]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/ext4/inode.c
ext4: fix nomblk_io_submit option so it correctly converts uninit blocks
[karo-tx-linux.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/workqueue.h>
41 #include <linux/kernel.h>
42 #include <linux/printk.h>
43 #include <linux/slab.h>
44 #include <linux/ratelimit.h>
45
46 #include "ext4_jbd2.h"
47 #include "xattr.h"
48 #include "acl.h"
49 #include "ext4_extents.h"
50
51 #include <trace/events/ext4.h>
52
53 #define MPAGE_DA_EXTENT_TAIL 0x01
54
55 static inline int ext4_begin_ordered_truncate(struct inode *inode,
56                                               loff_t new_size)
57 {
58         trace_ext4_begin_ordered_truncate(inode, new_size);
59         /*
60          * If jinode is zero, then we never opened the file for
61          * writing, so there's no need to call
62          * jbd2_journal_begin_ordered_truncate() since there's no
63          * outstanding writes we need to flush.
64          */
65         if (!EXT4_I(inode)->jinode)
66                 return 0;
67         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
68                                                    EXT4_I(inode)->jinode,
69                                                    new_size);
70 }
71
72 static void ext4_invalidatepage(struct page *page, unsigned long offset);
73 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
74                                    struct buffer_head *bh_result, int create);
75 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
76 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
77 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
78 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
79
80 /*
81  * Test whether an inode is a fast symlink.
82  */
83 static int ext4_inode_is_fast_symlink(struct inode *inode)
84 {
85         int ea_blocks = EXT4_I(inode)->i_file_acl ?
86                 (inode->i_sb->s_blocksize >> 9) : 0;
87
88         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
89 }
90
91 /*
92  * Work out how many blocks we need to proceed with the next chunk of a
93  * truncate transaction.
94  */
95 static unsigned long blocks_for_truncate(struct inode *inode)
96 {
97         ext4_lblk_t needed;
98
99         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
100
101         /* Give ourselves just enough room to cope with inodes in which
102          * i_blocks is corrupt: we've seen disk corruptions in the past
103          * which resulted in random data in an inode which looked enough
104          * like a regular file for ext4 to try to delete it.  Things
105          * will go a bit crazy if that happens, but at least we should
106          * try not to panic the whole kernel. */
107         if (needed < 2)
108                 needed = 2;
109
110         /* But we need to bound the transaction so we don't overflow the
111          * journal. */
112         if (needed > EXT4_MAX_TRANS_DATA)
113                 needed = EXT4_MAX_TRANS_DATA;
114
115         return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
116 }
117
118 /*
119  * Truncate transactions can be complex and absolutely huge.  So we need to
120  * be able to restart the transaction at a conventient checkpoint to make
121  * sure we don't overflow the journal.
122  *
123  * start_transaction gets us a new handle for a truncate transaction,
124  * and extend_transaction tries to extend the existing one a bit.  If
125  * extend fails, we need to propagate the failure up and restart the
126  * transaction in the top-level truncate loop. --sct
127  */
128 static handle_t *start_transaction(struct inode *inode)
129 {
130         handle_t *result;
131
132         result = ext4_journal_start(inode, blocks_for_truncate(inode));
133         if (!IS_ERR(result))
134                 return result;
135
136         ext4_std_error(inode->i_sb, PTR_ERR(result));
137         return result;
138 }
139
140 /*
141  * Try to extend this transaction for the purposes of truncation.
142  *
143  * Returns 0 if we managed to create more room.  If we can't create more
144  * room, and the transaction must be restarted we return 1.
145  */
146 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
147 {
148         if (!ext4_handle_valid(handle))
149                 return 0;
150         if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
151                 return 0;
152         if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
153                 return 0;
154         return 1;
155 }
156
157 /*
158  * Restart the transaction associated with *handle.  This does a commit,
159  * so before we call here everything must be consistently dirtied against
160  * this transaction.
161  */
162 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
163                                  int nblocks)
164 {
165         int ret;
166
167         /*
168          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
169          * moment, get_block can be called only for blocks inside i_size since
170          * page cache has been already dropped and writes are blocked by
171          * i_mutex. So we can safely drop the i_data_sem here.
172          */
173         BUG_ON(EXT4_JOURNAL(inode) == NULL);
174         jbd_debug(2, "restarting handle %p\n", handle);
175         up_write(&EXT4_I(inode)->i_data_sem);
176         ret = ext4_journal_restart(handle, nblocks);
177         down_write(&EXT4_I(inode)->i_data_sem);
178         ext4_discard_preallocations(inode);
179
180         return ret;
181 }
182
183 /*
184  * Called at the last iput() if i_nlink is zero.
185  */
186 void ext4_evict_inode(struct inode *inode)
187 {
188         handle_t *handle;
189         int err;
190
191         trace_ext4_evict_inode(inode);
192
193         mutex_lock(&inode->i_mutex);
194         ext4_flush_completed_IO(inode);
195         mutex_unlock(&inode->i_mutex);
196         ext4_ioend_wait(inode);
197
198         if (inode->i_nlink) {
199                 truncate_inode_pages(&inode->i_data, 0);
200                 goto no_delete;
201         }
202
203         if (!is_bad_inode(inode))
204                 dquot_initialize(inode);
205
206         if (ext4_should_order_data(inode))
207                 ext4_begin_ordered_truncate(inode, 0);
208         truncate_inode_pages(&inode->i_data, 0);
209
210         if (is_bad_inode(inode))
211                 goto no_delete;
212
213         handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
214         if (IS_ERR(handle)) {
215                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
216                 /*
217                  * If we're going to skip the normal cleanup, we still need to
218                  * make sure that the in-core orphan linked list is properly
219                  * cleaned up.
220                  */
221                 ext4_orphan_del(NULL, inode);
222                 goto no_delete;
223         }
224
225         if (IS_SYNC(inode))
226                 ext4_handle_sync(handle);
227         inode->i_size = 0;
228         err = ext4_mark_inode_dirty(handle, inode);
229         if (err) {
230                 ext4_warning(inode->i_sb,
231                              "couldn't mark inode dirty (err %d)", err);
232                 goto stop_handle;
233         }
234         if (inode->i_blocks)
235                 ext4_truncate(inode);
236
237         /*
238          * ext4_ext_truncate() doesn't reserve any slop when it
239          * restarts journal transactions; therefore there may not be
240          * enough credits left in the handle to remove the inode from
241          * the orphan list and set the dtime field.
242          */
243         if (!ext4_handle_has_enough_credits(handle, 3)) {
244                 err = ext4_journal_extend(handle, 3);
245                 if (err > 0)
246                         err = ext4_journal_restart(handle, 3);
247                 if (err != 0) {
248                         ext4_warning(inode->i_sb,
249                                      "couldn't extend journal (err %d)", err);
250                 stop_handle:
251                         ext4_journal_stop(handle);
252                         ext4_orphan_del(NULL, inode);
253                         goto no_delete;
254                 }
255         }
256
257         /*
258          * Kill off the orphan record which ext4_truncate created.
259          * AKPM: I think this can be inside the above `if'.
260          * Note that ext4_orphan_del() has to be able to cope with the
261          * deletion of a non-existent orphan - this is because we don't
262          * know if ext4_truncate() actually created an orphan record.
263          * (Well, we could do this if we need to, but heck - it works)
264          */
265         ext4_orphan_del(handle, inode);
266         EXT4_I(inode)->i_dtime  = get_seconds();
267
268         /*
269          * One subtle ordering requirement: if anything has gone wrong
270          * (transaction abort, IO errors, whatever), then we can still
271          * do these next steps (the fs will already have been marked as
272          * having errors), but we can't free the inode if the mark_dirty
273          * fails.
274          */
275         if (ext4_mark_inode_dirty(handle, inode))
276                 /* If that failed, just do the required in-core inode clear. */
277                 ext4_clear_inode(inode);
278         else
279                 ext4_free_inode(handle, inode);
280         ext4_journal_stop(handle);
281         return;
282 no_delete:
283         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
284 }
285
286 typedef struct {
287         __le32  *p;
288         __le32  key;
289         struct buffer_head *bh;
290 } Indirect;
291
292 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
293 {
294         p->key = *(p->p = v);
295         p->bh = bh;
296 }
297
298 /**
299  *      ext4_block_to_path - parse the block number into array of offsets
300  *      @inode: inode in question (we are only interested in its superblock)
301  *      @i_block: block number to be parsed
302  *      @offsets: array to store the offsets in
303  *      @boundary: set this non-zero if the referred-to block is likely to be
304  *             followed (on disk) by an indirect block.
305  *
306  *      To store the locations of file's data ext4 uses a data structure common
307  *      for UNIX filesystems - tree of pointers anchored in the inode, with
308  *      data blocks at leaves and indirect blocks in intermediate nodes.
309  *      This function translates the block number into path in that tree -
310  *      return value is the path length and @offsets[n] is the offset of
311  *      pointer to (n+1)th node in the nth one. If @block is out of range
312  *      (negative or too large) warning is printed and zero returned.
313  *
314  *      Note: function doesn't find node addresses, so no IO is needed. All
315  *      we need to know is the capacity of indirect blocks (taken from the
316  *      inode->i_sb).
317  */
318
319 /*
320  * Portability note: the last comparison (check that we fit into triple
321  * indirect block) is spelled differently, because otherwise on an
322  * architecture with 32-bit longs and 8Kb pages we might get into trouble
323  * if our filesystem had 8Kb blocks. We might use long long, but that would
324  * kill us on x86. Oh, well, at least the sign propagation does not matter -
325  * i_block would have to be negative in the very beginning, so we would not
326  * get there at all.
327  */
328
329 static int ext4_block_to_path(struct inode *inode,
330                               ext4_lblk_t i_block,
331                               ext4_lblk_t offsets[4], int *boundary)
332 {
333         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
334         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
335         const long direct_blocks = EXT4_NDIR_BLOCKS,
336                 indirect_blocks = ptrs,
337                 double_blocks = (1 << (ptrs_bits * 2));
338         int n = 0;
339         int final = 0;
340
341         if (i_block < direct_blocks) {
342                 offsets[n++] = i_block;
343                 final = direct_blocks;
344         } else if ((i_block -= direct_blocks) < indirect_blocks) {
345                 offsets[n++] = EXT4_IND_BLOCK;
346                 offsets[n++] = i_block;
347                 final = ptrs;
348         } else if ((i_block -= indirect_blocks) < double_blocks) {
349                 offsets[n++] = EXT4_DIND_BLOCK;
350                 offsets[n++] = i_block >> ptrs_bits;
351                 offsets[n++] = i_block & (ptrs - 1);
352                 final = ptrs;
353         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
354                 offsets[n++] = EXT4_TIND_BLOCK;
355                 offsets[n++] = i_block >> (ptrs_bits * 2);
356                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
357                 offsets[n++] = i_block & (ptrs - 1);
358                 final = ptrs;
359         } else {
360                 ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
361                              i_block + direct_blocks +
362                              indirect_blocks + double_blocks, inode->i_ino);
363         }
364         if (boundary)
365                 *boundary = final - 1 - (i_block & (ptrs - 1));
366         return n;
367 }
368
369 static int __ext4_check_blockref(const char *function, unsigned int line,
370                                  struct inode *inode,
371                                  __le32 *p, unsigned int max)
372 {
373         struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
374         __le32 *bref = p;
375         unsigned int blk;
376
377         while (bref < p+max) {
378                 blk = le32_to_cpu(*bref++);
379                 if (blk &&
380                     unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
381                                                     blk, 1))) {
382                         es->s_last_error_block = cpu_to_le64(blk);
383                         ext4_error_inode(inode, function, line, blk,
384                                          "invalid block");
385                         return -EIO;
386                 }
387         }
388         return 0;
389 }
390
391
392 #define ext4_check_indirect_blockref(inode, bh)                         \
393         __ext4_check_blockref(__func__, __LINE__, inode,                \
394                               (__le32 *)(bh)->b_data,                   \
395                               EXT4_ADDR_PER_BLOCK((inode)->i_sb))
396
397 #define ext4_check_inode_blockref(inode)                                \
398         __ext4_check_blockref(__func__, __LINE__, inode,                \
399                               EXT4_I(inode)->i_data,                    \
400                               EXT4_NDIR_BLOCKS)
401
402 /**
403  *      ext4_get_branch - read the chain of indirect blocks leading to data
404  *      @inode: inode in question
405  *      @depth: depth of the chain (1 - direct pointer, etc.)
406  *      @offsets: offsets of pointers in inode/indirect blocks
407  *      @chain: place to store the result
408  *      @err: here we store the error value
409  *
410  *      Function fills the array of triples <key, p, bh> and returns %NULL
411  *      if everything went OK or the pointer to the last filled triple
412  *      (incomplete one) otherwise. Upon the return chain[i].key contains
413  *      the number of (i+1)-th block in the chain (as it is stored in memory,
414  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
415  *      number (it points into struct inode for i==0 and into the bh->b_data
416  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
417  *      block for i>0 and NULL for i==0. In other words, it holds the block
418  *      numbers of the chain, addresses they were taken from (and where we can
419  *      verify that chain did not change) and buffer_heads hosting these
420  *      numbers.
421  *
422  *      Function stops when it stumbles upon zero pointer (absent block)
423  *              (pointer to last triple returned, *@err == 0)
424  *      or when it gets an IO error reading an indirect block
425  *              (ditto, *@err == -EIO)
426  *      or when it reads all @depth-1 indirect blocks successfully and finds
427  *      the whole chain, all way to the data (returns %NULL, *err == 0).
428  *
429  *      Need to be called with
430  *      down_read(&EXT4_I(inode)->i_data_sem)
431  */
432 static Indirect *ext4_get_branch(struct inode *inode, int depth,
433                                  ext4_lblk_t  *offsets,
434                                  Indirect chain[4], int *err)
435 {
436         struct super_block *sb = inode->i_sb;
437         Indirect *p = chain;
438         struct buffer_head *bh;
439
440         *err = 0;
441         /* i_data is not going away, no lock needed */
442         add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
443         if (!p->key)
444                 goto no_block;
445         while (--depth) {
446                 bh = sb_getblk(sb, le32_to_cpu(p->key));
447                 if (unlikely(!bh))
448                         goto failure;
449
450                 if (!bh_uptodate_or_lock(bh)) {
451                         if (bh_submit_read(bh) < 0) {
452                                 put_bh(bh);
453                                 goto failure;
454                         }
455                         /* validate block references */
456                         if (ext4_check_indirect_blockref(inode, bh)) {
457                                 put_bh(bh);
458                                 goto failure;
459                         }
460                 }
461
462                 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
463                 /* Reader: end */
464                 if (!p->key)
465                         goto no_block;
466         }
467         return NULL;
468
469 failure:
470         *err = -EIO;
471 no_block:
472         return p;
473 }
474
475 /**
476  *      ext4_find_near - find a place for allocation with sufficient locality
477  *      @inode: owner
478  *      @ind: descriptor of indirect block.
479  *
480  *      This function returns the preferred place for block allocation.
481  *      It is used when heuristic for sequential allocation fails.
482  *      Rules are:
483  *        + if there is a block to the left of our position - allocate near it.
484  *        + if pointer will live in indirect block - allocate near that block.
485  *        + if pointer will live in inode - allocate in the same
486  *          cylinder group.
487  *
488  * In the latter case we colour the starting block by the callers PID to
489  * prevent it from clashing with concurrent allocations for a different inode
490  * in the same block group.   The PID is used here so that functionally related
491  * files will be close-by on-disk.
492  *
493  *      Caller must make sure that @ind is valid and will stay that way.
494  */
495 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
496 {
497         struct ext4_inode_info *ei = EXT4_I(inode);
498         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
499         __le32 *p;
500         ext4_fsblk_t bg_start;
501         ext4_fsblk_t last_block;
502         ext4_grpblk_t colour;
503         ext4_group_t block_group;
504         int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
505
506         /* Try to find previous block */
507         for (p = ind->p - 1; p >= start; p--) {
508                 if (*p)
509                         return le32_to_cpu(*p);
510         }
511
512         /* No such thing, so let's try location of indirect block */
513         if (ind->bh)
514                 return ind->bh->b_blocknr;
515
516         /*
517          * It is going to be referred to from the inode itself? OK, just put it
518          * into the same cylinder group then.
519          */
520         block_group = ei->i_block_group;
521         if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
522                 block_group &= ~(flex_size-1);
523                 if (S_ISREG(inode->i_mode))
524                         block_group++;
525         }
526         bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
527         last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
528
529         /*
530          * If we are doing delayed allocation, we don't need take
531          * colour into account.
532          */
533         if (test_opt(inode->i_sb, DELALLOC))
534                 return bg_start;
535
536         if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
537                 colour = (current->pid % 16) *
538                         (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
539         else
540                 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
541         return bg_start + colour;
542 }
543
544 /**
545  *      ext4_find_goal - find a preferred place for allocation.
546  *      @inode: owner
547  *      @block:  block we want
548  *      @partial: pointer to the last triple within a chain
549  *
550  *      Normally this function find the preferred place for block allocation,
551  *      returns it.
552  *      Because this is only used for non-extent files, we limit the block nr
553  *      to 32 bits.
554  */
555 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
556                                    Indirect *partial)
557 {
558         ext4_fsblk_t goal;
559
560         /*
561          * XXX need to get goal block from mballoc's data structures
562          */
563
564         goal = ext4_find_near(inode, partial);
565         goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
566         return goal;
567 }
568
569 /**
570  *      ext4_blks_to_allocate - Look up the block map and count the number
571  *      of direct blocks need to be allocated for the given branch.
572  *
573  *      @branch: chain of indirect blocks
574  *      @k: number of blocks need for indirect blocks
575  *      @blks: number of data blocks to be mapped.
576  *      @blocks_to_boundary:  the offset in the indirect block
577  *
578  *      return the total number of blocks to be allocate, including the
579  *      direct and indirect blocks.
580  */
581 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
582                                  int blocks_to_boundary)
583 {
584         unsigned int count = 0;
585
586         /*
587          * Simple case, [t,d]Indirect block(s) has not allocated yet
588          * then it's clear blocks on that path have not allocated
589          */
590         if (k > 0) {
591                 /* right now we don't handle cross boundary allocation */
592                 if (blks < blocks_to_boundary + 1)
593                         count += blks;
594                 else
595                         count += blocks_to_boundary + 1;
596                 return count;
597         }
598
599         count++;
600         while (count < blks && count <= blocks_to_boundary &&
601                 le32_to_cpu(*(branch[0].p + count)) == 0) {
602                 count++;
603         }
604         return count;
605 }
606
607 /**
608  *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
609  *      @handle: handle for this transaction
610  *      @inode: inode which needs allocated blocks
611  *      @iblock: the logical block to start allocated at
612  *      @goal: preferred physical block of allocation
613  *      @indirect_blks: the number of blocks need to allocate for indirect
614  *                      blocks
615  *      @blks: number of desired blocks
616  *      @new_blocks: on return it will store the new block numbers for
617  *      the indirect blocks(if needed) and the first direct block,
618  *      @err: on return it will store the error code
619  *
620  *      This function will return the number of blocks allocated as
621  *      requested by the passed-in parameters.
622  */
623 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
624                              ext4_lblk_t iblock, ext4_fsblk_t goal,
625                              int indirect_blks, int blks,
626                              ext4_fsblk_t new_blocks[4], int *err)
627 {
628         struct ext4_allocation_request ar;
629         int target, i;
630         unsigned long count = 0, blk_allocated = 0;
631         int index = 0;
632         ext4_fsblk_t current_block = 0;
633         int ret = 0;
634
635         /*
636          * Here we try to allocate the requested multiple blocks at once,
637          * on a best-effort basis.
638          * To build a branch, we should allocate blocks for
639          * the indirect blocks(if not allocated yet), and at least
640          * the first direct block of this branch.  That's the
641          * minimum number of blocks need to allocate(required)
642          */
643         /* first we try to allocate the indirect blocks */
644         target = indirect_blks;
645         while (target > 0) {
646                 count = target;
647                 /* allocating blocks for indirect blocks and direct blocks */
648                 current_block = ext4_new_meta_blocks(handle, inode, goal,
649                                                      0, &count, err);
650                 if (*err)
651                         goto failed_out;
652
653                 if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
654                         EXT4_ERROR_INODE(inode,
655                                          "current_block %llu + count %lu > %d!",
656                                          current_block, count,
657                                          EXT4_MAX_BLOCK_FILE_PHYS);
658                         *err = -EIO;
659                         goto failed_out;
660                 }
661
662                 target -= count;
663                 /* allocate blocks for indirect blocks */
664                 while (index < indirect_blks && count) {
665                         new_blocks[index++] = current_block++;
666                         count--;
667                 }
668                 if (count > 0) {
669                         /*
670                          * save the new block number
671                          * for the first direct block
672                          */
673                         new_blocks[index] = current_block;
674                         printk(KERN_INFO "%s returned more blocks than "
675                                                 "requested\n", __func__);
676                         WARN_ON(1);
677                         break;
678                 }
679         }
680
681         target = blks - count ;
682         blk_allocated = count;
683         if (!target)
684                 goto allocated;
685         /* Now allocate data blocks */
686         memset(&ar, 0, sizeof(ar));
687         ar.inode = inode;
688         ar.goal = goal;
689         ar.len = target;
690         ar.logical = iblock;
691         if (S_ISREG(inode->i_mode))
692                 /* enable in-core preallocation only for regular files */
693                 ar.flags = EXT4_MB_HINT_DATA;
694
695         current_block = ext4_mb_new_blocks(handle, &ar, err);
696         if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
697                 EXT4_ERROR_INODE(inode,
698                                  "current_block %llu + ar.len %d > %d!",
699                                  current_block, ar.len,
700                                  EXT4_MAX_BLOCK_FILE_PHYS);
701                 *err = -EIO;
702                 goto failed_out;
703         }
704
705         if (*err && (target == blks)) {
706                 /*
707                  * if the allocation failed and we didn't allocate
708                  * any blocks before
709                  */
710                 goto failed_out;
711         }
712         if (!*err) {
713                 if (target == blks) {
714                         /*
715                          * save the new block number
716                          * for the first direct block
717                          */
718                         new_blocks[index] = current_block;
719                 }
720                 blk_allocated += ar.len;
721         }
722 allocated:
723         /* total number of blocks allocated for direct blocks */
724         ret = blk_allocated;
725         *err = 0;
726         return ret;
727 failed_out:
728         for (i = 0; i < index; i++)
729                 ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 0);
730         return ret;
731 }
732
733 /**
734  *      ext4_alloc_branch - allocate and set up a chain of blocks.
735  *      @handle: handle for this transaction
736  *      @inode: owner
737  *      @indirect_blks: number of allocated indirect blocks
738  *      @blks: number of allocated direct blocks
739  *      @goal: preferred place for allocation
740  *      @offsets: offsets (in the blocks) to store the pointers to next.
741  *      @branch: place to store the chain in.
742  *
743  *      This function allocates blocks, zeroes out all but the last one,
744  *      links them into chain and (if we are synchronous) writes them to disk.
745  *      In other words, it prepares a branch that can be spliced onto the
746  *      inode. It stores the information about that chain in the branch[], in
747  *      the same format as ext4_get_branch() would do. We are calling it after
748  *      we had read the existing part of chain and partial points to the last
749  *      triple of that (one with zero ->key). Upon the exit we have the same
750  *      picture as after the successful ext4_get_block(), except that in one
751  *      place chain is disconnected - *branch->p is still zero (we did not
752  *      set the last link), but branch->key contains the number that should
753  *      be placed into *branch->p to fill that gap.
754  *
755  *      If allocation fails we free all blocks we've allocated (and forget
756  *      their buffer_heads) and return the error value the from failed
757  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
758  *      as described above and return 0.
759  */
760 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
761                              ext4_lblk_t iblock, int indirect_blks,
762                              int *blks, ext4_fsblk_t goal,
763                              ext4_lblk_t *offsets, Indirect *branch)
764 {
765         int blocksize = inode->i_sb->s_blocksize;
766         int i, n = 0;
767         int err = 0;
768         struct buffer_head *bh;
769         int num;
770         ext4_fsblk_t new_blocks[4];
771         ext4_fsblk_t current_block;
772
773         num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
774                                 *blks, new_blocks, &err);
775         if (err)
776                 return err;
777
778         branch[0].key = cpu_to_le32(new_blocks[0]);
779         /*
780          * metadata blocks and data blocks are allocated.
781          */
782         for (n = 1; n <= indirect_blks;  n++) {
783                 /*
784                  * Get buffer_head for parent block, zero it out
785                  * and set the pointer to new one, then send
786                  * parent to disk.
787                  */
788                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
789                 if (unlikely(!bh)) {
790                         err = -EIO;
791                         goto failed;
792                 }
793
794                 branch[n].bh = bh;
795                 lock_buffer(bh);
796                 BUFFER_TRACE(bh, "call get_create_access");
797                 err = ext4_journal_get_create_access(handle, bh);
798                 if (err) {
799                         /* Don't brelse(bh) here; it's done in
800                          * ext4_journal_forget() below */
801                         unlock_buffer(bh);
802                         goto failed;
803                 }
804
805                 memset(bh->b_data, 0, blocksize);
806                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
807                 branch[n].key = cpu_to_le32(new_blocks[n]);
808                 *branch[n].p = branch[n].key;
809                 if (n == indirect_blks) {
810                         current_block = new_blocks[n];
811                         /*
812                          * End of chain, update the last new metablock of
813                          * the chain to point to the new allocated
814                          * data blocks numbers
815                          */
816                         for (i = 1; i < num; i++)
817                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
818                 }
819                 BUFFER_TRACE(bh, "marking uptodate");
820                 set_buffer_uptodate(bh);
821                 unlock_buffer(bh);
822
823                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
824                 err = ext4_handle_dirty_metadata(handle, inode, bh);
825                 if (err)
826                         goto failed;
827         }
828         *blks = num;
829         return err;
830 failed:
831         /* Allocation failed, free what we already allocated */
832         ext4_free_blocks(handle, inode, NULL, new_blocks[0], 1, 0);
833         for (i = 1; i <= n ; i++) {
834                 /*
835                  * branch[i].bh is newly allocated, so there is no
836                  * need to revoke the block, which is why we don't
837                  * need to set EXT4_FREE_BLOCKS_METADATA.
838                  */
839                 ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1,
840                                  EXT4_FREE_BLOCKS_FORGET);
841         }
842         for (i = n+1; i < indirect_blks; i++)
843                 ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 0);
844
845         ext4_free_blocks(handle, inode, NULL, new_blocks[i], num, 0);
846
847         return err;
848 }
849
850 /**
851  * ext4_splice_branch - splice the allocated branch onto inode.
852  * @handle: handle for this transaction
853  * @inode: owner
854  * @block: (logical) number of block we are adding
855  * @chain: chain of indirect blocks (with a missing link - see
856  *      ext4_alloc_branch)
857  * @where: location of missing link
858  * @num:   number of indirect blocks we are adding
859  * @blks:  number of direct blocks we are adding
860  *
861  * This function fills the missing link and does all housekeeping needed in
862  * inode (->i_blocks, etc.). In case of success we end up with the full
863  * chain to new block and return 0.
864  */
865 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
866                               ext4_lblk_t block, Indirect *where, int num,
867                               int blks)
868 {
869         int i;
870         int err = 0;
871         ext4_fsblk_t current_block;
872
873         /*
874          * If we're splicing into a [td]indirect block (as opposed to the
875          * inode) then we need to get write access to the [td]indirect block
876          * before the splice.
877          */
878         if (where->bh) {
879                 BUFFER_TRACE(where->bh, "get_write_access");
880                 err = ext4_journal_get_write_access(handle, where->bh);
881                 if (err)
882                         goto err_out;
883         }
884         /* That's it */
885
886         *where->p = where->key;
887
888         /*
889          * Update the host buffer_head or inode to point to more just allocated
890          * direct blocks blocks
891          */
892         if (num == 0 && blks > 1) {
893                 current_block = le32_to_cpu(where->key) + 1;
894                 for (i = 1; i < blks; i++)
895                         *(where->p + i) = cpu_to_le32(current_block++);
896         }
897
898         /* We are done with atomic stuff, now do the rest of housekeeping */
899         /* had we spliced it onto indirect block? */
900         if (where->bh) {
901                 /*
902                  * If we spliced it onto an indirect block, we haven't
903                  * altered the inode.  Note however that if it is being spliced
904                  * onto an indirect block at the very end of the file (the
905                  * file is growing) then we *will* alter the inode to reflect
906                  * the new i_size.  But that is not done here - it is done in
907                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
908                  */
909                 jbd_debug(5, "splicing indirect only\n");
910                 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
911                 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
912                 if (err)
913                         goto err_out;
914         } else {
915                 /*
916                  * OK, we spliced it into the inode itself on a direct block.
917                  */
918                 ext4_mark_inode_dirty(handle, inode);
919                 jbd_debug(5, "splicing direct\n");
920         }
921         return err;
922
923 err_out:
924         for (i = 1; i <= num; i++) {
925                 /*
926                  * branch[i].bh is newly allocated, so there is no
927                  * need to revoke the block, which is why we don't
928                  * need to set EXT4_FREE_BLOCKS_METADATA.
929                  */
930                 ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
931                                  EXT4_FREE_BLOCKS_FORGET);
932         }
933         ext4_free_blocks(handle, inode, NULL, le32_to_cpu(where[num].key),
934                          blks, 0);
935
936         return err;
937 }
938
939 /*
940  * The ext4_ind_map_blocks() function handles non-extents inodes
941  * (i.e., using the traditional indirect/double-indirect i_blocks
942  * scheme) for ext4_map_blocks().
943  *
944  * Allocation strategy is simple: if we have to allocate something, we will
945  * have to go the whole way to leaf. So let's do it before attaching anything
946  * to tree, set linkage between the newborn blocks, write them if sync is
947  * required, recheck the path, free and repeat if check fails, otherwise
948  * set the last missing link (that will protect us from any truncate-generated
949  * removals - all blocks on the path are immune now) and possibly force the
950  * write on the parent block.
951  * That has a nice additional property: no special recovery from the failed
952  * allocations is needed - we simply release blocks and do not touch anything
953  * reachable from inode.
954  *
955  * `handle' can be NULL if create == 0.
956  *
957  * return > 0, # of blocks mapped or allocated.
958  * return = 0, if plain lookup failed.
959  * return < 0, error case.
960  *
961  * The ext4_ind_get_blocks() function should be called with
962  * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
963  * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
964  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
965  * blocks.
966  */
967 static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
968                                struct ext4_map_blocks *map,
969                                int flags)
970 {
971         int err = -EIO;
972         ext4_lblk_t offsets[4];
973         Indirect chain[4];
974         Indirect *partial;
975         ext4_fsblk_t goal;
976         int indirect_blks;
977         int blocks_to_boundary = 0;
978         int depth;
979         int count = 0;
980         ext4_fsblk_t first_block = 0;
981
982         trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
983         J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
984         J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
985         depth = ext4_block_to_path(inode, map->m_lblk, offsets,
986                                    &blocks_to_boundary);
987
988         if (depth == 0)
989                 goto out;
990
991         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
992
993         /* Simplest case - block found, no allocation needed */
994         if (!partial) {
995                 first_block = le32_to_cpu(chain[depth - 1].key);
996                 count++;
997                 /*map more blocks*/
998                 while (count < map->m_len && count <= blocks_to_boundary) {
999                         ext4_fsblk_t blk;
1000
1001                         blk = le32_to_cpu(*(chain[depth-1].p + count));
1002
1003                         if (blk == first_block + count)
1004                                 count++;
1005                         else
1006                                 break;
1007                 }
1008                 goto got_it;
1009         }
1010
1011         /* Next simple case - plain lookup or failed read of indirect block */
1012         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
1013                 goto cleanup;
1014
1015         /*
1016          * Okay, we need to do block allocation.
1017         */
1018         goal = ext4_find_goal(inode, map->m_lblk, partial);
1019
1020         /* the number of blocks need to allocate for [d,t]indirect blocks */
1021         indirect_blks = (chain + depth) - partial - 1;
1022
1023         /*
1024          * Next look up the indirect map to count the totoal number of
1025          * direct blocks to allocate for this branch.
1026          */
1027         count = ext4_blks_to_allocate(partial, indirect_blks,
1028                                       map->m_len, blocks_to_boundary);
1029         /*
1030          * Block out ext4_truncate while we alter the tree
1031          */
1032         err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
1033                                 &count, goal,
1034                                 offsets + (partial - chain), partial);
1035
1036         /*
1037          * The ext4_splice_branch call will free and forget any buffers
1038          * on the new chain if there is a failure, but that risks using
1039          * up transaction credits, especially for bitmaps where the
1040          * credits cannot be returned.  Can we handle this somehow?  We
1041          * may need to return -EAGAIN upwards in the worst case.  --sct
1042          */
1043         if (!err)
1044                 err = ext4_splice_branch(handle, inode, map->m_lblk,
1045                                          partial, indirect_blks, count);
1046         if (err)
1047                 goto cleanup;
1048
1049         map->m_flags |= EXT4_MAP_NEW;
1050
1051         ext4_update_inode_fsync_trans(handle, inode, 1);
1052 got_it:
1053         map->m_flags |= EXT4_MAP_MAPPED;
1054         map->m_pblk = le32_to_cpu(chain[depth-1].key);
1055         map->m_len = count;
1056         if (count > blocks_to_boundary)
1057                 map->m_flags |= EXT4_MAP_BOUNDARY;
1058         err = count;
1059         /* Clean up and exit */
1060         partial = chain + depth - 1;    /* the whole chain */
1061 cleanup:
1062         while (partial > chain) {
1063                 BUFFER_TRACE(partial->bh, "call brelse");
1064                 brelse(partial->bh);
1065                 partial--;
1066         }
1067 out:
1068         trace_ext4_ind_map_blocks_exit(inode, map->m_lblk,
1069                                 map->m_pblk, map->m_len, err);
1070         return err;
1071 }
1072
1073 #ifdef CONFIG_QUOTA
1074 qsize_t *ext4_get_reserved_space(struct inode *inode)
1075 {
1076         return &EXT4_I(inode)->i_reserved_quota;
1077 }
1078 #endif
1079
1080 /*
1081  * Calculate the number of metadata blocks need to reserve
1082  * to allocate a new block at @lblocks for non extent file based file
1083  */
1084 static int ext4_indirect_calc_metadata_amount(struct inode *inode,
1085                                               sector_t lblock)
1086 {
1087         struct ext4_inode_info *ei = EXT4_I(inode);
1088         sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
1089         int blk_bits;
1090
1091         if (lblock < EXT4_NDIR_BLOCKS)
1092                 return 0;
1093
1094         lblock -= EXT4_NDIR_BLOCKS;
1095
1096         if (ei->i_da_metadata_calc_len &&
1097             (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
1098                 ei->i_da_metadata_calc_len++;
1099                 return 0;
1100         }
1101         ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
1102         ei->i_da_metadata_calc_len = 1;
1103         blk_bits = order_base_2(lblock);
1104         return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
1105 }
1106
1107 /*
1108  * Calculate the number of metadata blocks need to reserve
1109  * to allocate a block located at @lblock
1110  */
1111 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
1112 {
1113         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1114                 return ext4_ext_calc_metadata_amount(inode, lblock);
1115
1116         return ext4_indirect_calc_metadata_amount(inode, lblock);
1117 }
1118
1119 /*
1120  * Called with i_data_sem down, which is important since we can call
1121  * ext4_discard_preallocations() from here.
1122  */
1123 void ext4_da_update_reserve_space(struct inode *inode,
1124                                         int used, int quota_claim)
1125 {
1126         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1127         struct ext4_inode_info *ei = EXT4_I(inode);
1128
1129         spin_lock(&ei->i_block_reservation_lock);
1130         trace_ext4_da_update_reserve_space(inode, used);
1131         if (unlikely(used > ei->i_reserved_data_blocks)) {
1132                 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1133                          "with only %d reserved data blocks\n",
1134                          __func__, inode->i_ino, used,
1135                          ei->i_reserved_data_blocks);
1136                 WARN_ON(1);
1137                 used = ei->i_reserved_data_blocks;
1138         }
1139
1140         /* Update per-inode reservations */
1141         ei->i_reserved_data_blocks -= used;
1142         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
1143         percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1144                            used + ei->i_allocated_meta_blocks);
1145         ei->i_allocated_meta_blocks = 0;
1146
1147         if (ei->i_reserved_data_blocks == 0) {
1148                 /*
1149                  * We can release all of the reserved metadata blocks
1150                  * only when we have written all of the delayed
1151                  * allocation blocks.
1152                  */
1153                 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1154                                    ei->i_reserved_meta_blocks);
1155                 ei->i_reserved_meta_blocks = 0;
1156                 ei->i_da_metadata_calc_len = 0;
1157         }
1158         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1159
1160         /* Update quota subsystem for data blocks */
1161         if (quota_claim)
1162                 dquot_claim_block(inode, used);
1163         else {
1164                 /*
1165                  * We did fallocate with an offset that is already delayed
1166                  * allocated. So on delayed allocated writeback we should
1167                  * not re-claim the quota for fallocated blocks.
1168                  */
1169                 dquot_release_reservation_block(inode, used);
1170         }
1171
1172         /*
1173          * If we have done all the pending block allocations and if
1174          * there aren't any writers on the inode, we can discard the
1175          * inode's preallocations.
1176          */
1177         if ((ei->i_reserved_data_blocks == 0) &&
1178             (atomic_read(&inode->i_writecount) == 0))
1179                 ext4_discard_preallocations(inode);
1180 }
1181
1182 static int __check_block_validity(struct inode *inode, const char *func,
1183                                 unsigned int line,
1184                                 struct ext4_map_blocks *map)
1185 {
1186         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
1187                                    map->m_len)) {
1188                 ext4_error_inode(inode, func, line, map->m_pblk,
1189                                  "lblock %lu mapped to illegal pblock "
1190                                  "(length %d)", (unsigned long) map->m_lblk,
1191                                  map->m_len);
1192                 return -EIO;
1193         }
1194         return 0;
1195 }
1196
1197 #define check_block_validity(inode, map)        \
1198         __check_block_validity((inode), __func__, __LINE__, (map))
1199
1200 /*
1201  * Return the number of contiguous dirty pages in a given inode
1202  * starting at page frame idx.
1203  */
1204 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1205                                     unsigned int max_pages)
1206 {
1207         struct address_space *mapping = inode->i_mapping;
1208         pgoff_t index;
1209         struct pagevec pvec;
1210         pgoff_t num = 0;
1211         int i, nr_pages, done = 0;
1212
1213         if (max_pages == 0)
1214                 return 0;
1215         pagevec_init(&pvec, 0);
1216         while (!done) {
1217                 index = idx;
1218                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1219                                               PAGECACHE_TAG_DIRTY,
1220                                               (pgoff_t)PAGEVEC_SIZE);
1221                 if (nr_pages == 0)
1222                         break;
1223                 for (i = 0; i < nr_pages; i++) {
1224                         struct page *page = pvec.pages[i];
1225                         struct buffer_head *bh, *head;
1226
1227                         lock_page(page);
1228                         if (unlikely(page->mapping != mapping) ||
1229                             !PageDirty(page) ||
1230                             PageWriteback(page) ||
1231                             page->index != idx) {
1232                                 done = 1;
1233                                 unlock_page(page);
1234                                 break;
1235                         }
1236                         if (page_has_buffers(page)) {
1237                                 bh = head = page_buffers(page);
1238                                 do {
1239                                         if (!buffer_delay(bh) &&
1240                                             !buffer_unwritten(bh))
1241                                                 done = 1;
1242                                         bh = bh->b_this_page;
1243                                 } while (!done && (bh != head));
1244                         }
1245                         unlock_page(page);
1246                         if (done)
1247                                 break;
1248                         idx++;
1249                         num++;
1250                         if (num >= max_pages) {
1251                                 done = 1;
1252                                 break;
1253                         }
1254                 }
1255                 pagevec_release(&pvec);
1256         }
1257         return num;
1258 }
1259
1260 /*
1261  * The ext4_map_blocks() function tries to look up the requested blocks,
1262  * and returns if the blocks are already mapped.
1263  *
1264  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1265  * and store the allocated blocks in the result buffer head and mark it
1266  * mapped.
1267  *
1268  * If file type is extents based, it will call ext4_ext_map_blocks(),
1269  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
1270  * based files
1271  *
1272  * On success, it returns the number of blocks being mapped or allocate.
1273  * if create==0 and the blocks are pre-allocated and uninitialized block,
1274  * the result buffer head is unmapped. If the create ==1, it will make sure
1275  * the buffer head is mapped.
1276  *
1277  * It returns 0 if plain look up failed (blocks have not been allocated), in
1278  * that casem, buffer head is unmapped
1279  *
1280  * It returns the error in case of allocation failure.
1281  */
1282 int ext4_map_blocks(handle_t *handle, struct inode *inode,
1283                     struct ext4_map_blocks *map, int flags)
1284 {
1285         int retval;
1286
1287         map->m_flags = 0;
1288         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
1289                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
1290                   (unsigned long) map->m_lblk);
1291         /*
1292          * Try to see if we can get the block without requesting a new
1293          * file system block.
1294          */
1295         down_read((&EXT4_I(inode)->i_data_sem));
1296         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1297                 retval = ext4_ext_map_blocks(handle, inode, map, 0);
1298         } else {
1299                 retval = ext4_ind_map_blocks(handle, inode, map, 0);
1300         }
1301         up_read((&EXT4_I(inode)->i_data_sem));
1302
1303         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1304                 int ret = check_block_validity(inode, map);
1305                 if (ret != 0)
1306                         return ret;
1307         }
1308
1309         /* If it is only a block(s) look up */
1310         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1311                 return retval;
1312
1313         /*
1314          * Returns if the blocks have already allocated
1315          *
1316          * Note that if blocks have been preallocated
1317          * ext4_ext_get_block() returns th create = 0
1318          * with buffer head unmapped.
1319          */
1320         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
1321                 return retval;
1322
1323         /*
1324          * When we call get_blocks without the create flag, the
1325          * BH_Unwritten flag could have gotten set if the blocks
1326          * requested were part of a uninitialized extent.  We need to
1327          * clear this flag now that we are committed to convert all or
1328          * part of the uninitialized extent to be an initialized
1329          * extent.  This is because we need to avoid the combination
1330          * of BH_Unwritten and BH_Mapped flags being simultaneously
1331          * set on the buffer_head.
1332          */
1333         map->m_flags &= ~EXT4_MAP_UNWRITTEN;
1334
1335         /*
1336          * New blocks allocate and/or writing to uninitialized extent
1337          * will possibly result in updating i_data, so we take
1338          * the write lock of i_data_sem, and call get_blocks()
1339          * with create == 1 flag.
1340          */
1341         down_write((&EXT4_I(inode)->i_data_sem));
1342
1343         /*
1344          * if the caller is from delayed allocation writeout path
1345          * we have already reserved fs blocks for allocation
1346          * let the underlying get_block() function know to
1347          * avoid double accounting
1348          */
1349         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1350                 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
1351         /*
1352          * We need to check for EXT4 here because migrate
1353          * could have changed the inode type in between
1354          */
1355         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1356                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
1357         } else {
1358                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
1359
1360                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
1361                         /*
1362                          * We allocated new blocks which will result in
1363                          * i_data's format changing.  Force the migrate
1364                          * to fail by clearing migrate flags
1365                          */
1366                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
1367                 }
1368
1369                 /*
1370                  * Update reserved blocks/metadata blocks after successful
1371                  * block allocation which had been deferred till now. We don't
1372                  * support fallocate for non extent files. So we can update
1373                  * reserve space here.
1374                  */
1375                 if ((retval > 0) &&
1376                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
1377                         ext4_da_update_reserve_space(inode, retval, 1);
1378         }
1379         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1380                 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
1381
1382         up_write((&EXT4_I(inode)->i_data_sem));
1383         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1384                 int ret = check_block_validity(inode, map);
1385                 if (ret != 0)
1386                         return ret;
1387         }
1388         return retval;
1389 }
1390
1391 /* Maximum number of blocks we map for direct IO at once. */
1392 #define DIO_MAX_BLOCKS 4096
1393
1394 static int _ext4_get_block(struct inode *inode, sector_t iblock,
1395                            struct buffer_head *bh, int flags)
1396 {
1397         handle_t *handle = ext4_journal_current_handle();
1398         struct ext4_map_blocks map;
1399         int ret = 0, started = 0;
1400         int dio_credits;
1401
1402         map.m_lblk = iblock;
1403         map.m_len = bh->b_size >> inode->i_blkbits;
1404
1405         if (flags && !handle) {
1406                 /* Direct IO write... */
1407                 if (map.m_len > DIO_MAX_BLOCKS)
1408                         map.m_len = DIO_MAX_BLOCKS;
1409                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
1410                 handle = ext4_journal_start(inode, dio_credits);
1411                 if (IS_ERR(handle)) {
1412                         ret = PTR_ERR(handle);
1413                         return ret;
1414                 }
1415                 started = 1;
1416         }
1417
1418         ret = ext4_map_blocks(handle, inode, &map, flags);
1419         if (ret > 0) {
1420                 map_bh(bh, inode->i_sb, map.m_pblk);
1421                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1422                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
1423                 ret = 0;
1424         }
1425         if (started)
1426                 ext4_journal_stop(handle);
1427         return ret;
1428 }
1429
1430 int ext4_get_block(struct inode *inode, sector_t iblock,
1431                    struct buffer_head *bh, int create)
1432 {
1433         return _ext4_get_block(inode, iblock, bh,
1434                                create ? EXT4_GET_BLOCKS_CREATE : 0);
1435 }
1436
1437 /*
1438  * `handle' can be NULL if create is zero
1439  */
1440 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1441                                 ext4_lblk_t block, int create, int *errp)
1442 {
1443         struct ext4_map_blocks map;
1444         struct buffer_head *bh;
1445         int fatal = 0, err;
1446
1447         J_ASSERT(handle != NULL || create == 0);
1448
1449         map.m_lblk = block;
1450         map.m_len = 1;
1451         err = ext4_map_blocks(handle, inode, &map,
1452                               create ? EXT4_GET_BLOCKS_CREATE : 0);
1453
1454         if (err < 0)
1455                 *errp = err;
1456         if (err <= 0)
1457                 return NULL;
1458         *errp = 0;
1459
1460         bh = sb_getblk(inode->i_sb, map.m_pblk);
1461         if (!bh) {
1462                 *errp = -EIO;
1463                 return NULL;
1464         }
1465         if (map.m_flags & EXT4_MAP_NEW) {
1466                 J_ASSERT(create != 0);
1467                 J_ASSERT(handle != NULL);
1468
1469                 /*
1470                  * Now that we do not always journal data, we should
1471                  * keep in mind whether this should always journal the
1472                  * new buffer as metadata.  For now, regular file
1473                  * writes use ext4_get_block instead, so it's not a
1474                  * problem.
1475                  */
1476                 lock_buffer(bh);
1477                 BUFFER_TRACE(bh, "call get_create_access");
1478                 fatal = ext4_journal_get_create_access(handle, bh);
1479                 if (!fatal && !buffer_uptodate(bh)) {
1480                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1481                         set_buffer_uptodate(bh);
1482                 }
1483                 unlock_buffer(bh);
1484                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1485                 err = ext4_handle_dirty_metadata(handle, inode, bh);
1486                 if (!fatal)
1487                         fatal = err;
1488         } else {
1489                 BUFFER_TRACE(bh, "not a new buffer");
1490         }
1491         if (fatal) {
1492                 *errp = fatal;
1493                 brelse(bh);
1494                 bh = NULL;
1495         }
1496         return bh;
1497 }
1498
1499 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1500                                ext4_lblk_t block, int create, int *err)
1501 {
1502         struct buffer_head *bh;
1503
1504         bh = ext4_getblk(handle, inode, block, create, err);
1505         if (!bh)
1506                 return bh;
1507         if (buffer_uptodate(bh))
1508                 return bh;
1509         ll_rw_block(READ_META, 1, &bh);
1510         wait_on_buffer(bh);
1511         if (buffer_uptodate(bh))
1512                 return bh;
1513         put_bh(bh);
1514         *err = -EIO;
1515         return NULL;
1516 }
1517
1518 static int walk_page_buffers(handle_t *handle,
1519                              struct buffer_head *head,
1520                              unsigned from,
1521                              unsigned to,
1522                              int *partial,
1523                              int (*fn)(handle_t *handle,
1524                                        struct buffer_head *bh))
1525 {
1526         struct buffer_head *bh;
1527         unsigned block_start, block_end;
1528         unsigned blocksize = head->b_size;
1529         int err, ret = 0;
1530         struct buffer_head *next;
1531
1532         for (bh = head, block_start = 0;
1533              ret == 0 && (bh != head || !block_start);
1534              block_start = block_end, bh = next) {
1535                 next = bh->b_this_page;
1536                 block_end = block_start + blocksize;
1537                 if (block_end <= from || block_start >= to) {
1538                         if (partial && !buffer_uptodate(bh))
1539                                 *partial = 1;
1540                         continue;
1541                 }
1542                 err = (*fn)(handle, bh);
1543                 if (!ret)
1544                         ret = err;
1545         }
1546         return ret;
1547 }
1548
1549 /*
1550  * To preserve ordering, it is essential that the hole instantiation and
1551  * the data write be encapsulated in a single transaction.  We cannot
1552  * close off a transaction and start a new one between the ext4_get_block()
1553  * and the commit_write().  So doing the jbd2_journal_start at the start of
1554  * prepare_write() is the right place.
1555  *
1556  * Also, this function can nest inside ext4_writepage() ->
1557  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1558  * has generated enough buffer credits to do the whole page.  So we won't
1559  * block on the journal in that case, which is good, because the caller may
1560  * be PF_MEMALLOC.
1561  *
1562  * By accident, ext4 can be reentered when a transaction is open via
1563  * quota file writes.  If we were to commit the transaction while thus
1564  * reentered, there can be a deadlock - we would be holding a quota
1565  * lock, and the commit would never complete if another thread had a
1566  * transaction open and was blocking on the quota lock - a ranking
1567  * violation.
1568  *
1569  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1570  * will _not_ run commit under these circumstances because handle->h_ref
1571  * is elevated.  We'll still have enough credits for the tiny quotafile
1572  * write.
1573  */
1574 static int do_journal_get_write_access(handle_t *handle,
1575                                        struct buffer_head *bh)
1576 {
1577         int dirty = buffer_dirty(bh);
1578         int ret;
1579
1580         if (!buffer_mapped(bh) || buffer_freed(bh))
1581                 return 0;
1582         /*
1583          * __block_write_begin() could have dirtied some buffers. Clean
1584          * the dirty bit as jbd2_journal_get_write_access() could complain
1585          * otherwise about fs integrity issues. Setting of the dirty bit
1586          * by __block_write_begin() isn't a real problem here as we clear
1587          * the bit before releasing a page lock and thus writeback cannot
1588          * ever write the buffer.
1589          */
1590         if (dirty)
1591                 clear_buffer_dirty(bh);
1592         ret = ext4_journal_get_write_access(handle, bh);
1593         if (!ret && dirty)
1594                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1595         return ret;
1596 }
1597
1598 /*
1599  * Truncate blocks that were not used by write. We have to truncate the
1600  * pagecache as well so that corresponding buffers get properly unmapped.
1601  */
1602 static void ext4_truncate_failed_write(struct inode *inode)
1603 {
1604         truncate_inode_pages(inode->i_mapping, inode->i_size);
1605         ext4_truncate(inode);
1606 }
1607
1608 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
1609                    struct buffer_head *bh_result, int create);
1610 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1611                             loff_t pos, unsigned len, unsigned flags,
1612                             struct page **pagep, void **fsdata)
1613 {
1614         struct inode *inode = mapping->host;
1615         int ret, needed_blocks;
1616         handle_t *handle;
1617         int retries = 0;
1618         struct page *page;
1619         pgoff_t index;
1620         unsigned from, to;
1621
1622         trace_ext4_write_begin(inode, pos, len, flags);
1623         /*
1624          * Reserve one block more for addition to orphan list in case
1625          * we allocate blocks but write fails for some reason
1626          */
1627         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1628         index = pos >> PAGE_CACHE_SHIFT;
1629         from = pos & (PAGE_CACHE_SIZE - 1);
1630         to = from + len;
1631
1632 retry:
1633         handle = ext4_journal_start(inode, needed_blocks);
1634         if (IS_ERR(handle)) {
1635                 ret = PTR_ERR(handle);
1636                 goto out;
1637         }
1638
1639         /* We cannot recurse into the filesystem as the transaction is already
1640          * started */
1641         flags |= AOP_FLAG_NOFS;
1642
1643         page = grab_cache_page_write_begin(mapping, index, flags);
1644         if (!page) {
1645                 ext4_journal_stop(handle);
1646                 ret = -ENOMEM;
1647                 goto out;
1648         }
1649         *pagep = page;
1650
1651         if (ext4_should_dioread_nolock(inode))
1652                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1653         else
1654                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1655
1656         if (!ret && ext4_should_journal_data(inode)) {
1657                 ret = walk_page_buffers(handle, page_buffers(page),
1658                                 from, to, NULL, do_journal_get_write_access);
1659         }
1660
1661         if (ret) {
1662                 unlock_page(page);
1663                 page_cache_release(page);
1664                 /*
1665                  * __block_write_begin may have instantiated a few blocks
1666                  * outside i_size.  Trim these off again. Don't need
1667                  * i_size_read because we hold i_mutex.
1668                  *
1669                  * Add inode to orphan list in case we crash before
1670                  * truncate finishes
1671                  */
1672                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1673                         ext4_orphan_add(handle, inode);
1674
1675                 ext4_journal_stop(handle);
1676                 if (pos + len > inode->i_size) {
1677                         ext4_truncate_failed_write(inode);
1678                         /*
1679                          * If truncate failed early the inode might
1680                          * still be on the orphan list; we need to
1681                          * make sure the inode is removed from the
1682                          * orphan list in that case.
1683                          */
1684                         if (inode->i_nlink)
1685                                 ext4_orphan_del(NULL, inode);
1686                 }
1687         }
1688
1689         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1690                 goto retry;
1691 out:
1692         return ret;
1693 }
1694
1695 /* For write_end() in data=journal mode */
1696 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1697 {
1698         if (!buffer_mapped(bh) || buffer_freed(bh))
1699                 return 0;
1700         set_buffer_uptodate(bh);
1701         return ext4_handle_dirty_metadata(handle, NULL, bh);
1702 }
1703
1704 static int ext4_generic_write_end(struct file *file,
1705                                   struct address_space *mapping,
1706                                   loff_t pos, unsigned len, unsigned copied,
1707                                   struct page *page, void *fsdata)
1708 {
1709         int i_size_changed = 0;
1710         struct inode *inode = mapping->host;
1711         handle_t *handle = ext4_journal_current_handle();
1712
1713         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1714
1715         /*
1716          * No need to use i_size_read() here, the i_size
1717          * cannot change under us because we hold i_mutex.
1718          *
1719          * But it's important to update i_size while still holding page lock:
1720          * page writeout could otherwise come in and zero beyond i_size.
1721          */
1722         if (pos + copied > inode->i_size) {
1723                 i_size_write(inode, pos + copied);
1724                 i_size_changed = 1;
1725         }
1726
1727         if (pos + copied >  EXT4_I(inode)->i_disksize) {
1728                 /* We need to mark inode dirty even if
1729                  * new_i_size is less that inode->i_size
1730                  * bu greater than i_disksize.(hint delalloc)
1731                  */
1732                 ext4_update_i_disksize(inode, (pos + copied));
1733                 i_size_changed = 1;
1734         }
1735         unlock_page(page);
1736         page_cache_release(page);
1737
1738         /*
1739          * Don't mark the inode dirty under page lock. First, it unnecessarily
1740          * makes the holding time of page lock longer. Second, it forces lock
1741          * ordering of page lock and transaction start for journaling
1742          * filesystems.
1743          */
1744         if (i_size_changed)
1745                 ext4_mark_inode_dirty(handle, inode);
1746
1747         return copied;
1748 }
1749
1750 /*
1751  * We need to pick up the new inode size which generic_commit_write gave us
1752  * `file' can be NULL - eg, when called from page_symlink().
1753  *
1754  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1755  * buffers are managed internally.
1756  */
1757 static int ext4_ordered_write_end(struct file *file,
1758                                   struct address_space *mapping,
1759                                   loff_t pos, unsigned len, unsigned copied,
1760                                   struct page *page, void *fsdata)
1761 {
1762         handle_t *handle = ext4_journal_current_handle();
1763         struct inode *inode = mapping->host;
1764         int ret = 0, ret2;
1765
1766         trace_ext4_ordered_write_end(inode, pos, len, copied);
1767         ret = ext4_jbd2_file_inode(handle, inode);
1768
1769         if (ret == 0) {
1770                 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1771                                                         page, fsdata);
1772                 copied = ret2;
1773                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1774                         /* if we have allocated more blocks and copied
1775                          * less. We will have blocks allocated outside
1776                          * inode->i_size. So truncate them
1777                          */
1778                         ext4_orphan_add(handle, inode);
1779                 if (ret2 < 0)
1780                         ret = ret2;
1781         }
1782         ret2 = ext4_journal_stop(handle);
1783         if (!ret)
1784                 ret = ret2;
1785
1786         if (pos + len > inode->i_size) {
1787                 ext4_truncate_failed_write(inode);
1788                 /*
1789                  * If truncate failed early the inode might still be
1790                  * on the orphan list; we need to make sure the inode
1791                  * is removed from the orphan list in that case.
1792                  */
1793                 if (inode->i_nlink)
1794                         ext4_orphan_del(NULL, inode);
1795         }
1796
1797
1798         return ret ? ret : copied;
1799 }
1800
1801 static int ext4_writeback_write_end(struct file *file,
1802                                     struct address_space *mapping,
1803                                     loff_t pos, unsigned len, unsigned copied,
1804                                     struct page *page, void *fsdata)
1805 {
1806         handle_t *handle = ext4_journal_current_handle();
1807         struct inode *inode = mapping->host;
1808         int ret = 0, ret2;
1809
1810         trace_ext4_writeback_write_end(inode, pos, len, copied);
1811         ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1812                                                         page, fsdata);
1813         copied = ret2;
1814         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1815                 /* if we have allocated more blocks and copied
1816                  * less. We will have blocks allocated outside
1817                  * inode->i_size. So truncate them
1818                  */
1819                 ext4_orphan_add(handle, inode);
1820
1821         if (ret2 < 0)
1822                 ret = ret2;
1823
1824         ret2 = ext4_journal_stop(handle);
1825         if (!ret)
1826                 ret = ret2;
1827
1828         if (pos + len > inode->i_size) {
1829                 ext4_truncate_failed_write(inode);
1830                 /*
1831                  * If truncate failed early the inode might still be
1832                  * on the orphan list; we need to make sure the inode
1833                  * is removed from the orphan list in that case.
1834                  */
1835                 if (inode->i_nlink)
1836                         ext4_orphan_del(NULL, inode);
1837         }
1838
1839         return ret ? ret : copied;
1840 }
1841
1842 static int ext4_journalled_write_end(struct file *file,
1843                                      struct address_space *mapping,
1844                                      loff_t pos, unsigned len, unsigned copied,
1845                                      struct page *page, void *fsdata)
1846 {
1847         handle_t *handle = ext4_journal_current_handle();
1848         struct inode *inode = mapping->host;
1849         int ret = 0, ret2;
1850         int partial = 0;
1851         unsigned from, to;
1852         loff_t new_i_size;
1853
1854         trace_ext4_journalled_write_end(inode, pos, len, copied);
1855         from = pos & (PAGE_CACHE_SIZE - 1);
1856         to = from + len;
1857
1858         BUG_ON(!ext4_handle_valid(handle));
1859
1860         if (copied < len) {
1861                 if (!PageUptodate(page))
1862                         copied = 0;
1863                 page_zero_new_buffers(page, from+copied, to);
1864         }
1865
1866         ret = walk_page_buffers(handle, page_buffers(page), from,
1867                                 to, &partial, write_end_fn);
1868         if (!partial)
1869                 SetPageUptodate(page);
1870         new_i_size = pos + copied;
1871         if (new_i_size > inode->i_size)
1872                 i_size_write(inode, pos+copied);
1873         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1874         if (new_i_size > EXT4_I(inode)->i_disksize) {
1875                 ext4_update_i_disksize(inode, new_i_size);
1876                 ret2 = ext4_mark_inode_dirty(handle, inode);
1877                 if (!ret)
1878                         ret = ret2;
1879         }
1880
1881         unlock_page(page);
1882         page_cache_release(page);
1883         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1884                 /* if we have allocated more blocks and copied
1885                  * less. We will have blocks allocated outside
1886                  * inode->i_size. So truncate them
1887                  */
1888                 ext4_orphan_add(handle, inode);
1889
1890         ret2 = ext4_journal_stop(handle);
1891         if (!ret)
1892                 ret = ret2;
1893         if (pos + len > inode->i_size) {
1894                 ext4_truncate_failed_write(inode);
1895                 /*
1896                  * If truncate failed early the inode might still be
1897                  * on the orphan list; we need to make sure the inode
1898                  * is removed from the orphan list in that case.
1899                  */
1900                 if (inode->i_nlink)
1901                         ext4_orphan_del(NULL, inode);
1902         }
1903
1904         return ret ? ret : copied;
1905 }
1906
1907 /*
1908  * Reserve a single block located at lblock
1909  */
1910 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1911 {
1912         int retries = 0;
1913         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1914         struct ext4_inode_info *ei = EXT4_I(inode);
1915         unsigned long md_needed;
1916         int ret;
1917
1918         /*
1919          * recalculate the amount of metadata blocks to reserve
1920          * in order to allocate nrblocks
1921          * worse case is one extent per block
1922          */
1923 repeat:
1924         spin_lock(&ei->i_block_reservation_lock);
1925         md_needed = ext4_calc_metadata_amount(inode, lblock);
1926         trace_ext4_da_reserve_space(inode, md_needed);
1927         spin_unlock(&ei->i_block_reservation_lock);
1928
1929         /*
1930          * We will charge metadata quota at writeout time; this saves
1931          * us from metadata over-estimation, though we may go over by
1932          * a small amount in the end.  Here we just reserve for data.
1933          */
1934         ret = dquot_reserve_block(inode, 1);
1935         if (ret)
1936                 return ret;
1937         /*
1938          * We do still charge estimated metadata to the sb though;
1939          * we cannot afford to run out of free blocks.
1940          */
1941         if (ext4_claim_free_blocks(sbi, md_needed + 1, 0)) {
1942                 dquot_release_reservation_block(inode, 1);
1943                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1944                         yield();
1945                         goto repeat;
1946                 }
1947                 return -ENOSPC;
1948         }
1949         spin_lock(&ei->i_block_reservation_lock);
1950         ei->i_reserved_data_blocks++;
1951         ei->i_reserved_meta_blocks += md_needed;
1952         spin_unlock(&ei->i_block_reservation_lock);
1953
1954         return 0;       /* success */
1955 }
1956
1957 static void ext4_da_release_space(struct inode *inode, int to_free)
1958 {
1959         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1960         struct ext4_inode_info *ei = EXT4_I(inode);
1961
1962         if (!to_free)
1963                 return;         /* Nothing to release, exit */
1964
1965         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1966
1967         trace_ext4_da_release_space(inode, to_free);
1968         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1969                 /*
1970                  * if there aren't enough reserved blocks, then the
1971                  * counter is messed up somewhere.  Since this
1972                  * function is called from invalidate page, it's
1973                  * harmless to return without any action.
1974                  */
1975                 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1976                          "ino %lu, to_free %d with only %d reserved "
1977                          "data blocks\n", inode->i_ino, to_free,
1978                          ei->i_reserved_data_blocks);
1979                 WARN_ON(1);
1980                 to_free = ei->i_reserved_data_blocks;
1981         }
1982         ei->i_reserved_data_blocks -= to_free;
1983
1984         if (ei->i_reserved_data_blocks == 0) {
1985                 /*
1986                  * We can release all of the reserved metadata blocks
1987                  * only when we have written all of the delayed
1988                  * allocation blocks.
1989                  */
1990                 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1991                                    ei->i_reserved_meta_blocks);
1992                 ei->i_reserved_meta_blocks = 0;
1993                 ei->i_da_metadata_calc_len = 0;
1994         }
1995
1996         /* update fs dirty data blocks counter */
1997         percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1998
1999         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2000
2001         dquot_release_reservation_block(inode, to_free);
2002 }
2003
2004 static void ext4_da_page_release_reservation(struct page *page,
2005                                              unsigned long offset)
2006 {
2007         int to_release = 0;
2008         struct buffer_head *head, *bh;
2009         unsigned int curr_off = 0;
2010
2011         head = page_buffers(page);
2012         bh = head;
2013         do {
2014                 unsigned int next_off = curr_off + bh->b_size;
2015
2016                 if ((offset <= curr_off) && (buffer_delay(bh))) {
2017                         to_release++;
2018                         clear_buffer_delay(bh);
2019                 }
2020                 curr_off = next_off;
2021         } while ((bh = bh->b_this_page) != head);
2022         ext4_da_release_space(page->mapping->host, to_release);
2023 }
2024
2025 /*
2026  * Delayed allocation stuff
2027  */
2028
2029 /*
2030  * mpage_da_submit_io - walks through extent of pages and try to write
2031  * them with writepage() call back
2032  *
2033  * @mpd->inode: inode
2034  * @mpd->first_page: first page of the extent
2035  * @mpd->next_page: page after the last page of the extent
2036  *
2037  * By the time mpage_da_submit_io() is called we expect all blocks
2038  * to be allocated. this may be wrong if allocation failed.
2039  *
2040  * As pages are already locked by write_cache_pages(), we can't use it
2041  */
2042 static int mpage_da_submit_io(struct mpage_da_data *mpd,
2043                               struct ext4_map_blocks *map)
2044 {
2045         struct pagevec pvec;
2046         unsigned long index, end;
2047         int ret = 0, err, nr_pages, i;
2048         struct inode *inode = mpd->inode;
2049         struct address_space *mapping = inode->i_mapping;
2050         loff_t size = i_size_read(inode);
2051         unsigned int len, block_start;
2052         struct buffer_head *bh, *page_bufs = NULL;
2053         int journal_data = ext4_should_journal_data(inode);
2054         sector_t pblock = 0, cur_logical = 0;
2055         struct ext4_io_submit io_submit;
2056
2057         BUG_ON(mpd->next_page <= mpd->first_page);
2058         memset(&io_submit, 0, sizeof(io_submit));
2059         /*
2060          * We need to start from the first_page to the next_page - 1
2061          * to make sure we also write the mapped dirty buffer_heads.
2062          * If we look at mpd->b_blocknr we would only be looking
2063          * at the currently mapped buffer_heads.
2064          */
2065         index = mpd->first_page;
2066         end = mpd->next_page - 1;
2067
2068         pagevec_init(&pvec, 0);
2069         while (index <= end) {
2070                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2071                 if (nr_pages == 0)
2072                         break;
2073                 for (i = 0; i < nr_pages; i++) {
2074                         int commit_write = 0, skip_page = 0;
2075                         struct page *page = pvec.pages[i];
2076
2077                         index = page->index;
2078                         if (index > end)
2079                                 break;
2080
2081                         if (index == size >> PAGE_CACHE_SHIFT)
2082                                 len = size & ~PAGE_CACHE_MASK;
2083                         else
2084                                 len = PAGE_CACHE_SIZE;
2085                         if (map) {
2086                                 cur_logical = index << (PAGE_CACHE_SHIFT -
2087                                                         inode->i_blkbits);
2088                                 pblock = map->m_pblk + (cur_logical -
2089                                                         map->m_lblk);
2090                         }
2091                         index++;
2092
2093                         BUG_ON(!PageLocked(page));
2094                         BUG_ON(PageWriteback(page));
2095
2096                         /*
2097                          * If the page does not have buffers (for
2098                          * whatever reason), try to create them using
2099                          * __block_write_begin.  If this fails,
2100                          * skip the page and move on.
2101                          */
2102                         if (!page_has_buffers(page)) {
2103                                 if (__block_write_begin(page, 0, len,
2104                                                 noalloc_get_block_write)) {
2105                                 skip_page:
2106                                         unlock_page(page);
2107                                         continue;
2108                                 }
2109                                 commit_write = 1;
2110                         }
2111
2112                         bh = page_bufs = page_buffers(page);
2113                         block_start = 0;
2114                         do {
2115                                 if (!bh)
2116                                         goto skip_page;
2117                                 if (map && (cur_logical >= map->m_lblk) &&
2118                                     (cur_logical <= (map->m_lblk +
2119                                                      (map->m_len - 1)))) {
2120                                         if (buffer_delay(bh)) {
2121                                                 clear_buffer_delay(bh);
2122                                                 bh->b_blocknr = pblock;
2123                                         }
2124                                         if (buffer_unwritten(bh) ||
2125                                             buffer_mapped(bh))
2126                                                 BUG_ON(bh->b_blocknr != pblock);
2127                                         if (map->m_flags & EXT4_MAP_UNINIT)
2128                                                 set_buffer_uninit(bh);
2129                                         clear_buffer_unwritten(bh);
2130                                 }
2131
2132                                 /* skip page if block allocation undone */
2133                                 if (buffer_delay(bh) || buffer_unwritten(bh))
2134                                         skip_page = 1;
2135                                 bh = bh->b_this_page;
2136                                 block_start += bh->b_size;
2137                                 cur_logical++;
2138                                 pblock++;
2139                         } while (bh != page_bufs);
2140
2141                         if (skip_page)
2142                                 goto skip_page;
2143
2144                         if (commit_write)
2145                                 /* mark the buffer_heads as dirty & uptodate */
2146                                 block_commit_write(page, 0, len);
2147
2148                         clear_page_dirty_for_io(page);
2149                         /*
2150                          * Delalloc doesn't support data journalling,
2151                          * but eventually maybe we'll lift this
2152                          * restriction.
2153                          */
2154                         if (unlikely(journal_data && PageChecked(page)))
2155                                 err = __ext4_journalled_writepage(page, len);
2156                         else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
2157                                 err = ext4_bio_write_page(&io_submit, page,
2158                                                           len, mpd->wbc);
2159                         else if (buffer_uninit(page_bufs)) {
2160                                 ext4_set_bh_endio(page_bufs, inode);
2161                                 err = block_write_full_page_endio(page,
2162                                         noalloc_get_block_write,
2163                                         mpd->wbc, ext4_end_io_buffer_write);
2164                         } else
2165                                 err = block_write_full_page(page,
2166                                         noalloc_get_block_write, mpd->wbc);
2167
2168                         if (!err)
2169                                 mpd->pages_written++;
2170                         /*
2171                          * In error case, we have to continue because
2172                          * remaining pages are still locked
2173                          */
2174                         if (ret == 0)
2175                                 ret = err;
2176                 }
2177                 pagevec_release(&pvec);
2178         }
2179         ext4_io_submit(&io_submit);
2180         return ret;
2181 }
2182
2183 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
2184 {
2185         int nr_pages, i;
2186         pgoff_t index, end;
2187         struct pagevec pvec;
2188         struct inode *inode = mpd->inode;
2189         struct address_space *mapping = inode->i_mapping;
2190
2191         index = mpd->first_page;
2192         end   = mpd->next_page - 1;
2193         while (index <= end) {
2194                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2195                 if (nr_pages == 0)
2196                         break;
2197                 for (i = 0; i < nr_pages; i++) {
2198                         struct page *page = pvec.pages[i];
2199                         if (page->index > end)
2200                                 break;
2201                         BUG_ON(!PageLocked(page));
2202                         BUG_ON(PageWriteback(page));
2203                         block_invalidatepage(page, 0);
2204                         ClearPageUptodate(page);
2205                         unlock_page(page);
2206                 }
2207                 index = pvec.pages[nr_pages - 1]->index + 1;
2208                 pagevec_release(&pvec);
2209         }
2210         return;
2211 }
2212
2213 static void ext4_print_free_blocks(struct inode *inode)
2214 {
2215         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2216         printk(KERN_CRIT "Total free blocks count %lld\n",
2217                ext4_count_free_blocks(inode->i_sb));
2218         printk(KERN_CRIT "Free/Dirty block details\n");
2219         printk(KERN_CRIT "free_blocks=%lld\n",
2220                (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2221         printk(KERN_CRIT "dirty_blocks=%lld\n",
2222                (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2223         printk(KERN_CRIT "Block reservation details\n");
2224         printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2225                EXT4_I(inode)->i_reserved_data_blocks);
2226         printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2227                EXT4_I(inode)->i_reserved_meta_blocks);
2228         return;
2229 }
2230
2231 /*
2232  * mpage_da_map_and_submit - go through given space, map them
2233  *       if necessary, and then submit them for I/O
2234  *
2235  * @mpd - bh describing space
2236  *
2237  * The function skips space we know is already mapped to disk blocks.
2238  *
2239  */
2240 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
2241 {
2242         int err, blks, get_blocks_flags;
2243         struct ext4_map_blocks map, *mapp = NULL;
2244         sector_t next = mpd->b_blocknr;
2245         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2246         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2247         handle_t *handle = NULL;
2248
2249         /*
2250          * If the blocks are mapped already, or we couldn't accumulate
2251          * any blocks, then proceed immediately to the submission stage.
2252          */
2253         if ((mpd->b_size == 0) ||
2254             ((mpd->b_state  & (1 << BH_Mapped)) &&
2255              !(mpd->b_state & (1 << BH_Delay)) &&
2256              !(mpd->b_state & (1 << BH_Unwritten))))
2257                 goto submit_io;
2258
2259         handle = ext4_journal_current_handle();
2260         BUG_ON(!handle);
2261
2262         /*
2263          * Call ext4_map_blocks() to allocate any delayed allocation
2264          * blocks, or to convert an uninitialized extent to be
2265          * initialized (in the case where we have written into
2266          * one or more preallocated blocks).
2267          *
2268          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2269          * indicate that we are on the delayed allocation path.  This
2270          * affects functions in many different parts of the allocation
2271          * call path.  This flag exists primarily because we don't
2272          * want to change *many* call functions, so ext4_map_blocks()
2273          * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
2274          * inode's allocation semaphore is taken.
2275          *
2276          * If the blocks in questions were delalloc blocks, set
2277          * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2278          * variables are updated after the blocks have been allocated.
2279          */
2280         map.m_lblk = next;
2281         map.m_len = max_blocks;
2282         get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
2283         if (ext4_should_dioread_nolock(mpd->inode))
2284                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2285         if (mpd->b_state & (1 << BH_Delay))
2286                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2287
2288         blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2289         if (blks < 0) {
2290                 struct super_block *sb = mpd->inode->i_sb;
2291
2292                 err = blks;
2293                 /*
2294                  * If get block returns EAGAIN or ENOSPC and there
2295                  * appears to be free blocks we will just let
2296                  * mpage_da_submit_io() unlock all of the pages.
2297                  */
2298                 if (err == -EAGAIN)
2299                         goto submit_io;
2300
2301                 if (err == -ENOSPC &&
2302                     ext4_count_free_blocks(sb)) {
2303                         mpd->retval = err;
2304                         goto submit_io;
2305                 }
2306
2307                 /*
2308                  * get block failure will cause us to loop in
2309                  * writepages, because a_ops->writepage won't be able
2310                  * to make progress. The page will be redirtied by
2311                  * writepage and writepages will again try to write
2312                  * the same.
2313                  */
2314                 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2315                         ext4_msg(sb, KERN_CRIT,
2316                                  "delayed block allocation failed for inode %lu "
2317                                  "at logical offset %llu with max blocks %zd "
2318                                  "with error %d", mpd->inode->i_ino,
2319                                  (unsigned long long) next,
2320                                  mpd->b_size >> mpd->inode->i_blkbits, err);
2321                         ext4_msg(sb, KERN_CRIT,
2322                                 "This should not happen!! Data will be lost\n");
2323                         if (err == -ENOSPC)
2324                                 ext4_print_free_blocks(mpd->inode);
2325                 }
2326                 /* invalidate all the pages */
2327                 ext4_da_block_invalidatepages(mpd);
2328
2329                 /* Mark this page range as having been completed */
2330                 mpd->io_done = 1;
2331                 return;
2332         }
2333         BUG_ON(blks == 0);
2334
2335         mapp = &map;
2336         if (map.m_flags & EXT4_MAP_NEW) {
2337                 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
2338                 int i;
2339
2340                 for (i = 0; i < map.m_len; i++)
2341                         unmap_underlying_metadata(bdev, map.m_pblk + i);
2342         }
2343
2344         if (ext4_should_order_data(mpd->inode)) {
2345                 err = ext4_jbd2_file_inode(handle, mpd->inode);
2346                 if (err)
2347                         /* This only happens if the journal is aborted */
2348                         return;
2349         }
2350
2351         /*
2352          * Update on-disk size along with block allocation.
2353          */
2354         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2355         if (disksize > i_size_read(mpd->inode))
2356                 disksize = i_size_read(mpd->inode);
2357         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2358                 ext4_update_i_disksize(mpd->inode, disksize);
2359                 err = ext4_mark_inode_dirty(handle, mpd->inode);
2360                 if (err)
2361                         ext4_error(mpd->inode->i_sb,
2362                                    "Failed to mark inode %lu dirty",
2363                                    mpd->inode->i_ino);
2364         }
2365
2366 submit_io:
2367         mpage_da_submit_io(mpd, mapp);
2368         mpd->io_done = 1;
2369 }
2370
2371 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2372                 (1 << BH_Delay) | (1 << BH_Unwritten))
2373
2374 /*
2375  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2376  *
2377  * @mpd->lbh - extent of blocks
2378  * @logical - logical number of the block in the file
2379  * @bh - bh of the block (used to access block's state)
2380  *
2381  * the function is used to collect contig. blocks in same state
2382  */
2383 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2384                                    sector_t logical, size_t b_size,
2385                                    unsigned long b_state)
2386 {
2387         sector_t next;
2388         int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2389
2390         /*
2391          * XXX Don't go larger than mballoc is willing to allocate
2392          * This is a stopgap solution.  We eventually need to fold
2393          * mpage_da_submit_io() into this function and then call
2394          * ext4_map_blocks() multiple times in a loop
2395          */
2396         if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
2397                 goto flush_it;
2398
2399         /* check if thereserved journal credits might overflow */
2400         if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
2401                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2402                         /*
2403                          * With non-extent format we are limited by the journal
2404                          * credit available.  Total credit needed to insert
2405                          * nrblocks contiguous blocks is dependent on the
2406                          * nrblocks.  So limit nrblocks.
2407                          */
2408                         goto flush_it;
2409                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2410                                 EXT4_MAX_TRANS_DATA) {
2411                         /*
2412                          * Adding the new buffer_head would make it cross the
2413                          * allowed limit for which we have journal credit
2414                          * reserved. So limit the new bh->b_size
2415                          */
2416                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2417                                                 mpd->inode->i_blkbits;
2418                         /* we will do mpage_da_submit_io in the next loop */
2419                 }
2420         }
2421         /*
2422          * First block in the extent
2423          */
2424         if (mpd->b_size == 0) {
2425                 mpd->b_blocknr = logical;
2426                 mpd->b_size = b_size;
2427                 mpd->b_state = b_state & BH_FLAGS;
2428                 return;
2429         }
2430
2431         next = mpd->b_blocknr + nrblocks;
2432         /*
2433          * Can we merge the block to our big extent?
2434          */
2435         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2436                 mpd->b_size += b_size;
2437                 return;
2438         }
2439
2440 flush_it:
2441         /*
2442          * We couldn't merge the block to our extent, so we
2443          * need to flush current  extent and start new one
2444          */
2445         mpage_da_map_and_submit(mpd);
2446         return;
2447 }
2448
2449 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2450 {
2451         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2452 }
2453
2454 /*
2455  * This is a special get_blocks_t callback which is used by
2456  * ext4_da_write_begin().  It will either return mapped block or
2457  * reserve space for a single block.
2458  *
2459  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2460  * We also have b_blocknr = -1 and b_bdev initialized properly
2461  *
2462  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2463  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2464  * initialized properly.
2465  */
2466 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2467                                   struct buffer_head *bh, int create)
2468 {
2469         struct ext4_map_blocks map;
2470         int ret = 0;
2471         sector_t invalid_block = ~((sector_t) 0xffff);
2472
2473         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2474                 invalid_block = ~0;
2475
2476         BUG_ON(create == 0);
2477         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2478
2479         map.m_lblk = iblock;
2480         map.m_len = 1;
2481
2482         /*
2483          * first, we need to know whether the block is allocated already
2484          * preallocated blocks are unmapped but should treated
2485          * the same as allocated blocks.
2486          */
2487         ret = ext4_map_blocks(NULL, inode, &map, 0);
2488         if (ret < 0)
2489                 return ret;
2490         if (ret == 0) {
2491                 if (buffer_delay(bh))
2492                         return 0; /* Not sure this could or should happen */
2493                 /*
2494                  * XXX: __block_write_begin() unmaps passed block, is it OK?
2495                  */
2496                 ret = ext4_da_reserve_space(inode, iblock);
2497                 if (ret)
2498                         /* not enough space to reserve */
2499                         return ret;
2500
2501                 map_bh(bh, inode->i_sb, invalid_block);
2502                 set_buffer_new(bh);
2503                 set_buffer_delay(bh);
2504                 return 0;
2505         }
2506
2507         map_bh(bh, inode->i_sb, map.m_pblk);
2508         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2509
2510         if (buffer_unwritten(bh)) {
2511                 /* A delayed write to unwritten bh should be marked
2512                  * new and mapped.  Mapped ensures that we don't do
2513                  * get_block multiple times when we write to the same
2514                  * offset and new ensures that we do proper zero out
2515                  * for partial write.
2516                  */
2517                 set_buffer_new(bh);
2518                 set_buffer_mapped(bh);
2519         }
2520         return 0;
2521 }
2522
2523 /*
2524  * This function is used as a standard get_block_t calback function
2525  * when there is no desire to allocate any blocks.  It is used as a
2526  * callback function for block_write_begin() and block_write_full_page().
2527  * These functions should only try to map a single block at a time.
2528  *
2529  * Since this function doesn't do block allocations even if the caller
2530  * requests it by passing in create=1, it is critically important that
2531  * any caller checks to make sure that any buffer heads are returned
2532  * by this function are either all already mapped or marked for
2533  * delayed allocation before calling  block_write_full_page().  Otherwise,
2534  * b_blocknr could be left unitialized, and the page write functions will
2535  * be taken by surprise.
2536  */
2537 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2538                                    struct buffer_head *bh_result, int create)
2539 {
2540         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2541         return _ext4_get_block(inode, iblock, bh_result, 0);
2542 }
2543
2544 static int bget_one(handle_t *handle, struct buffer_head *bh)
2545 {
2546         get_bh(bh);
2547         return 0;
2548 }
2549
2550 static int bput_one(handle_t *handle, struct buffer_head *bh)
2551 {
2552         put_bh(bh);
2553         return 0;
2554 }
2555
2556 static int __ext4_journalled_writepage(struct page *page,
2557                                        unsigned int len)
2558 {
2559         struct address_space *mapping = page->mapping;
2560         struct inode *inode = mapping->host;
2561         struct buffer_head *page_bufs;
2562         handle_t *handle = NULL;
2563         int ret = 0;
2564         int err;
2565
2566         ClearPageChecked(page);
2567         page_bufs = page_buffers(page);
2568         BUG_ON(!page_bufs);
2569         walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2570         /* As soon as we unlock the page, it can go away, but we have
2571          * references to buffers so we are safe */
2572         unlock_page(page);
2573
2574         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2575         if (IS_ERR(handle)) {
2576                 ret = PTR_ERR(handle);
2577                 goto out;
2578         }
2579
2580         BUG_ON(!ext4_handle_valid(handle));
2581
2582         ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2583                                 do_journal_get_write_access);
2584
2585         err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2586                                 write_end_fn);
2587         if (ret == 0)
2588                 ret = err;
2589         err = ext4_journal_stop(handle);
2590         if (!ret)
2591                 ret = err;
2592
2593         walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2594         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2595 out:
2596         return ret;
2597 }
2598
2599 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
2600 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
2601
2602 /*
2603  * Note that we don't need to start a transaction unless we're journaling data
2604  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2605  * need to file the inode to the transaction's list in ordered mode because if
2606  * we are writing back data added by write(), the inode is already there and if
2607  * we are writing back data modified via mmap(), no one guarantees in which
2608  * transaction the data will hit the disk. In case we are journaling data, we
2609  * cannot start transaction directly because transaction start ranks above page
2610  * lock so we have to do some magic.
2611  *
2612  * This function can get called via...
2613  *   - ext4_da_writepages after taking page lock (have journal handle)
2614  *   - journal_submit_inode_data_buffers (no journal handle)
2615  *   - shrink_page_list via pdflush (no journal handle)
2616  *   - grab_page_cache when doing write_begin (have journal handle)
2617  *
2618  * We don't do any block allocation in this function. If we have page with
2619  * multiple blocks we need to write those buffer_heads that are mapped. This
2620  * is important for mmaped based write. So if we do with blocksize 1K
2621  * truncate(f, 1024);
2622  * a = mmap(f, 0, 4096);
2623  * a[0] = 'a';
2624  * truncate(f, 4096);
2625  * we have in the page first buffer_head mapped via page_mkwrite call back
2626  * but other bufer_heads would be unmapped but dirty(dirty done via the
2627  * do_wp_page). So writepage should write the first block. If we modify
2628  * the mmap area beyond 1024 we will again get a page_fault and the
2629  * page_mkwrite callback will do the block allocation and mark the
2630  * buffer_heads mapped.
2631  *
2632  * We redirty the page if we have any buffer_heads that is either delay or
2633  * unwritten in the page.
2634  *
2635  * We can get recursively called as show below.
2636  *
2637  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2638  *              ext4_writepage()
2639  *
2640  * But since we don't do any block allocation we should not deadlock.
2641  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2642  */
2643 static int ext4_writepage(struct page *page,
2644                           struct writeback_control *wbc)
2645 {
2646         int ret = 0, commit_write = 0;
2647         loff_t size;
2648         unsigned int len;
2649         struct buffer_head *page_bufs = NULL;
2650         struct inode *inode = page->mapping->host;
2651
2652         trace_ext4_writepage(page);
2653         size = i_size_read(inode);
2654         if (page->index == size >> PAGE_CACHE_SHIFT)
2655                 len = size & ~PAGE_CACHE_MASK;
2656         else
2657                 len = PAGE_CACHE_SIZE;
2658
2659         /*
2660          * If the page does not have buffers (for whatever reason),
2661          * try to create them using __block_write_begin.  If this
2662          * fails, redirty the page and move on.
2663          */
2664         if (!page_has_buffers(page)) {
2665                 if (__block_write_begin(page, 0, len,
2666                                         noalloc_get_block_write)) {
2667                 redirty_page:
2668                         redirty_page_for_writepage(wbc, page);
2669                         unlock_page(page);
2670                         return 0;
2671                 }
2672                 commit_write = 1;
2673         }
2674         page_bufs = page_buffers(page);
2675         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2676                               ext4_bh_delay_or_unwritten)) {
2677                 /*
2678                  * We don't want to do block allocation, so redirty
2679                  * the page and return.  We may reach here when we do
2680                  * a journal commit via journal_submit_inode_data_buffers.
2681                  * We can also reach here via shrink_page_list
2682                  */
2683                 goto redirty_page;
2684         }
2685         if (commit_write)
2686                 /* now mark the buffer_heads as dirty and uptodate */
2687                 block_commit_write(page, 0, len);
2688
2689         if (PageChecked(page) && ext4_should_journal_data(inode))
2690                 /*
2691                  * It's mmapped pagecache.  Add buffers and journal it.  There
2692                  * doesn't seem much point in redirtying the page here.
2693                  */
2694                 return __ext4_journalled_writepage(page, len);
2695
2696         if (buffer_uninit(page_bufs)) {
2697                 ext4_set_bh_endio(page_bufs, inode);
2698                 ret = block_write_full_page_endio(page, noalloc_get_block_write,
2699                                             wbc, ext4_end_io_buffer_write);
2700         } else
2701                 ret = block_write_full_page(page, noalloc_get_block_write,
2702                                             wbc);
2703
2704         return ret;
2705 }
2706
2707 /*
2708  * This is called via ext4_da_writepages() to
2709  * calculate the total number of credits to reserve to fit
2710  * a single extent allocation into a single transaction,
2711  * ext4_da_writpeages() will loop calling this before
2712  * the block allocation.
2713  */
2714
2715 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2716 {
2717         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2718
2719         /*
2720          * With non-extent format the journal credit needed to
2721          * insert nrblocks contiguous block is dependent on
2722          * number of contiguous block. So we will limit
2723          * number of contiguous block to a sane value
2724          */
2725         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2726             (max_blocks > EXT4_MAX_TRANS_DATA))
2727                 max_blocks = EXT4_MAX_TRANS_DATA;
2728
2729         return ext4_chunk_trans_blocks(inode, max_blocks);
2730 }
2731
2732 /*
2733  * write_cache_pages_da - walk the list of dirty pages of the given
2734  * address space and accumulate pages that need writing, and call
2735  * mpage_da_map_and_submit to map a single contiguous memory region
2736  * and then write them.
2737  */
2738 static int write_cache_pages_da(struct address_space *mapping,
2739                                 struct writeback_control *wbc,
2740                                 struct mpage_da_data *mpd,
2741                                 pgoff_t *done_index)
2742 {
2743         struct buffer_head      *bh, *head;
2744         struct inode            *inode = mapping->host;
2745         struct pagevec          pvec;
2746         unsigned int            nr_pages;
2747         sector_t                logical;
2748         pgoff_t                 index, end;
2749         long                    nr_to_write = wbc->nr_to_write;
2750         int                     i, tag, ret = 0;
2751
2752         memset(mpd, 0, sizeof(struct mpage_da_data));
2753         mpd->wbc = wbc;
2754         mpd->inode = inode;
2755         pagevec_init(&pvec, 0);
2756         index = wbc->range_start >> PAGE_CACHE_SHIFT;
2757         end = wbc->range_end >> PAGE_CACHE_SHIFT;
2758
2759         if (wbc->sync_mode == WB_SYNC_ALL)
2760                 tag = PAGECACHE_TAG_TOWRITE;
2761         else
2762                 tag = PAGECACHE_TAG_DIRTY;
2763
2764         *done_index = index;
2765         while (index <= end) {
2766                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2767                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2768                 if (nr_pages == 0)
2769                         return 0;
2770
2771                 for (i = 0; i < nr_pages; i++) {
2772                         struct page *page = pvec.pages[i];
2773
2774                         /*
2775                          * At this point, the page may be truncated or
2776                          * invalidated (changing page->mapping to NULL), or
2777                          * even swizzled back from swapper_space to tmpfs file
2778                          * mapping. However, page->index will not change
2779                          * because we have a reference on the page.
2780                          */
2781                         if (page->index > end)
2782                                 goto out;
2783
2784                         *done_index = page->index + 1;
2785
2786                         /*
2787                          * If we can't merge this page, and we have
2788                          * accumulated an contiguous region, write it
2789                          */
2790                         if ((mpd->next_page != page->index) &&
2791                             (mpd->next_page != mpd->first_page)) {
2792                                 mpage_da_map_and_submit(mpd);
2793                                 goto ret_extent_tail;
2794                         }
2795
2796                         lock_page(page);
2797
2798                         /*
2799                          * If the page is no longer dirty, or its
2800                          * mapping no longer corresponds to inode we
2801                          * are writing (which means it has been
2802                          * truncated or invalidated), or the page is
2803                          * already under writeback and we are not
2804                          * doing a data integrity writeback, skip the page
2805                          */
2806                         if (!PageDirty(page) ||
2807                             (PageWriteback(page) &&
2808                              (wbc->sync_mode == WB_SYNC_NONE)) ||
2809                             unlikely(page->mapping != mapping)) {
2810                                 unlock_page(page);
2811                                 continue;
2812                         }
2813
2814                         wait_on_page_writeback(page);
2815                         BUG_ON(PageWriteback(page));
2816
2817                         if (mpd->next_page != page->index)
2818                                 mpd->first_page = page->index;
2819                         mpd->next_page = page->index + 1;
2820                         logical = (sector_t) page->index <<
2821                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2822
2823                         if (!page_has_buffers(page)) {
2824                                 mpage_add_bh_to_extent(mpd, logical,
2825                                                        PAGE_CACHE_SIZE,
2826                                                        (1 << BH_Dirty) | (1 << BH_Uptodate));
2827                                 if (mpd->io_done)
2828                                         goto ret_extent_tail;
2829                         } else {
2830                                 /*
2831                                  * Page with regular buffer heads,
2832                                  * just add all dirty ones
2833                                  */
2834                                 head = page_buffers(page);
2835                                 bh = head;
2836                                 do {
2837                                         BUG_ON(buffer_locked(bh));
2838                                         /*
2839                                          * We need to try to allocate
2840                                          * unmapped blocks in the same page.
2841                                          * Otherwise we won't make progress
2842                                          * with the page in ext4_writepage
2843                                          */
2844                                         if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2845                                                 mpage_add_bh_to_extent(mpd, logical,
2846                                                                        bh->b_size,
2847                                                                        bh->b_state);
2848                                                 if (mpd->io_done)
2849                                                         goto ret_extent_tail;
2850                                         } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2851                                                 /*
2852                                                  * mapped dirty buffer. We need
2853                                                  * to update the b_state
2854                                                  * because we look at b_state
2855                                                  * in mpage_da_map_blocks.  We
2856                                                  * don't update b_size because
2857                                                  * if we find an unmapped
2858                                                  * buffer_head later we need to
2859                                                  * use the b_state flag of that
2860                                                  * buffer_head.
2861                                                  */
2862                                                 if (mpd->b_size == 0)
2863                                                         mpd->b_state = bh->b_state & BH_FLAGS;
2864                                         }
2865                                         logical++;
2866                                 } while ((bh = bh->b_this_page) != head);
2867                         }
2868
2869                         if (nr_to_write > 0) {
2870                                 nr_to_write--;
2871                                 if (nr_to_write == 0 &&
2872                                     wbc->sync_mode == WB_SYNC_NONE)
2873                                         /*
2874                                          * We stop writing back only if we are
2875                                          * not doing integrity sync. In case of
2876                                          * integrity sync we have to keep going
2877                                          * because someone may be concurrently
2878                                          * dirtying pages, and we might have
2879                                          * synced a lot of newly appeared dirty
2880                                          * pages, but have not synced all of the
2881                                          * old dirty pages.
2882                                          */
2883                                         goto out;
2884                         }
2885                 }
2886                 pagevec_release(&pvec);
2887                 cond_resched();
2888         }
2889         return 0;
2890 ret_extent_tail:
2891         ret = MPAGE_DA_EXTENT_TAIL;
2892 out:
2893         pagevec_release(&pvec);
2894         cond_resched();
2895         return ret;
2896 }
2897
2898
2899 static int ext4_da_writepages(struct address_space *mapping,
2900                               struct writeback_control *wbc)
2901 {
2902         pgoff_t index;
2903         int range_whole = 0;
2904         handle_t *handle = NULL;
2905         struct mpage_da_data mpd;
2906         struct inode *inode = mapping->host;
2907         int pages_written = 0;
2908         unsigned int max_pages;
2909         int range_cyclic, cycled = 1, io_done = 0;
2910         int needed_blocks, ret = 0;
2911         long desired_nr_to_write, nr_to_writebump = 0;
2912         loff_t range_start = wbc->range_start;
2913         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2914         pgoff_t done_index = 0;
2915         pgoff_t end;
2916
2917         trace_ext4_da_writepages(inode, wbc);
2918
2919         /*
2920          * No pages to write? This is mainly a kludge to avoid starting
2921          * a transaction for special inodes like journal inode on last iput()
2922          * because that could violate lock ordering on umount
2923          */
2924         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2925                 return 0;
2926
2927         /*
2928          * If the filesystem has aborted, it is read-only, so return
2929          * right away instead of dumping stack traces later on that
2930          * will obscure the real source of the problem.  We test
2931          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2932          * the latter could be true if the filesystem is mounted
2933          * read-only, and in that case, ext4_da_writepages should
2934          * *never* be called, so if that ever happens, we would want
2935          * the stack trace.
2936          */
2937         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2938                 return -EROFS;
2939
2940         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2941                 range_whole = 1;
2942
2943         range_cyclic = wbc->range_cyclic;
2944         if (wbc->range_cyclic) {
2945                 index = mapping->writeback_index;
2946                 if (index)
2947                         cycled = 0;
2948                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2949                 wbc->range_end  = LLONG_MAX;
2950                 wbc->range_cyclic = 0;
2951                 end = -1;
2952         } else {
2953                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2954                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2955         }
2956
2957         /*
2958          * This works around two forms of stupidity.  The first is in
2959          * the writeback code, which caps the maximum number of pages
2960          * written to be 1024 pages.  This is wrong on multiple
2961          * levels; different architectues have a different page size,
2962          * which changes the maximum amount of data which gets
2963          * written.  Secondly, 4 megabytes is way too small.  XFS
2964          * forces this value to be 16 megabytes by multiplying
2965          * nr_to_write parameter by four, and then relies on its
2966          * allocator to allocate larger extents to make them
2967          * contiguous.  Unfortunately this brings us to the second
2968          * stupidity, which is that ext4's mballoc code only allocates
2969          * at most 2048 blocks.  So we force contiguous writes up to
2970          * the number of dirty blocks in the inode, or
2971          * sbi->max_writeback_mb_bump whichever is smaller.
2972          */
2973         max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2974         if (!range_cyclic && range_whole) {
2975                 if (wbc->nr_to_write == LONG_MAX)
2976                         desired_nr_to_write = wbc->nr_to_write;
2977                 else
2978                         desired_nr_to_write = wbc->nr_to_write * 8;
2979         } else
2980                 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2981                                                            max_pages);
2982         if (desired_nr_to_write > max_pages)
2983                 desired_nr_to_write = max_pages;
2984
2985         if (wbc->nr_to_write < desired_nr_to_write) {
2986                 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2987                 wbc->nr_to_write = desired_nr_to_write;
2988         }
2989
2990 retry:
2991         if (wbc->sync_mode == WB_SYNC_ALL)
2992                 tag_pages_for_writeback(mapping, index, end);
2993
2994         while (!ret && wbc->nr_to_write > 0) {
2995
2996                 /*
2997                  * we  insert one extent at a time. So we need
2998                  * credit needed for single extent allocation.
2999                  * journalled mode is currently not supported
3000                  * by delalloc
3001                  */
3002                 BUG_ON(ext4_should_journal_data(inode));
3003                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
3004
3005                 /* start a new transaction*/
3006                 handle = ext4_journal_start(inode, needed_blocks);
3007                 if (IS_ERR(handle)) {
3008                         ret = PTR_ERR(handle);
3009                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
3010                                "%ld pages, ino %lu; err %d", __func__,
3011                                 wbc->nr_to_write, inode->i_ino, ret);
3012                         goto out_writepages;
3013                 }
3014
3015                 /*
3016                  * Now call write_cache_pages_da() to find the next
3017                  * contiguous region of logical blocks that need
3018                  * blocks to be allocated by ext4 and submit them.
3019                  */
3020                 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
3021                 /*
3022                  * If we have a contiguous extent of pages and we
3023                  * haven't done the I/O yet, map the blocks and submit
3024                  * them for I/O.
3025                  */
3026                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
3027                         mpage_da_map_and_submit(&mpd);
3028                         ret = MPAGE_DA_EXTENT_TAIL;
3029                 }
3030                 trace_ext4_da_write_pages(inode, &mpd);
3031                 wbc->nr_to_write -= mpd.pages_written;
3032
3033                 ext4_journal_stop(handle);
3034
3035                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
3036                         /* commit the transaction which would
3037                          * free blocks released in the transaction
3038                          * and try again
3039                          */
3040                         jbd2_journal_force_commit_nested(sbi->s_journal);
3041                         ret = 0;
3042                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
3043                         /*
3044                          * got one extent now try with
3045                          * rest of the pages
3046                          */
3047                         pages_written += mpd.pages_written;
3048                         ret = 0;
3049                         io_done = 1;
3050                 } else if (wbc->nr_to_write)
3051                         /*
3052                          * There is no more writeout needed
3053                          * or we requested for a noblocking writeout
3054                          * and we found the device congested
3055                          */
3056                         break;
3057         }
3058         if (!io_done && !cycled) {
3059                 cycled = 1;
3060                 index = 0;
3061                 wbc->range_start = index << PAGE_CACHE_SHIFT;
3062                 wbc->range_end  = mapping->writeback_index - 1;
3063                 goto retry;
3064         }
3065
3066         /* Update index */
3067         wbc->range_cyclic = range_cyclic;
3068         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3069                 /*
3070                  * set the writeback_index so that range_cyclic
3071                  * mode will write it back later
3072                  */
3073                 mapping->writeback_index = done_index;
3074
3075 out_writepages:
3076         wbc->nr_to_write -= nr_to_writebump;
3077         wbc->range_start = range_start;
3078         trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3079         return ret;
3080 }
3081
3082 #define FALL_BACK_TO_NONDELALLOC 1
3083 static int ext4_nonda_switch(struct super_block *sb)
3084 {
3085         s64 free_blocks, dirty_blocks;
3086         struct ext4_sb_info *sbi = EXT4_SB(sb);
3087
3088         /*
3089          * switch to non delalloc mode if we are running low
3090          * on free block. The free block accounting via percpu
3091          * counters can get slightly wrong with percpu_counter_batch getting
3092          * accumulated on each CPU without updating global counters
3093          * Delalloc need an accurate free block accounting. So switch
3094          * to non delalloc when we are near to error range.
3095          */
3096         free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3097         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3098         if (2 * free_blocks < 3 * dirty_blocks ||
3099                 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3100                 /*
3101                  * free block count is less than 150% of dirty blocks
3102                  * or free blocks is less than watermark
3103                  */
3104                 return 1;
3105         }
3106         /*
3107          * Even if we don't switch but are nearing capacity,
3108          * start pushing delalloc when 1/2 of free blocks are dirty.
3109          */
3110         if (free_blocks < 2 * dirty_blocks)
3111                 writeback_inodes_sb_if_idle(sb);
3112
3113         return 0;
3114 }
3115
3116 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3117                                loff_t pos, unsigned len, unsigned flags,
3118                                struct page **pagep, void **fsdata)
3119 {
3120         int ret, retries = 0;
3121         struct page *page;
3122         pgoff_t index;
3123         struct inode *inode = mapping->host;
3124         handle_t *handle;
3125
3126         index = pos >> PAGE_CACHE_SHIFT;
3127
3128         if (ext4_nonda_switch(inode->i_sb)) {
3129                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3130                 return ext4_write_begin(file, mapping, pos,
3131                                         len, flags, pagep, fsdata);
3132         }
3133         *fsdata = (void *)0;
3134         trace_ext4_da_write_begin(inode, pos, len, flags);
3135 retry:
3136         /*
3137          * With delayed allocation, we don't log the i_disksize update
3138          * if there is delayed block allocation. But we still need
3139          * to journalling the i_disksize update if writes to the end
3140          * of file which has an already mapped buffer.
3141          */
3142         handle = ext4_journal_start(inode, 1);
3143         if (IS_ERR(handle)) {
3144                 ret = PTR_ERR(handle);
3145                 goto out;
3146         }
3147         /* We cannot recurse into the filesystem as the transaction is already
3148          * started */
3149         flags |= AOP_FLAG_NOFS;
3150
3151         page = grab_cache_page_write_begin(mapping, index, flags);
3152         if (!page) {
3153                 ext4_journal_stop(handle);
3154                 ret = -ENOMEM;
3155                 goto out;
3156         }
3157         *pagep = page;
3158
3159         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3160         if (ret < 0) {
3161                 unlock_page(page);
3162                 ext4_journal_stop(handle);
3163                 page_cache_release(page);
3164                 /*
3165                  * block_write_begin may have instantiated a few blocks
3166                  * outside i_size.  Trim these off again. Don't need
3167                  * i_size_read because we hold i_mutex.
3168                  */
3169                 if (pos + len > inode->i_size)
3170                         ext4_truncate_failed_write(inode);
3171         }
3172
3173         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3174                 goto retry;
3175 out:
3176         return ret;
3177 }
3178
3179 /*
3180  * Check if we should update i_disksize
3181  * when write to the end of file but not require block allocation
3182  */
3183 static int ext4_da_should_update_i_disksize(struct page *page,
3184                                             unsigned long offset)
3185 {
3186         struct buffer_head *bh;
3187         struct inode *inode = page->mapping->host;
3188         unsigned int idx;
3189         int i;
3190
3191         bh = page_buffers(page);
3192         idx = offset >> inode->i_blkbits;
3193
3194         for (i = 0; i < idx; i++)
3195                 bh = bh->b_this_page;
3196
3197         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3198                 return 0;
3199         return 1;
3200 }
3201
3202 static int ext4_da_write_end(struct file *file,
3203                              struct address_space *mapping,
3204                              loff_t pos, unsigned len, unsigned copied,
3205                              struct page *page, void *fsdata)
3206 {
3207         struct inode *inode = mapping->host;
3208         int ret = 0, ret2;
3209         handle_t *handle = ext4_journal_current_handle();
3210         loff_t new_i_size;
3211         unsigned long start, end;
3212         int write_mode = (int)(unsigned long)fsdata;
3213
3214         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3215                 if (ext4_should_order_data(inode)) {
3216                         return ext4_ordered_write_end(file, mapping, pos,
3217                                         len, copied, page, fsdata);
3218                 } else if (ext4_should_writeback_data(inode)) {
3219                         return ext4_writeback_write_end(file, mapping, pos,
3220                                         len, copied, page, fsdata);
3221                 } else {
3222                         BUG();
3223                 }
3224         }
3225
3226         trace_ext4_da_write_end(inode, pos, len, copied);
3227         start = pos & (PAGE_CACHE_SIZE - 1);
3228         end = start + copied - 1;
3229
3230         /*
3231          * generic_write_end() will run mark_inode_dirty() if i_size
3232          * changes.  So let's piggyback the i_disksize mark_inode_dirty
3233          * into that.
3234          */
3235
3236         new_i_size = pos + copied;
3237         if (new_i_size > EXT4_I(inode)->i_disksize) {
3238                 if (ext4_da_should_update_i_disksize(page, end)) {
3239                         down_write(&EXT4_I(inode)->i_data_sem);
3240                         if (new_i_size > EXT4_I(inode)->i_disksize) {
3241                                 /*
3242                                  * Updating i_disksize when extending file
3243                                  * without needing block allocation
3244                                  */
3245                                 if (ext4_should_order_data(inode))
3246                                         ret = ext4_jbd2_file_inode(handle,
3247                                                                    inode);
3248
3249                                 EXT4_I(inode)->i_disksize = new_i_size;
3250                         }
3251                         up_write(&EXT4_I(inode)->i_data_sem);
3252                         /* We need to mark inode dirty even if
3253                          * new_i_size is less that inode->i_size
3254                          * bu greater than i_disksize.(hint delalloc)
3255                          */
3256                         ext4_mark_inode_dirty(handle, inode);
3257                 }
3258         }
3259         ret2 = generic_write_end(file, mapping, pos, len, copied,
3260                                                         page, fsdata);
3261         copied = ret2;
3262         if (ret2 < 0)
3263                 ret = ret2;
3264         ret2 = ext4_journal_stop(handle);
3265         if (!ret)
3266                 ret = ret2;
3267
3268         return ret ? ret : copied;
3269 }
3270
3271 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3272 {
3273         /*
3274          * Drop reserved blocks
3275          */
3276         BUG_ON(!PageLocked(page));
3277         if (!page_has_buffers(page))
3278                 goto out;
3279
3280         ext4_da_page_release_reservation(page, offset);
3281
3282 out:
3283         ext4_invalidatepage(page, offset);
3284
3285         return;
3286 }
3287
3288 /*
3289  * Force all delayed allocation blocks to be allocated for a given inode.
3290  */
3291 int ext4_alloc_da_blocks(struct inode *inode)
3292 {
3293         trace_ext4_alloc_da_blocks(inode);
3294
3295         if (!EXT4_I(inode)->i_reserved_data_blocks &&
3296             !EXT4_I(inode)->i_reserved_meta_blocks)
3297                 return 0;
3298
3299         /*
3300          * We do something simple for now.  The filemap_flush() will
3301          * also start triggering a write of the data blocks, which is
3302          * not strictly speaking necessary (and for users of
3303          * laptop_mode, not even desirable).  However, to do otherwise
3304          * would require replicating code paths in:
3305          *
3306          * ext4_da_writepages() ->
3307          *    write_cache_pages() ---> (via passed in callback function)
3308          *        __mpage_da_writepage() -->
3309          *           mpage_add_bh_to_extent()
3310          *           mpage_da_map_blocks()
3311          *
3312          * The problem is that write_cache_pages(), located in
3313          * mm/page-writeback.c, marks pages clean in preparation for
3314          * doing I/O, which is not desirable if we're not planning on
3315          * doing I/O at all.
3316          *
3317          * We could call write_cache_pages(), and then redirty all of
3318          * the pages by calling redirty_page_for_writepage() but that
3319          * would be ugly in the extreme.  So instead we would need to
3320          * replicate parts of the code in the above functions,
3321          * simplifying them because we wouldn't actually intend to
3322          * write out the pages, but rather only collect contiguous
3323          * logical block extents, call the multi-block allocator, and
3324          * then update the buffer heads with the block allocations.
3325          *
3326          * For now, though, we'll cheat by calling filemap_flush(),
3327          * which will map the blocks, and start the I/O, but not
3328          * actually wait for the I/O to complete.
3329          */
3330         return filemap_flush(inode->i_mapping);
3331 }
3332
3333 /*
3334  * bmap() is special.  It gets used by applications such as lilo and by
3335  * the swapper to find the on-disk block of a specific piece of data.
3336  *
3337  * Naturally, this is dangerous if the block concerned is still in the
3338  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3339  * filesystem and enables swap, then they may get a nasty shock when the
3340  * data getting swapped to that swapfile suddenly gets overwritten by
3341  * the original zero's written out previously to the journal and
3342  * awaiting writeback in the kernel's buffer cache.
3343  *
3344  * So, if we see any bmap calls here on a modified, data-journaled file,
3345  * take extra steps to flush any blocks which might be in the cache.
3346  */
3347 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3348 {
3349         struct inode *inode = mapping->host;
3350         journal_t *journal;
3351         int err;
3352
3353         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3354                         test_opt(inode->i_sb, DELALLOC)) {
3355                 /*
3356                  * With delalloc we want to sync the file
3357                  * so that we can make sure we allocate
3358                  * blocks for file
3359                  */
3360                 filemap_write_and_wait(mapping);
3361         }
3362
3363         if (EXT4_JOURNAL(inode) &&
3364             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3365                 /*
3366                  * This is a REALLY heavyweight approach, but the use of
3367                  * bmap on dirty files is expected to be extremely rare:
3368                  * only if we run lilo or swapon on a freshly made file
3369                  * do we expect this to happen.
3370                  *
3371                  * (bmap requires CAP_SYS_RAWIO so this does not
3372                  * represent an unprivileged user DOS attack --- we'd be
3373                  * in trouble if mortal users could trigger this path at
3374                  * will.)
3375                  *
3376                  * NB. EXT4_STATE_JDATA is not set on files other than
3377                  * regular files.  If somebody wants to bmap a directory
3378                  * or symlink and gets confused because the buffer
3379                  * hasn't yet been flushed to disk, they deserve
3380                  * everything they get.
3381                  */
3382
3383                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3384                 journal = EXT4_JOURNAL(inode);
3385                 jbd2_journal_lock_updates(journal);
3386                 err = jbd2_journal_flush(journal);
3387                 jbd2_journal_unlock_updates(journal);
3388
3389                 if (err)
3390                         return 0;
3391         }
3392
3393         return generic_block_bmap(mapping, block, ext4_get_block);
3394 }
3395
3396 static int ext4_readpage(struct file *file, struct page *page)
3397 {
3398         trace_ext4_readpage(page);
3399         return mpage_readpage(page, ext4_get_block);
3400 }
3401
3402 static int
3403 ext4_readpages(struct file *file, struct address_space *mapping,
3404                 struct list_head *pages, unsigned nr_pages)
3405 {
3406         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3407 }
3408
3409 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
3410 {
3411         struct buffer_head *head, *bh;
3412         unsigned int curr_off = 0;
3413
3414         if (!page_has_buffers(page))
3415                 return;
3416         head = bh = page_buffers(page);
3417         do {
3418                 if (offset <= curr_off && test_clear_buffer_uninit(bh)
3419                                         && bh->b_private) {
3420                         ext4_free_io_end(bh->b_private);
3421                         bh->b_private = NULL;
3422                         bh->b_end_io = NULL;
3423                 }
3424                 curr_off = curr_off + bh->b_size;
3425                 bh = bh->b_this_page;
3426         } while (bh != head);
3427 }
3428
3429 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3430 {
3431         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3432
3433         trace_ext4_invalidatepage(page, offset);
3434
3435         /*
3436          * free any io_end structure allocated for buffers to be discarded
3437          */
3438         if (ext4_should_dioread_nolock(page->mapping->host))
3439                 ext4_invalidatepage_free_endio(page, offset);
3440         /*
3441          * If it's a full truncate we just forget about the pending dirtying
3442          */
3443         if (offset == 0)
3444                 ClearPageChecked(page);
3445
3446         if (journal)
3447                 jbd2_journal_invalidatepage(journal, page, offset);
3448         else
3449                 block_invalidatepage(page, offset);
3450 }
3451
3452 static int ext4_releasepage(struct page *page, gfp_t wait)
3453 {
3454         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3455
3456         trace_ext4_releasepage(page);
3457
3458         WARN_ON(PageChecked(page));
3459         if (!page_has_buffers(page))
3460                 return 0;
3461         if (journal)
3462                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3463         else
3464                 return try_to_free_buffers(page);
3465 }
3466
3467 /*
3468  * O_DIRECT for ext3 (or indirect map) based files
3469  *
3470  * If the O_DIRECT write will extend the file then add this inode to the
3471  * orphan list.  So recovery will truncate it back to the original size
3472  * if the machine crashes during the write.
3473  *
3474  * If the O_DIRECT write is intantiating holes inside i_size and the machine
3475  * crashes then stale disk data _may_ be exposed inside the file. But current
3476  * VFS code falls back into buffered path in that case so we are safe.
3477  */
3478 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3479                               const struct iovec *iov, loff_t offset,
3480                               unsigned long nr_segs)
3481 {
3482         struct file *file = iocb->ki_filp;
3483         struct inode *inode = file->f_mapping->host;
3484         struct ext4_inode_info *ei = EXT4_I(inode);
3485         handle_t *handle;
3486         ssize_t ret;
3487         int orphan = 0;
3488         size_t count = iov_length(iov, nr_segs);
3489         int retries = 0;
3490
3491         if (rw == WRITE) {
3492                 loff_t final_size = offset + count;
3493
3494                 if (final_size > inode->i_size) {
3495                         /* Credits for sb + inode write */
3496                         handle = ext4_journal_start(inode, 2);
3497                         if (IS_ERR(handle)) {
3498                                 ret = PTR_ERR(handle);
3499                                 goto out;
3500                         }
3501                         ret = ext4_orphan_add(handle, inode);
3502                         if (ret) {
3503                                 ext4_journal_stop(handle);
3504                                 goto out;
3505                         }
3506                         orphan = 1;
3507                         ei->i_disksize = inode->i_size;
3508                         ext4_journal_stop(handle);
3509                 }
3510         }
3511
3512 retry:
3513         if (rw == READ && ext4_should_dioread_nolock(inode))
3514                 ret = __blockdev_direct_IO(rw, iocb, inode,
3515                                  inode->i_sb->s_bdev, iov,
3516                                  offset, nr_segs,
3517                                  ext4_get_block, NULL, NULL, 0);
3518         else {
3519                 ret = blockdev_direct_IO(rw, iocb, inode,
3520                                  inode->i_sb->s_bdev, iov,
3521                                  offset, nr_segs,
3522                                  ext4_get_block, NULL);
3523
3524                 if (unlikely((rw & WRITE) && ret < 0)) {
3525                         loff_t isize = i_size_read(inode);
3526                         loff_t end = offset + iov_length(iov, nr_segs);
3527
3528                         if (end > isize)
3529                                 ext4_truncate_failed_write(inode);
3530                 }
3531         }
3532         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3533                 goto retry;
3534
3535         if (orphan) {
3536                 int err;
3537
3538                 /* Credits for sb + inode write */
3539                 handle = ext4_journal_start(inode, 2);
3540                 if (IS_ERR(handle)) {
3541                         /* This is really bad luck. We've written the data
3542                          * but cannot extend i_size. Bail out and pretend
3543                          * the write failed... */
3544                         ret = PTR_ERR(handle);
3545                         if (inode->i_nlink)
3546                                 ext4_orphan_del(NULL, inode);
3547
3548                         goto out;
3549                 }
3550                 if (inode->i_nlink)
3551                         ext4_orphan_del(handle, inode);
3552                 if (ret > 0) {
3553                         loff_t end = offset + ret;
3554                         if (end > inode->i_size) {
3555                                 ei->i_disksize = end;
3556                                 i_size_write(inode, end);
3557                                 /*
3558                                  * We're going to return a positive `ret'
3559                                  * here due to non-zero-length I/O, so there's
3560                                  * no way of reporting error returns from
3561                                  * ext4_mark_inode_dirty() to userspace.  So
3562                                  * ignore it.
3563                                  */
3564                                 ext4_mark_inode_dirty(handle, inode);
3565                         }
3566                 }
3567                 err = ext4_journal_stop(handle);
3568                 if (ret == 0)
3569                         ret = err;
3570         }
3571 out:
3572         return ret;
3573 }
3574
3575 /*
3576  * ext4_get_block used when preparing for a DIO write or buffer write.
3577  * We allocate an uinitialized extent if blocks haven't been allocated.
3578  * The extent will be converted to initialized after the IO is complete.
3579  */
3580 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
3581                    struct buffer_head *bh_result, int create)
3582 {
3583         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3584                    inode->i_ino, create);
3585         return _ext4_get_block(inode, iblock, bh_result,
3586                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
3587 }
3588
3589 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3590                             ssize_t size, void *private, int ret,
3591                             bool is_async)
3592 {
3593         ext4_io_end_t *io_end = iocb->private;
3594         struct workqueue_struct *wq;
3595         unsigned long flags;
3596         struct ext4_inode_info *ei;
3597
3598         /* if not async direct IO or dio with 0 bytes write, just return */
3599         if (!io_end || !size)
3600                 goto out;
3601
3602         ext_debug("ext4_end_io_dio(): io_end 0x%p"
3603                   "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3604                   iocb->private, io_end->inode->i_ino, iocb, offset,
3605                   size);
3606
3607         /* if not aio dio with unwritten extents, just free io and return */
3608         if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
3609                 ext4_free_io_end(io_end);
3610                 iocb->private = NULL;
3611 out:
3612                 if (is_async)
3613                         aio_complete(iocb, ret, 0);
3614                 return;
3615         }
3616
3617         io_end->offset = offset;
3618         io_end->size = size;
3619         if (is_async) {
3620                 io_end->iocb = iocb;
3621                 io_end->result = ret;
3622         }
3623         wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3624
3625         /* Add the io_end to per-inode completed aio dio list*/
3626         ei = EXT4_I(io_end->inode);
3627         spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3628         list_add_tail(&io_end->list, &ei->i_completed_io_list);
3629         spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3630
3631         /* queue the work to convert unwritten extents to written */
3632         queue_work(wq, &io_end->work);
3633         iocb->private = NULL;
3634 }
3635
3636 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
3637 {
3638         ext4_io_end_t *io_end = bh->b_private;
3639         struct workqueue_struct *wq;
3640         struct inode *inode;
3641         unsigned long flags;
3642
3643         if (!test_clear_buffer_uninit(bh) || !io_end)
3644                 goto out;
3645
3646         if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
3647                 printk("sb umounted, discard end_io request for inode %lu\n",
3648                         io_end->inode->i_ino);
3649                 ext4_free_io_end(io_end);
3650                 goto out;
3651         }
3652
3653         /*
3654          * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
3655          * but being more careful is always safe for the future change.
3656          */
3657         inode = io_end->inode;
3658         if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
3659                 io_end->flag |= EXT4_IO_END_UNWRITTEN;
3660                 atomic_inc(&EXT4_I(inode)->i_aiodio_unwritten);
3661         }
3662
3663         /* Add the io_end to per-inode completed io list*/
3664         spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3665         list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
3666         spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3667
3668         wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
3669         /* queue the work to convert unwritten extents to written */
3670         queue_work(wq, &io_end->work);
3671 out:
3672         bh->b_private = NULL;
3673         bh->b_end_io = NULL;
3674         clear_buffer_uninit(bh);
3675         end_buffer_async_write(bh, uptodate);
3676 }
3677
3678 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
3679 {
3680         ext4_io_end_t *io_end;
3681         struct page *page = bh->b_page;
3682         loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
3683         size_t size = bh->b_size;
3684
3685 retry:
3686         io_end = ext4_init_io_end(inode, GFP_ATOMIC);
3687         if (!io_end) {
3688                 pr_warn_ratelimited("%s: allocation fail\n", __func__);
3689                 schedule();
3690                 goto retry;
3691         }
3692         io_end->offset = offset;
3693         io_end->size = size;
3694         /*
3695          * We need to hold a reference to the page to make sure it
3696          * doesn't get evicted before ext4_end_io_work() has a chance
3697          * to convert the extent from written to unwritten.
3698          */
3699         io_end->page = page;
3700         get_page(io_end->page);
3701
3702         bh->b_private = io_end;
3703         bh->b_end_io = ext4_end_io_buffer_write;
3704         return 0;
3705 }
3706
3707 /*
3708  * For ext4 extent files, ext4 will do direct-io write to holes,
3709  * preallocated extents, and those write extend the file, no need to
3710  * fall back to buffered IO.
3711  *
3712  * For holes, we fallocate those blocks, mark them as uninitialized
3713  * If those blocks were preallocated, we mark sure they are splited, but
3714  * still keep the range to write as uninitialized.
3715  *
3716  * The unwrritten extents will be converted to written when DIO is completed.
3717  * For async direct IO, since the IO may still pending when return, we
3718  * set up an end_io call back function, which will do the conversion
3719  * when async direct IO completed.
3720  *
3721  * If the O_DIRECT write will extend the file then add this inode to the
3722  * orphan list.  So recovery will truncate it back to the original size
3723  * if the machine crashes during the write.
3724  *
3725  */
3726 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3727                               const struct iovec *iov, loff_t offset,
3728                               unsigned long nr_segs)
3729 {
3730         struct file *file = iocb->ki_filp;
3731         struct inode *inode = file->f_mapping->host;
3732         ssize_t ret;
3733         size_t count = iov_length(iov, nr_segs);
3734
3735         loff_t final_size = offset + count;
3736         if (rw == WRITE && final_size <= inode->i_size) {
3737                 /*
3738                  * We could direct write to holes and fallocate.
3739                  *
3740                  * Allocated blocks to fill the hole are marked as uninitialized
3741                  * to prevent parallel buffered read to expose the stale data
3742                  * before DIO complete the data IO.
3743                  *
3744                  * As to previously fallocated extents, ext4 get_block
3745                  * will just simply mark the buffer mapped but still
3746                  * keep the extents uninitialized.
3747                  *
3748                  * for non AIO case, we will convert those unwritten extents
3749                  * to written after return back from blockdev_direct_IO.
3750                  *
3751                  * for async DIO, the conversion needs to be defered when
3752                  * the IO is completed. The ext4 end_io callback function
3753                  * will be called to take care of the conversion work.
3754                  * Here for async case, we allocate an io_end structure to
3755                  * hook to the iocb.
3756                  */
3757                 iocb->private = NULL;
3758                 EXT4_I(inode)->cur_aio_dio = NULL;
3759                 if (!is_sync_kiocb(iocb)) {
3760                         iocb->private = ext4_init_io_end(inode, GFP_NOFS);
3761                         if (!iocb->private)
3762                                 return -ENOMEM;
3763                         /*
3764                          * we save the io structure for current async
3765                          * direct IO, so that later ext4_map_blocks()
3766                          * could flag the io structure whether there
3767                          * is a unwritten extents needs to be converted
3768                          * when IO is completed.
3769                          */
3770                         EXT4_I(inode)->cur_aio_dio = iocb->private;
3771                 }
3772
3773                 ret = blockdev_direct_IO(rw, iocb, inode,
3774                                          inode->i_sb->s_bdev, iov,
3775                                          offset, nr_segs,
3776                                          ext4_get_block_write,
3777                                          ext4_end_io_dio);
3778                 if (iocb->private)
3779                         EXT4_I(inode)->cur_aio_dio = NULL;
3780                 /*
3781                  * The io_end structure takes a reference to the inode,
3782                  * that structure needs to be destroyed and the
3783                  * reference to the inode need to be dropped, when IO is
3784                  * complete, even with 0 byte write, or failed.
3785                  *
3786                  * In the successful AIO DIO case, the io_end structure will be
3787                  * desctroyed and the reference to the inode will be dropped
3788                  * after the end_io call back function is called.
3789                  *
3790                  * In the case there is 0 byte write, or error case, since
3791                  * VFS direct IO won't invoke the end_io call back function,
3792                  * we need to free the end_io structure here.
3793                  */
3794                 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3795                         ext4_free_io_end(iocb->private);
3796                         iocb->private = NULL;
3797                 } else if (ret > 0 && ext4_test_inode_state(inode,
3798                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3799                         int err;
3800                         /*
3801                          * for non AIO case, since the IO is already
3802                          * completed, we could do the conversion right here
3803                          */
3804                         err = ext4_convert_unwritten_extents(inode,
3805                                                              offset, ret);
3806                         if (err < 0)
3807                                 ret = err;
3808                         ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3809                 }
3810                 return ret;
3811         }
3812
3813         /* for write the the end of file case, we fall back to old way */
3814         return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3815 }
3816
3817 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3818                               const struct iovec *iov, loff_t offset,
3819                               unsigned long nr_segs)
3820 {
3821         struct file *file = iocb->ki_filp;
3822         struct inode *inode = file->f_mapping->host;
3823         ssize_t ret;
3824
3825         trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3826         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3827                 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3828         else
3829                 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3830         trace_ext4_direct_IO_exit(inode, offset,
3831                                 iov_length(iov, nr_segs), rw, ret);
3832         return ret;
3833 }
3834
3835 /*
3836  * Pages can be marked dirty completely asynchronously from ext4's journalling
3837  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3838  * much here because ->set_page_dirty is called under VFS locks.  The page is
3839  * not necessarily locked.
3840  *
3841  * We cannot just dirty the page and leave attached buffers clean, because the
3842  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3843  * or jbddirty because all the journalling code will explode.
3844  *
3845  * So what we do is to mark the page "pending dirty" and next time writepage
3846  * is called, propagate that into the buffers appropriately.
3847  */
3848 static int ext4_journalled_set_page_dirty(struct page *page)
3849 {
3850         SetPageChecked(page);
3851         return __set_page_dirty_nobuffers(page);
3852 }
3853
3854 static const struct address_space_operations ext4_ordered_aops = {
3855         .readpage               = ext4_readpage,
3856         .readpages              = ext4_readpages,
3857         .writepage              = ext4_writepage,
3858         .write_begin            = ext4_write_begin,
3859         .write_end              = ext4_ordered_write_end,
3860         .bmap                   = ext4_bmap,
3861         .invalidatepage         = ext4_invalidatepage,
3862         .releasepage            = ext4_releasepage,
3863         .direct_IO              = ext4_direct_IO,
3864         .migratepage            = buffer_migrate_page,
3865         .is_partially_uptodate  = block_is_partially_uptodate,
3866         .error_remove_page      = generic_error_remove_page,
3867 };
3868
3869 static const struct address_space_operations ext4_writeback_aops = {
3870         .readpage               = ext4_readpage,
3871         .readpages              = ext4_readpages,
3872         .writepage              = ext4_writepage,
3873         .write_begin            = ext4_write_begin,
3874         .write_end              = ext4_writeback_write_end,
3875         .bmap                   = ext4_bmap,
3876         .invalidatepage         = ext4_invalidatepage,
3877         .releasepage            = ext4_releasepage,
3878         .direct_IO              = ext4_direct_IO,
3879         .migratepage            = buffer_migrate_page,
3880         .is_partially_uptodate  = block_is_partially_uptodate,
3881         .error_remove_page      = generic_error_remove_page,
3882 };
3883
3884 static const struct address_space_operations ext4_journalled_aops = {
3885         .readpage               = ext4_readpage,
3886         .readpages              = ext4_readpages,
3887         .writepage              = ext4_writepage,
3888         .write_begin            = ext4_write_begin,
3889         .write_end              = ext4_journalled_write_end,
3890         .set_page_dirty         = ext4_journalled_set_page_dirty,
3891         .bmap                   = ext4_bmap,
3892         .invalidatepage         = ext4_invalidatepage,
3893         .releasepage            = ext4_releasepage,
3894         .is_partially_uptodate  = block_is_partially_uptodate,
3895         .error_remove_page      = generic_error_remove_page,
3896 };
3897
3898 static const struct address_space_operations ext4_da_aops = {
3899         .readpage               = ext4_readpage,
3900         .readpages              = ext4_readpages,
3901         .writepage              = ext4_writepage,
3902         .writepages             = ext4_da_writepages,
3903         .write_begin            = ext4_da_write_begin,
3904         .write_end              = ext4_da_write_end,
3905         .bmap                   = ext4_bmap,
3906         .invalidatepage         = ext4_da_invalidatepage,
3907         .releasepage            = ext4_releasepage,
3908         .direct_IO              = ext4_direct_IO,
3909         .migratepage            = buffer_migrate_page,
3910         .is_partially_uptodate  = block_is_partially_uptodate,
3911         .error_remove_page      = generic_error_remove_page,
3912 };
3913
3914 void ext4_set_aops(struct inode *inode)
3915 {
3916         if (ext4_should_order_data(inode) &&
3917                 test_opt(inode->i_sb, DELALLOC))
3918                 inode->i_mapping->a_ops = &ext4_da_aops;
3919         else if (ext4_should_order_data(inode))
3920                 inode->i_mapping->a_ops = &ext4_ordered_aops;
3921         else if (ext4_should_writeback_data(inode) &&
3922                  test_opt(inode->i_sb, DELALLOC))
3923                 inode->i_mapping->a_ops = &ext4_da_aops;
3924         else if (ext4_should_writeback_data(inode))
3925                 inode->i_mapping->a_ops = &ext4_writeback_aops;
3926         else
3927                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3928 }
3929
3930 /*
3931  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3932  * up to the end of the block which corresponds to `from'.
3933  * This required during truncate. We need to physically zero the tail end
3934  * of that block so it doesn't yield old data if the file is later grown.
3935  */
3936 int ext4_block_truncate_page(handle_t *handle,
3937                 struct address_space *mapping, loff_t from)
3938 {
3939         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3940         unsigned length;
3941         unsigned blocksize;
3942         struct inode *inode = mapping->host;
3943
3944         blocksize = inode->i_sb->s_blocksize;
3945         length = blocksize - (offset & (blocksize - 1));
3946
3947         return ext4_block_zero_page_range(handle, mapping, from, length);
3948 }
3949
3950 /*
3951  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3952  * starting from file offset 'from'.  The range to be zero'd must
3953  * be contained with in one block.  If the specified range exceeds
3954  * the end of the block it will be shortened to end of the block
3955  * that cooresponds to 'from'
3956  */
3957 int ext4_block_zero_page_range(handle_t *handle,
3958                 struct address_space *mapping, loff_t from, loff_t length)
3959 {
3960         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3961         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3962         unsigned blocksize, max, pos;
3963         ext4_lblk_t iblock;
3964         struct inode *inode = mapping->host;
3965         struct buffer_head *bh;
3966         struct page *page;
3967         int err = 0;
3968
3969         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3970                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3971         if (!page)
3972                 return -EINVAL;
3973
3974         blocksize = inode->i_sb->s_blocksize;
3975         max = blocksize - (offset & (blocksize - 1));
3976
3977         /*
3978          * correct length if it does not fall between
3979          * 'from' and the end of the block
3980          */
3981         if (length > max || length < 0)
3982                 length = max;
3983
3984         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3985
3986         if (!page_has_buffers(page))
3987                 create_empty_buffers(page, blocksize, 0);
3988
3989         /* Find the buffer that contains "offset" */
3990         bh = page_buffers(page);
3991         pos = blocksize;
3992         while (offset >= pos) {
3993                 bh = bh->b_this_page;
3994                 iblock++;
3995                 pos += blocksize;
3996         }
3997
3998         err = 0;
3999         if (buffer_freed(bh)) {
4000                 BUFFER_TRACE(bh, "freed: skip");
4001                 goto unlock;
4002         }
4003
4004         if (!buffer_mapped(bh)) {
4005                 BUFFER_TRACE(bh, "unmapped");
4006                 ext4_get_block(inode, iblock, bh, 0);
4007                 /* unmapped? It's a hole - nothing to do */
4008                 if (!buffer_mapped(bh)) {
4009                         BUFFER_TRACE(bh, "still unmapped");
4010                         goto unlock;
4011                 }
4012         }
4013
4014         /* Ok, it's mapped. Make sure it's up-to-date */
4015         if (PageUptodate(page))
4016                 set_buffer_uptodate(bh);
4017
4018         if (!buffer_uptodate(bh)) {
4019                 err = -EIO;
4020                 ll_rw_block(READ, 1, &bh);
4021                 wait_on_buffer(bh);
4022                 /* Uhhuh. Read error. Complain and punt. */
4023                 if (!buffer_uptodate(bh))
4024                         goto unlock;
4025         }
4026
4027         if (ext4_should_journal_data(inode)) {
4028                 BUFFER_TRACE(bh, "get write access");
4029                 err = ext4_journal_get_write_access(handle, bh);
4030                 if (err)
4031                         goto unlock;
4032         }
4033
4034         zero_user(page, offset, length);
4035
4036         BUFFER_TRACE(bh, "zeroed end of block");
4037
4038         err = 0;
4039         if (ext4_should_journal_data(inode)) {
4040                 err = ext4_handle_dirty_metadata(handle, inode, bh);
4041         } else {
4042                 if (ext4_should_order_data(inode) && EXT4_I(inode)->jinode)
4043                         err = ext4_jbd2_file_inode(handle, inode);
4044                 mark_buffer_dirty(bh);
4045         }
4046
4047 unlock:
4048         unlock_page(page);
4049         page_cache_release(page);
4050         return err;
4051 }
4052
4053 /*
4054  * Probably it should be a library function... search for first non-zero word
4055  * or memcmp with zero_page, whatever is better for particular architecture.
4056  * Linus?
4057  */
4058 static inline int all_zeroes(__le32 *p, __le32 *q)
4059 {
4060         while (p < q)
4061                 if (*p++)
4062                         return 0;
4063         return 1;
4064 }
4065
4066 /**
4067  *      ext4_find_shared - find the indirect blocks for partial truncation.
4068  *      @inode:   inode in question
4069  *      @depth:   depth of the affected branch
4070  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
4071  *      @chain:   place to store the pointers to partial indirect blocks
4072  *      @top:     place to the (detached) top of branch
4073  *
4074  *      This is a helper function used by ext4_truncate().
4075  *
4076  *      When we do truncate() we may have to clean the ends of several
4077  *      indirect blocks but leave the blocks themselves alive. Block is
4078  *      partially truncated if some data below the new i_size is referred
4079  *      from it (and it is on the path to the first completely truncated
4080  *      data block, indeed).  We have to free the top of that path along
4081  *      with everything to the right of the path. Since no allocation
4082  *      past the truncation point is possible until ext4_truncate()
4083  *      finishes, we may safely do the latter, but top of branch may
4084  *      require special attention - pageout below the truncation point
4085  *      might try to populate it.
4086  *
4087  *      We atomically detach the top of branch from the tree, store the
4088  *      block number of its root in *@top, pointers to buffer_heads of
4089  *      partially truncated blocks - in @chain[].bh and pointers to
4090  *      their last elements that should not be removed - in
4091  *      @chain[].p. Return value is the pointer to last filled element
4092  *      of @chain.
4093  *
4094  *      The work left to caller to do the actual freeing of subtrees:
4095  *              a) free the subtree starting from *@top
4096  *              b) free the subtrees whose roots are stored in
4097  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4098  *              c) free the subtrees growing from the inode past the @chain[0].
4099  *                      (no partially truncated stuff there).  */
4100
4101 static Indirect *ext4_find_shared(struct inode *inode, int depth,
4102                                   ext4_lblk_t offsets[4], Indirect chain[4],
4103                                   __le32 *top)
4104 {
4105         Indirect *partial, *p;
4106         int k, err;
4107
4108         *top = 0;
4109         /* Make k index the deepest non-null offset + 1 */
4110         for (k = depth; k > 1 && !offsets[k-1]; k--)
4111                 ;
4112         partial = ext4_get_branch(inode, k, offsets, chain, &err);
4113         /* Writer: pointers */
4114         if (!partial)
4115                 partial = chain + k-1;
4116         /*
4117          * If the branch acquired continuation since we've looked at it -
4118          * fine, it should all survive and (new) top doesn't belong to us.
4119          */
4120         if (!partial->key && *partial->p)
4121                 /* Writer: end */
4122                 goto no_top;
4123         for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4124                 ;
4125         /*
4126          * OK, we've found the last block that must survive. The rest of our
4127          * branch should be detached before unlocking. However, if that rest
4128          * of branch is all ours and does not grow immediately from the inode
4129          * it's easier to cheat and just decrement partial->p.
4130          */
4131         if (p == chain + k - 1 && p > chain) {
4132                 p->p--;
4133         } else {
4134                 *top = *p->p;
4135                 /* Nope, don't do this in ext4.  Must leave the tree intact */
4136 #if 0
4137                 *p->p = 0;
4138 #endif
4139         }
4140         /* Writer: end */
4141
4142         while (partial > p) {
4143                 brelse(partial->bh);
4144                 partial--;
4145         }
4146 no_top:
4147         return partial;
4148 }
4149
4150 /*
4151  * Zero a number of block pointers in either an inode or an indirect block.
4152  * If we restart the transaction we must again get write access to the
4153  * indirect block for further modification.
4154  *
4155  * We release `count' blocks on disk, but (last - first) may be greater
4156  * than `count' because there can be holes in there.
4157  *
4158  * Return 0 on success, 1 on invalid block range
4159  * and < 0 on fatal error.
4160  */
4161 static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
4162                              struct buffer_head *bh,
4163                              ext4_fsblk_t block_to_free,
4164                              unsigned long count, __le32 *first,
4165                              __le32 *last)
4166 {
4167         __le32 *p;
4168         int     flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
4169         int     err;
4170
4171         if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
4172                 flags |= EXT4_FREE_BLOCKS_METADATA;
4173
4174         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
4175                                    count)) {
4176                 EXT4_ERROR_INODE(inode, "attempt to clear invalid "
4177                                  "blocks %llu len %lu",
4178                                  (unsigned long long) block_to_free, count);
4179                 return 1;
4180         }
4181
4182         if (try_to_extend_transaction(handle, inode)) {
4183                 if (bh) {
4184                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4185                         err = ext4_handle_dirty_metadata(handle, inode, bh);
4186                         if (unlikely(err))
4187                                 goto out_err;
4188                 }
4189                 err = ext4_mark_inode_dirty(handle, inode);
4190                 if (unlikely(err))
4191                         goto out_err;
4192                 err = ext4_truncate_restart_trans(handle, inode,
4193                                                   blocks_for_truncate(inode));
4194                 if (unlikely(err))
4195                         goto out_err;
4196                 if (bh) {
4197                         BUFFER_TRACE(bh, "retaking write access");
4198                         err = ext4_journal_get_write_access(handle, bh);
4199                         if (unlikely(err))
4200                                 goto out_err;
4201                 }
4202         }
4203
4204         for (p = first; p < last; p++)
4205                 *p = 0;
4206
4207         ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags);
4208         return 0;
4209 out_err:
4210         ext4_std_error(inode->i_sb, err);
4211         return err;
4212 }
4213
4214 /**
4215  * ext4_free_data - free a list of data blocks
4216  * @handle:     handle for this transaction
4217  * @inode:      inode we are dealing with
4218  * @this_bh:    indirect buffer_head which contains *@first and *@last
4219  * @first:      array of block numbers
4220  * @last:       points immediately past the end of array
4221  *
4222  * We are freeing all blocks referred from that array (numbers are stored as
4223  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4224  *
4225  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
4226  * blocks are contiguous then releasing them at one time will only affect one
4227  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4228  * actually use a lot of journal space.
4229  *
4230  * @this_bh will be %NULL if @first and @last point into the inode's direct
4231  * block pointers.
4232  */
4233 static void ext4_free_data(handle_t *handle, struct inode *inode,
4234                            struct buffer_head *this_bh,
4235                            __le32 *first, __le32 *last)
4236 {
4237         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
4238         unsigned long count = 0;            /* Number of blocks in the run */
4239         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
4240                                                corresponding to
4241                                                block_to_free */
4242         ext4_fsblk_t nr;                    /* Current block # */
4243         __le32 *p;                          /* Pointer into inode/ind
4244                                                for current block */
4245         int err = 0;
4246
4247         if (this_bh) {                          /* For indirect block */
4248                 BUFFER_TRACE(this_bh, "get_write_access");
4249                 err = ext4_journal_get_write_access(handle, this_bh);
4250                 /* Important: if we can't update the indirect pointers
4251                  * to the blocks, we can't free them. */
4252                 if (err)
4253                         return;
4254         }
4255
4256         for (p = first; p < last; p++) {
4257                 nr = le32_to_cpu(*p);
4258                 if (nr) {
4259                         /* accumulate blocks to free if they're contiguous */
4260                         if (count == 0) {
4261                                 block_to_free = nr;
4262                                 block_to_free_p = p;
4263                                 count = 1;
4264                         } else if (nr == block_to_free + count) {
4265                                 count++;
4266                         } else {
4267                                 err = ext4_clear_blocks(handle, inode, this_bh,
4268                                                         block_to_free, count,
4269                                                         block_to_free_p, p);
4270                                 if (err)
4271                                         break;
4272                                 block_to_free = nr;
4273                                 block_to_free_p = p;
4274                                 count = 1;
4275                         }
4276                 }
4277         }
4278
4279         if (!err && count > 0)
4280                 err = ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4281                                         count, block_to_free_p, p);
4282         if (err < 0)
4283                 /* fatal error */
4284                 return;
4285
4286         if (this_bh) {
4287                 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4288
4289                 /*
4290                  * The buffer head should have an attached journal head at this
4291                  * point. However, if the data is corrupted and an indirect
4292                  * block pointed to itself, it would have been detached when
4293                  * the block was cleared. Check for this instead of OOPSing.
4294                  */
4295                 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4296                         ext4_handle_dirty_metadata(handle, inode, this_bh);
4297                 else
4298                         EXT4_ERROR_INODE(inode,
4299                                          "circular indirect block detected at "
4300                                          "block %llu",
4301                                 (unsigned long long) this_bh->b_blocknr);
4302         }
4303 }
4304
4305 /**
4306  *      ext4_free_branches - free an array of branches
4307  *      @handle: JBD handle for this transaction
4308  *      @inode: inode we are dealing with
4309  *      @parent_bh: the buffer_head which contains *@first and *@last
4310  *      @first: array of block numbers
4311  *      @last:  pointer immediately past the end of array
4312  *      @depth: depth of the branches to free
4313  *
4314  *      We are freeing all blocks referred from these branches (numbers are
4315  *      stored as little-endian 32-bit) and updating @inode->i_blocks
4316  *      appropriately.
4317  */
4318 static void ext4_free_branches(handle_t *handle, struct inode *inode,
4319                                struct buffer_head *parent_bh,
4320                                __le32 *first, __le32 *last, int depth)
4321 {
4322         ext4_fsblk_t nr;
4323         __le32 *p;
4324
4325         if (ext4_handle_is_aborted(handle))
4326                 return;
4327
4328         if (depth--) {
4329                 struct buffer_head *bh;
4330                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4331                 p = last;
4332                 while (--p >= first) {
4333                         nr = le32_to_cpu(*p);
4334                         if (!nr)
4335                                 continue;               /* A hole */
4336
4337                         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
4338                                                    nr, 1)) {
4339                                 EXT4_ERROR_INODE(inode,
4340                                                  "invalid indirect mapped "
4341                                                  "block %lu (level %d)",
4342                                                  (unsigned long) nr, depth);
4343                                 break;
4344                         }
4345
4346                         /* Go read the buffer for the next level down */
4347                         bh = sb_bread(inode->i_sb, nr);
4348
4349                         /*
4350                          * A read failure? Report error and clear slot
4351                          * (should be rare).
4352                          */
4353                         if (!bh) {
4354                                 EXT4_ERROR_INODE_BLOCK(inode, nr,
4355                                                        "Read failure");
4356                                 continue;
4357                         }
4358
4359                         /* This zaps the entire block.  Bottom up. */
4360                         BUFFER_TRACE(bh, "free child branches");
4361                         ext4_free_branches(handle, inode, bh,
4362                                         (__le32 *) bh->b_data,
4363                                         (__le32 *) bh->b_data + addr_per_block,
4364                                         depth);
4365                         brelse(bh);
4366
4367                         /*
4368                          * Everything below this this pointer has been
4369                          * released.  Now let this top-of-subtree go.
4370                          *
4371                          * We want the freeing of this indirect block to be
4372                          * atomic in the journal with the updating of the
4373                          * bitmap block which owns it.  So make some room in
4374                          * the journal.
4375                          *
4376                          * We zero the parent pointer *after* freeing its
4377                          * pointee in the bitmaps, so if extend_transaction()
4378                          * for some reason fails to put the bitmap changes and
4379                          * the release into the same transaction, recovery
4380                          * will merely complain about releasing a free block,
4381                          * rather than leaking blocks.
4382                          */
4383                         if (ext4_handle_is_aborted(handle))
4384                                 return;
4385                         if (try_to_extend_transaction(handle, inode)) {
4386                                 ext4_mark_inode_dirty(handle, inode);
4387                                 ext4_truncate_restart_trans(handle, inode,
4388                                             blocks_for_truncate(inode));
4389                         }
4390
4391                         /*
4392                          * The forget flag here is critical because if
4393                          * we are journaling (and not doing data
4394                          * journaling), we have to make sure a revoke
4395                          * record is written to prevent the journal
4396                          * replay from overwriting the (former)
4397                          * indirect block if it gets reallocated as a
4398                          * data block.  This must happen in the same
4399                          * transaction where the data blocks are
4400                          * actually freed.
4401                          */
4402                         ext4_free_blocks(handle, inode, NULL, nr, 1,
4403                                          EXT4_FREE_BLOCKS_METADATA|
4404                                          EXT4_FREE_BLOCKS_FORGET);
4405
4406                         if (parent_bh) {
4407                                 /*
4408                                  * The block which we have just freed is
4409                                  * pointed to by an indirect block: journal it
4410                                  */
4411                                 BUFFER_TRACE(parent_bh, "get_write_access");
4412                                 if (!ext4_journal_get_write_access(handle,
4413                                                                    parent_bh)){
4414                                         *p = 0;
4415                                         BUFFER_TRACE(parent_bh,
4416                                         "call ext4_handle_dirty_metadata");
4417                                         ext4_handle_dirty_metadata(handle,
4418                                                                    inode,
4419                                                                    parent_bh);
4420                                 }
4421                         }
4422                 }
4423         } else {
4424                 /* We have reached the bottom of the tree. */
4425                 BUFFER_TRACE(parent_bh, "free data blocks");
4426                 ext4_free_data(handle, inode, parent_bh, first, last);
4427         }
4428 }
4429
4430 int ext4_can_truncate(struct inode *inode)
4431 {
4432         if (S_ISREG(inode->i_mode))
4433                 return 1;
4434         if (S_ISDIR(inode->i_mode))
4435                 return 1;
4436         if (S_ISLNK(inode->i_mode))
4437                 return !ext4_inode_is_fast_symlink(inode);
4438         return 0;
4439 }
4440
4441 /*
4442  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
4443  * associated with the given offset and length
4444  *
4445  * @inode:  File inode
4446  * @offset: The offset where the hole will begin
4447  * @len:    The length of the hole
4448  *
4449  * Returns: 0 on sucess or negative on failure
4450  */
4451
4452 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
4453 {
4454         struct inode *inode = file->f_path.dentry->d_inode;
4455         if (!S_ISREG(inode->i_mode))
4456                 return -ENOTSUPP;
4457
4458         if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4459                 /* TODO: Add support for non extent hole punching */
4460                 return -ENOTSUPP;
4461         }
4462
4463         return ext4_ext_punch_hole(file, offset, length);
4464 }
4465
4466 /*
4467  * ext4_truncate()
4468  *
4469  * We block out ext4_get_block() block instantiations across the entire
4470  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4471  * simultaneously on behalf of the same inode.
4472  *
4473  * As we work through the truncate and commmit bits of it to the journal there
4474  * is one core, guiding principle: the file's tree must always be consistent on
4475  * disk.  We must be able to restart the truncate after a crash.
4476  *
4477  * The file's tree may be transiently inconsistent in memory (although it
4478  * probably isn't), but whenever we close off and commit a journal transaction,
4479  * the contents of (the filesystem + the journal) must be consistent and
4480  * restartable.  It's pretty simple, really: bottom up, right to left (although
4481  * left-to-right works OK too).
4482  *
4483  * Note that at recovery time, journal replay occurs *before* the restart of
4484  * truncate against the orphan inode list.
4485  *
4486  * The committed inode has the new, desired i_size (which is the same as
4487  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4488  * that this inode's truncate did not complete and it will again call
4489  * ext4_truncate() to have another go.  So there will be instantiated blocks
4490  * to the right of the truncation point in a crashed ext4 filesystem.  But
4491  * that's fine - as long as they are linked from the inode, the post-crash
4492  * ext4_truncate() run will find them and release them.
4493  */
4494 void ext4_truncate(struct inode *inode)
4495 {
4496         handle_t *handle;
4497         struct ext4_inode_info *ei = EXT4_I(inode);
4498         __le32 *i_data = ei->i_data;
4499         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4500         struct address_space *mapping = inode->i_mapping;
4501         ext4_lblk_t offsets[4];
4502         Indirect chain[4];
4503         Indirect *partial;
4504         __le32 nr = 0;
4505         int n = 0;
4506         ext4_lblk_t last_block, max_block;
4507         unsigned blocksize = inode->i_sb->s_blocksize;
4508
4509         trace_ext4_truncate_enter(inode);
4510
4511         if (!ext4_can_truncate(inode))
4512                 return;
4513
4514         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4515
4516         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4517                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4518
4519         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4520                 ext4_ext_truncate(inode);
4521                 trace_ext4_truncate_exit(inode);
4522                 return;
4523         }
4524
4525         handle = start_transaction(inode);
4526         if (IS_ERR(handle))
4527                 return;         /* AKPM: return what? */
4528
4529         last_block = (inode->i_size + blocksize-1)
4530                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4531         max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
4532                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4533
4534         if (inode->i_size & (blocksize - 1))
4535                 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4536                         goto out_stop;
4537
4538         if (last_block != max_block) {
4539                 n = ext4_block_to_path(inode, last_block, offsets, NULL);
4540                 if (n == 0)
4541                         goto out_stop;  /* error */
4542         }
4543
4544         /*
4545          * OK.  This truncate is going to happen.  We add the inode to the
4546          * orphan list, so that if this truncate spans multiple transactions,
4547          * and we crash, we will resume the truncate when the filesystem
4548          * recovers.  It also marks the inode dirty, to catch the new size.
4549          *
4550          * Implication: the file must always be in a sane, consistent
4551          * truncatable state while each transaction commits.
4552          */
4553         if (ext4_orphan_add(handle, inode))
4554                 goto out_stop;
4555
4556         /*
4557          * From here we block out all ext4_get_block() callers who want to
4558          * modify the block allocation tree.
4559          */
4560         down_write(&ei->i_data_sem);
4561
4562         ext4_discard_preallocations(inode);
4563
4564         /*
4565          * The orphan list entry will now protect us from any crash which
4566          * occurs before the truncate completes, so it is now safe to propagate
4567          * the new, shorter inode size (held for now in i_size) into the
4568          * on-disk inode. We do this via i_disksize, which is the value which
4569          * ext4 *really* writes onto the disk inode.
4570          */
4571         ei->i_disksize = inode->i_size;
4572
4573         if (last_block == max_block) {
4574                 /*
4575                  * It is unnecessary to free any data blocks if last_block is
4576                  * equal to the indirect block limit.
4577                  */
4578                 goto out_unlock;
4579         } else if (n == 1) {            /* direct blocks */
4580                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4581                                i_data + EXT4_NDIR_BLOCKS);
4582                 goto do_indirects;
4583         }
4584
4585         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4586         /* Kill the top of shared branch (not detached) */
4587         if (nr) {
4588                 if (partial == chain) {
4589                         /* Shared branch grows from the inode */
4590                         ext4_free_branches(handle, inode, NULL,
4591                                            &nr, &nr+1, (chain+n-1) - partial);
4592                         *partial->p = 0;
4593                         /*
4594                          * We mark the inode dirty prior to restart,
4595                          * and prior to stop.  No need for it here.
4596                          */
4597                 } else {
4598                         /* Shared branch grows from an indirect block */
4599                         BUFFER_TRACE(partial->bh, "get_write_access");
4600                         ext4_free_branches(handle, inode, partial->bh,
4601                                         partial->p,
4602                                         partial->p+1, (chain+n-1) - partial);
4603                 }
4604         }
4605         /* Clear the ends of indirect blocks on the shared branch */
4606         while (partial > chain) {
4607                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4608                                    (__le32*)partial->bh->b_data+addr_per_block,
4609                                    (chain+n-1) - partial);
4610                 BUFFER_TRACE(partial->bh, "call brelse");
4611                 brelse(partial->bh);
4612                 partial--;
4613         }
4614 do_indirects:
4615         /* Kill the remaining (whole) subtrees */
4616         switch (offsets[0]) {
4617         default:
4618                 nr = i_data[EXT4_IND_BLOCK];
4619                 if (nr) {
4620                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4621                         i_data[EXT4_IND_BLOCK] = 0;
4622                 }
4623         case EXT4_IND_BLOCK:
4624                 nr = i_data[EXT4_DIND_BLOCK];
4625                 if (nr) {
4626                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4627                         i_data[EXT4_DIND_BLOCK] = 0;
4628                 }
4629         case EXT4_DIND_BLOCK:
4630                 nr = i_data[EXT4_TIND_BLOCK];
4631                 if (nr) {
4632                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4633                         i_data[EXT4_TIND_BLOCK] = 0;
4634                 }
4635         case EXT4_TIND_BLOCK:
4636                 ;
4637         }
4638
4639 out_unlock:
4640         up_write(&ei->i_data_sem);
4641         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4642         ext4_mark_inode_dirty(handle, inode);
4643
4644         /*
4645          * In a multi-transaction truncate, we only make the final transaction
4646          * synchronous
4647          */
4648         if (IS_SYNC(inode))
4649                 ext4_handle_sync(handle);
4650 out_stop:
4651         /*
4652          * If this was a simple ftruncate(), and the file will remain alive
4653          * then we need to clear up the orphan record which we created above.
4654          * However, if this was a real unlink then we were called by
4655          * ext4_delete_inode(), and we allow that function to clean up the
4656          * orphan info for us.
4657          */
4658         if (inode->i_nlink)
4659                 ext4_orphan_del(handle, inode);
4660
4661         ext4_journal_stop(handle);
4662         trace_ext4_truncate_exit(inode);
4663 }
4664
4665 /*
4666  * ext4_get_inode_loc returns with an extra refcount against the inode's
4667  * underlying buffer_head on success. If 'in_mem' is true, we have all
4668  * data in memory that is needed to recreate the on-disk version of this
4669  * inode.
4670  */
4671 static int __ext4_get_inode_loc(struct inode *inode,
4672                                 struct ext4_iloc *iloc, int in_mem)
4673 {
4674         struct ext4_group_desc  *gdp;
4675         struct buffer_head      *bh;
4676         struct super_block      *sb = inode->i_sb;
4677         ext4_fsblk_t            block;
4678         int                     inodes_per_block, inode_offset;
4679
4680         iloc->bh = NULL;
4681         if (!ext4_valid_inum(sb, inode->i_ino))
4682                 return -EIO;
4683
4684         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4685         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4686         if (!gdp)
4687                 return -EIO;
4688
4689         /*
4690          * Figure out the offset within the block group inode table
4691          */
4692         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4693         inode_offset = ((inode->i_ino - 1) %
4694                         EXT4_INODES_PER_GROUP(sb));
4695         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4696         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4697
4698         bh = sb_getblk(sb, block);
4699         if (!bh) {
4700                 EXT4_ERROR_INODE_BLOCK(inode, block,
4701                                        "unable to read itable block");
4702                 return -EIO;
4703         }
4704         if (!buffer_uptodate(bh)) {
4705                 lock_buffer(bh);
4706
4707                 /*
4708                  * If the buffer has the write error flag, we have failed
4709                  * to write out another inode in the same block.  In this
4710                  * case, we don't have to read the block because we may
4711                  * read the old inode data successfully.
4712                  */
4713                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4714                         set_buffer_uptodate(bh);
4715
4716                 if (buffer_uptodate(bh)) {
4717                         /* someone brought it uptodate while we waited */
4718                         unlock_buffer(bh);
4719                         goto has_buffer;
4720                 }
4721
4722                 /*
4723                  * If we have all information of the inode in memory and this
4724                  * is the only valid inode in the block, we need not read the
4725                  * block.
4726                  */
4727                 if (in_mem) {
4728                         struct buffer_head *bitmap_bh;
4729                         int i, start;
4730
4731                         start = inode_offset & ~(inodes_per_block - 1);
4732
4733                         /* Is the inode bitmap in cache? */
4734                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4735                         if (!bitmap_bh)
4736                                 goto make_io;
4737
4738                         /*
4739                          * If the inode bitmap isn't in cache then the
4740                          * optimisation may end up performing two reads instead
4741                          * of one, so skip it.
4742                          */
4743                         if (!buffer_uptodate(bitmap_bh)) {
4744                                 brelse(bitmap_bh);
4745                                 goto make_io;
4746                         }
4747                         for (i = start; i < start + inodes_per_block; i++) {
4748                                 if (i == inode_offset)
4749                                         continue;
4750                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4751                                         break;
4752                         }
4753                         brelse(bitmap_bh);
4754                         if (i == start + inodes_per_block) {
4755                                 /* all other inodes are free, so skip I/O */
4756                                 memset(bh->b_data, 0, bh->b_size);
4757                                 set_buffer_uptodate(bh);
4758                                 unlock_buffer(bh);
4759                                 goto has_buffer;
4760                         }
4761                 }
4762
4763 make_io:
4764                 /*
4765                  * If we need to do any I/O, try to pre-readahead extra
4766                  * blocks from the inode table.
4767                  */
4768                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4769                         ext4_fsblk_t b, end, table;
4770                         unsigned num;
4771
4772                         table = ext4_inode_table(sb, gdp);
4773                         /* s_inode_readahead_blks is always a power of 2 */
4774                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4775                         if (table > b)
4776                                 b = table;
4777                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4778                         num = EXT4_INODES_PER_GROUP(sb);
4779                         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4780                                        EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4781                                 num -= ext4_itable_unused_count(sb, gdp);
4782                         table += num / inodes_per_block;
4783                         if (end > table)
4784                                 end = table;
4785                         while (b <= end)
4786                                 sb_breadahead(sb, b++);
4787                 }
4788
4789                 /*
4790                  * There are other valid inodes in the buffer, this inode
4791                  * has in-inode xattrs, or we don't have this inode in memory.
4792                  * Read the block from disk.
4793                  */
4794                 trace_ext4_load_inode(inode);
4795                 get_bh(bh);
4796                 bh->b_end_io = end_buffer_read_sync;
4797                 submit_bh(READ_META, bh);
4798                 wait_on_buffer(bh);
4799                 if (!buffer_uptodate(bh)) {
4800                         EXT4_ERROR_INODE_BLOCK(inode, block,
4801                                                "unable to read itable block");
4802                         brelse(bh);
4803                         return -EIO;
4804                 }
4805         }
4806 has_buffer:
4807         iloc->bh = bh;
4808         return 0;
4809 }
4810
4811 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4812 {
4813         /* We have all inode data except xattrs in memory here. */
4814         return __ext4_get_inode_loc(inode, iloc,
4815                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4816 }
4817
4818 void ext4_set_inode_flags(struct inode *inode)
4819 {
4820         unsigned int flags = EXT4_I(inode)->i_flags;
4821
4822         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4823         if (flags & EXT4_SYNC_FL)
4824                 inode->i_flags |= S_SYNC;
4825         if (flags & EXT4_APPEND_FL)
4826                 inode->i_flags |= S_APPEND;
4827         if (flags & EXT4_IMMUTABLE_FL)
4828                 inode->i_flags |= S_IMMUTABLE;
4829         if (flags & EXT4_NOATIME_FL)
4830                 inode->i_flags |= S_NOATIME;
4831         if (flags & EXT4_DIRSYNC_FL)
4832                 inode->i_flags |= S_DIRSYNC;
4833 }
4834
4835 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4836 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4837 {
4838         unsigned int vfs_fl;
4839         unsigned long old_fl, new_fl;
4840
4841         do {
4842                 vfs_fl = ei->vfs_inode.i_flags;
4843                 old_fl = ei->i_flags;
4844                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4845                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4846                                 EXT4_DIRSYNC_FL);
4847                 if (vfs_fl & S_SYNC)
4848                         new_fl |= EXT4_SYNC_FL;
4849                 if (vfs_fl & S_APPEND)
4850                         new_fl |= EXT4_APPEND_FL;
4851                 if (vfs_fl & S_IMMUTABLE)
4852                         new_fl |= EXT4_IMMUTABLE_FL;
4853                 if (vfs_fl & S_NOATIME)
4854                         new_fl |= EXT4_NOATIME_FL;
4855                 if (vfs_fl & S_DIRSYNC)
4856                         new_fl |= EXT4_DIRSYNC_FL;
4857         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4858 }
4859
4860 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4861                                   struct ext4_inode_info *ei)
4862 {
4863         blkcnt_t i_blocks ;
4864         struct inode *inode = &(ei->vfs_inode);
4865         struct super_block *sb = inode->i_sb;
4866
4867         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4868                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4869                 /* we are using combined 48 bit field */
4870                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4871                                         le32_to_cpu(raw_inode->i_blocks_lo);
4872                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4873                         /* i_blocks represent file system block size */
4874                         return i_blocks  << (inode->i_blkbits - 9);
4875                 } else {
4876                         return i_blocks;
4877                 }
4878         } else {
4879                 return le32_to_cpu(raw_inode->i_blocks_lo);
4880         }
4881 }
4882
4883 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4884 {
4885         struct ext4_iloc iloc;
4886         struct ext4_inode *raw_inode;
4887         struct ext4_inode_info *ei;
4888         struct inode *inode;
4889         journal_t *journal = EXT4_SB(sb)->s_journal;
4890         long ret;
4891         int block;
4892
4893         inode = iget_locked(sb, ino);
4894         if (!inode)
4895                 return ERR_PTR(-ENOMEM);
4896         if (!(inode->i_state & I_NEW))
4897                 return inode;
4898
4899         ei = EXT4_I(inode);
4900         iloc.bh = NULL;
4901
4902         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4903         if (ret < 0)
4904                 goto bad_inode;
4905         raw_inode = ext4_raw_inode(&iloc);
4906         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4907         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4908         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4909         if (!(test_opt(inode->i_sb, NO_UID32))) {
4910                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4911                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4912         }
4913         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4914
4915         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4916         ei->i_dir_start_lookup = 0;
4917         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4918         /* We now have enough fields to check if the inode was active or not.
4919          * This is needed because nfsd might try to access dead inodes
4920          * the test is that same one that e2fsck uses
4921          * NeilBrown 1999oct15
4922          */
4923         if (inode->i_nlink == 0) {
4924                 if (inode->i_mode == 0 ||
4925                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4926                         /* this inode is deleted */
4927                         ret = -ESTALE;
4928                         goto bad_inode;
4929                 }
4930                 /* The only unlinked inodes we let through here have
4931                  * valid i_mode and are being read by the orphan
4932                  * recovery code: that's fine, we're about to complete
4933                  * the process of deleting those. */
4934         }
4935         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4936         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4937         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4938         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4939                 ei->i_file_acl |=
4940                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4941         inode->i_size = ext4_isize(raw_inode);
4942         ei->i_disksize = inode->i_size;
4943 #ifdef CONFIG_QUOTA
4944         ei->i_reserved_quota = 0;
4945 #endif
4946         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4947         ei->i_block_group = iloc.block_group;
4948         ei->i_last_alloc_group = ~0;
4949         /*
4950          * NOTE! The in-memory inode i_data array is in little-endian order
4951          * even on big-endian machines: we do NOT byteswap the block numbers!
4952          */
4953         for (block = 0; block < EXT4_N_BLOCKS; block++)
4954                 ei->i_data[block] = raw_inode->i_block[block];
4955         INIT_LIST_HEAD(&ei->i_orphan);
4956
4957         /*
4958          * Set transaction id's of transactions that have to be committed
4959          * to finish f[data]sync. We set them to currently running transaction
4960          * as we cannot be sure that the inode or some of its metadata isn't
4961          * part of the transaction - the inode could have been reclaimed and
4962          * now it is reread from disk.
4963          */
4964         if (journal) {
4965                 transaction_t *transaction;
4966                 tid_t tid;
4967
4968                 read_lock(&journal->j_state_lock);
4969                 if (journal->j_running_transaction)
4970                         transaction = journal->j_running_transaction;
4971                 else
4972                         transaction = journal->j_committing_transaction;
4973                 if (transaction)
4974                         tid = transaction->t_tid;
4975                 else
4976                         tid = journal->j_commit_sequence;
4977                 read_unlock(&journal->j_state_lock);
4978                 ei->i_sync_tid = tid;
4979                 ei->i_datasync_tid = tid;
4980         }
4981
4982         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4983                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4984                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4985                     EXT4_INODE_SIZE(inode->i_sb)) {
4986                         ret = -EIO;
4987                         goto bad_inode;
4988                 }
4989                 if (ei->i_extra_isize == 0) {
4990                         /* The extra space is currently unused. Use it. */
4991                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4992                                             EXT4_GOOD_OLD_INODE_SIZE;
4993                 } else {
4994                         __le32 *magic = (void *)raw_inode +
4995                                         EXT4_GOOD_OLD_INODE_SIZE +
4996                                         ei->i_extra_isize;
4997                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4998                                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4999                 }
5000         } else
5001                 ei->i_extra_isize = 0;
5002
5003         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5004         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5005         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5006         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5007
5008         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
5009         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5010                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5011                         inode->i_version |=
5012                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5013         }
5014
5015         ret = 0;
5016         if (ei->i_file_acl &&
5017             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
5018                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
5019                                  ei->i_file_acl);
5020                 ret = -EIO;
5021                 goto bad_inode;
5022         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
5023                 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5024                     (S_ISLNK(inode->i_mode) &&
5025                      !ext4_inode_is_fast_symlink(inode)))
5026                         /* Validate extent which is part of inode */
5027                         ret = ext4_ext_check_inode(inode);
5028         } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5029                    (S_ISLNK(inode->i_mode) &&
5030                     !ext4_inode_is_fast_symlink(inode))) {
5031                 /* Validate block references which are part of inode */
5032                 ret = ext4_check_inode_blockref(inode);
5033         }
5034         if (ret)
5035                 goto bad_inode;
5036
5037         if (S_ISREG(inode->i_mode)) {
5038                 inode->i_op = &ext4_file_inode_operations;
5039                 inode->i_fop = &ext4_file_operations;
5040                 ext4_set_aops(inode);
5041         } else if (S_ISDIR(inode->i_mode)) {
5042                 inode->i_op = &ext4_dir_inode_operations;
5043                 inode->i_fop = &ext4_dir_operations;
5044         } else if (S_ISLNK(inode->i_mode)) {
5045                 if (ext4_inode_is_fast_symlink(inode)) {
5046                         inode->i_op = &ext4_fast_symlink_inode_operations;
5047                         nd_terminate_link(ei->i_data, inode->i_size,
5048                                 sizeof(ei->i_data) - 1);
5049                 } else {
5050                         inode->i_op = &ext4_symlink_inode_operations;
5051                         ext4_set_aops(inode);
5052                 }
5053         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5054               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5055                 inode->i_op = &ext4_special_inode_operations;
5056                 if (raw_inode->i_block[0])
5057                         init_special_inode(inode, inode->i_mode,
5058                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5059                 else
5060                         init_special_inode(inode, inode->i_mode,
5061                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5062         } else {
5063                 ret = -EIO;
5064                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
5065                 goto bad_inode;
5066         }
5067         brelse(iloc.bh);
5068         ext4_set_inode_flags(inode);
5069         unlock_new_inode(inode);
5070         return inode;
5071
5072 bad_inode:
5073         brelse(iloc.bh);
5074         iget_failed(inode);
5075         return ERR_PTR(ret);
5076 }
5077
5078 static int ext4_inode_blocks_set(handle_t *handle,
5079                                 struct ext4_inode *raw_inode,
5080                                 struct ext4_inode_info *ei)
5081 {
5082         struct inode *inode = &(ei->vfs_inode);
5083         u64 i_blocks = inode->i_blocks;
5084         struct super_block *sb = inode->i_sb;
5085
5086         if (i_blocks <= ~0U) {
5087                 /*
5088                  * i_blocks can be represnted in a 32 bit variable
5089                  * as multiple of 512 bytes
5090                  */
5091                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5092                 raw_inode->i_blocks_high = 0;
5093                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5094                 return 0;
5095         }
5096         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
5097                 return -EFBIG;
5098
5099         if (i_blocks <= 0xffffffffffffULL) {
5100                 /*
5101                  * i_blocks can be represented in a 48 bit variable
5102                  * as multiple of 512 bytes
5103                  */
5104                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5105                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5106                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5107         } else {
5108                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5109                 /* i_block is stored in file system block size */
5110                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5111                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5112                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5113         }
5114         return 0;
5115 }
5116
5117 /*
5118  * Post the struct inode info into an on-disk inode location in the
5119  * buffer-cache.  This gobbles the caller's reference to the
5120  * buffer_head in the inode location struct.
5121  *
5122  * The caller must have write access to iloc->bh.
5123  */
5124 static int ext4_do_update_inode(handle_t *handle,
5125                                 struct inode *inode,
5126                                 struct ext4_iloc *iloc)
5127 {
5128         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5129         struct ext4_inode_info *ei = EXT4_I(inode);
5130         struct buffer_head *bh = iloc->bh;
5131         int err = 0, rc, block;
5132
5133         /* For fields not not tracking in the in-memory inode,
5134          * initialise them to zero for new inodes. */
5135         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5136                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5137
5138         ext4_get_inode_flags(ei);
5139         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5140         if (!(test_opt(inode->i_sb, NO_UID32))) {
5141                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5142                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5143 /*
5144  * Fix up interoperability with old kernels. Otherwise, old inodes get
5145  * re-used with the upper 16 bits of the uid/gid intact
5146  */
5147                 if (!ei->i_dtime) {
5148                         raw_inode->i_uid_high =
5149                                 cpu_to_le16(high_16_bits(inode->i_uid));
5150                         raw_inode->i_gid_high =
5151                                 cpu_to_le16(high_16_bits(inode->i_gid));
5152                 } else {
5153                         raw_inode->i_uid_high = 0;
5154                         raw_inode->i_gid_high = 0;
5155                 }
5156         } else {
5157                 raw_inode->i_uid_low =
5158                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
5159                 raw_inode->i_gid_low =
5160                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
5161                 raw_inode->i_uid_high = 0;
5162                 raw_inode->i_gid_high = 0;
5163         }
5164         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5165
5166         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5167         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5168         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5169         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5170
5171         if (ext4_inode_blocks_set(handle, raw_inode, ei))
5172                 goto out_brelse;
5173         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5174         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5175         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5176             cpu_to_le32(EXT4_OS_HURD))
5177                 raw_inode->i_file_acl_high =
5178                         cpu_to_le16(ei->i_file_acl >> 32);
5179         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5180         ext4_isize_set(raw_inode, ei->i_disksize);
5181         if (ei->i_disksize > 0x7fffffffULL) {
5182                 struct super_block *sb = inode->i_sb;
5183                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5184                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5185                                 EXT4_SB(sb)->s_es->s_rev_level ==
5186                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5187                         /* If this is the first large file
5188                          * created, add a flag to the superblock.
5189                          */
5190                         err = ext4_journal_get_write_access(handle,
5191                                         EXT4_SB(sb)->s_sbh);
5192                         if (err)
5193                                 goto out_brelse;
5194                         ext4_update_dynamic_rev(sb);
5195                         EXT4_SET_RO_COMPAT_FEATURE(sb,
5196                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5197                         sb->s_dirt = 1;
5198                         ext4_handle_sync(handle);
5199                         err = ext4_handle_dirty_metadata(handle, NULL,
5200                                         EXT4_SB(sb)->s_sbh);
5201                 }
5202         }
5203         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5204         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5205                 if (old_valid_dev(inode->i_rdev)) {
5206                         raw_inode->i_block[0] =
5207                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
5208                         raw_inode->i_block[1] = 0;
5209                 } else {
5210                         raw_inode->i_block[0] = 0;
5211                         raw_inode->i_block[1] =
5212                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
5213                         raw_inode->i_block[2] = 0;
5214                 }
5215         } else
5216                 for (block = 0; block < EXT4_N_BLOCKS; block++)
5217                         raw_inode->i_block[block] = ei->i_data[block];
5218
5219         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5220         if (ei->i_extra_isize) {
5221                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5222                         raw_inode->i_version_hi =
5223                         cpu_to_le32(inode->i_version >> 32);
5224                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5225         }
5226
5227         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5228         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5229         if (!err)
5230                 err = rc;
5231         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5232
5233         ext4_update_inode_fsync_trans(handle, inode, 0);
5234 out_brelse:
5235         brelse(bh);
5236         ext4_std_error(inode->i_sb, err);
5237         return err;
5238 }
5239
5240 /*
5241  * ext4_write_inode()
5242  *
5243  * We are called from a few places:
5244  *
5245  * - Within generic_file_write() for O_SYNC files.
5246  *   Here, there will be no transaction running. We wait for any running
5247  *   trasnaction to commit.
5248  *
5249  * - Within sys_sync(), kupdate and such.
5250  *   We wait on commit, if tol to.
5251  *
5252  * - Within prune_icache() (PF_MEMALLOC == true)
5253  *   Here we simply return.  We can't afford to block kswapd on the
5254  *   journal commit.
5255  *
5256  * In all cases it is actually safe for us to return without doing anything,
5257  * because the inode has been copied into a raw inode buffer in
5258  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
5259  * knfsd.
5260  *
5261  * Note that we are absolutely dependent upon all inode dirtiers doing the
5262  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5263  * which we are interested.
5264  *
5265  * It would be a bug for them to not do this.  The code:
5266  *
5267  *      mark_inode_dirty(inode)
5268  *      stuff();
5269  *      inode->i_size = expr;
5270  *
5271  * is in error because a kswapd-driven write_inode() could occur while
5272  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
5273  * will no longer be on the superblock's dirty inode list.
5274  */
5275 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5276 {
5277         int err;
5278
5279         if (current->flags & PF_MEMALLOC)
5280                 return 0;
5281
5282         if (EXT4_SB(inode->i_sb)->s_journal) {
5283                 if (ext4_journal_current_handle()) {
5284                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5285                         dump_stack();
5286                         return -EIO;
5287                 }
5288
5289                 if (wbc->sync_mode != WB_SYNC_ALL)
5290                         return 0;
5291
5292                 err = ext4_force_commit(inode->i_sb);
5293         } else {
5294                 struct ext4_iloc iloc;
5295
5296                 err = __ext4_get_inode_loc(inode, &iloc, 0);
5297                 if (err)
5298                         return err;
5299                 if (wbc->sync_mode == WB_SYNC_ALL)
5300                         sync_dirty_buffer(iloc.bh);
5301                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5302                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5303                                          "IO error syncing inode");
5304                         err = -EIO;
5305                 }
5306                 brelse(iloc.bh);
5307         }
5308         return err;
5309 }
5310
5311 /*
5312  * ext4_setattr()
5313  *
5314  * Called from notify_change.
5315  *
5316  * We want to trap VFS attempts to truncate the file as soon as
5317  * possible.  In particular, we want to make sure that when the VFS
5318  * shrinks i_size, we put the inode on the orphan list and modify
5319  * i_disksize immediately, so that during the subsequent flushing of
5320  * dirty pages and freeing of disk blocks, we can guarantee that any
5321  * commit will leave the blocks being flushed in an unused state on
5322  * disk.  (On recovery, the inode will get truncated and the blocks will
5323  * be freed, so we have a strong guarantee that no future commit will
5324  * leave these blocks visible to the user.)
5325  *
5326  * Another thing we have to assure is that if we are in ordered mode
5327  * and inode is still attached to the committing transaction, we must
5328  * we start writeout of all the dirty pages which are being truncated.
5329  * This way we are sure that all the data written in the previous
5330  * transaction are already on disk (truncate waits for pages under
5331  * writeback).
5332  *
5333  * Called with inode->i_mutex down.
5334  */
5335 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5336 {
5337         struct inode *inode = dentry->d_inode;
5338         int error, rc = 0;
5339         int orphan = 0;
5340         const unsigned int ia_valid = attr->ia_valid;
5341
5342         error = inode_change_ok(inode, attr);
5343         if (error)
5344                 return error;
5345
5346         if (is_quota_modification(inode, attr))
5347                 dquot_initialize(inode);
5348         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5349                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5350                 handle_t *handle;
5351
5352                 /* (user+group)*(old+new) structure, inode write (sb,
5353                  * inode block, ? - but truncate inode update has it) */
5354                 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5355                                         EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
5356                 if (IS_ERR(handle)) {
5357                         error = PTR_ERR(handle);
5358                         goto err_out;
5359                 }
5360                 error = dquot_transfer(inode, attr);
5361                 if (error) {
5362                         ext4_journal_stop(handle);
5363                         return error;
5364                 }
5365                 /* Update corresponding info in inode so that everything is in
5366                  * one transaction */
5367                 if (attr->ia_valid & ATTR_UID)
5368                         inode->i_uid = attr->ia_uid;
5369                 if (attr->ia_valid & ATTR_GID)
5370                         inode->i_gid = attr->ia_gid;
5371                 error = ext4_mark_inode_dirty(handle, inode);
5372                 ext4_journal_stop(handle);
5373         }
5374
5375         if (attr->ia_valid & ATTR_SIZE) {
5376                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5377                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5378
5379                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
5380                                 return -EFBIG;
5381                 }
5382         }
5383
5384         if (S_ISREG(inode->i_mode) &&
5385             attr->ia_valid & ATTR_SIZE &&
5386             (attr->ia_size < inode->i_size)) {
5387                 handle_t *handle;
5388
5389                 handle = ext4_journal_start(inode, 3);
5390                 if (IS_ERR(handle)) {
5391                         error = PTR_ERR(handle);
5392                         goto err_out;
5393                 }
5394                 if (ext4_handle_valid(handle)) {
5395                         error = ext4_orphan_add(handle, inode);
5396                         orphan = 1;
5397                 }
5398                 EXT4_I(inode)->i_disksize = attr->ia_size;
5399                 rc = ext4_mark_inode_dirty(handle, inode);
5400                 if (!error)
5401                         error = rc;
5402                 ext4_journal_stop(handle);
5403
5404                 if (ext4_should_order_data(inode)) {
5405                         error = ext4_begin_ordered_truncate(inode,
5406                                                             attr->ia_size);
5407                         if (error) {
5408                                 /* Do as much error cleanup as possible */
5409                                 handle = ext4_journal_start(inode, 3);
5410                                 if (IS_ERR(handle)) {
5411                                         ext4_orphan_del(NULL, inode);
5412                                         goto err_out;
5413                                 }
5414                                 ext4_orphan_del(handle, inode);
5415                                 orphan = 0;
5416                                 ext4_journal_stop(handle);
5417                                 goto err_out;
5418                         }
5419                 }
5420         }
5421
5422         if (attr->ia_valid & ATTR_SIZE) {
5423                 if (attr->ia_size != i_size_read(inode)) {
5424                         truncate_setsize(inode, attr->ia_size);
5425                         ext4_truncate(inode);
5426                 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
5427                         ext4_truncate(inode);
5428         }
5429
5430         if (!rc) {
5431                 setattr_copy(inode, attr);
5432                 mark_inode_dirty(inode);
5433         }
5434
5435         /*
5436          * If the call to ext4_truncate failed to get a transaction handle at
5437          * all, we need to clean up the in-core orphan list manually.
5438          */
5439         if (orphan && inode->i_nlink)
5440                 ext4_orphan_del(NULL, inode);
5441
5442         if (!rc && (ia_valid & ATTR_MODE))
5443                 rc = ext4_acl_chmod(inode);
5444
5445 err_out:
5446         ext4_std_error(inode->i_sb, error);
5447         if (!error)
5448                 error = rc;
5449         return error;
5450 }
5451
5452 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5453                  struct kstat *stat)
5454 {
5455         struct inode *inode;
5456         unsigned long delalloc_blocks;
5457
5458         inode = dentry->d_inode;
5459         generic_fillattr(inode, stat);
5460
5461         /*
5462          * We can't update i_blocks if the block allocation is delayed
5463          * otherwise in the case of system crash before the real block
5464          * allocation is done, we will have i_blocks inconsistent with
5465          * on-disk file blocks.
5466          * We always keep i_blocks updated together with real
5467          * allocation. But to not confuse with user, stat
5468          * will return the blocks that include the delayed allocation
5469          * blocks for this file.
5470          */
5471         delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5472
5473         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5474         return 0;
5475 }
5476
5477 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5478                                       int chunk)
5479 {
5480         int indirects;
5481
5482         /* if nrblocks are contiguous */
5483         if (chunk) {
5484                 /*
5485                  * With N contiguous data blocks, we need at most
5486                  * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks,
5487                  * 2 dindirect blocks, and 1 tindirect block
5488                  */
5489                 return DIV_ROUND_UP(nrblocks,
5490                                     EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4;
5491         }
5492         /*
5493          * if nrblocks are not contiguous, worse case, each block touch
5494          * a indirect block, and each indirect block touch a double indirect
5495          * block, plus a triple indirect block
5496          */
5497         indirects = nrblocks * 2 + 1;
5498         return indirects;
5499 }
5500
5501 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5502 {
5503         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5504                 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5505         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5506 }
5507
5508 /*
5509  * Account for index blocks, block groups bitmaps and block group
5510  * descriptor blocks if modify datablocks and index blocks
5511  * worse case, the indexs blocks spread over different block groups
5512  *
5513  * If datablocks are discontiguous, they are possible to spread over
5514  * different block groups too. If they are contiuguous, with flexbg,
5515  * they could still across block group boundary.
5516  *
5517  * Also account for superblock, inode, quota and xattr blocks
5518  */
5519 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5520 {
5521         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5522         int gdpblocks;
5523         int idxblocks;
5524         int ret = 0;
5525
5526         /*
5527          * How many index blocks need to touch to modify nrblocks?
5528          * The "Chunk" flag indicating whether the nrblocks is
5529          * physically contiguous on disk
5530          *
5531          * For Direct IO and fallocate, they calls get_block to allocate
5532          * one single extent at a time, so they could set the "Chunk" flag
5533          */
5534         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5535
5536         ret = idxblocks;
5537
5538         /*
5539          * Now let's see how many group bitmaps and group descriptors need
5540          * to account
5541          */
5542         groups = idxblocks;
5543         if (chunk)
5544                 groups += 1;
5545         else
5546                 groups += nrblocks;
5547
5548         gdpblocks = groups;
5549         if (groups > ngroups)
5550                 groups = ngroups;
5551         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5552                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5553
5554         /* bitmaps and block group descriptor blocks */
5555         ret += groups + gdpblocks;
5556
5557         /* Blocks for super block, inode, quota and xattr blocks */
5558         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5559
5560         return ret;
5561 }
5562
5563 /*
5564  * Calculate the total number of credits to reserve to fit
5565  * the modification of a single pages into a single transaction,
5566  * which may include multiple chunks of block allocations.
5567  *
5568  * This could be called via ext4_write_begin()
5569  *
5570  * We need to consider the worse case, when
5571  * one new block per extent.
5572  */
5573 int ext4_writepage_trans_blocks(struct inode *inode)
5574 {
5575         int bpp = ext4_journal_blocks_per_page(inode);
5576         int ret;
5577
5578         ret = ext4_meta_trans_blocks(inode, bpp, 0);
5579
5580         /* Account for data blocks for journalled mode */
5581         if (ext4_should_journal_data(inode))
5582                 ret += bpp;
5583         return ret;
5584 }
5585
5586 /*
5587  * Calculate the journal credits for a chunk of data modification.
5588  *
5589  * This is called from DIO, fallocate or whoever calling
5590  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5591  *
5592  * journal buffers for data blocks are not included here, as DIO
5593  * and fallocate do no need to journal data buffers.
5594  */
5595 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5596 {
5597         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5598 }
5599
5600 /*
5601  * The caller must have previously called ext4_reserve_inode_write().
5602  * Give this, we know that the caller already has write access to iloc->bh.
5603  */
5604 int ext4_mark_iloc_dirty(handle_t *handle,
5605                          struct inode *inode, struct ext4_iloc *iloc)
5606 {
5607         int err = 0;
5608
5609         if (test_opt(inode->i_sb, I_VERSION))
5610                 inode_inc_iversion(inode);
5611
5612         /* the do_update_inode consumes one bh->b_count */
5613         get_bh(iloc->bh);
5614
5615         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5616         err = ext4_do_update_inode(handle, inode, iloc);
5617         put_bh(iloc->bh);
5618         return err;
5619 }
5620
5621 /*
5622  * On success, We end up with an outstanding reference count against
5623  * iloc->bh.  This _must_ be cleaned up later.
5624  */
5625
5626 int
5627 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5628                          struct ext4_iloc *iloc)
5629 {
5630         int err;
5631
5632         err = ext4_get_inode_loc(inode, iloc);
5633         if (!err) {
5634                 BUFFER_TRACE(iloc->bh, "get_write_access");
5635                 err = ext4_journal_get_write_access(handle, iloc->bh);
5636                 if (err) {
5637                         brelse(iloc->bh);
5638                         iloc->bh = NULL;
5639                 }
5640         }
5641         ext4_std_error(inode->i_sb, err);
5642         return err;
5643 }
5644
5645 /*
5646  * Expand an inode by new_extra_isize bytes.
5647  * Returns 0 on success or negative error number on failure.
5648  */
5649 static int ext4_expand_extra_isize(struct inode *inode,
5650                                    unsigned int new_extra_isize,
5651                                    struct ext4_iloc iloc,
5652                                    handle_t *handle)
5653 {
5654         struct ext4_inode *raw_inode;
5655         struct ext4_xattr_ibody_header *header;
5656
5657         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5658                 return 0;
5659
5660         raw_inode = ext4_raw_inode(&iloc);
5661
5662         header = IHDR(inode, raw_inode);
5663
5664         /* No extended attributes present */
5665         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5666             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5667                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5668                         new_extra_isize);
5669                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5670                 return 0;
5671         }
5672
5673         /* try to expand with EAs present */
5674         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5675                                           raw_inode, handle);
5676 }
5677
5678 /*
5679  * What we do here is to mark the in-core inode as clean with respect to inode
5680  * dirtiness (it may still be data-dirty).
5681  * This means that the in-core inode may be reaped by prune_icache
5682  * without having to perform any I/O.  This is a very good thing,
5683  * because *any* task may call prune_icache - even ones which
5684  * have a transaction open against a different journal.
5685  *
5686  * Is this cheating?  Not really.  Sure, we haven't written the
5687  * inode out, but prune_icache isn't a user-visible syncing function.
5688  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5689  * we start and wait on commits.
5690  *
5691  * Is this efficient/effective?  Well, we're being nice to the system
5692  * by cleaning up our inodes proactively so they can be reaped
5693  * without I/O.  But we are potentially leaving up to five seconds'
5694  * worth of inodes floating about which prune_icache wants us to
5695  * write out.  One way to fix that would be to get prune_icache()
5696  * to do a write_super() to free up some memory.  It has the desired
5697  * effect.
5698  */
5699 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5700 {
5701         struct ext4_iloc iloc;
5702         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5703         static unsigned int mnt_count;
5704         int err, ret;
5705
5706         might_sleep();
5707         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5708         err = ext4_reserve_inode_write(handle, inode, &iloc);
5709         if (ext4_handle_valid(handle) &&
5710             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5711             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5712                 /*
5713                  * We need extra buffer credits since we may write into EA block
5714                  * with this same handle. If journal_extend fails, then it will
5715                  * only result in a minor loss of functionality for that inode.
5716                  * If this is felt to be critical, then e2fsck should be run to
5717                  * force a large enough s_min_extra_isize.
5718                  */
5719                 if ((jbd2_journal_extend(handle,
5720                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5721                         ret = ext4_expand_extra_isize(inode,
5722                                                       sbi->s_want_extra_isize,
5723                                                       iloc, handle);
5724                         if (ret) {
5725                                 ext4_set_inode_state(inode,
5726                                                      EXT4_STATE_NO_EXPAND);
5727                                 if (mnt_count !=
5728                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5729                                         ext4_warning(inode->i_sb,
5730                                         "Unable to expand inode %lu. Delete"
5731                                         " some EAs or run e2fsck.",
5732                                         inode->i_ino);
5733                                         mnt_count =
5734                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5735                                 }
5736                         }
5737                 }
5738         }
5739         if (!err)
5740                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5741         return err;
5742 }
5743
5744 /*
5745  * ext4_dirty_inode() is called from __mark_inode_dirty()
5746  *
5747  * We're really interested in the case where a file is being extended.
5748  * i_size has been changed by generic_commit_write() and we thus need
5749  * to include the updated inode in the current transaction.
5750  *
5751  * Also, dquot_alloc_block() will always dirty the inode when blocks
5752  * are allocated to the file.
5753  *
5754  * If the inode is marked synchronous, we don't honour that here - doing
5755  * so would cause a commit on atime updates, which we don't bother doing.
5756  * We handle synchronous inodes at the highest possible level.
5757  */
5758 void ext4_dirty_inode(struct inode *inode, int flags)
5759 {
5760         handle_t *handle;
5761
5762         handle = ext4_journal_start(inode, 2);
5763         if (IS_ERR(handle))
5764                 goto out;
5765
5766         ext4_mark_inode_dirty(handle, inode);
5767
5768         ext4_journal_stop(handle);
5769 out:
5770         return;
5771 }
5772
5773 #if 0
5774 /*
5775  * Bind an inode's backing buffer_head into this transaction, to prevent
5776  * it from being flushed to disk early.  Unlike
5777  * ext4_reserve_inode_write, this leaves behind no bh reference and
5778  * returns no iloc structure, so the caller needs to repeat the iloc
5779  * lookup to mark the inode dirty later.
5780  */
5781 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5782 {
5783         struct ext4_iloc iloc;
5784
5785         int err = 0;
5786         if (handle) {
5787                 err = ext4_get_inode_loc(inode, &iloc);
5788                 if (!err) {
5789                         BUFFER_TRACE(iloc.bh, "get_write_access");
5790                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5791                         if (!err)
5792                                 err = ext4_handle_dirty_metadata(handle,
5793                                                                  NULL,
5794                                                                  iloc.bh);
5795                         brelse(iloc.bh);
5796                 }
5797         }
5798         ext4_std_error(inode->i_sb, err);
5799         return err;
5800 }
5801 #endif
5802
5803 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5804 {
5805         journal_t *journal;
5806         handle_t *handle;
5807         int err;
5808
5809         /*
5810          * We have to be very careful here: changing a data block's
5811          * journaling status dynamically is dangerous.  If we write a
5812          * data block to the journal, change the status and then delete
5813          * that block, we risk forgetting to revoke the old log record
5814          * from the journal and so a subsequent replay can corrupt data.
5815          * So, first we make sure that the journal is empty and that
5816          * nobody is changing anything.
5817          */
5818
5819         journal = EXT4_JOURNAL(inode);
5820         if (!journal)
5821                 return 0;
5822         if (is_journal_aborted(journal))
5823                 return -EROFS;
5824
5825         jbd2_journal_lock_updates(journal);
5826         jbd2_journal_flush(journal);
5827
5828         /*
5829          * OK, there are no updates running now, and all cached data is
5830          * synced to disk.  We are now in a completely consistent state
5831          * which doesn't have anything in the journal, and we know that
5832          * no filesystem updates are running, so it is safe to modify
5833          * the inode's in-core data-journaling state flag now.
5834          */
5835
5836         if (val)
5837                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5838         else
5839                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5840         ext4_set_aops(inode);
5841
5842         jbd2_journal_unlock_updates(journal);
5843
5844         /* Finally we can mark the inode as dirty. */
5845
5846         handle = ext4_journal_start(inode, 1);
5847         if (IS_ERR(handle))
5848                 return PTR_ERR(handle);
5849
5850         err = ext4_mark_inode_dirty(handle, inode);
5851         ext4_handle_sync(handle);
5852         ext4_journal_stop(handle);
5853         ext4_std_error(inode->i_sb, err);
5854
5855         return err;
5856 }
5857
5858 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5859 {
5860         return !buffer_mapped(bh);
5861 }
5862
5863 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5864 {
5865         struct page *page = vmf->page;
5866         loff_t size;
5867         unsigned long len;
5868         int ret = -EINVAL;
5869         void *fsdata;
5870         struct file *file = vma->vm_file;
5871         struct inode *inode = file->f_path.dentry->d_inode;
5872         struct address_space *mapping = inode->i_mapping;
5873
5874         /*
5875          * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5876          * get i_mutex because we are already holding mmap_sem.
5877          */
5878         down_read(&inode->i_alloc_sem);
5879         size = i_size_read(inode);
5880         if (page->mapping != mapping || size <= page_offset(page)
5881             || !PageUptodate(page)) {
5882                 /* page got truncated from under us? */
5883                 goto out_unlock;
5884         }
5885         ret = 0;
5886
5887         lock_page(page);
5888         wait_on_page_writeback(page);
5889         if (PageMappedToDisk(page)) {
5890                 up_read(&inode->i_alloc_sem);
5891                 return VM_FAULT_LOCKED;
5892         }
5893
5894         if (page->index == size >> PAGE_CACHE_SHIFT)
5895                 len = size & ~PAGE_CACHE_MASK;
5896         else
5897                 len = PAGE_CACHE_SIZE;
5898
5899         /*
5900          * return if we have all the buffers mapped. This avoid
5901          * the need to call write_begin/write_end which does a
5902          * journal_start/journal_stop which can block and take
5903          * long time
5904          */
5905         if (page_has_buffers(page)) {
5906                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5907                                         ext4_bh_unmapped)) {
5908                         up_read(&inode->i_alloc_sem);
5909                         return VM_FAULT_LOCKED;
5910                 }
5911         }
5912         unlock_page(page);
5913         /*
5914          * OK, we need to fill the hole... Do write_begin write_end
5915          * to do block allocation/reservation.We are not holding
5916          * inode.i__mutex here. That allow * parallel write_begin,
5917          * write_end call. lock_page prevent this from happening
5918          * on the same page though
5919          */
5920         ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5921                         len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5922         if (ret < 0)
5923                 goto out_unlock;
5924         ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5925                         len, len, page, fsdata);
5926         if (ret < 0)
5927                 goto out_unlock;
5928         ret = 0;
5929
5930         /*
5931          * write_begin/end might have created a dirty page and someone
5932          * could wander in and start the IO.  Make sure that hasn't
5933          * happened.
5934          */
5935         lock_page(page);
5936         wait_on_page_writeback(page);
5937         up_read(&inode->i_alloc_sem);
5938         return VM_FAULT_LOCKED;
5939 out_unlock:
5940         if (ret)
5941                 ret = VM_FAULT_SIGBUS;
5942         up_read(&inode->i_alloc_sem);
5943         return ret;
5944 }