if (retval > 0) {
1582 unsigned int status;
1584 if (unlikely(retval != map->m_len)) {
1585 ext4_warning(inode->i_sb,
1586 "ES len assertion failed for inode "
1587 "%lu: retval %d != map->m_len %d",
1588 inode->i_ino, retval, map->m_len);
1592 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1593 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1594 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1595 map->m_pblk, status);
1601 up_read((&EXT4_I(inode)->i_data_sem));
1607 * This is a special get_block_t callback which is used by
1608 * ext4_da_write_begin(). It will either return mapped block or
1609 * reserve space for a single block.
1611 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1612 * We also have b_blocknr = -1 and b_bdev initialized properly
1614 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1615 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1616 * initialized properly.
1618 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1619 struct buffer_head *bh, int create)
1621 struct ext4_map_blocks map;
1624 BUG_ON(create == 0);
1625 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1627 map.m_lblk = iblock;
1631 * first, we need to know whether the block is allocated already
1632 * preallocated blocks are unmapped but should treated
1633 * the same as allocated blocks.
1635 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1639 map_bh(bh, inode->i_sb, map.m_pblk);
1640 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1642 if (buffer_unwritten(bh)) {
1643 /* A delayed write to unwritten bh should be marked
1644 * new and mapped. Mapped ensures that we don't do
1645 * get_block multiple times when we write to the same
1646 * offset and new ensures that we do proper zero out
1647 * for partial write.
1650 set_buffer_mapped(bh);
1655 static int bget_one(handle_t *handle, struct buffer_head *bh)
1661 static int bput_one(handle_t *handle, struct buffer_head *bh)
1667 static int __ext4_journalled_writepage(struct page *page,
1670 struct address_space *mapping = page->mapping;
1671 struct inode *inode = mapping->host;
1672 struct buffer_head *page_bufs = NULL;
1673 handle_t *handle = NULL;
1674 int ret = 0, err = 0;
1675 int inline_data = ext4_has_inline_data(inode);
1676 struct buffer_head *inode_bh = NULL;
1678 ClearPageChecked(page);
1681 BUG_ON(page->index != 0);
1682 BUG_ON(len > ext4_get_max_inline_size(inode));
1683 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1684 if (inode_bh == NULL)
1687 page_bufs = page_buffers(page);
1692 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1696 * We need to release the page lock before we start the
1697 * journal, so grab a reference so the page won't disappear
1698 * out from under us.
1703 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1704 ext4_writepage_trans_blocks(inode));
1705 if (IS_ERR(handle)) {
1706 ret = PTR_ERR(handle);
1708 goto out_no_pagelock;
1710 BUG_ON(!ext4_handle_valid(handle));
1714 if (page->mapping != mapping) {
1715 /* The page got truncated from under us */
1716 ext4_journal_stop(handle);
1722 BUFFER_TRACE(inode_bh, "get write access");
1723 ret = ext4_journal_get_write_access(handle, inode_bh);
1725 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1728 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1729 do_journal_get_write_access);
1731 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1736 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1737 err = ext4_journal_stop(handle);
1741 if (!ext4_has_inline_data(inode))
1742 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1744 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1753 * Note that we don't need to start a transaction unless we're journaling data
1754 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1755 * need to file the inode to the transaction's list in ordered mode because if
1756 * we are writing back data added by write(), the inode is already there and if
1757 * we are writing back data modified via mmap(), no one guarantees in which
1758 * transaction the data will hit the disk. In case we are journaling data, we
1759 * cannot start transaction directly because transaction start ranks above page
1760 * lock so we have to do some magic.
1762 * This function can get called via...
1763 * - ext4_writepages after taking page lock (have journal handle)
1764 * - journal_submit_inode_data_buffers (no journal handle)
1765 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1766 * - grab_page_cache when doing write_begin (have journal handle)
1768 * We don't do any block allocation in this function. If we have page with
1769 * multiple blocks we need to write those buffer_heads that are mapped. This
1770 * is important for mmaped based write. So if we do with blocksize 1K
1771 * truncate(f, 1024);
1772 * a = mmap(f, 0, 4096);
1774 * truncate(f, 4096);
1775 * we have in the page first buffer_head mapped via page_mkwrite call back
1776 * but other buffer_heads would be unmapped but dirty (dirty done via the
1777 * do_wp_page). So writepage should write the first block. If we modify
1778 * the mmap area beyond 1024 we will again get a page_fault and the
1779 * page_mkwrite callback will do the block allocation and mark the
1780 * buffer_heads mapped.
1782 * We redirty the page if we have any buffer_heads that is either delay or
1783 * unwritten in the page.
1785 * We can get recursively called as show below.
1787 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1790 * But since we don't do any block allocation we should not deadlock.
1791 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1793 static int ext4_writepage(struct page *page,
1794 struct writeback_control *wbc)
1799 struct buffer_head *page_bufs = NULL;
1800 struct inode *inode = page->mapping->host;
1801 struct ext4_io_submit io_submit;
1802 bool keep_towrite = false;
1804 trace_ext4_writepage(page);
1805 size = i_size_read(inode);
1806 if (page->index == size >> PAGE_CACHE_SHIFT)
1807 len = size & ~PAGE_CACHE_MASK;
1809 len = PAGE_CACHE_SIZE;
1811 page_bufs = page_buffers(page);
1813 * We cannot do block allocation or other extent handling in this
1814 * function. If there are buffers needing that, we have to redirty
1815 * the page. But we may reach here when we do a journal commit via
1816 * journal_submit_inode_data_buffers() and in that case we must write
1817 * allocated buffers to achieve data=ordered mode guarantees.
1819 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1820 ext4_bh_delay_or_unwritten)) {
1821 redirty_page_for_writepage(wbc, page);
1822 if (current->flags & PF_MEMALLOC) {
1824 * For memory cleaning there's no point in writing only
1825 * some buffers. So just bail out. Warn if we came here
1826 * from direct reclaim.
1828 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1833 keep_towrite = true;
1836 if (PageChecked(page) && ext4_should_journal_data(inode))
1838 * It's mmapped pagecache. Add buffers and journal it. There
1839 * doesn't seem much point in redirtying the page here.
1841 return __ext4_journalled_writepage(page, len);
1843 ext4_io_submit_init(&io_submit, wbc);
1844 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1845 if (!io_submit.io_end) {
1846 redirty_page_for_writepage(wbc, page);
1850 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
1851 ext4_io_submit(&io_submit);
1852 /* Drop io_end reference we got from init */
1853 ext4_put_io_end_defer(io_submit.io_end);
1857 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1860 loff_t size = i_size_read(mpd->inode);
1863 BUG_ON(page->index != mpd->first_page);
1864 if (page->index == size >> PAGE_CACHE_SHIFT)
1865 len = size & ~PAGE_CACHE_MASK;
1867 len = PAGE_CACHE_SIZE;
1868 clear_page_dirty_for_io(page);
1869 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
1871 mpd->wbc->nr_to_write--;
1877 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1880 * mballoc gives us at most this number of blocks...
1881 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1882 * The rest of mballoc seems to handle chunks up to full group size.
1884 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1887 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1889 * @mpd - extent of blocks
1890 * @lblk - logical number of the block in the file
1891 * @bh - buffer head we want to add to the extent
1893 * The function is used to collect contig. blocks in the same state. If the
1894 * buffer doesn't require mapping for writeback and we haven't started the
1895 * extent of buffers to map yet, the function returns 'true' immediately - the
1896 * caller can write the buffer right away. Otherwise the function returns true
1897 * if the block has been added to the extent, false if the block couldn't be
1900 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1901 struct buffer_head *bh)
1903 struct ext4_map_blocks *map = &mpd->map;
1905 /* Buffer that doesn't need mapping for writeback? */
1906 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1907 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1908 /* So far no extent to map => we write the buffer right away */
1909 if (map->m_len == 0)
1914 /* First block in the extent? */
1915 if (map->m_len == 0) {
1918 map->m_flags = bh->b_state & BH_FLAGS;
1922 /* Don't go larger than mballoc is willing to allocate */
1923 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1926 /* Can we merge the block to our big extent? */
1927 if (lblk == map->m_lblk + map->m_len &&
1928 (bh->b_state & BH_FLAGS) == map->m_flags) {
1936 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1938 * @mpd - extent of blocks for mapping
1939 * @head - the first buffer in the page
1940 * @bh - buffer we should start processing from
1941 * @lblk - logical number of the block in the file corresponding to @bh
1943 * Walk through page buffers from @bh upto @head (exclusive) and either submit
1944 * the page for IO if all buffers in this page were mapped and there's no
1945 * accumulated extent of buffers to map or add buffers in the page to the
1946 * extent of buffers to map. The function returns 1 if the caller can continue
1947 * by processing the next page, 0 if it should stop adding buffers to the
1948 * extent to map because we cannot extend it anymore. It can also return value
1949 * < 0 in case of error during IO submission.
1951 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1952 struct buffer_head *head,
1953 struct buffer_head *bh,
1956 struct inode *inode = mpd->inode;
1958 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1959 >> inode->i_blkbits;
1962 BUG_ON(buffer_locked(bh));
1964 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
1965 /* Found extent to map? */
1968 /* Everything mapped so far and we hit EOF */
1971 } while (lblk++, (bh = bh->b_this_page) != head);
1972 /* So far everything mapped? Submit the page for IO. */
1973 if (mpd->map.m_len == 0) {
1974 err = mpage_submit_page(mpd, head->b_page);
1978 return lblk < blocks;
1982 * mpage_map_buffers - update buffers corresponding to changed extent and
1983 * submit fully mapped pages for IO
1985 * @mpd - description of extent to map, on return next extent to map
1987 * Scan buffers corresponding to changed extent (we expect corresponding pages
1988 * to be already locked) and update buffer state according to new extent state.
1989 * We map delalloc buffers to their physical location, clear unwritten bits,
1990 * and mark buffers as uninit when we perform writes to unwritten extents
1991 * and do extent conversion after IO is finished. If the last page is not fully
1992 * mapped, we update @map to the next extent in the last page that needs
1993 * mapping. Otherwise we submit the page for IO.
1995 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
1997 struct pagevec pvec;
1999 struct inode *inode = mpd->inode;
2000 struct buffer_head *head, *bh;
2001 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2007 start = mpd->map.m_lblk >> bpp_bits;
2008 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2009 lblk = start << bpp_bits;
2010 pblock = mpd->map.m_pblk;
2012 pagevec_init(&pvec, 0);
2013 while (start <= end) {
2014 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2018 for (i = 0; i < nr_pages; i++) {
2019 struct page *page = pvec.pages[i];
2021 if (page->index > end)
2023 /* Up to 'end' pages must be contiguous */
2024 BUG_ON(page->index != start);
2025 bh = head = page_buffers(page);
2027 if (lblk < mpd->map.m_lblk)
2029 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2031 * Buffer after end of mapped extent.
2032 * Find next buffer in the page to map.
2035 mpd->map.m_flags = 0;
2037 * FIXME: If dioread_nolock supports
2038 * blocksize < pagesize, we need to make
2039 * sure we add size mapped so far to
2040 * io_end->size as the following call
2041 * can submit the page for IO.
2043 err = mpage_process_page_bufs(mpd, head,
2045 pagevec_release(&pvec);
2050 if (buffer_delay(bh)) {
2051 clear_buffer_delay(bh);
2052 bh->b_blocknr = pblock++;
2054 clear_buffer_unwritten(bh);
2055 } while (lblk++, (bh = bh->b_this_page) != head);
2058 * FIXME: This is going to break if dioread_nolock
2059 * supports blocksize < pagesize as we will try to
2060 * convert potentially unmapped parts of inode.
2062 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2063 /* Page fully mapped - let IO run! */
2064 err = mpage_submit_page(mpd, page);
2066 pagevec_release(&pvec);
2071 pagevec_release(&pvec);
2073 /* Extent fully mapped and matches with page boundary. We are done. */
2075 mpd->map.m_flags = 0;
2079 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2081 struct inode *inode = mpd->inode;
2082 struct ext4_map_blocks *map = &mpd->map;
2083 int get_blocks_flags;
2084 int err, dioread_nolock;
2086 trace_ext4_da_write_pages_extent(inode, map);
2088 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2089 * to convert an unwritten extent to be initialized (in the case
2090 * where we have written into one or more preallocated blocks). It is
2091 * possible that we're going to need more metadata blocks than
2092 * previously reserved. However we must not fail because we're in
2093 * writeback and there is nothing we can do about it so it might result
2094 * in data loss. So use reserved blocks to allocate metadata if
2097 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2098 * the blocks in question are delalloc blocks. This indicates
2099 * that the blocks and quotas has already been checked when
2100 * the data was copied into the page cache.
2102 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2103 EXT4_GET_BLOCKS_METADATA_NOFAIL;
2104 dioread_nolock = ext4_should_dioread_nolock(inode);
2106 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2107 if (map->m_flags & (1 << BH_Delay))
2108 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2110 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2113 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2114 if (!mpd->io_submit.io_end->handle &&
2115 ext4_handle_valid(handle)) {
2116 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2117 handle->h_rsv_handle = NULL;
2119 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2122 BUG_ON(map->m_len == 0);
2123 if (map->m_flags & EXT4_MAP_NEW) {
2124 struct block_device *bdev = inode->i_sb->s_bdev;
2127 for (i = 0; i < map->m_len; i++)
2128 unmap_underlying_metadata(bdev, map->m_pblk + i);
2134 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2135 * mpd->len and submit pages underlying it for IO
2137 * @handle - handle for journal operations
2138 * @mpd - extent to map
2139 * @give_up_on_write - we set this to true iff there is a fatal error and there
2140 * is no hope of writing the data. The caller should discard
2141 * dirty pages to avoid infinite loops.
2143 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2144 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2145 * them to initialized or split the described range from larger unwritten
2146 * extent. Note that we need not map all the described range since allocation
2147 * can return less blocks or the range is covered by more unwritten extents. We
2148 * cannot map more because we are limited by reserved transaction credits. On
2149 * the other hand we always make sure that the last touched page is fully
2150 * mapped so that it can be written out (and thus forward progress is
2151 * guaranteed). After mapping we submit all mapped pages for IO.
2153 static int mpage_map_and_submit_extent(handle_t *handle,
2154 struct mpage_da_data *mpd,
2155 bool *give_up_on_write)
2157 struct inode *inode = mpd->inode;
2158 struct ext4_map_blocks *map = &mpd->map;
2163 mpd->io_submit.io_end->offset =
2164 ((loff_t)map->m_lblk) << inode->i_blkbits;
2166 err = mpage_map_one_extent(handle, mpd);
2168 struct super_block *sb = inode->i_sb;
2170 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2171 goto invalidate_dirty_pages;
2173 * Let the uper layers retry transient errors.
2174 * In the case of ENOSPC, if ext4_count_free_blocks()
2175 * is non-zero, a commit should free up blocks.
2177 if ((err == -ENOMEM) ||
2178 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2180 goto update_disksize;
2183 ext4_msg(sb, KERN_CRIT,
2184 "Delayed block allocation failed for "
2185 "inode %lu at logical offset %llu with"
2186 " max blocks %u with error %d",
2188 (unsigned long long)map->m_lblk,
2189 (unsigned)map->m_len, -err);
2190 ext4_msg(sb, KERN_CRIT,
2191 "This should not happen!! Data will "
2194 ext4_print_free_blocks(inode);
2195 invalidate_dirty_pages:
2196 *give_up_on_write = true;
2201 * Update buffer state, submit mapped pages, and get us new
2204 err = mpage_map_and_submit_buffers(mpd);
2206 goto update_disksize;
2207 } while (map->m_len);
2211 * Update on-disk size after IO is submitted. Races with
2212 * truncate are avoided by checking i_size under i_data_sem.
2214 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2215 if (disksize > EXT4_I(inode)->i_disksize) {
2219 down_write(&EXT4_I(inode)->i_data_sem);
2220 i_size = i_size_read(inode);
2221 if (disksize > i_size)
2223 if (disksize > EXT4_I(inode)->i_disksize)
2224 EXT4_I(inode)->i_disksize = disksize;
2225 err2 = ext4_mark_inode_dirty(handle, inode);
2226 up_write(&EXT4_I(inode)->i_data_sem);
2228 ext4_error(inode->i_sb,
2229 "Failed to mark inode %lu dirty",
2238 * Calculate the total number of credits to reserve for one writepages
2239 * iteration. This is called from ext4_writepages(). We map an extent of
2240 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2241 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2242 * bpp - 1 blocks in bpp different extents.
2244 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2246 int bpp = ext4_journal_blocks_per_page(inode);
2248 return ext4_meta_trans_blocks(inode,
2249 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2253 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2254 * and underlying extent to map
2256 * @mpd - where to look for pages
2258 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2259 * IO immediately. When we find a page which isn't mapped we start accumulating
2260 * extent of buffers underlying these pages that needs mapping (formed by
2261 * either delayed or unwritten buffers). We also lock the pages containing
2262 * these buffers. The extent found is returned in @mpd structure (starting at
2263 * mpd->lblk with length mpd->len blocks).
2265 * Note that this function can attach bios to one io_end structure which are
2266 * neither logically nor physically contiguous. Although it may seem as an
2267 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2268 * case as we need to track IO to all buffers underlying a page in one io_end.
2270 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2272 struct address_space *mapping = mpd->inode->i_mapping;
2273 struct pagevec pvec;
2274 unsigned int nr_pages;
2275 long left = mpd->wbc->nr_to_write;
2276 pgoff_t index = mpd->first_page;
2277 pgoff_t end = mpd->last_page;
2280 int blkbits = mpd->inode->i_blkbits;
2282 struct buffer_head *head;
2284 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2285 tag = PAGECACHE_TAG_TOWRITE;
2287 tag = PAGECACHE_TAG_DIRTY;
2289 pagevec_init(&pvec, 0);
2291 mpd->next_page = index;
2292 while (index <= end) {
2293 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2294 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2298 for (i = 0; i < nr_pages; i++) {
2299 struct page *page = pvec.pages[i];
2302 * At this point, the page may be truncated or
2303 * invalidated (changing page->mapping to NULL), or
2304 * even swizzled back from swapper_space to tmpfs file
2305 * mapping. However, page->index will not change
2306 * because we have a reference on the page.
2308 if (page->index > end)
2312 * Accumulated enough dirty pages? This doesn't apply
2313 * to WB_SYNC_ALL mode. For integrity sync we have to
2314 * keep going because someone may be concurrently
2315 * dirtying pages, and we might have synced a lot of
2316 * newly appeared dirty pages, but have not synced all
2317 * of the old dirty pages.
2319 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2322 /* If we can't merge this page, we are done. */
2323 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2328 * If the page is no longer dirty, or its mapping no
2329 * longer corresponds to inode we are writing (which
2330 * means it has been truncated or invalidated), or the
2331 * page is already under writeback and we are not doing
2332 * a data integrity writeback, skip the page
2334 if (!PageDirty(page) ||
2335 (PageWriteback(page) &&
2336 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2337 unlikely(page->mapping != mapping)) {
2342 wait_on_page_writeback(page);
2343 BUG_ON(PageWriteback(page));
2345 if (mpd->map.m_len == 0)
2346 mpd->first_page = page->index;
2347 mpd->next_page = page->index + 1;
2348 /* Add all dirty buffers to mpd */
2349 lblk = ((ext4_lblk_t)page->index) <<
2350 (PAGE_CACHE_SHIFT - blkbits);
2351 head = page_buffers(page);
2352 err = mpage_process_page_bufs(mpd, head, head, lblk);
2358 pagevec_release(&pvec);
2363 pagevec_release(&pvec);
2367 static int __writepage(struct page *page, struct writeback_control *wbc,
2370 struct address_space *mapping = data;
2371 int ret = ext4_writepage(page, wbc);
2372 mapping_set_error(mapping, ret);
2376 static int ext4_writepages(struct address_space *mapping,
2377 struct writeback_control *wbc)
2379 pgoff_t writeback_index = 0;
2380 long nr_to_write = wbc->nr_to_write;
2381 int range_whole = 0;
2383 handle_t *handle = NULL;
2384 struct mpage_da_data mpd;
2385 struct inode *inode = mapping->host;
2386 int needed_blocks, rsv_blocks = 0, ret = 0;
2387 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2389 struct blk_plug plug;
2390 bool give_up_on_write = false;
2392 trace_ext4_writepages(inode, wbc);
2395 * No pages to write? This is mainly a kludge to avoid starting
2396 * a transaction for special inodes like journal inode on last iput()
2397 * because that could violate lock ordering on umount
2399 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2400 goto out_writepages;
2402 if (ext4_should_journal_data(inode)) {
2403 struct blk_plug plug;
2405 blk_start_plug(&plug);
2406 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2407 blk_finish_plug(&plug);
2408 goto out_writepages;
2412 * If the filesystem has aborted, it is read-only, so return
2413 * right away instead of dumping stack traces later on that
2414 * will obscure the real source of the problem. We test
2415 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2416 * the latter could be true if the filesystem is mounted
2417 * read-only, and in that case, ext4_writepages should
2418 * *never* be called, so if that ever happens, we would want
2421 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2423 goto out_writepages;
2426 if (ext4_should_dioread_nolock(inode)) {
2428 * We may need to convert up to one extent per block in
2429 * the page and we may dirty the inode.
2431 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2435 * If we have inline data and arrive here, it means that
2436 * we will soon create the block for the 1st page, so
2437 * we'd better clear the inline data here.
2439 if (ext4_has_inline_data(inode)) {
2440 /* Just inode will be modified... */
2441 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2442 if (IS_ERR(handle)) {
2443 ret = PTR_ERR(handle);
2444 goto out_writepages;
2446 BUG_ON(ext4_test_inode_state(inode,
2447 EXT4_STATE_MAY_INLINE_DATA));
2448 ext4_destroy_inline_data(handle, inode);
2449 ext4_journal_stop(handle);
2452 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2455 if (wbc->range_cyclic) {
2456 writeback_index = mapping->writeback_index;
2457 if (writeback_index)
2459 mpd.first_page = writeback_index;
2462 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2463 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2468 ext4_io_submit_init(&mpd.io_submit, wbc);
2470 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2471 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2473 blk_start_plug(&plug);
2474 while (!done && mpd.first_page <= mpd.last_page) {
2475 /* For each extent of pages we use new io_end */
2476 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2477 if (!mpd.io_submit.io_end) {
2483 * We have two constraints: We find one extent to map and we
2484 * must always write out whole page (makes a difference when
2485 * blocksize < pagesize) so that we don't block on IO when we
2486 * try to write out the rest of the page. Journalled mode is
2487 * not supported by delalloc.
2489 BUG_ON(ext4_should_journal_data(inode));
2490 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2492 /* start a new transaction */
2493 handle = ext4_journal_start_with_reserve(inode,
2494 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2495 if (IS_ERR(handle)) {
2496 ret = PTR_ERR(handle);
2497 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2498 "%ld pages, ino %lu; err %d", __func__,
2499 wbc->nr_to_write, inode->i_ino, ret);
2500 /* Release allocated io_end */
2501 ext4_put_io_end(mpd.io_submit.io_end);
2505 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2506 ret = mpage_prepare_extent_to_map(&mpd);
2509 ret = mpage_map_and_submit_extent(handle, &mpd,
2513 * We scanned the whole range (or exhausted
2514 * nr_to_write), submitted what was mapped and
2515 * didn't find anything needing mapping. We are
2521 ext4_journal_stop(handle);
2522 /* Submit prepared bio */
2523 ext4_io_submit(&mpd.io_submit);
2524 /* Unlock pages we didn't use */
2525 mpage_release_unused_pages(&mpd, give_up_on_write);
2526 /* Drop our io_end reference we got from init */
2527 ext4_put_io_end(mpd.io_submit.io_end);
2529 if (ret == -ENOSPC && sbi->s_journal) {
2531 * Commit the transaction which would
2532 * free blocks released in the transaction
2535 jbd2_journal_force_commit_nested(sbi->s_journal);
2539 /* Fatal error - ENOMEM, EIO... */
2543 blk_finish_plug(&plug);
2544 if (!ret && !cycled && wbc->nr_to_write > 0) {
2546 mpd.last_page = writeback_index - 1;
2552 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2554 * Set the writeback_index so that range_cyclic
2555 * mode will write it back later
2557 mapping->writeback_index = mpd.first_page;
2560 trace_ext4_writepages_result(inode, wbc, ret,
2561 nr_to_write - wbc->nr_to_write);
2565 static int ext4_nonda_switch(struct super_block *sb)
2567 s64 free_clusters, dirty_clusters;
2568 struct ext4_sb_info *sbi = EXT4_SB(sb);
2571 * switch to non delalloc mode if we are running low
2572 * on free block. The free block accounting via percpu
2573 * counters can get slightly wrong with percpu_counter_batch getting
2574 * accumulated on each CPU without updating global counters
2575 * Delalloc need an accurate free block accounting. So switch
2576 * to non delalloc when we are near to error range.
2579 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2581 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2583 * Start pushing delalloc when 1/2 of free blocks are dirty.
2585 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2586 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2588 if (2 * free_clusters < 3 * dirty_clusters ||
2589 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2591 * free block count is less than 150% of dirty blocks
2592 * or free blocks is less than watermark
2599 /* We always reserve for an inode update; the superblock could be there too */
2600 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2602 if (likely(EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
2603 EXT4_FEATURE_RO_COMPAT_LARGE_FILE)))
2606 if (pos + len <= 0x7fffffffULL)
2609 /* We might need to update the superblock to set LARGE_FILE */
2613 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2614 loff_t pos, unsigned len, unsigned flags,
2615 struct page **pagep, void **fsdata)
2617 int ret, retries = 0;
2620 struct inode *inode = mapping->host;
2623 index = pos >> PAGE_CACHE_SHIFT;
2625 if (ext4_nonda_switch(inode->i_sb)) {
2626 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2627 return ext4_write_begin(file, mapping, pos,
2628 len, flags, pagep, fsdata);
2630 *fsdata = (void *)0;
2631 trace_ext4_da_write_begin(inode, pos, len, flags);
2633 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2634 ret = ext4_da_write_inline_data_begin(mapping, inode,
2644 * grab_cache_page_write_begin() can take a long time if the
2645 * system is thrashing due to memory pressure, or if the page
2646 * is being written back. So grab it first before we start
2647 * the transaction handle. This also allows us to allocate
2648 * the page (if needed) without using GFP_NOFS.
2651 page = grab_cache_page_write_begin(mapping, index, flags);
2657 * With delayed allocation, we don't log the i_disksize update
2658 * if there is delayed block allocation. But we still need
2659 * to journalling the i_disksize update if writes to the end
2660 * of file which has an already mapped buffer.
2663 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2664 ext4_da_write_credits(inode, pos, len));
2665 if (IS_ERR(handle)) {
2666 page_cache_release(page);
2667 return PTR_ERR(handle);
2671 if (page->mapping != mapping) {
2672 /* The page got truncated from under us */
2674 page_cache_release(page);
2675 ext4_journal_stop(handle);
2678 /* In case writeback began while the page was unlocked */
2679 wait_for_stable_page(page);
2681 #ifdef CONFIG_EXT4_FS_ENCRYPTION
2682 ret = ext4_block_write_begin(page, pos, len,
2683 ext4_da_get_block_prep);
2685 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2689 ext4_journal_stop(handle);
2691 * block_write_begin may have instantiated a few blocks
2692 * outside i_size. Trim these off again. Don't need
2693 * i_size_read because we hold i_mutex.
2695 if (pos + len > inode->i_size)
2696 ext4_truncate_failed_write(inode);
2698 if (ret == -ENOSPC &&
2699 ext4_should_retry_alloc(inode->i_sb, &retries))
2702 page_cache_release(page);
2711 * Check if we should update i_disksize
2712 * when write to the end of file but not require block allocation
2714 static int ext4_da_should_update_i_disksize(struct page *page,
2715 unsigned long offset)
2717 struct buffer_head *bh;
2718 struct inode *inode = page->mapping->host;
2722 bh = page_buffers(page);
2723 idx = offset >> inode->i_blkbits;
2725 for (i = 0; i < idx; i++)
2726 bh = bh->b_this_page;
2728 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2733 static int ext4_da_write_end(struct file *file,
2734 struct address_space *mapping,
2735 loff_t pos, unsigned len, unsigned copied,
2736 struct page *page, void *fsdata)
2738 struct inode *inode = mapping->host;
2740 handle_t *handle = ext4_journal_current_handle();
2742 unsigned long start, end;
2743 int write_mode = (int)(unsigned long)fsdata;
2745 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2746 return ext4_write_end(file, mapping, pos,
2747 len, copied, page, fsdata);
2749 trace_ext4_da_write_end(inode, pos, len, copied);
2750 start = pos & (PAGE_CACHE_SIZE - 1);
2751 end = start + copied - 1;
2754 * generic_write_end() will run mark_inode_dirty() if i_size
2755 * changes. So let's piggyback the i_disksize mark_inode_dirty
2758 new_i_size = pos + copied;
2759 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2760 if (ext4_has_inline_data(inode) ||
2761 ext4_da_should_update_i_disksize(page, end)) {
2762 ext4_update_i_disksize(inode, new_i_size);
2763 /* We need to mark inode dirty even if
2764 * new_i_size is less that inode->i_size
2765 * bu greater than i_disksize.(hint delalloc)
2767 ext4_mark_inode_dirty(handle, inode);
2771 if (write_mode != CONVERT_INLINE_DATA &&
2772 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2773 ext4_has_inline_data(inode))
2774 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2777 ret2 = generic_write_end(file, mapping, pos, len, copied,
2783 ret2 = ext4_journal_stop(handle);
2787 return ret ? ret : copied;
2790 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2791 unsigned int length)
2794 * Drop reserved blocks
2796 BUG_ON(!PageLocked(page));
2797 if (!page_has_buffers(page))
2800 ext4_da_page_release_reservation(page, offset, length);
2803 ext4_invalidatepage(page, offset, length);
2809 * Force all delayed allocation blocks to be allocated for a given inode.
2811 int ext4_alloc_da_blocks(struct inode *inode)
2813 trace_ext4_alloc_da_blocks(inode);
2815 if (!EXT4_I(inode)->i_reserved_data_blocks)
2819 * We do something simple for now. The filemap_flush() will
2820 * also start triggering a write of the data blocks, which is
2821 * not strictly speaking necessary (and for users of
2822 * laptop_mode, not even desirable). However, to do otherwise
2823 * would require replicating code paths in:
2825 * ext4_writepages() ->
2826 * write_cache_pages() ---> (via passed in callback function)
2827 * __mpage_da_writepage() -->
2828 * mpage_add_bh_to_extent()
2829 * mpage_da_map_blocks()
2831 * The problem is that write_cache_pages(), located in
2832 * mm/page-writeback.c, marks pages clean in preparation for
2833 * doing I/O, which is not desirable if we're not planning on
2836 * We could call write_cache_pages(), and then redirty all of
2837 * the pages by calling redirty_page_for_writepage() but that
2838 * would be ugly in the extreme. So instead we would need to
2839 * replicate parts of the code in the above functions,
2840 * simplifying them because we wouldn't actually intend to
2841 * write out the pages, but rather only collect contiguous
2842 * logical block extents, call the multi-block allocator, and
2843 * then update the buffer heads with the block allocations.
2845 * For now, though, we'll cheat by calling filemap_flush(),
2846 * which will map the blocks, and start the I/O, but not
2847 * actually wait for the I/O to complete.
2849 return filemap_flush(inode->i_mapping);
2853 * bmap() is special. It gets used by applications such as lilo and by
2854 * the swapper to find the on-disk block of a specific piece of data.
2856 * Naturally, this is dangerous if the block concerned is still in the
2857 * journal. If somebody makes a swapfile on an ext4 data-journaling
2858 * filesystem and enables swap, then they may get a nasty shock when the
2859 * data getting swapped to that swapfile suddenly gets overwritten by
2860 * the original zero's written out previously to the journal and
2861 * awaiting writeback in the kernel's buffer cache.
2863 * So, if we see any bmap calls here on a modified, data-journaled file,
2864 * take extra steps to flush any blocks which might be in the cache.
2866 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2868 struct inode *inode = mapping->host;
2873 * We can get here for an inline file via the FIBMAP ioctl
2875 if (ext4_has_inline_data(inode))
2878 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2879 test_opt(inode->i_sb, DELALLOC)) {
2881 * With delalloc we want to sync the file
2882 * so that we can make sure we allocate
2885 filemap_write_and_wait(mapping);
2888 if (EXT4_JOURNAL(inode) &&
2889 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2891 * This is a REALLY heavyweight approach, but the use of
2892 * bmap on dirty files is expected to be extremely rare:
2893 * only if we run lilo or swapon on a freshly made file
2894 * do we expect this to happen.
2896 * (bmap requires CAP_SYS_RAWIO so this does not
2897 * represent an unprivileged user DOS attack --- we'd be
2898 * in trouble if mortal users could trigger this path at
2901 * NB. EXT4_STATE_JDATA is not set on files other than
2902 * regular files. If somebody wants to bmap a directory
2903 * or symlink and gets confused because the buffer
2904 * hasn't yet been flushed to disk, they deserve
2905 * everything they get.
2908 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2909 journal = EXT4_JOURNAL(inode);
2910 jbd2_journal_lock_updates(journal);
2911 err = jbd2_journal_flush(journal);
2912 jbd2_journal_unlock_updates(journal);
2918 return generic_block_bmap(mapping, block, ext4_get_block);
2921 static int ext4_readpage(struct file *file, struct page *page)
2924 struct inode *inode = page->mapping->host;
2926 trace_ext4_readpage(page);
2928 if (ext4_has_inline_data(inode))
2929 ret = ext4_readpage_inline(inode, page);
2932 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
2938 ext4_readpages(struct file *file, struct address_space *mapping,
2939 struct list_head *pages, unsigned nr_pages)
2941 struct inode *inode = mapping->host;
2943 /* If the file has inline data, no need to do readpages. */
2944 if (ext4_has_inline_data(inode))
2947 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
2950 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2951 unsigned int length)
2953 trace_ext4_invalidatepage(page, offset, length);
2955 /* No journalling happens on data buffers when this function is used */
2956 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2958 block_invalidatepage(page, offset, length);
2961 static int __ext4_journalled_invalidatepage(struct page *page,
2962 unsigned int offset,
2963 unsigned int length)
2965 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2967 trace_ext4_journalled_invalidatepage(page, offset, length);
2970 * If it's a full truncate we just forget about the pending dirtying
2972 if (offset == 0 && length == PAGE_CACHE_SIZE)
2973 ClearPageChecked(page);
2975 return jbd2_journal_invalidatepage(journal, page, offset, length);
2978 /* Wrapper for aops... */
2979 static void ext4_journalled_invalidatepage(struct page *page,
2980 unsigned int offset,
2981 unsigned int length)
2983 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
2986 static int ext4_releasepage(struct page *page, gfp_t wait)
2988 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2990 trace_ext4_releasepage(page);
2992 /* Page has dirty journalled data -> cannot release */
2993 if (PageChecked(page))
2996 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2998 return try_to_free_buffers(page);
3002 * ext4_get_block used when preparing for a DIO write or buffer write.
3003 * We allocate an uinitialized extent if blocks haven't been allocated.
3004 * The extent will be converted to initialized after the IO is complete.
3006 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3007 struct buffer_head *bh_result, int create)
3009 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3010 inode->i_ino, create);
3011 return _ext4_get_block(inode, iblock, bh_result,
3012 EXT4_GET_BLOCKS_IO_CREATE_EXT);
3015 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3016 struct buffer_head *bh_result, int create)
3018 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3019 inode->i_ino, create);
3020 return _ext4_get_block(inode, iblock, bh_result,
3021 EXT4_GET_BLOCKS_NO_LOCK);
3024 int ext4_get_block_dax(struct inode *inode, sector_t iblock,
3025 struct buffer_head *bh_result, int create)
3027 int flags = EXT4_GET_BLOCKS_PRE_IO | EXT4_GET_BLOCKS_UNWRIT_EXT;
3029 flags |= EXT4_GET_BLOCKS_CREATE;
3030 ext4_debug("ext4_get_block_dax: inode %lu, create flag %d\n",
3031 inode->i_ino, create);
3032 return _ext4_get_block(inode, iblock, bh_result, flags);
3035 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3036 ssize_t size, void *private)
3038 ext4_io_end_t *io_end = iocb->private;
3040 /* if not async direct IO just return */
3044 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3045 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3046 iocb->private, io_end->inode->i_ino, iocb, offset,
3049 iocb->private = NULL;
3050 io_end->offset = offset;
3051 io_end->size = size;
3052 ext4_put_io_end(io_end);
3056 * For ext4 extent files, ext4 will do direct-io write to holes,
3057 * preallocated extents, and those write extend the file, no need to
3058 * fall back to buffered IO.
3060 * For holes, we fallocate those blocks, mark them as unwritten
3061 * If those blocks were preallocated, we mark sure they are split, but
3062 * still keep the range to write as unwritten.
3064 * The unwritten extents will be converted to written when DIO is completed.
3065 * For async direct IO, since the IO may still pending when return, we
3066 * set up an end_io call back function, which will do the conversion
3067 * when async direct IO completed.
3069 * If the O_DIRECT write will extend the file then add this inode to the
3070 * orphan list. So recovery will truncate it back to the original size
3071 * if the machine crashes during the write.
3074 static ssize_t ext4_ext_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3077 struct file *file = iocb->ki_filp;
3078 struct inode *inode = file->f_mapping->host;
3080 size_t count = iov_iter_count(iter);
3082 get_block_t *get_block_func = NULL;
3084 loff_t final_size = offset + count;
3085 ext4_io_end_t *io_end = NULL;
3087 /* Use the old path for reads and writes beyond i_size. */
3088 if (iov_iter_rw(iter) != WRITE || final_size > inode->i_size)
3089 return ext4_ind_direct_IO(iocb, iter, offset);
3091 BUG_ON(iocb->private == NULL);
3094 * Make all waiters for direct IO properly wait also for extent
3095 * conversion. This also disallows race between truncate() and
3096 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3098 if (iov_iter_rw(iter) == WRITE)
3099 inode_dio_begin(inode);
3101 /* If we do a overwrite dio, i_mutex locking can be released */
3102 overwrite = *((int *)iocb->private);
3105 down_read(&EXT4_I(inode)->i_data_sem);
3106 mutex_unlock(&inode->i_mutex);
3110 * We could direct write to holes and fallocate.
3112 * Allocated blocks to fill the hole are marked as
3113 * unwritten to prevent parallel buffered read to expose
3114 * the stale data before DIO complete the data IO.
3116 * As to previously fallocated extents, ext4 get_block will
3117 * just simply mark the buffer mapped but still keep the
3118 * extents unwritten.
3120 * For non AIO case, we will convert those unwritten extents
3121 * to written after return back from blockdev_direct_IO.
3123 * For async DIO, the conversion needs to be deferred when the
3124 * IO is completed. The ext4 end_io callback function will be
3125 * called to take care of the conversion work. Here for async
3126 * case, we allocate an io_end structure to hook to the iocb.
3128 iocb->private = NULL;
3129 ext4_inode_aio_set(inode, NULL);
3130 if (!is_sync_kiocb(iocb)) {
3131 io_end = ext4_init_io_end(inode, GFP_NOFS);
3137 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3139 iocb->private = ext4_get_io_end(io_end);
3141 * we save the io structure for current async direct
3142 * IO, so that later ext4_map_blocks() could flag the
3143 * io structure whether there is a unwritten extents
3144 * needs to be converted when IO is completed.
3146 ext4_inode_aio_set(inode, io_end);
3150 get_block_func = ext4_get_block_write_nolock;
3152 get_block_func = ext4_get_block_write;
3153 dio_flags = DIO_LOCKING;
3155 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3156 BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3159 ret = dax_do_io(iocb, inode, iter, offset, get_block_func,
3160 ext4_end_io_dio, dio_flags);
3162 ret = __blockdev_direct_IO(iocb, inode,
3163 inode->i_sb->s_bdev, iter, offset,
3165 ext4_end_io_dio, NULL, dio_flags);
3168 * Put our reference to io_end. This can free the io_end structure e.g.
3169 * in sync IO case or in case of error. It can even perform extent
3170 * conversion if all bios we submitted finished before we got here.
3171 * Note that in that case iocb->private can be already set to NULL
3175 ext4_inode_aio_set(inode, NULL);
3176 ext4_put_io_end(io_end);
3178 * When no IO was submitted ext4_end_io_dio() was not
3179 * called so we have to put iocb's reference.
3181 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3182 WARN_ON(iocb->private != io_end);
3183 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3184 ext4_put_io_end(io_end);
3185 iocb->private = NULL;
3188 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3189 EXT4_STATE_DIO_UNWRITTEN)) {
3192 * for non AIO case, since the IO is already
3193 * completed, we could do the conversion right here
3195 err = ext4_convert_unwritten_extents(NULL, inode,
3199 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3203 if (iov_iter_rw(iter) == WRITE)
3204 inode_dio_end(inode);
3205 /* take i_mutex locking again if we do a ovewrite dio */
3207 up_read(&EXT4_I(inode)->i_data_sem);
3208 mutex_lock(&inode->i_mutex);
3214 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3217 struct file *file = iocb->ki_filp;
3218 struct inode *inode = file->f_mapping->host;
3219 size_t count = iov_iter_count(iter);
3222 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3223 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3228 * If we are doing data journalling we don't support O_DIRECT
3230 if (ext4_should_journal_data(inode))
3233 /* Let buffer I/O handle the inline data case. */
3234 if (ext4_has_inline_data(inode))
3237 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3238 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3239 ret = ext4_ext_direct_IO(iocb, iter, offset);
3241 ret = ext4_ind_direct_IO(iocb, iter, offset);
3242 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3247 * Pages can be marked dirty completely asynchronously from ext4's journalling
3248 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3249 * much here because ->set_page_dirty is called under VFS locks. The page is
3250 * not necessarily locked.
3252 * We cannot just dirty the page and leave attached buffers clean, because the
3253 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3254 * or jbddirty because all the journalling code will explode.
3256 * So what we do is to mark the page "pending dirty" and next time writepage
3257 * is called, propagate that into the buffers appropriately.
3259 static int ext4_journalled_set_page_dirty(struct page *page)
3261 SetPageChecked(page);
3262 return __set_page_dirty_nobuffers(page);
3265 static const struct address_space_operations ext4_aops = {
3266 .readpage = ext4_readpage,
3267 .readpages = ext4_readpages,
3268 .writepage = ext4_writepage,
3269 .writepages = ext4_writepages,
3270 .write_begin = ext4_write_begin,
3271 .write_end = ext4_write_end,
3273 .invalidatepage = ext4_invalidatepage,
3274 .releasepage = ext4_releasepage,
3275 .direct_IO = ext4_direct_IO,
3276 .migratepage = buffer_migrate_page,
3277 .is_partially_uptodate = block_is_partially_uptodate,
3278 .error_remove_page = generic_error_remove_page,
3281 static const struct address_space_operations ext4_journalled_aops = {
3282 .readpage = ext4_readpage,
3283 .readpages = ext4_readpages,
3284 .writepage = ext4_writepage,
3285 .writepages = ext4_writepages,
3286 .write_begin = ext4_write_begin,
3287 .write_end = ext4_journalled_write_end,
3288 .set_page_dirty = ext4_journalled_set_page_dirty,
3290 .invalidatepage = ext4_journalled_invalidatepage,
3291 .releasepage = ext4_releasepage,
3292 .direct_IO = ext4_direct_IO,
3293 .is_partially_uptodate = block_is_partially_uptodate,
3294 .error_remove_page = generic_error_remove_page,
3297 static const struct address_space_operations ext4_da_aops = {
3298 .readpage = ext4_readpage,
3299 .readpages = ext4_readpages,
3300 .writepage = ext4_writepage,
3301 .writepages = ext4_writepages,
3302 .write_begin = ext4_da_write_begin,
3303 .write_end = ext4_da_write_end,
3305 .invalidatepage = ext4_da_invalidatepage,
3306 .releasepage = ext4_releasepage,
3307 .direct_IO = ext4_direct_IO,
3308 .migratepage = buffer_migrate_page,
3309 .is_partially_uptodate = block_is_partially_uptodate,
3310 .error_remove_page = generic_error_remove_page,
3313 void ext4_set_aops(struct inode *inode)
3315 switch (ext4_inode_journal_mode(inode)) {
3316 case EXT4_INODE_ORDERED_DATA_MODE:
3317 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3319 case EXT4_INODE_WRITEBACK_DATA_MODE:
3320 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3322 case EXT4_INODE_JOURNAL_DATA_MODE:
3323 inode->i_mapping->a_ops = &ext4_journalled_aops;
3328 if (test_opt(inode->i_sb, DELALLOC))
3329 inode->i_mapping->a_ops = &ext4_da_aops;
3331 inode->i_mapping->a_ops = &ext4_aops;
3334 static int __ext4_block_zero_page_range(handle_t *handle,
3335 struct address_space *mapping, loff_t from, loff_t length)
3337 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3338 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3339 unsigned blocksize, pos;
3341 struct inode *inode = mapping->host;
3342 struct buffer_head *bh;
3346 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3347 mapping_gfp_mask(mapping) & ~__GFP_FS);
3351 blocksize = inode->i_sb->s_blocksize;
3353 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3355 if (!page_has_buffers(page))
3356 create_empty_buffers(page, blocksize, 0);
3358 /* Find the buffer that contains "offset" */
3359 bh = page_buffers(page);
3361 while (offset >= pos) {
3362 bh = bh->b_this_page;
3366 if (buffer_freed(bh)) {
3367 BUFFER_TRACE(bh, "freed: skip");
3370 if (!buffer_mapped(bh)) {
3371 BUFFER_TRACE(bh, "unmapped");
3372 ext4_get_block(inode, iblock, bh, 0);
3373 /* unmapped? It's a hole - nothing to do */
3374 if (!buffer_mapped(bh)) {
3375 BUFFER_TRACE(bh, "still unmapped");
3380 /* Ok, it's mapped. Make sure it's up-to-date */
3381 if (PageUptodate(page))
3382 set_buffer_uptodate(bh);
3384 if (!buffer_uptodate(bh)) {
3386 ll_rw_block(READ, 1, &bh);
3388 /* Uhhuh. Read error. Complain and punt. */
3389 if (!buffer_uptodate(bh))
3391 if (S_ISREG(inode->i_mode) &&
3392 ext4_encrypted_inode(inode)) {
3393 /* We expect the key to be set. */
3394 BUG_ON(!ext4_has_encryption_key(inode));
3395 BUG_ON(blocksize != PAGE_CACHE_SIZE);
3396 WARN_ON_ONCE(ext4_decrypt_one(inode, page));
3399 if (ext4_should_journal_data(inode)) {
3400 BUFFER_TRACE(bh, "get write access");
3401 err = ext4_journal_get_write_access(handle, bh);
3405 zero_user(page, offset, length);
3406 BUFFER_TRACE(bh, "zeroed end of block");
3408 if (ext4_should_journal_data(inode)) {
3409 err = ext4_handle_dirty_metadata(handle, inode, bh);
3412 mark_buffer_dirty(bh);
3413 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3414 err = ext4_jbd2_file_inode(handle, inode);
3419 page_cache_release(page);
3424 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3425 * starting from file offset 'from'. The range to be zero'd must
3426 * be contained with in one block. If the specified range exceeds
3427 * the end of the block it will be shortened to end of the block
3428 * that cooresponds to 'from'
3430 static int ext4_block_zero_page_range(handle_t *handle,
3431 struct address_space *mapping, loff_t from, loff_t length)
3433 struct inode *inode = mapping->host;
3434 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3435 unsigned blocksize = inode->i_sb->s_blocksize;
3436 unsigned max = blocksize - (offset & (blocksize - 1));
3439 * correct length if it does not fall between
3440 * 'from' and the end of the block
3442 if (length > max || length < 0)
3446 return dax_zero_page_range(inode, from, length, ext4_get_block);
3447 return __ext4_block_zero_page_range(handle, mapping, from, length);
3451 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3452 * up to the end of the block which corresponds to `from'.
3453 * This required during truncate. We need to physically zero the tail end
3454 * of that block so it doesn't yield old data if the file is later grown.
3456 static int ext4_block_truncate_page(handle_t *handle,
3457 struct address_space *mapping, loff_t from)
3459 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3462 struct inode *inode = mapping->host;
3464 blocksize = inode->i_sb->s_blocksize;
3465 length = blocksize - (offset & (blocksize - 1));
3467 return ext4_block_zero_page_range(handle, mapping, from, length);
3470 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3471 loff_t lstart, loff_t length)
3473 struct super_block *sb = inode->i_sb;
3474 struct address_space *mapping = inode->i_mapping;
3475 unsigned partial_start, partial_end;
3476 ext4_fsblk_t start, end;
3477 loff_t byte_end = (lstart + length - 1);
3480 partial_start = lstart & (sb->s_blocksize - 1);
3481 partial_end = byte_end & (sb->s_blocksize - 1);
3483 start = lstart >> sb->s_blocksize_bits;
3484 end = byte_end >> sb->s_blocksize_bits;
3486 /* Handle partial zero within the single block */
3488 (partial_start || (partial_end != sb->s_blocksize - 1))) {
3489 err = ext4_block_zero_page_range(handle, mapping,
3493 /* Handle partial zero out on the start of the range */
3494 if (partial_start) {
3495 err = ext4_block_zero_page_range(handle, mapping,
3496 lstart, sb->s_blocksize);
3500 /* Handle partial zero out on the end of the range */
3501 if (partial_end != sb->s_blocksize - 1)
3502 err = ext4_block_zero_page_range(handle, mapping,
3503 byte_end - partial_end,
3508 int ext4_can_truncate(struct inode *inode)
3510 if (S_ISREG(inode->i_mode))
3512 if (S_ISDIR(inode->i_mode))
3514 if (S_ISLNK(inode->i_mode))
3515 return !ext4_inode_is_fast_symlink(inode);
3520 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3521 * associated with the given offset and length
3523 * @inode: File inode
3524 * @offset: The offset where the hole will begin
3525 * @len: The length of the hole
3527 * Returns: 0 on success or negative on failure
3530 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3532 struct super_block *sb = inode->i_sb;
3533 ext4_lblk_t first_block, stop_block;
3534 struct address_space *mapping = inode->i_mapping;
3535 loff_t first_block_offset, last_block_offset;
3537 unsigned int credits;
3540 if (!S_ISREG(inode->i_mode))
3543 trace_ext4_punch_hole(inode, offset, length, 0);
3546 * Write out all dirty pages to avoid race conditions
3547 * Then release them.
3549 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3550 ret = filemap_write_and_wait_range(mapping, offset,
3551 offset + length - 1);
3556 mutex_lock(&inode->i_mutex);
3558 /* No need to punch hole beyond i_size */
3559 if (offset >= inode->i_size)
3563 * If the hole extends beyond i_size, set the hole
3564 * to end after the page that contains i_size
3566 if (offset + length > inode->i_size) {
3567 length = inode->i_size +
3568 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3572 if (offset & (sb->s_blocksize - 1) ||
3573 (offset + length) & (sb->s_blocksize - 1)) {
3575 * Attach jinode to inode for jbd2 if we do any zeroing of
3578 ret = ext4_inode_attach_jinode(inode);
3584 first_block_offset = round_up(offset, sb->s_blocksize);
3585 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3587 /* Now release the pages and zero block aligned part of pages*/
3588 if (last_block_offset > first_block_offset)
3589 truncate_pagecache_range(inode, first_block_offset,
3592 /* Wait all existing dio workers, newcomers will block on i_mutex */
3593 ext4_inode_block_unlocked_dio(inode);
3594 inode_dio_wait(inode);
3596 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3597 credits = ext4_writepage_trans_blocks(inode);
3599 credits = ext4_blocks_for_truncate(inode);
3600 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3601 if (IS_ERR(handle)) {
3602 ret = PTR_ERR(handle);
3603 ext4_std_error(sb, ret);
3607 ret = ext4_zero_partial_blocks(handle, inode, offset,
3612 first_block = (offset + sb->s_blocksize - 1) >>
3613 EXT4_BLOCK_SIZE_BITS(sb);
3614 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3616 /* If there are no blocks to remove, return now */
3617 if (first_block >= stop_block)
3620 down_write(&EXT4_I(inode)->i_data_sem);
3621 ext4_discard_preallocations(inode);
3623 ret = ext4_es_remove_extent(inode, first_block,
3624 stop_block - first_block);
3626 up_write(&EXT4_I(inode)->i_data_sem);
3630 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3631 ret = ext4_ext_remove_space(inode, first_block,
3634 ret = ext4_ind_remove_space(handle, inode, first_block,
3637 up_write(&EXT4_I(inode)->i_data_sem);
3639 ext4_handle_sync(handle);
3641 /* Now release the pages again to reduce race window */
3642 if (last_block_offset > first_block_offset)
3643 truncate_pagecache_range(inode, first_block_offset,
3646 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3647 ext4_mark_inode_dirty(handle, inode);
3649 ext4_journal_stop(handle);
3651 ext4_inode_resume_unlocked_dio(inode);
3653 mutex_unlock(&inode->i_mutex);
3657 int ext4_inode_attach_jinode(struct inode *inode)
3659 struct ext4_inode_info *ei = EXT4_I(inode);
3660 struct jbd2_inode *jinode;
3662 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3665 jinode = jbd2_alloc_inode(GFP_KERNEL);
3666 spin_lock(&inode->i_lock);
3669 spin_unlock(&inode->i_lock);
3672 ei->jinode = jinode;
3673 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3676 spin_unlock(&inode->i_lock);
3677 if (unlikely(jinode != NULL))
3678 jbd2_free_inode(jinode);
3685 * We block out ext4_get_block() block instantiations across the entire
3686 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3687 * simultaneously on behalf of the same inode.
3689 * As we work through the truncate and commit bits of it to the journal there
3690 * is one core, guiding principle: the file's tree must always be consistent on
3691 * disk. We must be able to restart the truncate after a crash.
3693 * The file's tree may be transiently inconsistent in memory (although it
3694 * probably isn't), but whenever we close off and commit a journal transaction,
3695 * the contents of (the filesystem + the journal) must be consistent and
3696 * restartable. It's pretty simple, really: bottom up, right to left (although
3697 * left-to-right works OK too).
3699 * Note that at recovery time, journal replay occurs *before* the restart of
3700 * truncate against the orphan inode list.
3702 * The committed inode has the new, desired i_size (which is the same as
3703 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3704 * that this inode's truncate did not complete and it will again call
3705 * ext4_truncate() to have another go. So there will be instantiated blocks
3706 * to the right of the truncation point in a crashed ext4 filesystem. But
3707 * that's fine - as long as they are linked from the inode, the post-crash
3708 * ext4_truncate() run will find them and release them.
3710 void ext4_truncate(struct inode *inode)
3712 struct ext4_inode_info *ei = EXT4_I(inode);
3713 unsigned int credits;
3715 struct address_space *mapping = inode->i_mapping;
3718 * There is a possibility that we're either freeing the inode
3719 * or it's a completely new inode. In those cases we might not
3720 * have i_mutex locked because it's not necessary.
3722 if (!(inode->i_state & (I_NEW|I_FREEING)))
3723 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3724 trace_ext4_truncate_enter(inode);
3726 if (!ext4_can_truncate(inode))
3729 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3731 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3732 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3734 if (ext4_has_inline_data(inode)) {
3737 ext4_inline_data_truncate(inode, &has_inline);
3742 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3743 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3744 if (ext4_inode_attach_jinode(inode) < 0)
3748 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3749 credits = ext4_writepage_trans_blocks(inode);
3751 credits = ext4_blocks_for_truncate(inode);
3753 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3754 if (IS_ERR(handle)) {
3755 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3759 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3760 ext4_block_truncate_page(handle, mapping, inode->i_size);
3763 * We add the inode to the orphan list, so that if this
3764 * truncate spans multiple transactions, and we crash, we will
3765 * resume the truncate when the filesystem recovers. It also
3766 * marks the inode dirty, to catch the new size.
3768 * Implication: the file must always be in a sane, consistent
3769 * truncatable state while each transaction commits.
3771 if (ext4_orphan_add(handle, inode))
3774 down_write(&EXT4_I(inode)->i_data_sem);
3776 ext4_discard_preallocations(inode);
3778 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3779 ext4_ext_truncate(handle, inode);
3781 ext4_ind_truncate(handle, inode);
3783 up_write(&ei->i_data_sem);
3786 ext4_handle_sync(handle);
3790 * If this was a simple ftruncate() and the file will remain alive,
3791 * then we need to clear up the orphan record which we created above.
3792 * However, if this was a real unlink then we were called by
3793 * ext4_evict_inode(), and we allow that function to clean up the
3794 * orphan info for us.
3797 ext4_orphan_del(handle, inode);
3799 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3800 ext4_mark_inode_dirty(handle, inode);
3801 ext4_journal_stop(handle);
3803 trace_ext4_truncate_exit(inode);
3807 * ext4_get_inode_loc returns with an extra refcount against the inode's
3808 * underlying buffer_head on success. If 'in_mem' is true, we have all
3809 * data in memory that is needed to recreate the on-disk version of this
3812 static int __ext4_get_inode_loc(struct inode *inode,
3813 struct ext4_iloc *iloc, int in_mem)
3815 struct ext4_group_desc *gdp;
3816 struct buffer_head *bh;
3817 struct super_block *sb = inode->i_sb;
3819 int inodes_per_block, inode_offset;
3822 if (!ext4_valid_inum(sb, inode->i_ino))
3825 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3826 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3831 * Figure out the offset within the block group inode table
3833 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3834 inode_offset = ((inode->i_ino - 1) %
3835 EXT4_INODES_PER_GROUP(sb));
3836 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3837 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3839 bh = sb_getblk(sb, block);
3842 if (!buffer_uptodate(bh)) {
3846 * If the buffer has the write error flag, we have failed
3847 * to write out another inode in the same block. In this
3848 * case, we don't have to read the block because we may
3849 * read the old inode data successfully.
3851 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3852 set_buffer_uptodate(bh);
3854 if (buffer_uptodate(bh)) {
3855 /* someone brought it uptodate while we waited */
3861 * If we have all information of the inode in memory and this
3862 * is the only valid inode in the block, we need not read the
3866 struct buffer_head *bitmap_bh;
3869 start = inode_offset & ~(inodes_per_block - 1);
3871 /* Is the inode bitmap in cache? */
3872 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3873 if (unlikely(!bitmap_bh))
3877 * If the inode bitmap isn't in cache then the
3878 * optimisation may end up performing two reads instead
3879 * of one, so skip it.
3881 if (!buffer_uptodate(bitmap_bh)) {
3885 for (i = start; i < start + inodes_per_block; i++) {
3886 if (i == inode_offset)
3888 if (ext4_test_bit(i, bitmap_bh->b_data))
3892 if (i == start + inodes_per_block) {
3893 /* all other inodes are free, so skip I/O */
3894 memset(bh->b_data, 0, bh->b_size);
3895 set_buffer_uptodate(bh);
3903 * If we need to do any I/O, try to pre-readahead extra
3904 * blocks from the inode table.
3906 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3907 ext4_fsblk_t b, end, table;
3909 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3911 table = ext4_inode_table(sb, gdp);
3912 /* s_inode_readahead_blks is always a power of 2 */
3913 b = block & ~((ext4_fsblk_t) ra_blks - 1);
3917 num = EXT4_INODES_PER_GROUP(sb);
3918 if (ext4_has_group_desc_csum(sb))
3919 num -= ext4_itable_unused_count(sb, gdp);
3920 table += num / inodes_per_block;
3924 sb_breadahead(sb, b++);
3928 * There are other valid inodes in the buffer, this inode
3929 * has in-inode xattrs, or we don't have this inode in memory.
3930 * Read the block from disk.
3932 trace_ext4_load_inode(inode);
3934 bh->b_end_io = end_buffer_read_sync;
3935 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3937 if (!buffer_uptodate(bh)) {
3938 EXT4_ERROR_INODE_BLOCK(inode, block,
3939 "unable to read itable block");
3949 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3951 /* We have all inode data except xattrs in memory here. */
3952 return __ext4_get_inode_loc(inode, iloc,
3953 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3956 void ext4_set_inode_flags(struct inode *inode)
3958 unsigned int flags = EXT4_I(inode)->i_flags;
3959 unsigned int new_fl = 0;
3961 if (flags & EXT4_SYNC_FL)
3963 if (flags & EXT4_APPEND_FL)
3965 if (flags & EXT4_IMMUTABLE_FL)
3966 new_fl |= S_IMMUTABLE;
3967 if (flags & EXT4_NOATIME_FL)
3968 new_fl |= S_NOATIME;
3969 if (flags & EXT4_DIRSYNC_FL)
3970 new_fl |= S_DIRSYNC;
3971 if (test_opt(inode->i_sb, DAX))
3973 inode_set_flags(inode, new_fl,
3974 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
3977 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3978 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3980 unsigned int vfs_fl;
3981 unsigned long old_fl, new_fl;
3984 vfs_fl = ei->vfs_inode.i_flags;
3985 old_fl = ei->i_flags;
3986 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3987 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3989 if (vfs_fl & S_SYNC)
3990 new_fl |= EXT4_SYNC_FL;
3991 if (vfs_fl & S_APPEND)
3992 new_fl |= EXT4_APPEND_FL;
3993 if (vfs_fl & S_IMMUTABLE)
3994 new_fl |= EXT4_IMMUTABLE_FL;
3995 if (vfs_fl & S_NOATIME)
3996 new_fl |= EXT4_NOATIME_FL;
3997 if (vfs_fl & S_DIRSYNC)
3998 new_fl |= EXT4_DIRSYNC_FL;
3999 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4002 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4003 struct ext4_inode_info *ei)
4006 struct inode *inode = &(ei->vfs_inode);
4007 struct super_block *sb = inode->i_sb;
4009 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4010 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4011 /* we are using combined 48 bit field */
4012 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4013 le32_to_cpu(raw_inode->i_blocks_lo);
4014 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4015 /* i_blocks represent file system block size */
4016 return i_blocks << (inode->i_blkbits - 9);
4021 return le32_to_cpu(raw_inode->i_blocks_lo);
4025 static inline void ext4_iget_extra_inode(struct inode *inode,
4026 struct ext4_inode *raw_inode,
4027 struct ext4_inode_info *ei)
4029 __le32 *magic = (void *)raw_inode +
4030 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4031 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4032 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4033 ext4_find_inline_data_nolock(inode);
4035 EXT4_I(inode)->i_inline_off = 0;
4038 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4040 struct ext4_iloc iloc;
4041 struct ext4_inode *raw_inode;
4042 struct ext4_inode_info *ei;
4043 struct inode *inode;
4044 journal_t *journal = EXT4_SB(sb)->s_journal;
4050 inode = iget_locked(sb, ino);
4052 return ERR_PTR(-ENOMEM);
4053 if (!(inode->i_state & I_NEW))
4059 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4062 raw_inode = ext4_raw_inode(&iloc);
4064 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4065 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4066 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4067 EXT4_INODE_SIZE(inode->i_sb)) {
4068 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4069 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4070 EXT4_INODE_SIZE(inode->i_sb));
4075 ei->i_extra_isize = 0;
4077 /* Precompute checksum seed for inode metadata */
4078 if (ext4_has_metadata_csum(sb)) {
4079 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4081 __le32 inum = cpu_to_le32(inode->i_ino);
4082 __le32 gen = raw_inode->i_generation;
4083 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4085 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4089 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4090 EXT4_ERROR_INODE(inode, "checksum invalid");
4095 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4096 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4097 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4098 if (!(test_opt(inode->i_sb, NO_UID32))) {
4099 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4100 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4102 i_uid_write(inode, i_uid);
4103 i_gid_write(inode, i_gid);
4104 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4106 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4107 ei->i_inline_off = 0;
4108 ei->i_dir_start_lookup = 0;
4109 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4110 /* We now have enough fields to check if the inode was active or not.
4111 * This is needed because nfsd might try to access dead inodes
4112 * the test is that same one that e2fsck uses
4113 * NeilBrown 1999oct15
4115 if (inode->i_nlink == 0) {
4116 if ((inode->i_mode == 0 ||
4117 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4118 ino != EXT4_BOOT_LOADER_INO) {
4119 /* this inode is deleted */
4123 /* The only unlinked inodes we let through here have
4124 * valid i_mode and are being read by the orphan
4125 * recovery code: that's fine, we're about to complete
4126 * the process of deleting those.
4127 * OR it is the EXT4_BOOT_LOADER_INO which is
4128 * not initialized on a new filesystem. */
4130 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4131 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4132 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4133 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4135 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4136 inode->i_size = ext4_isize(raw_inode);
4137 ei->i_disksize = inode->i_size;
4139 ei->i_reserved_quota = 0;
4141 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4142 ei->i_block_group = iloc.block_group;
4143 ei->i_last_alloc_group = ~0;
4145 * NOTE! The in-memory inode i_data array is in little-endian order
4146 * even on big-endian machines: we do NOT byteswap the block numbers!
4148 for (block = 0; block < EXT4_N_BLOCKS; block++)
4149 ei->i_data[block] = raw_inode->i_block[block];
4150 INIT_LIST_HEAD(&ei->i_orphan);
4153 * Set transaction id's of transactions that have to be committed
4154 * to finish f[data]sync. We set them to currently running transaction
4155 * as we cannot be sure that the inode or some of its metadata isn't
4156 * part of the transaction - the inode could have been reclaimed and
4157 * now it is reread from disk.
4160 transaction_t *transaction;
4163 read_lock(&journal->j_state_lock);
4164 if (journal->j_running_transaction)
4165 transaction = journal->j_running_transaction;
4167 transaction = journal->j_committing_transaction;
4169 tid = transaction->t_tid;
4171 tid = journal->j_commit_sequence;
4172 read_unlock(&journal->j_state_lock);
4173 ei->i_sync_tid = tid;
4174 ei->i_datasync_tid = tid;
4177 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4178 if (ei->i_extra_isize == 0) {
4179 /* The extra space is currently unused. Use it. */
4180 ei->i_extra_isize = sizeof(struct ext4_inode) -
4181 EXT4_GOOD_OLD_INODE_SIZE;
4183 ext4_iget_extra_inode(inode, raw_inode, ei);
4187 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4188 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4189 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4190 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4192 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4193 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4194 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4195 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4197 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4202 if (ei->i_file_acl &&
4203 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4204 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4208 } else if (!ext4_has_inline_data(inode)) {
4209 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4210 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4211 (S_ISLNK(inode->i_mode) &&
4212 !ext4_inode_is_fast_symlink(inode))))
4213 /* Validate extent which is part of inode */
4214 ret = ext4_ext_check_inode(inode);
4215 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4216 (S_ISLNK(inode->i_mode) &&
4217 !ext4_inode_is_fast_symlink(inode))) {
4218 /* Validate block references which are part of inode */
4219 ret = ext4_ind_check_inode(inode);
4225 if (S_ISREG(inode->i_mode)) {
4226 inode->i_op = &ext4_file_inode_operations;
4227 inode->i_fop = &ext4_file_operations;
4228 ext4_set_aops(inode);
4229 } else if (S_ISDIR(inode->i_mode)) {
4230 inode->i_op = &ext4_dir_inode_operations;
4231 inode->i_fop = &ext4_dir_operations;
4232 } else if (S_ISLNK(inode->i_mode)) {
4233 if (ext4_encrypted_inode(inode)) {
4234 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4235 ext4_set_aops(inode);
4236 } else if (ext4_inode_is_fast_symlink(inode)) {
4237 inode->i_link = (char *)ei->i_data;
4238 inode->i_op = &ext4_fast_symlink_inode_operations;
4239 nd_terminate_link(ei->i_data, inode->i_size,
4240 sizeof(ei->i_data) - 1);
4242 inode->i_op = &ext4_symlink_inode_operations;
4243 ext4_set_aops(inode);
4245 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4246 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4247 inode->i_op = &ext4_special_inode_operations;
4248 if (raw_inode->i_block[0])
4249 init_special_inode(inode, inode->i_mode,
4250 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4252 init_special_inode(inode, inode->i_mode,
4253 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4254 } else if (ino == EXT4_BOOT_LOADER_INO) {
4255 make_bad_inode(inode);
4258 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4262 ext4_set_inode_flags(inode);
4263 unlock_new_inode(inode);
4269 return ERR_PTR(ret);
4272 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4274 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4275 return ERR_PTR(-EIO);
4276 return ext4_iget(sb, ino);
4279 static int ext4_inode_blocks_set(handle_t *handle,
4280 struct ext4_inode *raw_inode,
4281 struct ext4_inode_info *ei)
4283 struct inode *inode = &(ei->vfs_inode);
4284 u64 i_blocks = inode->i_blocks;
4285 struct super_block *sb = inode->i_sb;
4287 if (i_blocks <= ~0U) {
4289 * i_blocks can be represented in a 32 bit variable
4290 * as multiple of 512 bytes
4292 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4293 raw_inode->i_blocks_high = 0;
4294 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4297 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4300 if (i_blocks <= 0xffffffffffffULL) {
4302 * i_blocks can be represented in a 48 bit variable
4303 * as multiple of 512 bytes
4305 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4306 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4307 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4309 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4310 /* i_block is stored in file system block size */
4311 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4312 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4313 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4318 struct other_inode {
4319 unsigned long orig_ino;
4320 struct ext4_inode *raw_inode;
4323 static int other_inode_match(struct inode * inode, unsigned long ino,
4326 struct other_inode *oi = (struct other_inode *) data;
4328 if ((inode->i_ino != ino) ||
4329 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4330 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4331 ((inode->i_state & I_DIRTY_TIME) == 0))
4333 spin_lock(&inode->i_lock);
4334 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4335 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4336 (inode->i_state & I_DIRTY_TIME)) {
4337 struct ext4_inode_info *ei = EXT4_I(inode);
4339 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4340 spin_unlock(&inode->i_lock);
4342 spin_lock(&ei->i_raw_lock);
4343 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4344 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4345 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4346 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4347 spin_unlock(&ei->i_raw_lock);
4348 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4351 spin_unlock(&inode->i_lock);
4356 * Opportunistically update the other time fields for other inodes in
4357 * the same inode table block.
4359 static void ext4_update_other_inodes_time(struct super_block *sb,
4360 unsigned long orig_ino, char *buf)
4362 struct other_inode oi;
4364 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4365 int inode_size = EXT4_INODE_SIZE(sb);
4367 oi.orig_ino = orig_ino;
4369 * Calculate the first inode in the inode table block. Inode
4370 * numbers are one-based. That is, the first inode in a block
4371 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4373 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4374 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4375 if (ino == orig_ino)
4377 oi.raw_inode = (struct ext4_inode *) buf;
4378 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4383 * Post the struct inode info into an on-disk inode location in the
4384 * buffer-cache. This gobbles the caller's reference to the
4385 * buffer_head in the inode location struct.
4387 * The caller must have write access to iloc->bh.
4389 static int ext4_do_update_inode(handle_t *handle,
4390 struct inode *inode,
4391 struct ext4_iloc *iloc)
4393 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4394 struct ext4_inode_info *ei = EXT4_I(inode);
4395 struct buffer_head *bh = iloc->bh;
4396 struct super_block *sb = inode->i_sb;
4397 int err = 0, rc, block;
4398 int need_datasync = 0, set_large_file = 0;
4402 spin_lock(&ei->i_raw_lock);
4404 /* For fields not tracked in the in-memory inode,
4405 * initialise them to zero for new inodes. */
4406 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4407 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4409 ext4_get_inode_flags(ei);
4410 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4411 i_uid = i_uid_read(inode);
4412 i_gid = i_gid_read(inode);
4413 if (!(test_opt(inode->i_sb, NO_UID32))) {
4414 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4415 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4417 * Fix up interoperability with old kernels. Otherwise, old inodes get
4418 * re-used with the upper 16 bits of the uid/gid intact
4421 raw_inode->i_uid_high =
4422 cpu_to_le16(high_16_bits(i_uid));
4423 raw_inode->i_gid_high =
4424 cpu_to_le16(high_16_bits(i_gid));
4426 raw_inode->i_uid_high = 0;
4427 raw_inode->i_gid_high = 0;
4430 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4431 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4432 raw_inode->i_uid_high = 0;
4433 raw_inode->i_gid_high = 0;
4435 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4437 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4438 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4439 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4440 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4442 err = ext4_inode_blocks_set(handle, raw_inode, ei);
4444 spin_unlock(&ei->i_raw_lock);
4447 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4448 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4449 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4450 raw_inode->i_file_acl_high =
4451 cpu_to_le16(ei->i_file_acl >> 32);
4452 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4453 if (ei->i_disksize != ext4_isize(raw_inode)) {
4454 ext4_isize_set(raw_inode, ei->i_disksize);
4457 if (ei->i_disksize > 0x7fffffffULL) {
4458 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4459 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4460 EXT4_SB(sb)->s_es->s_rev_level ==
4461 cpu_to_le32(EXT4_GOOD_OLD_REV))
4464 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4465 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4466 if (old_valid_dev(inode->i_rdev)) {
4467 raw_inode->i_block[0] =
4468 cpu_to_le32(old_encode_dev(inode->i_rdev));
4469 raw_inode->i_block[1] = 0;
4471 raw_inode->i_block[0] = 0;
4472 raw_inode->i_block[1] =
4473 cpu_to_le32(new_encode_dev(inode->i_rdev));
4474 raw_inode->i_block[2] = 0;
4476 } else if (!ext4_has_inline_data(inode)) {
4477 for (block = 0; block < EXT4_N_BLOCKS; block++)
4478 raw_inode->i_block[block] = ei->i_data[block];
4481 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4482 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4483 if (ei->i_extra_isize) {
4484 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4485 raw_inode->i_version_hi =
4486 cpu_to_le32(inode->i_version >> 32);
4487 raw_inode->i_extra_isize =
4488 cpu_to_le16(ei->i_extra_isize);
4491 ext4_inode_csum_set(inode, raw_inode, ei);
4492 spin_unlock(&ei->i_raw_lock);
4493 if (inode->i_sb->s_flags & MS_LAZYTIME)
4494 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4497 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4498 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4501 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4502 if (set_large_file) {
4503 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4504 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4507 ext4_update_dynamic_rev(sb);
4508 EXT4_SET_RO_COMPAT_FEATURE(sb,
4509 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4510 ext4_handle_sync(handle);
4511 err = ext4_handle_dirty_super(handle, sb);
4513 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4516 ext4_std_error(inode->i_sb, err);
4521 * ext4_write_inode()
4523 * We are called from a few places:
4525 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4526 * Here, there will be no transaction running. We wait for any running
4527 * transaction to commit.
4529 * - Within flush work (sys_sync(), kupdate and such).
4530 * We wait on commit, if told to.
4532 * - Within iput_final() -> write_inode_now()
4533 * We wait on commit, if told to.
4535 * In all cases it is actually safe for us to return without doing anything,
4536 * because the inode has been copied into a raw inode buffer in
4537 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
4540 * Note that we are absolutely dependent upon all inode dirtiers doing the
4541 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4542 * which we are interested.
4544 * It would be a bug for them to not do this. The code:
4546 * mark_inode_dirty(inode)
4548 * inode->i_size = expr;
4550 * is in error because write_inode() could occur while `stuff()' is running,
4551 * and the new i_size will be lost. Plus the inode will no longer be on the
4552 * superblock's dirty inode list.
4554 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4558 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4561 if (EXT4_SB(inode->i_sb)->s_journal) {
4562 if (ext4_journal_current_handle()) {
4563 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4569 * No need to force transaction in WB_SYNC_NONE mode. Also
4570 * ext4_sync_fs() will force the commit after everything is
4573 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4576 err = ext4_force_commit(inode->i_sb);
4578 struct ext4_iloc iloc;
4580 err = __ext4_get_inode_loc(inode, &iloc, 0);
4584 * sync(2) will flush the whole buffer cache. No need to do
4585 * it here separately for each inode.
4587 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4588 sync_dirty_buffer(iloc.bh);
4589 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4590 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4591 "IO error syncing inode");
4600 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4601 * buffers that are attached to a page stradding i_size and are undergoing
4602 * commit. In that case we have to wait for commit to finish and try again.
4604 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4608 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4609 tid_t commit_tid = 0;
4612 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4614 * All buffers in the last page remain valid? Then there's nothing to
4615 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4618 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4621 page = find_lock_page(inode->i_mapping,
4622 inode->i_size >> PAGE_CACHE_SHIFT);
4625 ret = __ext4_journalled_invalidatepage(page, offset,
4626 PAGE_CACHE_SIZE - offset);
4628 page_cache_release(page);
4632 read_lock(&journal->j_state_lock);
4633 if (journal->j_committing_transaction)
4634 commit_tid = journal->j_committing_transaction->t_tid;
4635 read_unlock(&journal->j_state_lock);
4637 jbd2_log_wait_commit(journal, commit_tid);
4644 * Called from notify_change.
4646 * We want to trap VFS attempts to truncate the file as soon as
4647 * possible. In particular, we want to make sure that when the VFS
4648 * shrinks i_size, we put the inode on the orphan list and modify
4649 * i_disksize immediately, so that during the subsequent flushing of
4650 * dirty pages and freeing of disk blocks, we can guarantee that any
4651 * commit will leave the blocks being flushed in an unused state on
4652 * disk. (On recovery, the inode will get truncated and the blocks will
4653 * be freed, so we have a strong guarantee that no future commit will
4654 * leave these blocks visible to the user.)
4656 * Another thing we have to assure is that if we are in ordered mode
4657 * and inode is still attached to the committing transaction, we must
4658 * we start writeout of all the dirty pages which are being truncated.
4659 * This way we are sure that all the data written in the previous
4660 * transaction are already on disk (truncate waits for pages under
4663 * Called with inode->i_mutex down.
4665 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4667 struct inode *inode = d_inode(dentry);
4670 const unsigned int ia_valid = attr->ia_valid;
4672 error = inode_change_ok(inode, attr);
4676 if (is_quota_modification(inode, attr)) {
4677 error = dquot_initialize(inode);
4681 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4682 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4685 /* (user+group)*(old+new) structure, inode write (sb,
4686 * inode block, ? - but truncate inode update has it) */
4687 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4688 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4689 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4690 if (IS_ERR(handle)) {
4691 error = PTR_ERR(handle);
4694 error = dquot_transfer(inode, attr);
4696 ext4_journal_stop(handle);
4699 /* Update corresponding info in inode so that everything is in
4700 * one transaction */
4701 if (attr->ia_valid & ATTR_UID)
4702 inode->i_uid = attr->ia_uid;
4703 if (attr->ia_valid & ATTR_GID)
4704 inode->i_gid = attr->ia_gid;
4705 error = ext4_mark_inode_dirty(handle, inode);
4706 ext4_journal_stop(handle);
4709 if (attr->ia_valid & ATTR_SIZE) {
4711 loff_t oldsize = inode->i_size;
4712 int shrink = (attr->ia_size <= inode->i_size);
4714 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4715 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4717 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4720 if (!S_ISREG(inode->i_mode))
4723 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4724 inode_inc_iversion(inode);
4726 if (ext4_should_order_data(inode) &&
4727 (attr->ia_size < inode->i_size)) {
4728 error = ext4_begin_ordered_truncate(inode,
4733 if (attr->ia_size != inode->i_size) {
4734 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4735 if (IS_ERR(handle)) {
4736 error = PTR_ERR(handle);
4739 if (ext4_handle_valid(handle) && shrink) {
4740 error = ext4_orphan_add(handle, inode);
4744 * Update c/mtime on truncate up, ext4_truncate() will
4745 * update c/mtime in shrink case below
4748 inode->i_mtime = ext4_current_time(inode);
4749 inode->i_ctime = inode->i_mtime;
4751 down_write(&EXT4_I(inode)->i_data_sem);
4752 EXT4_I(inode)->i_disksize = attr->ia_size;
4753 rc = ext4_mark_inode_dirty(handle, inode);
4757 * We have to update i_size under i_data_sem together
4758 * with i_disksize to avoid races with writeback code
4759 * running ext4_wb_update_i_disksize().
4762 i_size_write(inode, attr->ia_size);
4763 up_write(&EXT4_I(inode)->i_data_sem);
4764 ext4_journal_stop(handle);
4767 ext4_orphan_del(NULL, inode);
4772 pagecache_isize_extended(inode, oldsize, inode->i_size);
4775 * Blocks are going to be removed from the inode. Wait
4776 * for dio in flight. Temporarily disable
4777 * dioread_nolock to prevent livelock.
4780 if (!ext4_should_journal_data(inode)) {
4781 ext4_inode_block_unlocked_dio(inode);
4782 inode_dio_wait(inode);
4783 ext4_inode_resume_unlocked_dio(inode);
4785 ext4_wait_for_tail_page_commit(inode);
4788 * Truncate pagecache after we've waited for commit
4789 * in data=journal mode to make pages freeable.
4791 truncate_pagecache(inode, inode->i_size);
4793 ext4_truncate(inode);
4797 setattr_copy(inode, attr);
4798 mark_inode_dirty(inode);
4802 * If the call to ext4_truncate failed to get a transaction handle at
4803 * all, we need to clean up the in-core orphan list manually.
4805 if (orphan && inode->i_nlink)
4806 ext4_orphan_del(NULL, inode);
4808 if (!rc && (ia_valid & ATTR_MODE))
4809 rc = posix_acl_chmod(inode, inode->i_mode);
4812 ext4_std_error(inode->i_sb, error);
4818 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4821 struct inode *inode;
4822 unsigned long long delalloc_blocks;
4824 inode = d_inode(dentry);
4825 generic_fillattr(inode, stat);
4828 * If there is inline data in the inode, the inode will normally not
4829 * have data blocks allocated (it may have an external xattr block).
4830 * Report at least one sector for such files, so tools like tar, rsync,
4831 * others doen't incorrectly think the file is completely sparse.
4833 if (unlikely(ext4_has_inline_data(inode)))
4834 stat->blocks += (stat->size + 511) >> 9;
4837 * We can't update i_blocks if the block allocation is delayed
4838 * otherwise in the case of system crash before the real block
4839 * allocation is done, we will have i_blocks inconsistent with
4840 * on-disk file blocks.
4841 * We always keep i_blocks updated together with real
4842 * allocation. But to not confuse with user, stat
4843 * will return the blocks that include the delayed allocation
4844 * blocks for this file.
4846 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4847 EXT4_I(inode)->i_reserved_data_blocks);
4848 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
4852 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4855 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4856 return ext4_ind_trans_blocks(inode, lblocks);
4857 return ext4_ext_index_trans_blocks(inode, pextents);
4861 * Account for index blocks, block groups bitmaps and block group
4862 * descriptor blocks if modify datablocks and index blocks
4863 * worse case, the indexs blocks spread over different block groups
4865 * If datablocks are discontiguous, they are possible to spread over
4866 * different block groups too. If they are contiguous, with flexbg,
4867 * they could still across block group boundary.
4869 * Also account for superblock, inode, quota and xattr blocks
4871 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4874 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4880 * How many index blocks need to touch to map @lblocks logical blocks
4881 * to @pextents physical extents?
4883 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4888 * Now let's see how many group bitmaps and group descriptors need
4891 groups = idxblocks + pextents;
4893 if (groups > ngroups)
4895 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4896 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4898 /* bitmaps and block group descriptor blocks */
4899 ret += groups + gdpblocks;
4901 /* Blocks for super block, inode, quota and xattr blocks */
4902 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4908 * Calculate the total number of credits to reserve to fit
4909 * the modification of a single pages into a single transaction,
4910 * which may include multiple chunks of block allocations.
4912 * This could be called via ext4_write_begin()
4914 * We need to consider the worse case, when
4915 * one new block per extent.
4917 int ext4_writepage_trans_blocks(struct inode *inode)
4919 int bpp = ext4_journal_blocks_per_page(inode);
4922 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4924 /* Account for data blocks for journalled mode */
4925 if (ext4_should_journal_data(inode))
4931 * Calculate the journal credits for a chunk of data modification.
4933 * This is called from DIO, fallocate or whoever calling
4934 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4936 * journal buffers for data blocks are not included here, as DIO
4937 * and fallocate do no need to journal data buffers.
4939 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4941 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4945 * The caller must have previously called ext4_reserve_inode_write().
4946 * Give this, we know that the caller already has write access to iloc->bh.
4948 int ext4_mark_iloc_dirty(handle_t *handle,
4949 struct inode *inode, struct ext4_iloc *iloc)
4953 if (IS_I_VERSION(inode))
4954 inode_inc_iversion(inode);
4956 /* the do_update_inode consumes one bh->b_count */
4959 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4960 err = ext4_do_update_inode(handle, inode, iloc);
4966 * On success, We end up with an outstanding reference count against
4967 * iloc->bh. This _must_ be cleaned up later.
4971 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4972 struct ext4_iloc *iloc)
4976 err = ext4_get_inode_loc(inode, iloc);
4978 BUFFER_TRACE(iloc->bh, "get_write_access");
4979 err = ext4_journal_get_write_access(handle, iloc->bh);
4985 ext4_std_error(inode->i_sb, err);
4990 * Expand an inode by new_extra_isize bytes.
4991 * Returns 0 on success or negative error number on failure.
4993 static int ext4_expand_extra_isize(struct inode *inode,
4994 unsigned int new_extra_isize,
4995 struct ext4_iloc iloc,
4998 struct ext4_inode *raw_inode;
4999 struct ext4_xattr_ibody_header *header;
5001 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5004 raw_inode = ext4_raw_inode(&iloc);
5006 header = IHDR(inode, raw_inode);
5008 /* No extended attributes present */
5009 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5010 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5011 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5013 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5017 /* try to expand with EAs present */
5018 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5023 * What we do here is to mark the in-core inode as clean with respect to inode
5024 * dirtiness (it may still be data-dirty).
5025 * This means that the in-core inode may be reaped by prune_icache
5026 * without having to perform any I/O. This is a very good thing,
5027 * because *any* task may call prune_icache - even ones which
5028 * have a transaction open against a different journal.
5030 * Is this cheating? Not really. Sure, we haven't written the
5031 * inode out, but prune_icache isn't a user-visible syncing function.
5032 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5033 * we start and wait on commits.
5035 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5037 struct ext4_iloc iloc;
5038 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5039 static unsigned int mnt_count;
5043 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5044 err = ext4_reserve_inode_write(handle, inode, &iloc);
5045 if (ext4_handle_valid(handle) &&
5046 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5047 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5049 * We need extra buffer credits since we may write into EA block
5050 * with this same handle. If journal_extend fails, then it will
5051 * only result in a minor loss of functionality for that inode.
5052 * If this is felt to be critical, then e2fsck should be run to
5053 * force a large enough s_min_extra_isize.
5055 if ((jbd2_journal_extend(handle,
5056 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5057 ret = ext4_expand_extra_isize(inode,
5058 sbi->s_want_extra_isize,
5061 ext4_set_inode_state(inode,
5062 EXT4_STATE_NO_EXPAND);
5064 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5065 ext4_warning(inode->i_sb,
5066 "Unable to expand inode %lu. Delete"
5067 " some EAs or run e2fsck.",
5070 le16_to_cpu(sbi->s_es->s_mnt_count);
5076 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5081 * ext4_dirty_inode() is called from __mark_inode_dirty()
5083 * We're really interested in the case where a file is being extended.
5084 * i_size has been changed by generic_commit_write() and we thus need
5085 * to include the updated inode in the current transaction.
5087 * Also, dquot_alloc_block() will always dirty the inode when blocks
5088 * are allocated to the file.
5090 * If the inode is marked synchronous, we don't honour that here - doing
5091 * so would cause a commit on atime updates, which we don't bother doing.
5092 * We handle synchronous inodes at the highest possible level.
5094 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5095 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5096 * to copy into the on-disk inode structure are the timestamp files.
5098 void ext4_dirty_inode(struct inode *inode, int flags)
5102 if (flags == I_DIRTY_TIME)
5104 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5108 ext4_mark_inode_dirty(handle, inode);
5110 ext4_journal_stop(handle);
5117 * Bind an inode's backing buffer_head into this transaction, to prevent
5118 * it from being flushed to disk early. Unlike
5119 * ext4_reserve_inode_write, this leaves behind no bh reference and
5120 * returns no iloc structure, so the caller needs to repeat the iloc
5121 * lookup to mark the inode dirty later.
5123 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5125 struct ext4_iloc iloc;
5129 err = ext4_get_inode_loc(inode, &iloc);
5131 BUFFER_TRACE(iloc.bh, "get_write_access");
5132 err = jbd2_journal_get_write_access(handle, iloc.bh);
5134 err = ext4_handle_dirty_metadata(handle,
5140 ext4_std_error(inode->i_sb, err);
5145 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5152 * We have to be very careful here: changing a data block's
5153 * journaling status dynamically is dangerous. If we write a
5154 * data block to the journal, change the status and then delete
5155 * that block, we risk forgetting to revoke the old log record
5156 * from the journal and so a subsequent replay can corrupt data.
5157 * So, first we make sure that the journal is empty and that
5158 * nobody is changing anything.
5161 journal = EXT4_JOURNAL(inode);
5164 if (is_journal_aborted(journal))
5166 /* We have to allocate physical blocks for delalloc blocks
5167 * before flushing journal. otherwise delalloc blocks can not
5168 * be allocated any more. even more truncate on delalloc blocks
5169 * could trigger BUG by flushing delalloc blocks in journal.
5170 * There is no delalloc block in non-journal data mode.
5172 if (val && test_opt(inode->i_sb, DELALLOC)) {
5173 err = ext4_alloc_da_blocks(inode);
5178 /* Wait for all existing dio workers */
5179 ext4_inode_block_unlocked_dio(inode);
5180 inode_dio_wait(inode);
5182 jbd2_journal_lock_updates(journal);
5185 * OK, there are no updates running now, and all cached data is
5186 * synced to disk. We are now in a completely consistent state
5187 * which doesn't have anything in the journal, and we know that
5188 * no filesystem updates are running, so it is safe to modify
5189 * the inode's in-core data-journaling state flag now.
5193 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5195 err = jbd2_journal_flush(journal);
5197 jbd2_journal_unlock_updates(journal);
5198 ext4_inode_resume_unlocked_dio(inode);
5201 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5203 ext4_set_aops(inode);
5205 jbd2_journal_unlock_updates(journal);
5206 ext4_inode_resume_unlocked_dio(inode);
5208 /* Finally we can mark the inode as dirty. */
5210 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5212 return PTR_ERR(handle);
5214 err = ext4_mark_inode_dirty(handle, inode);
5215 ext4_handle_sync(handle);
5216 ext4_journal_stop(handle);
5217 ext4_std_error(inode->i_sb, err);
5222 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5224 return !buffer_mapped(bh);
5227 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5229 struct page *page = vmf->page;
5233 struct file *file = vma->vm_file;
5234 struct inode *inode = file_inode(file);
5235 struct address_space *mapping = inode->i_mapping;
5237 get_block_t *get_block;
5240 sb_start_pagefault(inode->i_sb);
5241 file_update_time(vma->vm_file);
5242 /* Delalloc case is easy... */
5243 if (test_opt(inode->i_sb, DELALLOC) &&
5244 !ext4_should_journal_data(inode) &&
5245 !ext4_nonda_switch(inode->i_sb)) {
5247 ret = __block_page_mkwrite(vma, vmf,
5248 ext4_da_get_block_prep);
5249 } while (ret == -ENOSPC &&
5250 ext4_should_retry_alloc(inode->i_sb, &retries));
5255 size = i_size_read(inode);
5256 /* Page got truncated from under us? */
5257 if (page->mapping != mapping || page_offset(page) > size) {
5259 ret = VM_FAULT_NOPAGE;
5263 if (page->index == size >> PAGE_CACHE_SHIFT)
5264 len = size & ~PAGE_CACHE_MASK;
5266 len = PAGE_CACHE_SIZE;
5268 * Return if we have all the buffers mapped. This avoids the need to do
5269 * journal_start/journal_stop which can block and take a long time
5271 if (page_has_buffers(page)) {
5272 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5274 ext4_bh_unmapped)) {
5275 /* Wait so that we don't change page under IO */
5276 wait_for_stable_page(page);
5277 ret = VM_FAULT_LOCKED;
5282 /* OK, we need to fill the hole... */
5283 if (ext4_should_dioread_nolock(inode))
5284 get_block = ext4_get_block_write;
5286 get_block = ext4_get_block;
5288 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5289 ext4_writepage_trans_blocks(inode));
5290 if (IS_ERR(handle)) {
5291 ret = VM_FAULT_SIGBUS;
5294 ret = __block_page_mkwrite(vma, vmf, get_block);
5295 if (!ret && ext4_should_journal_data(inode)) {
5296 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5297 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5299 ret = VM_FAULT_SIGBUS;
5300 ext4_journal_stop(handle);
5303 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5305 ext4_journal_stop(handle);
5306 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5309 ret = block_page_mkwrite_return(ret);
5311 sb_end_pagefault(inode->i_sb);