]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/ext4/inode.c
ext4: ext4_inode_info diet
[karo-tx-linux.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45
46 #include <trace/events/ext4.h>
47
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51                               struct ext4_inode_info *ei)
52 {
53         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54         __u16 csum_lo;
55         __u16 csum_hi = 0;
56         __u32 csum;
57
58         csum_lo = raw->i_checksum_lo;
59         raw->i_checksum_lo = 0;
60         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62                 csum_hi = raw->i_checksum_hi;
63                 raw->i_checksum_hi = 0;
64         }
65
66         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67                            EXT4_INODE_SIZE(inode->i_sb));
68
69         raw->i_checksum_lo = csum_lo;
70         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72                 raw->i_checksum_hi = csum_hi;
73
74         return csum;
75 }
76
77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78                                   struct ext4_inode_info *ei)
79 {
80         __u32 provided, calculated;
81
82         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83             cpu_to_le32(EXT4_OS_LINUX) ||
84             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
85                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
86                 return 1;
87
88         provided = le16_to_cpu(raw->i_checksum_lo);
89         calculated = ext4_inode_csum(inode, raw, ei);
90         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
91             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
92                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
93         else
94                 calculated &= 0xFFFF;
95
96         return provided == calculated;
97 }
98
99 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
100                                 struct ext4_inode_info *ei)
101 {
102         __u32 csum;
103
104         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
105             cpu_to_le32(EXT4_OS_LINUX) ||
106             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
107                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
108                 return;
109
110         csum = ext4_inode_csum(inode, raw, ei);
111         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
112         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
113             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
114                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
115 }
116
117 static inline int ext4_begin_ordered_truncate(struct inode *inode,
118                                               loff_t new_size)
119 {
120         trace_ext4_begin_ordered_truncate(inode, new_size);
121         /*
122          * If jinode is zero, then we never opened the file for
123          * writing, so there's no need to call
124          * jbd2_journal_begin_ordered_truncate() since there's no
125          * outstanding writes we need to flush.
126          */
127         if (!EXT4_I(inode)->jinode)
128                 return 0;
129         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
130                                                    EXT4_I(inode)->jinode,
131                                                    new_size);
132 }
133
134 static void ext4_invalidatepage(struct page *page, unsigned long offset);
135 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
136                                    struct buffer_head *bh_result, int create);
137 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
138 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
139 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
140 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
141 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
142                 struct inode *inode, struct page *page, loff_t from,
143                 loff_t length, int flags);
144
145 /*
146  * Test whether an inode is a fast symlink.
147  */
148 static int ext4_inode_is_fast_symlink(struct inode *inode)
149 {
150         int ea_blocks = EXT4_I(inode)->i_file_acl ?
151                 (inode->i_sb->s_blocksize >> 9) : 0;
152
153         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
154 }
155
156 /*
157  * Restart the transaction associated with *handle.  This does a commit,
158  * so before we call here everything must be consistently dirtied against
159  * this transaction.
160  */
161 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
162                                  int nblocks)
163 {
164         int ret;
165
166         /*
167          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
168          * moment, get_block can be called only for blocks inside i_size since
169          * page cache has been already dropped and writes are blocked by
170          * i_mutex. So we can safely drop the i_data_sem here.
171          */
172         BUG_ON(EXT4_JOURNAL(inode) == NULL);
173         jbd_debug(2, "restarting handle %p\n", handle);
174         up_write(&EXT4_I(inode)->i_data_sem);
175         ret = ext4_journal_restart(handle, nblocks);
176         down_write(&EXT4_I(inode)->i_data_sem);
177         ext4_discard_preallocations(inode);
178
179         return ret;
180 }
181
182 /*
183  * Called at the last iput() if i_nlink is zero.
184  */
185 void ext4_evict_inode(struct inode *inode)
186 {
187         handle_t *handle;
188         int err;
189
190         trace_ext4_evict_inode(inode);
191
192         ext4_ioend_wait(inode);
193
194         if (inode->i_nlink) {
195                 /*
196                  * When journalling data dirty buffers are tracked only in the
197                  * journal. So although mm thinks everything is clean and
198                  * ready for reaping the inode might still have some pages to
199                  * write in the running transaction or waiting to be
200                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
201                  * (via truncate_inode_pages()) to discard these buffers can
202                  * cause data loss. Also even if we did not discard these
203                  * buffers, we would have no way to find them after the inode
204                  * is reaped and thus user could see stale data if he tries to
205                  * read them before the transaction is checkpointed. So be
206                  * careful and force everything to disk here... We use
207                  * ei->i_datasync_tid to store the newest transaction
208                  * containing inode's data.
209                  *
210                  * Note that directories do not have this problem because they
211                  * don't use page cache.
212                  */
213                 if (ext4_should_journal_data(inode) &&
214                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
215                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
216                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
217
218                         jbd2_log_start_commit(journal, commit_tid);
219                         jbd2_log_wait_commit(journal, commit_tid);
220                         filemap_write_and_wait(&inode->i_data);
221                 }
222                 truncate_inode_pages(&inode->i_data, 0);
223                 goto no_delete;
224         }
225
226         if (!is_bad_inode(inode))
227                 dquot_initialize(inode);
228
229         if (ext4_should_order_data(inode))
230                 ext4_begin_ordered_truncate(inode, 0);
231         truncate_inode_pages(&inode->i_data, 0);
232
233         if (is_bad_inode(inode))
234                 goto no_delete;
235
236         /*
237          * Protect us against freezing - iput() caller didn't have to have any
238          * protection against it
239          */
240         sb_start_intwrite(inode->i_sb);
241         handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
242         if (IS_ERR(handle)) {
243                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
244                 /*
245                  * If we're going to skip the normal cleanup, we still need to
246                  * make sure that the in-core orphan linked list is properly
247                  * cleaned up.
248                  */
249                 ext4_orphan_del(NULL, inode);
250                 sb_end_intwrite(inode->i_sb);
251                 goto no_delete;
252         }
253
254         if (IS_SYNC(inode))
255                 ext4_handle_sync(handle);
256         inode->i_size = 0;
257         err = ext4_mark_inode_dirty(handle, inode);
258         if (err) {
259                 ext4_warning(inode->i_sb,
260                              "couldn't mark inode dirty (err %d)", err);
261                 goto stop_handle;
262         }
263         if (inode->i_blocks)
264                 ext4_truncate(inode);
265
266         /*
267          * ext4_ext_truncate() doesn't reserve any slop when it
268          * restarts journal transactions; therefore there may not be
269          * enough credits left in the handle to remove the inode from
270          * the orphan list and set the dtime field.
271          */
272         if (!ext4_handle_has_enough_credits(handle, 3)) {
273                 err = ext4_journal_extend(handle, 3);
274                 if (err > 0)
275                         err = ext4_journal_restart(handle, 3);
276                 if (err != 0) {
277                         ext4_warning(inode->i_sb,
278                                      "couldn't extend journal (err %d)", err);
279                 stop_handle:
280                         ext4_journal_stop(handle);
281                         ext4_orphan_del(NULL, inode);
282                         sb_end_intwrite(inode->i_sb);
283                         goto no_delete;
284                 }
285         }
286
287         /*
288          * Kill off the orphan record which ext4_truncate created.
289          * AKPM: I think this can be inside the above `if'.
290          * Note that ext4_orphan_del() has to be able to cope with the
291          * deletion of a non-existent orphan - this is because we don't
292          * know if ext4_truncate() actually created an orphan record.
293          * (Well, we could do this if we need to, but heck - it works)
294          */
295         ext4_orphan_del(handle, inode);
296         EXT4_I(inode)->i_dtime  = get_seconds();
297
298         /*
299          * One subtle ordering requirement: if anything has gone wrong
300          * (transaction abort, IO errors, whatever), then we can still
301          * do these next steps (the fs will already have been marked as
302          * having errors), but we can't free the inode if the mark_dirty
303          * fails.
304          */
305         if (ext4_mark_inode_dirty(handle, inode))
306                 /* If that failed, just do the required in-core inode clear. */
307                 ext4_clear_inode(inode);
308         else
309                 ext4_free_inode(handle, inode);
310         ext4_journal_stop(handle);
311         sb_end_intwrite(inode->i_sb);
312         return;
313 no_delete:
314         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
315 }
316
317 #ifdef CONFIG_QUOTA
318 qsize_t *ext4_get_reserved_space(struct inode *inode)
319 {
320         return &EXT4_I(inode)->i_reserved_quota;
321 }
322 #endif
323
324 /*
325  * Calculate the number of metadata blocks need to reserve
326  * to allocate a block located at @lblock
327  */
328 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
329 {
330         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
331                 return ext4_ext_calc_metadata_amount(inode, lblock);
332
333         return ext4_ind_calc_metadata_amount(inode, lblock);
334 }
335
336 /*
337  * Called with i_data_sem down, which is important since we can call
338  * ext4_discard_preallocations() from here.
339  */
340 void ext4_da_update_reserve_space(struct inode *inode,
341                                         int used, int quota_claim)
342 {
343         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
344         struct ext4_inode_info *ei = EXT4_I(inode);
345
346         spin_lock(&ei->i_block_reservation_lock);
347         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
348         if (unlikely(used > ei->i_reserved_data_blocks)) {
349                 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
350                          "with only %d reserved data blocks",
351                          __func__, inode->i_ino, used,
352                          ei->i_reserved_data_blocks);
353                 WARN_ON(1);
354                 used = ei->i_reserved_data_blocks;
355         }
356
357         if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
358                 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, allocated %d "
359                          "with only %d reserved metadata blocks\n", __func__,
360                          inode->i_ino, ei->i_allocated_meta_blocks,
361                          ei->i_reserved_meta_blocks);
362                 WARN_ON(1);
363                 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
364         }
365
366         /* Update per-inode reservations */
367         ei->i_reserved_data_blocks -= used;
368         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
369         percpu_counter_sub(&sbi->s_dirtyclusters_counter,
370                            used + ei->i_allocated_meta_blocks);
371         ei->i_allocated_meta_blocks = 0;
372
373         if (ei->i_reserved_data_blocks == 0) {
374                 /*
375                  * We can release all of the reserved metadata blocks
376                  * only when we have written all of the delayed
377                  * allocation blocks.
378                  */
379                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
380                                    ei->i_reserved_meta_blocks);
381                 ei->i_reserved_meta_blocks = 0;
382                 ei->i_da_metadata_calc_len = 0;
383         }
384         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
385
386         /* Update quota subsystem for data blocks */
387         if (quota_claim)
388                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
389         else {
390                 /*
391                  * We did fallocate with an offset that is already delayed
392                  * allocated. So on delayed allocated writeback we should
393                  * not re-claim the quota for fallocated blocks.
394                  */
395                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
396         }
397
398         /*
399          * If we have done all the pending block allocations and if
400          * there aren't any writers on the inode, we can discard the
401          * inode's preallocations.
402          */
403         if ((ei->i_reserved_data_blocks == 0) &&
404             (atomic_read(&inode->i_writecount) == 0))
405                 ext4_discard_preallocations(inode);
406 }
407
408 static int __check_block_validity(struct inode *inode, const char *func,
409                                 unsigned int line,
410                                 struct ext4_map_blocks *map)
411 {
412         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
413                                    map->m_len)) {
414                 ext4_error_inode(inode, func, line, map->m_pblk,
415                                  "lblock %lu mapped to illegal pblock "
416                                  "(length %d)", (unsigned long) map->m_lblk,
417                                  map->m_len);
418                 return -EIO;
419         }
420         return 0;
421 }
422
423 #define check_block_validity(inode, map)        \
424         __check_block_validity((inode), __func__, __LINE__, (map))
425
426 /*
427  * Return the number of contiguous dirty pages in a given inode
428  * starting at page frame idx.
429  */
430 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
431                                     unsigned int max_pages)
432 {
433         struct address_space *mapping = inode->i_mapping;
434         pgoff_t index;
435         struct pagevec pvec;
436         pgoff_t num = 0;
437         int i, nr_pages, done = 0;
438
439         if (max_pages == 0)
440                 return 0;
441         pagevec_init(&pvec, 0);
442         while (!done) {
443                 index = idx;
444                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
445                                               PAGECACHE_TAG_DIRTY,
446                                               (pgoff_t)PAGEVEC_SIZE);
447                 if (nr_pages == 0)
448                         break;
449                 for (i = 0; i < nr_pages; i++) {
450                         struct page *page = pvec.pages[i];
451                         struct buffer_head *bh, *head;
452
453                         lock_page(page);
454                         if (unlikely(page->mapping != mapping) ||
455                             !PageDirty(page) ||
456                             PageWriteback(page) ||
457                             page->index != idx) {
458                                 done = 1;
459                                 unlock_page(page);
460                                 break;
461                         }
462                         if (page_has_buffers(page)) {
463                                 bh = head = page_buffers(page);
464                                 do {
465                                         if (!buffer_delay(bh) &&
466                                             !buffer_unwritten(bh))
467                                                 done = 1;
468                                         bh = bh->b_this_page;
469                                 } while (!done && (bh != head));
470                         }
471                         unlock_page(page);
472                         if (done)
473                                 break;
474                         idx++;
475                         num++;
476                         if (num >= max_pages) {
477                                 done = 1;
478                                 break;
479                         }
480                 }
481                 pagevec_release(&pvec);
482         }
483         return num;
484 }
485
486 /*
487  * Sets the BH_Da_Mapped bit on the buffer heads corresponding to the given map.
488  */
489 static void set_buffers_da_mapped(struct inode *inode,
490                                    struct ext4_map_blocks *map)
491 {
492         struct address_space *mapping = inode->i_mapping;
493         struct pagevec pvec;
494         int i, nr_pages;
495         pgoff_t index, end;
496
497         index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
498         end = (map->m_lblk + map->m_len - 1) >>
499                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
500
501         pagevec_init(&pvec, 0);
502         while (index <= end) {
503                 nr_pages = pagevec_lookup(&pvec, mapping, index,
504                                           min(end - index + 1,
505                                               (pgoff_t)PAGEVEC_SIZE));
506                 if (nr_pages == 0)
507                         break;
508                 for (i = 0; i < nr_pages; i++) {
509                         struct page *page = pvec.pages[i];
510                         struct buffer_head *bh, *head;
511
512                         if (unlikely(page->mapping != mapping) ||
513                             !PageDirty(page))
514                                 break;
515
516                         if (page_has_buffers(page)) {
517                                 bh = head = page_buffers(page);
518                                 do {
519                                         set_buffer_da_mapped(bh);
520                                         bh = bh->b_this_page;
521                                 } while (bh != head);
522                         }
523                         index++;
524                 }
525                 pagevec_release(&pvec);
526         }
527 }
528
529 /*
530  * The ext4_map_blocks() function tries to look up the requested blocks,
531  * and returns if the blocks are already mapped.
532  *
533  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
534  * and store the allocated blocks in the result buffer head and mark it
535  * mapped.
536  *
537  * If file type is extents based, it will call ext4_ext_map_blocks(),
538  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
539  * based files
540  *
541  * On success, it returns the number of blocks being mapped or allocate.
542  * if create==0 and the blocks are pre-allocated and uninitialized block,
543  * the result buffer head is unmapped. If the create ==1, it will make sure
544  * the buffer head is mapped.
545  *
546  * It returns 0 if plain look up failed (blocks have not been allocated), in
547  * that case, buffer head is unmapped
548  *
549  * It returns the error in case of allocation failure.
550  */
551 int ext4_map_blocks(handle_t *handle, struct inode *inode,
552                     struct ext4_map_blocks *map, int flags)
553 {
554         int retval;
555
556         map->m_flags = 0;
557         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
558                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
559                   (unsigned long) map->m_lblk);
560         /*
561          * Try to see if we can get the block without requesting a new
562          * file system block.
563          */
564         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
565                 down_read((&EXT4_I(inode)->i_data_sem));
566         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
567                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
568                                              EXT4_GET_BLOCKS_KEEP_SIZE);
569         } else {
570                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
571                                              EXT4_GET_BLOCKS_KEEP_SIZE);
572         }
573         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
574                 up_read((&EXT4_I(inode)->i_data_sem));
575
576         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
577                 int ret = check_block_validity(inode, map);
578                 if (ret != 0)
579                         return ret;
580         }
581
582         /* If it is only a block(s) look up */
583         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
584                 return retval;
585
586         /*
587          * Returns if the blocks have already allocated
588          *
589          * Note that if blocks have been preallocated
590          * ext4_ext_get_block() returns the create = 0
591          * with buffer head unmapped.
592          */
593         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
594                 return retval;
595
596         /*
597          * When we call get_blocks without the create flag, the
598          * BH_Unwritten flag could have gotten set if the blocks
599          * requested were part of a uninitialized extent.  We need to
600          * clear this flag now that we are committed to convert all or
601          * part of the uninitialized extent to be an initialized
602          * extent.  This is because we need to avoid the combination
603          * of BH_Unwritten and BH_Mapped flags being simultaneously
604          * set on the buffer_head.
605          */
606         map->m_flags &= ~EXT4_MAP_UNWRITTEN;
607
608         /*
609          * New blocks allocate and/or writing to uninitialized extent
610          * will possibly result in updating i_data, so we take
611          * the write lock of i_data_sem, and call get_blocks()
612          * with create == 1 flag.
613          */
614         down_write((&EXT4_I(inode)->i_data_sem));
615
616         /*
617          * if the caller is from delayed allocation writeout path
618          * we have already reserved fs blocks for allocation
619          * let the underlying get_block() function know to
620          * avoid double accounting
621          */
622         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
623                 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
624         /*
625          * We need to check for EXT4 here because migrate
626          * could have changed the inode type in between
627          */
628         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
629                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
630         } else {
631                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
632
633                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
634                         /*
635                          * We allocated new blocks which will result in
636                          * i_data's format changing.  Force the migrate
637                          * to fail by clearing migrate flags
638                          */
639                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
640                 }
641
642                 /*
643                  * Update reserved blocks/metadata blocks after successful
644                  * block allocation which had been deferred till now. We don't
645                  * support fallocate for non extent files. So we can update
646                  * reserve space here.
647                  */
648                 if ((retval > 0) &&
649                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
650                         ext4_da_update_reserve_space(inode, retval, 1);
651         }
652         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
653                 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
654
655                 /* If we have successfully mapped the delayed allocated blocks,
656                  * set the BH_Da_Mapped bit on them. Its important to do this
657                  * under the protection of i_data_sem.
658                  */
659                 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
660                         set_buffers_da_mapped(inode, map);
661         }
662
663         up_write((&EXT4_I(inode)->i_data_sem));
664         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
665                 int ret = check_block_validity(inode, map);
666                 if (ret != 0)
667                         return ret;
668         }
669         return retval;
670 }
671
672 /* Maximum number of blocks we map for direct IO at once. */
673 #define DIO_MAX_BLOCKS 4096
674
675 static int _ext4_get_block(struct inode *inode, sector_t iblock,
676                            struct buffer_head *bh, int flags)
677 {
678         handle_t *handle = ext4_journal_current_handle();
679         struct ext4_map_blocks map;
680         int ret = 0, started = 0;
681         int dio_credits;
682
683         map.m_lblk = iblock;
684         map.m_len = bh->b_size >> inode->i_blkbits;
685
686         if (flags && !handle) {
687                 /* Direct IO write... */
688                 if (map.m_len > DIO_MAX_BLOCKS)
689                         map.m_len = DIO_MAX_BLOCKS;
690                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
691                 handle = ext4_journal_start(inode, dio_credits);
692                 if (IS_ERR(handle)) {
693                         ret = PTR_ERR(handle);
694                         return ret;
695                 }
696                 started = 1;
697         }
698
699         ret = ext4_map_blocks(handle, inode, &map, flags);
700         if (ret > 0) {
701                 map_bh(bh, inode->i_sb, map.m_pblk);
702                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
703                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
704                 ret = 0;
705         }
706         if (started)
707                 ext4_journal_stop(handle);
708         return ret;
709 }
710
711 int ext4_get_block(struct inode *inode, sector_t iblock,
712                    struct buffer_head *bh, int create)
713 {
714         return _ext4_get_block(inode, iblock, bh,
715                                create ? EXT4_GET_BLOCKS_CREATE : 0);
716 }
717
718 /*
719  * `handle' can be NULL if create is zero
720  */
721 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
722                                 ext4_lblk_t block, int create, int *errp)
723 {
724         struct ext4_map_blocks map;
725         struct buffer_head *bh;
726         int fatal = 0, err;
727
728         J_ASSERT(handle != NULL || create == 0);
729
730         map.m_lblk = block;
731         map.m_len = 1;
732         err = ext4_map_blocks(handle, inode, &map,
733                               create ? EXT4_GET_BLOCKS_CREATE : 0);
734
735         /* ensure we send some value back into *errp */
736         *errp = 0;
737
738         if (err < 0)
739                 *errp = err;
740         if (err <= 0)
741                 return NULL;
742
743         bh = sb_getblk(inode->i_sb, map.m_pblk);
744         if (!bh) {
745                 *errp = -EIO;
746                 return NULL;
747         }
748         if (map.m_flags & EXT4_MAP_NEW) {
749                 J_ASSERT(create != 0);
750                 J_ASSERT(handle != NULL);
751
752                 /*
753                  * Now that we do not always journal data, we should
754                  * keep in mind whether this should always journal the
755                  * new buffer as metadata.  For now, regular file
756                  * writes use ext4_get_block instead, so it's not a
757                  * problem.
758                  */
759                 lock_buffer(bh);
760                 BUFFER_TRACE(bh, "call get_create_access");
761                 fatal = ext4_journal_get_create_access(handle, bh);
762                 if (!fatal && !buffer_uptodate(bh)) {
763                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
764                         set_buffer_uptodate(bh);
765                 }
766                 unlock_buffer(bh);
767                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
768                 err = ext4_handle_dirty_metadata(handle, inode, bh);
769                 if (!fatal)
770                         fatal = err;
771         } else {
772                 BUFFER_TRACE(bh, "not a new buffer");
773         }
774         if (fatal) {
775                 *errp = fatal;
776                 brelse(bh);
777                 bh = NULL;
778         }
779         return bh;
780 }
781
782 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
783                                ext4_lblk_t block, int create, int *err)
784 {
785         struct buffer_head *bh;
786
787         bh = ext4_getblk(handle, inode, block, create, err);
788         if (!bh)
789                 return bh;
790         if (buffer_uptodate(bh))
791                 return bh;
792         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
793         wait_on_buffer(bh);
794         if (buffer_uptodate(bh))
795                 return bh;
796         put_bh(bh);
797         *err = -EIO;
798         return NULL;
799 }
800
801 static int walk_page_buffers(handle_t *handle,
802                              struct buffer_head *head,
803                              unsigned from,
804                              unsigned to,
805                              int *partial,
806                              int (*fn)(handle_t *handle,
807                                        struct buffer_head *bh))
808 {
809         struct buffer_head *bh;
810         unsigned block_start, block_end;
811         unsigned blocksize = head->b_size;
812         int err, ret = 0;
813         struct buffer_head *next;
814
815         for (bh = head, block_start = 0;
816              ret == 0 && (bh != head || !block_start);
817              block_start = block_end, bh = next) {
818                 next = bh->b_this_page;
819                 block_end = block_start + blocksize;
820                 if (block_end <= from || block_start >= to) {
821                         if (partial && !buffer_uptodate(bh))
822                                 *partial = 1;
823                         continue;
824                 }
825                 err = (*fn)(handle, bh);
826                 if (!ret)
827                         ret = err;
828         }
829         return ret;
830 }
831
832 /*
833  * To preserve ordering, it is essential that the hole instantiation and
834  * the data write be encapsulated in a single transaction.  We cannot
835  * close off a transaction and start a new one between the ext4_get_block()
836  * and the commit_write().  So doing the jbd2_journal_start at the start of
837  * prepare_write() is the right place.
838  *
839  * Also, this function can nest inside ext4_writepage() ->
840  * block_write_full_page(). In that case, we *know* that ext4_writepage()
841  * has generated enough buffer credits to do the whole page.  So we won't
842  * block on the journal in that case, which is good, because the caller may
843  * be PF_MEMALLOC.
844  *
845  * By accident, ext4 can be reentered when a transaction is open via
846  * quota file writes.  If we were to commit the transaction while thus
847  * reentered, there can be a deadlock - we would be holding a quota
848  * lock, and the commit would never complete if another thread had a
849  * transaction open and was blocking on the quota lock - a ranking
850  * violation.
851  *
852  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
853  * will _not_ run commit under these circumstances because handle->h_ref
854  * is elevated.  We'll still have enough credits for the tiny quotafile
855  * write.
856  */
857 static int do_journal_get_write_access(handle_t *handle,
858                                        struct buffer_head *bh)
859 {
860         int dirty = buffer_dirty(bh);
861         int ret;
862
863         if (!buffer_mapped(bh) || buffer_freed(bh))
864                 return 0;
865         /*
866          * __block_write_begin() could have dirtied some buffers. Clean
867          * the dirty bit as jbd2_journal_get_write_access() could complain
868          * otherwise about fs integrity issues. Setting of the dirty bit
869          * by __block_write_begin() isn't a real problem here as we clear
870          * the bit before releasing a page lock and thus writeback cannot
871          * ever write the buffer.
872          */
873         if (dirty)
874                 clear_buffer_dirty(bh);
875         ret = ext4_journal_get_write_access(handle, bh);
876         if (!ret && dirty)
877                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
878         return ret;
879 }
880
881 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
882                    struct buffer_head *bh_result, int create);
883 static int ext4_write_begin(struct file *file, struct address_space *mapping,
884                             loff_t pos, unsigned len, unsigned flags,
885                             struct page **pagep, void **fsdata)
886 {
887         struct inode *inode = mapping->host;
888         int ret, needed_blocks;
889         handle_t *handle;
890         int retries = 0;
891         struct page *page;
892         pgoff_t index;
893         unsigned from, to;
894
895         trace_ext4_write_begin(inode, pos, len, flags);
896         /*
897          * Reserve one block more for addition to orphan list in case
898          * we allocate blocks but write fails for some reason
899          */
900         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
901         index = pos >> PAGE_CACHE_SHIFT;
902         from = pos & (PAGE_CACHE_SIZE - 1);
903         to = from + len;
904
905 retry:
906         handle = ext4_journal_start(inode, needed_blocks);
907         if (IS_ERR(handle)) {
908                 ret = PTR_ERR(handle);
909                 goto out;
910         }
911
912         /* We cannot recurse into the filesystem as the transaction is already
913          * started */
914         flags |= AOP_FLAG_NOFS;
915
916         page = grab_cache_page_write_begin(mapping, index, flags);
917         if (!page) {
918                 ext4_journal_stop(handle);
919                 ret = -ENOMEM;
920                 goto out;
921         }
922         *pagep = page;
923
924         if (ext4_should_dioread_nolock(inode))
925                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
926         else
927                 ret = __block_write_begin(page, pos, len, ext4_get_block);
928
929         if (!ret && ext4_should_journal_data(inode)) {
930                 ret = walk_page_buffers(handle, page_buffers(page),
931                                 from, to, NULL, do_journal_get_write_access);
932         }
933
934         if (ret) {
935                 unlock_page(page);
936                 page_cache_release(page);
937                 /*
938                  * __block_write_begin may have instantiated a few blocks
939                  * outside i_size.  Trim these off again. Don't need
940                  * i_size_read because we hold i_mutex.
941                  *
942                  * Add inode to orphan list in case we crash before
943                  * truncate finishes
944                  */
945                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
946                         ext4_orphan_add(handle, inode);
947
948                 ext4_journal_stop(handle);
949                 if (pos + len > inode->i_size) {
950                         ext4_truncate_failed_write(inode);
951                         /*
952                          * If truncate failed early the inode might
953                          * still be on the orphan list; we need to
954                          * make sure the inode is removed from the
955                          * orphan list in that case.
956                          */
957                         if (inode->i_nlink)
958                                 ext4_orphan_del(NULL, inode);
959                 }
960         }
961
962         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
963                 goto retry;
964 out:
965         return ret;
966 }
967
968 /* For write_end() in data=journal mode */
969 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
970 {
971         if (!buffer_mapped(bh) || buffer_freed(bh))
972                 return 0;
973         set_buffer_uptodate(bh);
974         return ext4_handle_dirty_metadata(handle, NULL, bh);
975 }
976
977 static int ext4_generic_write_end(struct file *file,
978                                   struct address_space *mapping,
979                                   loff_t pos, unsigned len, unsigned copied,
980                                   struct page *page, void *fsdata)
981 {
982         int i_size_changed = 0;
983         struct inode *inode = mapping->host;
984         handle_t *handle = ext4_journal_current_handle();
985
986         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
987
988         /*
989          * No need to use i_size_read() here, the i_size
990          * cannot change under us because we hold i_mutex.
991          *
992          * But it's important to update i_size while still holding page lock:
993          * page writeout could otherwise come in and zero beyond i_size.
994          */
995         if (pos + copied > inode->i_size) {
996                 i_size_write(inode, pos + copied);
997                 i_size_changed = 1;
998         }
999
1000         if (pos + copied >  EXT4_I(inode)->i_disksize) {
1001                 /* We need to mark inode dirty even if
1002                  * new_i_size is less that inode->i_size
1003                  * bu greater than i_disksize.(hint delalloc)
1004                  */
1005                 ext4_update_i_disksize(inode, (pos + copied));
1006                 i_size_changed = 1;
1007         }
1008         unlock_page(page);
1009         page_cache_release(page);
1010
1011         /*
1012          * Don't mark the inode dirty under page lock. First, it unnecessarily
1013          * makes the holding time of page lock longer. Second, it forces lock
1014          * ordering of page lock and transaction start for journaling
1015          * filesystems.
1016          */
1017         if (i_size_changed)
1018                 ext4_mark_inode_dirty(handle, inode);
1019
1020         return copied;
1021 }
1022
1023 /*
1024  * We need to pick up the new inode size which generic_commit_write gave us
1025  * `file' can be NULL - eg, when called from page_symlink().
1026  *
1027  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1028  * buffers are managed internally.
1029  */
1030 static int ext4_ordered_write_end(struct file *file,
1031                                   struct address_space *mapping,
1032                                   loff_t pos, unsigned len, unsigned copied,
1033                                   struct page *page, void *fsdata)
1034 {
1035         handle_t *handle = ext4_journal_current_handle();
1036         struct inode *inode = mapping->host;
1037         int ret = 0, ret2;
1038
1039         trace_ext4_ordered_write_end(inode, pos, len, copied);
1040         ret = ext4_jbd2_file_inode(handle, inode);
1041
1042         if (ret == 0) {
1043                 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1044                                                         page, fsdata);
1045                 copied = ret2;
1046                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1047                         /* if we have allocated more blocks and copied
1048                          * less. We will have blocks allocated outside
1049                          * inode->i_size. So truncate them
1050                          */
1051                         ext4_orphan_add(handle, inode);
1052                 if (ret2 < 0)
1053                         ret = ret2;
1054         } else {
1055                 unlock_page(page);
1056                 page_cache_release(page);
1057         }
1058
1059         ret2 = ext4_journal_stop(handle);
1060         if (!ret)
1061                 ret = ret2;
1062
1063         if (pos + len > inode->i_size) {
1064                 ext4_truncate_failed_write(inode);
1065                 /*
1066                  * If truncate failed early the inode might still be
1067                  * on the orphan list; we need to make sure the inode
1068                  * is removed from the orphan list in that case.
1069                  */
1070                 if (inode->i_nlink)
1071                         ext4_orphan_del(NULL, inode);
1072         }
1073
1074
1075         return ret ? ret : copied;
1076 }
1077
1078 static int ext4_writeback_write_end(struct file *file,
1079                                     struct address_space *mapping,
1080                                     loff_t pos, unsigned len, unsigned copied,
1081                                     struct page *page, void *fsdata)
1082 {
1083         handle_t *handle = ext4_journal_current_handle();
1084         struct inode *inode = mapping->host;
1085         int ret = 0, ret2;
1086
1087         trace_ext4_writeback_write_end(inode, pos, len, copied);
1088         ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1089                                                         page, fsdata);
1090         copied = ret2;
1091         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1092                 /* if we have allocated more blocks and copied
1093                  * less. We will have blocks allocated outside
1094                  * inode->i_size. So truncate them
1095                  */
1096                 ext4_orphan_add(handle, inode);
1097
1098         if (ret2 < 0)
1099                 ret = ret2;
1100
1101         ret2 = ext4_journal_stop(handle);
1102         if (!ret)
1103                 ret = ret2;
1104
1105         if (pos + len > inode->i_size) {
1106                 ext4_truncate_failed_write(inode);
1107                 /*
1108                  * If truncate failed early the inode might still be
1109                  * on the orphan list; we need to make sure the inode
1110                  * is removed from the orphan list in that case.
1111                  */
1112                 if (inode->i_nlink)
1113                         ext4_orphan_del(NULL, inode);
1114         }
1115
1116         return ret ? ret : copied;
1117 }
1118
1119 static int ext4_journalled_write_end(struct file *file,
1120                                      struct address_space *mapping,
1121                                      loff_t pos, unsigned len, unsigned copied,
1122                                      struct page *page, void *fsdata)
1123 {
1124         handle_t *handle = ext4_journal_current_handle();
1125         struct inode *inode = mapping->host;
1126         int ret = 0, ret2;
1127         int partial = 0;
1128         unsigned from, to;
1129         loff_t new_i_size;
1130
1131         trace_ext4_journalled_write_end(inode, pos, len, copied);
1132         from = pos & (PAGE_CACHE_SIZE - 1);
1133         to = from + len;
1134
1135         BUG_ON(!ext4_handle_valid(handle));
1136
1137         if (copied < len) {
1138                 if (!PageUptodate(page))
1139                         copied = 0;
1140                 page_zero_new_buffers(page, from+copied, to);
1141         }
1142
1143         ret = walk_page_buffers(handle, page_buffers(page), from,
1144                                 to, &partial, write_end_fn);
1145         if (!partial)
1146                 SetPageUptodate(page);
1147         new_i_size = pos + copied;
1148         if (new_i_size > inode->i_size)
1149                 i_size_write(inode, pos+copied);
1150         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1151         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1152         if (new_i_size > EXT4_I(inode)->i_disksize) {
1153                 ext4_update_i_disksize(inode, new_i_size);
1154                 ret2 = ext4_mark_inode_dirty(handle, inode);
1155                 if (!ret)
1156                         ret = ret2;
1157         }
1158
1159         unlock_page(page);
1160         page_cache_release(page);
1161         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1162                 /* if we have allocated more blocks and copied
1163                  * less. We will have blocks allocated outside
1164                  * inode->i_size. So truncate them
1165                  */
1166                 ext4_orphan_add(handle, inode);
1167
1168         ret2 = ext4_journal_stop(handle);
1169         if (!ret)
1170                 ret = ret2;
1171         if (pos + len > inode->i_size) {
1172                 ext4_truncate_failed_write(inode);
1173                 /*
1174                  * If truncate failed early the inode might still be
1175                  * on the orphan list; we need to make sure the inode
1176                  * is removed from the orphan list in that case.
1177                  */
1178                 if (inode->i_nlink)
1179                         ext4_orphan_del(NULL, inode);
1180         }
1181
1182         return ret ? ret : copied;
1183 }
1184
1185 /*
1186  * Reserve a single cluster located at lblock
1187  */
1188 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1189 {
1190         int retries = 0;
1191         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1192         struct ext4_inode_info *ei = EXT4_I(inode);
1193         unsigned int md_needed;
1194         int ret;
1195         ext4_lblk_t save_last_lblock;
1196         int save_len;
1197
1198         /*
1199          * We will charge metadata quota at writeout time; this saves
1200          * us from metadata over-estimation, though we may go over by
1201          * a small amount in the end.  Here we just reserve for data.
1202          */
1203         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1204         if (ret)
1205                 return ret;
1206
1207         /*
1208          * recalculate the amount of metadata blocks to reserve
1209          * in order to allocate nrblocks
1210          * worse case is one extent per block
1211          */
1212 repeat:
1213         spin_lock(&ei->i_block_reservation_lock);
1214         /*
1215          * ext4_calc_metadata_amount() has side effects, which we have
1216          * to be prepared undo if we fail to claim space.
1217          */
1218         save_len = ei->i_da_metadata_calc_len;
1219         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1220         md_needed = EXT4_NUM_B2C(sbi,
1221                                  ext4_calc_metadata_amount(inode, lblock));
1222         trace_ext4_da_reserve_space(inode, md_needed);
1223
1224         /*
1225          * We do still charge estimated metadata to the sb though;
1226          * we cannot afford to run out of free blocks.
1227          */
1228         if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1229                 ei->i_da_metadata_calc_len = save_len;
1230                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1231                 spin_unlock(&ei->i_block_reservation_lock);
1232                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1233                         yield();
1234                         goto repeat;
1235                 }
1236                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1237                 return -ENOSPC;
1238         }
1239         ei->i_reserved_data_blocks++;
1240         ei->i_reserved_meta_blocks += md_needed;
1241         spin_unlock(&ei->i_block_reservation_lock);
1242
1243         return 0;       /* success */
1244 }
1245
1246 static void ext4_da_release_space(struct inode *inode, int to_free)
1247 {
1248         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1249         struct ext4_inode_info *ei = EXT4_I(inode);
1250
1251         if (!to_free)
1252                 return;         /* Nothing to release, exit */
1253
1254         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1255
1256         trace_ext4_da_release_space(inode, to_free);
1257         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1258                 /*
1259                  * if there aren't enough reserved blocks, then the
1260                  * counter is messed up somewhere.  Since this
1261                  * function is called from invalidate page, it's
1262                  * harmless to return without any action.
1263                  */
1264                 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1265                          "ino %lu, to_free %d with only %d reserved "
1266                          "data blocks", inode->i_ino, to_free,
1267                          ei->i_reserved_data_blocks);
1268                 WARN_ON(1);
1269                 to_free = ei->i_reserved_data_blocks;
1270         }
1271         ei->i_reserved_data_blocks -= to_free;
1272
1273         if (ei->i_reserved_data_blocks == 0) {
1274                 /*
1275                  * We can release all of the reserved metadata blocks
1276                  * only when we have written all of the delayed
1277                  * allocation blocks.
1278                  * Note that in case of bigalloc, i_reserved_meta_blocks,
1279                  * i_reserved_data_blocks, etc. refer to number of clusters.
1280                  */
1281                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1282                                    ei->i_reserved_meta_blocks);
1283                 ei->i_reserved_meta_blocks = 0;
1284                 ei->i_da_metadata_calc_len = 0;
1285         }
1286
1287         /* update fs dirty data blocks counter */
1288         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1289
1290         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1291
1292         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1293 }
1294
1295 static void ext4_da_page_release_reservation(struct page *page,
1296                                              unsigned long offset)
1297 {
1298         int to_release = 0;
1299         struct buffer_head *head, *bh;
1300         unsigned int curr_off = 0;
1301         struct inode *inode = page->mapping->host;
1302         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1303         int num_clusters;
1304
1305         head = page_buffers(page);
1306         bh = head;
1307         do {
1308                 unsigned int next_off = curr_off + bh->b_size;
1309
1310                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1311                         to_release++;
1312                         clear_buffer_delay(bh);
1313                         clear_buffer_da_mapped(bh);
1314                 }
1315                 curr_off = next_off;
1316         } while ((bh = bh->b_this_page) != head);
1317
1318         /* If we have released all the blocks belonging to a cluster, then we
1319          * need to release the reserved space for that cluster. */
1320         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1321         while (num_clusters > 0) {
1322                 ext4_fsblk_t lblk;
1323                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1324                         ((num_clusters - 1) << sbi->s_cluster_bits);
1325                 if (sbi->s_cluster_ratio == 1 ||
1326                     !ext4_find_delalloc_cluster(inode, lblk, 1))
1327                         ext4_da_release_space(inode, 1);
1328
1329                 num_clusters--;
1330         }
1331 }
1332
1333 /*
1334  * Delayed allocation stuff
1335  */
1336
1337 /*
1338  * mpage_da_submit_io - walks through extent of pages and try to write
1339  * them with writepage() call back
1340  *
1341  * @mpd->inode: inode
1342  * @mpd->first_page: first page of the extent
1343  * @mpd->next_page: page after the last page of the extent
1344  *
1345  * By the time mpage_da_submit_io() is called we expect all blocks
1346  * to be allocated. this may be wrong if allocation failed.
1347  *
1348  * As pages are already locked by write_cache_pages(), we can't use it
1349  */
1350 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1351                               struct ext4_map_blocks *map)
1352 {
1353         struct pagevec pvec;
1354         unsigned long index, end;
1355         int ret = 0, err, nr_pages, i;
1356         struct inode *inode = mpd->inode;
1357         struct address_space *mapping = inode->i_mapping;
1358         loff_t size = i_size_read(inode);
1359         unsigned int len, block_start;
1360         struct buffer_head *bh, *page_bufs = NULL;
1361         int journal_data = ext4_should_journal_data(inode);
1362         sector_t pblock = 0, cur_logical = 0;
1363         struct ext4_io_submit io_submit;
1364
1365         BUG_ON(mpd->next_page <= mpd->first_page);
1366         memset(&io_submit, 0, sizeof(io_submit));
1367         /*
1368          * We need to start from the first_page to the next_page - 1
1369          * to make sure we also write the mapped dirty buffer_heads.
1370          * If we look at mpd->b_blocknr we would only be looking
1371          * at the currently mapped buffer_heads.
1372          */
1373         index = mpd->first_page;
1374         end = mpd->next_page - 1;
1375
1376         pagevec_init(&pvec, 0);
1377         while (index <= end) {
1378                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1379                 if (nr_pages == 0)
1380                         break;
1381                 for (i = 0; i < nr_pages; i++) {
1382                         int commit_write = 0, skip_page = 0;
1383                         struct page *page = pvec.pages[i];
1384
1385                         index = page->index;
1386                         if (index > end)
1387                                 break;
1388
1389                         if (index == size >> PAGE_CACHE_SHIFT)
1390                                 len = size & ~PAGE_CACHE_MASK;
1391                         else
1392                                 len = PAGE_CACHE_SIZE;
1393                         if (map) {
1394                                 cur_logical = index << (PAGE_CACHE_SHIFT -
1395                                                         inode->i_blkbits);
1396                                 pblock = map->m_pblk + (cur_logical -
1397                                                         map->m_lblk);
1398                         }
1399                         index++;
1400
1401                         BUG_ON(!PageLocked(page));
1402                         BUG_ON(PageWriteback(page));
1403
1404                         /*
1405                          * If the page does not have buffers (for
1406                          * whatever reason), try to create them using
1407                          * __block_write_begin.  If this fails,
1408                          * skip the page and move on.
1409                          */
1410                         if (!page_has_buffers(page)) {
1411                                 if (__block_write_begin(page, 0, len,
1412                                                 noalloc_get_block_write)) {
1413                                 skip_page:
1414                                         unlock_page(page);
1415                                         continue;
1416                                 }
1417                                 commit_write = 1;
1418                         }
1419
1420                         bh = page_bufs = page_buffers(page);
1421                         block_start = 0;
1422                         do {
1423                                 if (!bh)
1424                                         goto skip_page;
1425                                 if (map && (cur_logical >= map->m_lblk) &&
1426                                     (cur_logical <= (map->m_lblk +
1427                                                      (map->m_len - 1)))) {
1428                                         if (buffer_delay(bh)) {
1429                                                 clear_buffer_delay(bh);
1430                                                 bh->b_blocknr = pblock;
1431                                         }
1432                                         if (buffer_da_mapped(bh))
1433                                                 clear_buffer_da_mapped(bh);
1434                                         if (buffer_unwritten(bh) ||
1435                                             buffer_mapped(bh))
1436                                                 BUG_ON(bh->b_blocknr != pblock);
1437                                         if (map->m_flags & EXT4_MAP_UNINIT)
1438                                                 set_buffer_uninit(bh);
1439                                         clear_buffer_unwritten(bh);
1440                                 }
1441
1442                                 /*
1443                                  * skip page if block allocation undone and
1444                                  * block is dirty
1445                                  */
1446                                 if (ext4_bh_delay_or_unwritten(NULL, bh))
1447                                         skip_page = 1;
1448                                 bh = bh->b_this_page;
1449                                 block_start += bh->b_size;
1450                                 cur_logical++;
1451                                 pblock++;
1452                         } while (bh != page_bufs);
1453
1454                         if (skip_page)
1455                                 goto skip_page;
1456
1457                         if (commit_write)
1458                                 /* mark the buffer_heads as dirty & uptodate */
1459                                 block_commit_write(page, 0, len);
1460
1461                         clear_page_dirty_for_io(page);
1462                         /*
1463                          * Delalloc doesn't support data journalling,
1464                          * but eventually maybe we'll lift this
1465                          * restriction.
1466                          */
1467                         if (unlikely(journal_data && PageChecked(page)))
1468                                 err = __ext4_journalled_writepage(page, len);
1469                         else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1470                                 err = ext4_bio_write_page(&io_submit, page,
1471                                                           len, mpd->wbc);
1472                         else if (buffer_uninit(page_bufs)) {
1473                                 ext4_set_bh_endio(page_bufs, inode);
1474                                 err = block_write_full_page_endio(page,
1475                                         noalloc_get_block_write,
1476                                         mpd->wbc, ext4_end_io_buffer_write);
1477                         } else
1478                                 err = block_write_full_page(page,
1479                                         noalloc_get_block_write, mpd->wbc);
1480
1481                         if (!err)
1482                                 mpd->pages_written++;
1483                         /*
1484                          * In error case, we have to continue because
1485                          * remaining pages are still locked
1486                          */
1487                         if (ret == 0)
1488                                 ret = err;
1489                 }
1490                 pagevec_release(&pvec);
1491         }
1492         ext4_io_submit(&io_submit);
1493         return ret;
1494 }
1495
1496 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1497 {
1498         int nr_pages, i;
1499         pgoff_t index, end;
1500         struct pagevec pvec;
1501         struct inode *inode = mpd->inode;
1502         struct address_space *mapping = inode->i_mapping;
1503
1504         index = mpd->first_page;
1505         end   = mpd->next_page - 1;
1506         while (index <= end) {
1507                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1508                 if (nr_pages == 0)
1509                         break;
1510                 for (i = 0; i < nr_pages; i++) {
1511                         struct page *page = pvec.pages[i];
1512                         if (page->index > end)
1513                                 break;
1514                         BUG_ON(!PageLocked(page));
1515                         BUG_ON(PageWriteback(page));
1516                         block_invalidatepage(page, 0);
1517                         ClearPageUptodate(page);
1518                         unlock_page(page);
1519                 }
1520                 index = pvec.pages[nr_pages - 1]->index + 1;
1521                 pagevec_release(&pvec);
1522         }
1523         return;
1524 }
1525
1526 static void ext4_print_free_blocks(struct inode *inode)
1527 {
1528         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1529         struct super_block *sb = inode->i_sb;
1530
1531         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1532                EXT4_C2B(EXT4_SB(inode->i_sb),
1533                         ext4_count_free_clusters(inode->i_sb)));
1534         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1535         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1536                (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1537                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1538         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1539                (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1540                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1541         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1542         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1543                  EXT4_I(inode)->i_reserved_data_blocks);
1544         ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1545                EXT4_I(inode)->i_reserved_meta_blocks);
1546         return;
1547 }
1548
1549 /*
1550  * mpage_da_map_and_submit - go through given space, map them
1551  *       if necessary, and then submit them for I/O
1552  *
1553  * @mpd - bh describing space
1554  *
1555  * The function skips space we know is already mapped to disk blocks.
1556  *
1557  */
1558 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1559 {
1560         int err, blks, get_blocks_flags;
1561         struct ext4_map_blocks map, *mapp = NULL;
1562         sector_t next = mpd->b_blocknr;
1563         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1564         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1565         handle_t *handle = NULL;
1566
1567         /*
1568          * If the blocks are mapped already, or we couldn't accumulate
1569          * any blocks, then proceed immediately to the submission stage.
1570          */
1571         if ((mpd->b_size == 0) ||
1572             ((mpd->b_state  & (1 << BH_Mapped)) &&
1573              !(mpd->b_state & (1 << BH_Delay)) &&
1574              !(mpd->b_state & (1 << BH_Unwritten))))
1575                 goto submit_io;
1576
1577         handle = ext4_journal_current_handle();
1578         BUG_ON(!handle);
1579
1580         /*
1581          * Call ext4_map_blocks() to allocate any delayed allocation
1582          * blocks, or to convert an uninitialized extent to be
1583          * initialized (in the case where we have written into
1584          * one or more preallocated blocks).
1585          *
1586          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1587          * indicate that we are on the delayed allocation path.  This
1588          * affects functions in many different parts of the allocation
1589          * call path.  This flag exists primarily because we don't
1590          * want to change *many* call functions, so ext4_map_blocks()
1591          * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1592          * inode's allocation semaphore is taken.
1593          *
1594          * If the blocks in questions were delalloc blocks, set
1595          * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1596          * variables are updated after the blocks have been allocated.
1597          */
1598         map.m_lblk = next;
1599         map.m_len = max_blocks;
1600         get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1601         if (ext4_should_dioread_nolock(mpd->inode))
1602                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1603         if (mpd->b_state & (1 << BH_Delay))
1604                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1605
1606         blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1607         if (blks < 0) {
1608                 struct super_block *sb = mpd->inode->i_sb;
1609
1610                 err = blks;
1611                 /*
1612                  * If get block returns EAGAIN or ENOSPC and there
1613                  * appears to be free blocks we will just let
1614                  * mpage_da_submit_io() unlock all of the pages.
1615                  */
1616                 if (err == -EAGAIN)
1617                         goto submit_io;
1618
1619                 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1620                         mpd->retval = err;
1621                         goto submit_io;
1622                 }
1623
1624                 /*
1625                  * get block failure will cause us to loop in
1626                  * writepages, because a_ops->writepage won't be able
1627                  * to make progress. The page will be redirtied by
1628                  * writepage and writepages will again try to write
1629                  * the same.
1630                  */
1631                 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1632                         ext4_msg(sb, KERN_CRIT,
1633                                  "delayed block allocation failed for inode %lu "
1634                                  "at logical offset %llu with max blocks %zd "
1635                                  "with error %d", mpd->inode->i_ino,
1636                                  (unsigned long long) next,
1637                                  mpd->b_size >> mpd->inode->i_blkbits, err);
1638                         ext4_msg(sb, KERN_CRIT,
1639                                 "This should not happen!! Data will be lost\n");
1640                         if (err == -ENOSPC)
1641                                 ext4_print_free_blocks(mpd->inode);
1642                 }
1643                 /* invalidate all the pages */
1644                 ext4_da_block_invalidatepages(mpd);
1645
1646                 /* Mark this page range as having been completed */
1647                 mpd->io_done = 1;
1648                 return;
1649         }
1650         BUG_ON(blks == 0);
1651
1652         mapp = &map;
1653         if (map.m_flags & EXT4_MAP_NEW) {
1654                 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1655                 int i;
1656
1657                 for (i = 0; i < map.m_len; i++)
1658                         unmap_underlying_metadata(bdev, map.m_pblk + i);
1659
1660                 if (ext4_should_order_data(mpd->inode)) {
1661                         err = ext4_jbd2_file_inode(handle, mpd->inode);
1662                         if (err) {
1663                                 /* Only if the journal is aborted */
1664                                 mpd->retval = err;
1665                                 goto submit_io;
1666                         }
1667                 }
1668         }
1669
1670         /*
1671          * Update on-disk size along with block allocation.
1672          */
1673         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1674         if (disksize > i_size_read(mpd->inode))
1675                 disksize = i_size_read(mpd->inode);
1676         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1677                 ext4_update_i_disksize(mpd->inode, disksize);
1678                 err = ext4_mark_inode_dirty(handle, mpd->inode);
1679                 if (err)
1680                         ext4_error(mpd->inode->i_sb,
1681                                    "Failed to mark inode %lu dirty",
1682                                    mpd->inode->i_ino);
1683         }
1684
1685 submit_io:
1686         mpage_da_submit_io(mpd, mapp);
1687         mpd->io_done = 1;
1688 }
1689
1690 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1691                 (1 << BH_Delay) | (1 << BH_Unwritten))
1692
1693 /*
1694  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1695  *
1696  * @mpd->lbh - extent of blocks
1697  * @logical - logical number of the block in the file
1698  * @bh - bh of the block (used to access block's state)
1699  *
1700  * the function is used to collect contig. blocks in same state
1701  */
1702 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1703                                    sector_t logical, size_t b_size,
1704                                    unsigned long b_state)
1705 {
1706         sector_t next;
1707         int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1708
1709         /*
1710          * XXX Don't go larger than mballoc is willing to allocate
1711          * This is a stopgap solution.  We eventually need to fold
1712          * mpage_da_submit_io() into this function and then call
1713          * ext4_map_blocks() multiple times in a loop
1714          */
1715         if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1716                 goto flush_it;
1717
1718         /* check if thereserved journal credits might overflow */
1719         if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1720                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1721                         /*
1722                          * With non-extent format we are limited by the journal
1723                          * credit available.  Total credit needed to insert
1724                          * nrblocks contiguous blocks is dependent on the
1725                          * nrblocks.  So limit nrblocks.
1726                          */
1727                         goto flush_it;
1728                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1729                                 EXT4_MAX_TRANS_DATA) {
1730                         /*
1731                          * Adding the new buffer_head would make it cross the
1732                          * allowed limit for which we have journal credit
1733                          * reserved. So limit the new bh->b_size
1734                          */
1735                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1736                                                 mpd->inode->i_blkbits;
1737                         /* we will do mpage_da_submit_io in the next loop */
1738                 }
1739         }
1740         /*
1741          * First block in the extent
1742          */
1743         if (mpd->b_size == 0) {
1744                 mpd->b_blocknr = logical;
1745                 mpd->b_size = b_size;
1746                 mpd->b_state = b_state & BH_FLAGS;
1747                 return;
1748         }
1749
1750         next = mpd->b_blocknr + nrblocks;
1751         /*
1752          * Can we merge the block to our big extent?
1753          */
1754         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1755                 mpd->b_size += b_size;
1756                 return;
1757         }
1758
1759 flush_it:
1760         /*
1761          * We couldn't merge the block to our extent, so we
1762          * need to flush current  extent and start new one
1763          */
1764         mpage_da_map_and_submit(mpd);
1765         return;
1766 }
1767
1768 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1769 {
1770         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1771 }
1772
1773 /*
1774  * This function is grabs code from the very beginning of
1775  * ext4_map_blocks, but assumes that the caller is from delayed write
1776  * time. This function looks up the requested blocks and sets the
1777  * buffer delay bit under the protection of i_data_sem.
1778  */
1779 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1780                               struct ext4_map_blocks *map,
1781                               struct buffer_head *bh)
1782 {
1783         int retval;
1784         sector_t invalid_block = ~((sector_t) 0xffff);
1785
1786         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1787                 invalid_block = ~0;
1788
1789         map->m_flags = 0;
1790         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1791                   "logical block %lu\n", inode->i_ino, map->m_len,
1792                   (unsigned long) map->m_lblk);
1793         /*
1794          * Try to see if we can get the block without requesting a new
1795          * file system block.
1796          */
1797         down_read((&EXT4_I(inode)->i_data_sem));
1798         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1799                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1800         else
1801                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1802
1803         if (retval == 0) {
1804                 /*
1805                  * XXX: __block_prepare_write() unmaps passed block,
1806                  * is it OK?
1807                  */
1808                 /* If the block was allocated from previously allocated cluster,
1809                  * then we dont need to reserve it again. */
1810                 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1811                         retval = ext4_da_reserve_space(inode, iblock);
1812                         if (retval)
1813                                 /* not enough space to reserve */
1814                                 goto out_unlock;
1815                 }
1816
1817                 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1818                  * and it should not appear on the bh->b_state.
1819                  */
1820                 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1821
1822                 map_bh(bh, inode->i_sb, invalid_block);
1823                 set_buffer_new(bh);
1824                 set_buffer_delay(bh);
1825         }
1826
1827 out_unlock:
1828         up_read((&EXT4_I(inode)->i_data_sem));
1829
1830         return retval;
1831 }
1832
1833 /*
1834  * This is a special get_blocks_t callback which is used by
1835  * ext4_da_write_begin().  It will either return mapped block or
1836  * reserve space for a single block.
1837  *
1838  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1839  * We also have b_blocknr = -1 and b_bdev initialized properly
1840  *
1841  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1842  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1843  * initialized properly.
1844  */
1845 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1846                                   struct buffer_head *bh, int create)
1847 {
1848         struct ext4_map_blocks map;
1849         int ret = 0;
1850
1851         BUG_ON(create == 0);
1852         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1853
1854         map.m_lblk = iblock;
1855         map.m_len = 1;
1856
1857         /*
1858          * first, we need to know whether the block is allocated already
1859          * preallocated blocks are unmapped but should treated
1860          * the same as allocated blocks.
1861          */
1862         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1863         if (ret <= 0)
1864                 return ret;
1865
1866         map_bh(bh, inode->i_sb, map.m_pblk);
1867         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1868
1869         if (buffer_unwritten(bh)) {
1870                 /* A delayed write to unwritten bh should be marked
1871                  * new and mapped.  Mapped ensures that we don't do
1872                  * get_block multiple times when we write to the same
1873                  * offset and new ensures that we do proper zero out
1874                  * for partial write.
1875                  */
1876                 set_buffer_new(bh);
1877                 set_buffer_mapped(bh);
1878         }
1879         return 0;
1880 }
1881
1882 /*
1883  * This function is used as a standard get_block_t calback function
1884  * when there is no desire to allocate any blocks.  It is used as a
1885  * callback function for block_write_begin() and block_write_full_page().
1886  * These functions should only try to map a single block at a time.
1887  *
1888  * Since this function doesn't do block allocations even if the caller
1889  * requests it by passing in create=1, it is critically important that
1890  * any caller checks to make sure that any buffer heads are returned
1891  * by this function are either all already mapped or marked for
1892  * delayed allocation before calling  block_write_full_page().  Otherwise,
1893  * b_blocknr could be left unitialized, and the page write functions will
1894  * be taken by surprise.
1895  */
1896 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1897                                    struct buffer_head *bh_result, int create)
1898 {
1899         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1900         return _ext4_get_block(inode, iblock, bh_result, 0);
1901 }
1902
1903 static int bget_one(handle_t *handle, struct buffer_head *bh)
1904 {
1905         get_bh(bh);
1906         return 0;
1907 }
1908
1909 static int bput_one(handle_t *handle, struct buffer_head *bh)
1910 {
1911         put_bh(bh);
1912         return 0;
1913 }
1914
1915 static int __ext4_journalled_writepage(struct page *page,
1916                                        unsigned int len)
1917 {
1918         struct address_space *mapping = page->mapping;
1919         struct inode *inode = mapping->host;
1920         struct buffer_head *page_bufs;
1921         handle_t *handle = NULL;
1922         int ret = 0;
1923         int err;
1924
1925         ClearPageChecked(page);
1926         page_bufs = page_buffers(page);
1927         BUG_ON(!page_bufs);
1928         walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
1929         /* As soon as we unlock the page, it can go away, but we have
1930          * references to buffers so we are safe */
1931         unlock_page(page);
1932
1933         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1934         if (IS_ERR(handle)) {
1935                 ret = PTR_ERR(handle);
1936                 goto out;
1937         }
1938
1939         BUG_ON(!ext4_handle_valid(handle));
1940
1941         ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1942                                 do_journal_get_write_access);
1943
1944         err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1945                                 write_end_fn);
1946         if (ret == 0)
1947                 ret = err;
1948         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1949         err = ext4_journal_stop(handle);
1950         if (!ret)
1951                 ret = err;
1952
1953         walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
1954         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1955 out:
1956         return ret;
1957 }
1958
1959 /*
1960  * Note that we don't need to start a transaction unless we're journaling data
1961  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1962  * need to file the inode to the transaction's list in ordered mode because if
1963  * we are writing back data added by write(), the inode is already there and if
1964  * we are writing back data modified via mmap(), no one guarantees in which
1965  * transaction the data will hit the disk. In case we are journaling data, we
1966  * cannot start transaction directly because transaction start ranks above page
1967  * lock so we have to do some magic.
1968  *
1969  * This function can get called via...
1970  *   - ext4_da_writepages after taking page lock (have journal handle)
1971  *   - journal_submit_inode_data_buffers (no journal handle)
1972  *   - shrink_page_list via pdflush (no journal handle)
1973  *   - grab_page_cache when doing write_begin (have journal handle)
1974  *
1975  * We don't do any block allocation in this function. If we have page with
1976  * multiple blocks we need to write those buffer_heads that are mapped. This
1977  * is important for mmaped based write. So if we do with blocksize 1K
1978  * truncate(f, 1024);
1979  * a = mmap(f, 0, 4096);
1980  * a[0] = 'a';
1981  * truncate(f, 4096);
1982  * we have in the page first buffer_head mapped via page_mkwrite call back
1983  * but other buffer_heads would be unmapped but dirty (dirty done via the
1984  * do_wp_page). So writepage should write the first block. If we modify
1985  * the mmap area beyond 1024 we will again get a page_fault and the
1986  * page_mkwrite callback will do the block allocation and mark the
1987  * buffer_heads mapped.
1988  *
1989  * We redirty the page if we have any buffer_heads that is either delay or
1990  * unwritten in the page.
1991  *
1992  * We can get recursively called as show below.
1993  *
1994  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1995  *              ext4_writepage()
1996  *
1997  * But since we don't do any block allocation we should not deadlock.
1998  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1999  */
2000 static int ext4_writepage(struct page *page,
2001                           struct writeback_control *wbc)
2002 {
2003         int ret = 0, commit_write = 0;
2004         loff_t size;
2005         unsigned int len;
2006         struct buffer_head *page_bufs = NULL;
2007         struct inode *inode = page->mapping->host;
2008
2009         trace_ext4_writepage(page);
2010         size = i_size_read(inode);
2011         if (page->index == size >> PAGE_CACHE_SHIFT)
2012                 len = size & ~PAGE_CACHE_MASK;
2013         else
2014                 len = PAGE_CACHE_SIZE;
2015
2016         /*
2017          * If the page does not have buffers (for whatever reason),
2018          * try to create them using __block_write_begin.  If this
2019          * fails, redirty the page and move on.
2020          */
2021         if (!page_has_buffers(page)) {
2022                 if (__block_write_begin(page, 0, len,
2023                                         noalloc_get_block_write)) {
2024                 redirty_page:
2025                         redirty_page_for_writepage(wbc, page);
2026                         unlock_page(page);
2027                         return 0;
2028                 }
2029                 commit_write = 1;
2030         }
2031         page_bufs = page_buffers(page);
2032         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2033                               ext4_bh_delay_or_unwritten)) {
2034                 /*
2035                  * We don't want to do block allocation, so redirty
2036                  * the page and return.  We may reach here when we do
2037                  * a journal commit via journal_submit_inode_data_buffers.
2038                  * We can also reach here via shrink_page_list but it
2039                  * should never be for direct reclaim so warn if that
2040                  * happens
2041                  */
2042                 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
2043                                                                 PF_MEMALLOC);
2044                 goto redirty_page;
2045         }
2046         if (commit_write)
2047                 /* now mark the buffer_heads as dirty and uptodate */
2048                 block_commit_write(page, 0, len);
2049
2050         if (PageChecked(page) && ext4_should_journal_data(inode))
2051                 /*
2052                  * It's mmapped pagecache.  Add buffers and journal it.  There
2053                  * doesn't seem much point in redirtying the page here.
2054                  */
2055                 return __ext4_journalled_writepage(page, len);
2056
2057         if (buffer_uninit(page_bufs)) {
2058                 ext4_set_bh_endio(page_bufs, inode);
2059                 ret = block_write_full_page_endio(page, noalloc_get_block_write,
2060                                             wbc, ext4_end_io_buffer_write);
2061         } else
2062                 ret = block_write_full_page(page, noalloc_get_block_write,
2063                                             wbc);
2064
2065         return ret;
2066 }
2067
2068 /*
2069  * This is called via ext4_da_writepages() to
2070  * calculate the total number of credits to reserve to fit
2071  * a single extent allocation into a single transaction,
2072  * ext4_da_writpeages() will loop calling this before
2073  * the block allocation.
2074  */
2075
2076 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2077 {
2078         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2079
2080         /*
2081          * With non-extent format the journal credit needed to
2082          * insert nrblocks contiguous block is dependent on
2083          * number of contiguous block. So we will limit
2084          * number of contiguous block to a sane value
2085          */
2086         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2087             (max_blocks > EXT4_MAX_TRANS_DATA))
2088                 max_blocks = EXT4_MAX_TRANS_DATA;
2089
2090         return ext4_chunk_trans_blocks(inode, max_blocks);
2091 }
2092
2093 /*
2094  * write_cache_pages_da - walk the list of dirty pages of the given
2095  * address space and accumulate pages that need writing, and call
2096  * mpage_da_map_and_submit to map a single contiguous memory region
2097  * and then write them.
2098  */
2099 static int write_cache_pages_da(struct address_space *mapping,
2100                                 struct writeback_control *wbc,
2101                                 struct mpage_da_data *mpd,
2102                                 pgoff_t *done_index)
2103 {
2104         struct buffer_head      *bh, *head;
2105         struct inode            *inode = mapping->host;
2106         struct pagevec          pvec;
2107         unsigned int            nr_pages;
2108         sector_t                logical;
2109         pgoff_t                 index, end;
2110         long                    nr_to_write = wbc->nr_to_write;
2111         int                     i, tag, ret = 0;
2112
2113         memset(mpd, 0, sizeof(struct mpage_da_data));
2114         mpd->wbc = wbc;
2115         mpd->inode = inode;
2116         pagevec_init(&pvec, 0);
2117         index = wbc->range_start >> PAGE_CACHE_SHIFT;
2118         end = wbc->range_end >> PAGE_CACHE_SHIFT;
2119
2120         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2121                 tag = PAGECACHE_TAG_TOWRITE;
2122         else
2123                 tag = PAGECACHE_TAG_DIRTY;
2124
2125         *done_index = index;
2126         while (index <= end) {
2127                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2128                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2129                 if (nr_pages == 0)
2130                         return 0;
2131
2132                 for (i = 0; i < nr_pages; i++) {
2133                         struct page *page = pvec.pages[i];
2134
2135                         /*
2136                          * At this point, the page may be truncated or
2137                          * invalidated (changing page->mapping to NULL), or
2138                          * even swizzled back from swapper_space to tmpfs file
2139                          * mapping. However, page->index will not change
2140                          * because we have a reference on the page.
2141                          */
2142                         if (page->index > end)
2143                                 goto out;
2144
2145                         *done_index = page->index + 1;
2146
2147                         /*
2148                          * If we can't merge this page, and we have
2149                          * accumulated an contiguous region, write it
2150                          */
2151                         if ((mpd->next_page != page->index) &&
2152                             (mpd->next_page != mpd->first_page)) {
2153                                 mpage_da_map_and_submit(mpd);
2154                                 goto ret_extent_tail;
2155                         }
2156
2157                         lock_page(page);
2158
2159                         /*
2160                          * If the page is no longer dirty, or its
2161                          * mapping no longer corresponds to inode we
2162                          * are writing (which means it has been
2163                          * truncated or invalidated), or the page is
2164                          * already under writeback and we are not
2165                          * doing a data integrity writeback, skip the page
2166                          */
2167                         if (!PageDirty(page) ||
2168                             (PageWriteback(page) &&
2169                              (wbc->sync_mode == WB_SYNC_NONE)) ||
2170                             unlikely(page->mapping != mapping)) {
2171                                 unlock_page(page);
2172                                 continue;
2173                         }
2174
2175                         wait_on_page_writeback(page);
2176                         BUG_ON(PageWriteback(page));
2177
2178                         if (mpd->next_page != page->index)
2179                                 mpd->first_page = page->index;
2180                         mpd->next_page = page->index + 1;
2181                         logical = (sector_t) page->index <<
2182                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2183
2184                         if (!page_has_buffers(page)) {
2185                                 mpage_add_bh_to_extent(mpd, logical,
2186                                                        PAGE_CACHE_SIZE,
2187                                                        (1 << BH_Dirty) | (1 << BH_Uptodate));
2188                                 if (mpd->io_done)
2189                                         goto ret_extent_tail;
2190                         } else {
2191                                 /*
2192                                  * Page with regular buffer heads,
2193                                  * just add all dirty ones
2194                                  */
2195                                 head = page_buffers(page);
2196                                 bh = head;
2197                                 do {
2198                                         BUG_ON(buffer_locked(bh));
2199                                         /*
2200                                          * We need to try to allocate
2201                                          * unmapped blocks in the same page.
2202                                          * Otherwise we won't make progress
2203                                          * with the page in ext4_writepage
2204                                          */
2205                                         if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2206                                                 mpage_add_bh_to_extent(mpd, logical,
2207                                                                        bh->b_size,
2208                                                                        bh->b_state);
2209                                                 if (mpd->io_done)
2210                                                         goto ret_extent_tail;
2211                                         } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2212                                                 /*
2213                                                  * mapped dirty buffer. We need
2214                                                  * to update the b_state
2215                                                  * because we look at b_state
2216                                                  * in mpage_da_map_blocks.  We
2217                                                  * don't update b_size because
2218                                                  * if we find an unmapped
2219                                                  * buffer_head later we need to
2220                                                  * use the b_state flag of that
2221                                                  * buffer_head.
2222                                                  */
2223                                                 if (mpd->b_size == 0)
2224                                                         mpd->b_state = bh->b_state & BH_FLAGS;
2225                                         }
2226                                         logical++;
2227                                 } while ((bh = bh->b_this_page) != head);
2228                         }
2229
2230                         if (nr_to_write > 0) {
2231                                 nr_to_write--;
2232                                 if (nr_to_write == 0 &&
2233                                     wbc->sync_mode == WB_SYNC_NONE)
2234                                         /*
2235                                          * We stop writing back only if we are
2236                                          * not doing integrity sync. In case of
2237                                          * integrity sync we have to keep going
2238                                          * because someone may be concurrently
2239                                          * dirtying pages, and we might have
2240                                          * synced a lot of newly appeared dirty
2241                                          * pages, but have not synced all of the
2242                                          * old dirty pages.
2243                                          */
2244                                         goto out;
2245                         }
2246                 }
2247                 pagevec_release(&pvec);
2248                 cond_resched();
2249         }
2250         return 0;
2251 ret_extent_tail:
2252         ret = MPAGE_DA_EXTENT_TAIL;
2253 out:
2254         pagevec_release(&pvec);
2255         cond_resched();
2256         return ret;
2257 }
2258
2259
2260 static int ext4_da_writepages(struct address_space *mapping,
2261                               struct writeback_control *wbc)
2262 {
2263         pgoff_t index;
2264         int range_whole = 0;
2265         handle_t *handle = NULL;
2266         struct mpage_da_data mpd;
2267         struct inode *inode = mapping->host;
2268         int pages_written = 0;
2269         unsigned int max_pages;
2270         int range_cyclic, cycled = 1, io_done = 0;
2271         int needed_blocks, ret = 0;
2272         long desired_nr_to_write, nr_to_writebump = 0;
2273         loff_t range_start = wbc->range_start;
2274         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2275         pgoff_t done_index = 0;
2276         pgoff_t end;
2277         struct blk_plug plug;
2278
2279         trace_ext4_da_writepages(inode, wbc);
2280
2281         /*
2282          * No pages to write? This is mainly a kludge to avoid starting
2283          * a transaction for special inodes like journal inode on last iput()
2284          * because that could violate lock ordering on umount
2285          */
2286         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2287                 return 0;
2288
2289         /*
2290          * If the filesystem has aborted, it is read-only, so return
2291          * right away instead of dumping stack traces later on that
2292          * will obscure the real source of the problem.  We test
2293          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2294          * the latter could be true if the filesystem is mounted
2295          * read-only, and in that case, ext4_da_writepages should
2296          * *never* be called, so if that ever happens, we would want
2297          * the stack trace.
2298          */
2299         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2300                 return -EROFS;
2301
2302         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2303                 range_whole = 1;
2304
2305         range_cyclic = wbc->range_cyclic;
2306         if (wbc->range_cyclic) {
2307                 index = mapping->writeback_index;
2308                 if (index)
2309                         cycled = 0;
2310                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2311                 wbc->range_end  = LLONG_MAX;
2312                 wbc->range_cyclic = 0;
2313                 end = -1;
2314         } else {
2315                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2316                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2317         }
2318
2319         /*
2320          * This works around two forms of stupidity.  The first is in
2321          * the writeback code, which caps the maximum number of pages
2322          * written to be 1024 pages.  This is wrong on multiple
2323          * levels; different architectues have a different page size,
2324          * which changes the maximum amount of data which gets
2325          * written.  Secondly, 4 megabytes is way too small.  XFS
2326          * forces this value to be 16 megabytes by multiplying
2327          * nr_to_write parameter by four, and then relies on its
2328          * allocator to allocate larger extents to make them
2329          * contiguous.  Unfortunately this brings us to the second
2330          * stupidity, which is that ext4's mballoc code only allocates
2331          * at most 2048 blocks.  So we force contiguous writes up to
2332          * the number of dirty blocks in the inode, or
2333          * sbi->max_writeback_mb_bump whichever is smaller.
2334          */
2335         max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2336         if (!range_cyclic && range_whole) {
2337                 if (wbc->nr_to_write == LONG_MAX)
2338                         desired_nr_to_write = wbc->nr_to_write;
2339                 else
2340                         desired_nr_to_write = wbc->nr_to_write * 8;
2341         } else
2342                 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2343                                                            max_pages);
2344         if (desired_nr_to_write > max_pages)
2345                 desired_nr_to_write = max_pages;
2346
2347         if (wbc->nr_to_write < desired_nr_to_write) {
2348                 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2349                 wbc->nr_to_write = desired_nr_to_write;
2350         }
2351
2352 retry:
2353         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2354                 tag_pages_for_writeback(mapping, index, end);
2355
2356         blk_start_plug(&plug);
2357         while (!ret && wbc->nr_to_write > 0) {
2358
2359                 /*
2360                  * we  insert one extent at a time. So we need
2361                  * credit needed for single extent allocation.
2362                  * journalled mode is currently not supported
2363                  * by delalloc
2364                  */
2365                 BUG_ON(ext4_should_journal_data(inode));
2366                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2367
2368                 /* start a new transaction*/
2369                 handle = ext4_journal_start(inode, needed_blocks);
2370                 if (IS_ERR(handle)) {
2371                         ret = PTR_ERR(handle);
2372                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2373                                "%ld pages, ino %lu; err %d", __func__,
2374                                 wbc->nr_to_write, inode->i_ino, ret);
2375                         blk_finish_plug(&plug);
2376                         goto out_writepages;
2377                 }
2378
2379                 /*
2380                  * Now call write_cache_pages_da() to find the next
2381                  * contiguous region of logical blocks that need
2382                  * blocks to be allocated by ext4 and submit them.
2383                  */
2384                 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
2385                 /*
2386                  * If we have a contiguous extent of pages and we
2387                  * haven't done the I/O yet, map the blocks and submit
2388                  * them for I/O.
2389                  */
2390                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2391                         mpage_da_map_and_submit(&mpd);
2392                         ret = MPAGE_DA_EXTENT_TAIL;
2393                 }
2394                 trace_ext4_da_write_pages(inode, &mpd);
2395                 wbc->nr_to_write -= mpd.pages_written;
2396
2397                 ext4_journal_stop(handle);
2398
2399                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2400                         /* commit the transaction which would
2401                          * free blocks released in the transaction
2402                          * and try again
2403                          */
2404                         jbd2_journal_force_commit_nested(sbi->s_journal);
2405                         ret = 0;
2406                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2407                         /*
2408                          * Got one extent now try with rest of the pages.
2409                          * If mpd.retval is set -EIO, journal is aborted.
2410                          * So we don't need to write any more.
2411                          */
2412                         pages_written += mpd.pages_written;
2413                         ret = mpd.retval;
2414                         io_done = 1;
2415                 } else if (wbc->nr_to_write)
2416                         /*
2417                          * There is no more writeout needed
2418                          * or we requested for a noblocking writeout
2419                          * and we found the device congested
2420                          */
2421                         break;
2422         }
2423         blk_finish_plug(&plug);
2424         if (!io_done && !cycled) {
2425                 cycled = 1;
2426                 index = 0;
2427                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2428                 wbc->range_end  = mapping->writeback_index - 1;
2429                 goto retry;
2430         }
2431
2432         /* Update index */
2433         wbc->range_cyclic = range_cyclic;
2434         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2435                 /*
2436                  * set the writeback_index so that range_cyclic
2437                  * mode will write it back later
2438                  */
2439                 mapping->writeback_index = done_index;
2440
2441 out_writepages:
2442         wbc->nr_to_write -= nr_to_writebump;
2443         wbc->range_start = range_start;
2444         trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2445         return ret;
2446 }
2447
2448 #define FALL_BACK_TO_NONDELALLOC 1
2449 static int ext4_nonda_switch(struct super_block *sb)
2450 {
2451         s64 free_blocks, dirty_blocks;
2452         struct ext4_sb_info *sbi = EXT4_SB(sb);
2453
2454         /*
2455          * switch to non delalloc mode if we are running low
2456          * on free block. The free block accounting via percpu
2457          * counters can get slightly wrong with percpu_counter_batch getting
2458          * accumulated on each CPU without updating global counters
2459          * Delalloc need an accurate free block accounting. So switch
2460          * to non delalloc when we are near to error range.
2461          */
2462         free_blocks  = EXT4_C2B(sbi,
2463                 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2464         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2465         /*
2466          * Start pushing delalloc when 1/2 of free blocks are dirty.
2467          */
2468         if (dirty_blocks && (free_blocks < 2 * dirty_blocks) &&
2469             !writeback_in_progress(sb->s_bdi) &&
2470             down_read_trylock(&sb->s_umount)) {
2471                 writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2472                 up_read(&sb->s_umount);
2473         }
2474
2475         if (2 * free_blocks < 3 * dirty_blocks ||
2476                 free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2477                 /*
2478                  * free block count is less than 150% of dirty blocks
2479                  * or free blocks is less than watermark
2480                  */
2481                 return 1;
2482         }
2483         return 0;
2484 }
2485
2486 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2487                                loff_t pos, unsigned len, unsigned flags,
2488                                struct page **pagep, void **fsdata)
2489 {
2490         int ret, retries = 0;
2491         struct page *page;
2492         pgoff_t index;
2493         struct inode *inode = mapping->host;
2494         handle_t *handle;
2495
2496         index = pos >> PAGE_CACHE_SHIFT;
2497
2498         if (ext4_nonda_switch(inode->i_sb)) {
2499                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2500                 return ext4_write_begin(file, mapping, pos,
2501                                         len, flags, pagep, fsdata);
2502         }
2503         *fsdata = (void *)0;
2504         trace_ext4_da_write_begin(inode, pos, len, flags);
2505 retry:
2506         /*
2507          * With delayed allocation, we don't log the i_disksize update
2508          * if there is delayed block allocation. But we still need
2509          * to journalling the i_disksize update if writes to the end
2510          * of file which has an already mapped buffer.
2511          */
2512         handle = ext4_journal_start(inode, 1);
2513         if (IS_ERR(handle)) {
2514                 ret = PTR_ERR(handle);
2515                 goto out;
2516         }
2517         /* We cannot recurse into the filesystem as the transaction is already
2518          * started */
2519         flags |= AOP_FLAG_NOFS;
2520
2521         page = grab_cache_page_write_begin(mapping, index, flags);
2522         if (!page) {
2523                 ext4_journal_stop(handle);
2524                 ret = -ENOMEM;
2525                 goto out;
2526         }
2527         *pagep = page;
2528
2529         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2530         if (ret < 0) {
2531                 unlock_page(page);
2532                 ext4_journal_stop(handle);
2533                 page_cache_release(page);
2534                 /*
2535                  * block_write_begin may have instantiated a few blocks
2536                  * outside i_size.  Trim these off again. Don't need
2537                  * i_size_read because we hold i_mutex.
2538                  */
2539                 if (pos + len > inode->i_size)
2540                         ext4_truncate_failed_write(inode);
2541         }
2542
2543         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2544                 goto retry;
2545 out:
2546         return ret;
2547 }
2548
2549 /*
2550  * Check if we should update i_disksize
2551  * when write to the end of file but not require block allocation
2552  */
2553 static int ext4_da_should_update_i_disksize(struct page *page,
2554                                             unsigned long offset)
2555 {
2556         struct buffer_head *bh;
2557         struct inode *inode = page->mapping->host;
2558         unsigned int idx;
2559         int i;
2560
2561         bh = page_buffers(page);
2562         idx = offset >> inode->i_blkbits;
2563
2564         for (i = 0; i < idx; i++)
2565                 bh = bh->b_this_page;
2566
2567         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2568                 return 0;
2569         return 1;
2570 }
2571
2572 static int ext4_da_write_end(struct file *file,
2573                              struct address_space *mapping,
2574                              loff_t pos, unsigned len, unsigned copied,
2575                              struct page *page, void *fsdata)
2576 {
2577         struct inode *inode = mapping->host;
2578         int ret = 0, ret2;
2579         handle_t *handle = ext4_journal_current_handle();
2580         loff_t new_i_size;
2581         unsigned long start, end;
2582         int write_mode = (int)(unsigned long)fsdata;
2583
2584         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2585                 switch (ext4_inode_journal_mode(inode)) {
2586                 case EXT4_INODE_ORDERED_DATA_MODE:
2587                         return ext4_ordered_write_end(file, mapping, pos,
2588                                         len, copied, page, fsdata);
2589                 case EXT4_INODE_WRITEBACK_DATA_MODE:
2590                         return ext4_writeback_write_end(file, mapping, pos,
2591                                         len, copied, page, fsdata);
2592                 default:
2593                         BUG();
2594                 }
2595         }
2596
2597         trace_ext4_da_write_end(inode, pos, len, copied);
2598         start = pos & (PAGE_CACHE_SIZE - 1);
2599         end = start + copied - 1;
2600
2601         /*
2602          * generic_write_end() will run mark_inode_dirty() if i_size
2603          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2604          * into that.
2605          */
2606
2607         new_i_size = pos + copied;
2608         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2609                 if (ext4_da_should_update_i_disksize(page, end)) {
2610                         down_write(&EXT4_I(inode)->i_data_sem);
2611                         if (new_i_size > EXT4_I(inode)->i_disksize) {
2612                                 /*
2613                                  * Updating i_disksize when extending file
2614                                  * without needing block allocation
2615                                  */
2616                                 if (ext4_should_order_data(inode))
2617                                         ret = ext4_jbd2_file_inode(handle,
2618                                                                    inode);
2619
2620                                 EXT4_I(inode)->i_disksize = new_i_size;
2621                         }
2622                         up_write(&EXT4_I(inode)->i_data_sem);
2623                         /* We need to mark inode dirty even if
2624                          * new_i_size is less that inode->i_size
2625                          * bu greater than i_disksize.(hint delalloc)
2626                          */
2627                         ext4_mark_inode_dirty(handle, inode);
2628                 }
2629         }
2630         ret2 = generic_write_end(file, mapping, pos, len, copied,
2631                                                         page, fsdata);
2632         copied = ret2;
2633         if (ret2 < 0)
2634                 ret = ret2;
2635         ret2 = ext4_journal_stop(handle);
2636         if (!ret)
2637                 ret = ret2;
2638
2639         return ret ? ret : copied;
2640 }
2641
2642 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2643 {
2644         /*
2645          * Drop reserved blocks
2646          */
2647         BUG_ON(!PageLocked(page));
2648         if (!page_has_buffers(page))
2649                 goto out;
2650
2651         ext4_da_page_release_reservation(page, offset);
2652
2653 out:
2654         ext4_invalidatepage(page, offset);
2655
2656         return;
2657 }
2658
2659 /*
2660  * Force all delayed allocation blocks to be allocated for a given inode.
2661  */
2662 int ext4_alloc_da_blocks(struct inode *inode)
2663 {
2664         trace_ext4_alloc_da_blocks(inode);
2665
2666         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2667             !EXT4_I(inode)->i_reserved_meta_blocks)
2668                 return 0;
2669
2670         /*
2671          * We do something simple for now.  The filemap_flush() will
2672          * also start triggering a write of the data blocks, which is
2673          * not strictly speaking necessary (and for users of
2674          * laptop_mode, not even desirable).  However, to do otherwise
2675          * would require replicating code paths in:
2676          *
2677          * ext4_da_writepages() ->
2678          *    write_cache_pages() ---> (via passed in callback function)
2679          *        __mpage_da_writepage() -->
2680          *           mpage_add_bh_to_extent()
2681          *           mpage_da_map_blocks()
2682          *
2683          * The problem is that write_cache_pages(), located in
2684          * mm/page-writeback.c, marks pages clean in preparation for
2685          * doing I/O, which is not desirable if we're not planning on
2686          * doing I/O at all.
2687          *
2688          * We could call write_cache_pages(), and then redirty all of
2689          * the pages by calling redirty_page_for_writepage() but that
2690          * would be ugly in the extreme.  So instead we would need to
2691          * replicate parts of the code in the above functions,
2692          * simplifying them because we wouldn't actually intend to
2693          * write out the pages, but rather only collect contiguous
2694          * logical block extents, call the multi-block allocator, and
2695          * then update the buffer heads with the block allocations.
2696          *
2697          * For now, though, we'll cheat by calling filemap_flush(),
2698          * which will map the blocks, and start the I/O, but not
2699          * actually wait for the I/O to complete.
2700          */
2701         return filemap_flush(inode->i_mapping);
2702 }
2703
2704 /*
2705  * bmap() is special.  It gets used by applications such as lilo and by
2706  * the swapper to find the on-disk block of a specific piece of data.
2707  *
2708  * Naturally, this is dangerous if the block concerned is still in the
2709  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2710  * filesystem and enables swap, then they may get a nasty shock when the
2711  * data getting swapped to that swapfile suddenly gets overwritten by
2712  * the original zero's written out previously to the journal and
2713  * awaiting writeback in the kernel's buffer cache.
2714  *
2715  * So, if we see any bmap calls here on a modified, data-journaled file,
2716  * take extra steps to flush any blocks which might be in the cache.
2717  */
2718 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2719 {
2720         struct inode *inode = mapping->host;
2721         journal_t *journal;
2722         int err;
2723
2724         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2725                         test_opt(inode->i_sb, DELALLOC)) {
2726                 /*
2727                  * With delalloc we want to sync the file
2728                  * so that we can make sure we allocate
2729                  * blocks for file
2730                  */
2731                 filemap_write_and_wait(mapping);
2732         }
2733
2734         if (EXT4_JOURNAL(inode) &&
2735             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2736                 /*
2737                  * This is a REALLY heavyweight approach, but the use of
2738                  * bmap on dirty files is expected to be extremely rare:
2739                  * only if we run lilo or swapon on a freshly made file
2740                  * do we expect this to happen.
2741                  *
2742                  * (bmap requires CAP_SYS_RAWIO so this does not
2743                  * represent an unprivileged user DOS attack --- we'd be
2744                  * in trouble if mortal users could trigger this path at
2745                  * will.)
2746                  *
2747                  * NB. EXT4_STATE_JDATA is not set on files other than
2748                  * regular files.  If somebody wants to bmap a directory
2749                  * or symlink and gets confused because the buffer
2750                  * hasn't yet been flushed to disk, they deserve
2751                  * everything they get.
2752                  */
2753
2754                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2755                 journal = EXT4_JOURNAL(inode);
2756                 jbd2_journal_lock_updates(journal);
2757                 err = jbd2_journal_flush(journal);
2758                 jbd2_journal_unlock_updates(journal);
2759
2760                 if (err)
2761                         return 0;
2762         }
2763
2764         return generic_block_bmap(mapping, block, ext4_get_block);
2765 }
2766
2767 static int ext4_readpage(struct file *file, struct page *page)
2768 {
2769         trace_ext4_readpage(page);
2770         return mpage_readpage(page, ext4_get_block);
2771 }
2772
2773 static int
2774 ext4_readpages(struct file *file, struct address_space *mapping,
2775                 struct list_head *pages, unsigned nr_pages)
2776 {
2777         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2778 }
2779
2780 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
2781 {
2782         struct buffer_head *head, *bh;
2783         unsigned int curr_off = 0;
2784
2785         if (!page_has_buffers(page))
2786                 return;
2787         head = bh = page_buffers(page);
2788         do {
2789                 if (offset <= curr_off && test_clear_buffer_uninit(bh)
2790                                         && bh->b_private) {
2791                         ext4_free_io_end(bh->b_private);
2792                         bh->b_private = NULL;
2793                         bh->b_end_io = NULL;
2794                 }
2795                 curr_off = curr_off + bh->b_size;
2796                 bh = bh->b_this_page;
2797         } while (bh != head);
2798 }
2799
2800 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2801 {
2802         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2803
2804         trace_ext4_invalidatepage(page, offset);
2805
2806         /*
2807          * free any io_end structure allocated for buffers to be discarded
2808          */
2809         if (ext4_should_dioread_nolock(page->mapping->host))
2810                 ext4_invalidatepage_free_endio(page, offset);
2811         /*
2812          * If it's a full truncate we just forget about the pending dirtying
2813          */
2814         if (offset == 0)
2815                 ClearPageChecked(page);
2816
2817         if (journal)
2818                 jbd2_journal_invalidatepage(journal, page, offset);
2819         else
2820                 block_invalidatepage(page, offset);
2821 }
2822
2823 static int ext4_releasepage(struct page *page, gfp_t wait)
2824 {
2825         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2826
2827         trace_ext4_releasepage(page);
2828
2829         WARN_ON(PageChecked(page));
2830         if (!page_has_buffers(page))
2831                 return 0;
2832         if (journal)
2833                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2834         else
2835                 return try_to_free_buffers(page);
2836 }
2837
2838 /*
2839  * ext4_get_block used when preparing for a DIO write or buffer write.
2840  * We allocate an uinitialized extent if blocks haven't been allocated.
2841  * The extent will be converted to initialized after the IO is complete.
2842  */
2843 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
2844                    struct buffer_head *bh_result, int create)
2845 {
2846         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2847                    inode->i_ino, create);
2848         return _ext4_get_block(inode, iblock, bh_result,
2849                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
2850 }
2851
2852 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
2853                    struct buffer_head *bh_result, int flags)
2854 {
2855         handle_t *handle = ext4_journal_current_handle();
2856         struct ext4_map_blocks map;
2857         int ret = 0;
2858
2859         ext4_debug("ext4_get_block_write_nolock: inode %lu, flag %d\n",
2860                    inode->i_ino, flags);
2861
2862         flags = EXT4_GET_BLOCKS_NO_LOCK;
2863
2864         map.m_lblk = iblock;
2865         map.m_len = bh_result->b_size >> inode->i_blkbits;
2866
2867         ret = ext4_map_blocks(handle, inode, &map, flags);
2868         if (ret > 0) {
2869                 map_bh(bh_result, inode->i_sb, map.m_pblk);
2870                 bh_result->b_state = (bh_result->b_state & ~EXT4_MAP_FLAGS) |
2871                                         map.m_flags;
2872                 bh_result->b_size = inode->i_sb->s_blocksize * map.m_len;
2873                 ret = 0;
2874         }
2875         return ret;
2876 }
2877
2878 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2879                             ssize_t size, void *private, int ret,
2880                             bool is_async)
2881 {
2882         struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2883         ext4_io_end_t *io_end = iocb->private;
2884         struct workqueue_struct *wq;
2885         unsigned long flags;
2886         struct ext4_inode_info *ei;
2887
2888         /* if not async direct IO or dio with 0 bytes write, just return */
2889         if (!io_end || !size)
2890                 goto out;
2891
2892         ext_debug("ext4_end_io_dio(): io_end 0x%p "
2893                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2894                   iocb->private, io_end->inode->i_ino, iocb, offset,
2895                   size);
2896
2897         iocb->private = NULL;
2898
2899         /* if not aio dio with unwritten extents, just free io and return */
2900         if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2901                 ext4_free_io_end(io_end);
2902 out:
2903                 if (is_async)
2904                         aio_complete(iocb, ret, 0);
2905                 inode_dio_done(inode);
2906                 return;
2907         }
2908
2909         io_end->offset = offset;
2910         io_end->size = size;
2911         if (is_async) {
2912                 io_end->iocb = iocb;
2913                 io_end->result = ret;
2914         }
2915         wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
2916
2917         /* Add the io_end to per-inode completed aio dio list*/
2918         ei = EXT4_I(io_end->inode);
2919         spin_lock_irqsave(&ei->i_completed_io_lock, flags);
2920         list_add_tail(&io_end->list, &ei->i_completed_io_list);
2921         spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
2922
2923         /* queue the work to convert unwritten extents to written */
2924         queue_work(wq, &io_end->work);
2925 }
2926
2927 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
2928 {
2929         ext4_io_end_t *io_end = bh->b_private;
2930         struct workqueue_struct *wq;
2931         struct inode *inode;
2932         unsigned long flags;
2933
2934         if (!test_clear_buffer_uninit(bh) || !io_end)
2935                 goto out;
2936
2937         if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
2938                 ext4_msg(io_end->inode->i_sb, KERN_INFO,
2939                          "sb umounted, discard end_io request for inode %lu",
2940                          io_end->inode->i_ino);
2941                 ext4_free_io_end(io_end);
2942                 goto out;
2943         }
2944
2945         /*
2946          * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
2947          * but being more careful is always safe for the future change.
2948          */
2949         inode = io_end->inode;
2950         ext4_set_io_unwritten_flag(inode, io_end);
2951
2952         /* Add the io_end to per-inode completed io list*/
2953         spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
2954         list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
2955         spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
2956
2957         wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
2958         /* queue the work to convert unwritten extents to written */
2959         queue_work(wq, &io_end->work);
2960 out:
2961         bh->b_private = NULL;
2962         bh->b_end_io = NULL;
2963         clear_buffer_uninit(bh);
2964         end_buffer_async_write(bh, uptodate);
2965 }
2966
2967 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
2968 {
2969         ext4_io_end_t *io_end;
2970         struct page *page = bh->b_page;
2971         loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
2972         size_t size = bh->b_size;
2973
2974 retry:
2975         io_end = ext4_init_io_end(inode, GFP_ATOMIC);
2976         if (!io_end) {
2977                 pr_warn_ratelimited("%s: allocation fail\n", __func__);
2978                 schedule();
2979                 goto retry;
2980         }
2981         io_end->offset = offset;
2982         io_end->size = size;
2983         /*
2984          * We need to hold a reference to the page to make sure it
2985          * doesn't get evicted before ext4_end_io_work() has a chance
2986          * to convert the extent from written to unwritten.
2987          */
2988         io_end->page = page;
2989         get_page(io_end->page);
2990
2991         bh->b_private = io_end;
2992         bh->b_end_io = ext4_end_io_buffer_write;
2993         return 0;
2994 }
2995
2996 /*
2997  * For ext4 extent files, ext4 will do direct-io write to holes,
2998  * preallocated extents, and those write extend the file, no need to
2999  * fall back to buffered IO.
3000  *
3001  * For holes, we fallocate those blocks, mark them as uninitialized
3002  * If those blocks were preallocated, we mark sure they are splited, but
3003  * still keep the range to write as uninitialized.
3004  *
3005  * The unwrritten extents will be converted to written when DIO is completed.
3006  * For async direct IO, since the IO may still pending when return, we
3007  * set up an end_io call back function, which will do the conversion
3008  * when async direct IO completed.
3009  *
3010  * If the O_DIRECT write will extend the file then add this inode to the
3011  * orphan list.  So recovery will truncate it back to the original size
3012  * if the machine crashes during the write.
3013  *
3014  */
3015 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3016                               const struct iovec *iov, loff_t offset,
3017                               unsigned long nr_segs)
3018 {
3019         struct file *file = iocb->ki_filp;
3020         struct inode *inode = file->f_mapping->host;
3021         ssize_t ret;
3022         size_t count = iov_length(iov, nr_segs);
3023
3024         loff_t final_size = offset + count;
3025         if (rw == WRITE && final_size <= inode->i_size) {
3026                 int overwrite = 0;
3027
3028                 BUG_ON(iocb->private == NULL);
3029
3030                 /* If we do a overwrite dio, i_mutex locking can be released */
3031                 overwrite = *((int *)iocb->private);
3032
3033                 if (overwrite) {
3034                         down_read(&EXT4_I(inode)->i_data_sem);
3035                         mutex_unlock(&inode->i_mutex);
3036                 }
3037
3038                 /*
3039                  * We could direct write to holes and fallocate.
3040                  *
3041                  * Allocated blocks to fill the hole are marked as uninitialized
3042                  * to prevent parallel buffered read to expose the stale data
3043                  * before DIO complete the data IO.
3044                  *
3045                  * As to previously fallocated extents, ext4 get_block
3046                  * will just simply mark the buffer mapped but still
3047                  * keep the extents uninitialized.
3048                  *
3049                  * for non AIO case, we will convert those unwritten extents
3050                  * to written after return back from blockdev_direct_IO.
3051                  *
3052                  * for async DIO, the conversion needs to be defered when
3053                  * the IO is completed. The ext4 end_io callback function
3054                  * will be called to take care of the conversion work.
3055                  * Here for async case, we allocate an io_end structure to
3056                  * hook to the iocb.
3057                  */
3058                 iocb->private = NULL;
3059                 ext4_inode_aio_set(inode, NULL);
3060                 if (!is_sync_kiocb(iocb)) {
3061                         ext4_io_end_t *io_end =
3062                                 ext4_init_io_end(inode, GFP_NOFS);
3063                         if (!io_end) {
3064                                 ret = -ENOMEM;
3065                                 goto retake_lock;
3066                         }
3067                         io_end->flag |= EXT4_IO_END_DIRECT;
3068                         iocb->private = io_end;
3069                         /*
3070                          * we save the io structure for current async
3071                          * direct IO, so that later ext4_map_blocks()
3072                          * could flag the io structure whether there
3073                          * is a unwritten extents needs to be converted
3074                          * when IO is completed.
3075                          */
3076                         ext4_inode_aio_set(inode, io_end);
3077                 }
3078
3079                 if (overwrite)
3080                         ret = __blockdev_direct_IO(rw, iocb, inode,
3081                                                  inode->i_sb->s_bdev, iov,
3082                                                  offset, nr_segs,
3083                                                  ext4_get_block_write_nolock,
3084                                                  ext4_end_io_dio,
3085                                                  NULL,
3086                                                  0);
3087                 else
3088                         ret = __blockdev_direct_IO(rw, iocb, inode,
3089                                                  inode->i_sb->s_bdev, iov,
3090                                                  offset, nr_segs,
3091                                                  ext4_get_block_write,
3092                                                  ext4_end_io_dio,
3093                                                  NULL,
3094                                                  DIO_LOCKING);
3095                 if (iocb->private)
3096                         ext4_inode_aio_set(inode, NULL);
3097                 /*
3098                  * The io_end structure takes a reference to the inode,
3099                  * that structure needs to be destroyed and the
3100                  * reference to the inode need to be dropped, when IO is
3101                  * complete, even with 0 byte write, or failed.
3102                  *
3103                  * In the successful AIO DIO case, the io_end structure will be
3104                  * desctroyed and the reference to the inode will be dropped
3105                  * after the end_io call back function is called.
3106                  *
3107                  * In the case there is 0 byte write, or error case, since
3108                  * VFS direct IO won't invoke the end_io call back function,
3109                  * we need to free the end_io structure here.
3110                  */
3111                 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3112                         ext4_free_io_end(iocb->private);
3113                         iocb->private = NULL;
3114                 } else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3115                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3116                         int err;
3117                         /*
3118                          * for non AIO case, since the IO is already
3119                          * completed, we could do the conversion right here
3120                          */
3121                         err = ext4_convert_unwritten_extents(inode,
3122                                                              offset, ret);
3123                         if (err < 0)
3124                                 ret = err;
3125                         ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3126                 }
3127
3128         retake_lock:
3129                 /* take i_mutex locking again if we do a ovewrite dio */
3130                 if (overwrite) {
3131                         up_read(&EXT4_I(inode)->i_data_sem);
3132                         mutex_lock(&inode->i_mutex);
3133                 }
3134
3135                 return ret;
3136         }
3137
3138         /* for write the the end of file case, we fall back to old way */
3139         return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3140 }
3141
3142 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3143                               const struct iovec *iov, loff_t offset,
3144                               unsigned long nr_segs)
3145 {
3146         struct file *file = iocb->ki_filp;
3147         struct inode *inode = file->f_mapping->host;
3148         ssize_t ret;
3149
3150         /*
3151          * If we are doing data journalling we don't support O_DIRECT
3152          */
3153         if (ext4_should_journal_data(inode))
3154                 return 0;
3155
3156         trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3157         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3158                 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3159         else
3160                 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3161         trace_ext4_direct_IO_exit(inode, offset,
3162                                 iov_length(iov, nr_segs), rw, ret);
3163         return ret;
3164 }
3165
3166 /*
3167  * Pages can be marked dirty completely asynchronously from ext4's journalling
3168  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3169  * much here because ->set_page_dirty is called under VFS locks.  The page is
3170  * not necessarily locked.
3171  *
3172  * We cannot just dirty the page and leave attached buffers clean, because the
3173  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3174  * or jbddirty because all the journalling code will explode.
3175  *
3176  * So what we do is to mark the page "pending dirty" and next time writepage
3177  * is called, propagate that into the buffers appropriately.
3178  */
3179 static int ext4_journalled_set_page_dirty(struct page *page)
3180 {
3181         SetPageChecked(page);
3182         return __set_page_dirty_nobuffers(page);
3183 }
3184
3185 static const struct address_space_operations ext4_ordered_aops = {
3186         .readpage               = ext4_readpage,
3187         .readpages              = ext4_readpages,
3188         .writepage              = ext4_writepage,
3189         .write_begin            = ext4_write_begin,
3190         .write_end              = ext4_ordered_write_end,
3191         .bmap                   = ext4_bmap,
3192         .invalidatepage         = ext4_invalidatepage,
3193         .releasepage            = ext4_releasepage,
3194         .direct_IO              = ext4_direct_IO,
3195         .migratepage            = buffer_migrate_page,
3196         .is_partially_uptodate  = block_is_partially_uptodate,
3197         .error_remove_page      = generic_error_remove_page,
3198 };
3199
3200 static const struct address_space_operations ext4_writeback_aops = {
3201         .readpage               = ext4_readpage,
3202         .readpages              = ext4_readpages,
3203         .writepage              = ext4_writepage,
3204         .write_begin            = ext4_write_begin,
3205         .write_end              = ext4_writeback_write_end,
3206         .bmap                   = ext4_bmap,
3207         .invalidatepage         = ext4_invalidatepage,
3208         .releasepage            = ext4_releasepage,
3209         .direct_IO              = ext4_direct_IO,
3210         .migratepage            = buffer_migrate_page,
3211         .is_partially_uptodate  = block_is_partially_uptodate,
3212         .error_remove_page      = generic_error_remove_page,
3213 };
3214
3215 static const struct address_space_operations ext4_journalled_aops = {
3216         .readpage               = ext4_readpage,
3217         .readpages              = ext4_readpages,
3218         .writepage              = ext4_writepage,
3219         .write_begin            = ext4_write_begin,
3220         .write_end              = ext4_journalled_write_end,
3221         .set_page_dirty         = ext4_journalled_set_page_dirty,
3222         .bmap                   = ext4_bmap,
3223         .invalidatepage         = ext4_invalidatepage,
3224         .releasepage            = ext4_releasepage,
3225         .direct_IO              = ext4_direct_IO,
3226         .is_partially_uptodate  = block_is_partially_uptodate,
3227         .error_remove_page      = generic_error_remove_page,
3228 };
3229
3230 static const struct address_space_operations ext4_da_aops = {
3231         .readpage               = ext4_readpage,
3232         .readpages              = ext4_readpages,
3233         .writepage              = ext4_writepage,
3234         .writepages             = ext4_da_writepages,
3235         .write_begin            = ext4_da_write_begin,
3236         .write_end              = ext4_da_write_end,
3237         .bmap                   = ext4_bmap,
3238         .invalidatepage         = ext4_da_invalidatepage,
3239         .releasepage            = ext4_releasepage,
3240         .direct_IO              = ext4_direct_IO,
3241         .migratepage            = buffer_migrate_page,
3242         .is_partially_uptodate  = block_is_partially_uptodate,
3243         .error_remove_page      = generic_error_remove_page,
3244 };
3245
3246 void ext4_set_aops(struct inode *inode)
3247 {
3248         switch (ext4_inode_journal_mode(inode)) {
3249         case EXT4_INODE_ORDERED_DATA_MODE:
3250                 if (test_opt(inode->i_sb, DELALLOC))
3251                         inode->i_mapping->a_ops = &ext4_da_aops;
3252                 else
3253                         inode->i_mapping->a_ops = &ext4_ordered_aops;
3254                 break;
3255         case EXT4_INODE_WRITEBACK_DATA_MODE:
3256                 if (test_opt(inode->i_sb, DELALLOC))
3257                         inode->i_mapping->a_ops = &ext4_da_aops;
3258                 else
3259                         inode->i_mapping->a_ops = &ext4_writeback_aops;
3260                 break;
3261         case EXT4_INODE_JOURNAL_DATA_MODE:
3262                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3263                 break;
3264         default:
3265                 BUG();
3266         }
3267 }
3268
3269
3270 /*
3271  * ext4_discard_partial_page_buffers()
3272  * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3273  * This function finds and locks the page containing the offset
3274  * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3275  * Calling functions that already have the page locked should call
3276  * ext4_discard_partial_page_buffers_no_lock directly.
3277  */
3278 int ext4_discard_partial_page_buffers(handle_t *handle,
3279                 struct address_space *mapping, loff_t from,
3280                 loff_t length, int flags)
3281 {
3282         struct inode *inode = mapping->host;
3283         struct page *page;
3284         int err = 0;
3285
3286         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3287                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3288         if (!page)
3289                 return -ENOMEM;
3290
3291         err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3292                 from, length, flags);
3293
3294         unlock_page(page);
3295         page_cache_release(page);
3296         return err;
3297 }
3298
3299 /*
3300  * ext4_discard_partial_page_buffers_no_lock()
3301  * Zeros a page range of length 'length' starting from offset 'from'.
3302  * Buffer heads that correspond to the block aligned regions of the
3303  * zeroed range will be unmapped.  Unblock aligned regions
3304  * will have the corresponding buffer head mapped if needed so that
3305  * that region of the page can be updated with the partial zero out.
3306  *
3307  * This function assumes that the page has already been  locked.  The
3308  * The range to be discarded must be contained with in the given page.
3309  * If the specified range exceeds the end of the page it will be shortened
3310  * to the end of the page that corresponds to 'from'.  This function is
3311  * appropriate for updating a page and it buffer heads to be unmapped and
3312  * zeroed for blocks that have been either released, or are going to be
3313  * released.
3314  *
3315  * handle: The journal handle
3316  * inode:  The files inode
3317  * page:   A locked page that contains the offset "from"
3318  * from:   The starting byte offset (from the begining of the file)
3319  *         to begin discarding
3320  * len:    The length of bytes to discard
3321  * flags:  Optional flags that may be used:
3322  *
3323  *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3324  *         Only zero the regions of the page whose buffer heads
3325  *         have already been unmapped.  This flag is appropriate
3326  *         for updateing the contents of a page whose blocks may
3327  *         have already been released, and we only want to zero
3328  *         out the regions that correspond to those released blocks.
3329  *
3330  * Returns zero on sucess or negative on failure.
3331  */
3332 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3333                 struct inode *inode, struct page *page, loff_t from,
3334                 loff_t length, int flags)
3335 {
3336         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3337         unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3338         unsigned int blocksize, max, pos;
3339         ext4_lblk_t iblock;
3340         struct buffer_head *bh;
3341         int err = 0;
3342
3343         blocksize = inode->i_sb->s_blocksize;
3344         max = PAGE_CACHE_SIZE - offset;
3345
3346         if (index != page->index)
3347                 return -EINVAL;
3348
3349         /*
3350          * correct length if it does not fall between
3351          * 'from' and the end of the page
3352          */
3353         if (length > max || length < 0)
3354                 length = max;
3355
3356         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3357
3358         if (!page_has_buffers(page))
3359                 create_empty_buffers(page, blocksize, 0);
3360
3361         /* Find the buffer that contains "offset" */
3362         bh = page_buffers(page);
3363         pos = blocksize;
3364         while (offset >= pos) {
3365                 bh = bh->b_this_page;
3366                 iblock++;
3367                 pos += blocksize;
3368         }
3369
3370         pos = offset;
3371         while (pos < offset + length) {
3372                 unsigned int end_of_block, range_to_discard;
3373
3374                 err = 0;
3375
3376                 /* The length of space left to zero and unmap */
3377                 range_to_discard = offset + length - pos;
3378
3379                 /* The length of space until the end of the block */
3380                 end_of_block = blocksize - (pos & (blocksize-1));
3381
3382                 /*
3383                  * Do not unmap or zero past end of block
3384                  * for this buffer head
3385                  */
3386                 if (range_to_discard > end_of_block)
3387                         range_to_discard = end_of_block;
3388
3389
3390                 /*
3391                  * Skip this buffer head if we are only zeroing unampped
3392                  * regions of the page
3393                  */
3394                 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3395                         buffer_mapped(bh))
3396                                 goto next;
3397
3398                 /* If the range is block aligned, unmap */
3399                 if (range_to_discard == blocksize) {
3400                         clear_buffer_dirty(bh);
3401                         bh->b_bdev = NULL;
3402                         clear_buffer_mapped(bh);
3403                         clear_buffer_req(bh);
3404                         clear_buffer_new(bh);
3405                         clear_buffer_delay(bh);
3406                         clear_buffer_unwritten(bh);
3407                         clear_buffer_uptodate(bh);
3408                         zero_user(page, pos, range_to_discard);
3409                         BUFFER_TRACE(bh, "Buffer discarded");
3410                         goto next;
3411                 }
3412
3413                 /*
3414                  * If this block is not completely contained in the range
3415                  * to be discarded, then it is not going to be released. Because
3416                  * we need to keep this block, we need to make sure this part
3417                  * of the page is uptodate before we modify it by writeing
3418                  * partial zeros on it.
3419                  */
3420                 if (!buffer_mapped(bh)) {
3421                         /*
3422                          * Buffer head must be mapped before we can read
3423                          * from the block
3424                          */
3425                         BUFFER_TRACE(bh, "unmapped");
3426                         ext4_get_block(inode, iblock, bh, 0);
3427                         /* unmapped? It's a hole - nothing to do */
3428                         if (!buffer_mapped(bh)) {
3429                                 BUFFER_TRACE(bh, "still unmapped");
3430                                 goto next;
3431                         }
3432                 }
3433
3434                 /* Ok, it's mapped. Make sure it's up-to-date */
3435                 if (PageUptodate(page))
3436                         set_buffer_uptodate(bh);
3437
3438                 if (!buffer_uptodate(bh)) {
3439                         err = -EIO;
3440                         ll_rw_block(READ, 1, &bh);
3441                         wait_on_buffer(bh);
3442                         /* Uhhuh. Read error. Complain and punt.*/
3443                         if (!buffer_uptodate(bh))
3444                                 goto next;
3445                 }
3446
3447                 if (ext4_should_journal_data(inode)) {
3448                         BUFFER_TRACE(bh, "get write access");
3449                         err = ext4_journal_get_write_access(handle, bh);
3450                         if (err)
3451                                 goto next;
3452                 }
3453
3454                 zero_user(page, pos, range_to_discard);
3455
3456                 err = 0;
3457                 if (ext4_should_journal_data(inode)) {
3458                         err = ext4_handle_dirty_metadata(handle, inode, bh);
3459                 } else
3460                         mark_buffer_dirty(bh);
3461
3462                 BUFFER_TRACE(bh, "Partial buffer zeroed");
3463 next:
3464                 bh = bh->b_this_page;
3465                 iblock++;
3466                 pos += range_to_discard;
3467         }
3468
3469         return err;
3470 }
3471
3472 int ext4_can_truncate(struct inode *inode)
3473 {
3474         if (S_ISREG(inode->i_mode))
3475                 return 1;
3476         if (S_ISDIR(inode->i_mode))
3477                 return 1;
3478         if (S_ISLNK(inode->i_mode))
3479                 return !ext4_inode_is_fast_symlink(inode);
3480         return 0;
3481 }
3482
3483 /*
3484  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3485  * associated with the given offset and length
3486  *
3487  * @inode:  File inode
3488  * @offset: The offset where the hole will begin
3489  * @len:    The length of the hole
3490  *
3491  * Returns: 0 on sucess or negative on failure
3492  */
3493
3494 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3495 {
3496         struct inode *inode = file->f_path.dentry->d_inode;
3497         if (!S_ISREG(inode->i_mode))
3498                 return -EOPNOTSUPP;
3499
3500         if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3501                 /* TODO: Add support for non extent hole punching */
3502                 return -EOPNOTSUPP;
3503         }
3504
3505         if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3506                 /* TODO: Add support for bigalloc file systems */
3507                 return -EOPNOTSUPP;
3508         }
3509
3510         return ext4_ext_punch_hole(file, offset, length);
3511 }
3512
3513 /*
3514  * ext4_truncate()
3515  *
3516  * We block out ext4_get_block() block instantiations across the entire
3517  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3518  * simultaneously on behalf of the same inode.
3519  *
3520  * As we work through the truncate and commit bits of it to the journal there
3521  * is one core, guiding principle: the file's tree must always be consistent on
3522  * disk.  We must be able to restart the truncate after a crash.
3523  *
3524  * The file's tree may be transiently inconsistent in memory (although it
3525  * probably isn't), but whenever we close off and commit a journal transaction,
3526  * the contents of (the filesystem + the journal) must be consistent and
3527  * restartable.  It's pretty simple, really: bottom up, right to left (although
3528  * left-to-right works OK too).
3529  *
3530  * Note that at recovery time, journal replay occurs *before* the restart of
3531  * truncate against the orphan inode list.
3532  *
3533  * The committed inode has the new, desired i_size (which is the same as
3534  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3535  * that this inode's truncate did not complete and it will again call
3536  * ext4_truncate() to have another go.  So there will be instantiated blocks
3537  * to the right of the truncation point in a crashed ext4 filesystem.  But
3538  * that's fine - as long as they are linked from the inode, the post-crash
3539  * ext4_truncate() run will find them and release them.
3540  */
3541 void ext4_truncate(struct inode *inode)
3542 {
3543         trace_ext4_truncate_enter(inode);
3544
3545         if (!ext4_can_truncate(inode))
3546                 return;
3547
3548         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3549
3550         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3551                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3552
3553         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3554                 ext4_ext_truncate(inode);
3555         else
3556                 ext4_ind_truncate(inode);
3557
3558         trace_ext4_truncate_exit(inode);
3559 }
3560
3561 /*
3562  * ext4_get_inode_loc returns with an extra refcount against the inode's
3563  * underlying buffer_head on success. If 'in_mem' is true, we have all
3564  * data in memory that is needed to recreate the on-disk version of this
3565  * inode.
3566  */
3567 static int __ext4_get_inode_loc(struct inode *inode,
3568                                 struct ext4_iloc *iloc, int in_mem)
3569 {
3570         struct ext4_group_desc  *gdp;
3571         struct buffer_head      *bh;
3572         struct super_block      *sb = inode->i_sb;
3573         ext4_fsblk_t            block;
3574         int                     inodes_per_block, inode_offset;
3575
3576         iloc->bh = NULL;
3577         if (!ext4_valid_inum(sb, inode->i_ino))
3578                 return -EIO;
3579
3580         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3581         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3582         if (!gdp)
3583                 return -EIO;
3584
3585         /*
3586          * Figure out the offset within the block group inode table
3587          */
3588         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3589         inode_offset = ((inode->i_ino - 1) %
3590                         EXT4_INODES_PER_GROUP(sb));
3591         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3592         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3593
3594         bh = sb_getblk(sb, block);
3595         if (!bh) {
3596                 EXT4_ERROR_INODE_BLOCK(inode, block,
3597                                        "unable to read itable block");
3598                 return -EIO;
3599         }
3600         if (!buffer_uptodate(bh)) {
3601                 lock_buffer(bh);
3602
3603                 /*
3604                  * If the buffer has the write error flag, we have failed
3605                  * to write out another inode in the same block.  In this
3606                  * case, we don't have to read the block because we may
3607                  * read the old inode data successfully.
3608                  */
3609                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3610                         set_buffer_uptodate(bh);
3611
3612                 if (buffer_uptodate(bh)) {
3613                         /* someone brought it uptodate while we waited */
3614                         unlock_buffer(bh);
3615                         goto has_buffer;
3616                 }
3617
3618                 /*
3619                  * If we have all information of the inode in memory and this
3620                  * is the only valid inode in the block, we need not read the
3621                  * block.
3622                  */
3623                 if (in_mem) {
3624                         struct buffer_head *bitmap_bh;
3625                         int i, start;
3626
3627                         start = inode_offset & ~(inodes_per_block - 1);
3628
3629                         /* Is the inode bitmap in cache? */
3630                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3631                         if (!bitmap_bh)
3632                                 goto make_io;
3633
3634                         /*
3635                          * If the inode bitmap isn't in cache then the
3636                          * optimisation may end up performing two reads instead
3637                          * of one, so skip it.
3638                          */
3639                         if (!buffer_uptodate(bitmap_bh)) {
3640                                 brelse(bitmap_bh);
3641                                 goto make_io;
3642                         }
3643                         for (i = start; i < start + inodes_per_block; i++) {
3644                                 if (i == inode_offset)
3645                                         continue;
3646                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3647                                         break;
3648                         }
3649                         brelse(bitmap_bh);
3650                         if (i == start + inodes_per_block) {
3651                                 /* all other inodes are free, so skip I/O */
3652                                 memset(bh->b_data, 0, bh->b_size);
3653                                 set_buffer_uptodate(bh);
3654                                 unlock_buffer(bh);
3655                                 goto has_buffer;
3656                         }
3657                 }
3658
3659 make_io:
3660                 /*
3661                  * If we need to do any I/O, try to pre-readahead extra
3662                  * blocks from the inode table.
3663                  */
3664                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3665                         ext4_fsblk_t b, end, table;
3666                         unsigned num;
3667
3668                         table = ext4_inode_table(sb, gdp);
3669                         /* s_inode_readahead_blks is always a power of 2 */
3670                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3671                         if (table > b)
3672                                 b = table;
3673                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3674                         num = EXT4_INODES_PER_GROUP(sb);
3675                         if (ext4_has_group_desc_csum(sb))
3676                                 num -= ext4_itable_unused_count(sb, gdp);
3677                         table += num / inodes_per_block;
3678                         if (end > table)
3679                                 end = table;
3680                         while (b <= end)
3681                                 sb_breadahead(sb, b++);
3682                 }
3683
3684                 /*
3685                  * There are other valid inodes in the buffer, this inode
3686                  * has in-inode xattrs, or we don't have this inode in memory.
3687                  * Read the block from disk.
3688                  */
3689                 trace_ext4_load_inode(inode);
3690                 get_bh(bh);
3691                 bh->b_end_io = end_buffer_read_sync;
3692                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3693                 wait_on_buffer(bh);
3694                 if (!buffer_uptodate(bh)) {
3695                         EXT4_ERROR_INODE_BLOCK(inode, block,
3696                                                "unable to read itable block");
3697                         brelse(bh);
3698                         return -EIO;
3699                 }
3700         }
3701 has_buffer:
3702         iloc->bh = bh;
3703         return 0;
3704 }
3705
3706 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3707 {
3708         /* We have all inode data except xattrs in memory here. */
3709         return __ext4_get_inode_loc(inode, iloc,
3710                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3711 }
3712
3713 void ext4_set_inode_flags(struct inode *inode)
3714 {
3715         unsigned int flags = EXT4_I(inode)->i_flags;
3716
3717         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3718         if (flags & EXT4_SYNC_FL)
3719                 inode->i_flags |= S_SYNC;
3720         if (flags & EXT4_APPEND_FL)
3721                 inode->i_flags |= S_APPEND;
3722         if (flags & EXT4_IMMUTABLE_FL)
3723                 inode->i_flags |= S_IMMUTABLE;
3724         if (flags & EXT4_NOATIME_FL)
3725                 inode->i_flags |= S_NOATIME;
3726         if (flags & EXT4_DIRSYNC_FL)
3727                 inode->i_flags |= S_DIRSYNC;
3728 }
3729
3730 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3731 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3732 {
3733         unsigned int vfs_fl;
3734         unsigned long old_fl, new_fl;
3735
3736         do {
3737                 vfs_fl = ei->vfs_inode.i_flags;
3738                 old_fl = ei->i_flags;
3739                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3740                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3741                                 EXT4_DIRSYNC_FL);
3742                 if (vfs_fl & S_SYNC)
3743                         new_fl |= EXT4_SYNC_FL;
3744                 if (vfs_fl & S_APPEND)
3745                         new_fl |= EXT4_APPEND_FL;
3746                 if (vfs_fl & S_IMMUTABLE)
3747                         new_fl |= EXT4_IMMUTABLE_FL;
3748                 if (vfs_fl & S_NOATIME)
3749                         new_fl |= EXT4_NOATIME_FL;
3750                 if (vfs_fl & S_DIRSYNC)
3751                         new_fl |= EXT4_DIRSYNC_FL;
3752         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3753 }
3754
3755 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3756                                   struct ext4_inode_info *ei)
3757 {
3758         blkcnt_t i_blocks ;
3759         struct inode *inode = &(ei->vfs_inode);
3760         struct super_block *sb = inode->i_sb;
3761
3762         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3763                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3764                 /* we are using combined 48 bit field */
3765                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3766                                         le32_to_cpu(raw_inode->i_blocks_lo);
3767                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3768                         /* i_blocks represent file system block size */
3769                         return i_blocks  << (inode->i_blkbits - 9);
3770                 } else {
3771                         return i_blocks;
3772                 }
3773         } else {
3774                 return le32_to_cpu(raw_inode->i_blocks_lo);
3775         }
3776 }
3777
3778 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3779 {
3780         struct ext4_iloc iloc;
3781         struct ext4_inode *raw_inode;
3782         struct ext4_inode_info *ei;
3783         struct inode *inode;
3784         journal_t *journal = EXT4_SB(sb)->s_journal;
3785         long ret;
3786         int block;
3787         uid_t i_uid;
3788         gid_t i_gid;
3789
3790         inode = iget_locked(sb, ino);
3791         if (!inode)
3792                 return ERR_PTR(-ENOMEM);
3793         if (!(inode->i_state & I_NEW))
3794                 return inode;
3795
3796         ei = EXT4_I(inode);
3797         iloc.bh = NULL;
3798
3799         ret = __ext4_get_inode_loc(inode, &iloc, 0);
3800         if (ret < 0)
3801                 goto bad_inode;
3802         raw_inode = ext4_raw_inode(&iloc);
3803
3804         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3805                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3806                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3807                     EXT4_INODE_SIZE(inode->i_sb)) {
3808                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3809                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3810                                 EXT4_INODE_SIZE(inode->i_sb));
3811                         ret = -EIO;
3812                         goto bad_inode;
3813                 }
3814         } else
3815                 ei->i_extra_isize = 0;
3816
3817         /* Precompute checksum seed for inode metadata */
3818         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3819                         EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3820                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3821                 __u32 csum;
3822                 __le32 inum = cpu_to_le32(inode->i_ino);
3823                 __le32 gen = raw_inode->i_generation;
3824                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3825                                    sizeof(inum));
3826                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3827                                               sizeof(gen));
3828         }
3829
3830         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3831                 EXT4_ERROR_INODE(inode, "checksum invalid");
3832                 ret = -EIO;
3833                 goto bad_inode;
3834         }
3835
3836         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3837         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3838         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3839         if (!(test_opt(inode->i_sb, NO_UID32))) {
3840                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3841                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3842         }
3843         i_uid_write(inode, i_uid);
3844         i_gid_write(inode, i_gid);
3845         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3846
3847         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
3848         ei->i_dir_start_lookup = 0;
3849         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3850         /* We now have enough fields to check if the inode was active or not.
3851          * This is needed because nfsd might try to access dead inodes
3852          * the test is that same one that e2fsck uses
3853          * NeilBrown 1999oct15
3854          */
3855         if (inode->i_nlink == 0) {
3856                 if (inode->i_mode == 0 ||
3857                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3858                         /* this inode is deleted */
3859                         ret = -ESTALE;
3860                         goto bad_inode;
3861                 }
3862                 /* The only unlinked inodes we let through here have
3863                  * valid i_mode and are being read by the orphan
3864                  * recovery code: that's fine, we're about to complete
3865                  * the process of deleting those. */
3866         }
3867         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3868         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3869         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3870         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3871                 ei->i_file_acl |=
3872                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3873         inode->i_size = ext4_isize(raw_inode);
3874         ei->i_disksize = inode->i_size;
3875 #ifdef CONFIG_QUOTA
3876         ei->i_reserved_quota = 0;
3877 #endif
3878         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3879         ei->i_block_group = iloc.block_group;
3880         ei->i_last_alloc_group = ~0;
3881         /*
3882          * NOTE! The in-memory inode i_data array is in little-endian order
3883          * even on big-endian machines: we do NOT byteswap the block numbers!
3884          */
3885         for (block = 0; block < EXT4_N_BLOCKS; block++)
3886                 ei->i_data[block] = raw_inode->i_block[block];
3887         INIT_LIST_HEAD(&ei->i_orphan);
3888
3889         /*
3890          * Set transaction id's of transactions that have to be committed
3891          * to finish f[data]sync. We set them to currently running transaction
3892          * as we cannot be sure that the inode or some of its metadata isn't
3893          * part of the transaction - the inode could have been reclaimed and
3894          * now it is reread from disk.
3895          */
3896         if (journal) {
3897                 transaction_t *transaction;
3898                 tid_t tid;
3899
3900                 read_lock(&journal->j_state_lock);
3901                 if (journal->j_running_transaction)
3902                         transaction = journal->j_running_transaction;
3903                 else
3904                         transaction = journal->j_committing_transaction;
3905                 if (transaction)
3906                         tid = transaction->t_tid;
3907                 else
3908                         tid = journal->j_commit_sequence;
3909                 read_unlock(&journal->j_state_lock);
3910                 ei->i_sync_tid = tid;
3911                 ei->i_datasync_tid = tid;
3912         }
3913
3914         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3915                 if (ei->i_extra_isize == 0) {
3916                         /* The extra space is currently unused. Use it. */
3917                         ei->i_extra_isize = sizeof(struct ext4_inode) -
3918                                             EXT4_GOOD_OLD_INODE_SIZE;
3919                 } else {
3920                         __le32 *magic = (void *)raw_inode +
3921                                         EXT4_GOOD_OLD_INODE_SIZE +
3922                                         ei->i_extra_isize;
3923                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3924                                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3925                 }
3926         }
3927
3928         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3929         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3930         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3931         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3932
3933         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3934         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3935                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3936                         inode->i_version |=
3937                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3938         }
3939
3940         ret = 0;
3941         if (ei->i_file_acl &&
3942             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3943                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
3944                                  ei->i_file_acl);
3945                 ret = -EIO;
3946                 goto bad_inode;
3947         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3948                 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3949                     (S_ISLNK(inode->i_mode) &&
3950                      !ext4_inode_is_fast_symlink(inode)))
3951                         /* Validate extent which is part of inode */
3952                         ret = ext4_ext_check_inode(inode);
3953         } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3954                    (S_ISLNK(inode->i_mode) &&
3955                     !ext4_inode_is_fast_symlink(inode))) {
3956                 /* Validate block references which are part of inode */
3957                 ret = ext4_ind_check_inode(inode);
3958         }
3959         if (ret)
3960                 goto bad_inode;
3961
3962         if (S_ISREG(inode->i_mode)) {
3963                 inode->i_op = &ext4_file_inode_operations;
3964                 inode->i_fop = &ext4_file_operations;
3965                 ext4_set_aops(inode);
3966         } else if (S_ISDIR(inode->i_mode)) {
3967                 inode->i_op = &ext4_dir_inode_operations;
3968                 inode->i_fop = &ext4_dir_operations;
3969         } else if (S_ISLNK(inode->i_mode)) {
3970                 if (ext4_inode_is_fast_symlink(inode)) {
3971                         inode->i_op = &ext4_fast_symlink_inode_operations;
3972                         nd_terminate_link(ei->i_data, inode->i_size,
3973                                 sizeof(ei->i_data) - 1);
3974                 } else {
3975                         inode->i_op = &ext4_symlink_inode_operations;
3976                         ext4_set_aops(inode);
3977                 }
3978         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3979               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3980                 inode->i_op = &ext4_special_inode_operations;
3981                 if (raw_inode->i_block[0])
3982                         init_special_inode(inode, inode->i_mode,
3983                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3984                 else
3985                         init_special_inode(inode, inode->i_mode,
3986                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3987         } else {
3988                 ret = -EIO;
3989                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3990                 goto bad_inode;
3991         }
3992         brelse(iloc.bh);
3993         ext4_set_inode_flags(inode);
3994         unlock_new_inode(inode);
3995         return inode;
3996
3997 bad_inode:
3998         brelse(iloc.bh);
3999         iget_failed(inode);
4000         return ERR_PTR(ret);
4001 }
4002
4003 static int ext4_inode_blocks_set(handle_t *handle,
4004                                 struct ext4_inode *raw_inode,
4005                                 struct ext4_inode_info *ei)
4006 {
4007         struct inode *inode = &(ei->vfs_inode);
4008         u64 i_blocks = inode->i_blocks;
4009         struct super_block *sb = inode->i_sb;
4010
4011         if (i_blocks <= ~0U) {
4012                 /*
4013                  * i_blocks can be represnted in a 32 bit variable
4014                  * as multiple of 512 bytes
4015                  */
4016                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4017                 raw_inode->i_blocks_high = 0;
4018                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4019                 return 0;
4020         }
4021         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4022                 return -EFBIG;
4023
4024         if (i_blocks <= 0xffffffffffffULL) {
4025                 /*
4026                  * i_blocks can be represented in a 48 bit variable
4027                  * as multiple of 512 bytes
4028                  */
4029                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4030                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4031                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4032         } else {
4033                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4034                 /* i_block is stored in file system block size */
4035                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4036                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4037                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4038         }
4039         return 0;
4040 }
4041
4042 /*
4043  * Post the struct inode info into an on-disk inode location in the
4044  * buffer-cache.  This gobbles the caller's reference to the
4045  * buffer_head in the inode location struct.
4046  *
4047  * The caller must have write access to iloc->bh.
4048  */
4049 static int ext4_do_update_inode(handle_t *handle,
4050                                 struct inode *inode,
4051                                 struct ext4_iloc *iloc)
4052 {
4053         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4054         struct ext4_inode_info *ei = EXT4_I(inode);
4055         struct buffer_head *bh = iloc->bh;
4056         int err = 0, rc, block;
4057         int need_datasync = 0;
4058         uid_t i_uid;
4059         gid_t i_gid;
4060
4061         /* For fields not not tracking in the in-memory inode,
4062          * initialise them to zero for new inodes. */
4063         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4064                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4065
4066         ext4_get_inode_flags(ei);
4067         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4068         i_uid = i_uid_read(inode);
4069         i_gid = i_gid_read(inode);
4070         if (!(test_opt(inode->i_sb, NO_UID32))) {
4071                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4072                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4073 /*
4074  * Fix up interoperability with old kernels. Otherwise, old inodes get
4075  * re-used with the upper 16 bits of the uid/gid intact
4076  */
4077                 if (!ei->i_dtime) {
4078                         raw_inode->i_uid_high =
4079                                 cpu_to_le16(high_16_bits(i_uid));
4080                         raw_inode->i_gid_high =
4081                                 cpu_to_le16(high_16_bits(i_gid));
4082                 } else {
4083                         raw_inode->i_uid_high = 0;
4084                         raw_inode->i_gid_high = 0;
4085                 }
4086         } else {
4087                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4088                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4089                 raw_inode->i_uid_high = 0;
4090                 raw_inode->i_gid_high = 0;
4091         }
4092         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4093
4094         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4095         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4096         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4097         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4098
4099         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4100                 goto out_brelse;
4101         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4102         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4103         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4104             cpu_to_le32(EXT4_OS_HURD))
4105                 raw_inode->i_file_acl_high =
4106                         cpu_to_le16(ei->i_file_acl >> 32);
4107         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4108         if (ei->i_disksize != ext4_isize(raw_inode)) {
4109                 ext4_isize_set(raw_inode, ei->i_disksize);
4110                 need_datasync = 1;
4111         }
4112         if (ei->i_disksize > 0x7fffffffULL) {
4113                 struct super_block *sb = inode->i_sb;
4114                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4115                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4116                                 EXT4_SB(sb)->s_es->s_rev_level ==
4117                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4118                         /* If this is the first large file
4119                          * created, add a flag to the superblock.
4120                          */
4121                         err = ext4_journal_get_write_access(handle,
4122                                         EXT4_SB(sb)->s_sbh);
4123                         if (err)
4124                                 goto out_brelse;
4125                         ext4_update_dynamic_rev(sb);
4126                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4127                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4128                         ext4_handle_sync(handle);
4129                         err = ext4_handle_dirty_super(handle, sb);
4130                 }
4131         }
4132         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4133         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4134                 if (old_valid_dev(inode->i_rdev)) {
4135                         raw_inode->i_block[0] =
4136                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4137                         raw_inode->i_block[1] = 0;
4138                 } else {
4139                         raw_inode->i_block[0] = 0;
4140                         raw_inode->i_block[1] =
4141                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4142                         raw_inode->i_block[2] = 0;
4143                 }
4144         } else
4145                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4146                         raw_inode->i_block[block] = ei->i_data[block];
4147
4148         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4149         if (ei->i_extra_isize) {
4150                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4151                         raw_inode->i_version_hi =
4152                         cpu_to_le32(inode->i_version >> 32);
4153                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4154         }
4155
4156         ext4_inode_csum_set(inode, raw_inode, ei);
4157
4158         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4159         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4160         if (!err)
4161                 err = rc;
4162         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4163
4164         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4165 out_brelse:
4166         brelse(bh);
4167         ext4_std_error(inode->i_sb, err);
4168         return err;
4169 }
4170
4171 /*
4172  * ext4_write_inode()
4173  *
4174  * We are called from a few places:
4175  *
4176  * - Within generic_file_write() for O_SYNC files.
4177  *   Here, there will be no transaction running. We wait for any running
4178  *   trasnaction to commit.
4179  *
4180  * - Within sys_sync(), kupdate and such.
4181  *   We wait on commit, if tol to.
4182  *
4183  * - Within prune_icache() (PF_MEMALLOC == true)
4184  *   Here we simply return.  We can't afford to block kswapd on the
4185  *   journal commit.
4186  *
4187  * In all cases it is actually safe for us to return without doing anything,
4188  * because the inode has been copied into a raw inode buffer in
4189  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4190  * knfsd.
4191  *
4192  * Note that we are absolutely dependent upon all inode dirtiers doing the
4193  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4194  * which we are interested.
4195  *
4196  * It would be a bug for them to not do this.  The code:
4197  *
4198  *      mark_inode_dirty(inode)
4199  *      stuff();
4200  *      inode->i_size = expr;
4201  *
4202  * is in error because a kswapd-driven write_inode() could occur while
4203  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4204  * will no longer be on the superblock's dirty inode list.
4205  */
4206 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4207 {
4208         int err;
4209
4210         if (current->flags & PF_MEMALLOC)
4211                 return 0;
4212
4213         if (EXT4_SB(inode->i_sb)->s_journal) {
4214                 if (ext4_journal_current_handle()) {
4215                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4216                         dump_stack();
4217                         return -EIO;
4218                 }
4219
4220                 if (wbc->sync_mode != WB_SYNC_ALL)
4221                         return 0;
4222
4223                 err = ext4_force_commit(inode->i_sb);
4224         } else {
4225                 struct ext4_iloc iloc;
4226
4227                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4228                 if (err)
4229                         return err;
4230                 if (wbc->sync_mode == WB_SYNC_ALL)
4231                         sync_dirty_buffer(iloc.bh);
4232                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4233                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4234                                          "IO error syncing inode");
4235                         err = -EIO;
4236                 }
4237                 brelse(iloc.bh);
4238         }
4239         return err;
4240 }
4241
4242 /*
4243  * ext4_setattr()
4244  *
4245  * Called from notify_change.
4246  *
4247  * We want to trap VFS attempts to truncate the file as soon as
4248  * possible.  In particular, we want to make sure that when the VFS
4249  * shrinks i_size, we put the inode on the orphan list and modify
4250  * i_disksize immediately, so that during the subsequent flushing of
4251  * dirty pages and freeing of disk blocks, we can guarantee that any
4252  * commit will leave the blocks being flushed in an unused state on
4253  * disk.  (On recovery, the inode will get truncated and the blocks will
4254  * be freed, so we have a strong guarantee that no future commit will
4255  * leave these blocks visible to the user.)
4256  *
4257  * Another thing we have to assure is that if we are in ordered mode
4258  * and inode is still attached to the committing transaction, we must
4259  * we start writeout of all the dirty pages which are being truncated.
4260  * This way we are sure that all the data written in the previous
4261  * transaction are already on disk (truncate waits for pages under
4262  * writeback).
4263  *
4264  * Called with inode->i_mutex down.
4265  */
4266 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4267 {
4268         struct inode *inode = dentry->d_inode;
4269         int error, rc = 0;
4270         int orphan = 0;
4271         const unsigned int ia_valid = attr->ia_valid;
4272
4273         error = inode_change_ok(inode, attr);
4274         if (error)
4275                 return error;
4276
4277         if (is_quota_modification(inode, attr))
4278                 dquot_initialize(inode);
4279         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4280             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4281                 handle_t *handle;
4282
4283                 /* (user+group)*(old+new) structure, inode write (sb,
4284                  * inode block, ? - but truncate inode update has it) */
4285                 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
4286                                         EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
4287                 if (IS_ERR(handle)) {
4288                         error = PTR_ERR(handle);
4289                         goto err_out;
4290                 }
4291                 error = dquot_transfer(inode, attr);
4292                 if (error) {
4293                         ext4_journal_stop(handle);
4294                         return error;
4295                 }
4296                 /* Update corresponding info in inode so that everything is in
4297                  * one transaction */
4298                 if (attr->ia_valid & ATTR_UID)
4299                         inode->i_uid = attr->ia_uid;
4300                 if (attr->ia_valid & ATTR_GID)
4301                         inode->i_gid = attr->ia_gid;
4302                 error = ext4_mark_inode_dirty(handle, inode);
4303                 ext4_journal_stop(handle);
4304         }
4305
4306         if (attr->ia_valid & ATTR_SIZE) {
4307                 inode_dio_wait(inode);
4308
4309                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4310                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4311
4312                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4313                                 return -EFBIG;
4314                 }
4315         }
4316
4317         if (S_ISREG(inode->i_mode) &&
4318             attr->ia_valid & ATTR_SIZE &&
4319             (attr->ia_size < inode->i_size)) {
4320                 handle_t *handle;
4321
4322                 handle = ext4_journal_start(inode, 3);
4323                 if (IS_ERR(handle)) {
4324                         error = PTR_ERR(handle);
4325                         goto err_out;
4326                 }
4327                 if (ext4_handle_valid(handle)) {
4328                         error = ext4_orphan_add(handle, inode);
4329                         orphan = 1;
4330                 }
4331                 EXT4_I(inode)->i_disksize = attr->ia_size;
4332                 rc = ext4_mark_inode_dirty(handle, inode);
4333                 if (!error)
4334                         error = rc;
4335                 ext4_journal_stop(handle);
4336
4337                 if (ext4_should_order_data(inode)) {
4338                         error = ext4_begin_ordered_truncate(inode,
4339                                                             attr->ia_size);
4340                         if (error) {
4341                                 /* Do as much error cleanup as possible */
4342                                 handle = ext4_journal_start(inode, 3);
4343                                 if (IS_ERR(handle)) {
4344                                         ext4_orphan_del(NULL, inode);
4345                                         goto err_out;
4346                                 }
4347                                 ext4_orphan_del(handle, inode);
4348                                 orphan = 0;
4349                                 ext4_journal_stop(handle);
4350                                 goto err_out;
4351                         }
4352                 }
4353         }
4354
4355         if (attr->ia_valid & ATTR_SIZE) {
4356                 if (attr->ia_size != i_size_read(inode))
4357                         truncate_setsize(inode, attr->ia_size);
4358                 ext4_truncate(inode);
4359         }
4360
4361         if (!rc) {
4362                 setattr_copy(inode, attr);
4363                 mark_inode_dirty(inode);
4364         }
4365
4366         /*
4367          * If the call to ext4_truncate failed to get a transaction handle at
4368          * all, we need to clean up the in-core orphan list manually.
4369          */
4370         if (orphan && inode->i_nlink)
4371                 ext4_orphan_del(NULL, inode);
4372
4373         if (!rc && (ia_valid & ATTR_MODE))
4374                 rc = ext4_acl_chmod(inode);
4375
4376 err_out:
4377         ext4_std_error(inode->i_sb, error);
4378         if (!error)
4379                 error = rc;
4380         return error;
4381 }
4382
4383 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4384                  struct kstat *stat)
4385 {
4386         struct inode *inode;
4387         unsigned long delalloc_blocks;
4388
4389         inode = dentry->d_inode;
4390         generic_fillattr(inode, stat);
4391
4392         /*
4393          * We can't update i_blocks if the block allocation is delayed
4394          * otherwise in the case of system crash before the real block
4395          * allocation is done, we will have i_blocks inconsistent with
4396          * on-disk file blocks.
4397          * We always keep i_blocks updated together with real
4398          * allocation. But to not confuse with user, stat
4399          * will return the blocks that include the delayed allocation
4400          * blocks for this file.
4401          */
4402         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4403                                 EXT4_I(inode)->i_reserved_data_blocks);
4404
4405         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4406         return 0;
4407 }
4408
4409 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4410 {
4411         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4412                 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4413         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4414 }
4415
4416 /*
4417  * Account for index blocks, block groups bitmaps and block group
4418  * descriptor blocks if modify datablocks and index blocks
4419  * worse case, the indexs blocks spread over different block groups
4420  *
4421  * If datablocks are discontiguous, they are possible to spread over
4422  * different block groups too. If they are contiuguous, with flexbg,
4423  * they could still across block group boundary.
4424  *
4425  * Also account for superblock, inode, quota and xattr blocks
4426  */
4427 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4428 {
4429         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4430         int gdpblocks;
4431         int idxblocks;
4432         int ret = 0;
4433
4434         /*
4435          * How many index blocks need to touch to modify nrblocks?
4436          * The "Chunk" flag indicating whether the nrblocks is
4437          * physically contiguous on disk
4438          *
4439          * For Direct IO and fallocate, they calls get_block to allocate
4440          * one single extent at a time, so they could set the "Chunk" flag
4441          */
4442         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4443
4444         ret = idxblocks;
4445
4446         /*
4447          * Now let's see how many group bitmaps and group descriptors need
4448          * to account
4449          */
4450         groups = idxblocks;
4451         if (chunk)
4452                 groups += 1;
4453         else
4454                 groups += nrblocks;
4455
4456         gdpblocks = groups;
4457         if (groups > ngroups)
4458                 groups = ngroups;
4459         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4460                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4461
4462         /* bitmaps and block group descriptor blocks */
4463         ret += groups + gdpblocks;
4464
4465         /* Blocks for super block, inode, quota and xattr blocks */
4466         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4467
4468         return ret;
4469 }
4470
4471 /*
4472  * Calculate the total number of credits to reserve to fit
4473  * the modification of a single pages into a single transaction,
4474  * which may include multiple chunks of block allocations.
4475  *
4476  * This could be called via ext4_write_begin()
4477  *
4478  * We need to consider the worse case, when
4479  * one new block per extent.
4480  */
4481 int ext4_writepage_trans_blocks(struct inode *inode)
4482 {
4483         int bpp = ext4_journal_blocks_per_page(inode);
4484         int ret;
4485
4486         ret = ext4_meta_trans_blocks(inode, bpp, 0);
4487
4488         /* Account for data blocks for journalled mode */
4489         if (ext4_should_journal_data(inode))
4490                 ret += bpp;
4491         return ret;
4492 }
4493
4494 /*
4495  * Calculate the journal credits for a chunk of data modification.
4496  *
4497  * This is called from DIO, fallocate or whoever calling
4498  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4499  *
4500  * journal buffers for data blocks are not included here, as DIO
4501  * and fallocate do no need to journal data buffers.
4502  */
4503 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4504 {
4505         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4506 }
4507
4508 /*
4509  * The caller must have previously called ext4_reserve_inode_write().
4510  * Give this, we know that the caller already has write access to iloc->bh.
4511  */
4512 int ext4_mark_iloc_dirty(handle_t *handle,
4513                          struct inode *inode, struct ext4_iloc *iloc)
4514 {
4515         int err = 0;
4516
4517         if (IS_I_VERSION(inode))
4518                 inode_inc_iversion(inode);
4519
4520         /* the do_update_inode consumes one bh->b_count */
4521         get_bh(iloc->bh);
4522
4523         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4524         err = ext4_do_update_inode(handle, inode, iloc);
4525         put_bh(iloc->bh);
4526         return err;
4527 }
4528
4529 /*
4530  * On success, We end up with an outstanding reference count against
4531  * iloc->bh.  This _must_ be cleaned up later.
4532  */
4533
4534 int
4535 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4536                          struct ext4_iloc *iloc)
4537 {
4538         int err;
4539
4540         err = ext4_get_inode_loc(inode, iloc);
4541         if (!err) {
4542                 BUFFER_TRACE(iloc->bh, "get_write_access");
4543                 err = ext4_journal_get_write_access(handle, iloc->bh);
4544                 if (err) {
4545                         brelse(iloc->bh);
4546                         iloc->bh = NULL;
4547                 }
4548         }
4549         ext4_std_error(inode->i_sb, err);
4550         return err;
4551 }
4552
4553 /*
4554  * Expand an inode by new_extra_isize bytes.
4555  * Returns 0 on success or negative error number on failure.
4556  */
4557 static int ext4_expand_extra_isize(struct inode *inode,
4558                                    unsigned int new_extra_isize,
4559                                    struct ext4_iloc iloc,
4560                                    handle_t *handle)
4561 {
4562         struct ext4_inode *raw_inode;
4563         struct ext4_xattr_ibody_header *header;
4564
4565         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4566                 return 0;
4567
4568         raw_inode = ext4_raw_inode(&iloc);
4569
4570         header = IHDR(inode, raw_inode);
4571
4572         /* No extended attributes present */
4573         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4574             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4575                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4576                         new_extra_isize);
4577                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4578                 return 0;
4579         }
4580
4581         /* try to expand with EAs present */
4582         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4583                                           raw_inode, handle);
4584 }
4585
4586 /*
4587  * What we do here is to mark the in-core inode as clean with respect to inode
4588  * dirtiness (it may still be data-dirty).
4589  * This means that the in-core inode may be reaped by prune_icache
4590  * without having to perform any I/O.  This is a very good thing,
4591  * because *any* task may call prune_icache - even ones which
4592  * have a transaction open against a different journal.
4593  *
4594  * Is this cheating?  Not really.  Sure, we haven't written the
4595  * inode out, but prune_icache isn't a user-visible syncing function.
4596  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4597  * we start and wait on commits.
4598  *
4599  * Is this efficient/effective?  Well, we're being nice to the system
4600  * by cleaning up our inodes proactively so they can be reaped
4601  * without I/O.  But we are potentially leaving up to five seconds'
4602  * worth of inodes floating about which prune_icache wants us to
4603  * write out.  One way to fix that would be to get prune_icache()
4604  * to do a write_super() to free up some memory.  It has the desired
4605  * effect.
4606  */
4607 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4608 {
4609         struct ext4_iloc iloc;
4610         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4611         static unsigned int mnt_count;
4612         int err, ret;
4613
4614         might_sleep();
4615         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4616         err = ext4_reserve_inode_write(handle, inode, &iloc);
4617         if (ext4_handle_valid(handle) &&
4618             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4619             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4620                 /*
4621                  * We need extra buffer credits since we may write into EA block
4622                  * with this same handle. If journal_extend fails, then it will
4623                  * only result in a minor loss of functionality for that inode.
4624                  * If this is felt to be critical, then e2fsck should be run to
4625                  * force a large enough s_min_extra_isize.
4626                  */
4627                 if ((jbd2_journal_extend(handle,
4628                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4629                         ret = ext4_expand_extra_isize(inode,
4630                                                       sbi->s_want_extra_isize,
4631                                                       iloc, handle);
4632                         if (ret) {
4633                                 ext4_set_inode_state(inode,
4634                                                      EXT4_STATE_NO_EXPAND);
4635                                 if (mnt_count !=
4636                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4637                                         ext4_warning(inode->i_sb,
4638                                         "Unable to expand inode %lu. Delete"
4639                                         " some EAs or run e2fsck.",
4640                                         inode->i_ino);
4641                                         mnt_count =
4642                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4643                                 }
4644                         }
4645                 }
4646         }
4647         if (!err)
4648                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4649         return err;
4650 }
4651
4652 /*
4653  * ext4_dirty_inode() is called from __mark_inode_dirty()
4654  *
4655  * We're really interested in the case where a file is being extended.
4656  * i_size has been changed by generic_commit_write() and we thus need
4657  * to include the updated inode in the current transaction.
4658  *
4659  * Also, dquot_alloc_block() will always dirty the inode when blocks
4660  * are allocated to the file.
4661  *
4662  * If the inode is marked synchronous, we don't honour that here - doing
4663  * so would cause a commit on atime updates, which we don't bother doing.
4664  * We handle synchronous inodes at the highest possible level.
4665  */
4666 void ext4_dirty_inode(struct inode *inode, int flags)
4667 {
4668         handle_t *handle;
4669
4670         handle = ext4_journal_start(inode, 2);
4671         if (IS_ERR(handle))
4672                 goto out;
4673
4674         ext4_mark_inode_dirty(handle, inode);
4675
4676         ext4_journal_stop(handle);
4677 out:
4678         return;
4679 }
4680
4681 #if 0
4682 /*
4683  * Bind an inode's backing buffer_head into this transaction, to prevent
4684  * it from being flushed to disk early.  Unlike
4685  * ext4_reserve_inode_write, this leaves behind no bh reference and
4686  * returns no iloc structure, so the caller needs to repeat the iloc
4687  * lookup to mark the inode dirty later.
4688  */
4689 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4690 {
4691         struct ext4_iloc iloc;
4692
4693         int err = 0;
4694         if (handle) {
4695                 err = ext4_get_inode_loc(inode, &iloc);
4696                 if (!err) {
4697                         BUFFER_TRACE(iloc.bh, "get_write_access");
4698                         err = jbd2_journal_get_write_access(handle, iloc.bh);
4699                         if (!err)
4700                                 err = ext4_handle_dirty_metadata(handle,
4701                                                                  NULL,
4702                                                                  iloc.bh);
4703                         brelse(iloc.bh);
4704                 }
4705         }
4706         ext4_std_error(inode->i_sb, err);
4707         return err;
4708 }
4709 #endif
4710
4711 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4712 {
4713         journal_t *journal;
4714         handle_t *handle;
4715         int err;
4716
4717         /*
4718          * We have to be very careful here: changing a data block's
4719          * journaling status dynamically is dangerous.  If we write a
4720          * data block to the journal, change the status and then delete
4721          * that block, we risk forgetting to revoke the old log record
4722          * from the journal and so a subsequent replay can corrupt data.
4723          * So, first we make sure that the journal is empty and that
4724          * nobody is changing anything.
4725          */
4726
4727         journal = EXT4_JOURNAL(inode);
4728         if (!journal)
4729                 return 0;
4730         if (is_journal_aborted(journal))
4731                 return -EROFS;
4732         /* We have to allocate physical blocks for delalloc blocks
4733          * before flushing journal. otherwise delalloc blocks can not
4734          * be allocated any more. even more truncate on delalloc blocks
4735          * could trigger BUG by flushing delalloc blocks in journal.
4736          * There is no delalloc block in non-journal data mode.
4737          */
4738         if (val && test_opt(inode->i_sb, DELALLOC)) {
4739                 err = ext4_alloc_da_blocks(inode);
4740                 if (err < 0)
4741                         return err;
4742         }
4743
4744         jbd2_journal_lock_updates(journal);
4745
4746         /*
4747          * OK, there are no updates running now, and all cached data is
4748          * synced to disk.  We are now in a completely consistent state
4749          * which doesn't have anything in the journal, and we know that
4750          * no filesystem updates are running, so it is safe to modify
4751          * the inode's in-core data-journaling state flag now.
4752          */
4753
4754         if (val)
4755                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4756         else {
4757                 jbd2_journal_flush(journal);
4758                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4759         }
4760         ext4_set_aops(inode);
4761
4762         jbd2_journal_unlock_updates(journal);
4763
4764         /* Finally we can mark the inode as dirty. */
4765
4766         handle = ext4_journal_start(inode, 1);
4767         if (IS_ERR(handle))
4768                 return PTR_ERR(handle);
4769
4770         err = ext4_mark_inode_dirty(handle, inode);
4771         ext4_handle_sync(handle);
4772         ext4_journal_stop(handle);
4773         ext4_std_error(inode->i_sb, err);
4774
4775         return err;
4776 }
4777
4778 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4779 {
4780         return !buffer_mapped(bh);
4781 }
4782
4783 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4784 {
4785         struct page *page = vmf->page;
4786         loff_t size;
4787         unsigned long len;
4788         int ret;
4789         struct file *file = vma->vm_file;
4790         struct inode *inode = file->f_path.dentry->d_inode;
4791         struct address_space *mapping = inode->i_mapping;
4792         handle_t *handle;
4793         get_block_t *get_block;
4794         int retries = 0;
4795
4796         sb_start_pagefault(inode->i_sb);
4797         /* Delalloc case is easy... */
4798         if (test_opt(inode->i_sb, DELALLOC) &&
4799             !ext4_should_journal_data(inode) &&
4800             !ext4_nonda_switch(inode->i_sb)) {
4801                 do {
4802                         ret = __block_page_mkwrite(vma, vmf,
4803                                                    ext4_da_get_block_prep);
4804                 } while (ret == -ENOSPC &&
4805                        ext4_should_retry_alloc(inode->i_sb, &retries));
4806                 goto out_ret;
4807         }
4808
4809         lock_page(page);
4810         size = i_size_read(inode);
4811         /* Page got truncated from under us? */
4812         if (page->mapping != mapping || page_offset(page) > size) {
4813                 unlock_page(page);
4814                 ret = VM_FAULT_NOPAGE;
4815                 goto out;
4816         }
4817
4818         if (page->index == size >> PAGE_CACHE_SHIFT)
4819                 len = size & ~PAGE_CACHE_MASK;
4820         else
4821                 len = PAGE_CACHE_SIZE;
4822         /*
4823          * Return if we have all the buffers mapped. This avoids the need to do
4824          * journal_start/journal_stop which can block and take a long time
4825          */
4826         if (page_has_buffers(page)) {
4827                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4828                                         ext4_bh_unmapped)) {
4829                         /* Wait so that we don't change page under IO */
4830                         wait_on_page_writeback(page);
4831                         ret = VM_FAULT_LOCKED;
4832                         goto out;
4833                 }
4834         }
4835         unlock_page(page);
4836         /* OK, we need to fill the hole... */
4837         if (ext4_should_dioread_nolock(inode))
4838                 get_block = ext4_get_block_write;
4839         else
4840                 get_block = ext4_get_block;
4841 retry_alloc:
4842         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
4843         if (IS_ERR(handle)) {
4844                 ret = VM_FAULT_SIGBUS;
4845                 goto out;
4846         }
4847         ret = __block_page_mkwrite(vma, vmf, get_block);
4848         if (!ret && ext4_should_journal_data(inode)) {
4849                 if (walk_page_buffers(handle, page_buffers(page), 0,
4850                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4851                         unlock_page(page);
4852                         ret = VM_FAULT_SIGBUS;
4853                         ext4_journal_stop(handle);
4854                         goto out;
4855                 }
4856                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4857         }
4858         ext4_journal_stop(handle);
4859         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4860                 goto retry_alloc;
4861 out_ret:
4862         ret = block_page_mkwrite_return(ret);
4863 out:
4864         sb_end_pagefault(inode->i_sb);
4865         return ret;
4866 }