]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/ext4/inode.c
cd3009152ae28de43f0d3a80b7a7235a417b77d5
[karo-tx-linux.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/quotaops.h>
26 #include <linux/string.h>
27 #include <linux/buffer_head.h>
28 #include <linux/writeback.h>
29 #include <linux/pagevec.h>
30 #include <linux/mpage.h>
31 #include <linux/namei.h>
32 #include <linux/uio.h>
33 #include <linux/bio.h>
34 #include <linux/workqueue.h>
35 #include <linux/kernel.h>
36 #include <linux/printk.h>
37 #include <linux/slab.h>
38 #include <linux/aio.h>
39 #include <linux/bitops.h>
40
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45
46 #include <trace/events/ext4.h>
47
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51                               struct ext4_inode_info *ei)
52 {
53         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54         __u16 csum_lo;
55         __u16 csum_hi = 0;
56         __u32 csum;
57
58         csum_lo = le16_to_cpu(raw->i_checksum_lo);
59         raw->i_checksum_lo = 0;
60         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62                 csum_hi = le16_to_cpu(raw->i_checksum_hi);
63                 raw->i_checksum_hi = 0;
64         }
65
66         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67                            EXT4_INODE_SIZE(inode->i_sb));
68
69         raw->i_checksum_lo = cpu_to_le16(csum_lo);
70         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72                 raw->i_checksum_hi = cpu_to_le16(csum_hi);
73
74         return csum;
75 }
76
77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78                                   struct ext4_inode_info *ei)
79 {
80         __u32 provided, calculated;
81
82         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83             cpu_to_le32(EXT4_OS_LINUX) ||
84             !ext4_has_metadata_csum(inode->i_sb))
85                 return 1;
86
87         provided = le16_to_cpu(raw->i_checksum_lo);
88         calculated = ext4_inode_csum(inode, raw, ei);
89         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
90             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
91                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
92         else
93                 calculated &= 0xFFFF;
94
95         return provided == calculated;
96 }
97
98 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
99                                 struct ext4_inode_info *ei)
100 {
101         __u32 csum;
102
103         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
104             cpu_to_le32(EXT4_OS_LINUX) ||
105             !ext4_has_metadata_csum(inode->i_sb))
106                 return;
107
108         csum = ext4_inode_csum(inode, raw, ei);
109         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
110         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
111             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
112                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
113 }
114
115 static inline int ext4_begin_ordered_truncate(struct inode *inode,
116                                               loff_t new_size)
117 {
118         trace_ext4_begin_ordered_truncate(inode, new_size);
119         /*
120          * If jinode is zero, then we never opened the file for
121          * writing, so there's no need to call
122          * jbd2_journal_begin_ordered_truncate() since there's no
123          * outstanding writes we need to flush.
124          */
125         if (!EXT4_I(inode)->jinode)
126                 return 0;
127         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
128                                                    EXT4_I(inode)->jinode,
129                                                    new_size);
130 }
131
132 static void ext4_invalidatepage(struct page *page, unsigned int offset,
133                                 unsigned int length);
134 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
135 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
136 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
137                                   int pextents);
138
139 /*
140  * Test whether an inode is a fast symlink.
141  */
142 static int ext4_inode_is_fast_symlink(struct inode *inode)
143 {
144         int ea_blocks = EXT4_I(inode)->i_file_acl ?
145                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
146
147         if (ext4_has_inline_data(inode))
148                 return 0;
149
150         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151 }
152
153 /*
154  * Restart the transaction associated with *handle.  This does a commit,
155  * so before we call here everything must be consistently dirtied against
156  * this transaction.
157  */
158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
159                                  int nblocks)
160 {
161         int ret;
162
163         /*
164          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
165          * moment, get_block can be called only for blocks inside i_size since
166          * page cache has been already dropped and writes are blocked by
167          * i_mutex. So we can safely drop the i_data_sem here.
168          */
169         BUG_ON(EXT4_JOURNAL(inode) == NULL);
170         jbd_debug(2, "restarting handle %p\n", handle);
171         up_write(&EXT4_I(inode)->i_data_sem);
172         ret = ext4_journal_restart(handle, nblocks);
173         down_write(&EXT4_I(inode)->i_data_sem);
174         ext4_discard_preallocations(inode);
175
176         return ret;
177 }
178
179 /*
180  * Called at the last iput() if i_nlink is zero.
181  */
182 void ext4_evict_inode(struct inode *inode)
183 {
184         handle_t *handle;
185         int err;
186
187         trace_ext4_evict_inode(inode);
188
189         if (inode->i_nlink) {
190                 /*
191                  * When journalling data dirty buffers are tracked only in the
192                  * journal. So although mm thinks everything is clean and
193                  * ready for reaping the inode might still have some pages to
194                  * write in the running transaction or waiting to be
195                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
196                  * (via truncate_inode_pages()) to discard these buffers can
197                  * cause data loss. Also even if we did not discard these
198                  * buffers, we would have no way to find them after the inode
199                  * is reaped and thus user could see stale data if he tries to
200                  * read them before the transaction is checkpointed. So be
201                  * careful and force everything to disk here... We use
202                  * ei->i_datasync_tid to store the newest transaction
203                  * containing inode's data.
204                  *
205                  * Note that directories do not have this problem because they
206                  * don't use page cache.
207                  */
208                 if (ext4_should_journal_data(inode) &&
209                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210                     inode->i_ino != EXT4_JOURNAL_INO) {
211                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213
214                         jbd2_complete_transaction(journal, commit_tid);
215                         filemap_write_and_wait(&inode->i_data);
216                 }
217                 truncate_inode_pages_final(&inode->i_data);
218
219                 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
220                 goto no_delete;
221         }
222
223         if (is_bad_inode(inode))
224                 goto no_delete;
225         dquot_initialize(inode);
226
227         if (ext4_should_order_data(inode))
228                 ext4_begin_ordered_truncate(inode, 0);
229         truncate_inode_pages_final(&inode->i_data);
230
231         WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
232
233         /*
234          * Protect us against freezing - iput() caller didn't have to have any
235          * protection against it
236          */
237         sb_start_intwrite(inode->i_sb);
238         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
239                                     ext4_blocks_for_truncate(inode)+3);
240         if (IS_ERR(handle)) {
241                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
242                 /*
243                  * If we're going to skip the normal cleanup, we still need to
244                  * make sure that the in-core orphan linked list is properly
245                  * cleaned up.
246                  */
247                 ext4_orphan_del(NULL, inode);
248                 sb_end_intwrite(inode->i_sb);
249                 goto no_delete;
250         }
251
252         if (IS_SYNC(inode))
253                 ext4_handle_sync(handle);
254         inode->i_size = 0;
255         err = ext4_mark_inode_dirty(handle, inode);
256         if (err) {
257                 ext4_warning(inode->i_sb,
258                              "couldn't mark inode dirty (err %d)", err);
259                 goto stop_handle;
260         }
261         if (inode->i_blocks)
262                 ext4_truncate(inode);
263
264         /*
265          * ext4_ext_truncate() doesn't reserve any slop when it
266          * restarts journal transactions; therefore there may not be
267          * enough credits left in the handle to remove the inode from
268          * the orphan list and set the dtime field.
269          */
270         if (!ext4_handle_has_enough_credits(handle, 3)) {
271                 err = ext4_journal_extend(handle, 3);
272                 if (err > 0)
273                         err = ext4_journal_restart(handle, 3);
274                 if (err != 0) {
275                         ext4_warning(inode->i_sb,
276                                      "couldn't extend journal (err %d)", err);
277                 stop_handle:
278                         ext4_journal_stop(handle);
279                         ext4_orphan_del(NULL, inode);
280                         sb_end_intwrite(inode->i_sb);
281                         goto no_delete;
282                 }
283         }
284
285         /*
286          * Kill off the orphan record which ext4_truncate created.
287          * AKPM: I think this can be inside the above `if'.
288          * Note that ext4_orphan_del() has to be able to cope with the
289          * deletion of a non-existent orphan - this is because we don't
290          * know if ext4_truncate() actually created an orphan record.
291          * (Well, we could do this if we need to, but heck - it works)
292          */
293         ext4_orphan_del(handle, inode);
294         EXT4_I(inode)->i_dtime  = get_seconds();
295
296         /*
297          * One subtle ordering requirement: if anything has gone wrong
298          * (transaction abort, IO errors, whatever), then we can still
299          * do these next steps (the fs will already have been marked as
300          * having errors), but we can't free the inode if the mark_dirty
301          * fails.
302          */
303         if (ext4_mark_inode_dirty(handle, inode))
304                 /* If that failed, just do the required in-core inode clear. */
305                 ext4_clear_inode(inode);
306         else
307                 ext4_free_inode(handle, inode);
308         ext4_journal_stop(handle);
309         sb_end_intwrite(inode->i_sb);
310         return;
311 no_delete:
312         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
313 }
314
315 #ifdef CONFIG_QUOTA
316 qsize_t *ext4_get_reserved_space(struct inode *inode)
317 {
318         return &EXT4_I(inode)->i_reserved_quota;
319 }
320 #endif
321
322 /*
323  * Called with i_data_sem down, which is important since we can call
324  * ext4_discard_preallocations() from here.
325  */
326 void ext4_da_update_reserve_space(struct inode *inode,
327                                         int used, int quota_claim)
328 {
329         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
330         struct ext4_inode_info *ei = EXT4_I(inode);
331
332         spin_lock(&ei->i_block_reservation_lock);
333         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
334         if (unlikely(used > ei->i_reserved_data_blocks)) {
335                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
336                          "with only %d reserved data blocks",
337                          __func__, inode->i_ino, used,
338                          ei->i_reserved_data_blocks);
339                 WARN_ON(1);
340                 used = ei->i_reserved_data_blocks;
341         }
342
343         /* Update per-inode reservations */
344         ei->i_reserved_data_blocks -= used;
345         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
346
347         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
348
349         /* Update quota subsystem for data blocks */
350         if (quota_claim)
351                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
352         else {
353                 /*
354                  * We did fallocate with an offset that is already delayed
355                  * allocated. So on delayed allocated writeback we should
356                  * not re-claim the quota for fallocated blocks.
357                  */
358                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
359         }
360
361         /*
362          * If we have done all the pending block allocations and if
363          * there aren't any writers on the inode, we can discard the
364          * inode's preallocations.
365          */
366         if ((ei->i_reserved_data_blocks == 0) &&
367             (atomic_read(&inode->i_writecount) == 0))
368                 ext4_discard_preallocations(inode);
369 }
370
371 static int __check_block_validity(struct inode *inode, const char *func,
372                                 unsigned int line,
373                                 struct ext4_map_blocks *map)
374 {
375         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
376                                    map->m_len)) {
377                 ext4_error_inode(inode, func, line, map->m_pblk,
378                                  "lblock %lu mapped to illegal pblock "
379                                  "(length %d)", (unsigned long) map->m_lblk,
380                                  map->m_len);
381                 return -EIO;
382         }
383         return 0;
384 }
385
386 #define check_block_validity(inode, map)        \
387         __check_block_validity((inode), __func__, __LINE__, (map))
388
389 #ifdef ES_AGGRESSIVE_TEST
390 static void ext4_map_blocks_es_recheck(handle_t *handle,
391                                        struct inode *inode,
392                                        struct ext4_map_blocks *es_map,
393                                        struct ext4_map_blocks *map,
394                                        int flags)
395 {
396         int retval;
397
398         map->m_flags = 0;
399         /*
400          * There is a race window that the result is not the same.
401          * e.g. xfstests #223 when dioread_nolock enables.  The reason
402          * is that we lookup a block mapping in extent status tree with
403          * out taking i_data_sem.  So at the time the unwritten extent
404          * could be converted.
405          */
406         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
407                 down_read(&EXT4_I(inode)->i_data_sem);
408         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
409                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
410                                              EXT4_GET_BLOCKS_KEEP_SIZE);
411         } else {
412                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
413                                              EXT4_GET_BLOCKS_KEEP_SIZE);
414         }
415         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
416                 up_read((&EXT4_I(inode)->i_data_sem));
417
418         /*
419          * We don't check m_len because extent will be collpased in status
420          * tree.  So the m_len might not equal.
421          */
422         if (es_map->m_lblk != map->m_lblk ||
423             es_map->m_flags != map->m_flags ||
424             es_map->m_pblk != map->m_pblk) {
425                 printk("ES cache assertion failed for inode: %lu "
426                        "es_cached ex [%d/%d/%llu/%x] != "
427                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
428                        inode->i_ino, es_map->m_lblk, es_map->m_len,
429                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
430                        map->m_len, map->m_pblk, map->m_flags,
431                        retval, flags);
432         }
433 }
434 #endif /* ES_AGGRESSIVE_TEST */
435
436 /*
437  * The ext4_map_blocks() function tries to look up the requested blocks,
438  * and returns if the blocks are already mapped.
439  *
440  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
441  * and store the allocated blocks in the result buffer head and mark it
442  * mapped.
443  *
444  * If file type is extents based, it will call ext4_ext_map_blocks(),
445  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
446  * based files
447  *
448  * On success, it returns the number of blocks being mapped or allocated.
449  * if create==0 and the blocks are pre-allocated and unwritten block,
450  * the result buffer head is unmapped. If the create ==1, it will make sure
451  * the buffer head is mapped.
452  *
453  * It returns 0 if plain look up failed (blocks have not been allocated), in
454  * that case, buffer head is unmapped
455  *
456  * It returns the error in case of allocation failure.
457  */
458 int ext4_map_blocks(handle_t *handle, struct inode *inode,
459                     struct ext4_map_blocks *map, int flags)
460 {
461         struct extent_status es;
462         int retval;
463         int ret = 0;
464 #ifdef ES_AGGRESSIVE_TEST
465         struct ext4_map_blocks orig_map;
466
467         memcpy(&orig_map, map, sizeof(*map));
468 #endif
469
470         map->m_flags = 0;
471         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
472                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
473                   (unsigned long) map->m_lblk);
474
475         /*
476          * ext4_map_blocks returns an int, and m_len is an unsigned int
477          */
478         if (unlikely(map->m_len > INT_MAX))
479                 map->m_len = INT_MAX;
480
481         /* We can handle the block number less than EXT_MAX_BLOCKS */
482         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
483                 return -EIO;
484
485         /* Lookup extent status tree firstly */
486         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
487                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
488                         map->m_pblk = ext4_es_pblock(&es) +
489                                         map->m_lblk - es.es_lblk;
490                         map->m_flags |= ext4_es_is_written(&es) ?
491                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
492                         retval = es.es_len - (map->m_lblk - es.es_lblk);
493                         if (retval > map->m_len)
494                                 retval = map->m_len;
495                         map->m_len = retval;
496                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
497                         retval = 0;
498                 } else {
499                         BUG_ON(1);
500                 }
501 #ifdef ES_AGGRESSIVE_TEST
502                 ext4_map_blocks_es_recheck(handle, inode, map,
503                                            &orig_map, flags);
504 #endif
505                 goto found;
506         }
507
508         /*
509          * Try to see if we can get the block without requesting a new
510          * file system block.
511          */
512         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
513                 down_read(&EXT4_I(inode)->i_data_sem);
514         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
515                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
516                                              EXT4_GET_BLOCKS_KEEP_SIZE);
517         } else {
518                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
519                                              EXT4_GET_BLOCKS_KEEP_SIZE);
520         }
521         if (retval > 0) {
522                 unsigned int status;
523
524                 if (unlikely(retval != map->m_len)) {
525                         ext4_warning(inode->i_sb,
526                                      "ES len assertion failed for inode "
527                                      "%lu: retval %d != map->m_len %d",
528                                      inode->i_ino, retval, map->m_len);
529                         WARN_ON(1);
530                 }
531
532                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
533                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
534                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
535                     ext4_find_delalloc_range(inode, map->m_lblk,
536                                              map->m_lblk + map->m_len - 1))
537                         status |= EXTENT_STATUS_DELAYED;
538                 ret = ext4_es_insert_extent(inode, map->m_lblk,
539                                             map->m_len, map->m_pblk, status);
540                 if (ret < 0)
541                         retval = ret;
542         }
543         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
544                 up_read((&EXT4_I(inode)->i_data_sem));
545
546 found:
547         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
548                 ret = check_block_validity(inode, map);
549                 if (ret != 0)
550                         return ret;
551         }
552
553         /* If it is only a block(s) look up */
554         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
555                 return retval;
556
557         /*
558          * Returns if the blocks have already allocated
559          *
560          * Note that if blocks have been preallocated
561          * ext4_ext_get_block() returns the create = 0
562          * with buffer head unmapped.
563          */
564         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
565                 /*
566                  * If we need to convert extent to unwritten
567                  * we continue and do the actual work in
568                  * ext4_ext_map_blocks()
569                  */
570                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
571                         return retval;
572
573         /*
574          * Here we clear m_flags because after allocating an new extent,
575          * it will be set again.
576          */
577         map->m_flags &= ~EXT4_MAP_FLAGS;
578
579         /*
580          * New blocks allocate and/or writing to unwritten extent
581          * will possibly result in updating i_data, so we take
582          * the write lock of i_data_sem, and call get_block()
583          * with create == 1 flag.
584          */
585         down_write(&EXT4_I(inode)->i_data_sem);
586
587         /*
588          * We need to check for EXT4 here because migrate
589          * could have changed the inode type in between
590          */
591         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
592                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
593         } else {
594                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
595
596                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
597                         /*
598                          * We allocated new blocks which will result in
599                          * i_data's format changing.  Force the migrate
600                          * to fail by clearing migrate flags
601                          */
602                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
603                 }
604
605                 /*
606                  * Update reserved blocks/metadata blocks after successful
607                  * block allocation which had been deferred till now. We don't
608                  * support fallocate for non extent files. So we can update
609                  * reserve space here.
610                  */
611                 if ((retval > 0) &&
612                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
613                         ext4_da_update_reserve_space(inode, retval, 1);
614         }
615
616         if (retval > 0) {
617                 unsigned int status;
618
619                 if (unlikely(retval != map->m_len)) {
620                         ext4_warning(inode->i_sb,
621                                      "ES len assertion failed for inode "
622                                      "%lu: retval %d != map->m_len %d",
623                                      inode->i_ino, retval, map->m_len);
624                         WARN_ON(1);
625                 }
626
627                 /*
628                  * If the extent has been zeroed out, we don't need to update
629                  * extent status tree.
630                  */
631                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
632                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
633                         if (ext4_es_is_written(&es))
634                                 goto has_zeroout;
635                 }
636                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
637                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
638                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
639                     ext4_find_delalloc_range(inode, map->m_lblk,
640                                              map->m_lblk + map->m_len - 1))
641                         status |= EXTENT_STATUS_DELAYED;
642                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
643                                             map->m_pblk, status);
644                 if (ret < 0)
645                         retval = ret;
646         }
647
648 has_zeroout:
649         up_write((&EXT4_I(inode)->i_data_sem));
650         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
651                 ret = check_block_validity(inode, map);
652                 if (ret != 0)
653                         return ret;
654         }
655         return retval;
656 }
657
658 static void ext4_end_io_unwritten(struct buffer_head *bh, int uptodate)
659 {
660         struct inode *inode = bh->b_assoc_map->host;
661         /* XXX: breaks on 32-bit > 16GB. Is that even supported? */
662         loff_t offset = (loff_t)(uintptr_t)bh->b_private << inode->i_blkbits;
663         int err;
664         if (!uptodate)
665                 return;
666         WARN_ON(!buffer_unwritten(bh));
667         err = ext4_convert_unwritten_extents(NULL, inode, offset, bh->b_size);
668 }
669
670 /* Maximum number of blocks we map for direct IO at once. */
671 #define DIO_MAX_BLOCKS 4096
672
673 static int _ext4_get_block(struct inode *inode, sector_t iblock,
674                            struct buffer_head *bh, int flags)
675 {
676         handle_t *handle = ext4_journal_current_handle();
677         struct ext4_map_blocks map;
678         int ret = 0, started = 0;
679         int dio_credits;
680
681         if (ext4_has_inline_data(inode))
682                 return -ERANGE;
683
684         map.m_lblk = iblock;
685         map.m_len = bh->b_size >> inode->i_blkbits;
686
687         if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
688                 /* Direct IO write... */
689                 if (map.m_len > DIO_MAX_BLOCKS)
690                         map.m_len = DIO_MAX_BLOCKS;
691                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
692                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
693                                             dio_credits);
694                 if (IS_ERR(handle)) {
695                         ret = PTR_ERR(handle);
696                         return ret;
697                 }
698                 started = 1;
699         }
700
701         ret = ext4_map_blocks(handle, inode, &map, flags);
702         if (ret > 0) {
703                 ext4_io_end_t *io_end = ext4_inode_aio(inode);
704
705                 map_bh(bh, inode->i_sb, map.m_pblk);
706                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
707                 if (IS_DAX(inode) && buffer_unwritten(bh) && !io_end) {
708                         bh->b_assoc_map = inode->i_mapping;
709                         bh->b_private = (void *)(unsigned long)iblock;
710                         bh->b_end_io = ext4_end_io_unwritten;
711                 }
712                 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
713                         set_buffer_defer_completion(bh);
714                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
715                 ret = 0;
716         }
717         if (started)
718                 ext4_journal_stop(handle);
719         return ret;
720 }
721
722 int ext4_get_block(struct inode *inode, sector_t iblock,
723                    struct buffer_head *bh, int create)
724 {
725         return _ext4_get_block(inode, iblock, bh,
726                                create ? EXT4_GET_BLOCKS_CREATE : 0);
727 }
728
729 /*
730  * `handle' can be NULL if create is zero
731  */
732 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
733                                 ext4_lblk_t block, int create)
734 {
735         struct ext4_map_blocks map;
736         struct buffer_head *bh;
737         int err;
738
739         J_ASSERT(handle != NULL || create == 0);
740
741         map.m_lblk = block;
742         map.m_len = 1;
743         err = ext4_map_blocks(handle, inode, &map,
744                               create ? EXT4_GET_BLOCKS_CREATE : 0);
745
746         if (err == 0)
747                 return create ? ERR_PTR(-ENOSPC) : NULL;
748         if (err < 0)
749                 return ERR_PTR(err);
750
751         bh = sb_getblk(inode->i_sb, map.m_pblk);
752         if (unlikely(!bh))
753                 return ERR_PTR(-ENOMEM);
754         if (map.m_flags & EXT4_MAP_NEW) {
755                 J_ASSERT(create != 0);
756                 J_ASSERT(handle != NULL);
757
758                 /*
759                  * Now that we do not always journal data, we should
760                  * keep in mind whether this should always journal the
761                  * new buffer as metadata.  For now, regular file
762                  * writes use ext4_get_block instead, so it's not a
763                  * problem.
764                  */
765                 lock_buffer(bh);
766                 BUFFER_TRACE(bh, "call get_create_access");
767                 err = ext4_journal_get_create_access(handle, bh);
768                 if (unlikely(err)) {
769                         unlock_buffer(bh);
770                         goto errout;
771                 }
772                 if (!buffer_uptodate(bh)) {
773                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
774                         set_buffer_uptodate(bh);
775                 }
776                 unlock_buffer(bh);
777                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
778                 err = ext4_handle_dirty_metadata(handle, inode, bh);
779                 if (unlikely(err))
780                         goto errout;
781         } else
782                 BUFFER_TRACE(bh, "not a new buffer");
783         return bh;
784 errout:
785         brelse(bh);
786         return ERR_PTR(err);
787 }
788
789 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
790                                ext4_lblk_t block, int create)
791 {
792         struct buffer_head *bh;
793
794         bh = ext4_getblk(handle, inode, block, create);
795         if (IS_ERR(bh))
796                 return bh;
797         if (!bh || buffer_uptodate(bh))
798                 return bh;
799         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
800         wait_on_buffer(bh);
801         if (buffer_uptodate(bh))
802                 return bh;
803         put_bh(bh);
804         return ERR_PTR(-EIO);
805 }
806
807 int ext4_walk_page_buffers(handle_t *handle,
808                            struct buffer_head *head,
809                            unsigned from,
810                            unsigned to,
811                            int *partial,
812                            int (*fn)(handle_t *handle,
813                                      struct buffer_head *bh))
814 {
815         struct buffer_head *bh;
816         unsigned block_start, block_end;
817         unsigned blocksize = head->b_size;
818         int err, ret = 0;
819         struct buffer_head *next;
820
821         for (bh = head, block_start = 0;
822              ret == 0 && (bh != head || !block_start);
823              block_start = block_end, bh = next) {
824                 next = bh->b_this_page;
825                 block_end = block_start + blocksize;
826                 if (block_end <= from || block_start >= to) {
827                         if (partial && !buffer_uptodate(bh))
828                                 *partial = 1;
829                         continue;
830                 }
831                 err = (*fn)(handle, bh);
832                 if (!ret)
833                         ret = err;
834         }
835         return ret;
836 }
837
838 /*
839  * To preserve ordering, it is essential that the hole instantiation and
840  * the data write be encapsulated in a single transaction.  We cannot
841  * close off a transaction and start a new one between the ext4_get_block()
842  * and the commit_write().  So doing the jbd2_journal_start at the start of
843  * prepare_write() is the right place.
844  *
845  * Also, this function can nest inside ext4_writepage().  In that case, we
846  * *know* that ext4_writepage() has generated enough buffer credits to do the
847  * whole page.  So we won't block on the journal in that case, which is good,
848  * because the caller may be PF_MEMALLOC.
849  *
850  * By accident, ext4 can be reentered when a transaction is open via
851  * quota file writes.  If we were to commit the transaction while thus
852  * reentered, there can be a deadlock - we would be holding a quota
853  * lock, and the commit would never complete if another thread had a
854  * transaction open and was blocking on the quota lock - a ranking
855  * violation.
856  *
857  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
858  * will _not_ run commit under these circumstances because handle->h_ref
859  * is elevated.  We'll still have enough credits for the tiny quotafile
860  * write.
861  */
862 int do_journal_get_write_access(handle_t *handle,
863                                 struct buffer_head *bh)
864 {
865         int dirty = buffer_dirty(bh);
866         int ret;
867
868         if (!buffer_mapped(bh) || buffer_freed(bh))
869                 return 0;
870         /*
871          * __block_write_begin() could have dirtied some buffers. Clean
872          * the dirty bit as jbd2_journal_get_write_access() could complain
873          * otherwise about fs integrity issues. Setting of the dirty bit
874          * by __block_write_begin() isn't a real problem here as we clear
875          * the bit before releasing a page lock and thus writeback cannot
876          * ever write the buffer.
877          */
878         if (dirty)
879                 clear_buffer_dirty(bh);
880         BUFFER_TRACE(bh, "get write access");
881         ret = ext4_journal_get_write_access(handle, bh);
882         if (!ret && dirty)
883                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
884         return ret;
885 }
886
887 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
888                    struct buffer_head *bh_result, int create);
889 static int ext4_write_begin(struct file *file, struct address_space *mapping,
890                             loff_t pos, unsigned len, unsigned flags,
891                             struct page **pagep, void **fsdata)
892 {
893         struct inode *inode = mapping->host;
894         int ret, needed_blocks;
895         handle_t *handle;
896         int retries = 0;
897         struct page *page;
898         pgoff_t index;
899         unsigned from, to;
900
901         trace_ext4_write_begin(inode, pos, len, flags);
902         /*
903          * Reserve one block more for addition to orphan list in case
904          * we allocate blocks but write fails for some reason
905          */
906         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
907         index = pos >> PAGE_CACHE_SHIFT;
908         from = pos & (PAGE_CACHE_SIZE - 1);
909         to = from + len;
910
911         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
912                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
913                                                     flags, pagep);
914                 if (ret < 0)
915                         return ret;
916                 if (ret == 1)
917                         return 0;
918         }
919
920         /*
921          * grab_cache_page_write_begin() can take a long time if the
922          * system is thrashing due to memory pressure, or if the page
923          * is being written back.  So grab it first before we start
924          * the transaction handle.  This also allows us to allocate
925          * the page (if needed) without using GFP_NOFS.
926          */
927 retry_grab:
928         page = grab_cache_page_write_begin(mapping, index, flags);
929         if (!page)
930                 return -ENOMEM;
931         unlock_page(page);
932
933 retry_journal:
934         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
935         if (IS_ERR(handle)) {
936                 page_cache_release(page);
937                 return PTR_ERR(handle);
938         }
939
940         lock_page(page);
941         if (page->mapping != mapping) {
942                 /* The page got truncated from under us */
943                 unlock_page(page);
944                 page_cache_release(page);
945                 ext4_journal_stop(handle);
946                 goto retry_grab;
947         }
948         /* In case writeback began while the page was unlocked */
949         wait_for_stable_page(page);
950
951         if (ext4_should_dioread_nolock(inode))
952                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
953         else
954                 ret = __block_write_begin(page, pos, len, ext4_get_block);
955
956         if (!ret && ext4_should_journal_data(inode)) {
957                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
958                                              from, to, NULL,
959                                              do_journal_get_write_access);
960         }
961
962         if (ret) {
963                 unlock_page(page);
964                 /*
965                  * __block_write_begin may have instantiated a few blocks
966                  * outside i_size.  Trim these off again. Don't need
967                  * i_size_read because we hold i_mutex.
968                  *
969                  * Add inode to orphan list in case we crash before
970                  * truncate finishes
971                  */
972                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
973                         ext4_orphan_add(handle, inode);
974
975                 ext4_journal_stop(handle);
976                 if (pos + len > inode->i_size) {
977                         ext4_truncate_failed_write(inode);
978                         /*
979                          * If truncate failed early the inode might
980                          * still be on the orphan list; we need to
981                          * make sure the inode is removed from the
982                          * orphan list in that case.
983                          */
984                         if (inode->i_nlink)
985                                 ext4_orphan_del(NULL, inode);
986                 }
987
988                 if (ret == -ENOSPC &&
989                     ext4_should_retry_alloc(inode->i_sb, &retries))
990                         goto retry_journal;
991                 page_cache_release(page);
992                 return ret;
993         }
994         *pagep = page;
995         return ret;
996 }
997
998 /* For write_end() in data=journal mode */
999 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1000 {
1001         int ret;
1002         if (!buffer_mapped(bh) || buffer_freed(bh))
1003                 return 0;
1004         set_buffer_uptodate(bh);
1005         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1006         clear_buffer_meta(bh);
1007         clear_buffer_prio(bh);
1008         return ret;
1009 }
1010
1011 /*
1012  * We need to pick up the new inode size which generic_commit_write gave us
1013  * `file' can be NULL - eg, when called from page_symlink().
1014  *
1015  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1016  * buffers are managed internally.
1017  */
1018 static int ext4_write_end(struct file *file,
1019                           struct address_space *mapping,
1020                           loff_t pos, unsigned len, unsigned copied,
1021                           struct page *page, void *fsdata)
1022 {
1023         handle_t *handle = ext4_journal_current_handle();
1024         struct inode *inode = mapping->host;
1025         loff_t old_size = inode->i_size;
1026         int ret = 0, ret2;
1027         int i_size_changed = 0;
1028
1029         trace_ext4_write_end(inode, pos, len, copied);
1030         if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1031                 ret = ext4_jbd2_file_inode(handle, inode);
1032                 if (ret) {
1033                         unlock_page(page);
1034                         page_cache_release(page);
1035                         goto errout;
1036                 }
1037         }
1038
1039         if (ext4_has_inline_data(inode)) {
1040                 ret = ext4_write_inline_data_end(inode, pos, len,
1041                                                  copied, page);
1042                 if (ret < 0)
1043                         goto errout;
1044                 copied = ret;
1045         } else
1046                 copied = block_write_end(file, mapping, pos,
1047                                          len, copied, page, fsdata);
1048         /*
1049          * it's important to update i_size while still holding page lock:
1050          * page writeout could otherwise come in and zero beyond i_size.
1051          */
1052         i_size_changed = ext4_update_inode_size(inode, pos + copied);
1053         unlock_page(page);
1054         page_cache_release(page);
1055
1056         if (old_size < pos)
1057                 pagecache_isize_extended(inode, old_size, pos);
1058         /*
1059          * Don't mark the inode dirty under page lock. First, it unnecessarily
1060          * makes the holding time of page lock longer. Second, it forces lock
1061          * ordering of page lock and transaction start for journaling
1062          * filesystems.
1063          */
1064         if (i_size_changed)
1065                 ext4_mark_inode_dirty(handle, inode);
1066
1067         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1068                 /* if we have allocated more blocks and copied
1069                  * less. We will have blocks allocated outside
1070                  * inode->i_size. So truncate them
1071                  */
1072                 ext4_orphan_add(handle, inode);
1073 errout:
1074         ret2 = ext4_journal_stop(handle);
1075         if (!ret)
1076                 ret = ret2;
1077
1078         if (pos + len > inode->i_size) {
1079                 ext4_truncate_failed_write(inode);
1080                 /*
1081                  * If truncate failed early the inode might still be
1082                  * on the orphan list; we need to make sure the inode
1083                  * is removed from the orphan list in that case.
1084                  */
1085                 if (inode->i_nlink)
1086                         ext4_orphan_del(NULL, inode);
1087         }
1088
1089         return ret ? ret : copied;
1090 }
1091
1092 static int ext4_journalled_write_end(struct file *file,
1093                                      struct address_space *mapping,
1094                                      loff_t pos, unsigned len, unsigned copied,
1095                                      struct page *page, void *fsdata)
1096 {
1097         handle_t *handle = ext4_journal_current_handle();
1098         struct inode *inode = mapping->host;
1099         loff_t old_size = inode->i_size;
1100         int ret = 0, ret2;
1101         int partial = 0;
1102         unsigned from, to;
1103         int size_changed = 0;
1104
1105         trace_ext4_journalled_write_end(inode, pos, len, copied);
1106         from = pos & (PAGE_CACHE_SIZE - 1);
1107         to = from + len;
1108
1109         BUG_ON(!ext4_handle_valid(handle));
1110
1111         if (ext4_has_inline_data(inode))
1112                 copied = ext4_write_inline_data_end(inode, pos, len,
1113                                                     copied, page);
1114         else {
1115                 if (copied < len) {
1116                         if (!PageUptodate(page))
1117                                 copied = 0;
1118                         page_zero_new_buffers(page, from+copied, to);
1119                 }
1120
1121                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1122                                              to, &partial, write_end_fn);
1123                 if (!partial)
1124                         SetPageUptodate(page);
1125         }
1126         size_changed = ext4_update_inode_size(inode, pos + copied);
1127         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1128         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1129         unlock_page(page);
1130         page_cache_release(page);
1131
1132         if (old_size < pos)
1133                 pagecache_isize_extended(inode, old_size, pos);
1134
1135         if (size_changed) {
1136                 ret2 = ext4_mark_inode_dirty(handle, inode);
1137                 if (!ret)
1138                         ret = ret2;
1139         }
1140
1141         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1142                 /* if we have allocated more blocks and copied
1143                  * less. We will have blocks allocated outside
1144                  * inode->i_size. So truncate them
1145                  */
1146                 ext4_orphan_add(handle, inode);
1147
1148         ret2 = ext4_journal_stop(handle);
1149         if (!ret)
1150                 ret = ret2;
1151         if (pos + len > inode->i_size) {
1152                 ext4_truncate_failed_write(inode);
1153                 /*
1154                  * If truncate failed early the inode might still be
1155                  * on the orphan list; we need to make sure the inode
1156                  * is removed from the orphan list in that case.
1157                  */
1158                 if (inode->i_nlink)
1159                         ext4_orphan_del(NULL, inode);
1160         }
1161
1162         return ret ? ret : copied;
1163 }
1164
1165 /*
1166  * Reserve a single cluster located at lblock
1167  */
1168 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1169 {
1170         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1171         struct ext4_inode_info *ei = EXT4_I(inode);
1172         unsigned int md_needed;
1173         int ret;
1174
1175         /*
1176          * We will charge metadata quota at writeout time; this saves
1177          * us from metadata over-estimation, though we may go over by
1178          * a small amount in the end.  Here we just reserve for data.
1179          */
1180         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1181         if (ret)
1182                 return ret;
1183
1184         /*
1185          * recalculate the amount of metadata blocks to reserve
1186          * in order to allocate nrblocks
1187          * worse case is one extent per block
1188          */
1189         spin_lock(&ei->i_block_reservation_lock);
1190         /*
1191          * ext4_calc_metadata_amount() has side effects, which we have
1192          * to be prepared undo if we fail to claim space.
1193          */
1194         md_needed = 0;
1195         trace_ext4_da_reserve_space(inode, 0);
1196
1197         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1198                 spin_unlock(&ei->i_block_reservation_lock);
1199                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1200                 return -ENOSPC;
1201         }
1202         ei->i_reserved_data_blocks++;
1203         spin_unlock(&ei->i_block_reservation_lock);
1204
1205         return 0;       /* success */
1206 }
1207
1208 static void ext4_da_release_space(struct inode *inode, int to_free)
1209 {
1210         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1211         struct ext4_inode_info *ei = EXT4_I(inode);
1212
1213         if (!to_free)
1214                 return;         /* Nothing to release, exit */
1215
1216         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1217
1218         trace_ext4_da_release_space(inode, to_free);
1219         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1220                 /*
1221                  * if there aren't enough reserved blocks, then the
1222                  * counter is messed up somewhere.  Since this
1223                  * function is called from invalidate page, it's
1224                  * harmless to return without any action.
1225                  */
1226                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1227                          "ino %lu, to_free %d with only %d reserved "
1228                          "data blocks", inode->i_ino, to_free,
1229                          ei->i_reserved_data_blocks);
1230                 WARN_ON(1);
1231                 to_free = ei->i_reserved_data_blocks;
1232         }
1233         ei->i_reserved_data_blocks -= to_free;
1234
1235         /* update fs dirty data blocks counter */
1236         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1237
1238         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1239
1240         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1241 }
1242
1243 static void ext4_da_page_release_reservation(struct page *page,
1244                                              unsigned int offset,
1245                                              unsigned int length)
1246 {
1247         int to_release = 0;
1248         struct buffer_head *head, *bh;
1249         unsigned int curr_off = 0;
1250         struct inode *inode = page->mapping->host;
1251         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1252         unsigned int stop = offset + length;
1253         int num_clusters;
1254         ext4_fsblk_t lblk;
1255
1256         BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1257
1258         head = page_buffers(page);
1259         bh = head;
1260         do {
1261                 unsigned int next_off = curr_off + bh->b_size;
1262
1263                 if (next_off > stop)
1264                         break;
1265
1266                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1267                         to_release++;
1268                         clear_buffer_delay(bh);
1269                 }
1270                 curr_off = next_off;
1271         } while ((bh = bh->b_this_page) != head);
1272
1273         if (to_release) {
1274                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1275                 ext4_es_remove_extent(inode, lblk, to_release);
1276         }
1277
1278         /* If we have released all the blocks belonging to a cluster, then we
1279          * need to release the reserved space for that cluster. */
1280         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1281         while (num_clusters > 0) {
1282                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1283                         ((num_clusters - 1) << sbi->s_cluster_bits);
1284                 if (sbi->s_cluster_ratio == 1 ||
1285                     !ext4_find_delalloc_cluster(inode, lblk))
1286                         ext4_da_release_space(inode, 1);
1287
1288                 num_clusters--;
1289         }
1290 }
1291
1292 /*
1293  * Delayed allocation stuff
1294  */
1295
1296 struct mpage_da_data {
1297         struct inode *inode;
1298         struct writeback_control *wbc;
1299
1300         pgoff_t first_page;     /* The first page to write */
1301         pgoff_t next_page;      /* Current page to examine */
1302         pgoff_t last_page;      /* Last page to examine */
1303         /*
1304          * Extent to map - this can be after first_page because that can be
1305          * fully mapped. We somewhat abuse m_flags to store whether the extent
1306          * is delalloc or unwritten.
1307          */
1308         struct ext4_map_blocks map;
1309         struct ext4_io_submit io_submit;        /* IO submission data */
1310 };
1311
1312 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1313                                        bool invalidate)
1314 {
1315         int nr_pages, i;
1316         pgoff_t index, end;
1317         struct pagevec pvec;
1318         struct inode *inode = mpd->inode;
1319         struct address_space *mapping = inode->i_mapping;
1320
1321         /* This is necessary when next_page == 0. */
1322         if (mpd->first_page >= mpd->next_page)
1323                 return;
1324
1325         index = mpd->first_page;
1326         end   = mpd->next_page - 1;
1327         if (invalidate) {
1328                 ext4_lblk_t start, last;
1329                 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1330                 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1331                 ext4_es_remove_extent(inode, start, last - start + 1);
1332         }
1333
1334         pagevec_init(&pvec, 0);
1335         while (index <= end) {
1336                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1337                 if (nr_pages == 0)
1338                         break;
1339                 for (i = 0; i < nr_pages; i++) {
1340                         struct page *page = pvec.pages[i];
1341                         if (page->index > end)
1342                                 break;
1343                         BUG_ON(!PageLocked(page));
1344                         BUG_ON(PageWriteback(page));
1345                         if (invalidate) {
1346                                 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1347                                 ClearPageUptodate(page);
1348                         }
1349                         unlock_page(page);
1350                 }
1351                 index = pvec.pages[nr_pages - 1]->index + 1;
1352                 pagevec_release(&pvec);
1353         }
1354 }
1355
1356 static void ext4_print_free_blocks(struct inode *inode)
1357 {
1358         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1359         struct super_block *sb = inode->i_sb;
1360         struct ext4_inode_info *ei = EXT4_I(inode);
1361
1362         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1363                EXT4_C2B(EXT4_SB(inode->i_sb),
1364                         ext4_count_free_clusters(sb)));
1365         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1366         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1367                (long long) EXT4_C2B(EXT4_SB(sb),
1368                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1369         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1370                (long long) EXT4_C2B(EXT4_SB(sb),
1371                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1372         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1373         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1374                  ei->i_reserved_data_blocks);
1375         return;
1376 }
1377
1378 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1379 {
1380         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1381 }
1382
1383 /*
1384  * This function is grabs code from the very beginning of
1385  * ext4_map_blocks, but assumes that the caller is from delayed write
1386  * time. This function looks up the requested blocks and sets the
1387  * buffer delay bit under the protection of i_data_sem.
1388  */
1389 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1390                               struct ext4_map_blocks *map,
1391                               struct buffer_head *bh)
1392 {
1393         struct extent_status es;
1394         int retval;
1395         sector_t invalid_block = ~((sector_t) 0xffff);
1396 #ifdef ES_AGGRESSIVE_TEST
1397         struct ext4_map_blocks orig_map;
1398
1399         memcpy(&orig_map, map, sizeof(*map));
1400 #endif
1401
1402         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1403                 invalid_block = ~0;
1404
1405         map->m_flags = 0;
1406         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1407                   "logical block %lu\n", inode->i_ino, map->m_len,
1408                   (unsigned long) map->m_lblk);
1409
1410         /* Lookup extent status tree firstly */
1411         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1412                 if (ext4_es_is_hole(&es)) {
1413                         retval = 0;
1414                         down_read(&EXT4_I(inode)->i_data_sem);
1415                         goto add_delayed;
1416                 }
1417
1418                 /*
1419                  * Delayed extent could be allocated by fallocate.
1420                  * So we need to check it.
1421                  */
1422                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1423                         map_bh(bh, inode->i_sb, invalid_block);
1424                         set_buffer_new(bh);
1425                         set_buffer_delay(bh);
1426                         return 0;
1427                 }
1428
1429                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1430                 retval = es.es_len - (iblock - es.es_lblk);
1431                 if (retval > map->m_len)
1432                         retval = map->m_len;
1433                 map->m_len = retval;
1434                 if (ext4_es_is_written(&es))
1435                         map->m_flags |= EXT4_MAP_MAPPED;
1436                 else if (ext4_es_is_unwritten(&es))
1437                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1438                 else
1439                         BUG_ON(1);
1440
1441 #ifdef ES_AGGRESSIVE_TEST
1442                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1443 #endif
1444                 return retval;
1445         }
1446
1447         /*
1448          * Try to see if we can get the block without requesting a new
1449          * file system block.
1450          */
1451         down_read(&EXT4_I(inode)->i_data_sem);
1452         if (ext4_has_inline_data(inode))
1453                 retval = 0;
1454         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1455                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1456         else
1457                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1458
1459 add_delayed:
1460         if (retval == 0) {
1461                 int ret;
1462                 /*
1463                  * XXX: __block_prepare_write() unmaps passed block,
1464                  * is it OK?
1465                  */
1466                 /*
1467                  * If the block was allocated from previously allocated cluster,
1468                  * then we don't need to reserve it again. However we still need
1469                  * to reserve metadata for every block we're going to write.
1470                  */
1471                 if (EXT4_SB(inode->i_sb)->s_cluster_ratio <= 1 ||
1472                     !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1473                         ret = ext4_da_reserve_space(inode, iblock);
1474                         if (ret) {
1475                                 /* not enough space to reserve */
1476                                 retval = ret;
1477                                 goto out_unlock;
1478                         }
1479                 }
1480
1481                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1482                                             ~0, EXTENT_STATUS_DELAYED);
1483                 if (ret) {
1484                         retval = ret;
1485                         goto out_unlock;
1486                 }
1487
1488                 map_bh(bh, inode->i_sb, invalid_block);
1489                 set_buffer_new(bh);
1490                 set_buffer_delay(bh);
1491         } else if (retval > 0) {
1492                 int ret;
1493                 unsigned int status;
1494
1495                 if (unlikely(retval != map->m_len)) {
1496                         ext4_warning(inode->i_sb,
1497                                      "ES len assertion failed for inode "
1498                                      "%lu: retval %d != map->m_len %d",
1499                                      inode->i_ino, retval, map->m_len);
1500                         WARN_ON(1);
1501                 }
1502
1503                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1504                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1505                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1506                                             map->m_pblk, status);
1507                 if (ret != 0)
1508                         retval = ret;
1509         }
1510
1511 out_unlock:
1512         up_read((&EXT4_I(inode)->i_data_sem));
1513
1514         return retval;
1515 }
1516
1517 /*
1518  * This is a special get_block_t callback which is used by
1519  * ext4_da_write_begin().  It will either return mapped block or
1520  * reserve space for a single block.
1521  *
1522  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1523  * We also have b_blocknr = -1 and b_bdev initialized properly
1524  *
1525  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1526  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1527  * initialized properly.
1528  */
1529 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1530                            struct buffer_head *bh, int create)
1531 {
1532         struct ext4_map_blocks map;
1533         int ret = 0;
1534
1535         BUG_ON(create == 0);
1536         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1537
1538         map.m_lblk = iblock;
1539         map.m_len = 1;
1540
1541         /*
1542          * first, we need to know whether the block is allocated already
1543          * preallocated blocks are unmapped but should treated
1544          * the same as allocated blocks.
1545          */
1546         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1547         if (ret <= 0)
1548                 return ret;
1549
1550         map_bh(bh, inode->i_sb, map.m_pblk);
1551         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1552
1553         if (buffer_unwritten(bh)) {
1554                 /* A delayed write to unwritten bh should be marked
1555                  * new and mapped.  Mapped ensures that we don't do
1556                  * get_block multiple times when we write to the same
1557                  * offset and new ensures that we do proper zero out
1558                  * for partial write.
1559                  */
1560                 set_buffer_new(bh);
1561                 set_buffer_mapped(bh);
1562         }
1563         return 0;
1564 }
1565
1566 static int bget_one(handle_t *handle, struct buffer_head *bh)
1567 {
1568         get_bh(bh);
1569         return 0;
1570 }
1571
1572 static int bput_one(handle_t *handle, struct buffer_head *bh)
1573 {
1574         put_bh(bh);
1575         return 0;
1576 }
1577
1578 static int __ext4_journalled_writepage(struct page *page,
1579                                        unsigned int len)
1580 {
1581         struct address_space *mapping = page->mapping;
1582         struct inode *inode = mapping->host;
1583         struct buffer_head *page_bufs = NULL;
1584         handle_t *handle = NULL;
1585         int ret = 0, err = 0;
1586         int inline_data = ext4_has_inline_data(inode);
1587         struct buffer_head *inode_bh = NULL;
1588
1589         ClearPageChecked(page);
1590
1591         if (inline_data) {
1592                 BUG_ON(page->index != 0);
1593                 BUG_ON(len > ext4_get_max_inline_size(inode));
1594                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1595                 if (inode_bh == NULL)
1596                         goto out;
1597         } else {
1598                 page_bufs = page_buffers(page);
1599                 if (!page_bufs) {
1600                         BUG();
1601                         goto out;
1602                 }
1603                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1604                                        NULL, bget_one);
1605         }
1606         /* As soon as we unlock the page, it can go away, but we have
1607          * references to buffers so we are safe */
1608         unlock_page(page);
1609
1610         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1611                                     ext4_writepage_trans_blocks(inode));
1612         if (IS_ERR(handle)) {
1613                 ret = PTR_ERR(handle);
1614                 goto out;
1615         }
1616
1617         BUG_ON(!ext4_handle_valid(handle));
1618
1619         if (inline_data) {
1620                 BUFFER_TRACE(inode_bh, "get write access");
1621                 ret = ext4_journal_get_write_access(handle, inode_bh);
1622
1623                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1624
1625         } else {
1626                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1627                                              do_journal_get_write_access);
1628
1629                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1630                                              write_end_fn);
1631         }
1632         if (ret == 0)
1633                 ret = err;
1634         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1635         err = ext4_journal_stop(handle);
1636         if (!ret)
1637                 ret = err;
1638
1639         if (!ext4_has_inline_data(inode))
1640                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1641                                        NULL, bput_one);
1642         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1643 out:
1644         brelse(inode_bh);
1645         return ret;
1646 }
1647
1648 /*
1649  * Note that we don't need to start a transaction unless we're journaling data
1650  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1651  * need to file the inode to the transaction's list in ordered mode because if
1652  * we are writing back data added by write(), the inode is already there and if
1653  * we are writing back data modified via mmap(), no one guarantees in which
1654  * transaction the data will hit the disk. In case we are journaling data, we
1655  * cannot start transaction directly because transaction start ranks above page
1656  * lock so we have to do some magic.
1657  *
1658  * This function can get called via...
1659  *   - ext4_writepages after taking page lock (have journal handle)
1660  *   - journal_submit_inode_data_buffers (no journal handle)
1661  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1662  *   - grab_page_cache when doing write_begin (have journal handle)
1663  *
1664  * We don't do any block allocation in this function. If we have page with
1665  * multiple blocks we need to write those buffer_heads that are mapped. This
1666  * is important for mmaped based write. So if we do with blocksize 1K
1667  * truncate(f, 1024);
1668  * a = mmap(f, 0, 4096);
1669  * a[0] = 'a';
1670  * truncate(f, 4096);
1671  * we have in the page first buffer_head mapped via page_mkwrite call back
1672  * but other buffer_heads would be unmapped but dirty (dirty done via the
1673  * do_wp_page). So writepage should write the first block. If we modify
1674  * the mmap area beyond 1024 we will again get a page_fault and the
1675  * page_mkwrite callback will do the block allocation and mark the
1676  * buffer_heads mapped.
1677  *
1678  * We redirty the page if we have any buffer_heads that is either delay or
1679  * unwritten in the page.
1680  *
1681  * We can get recursively called as show below.
1682  *
1683  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1684  *              ext4_writepage()
1685  *
1686  * But since we don't do any block allocation we should not deadlock.
1687  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1688  */
1689 static int ext4_writepage(struct page *page,
1690                           struct writeback_control *wbc)
1691 {
1692         int ret = 0;
1693         loff_t size;
1694         unsigned int len;
1695         struct buffer_head *page_bufs = NULL;
1696         struct inode *inode = page->mapping->host;
1697         struct ext4_io_submit io_submit;
1698         bool keep_towrite = false;
1699
1700         trace_ext4_writepage(page);
1701         size = i_size_read(inode);
1702         if (page->index == size >> PAGE_CACHE_SHIFT)
1703                 len = size & ~PAGE_CACHE_MASK;
1704         else
1705                 len = PAGE_CACHE_SIZE;
1706
1707         page_bufs = page_buffers(page);
1708         /*
1709          * We cannot do block allocation or other extent handling in this
1710          * function. If there are buffers needing that, we have to redirty
1711          * the page. But we may reach here when we do a journal commit via
1712          * journal_submit_inode_data_buffers() and in that case we must write
1713          * allocated buffers to achieve data=ordered mode guarantees.
1714          */
1715         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1716                                    ext4_bh_delay_or_unwritten)) {
1717                 redirty_page_for_writepage(wbc, page);
1718                 if (current->flags & PF_MEMALLOC) {
1719                         /*
1720                          * For memory cleaning there's no point in writing only
1721                          * some buffers. So just bail out. Warn if we came here
1722                          * from direct reclaim.
1723                          */
1724                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1725                                                         == PF_MEMALLOC);
1726                         unlock_page(page);
1727                         return 0;
1728                 }
1729                 keep_towrite = true;
1730         }
1731
1732         if (PageChecked(page) && ext4_should_journal_data(inode))
1733                 /*
1734                  * It's mmapped pagecache.  Add buffers and journal it.  There
1735                  * doesn't seem much point in redirtying the page here.
1736                  */
1737                 return __ext4_journalled_writepage(page, len);
1738
1739         ext4_io_submit_init(&io_submit, wbc);
1740         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1741         if (!io_submit.io_end) {
1742                 redirty_page_for_writepage(wbc, page);
1743                 unlock_page(page);
1744                 return -ENOMEM;
1745         }
1746         ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
1747         ext4_io_submit(&io_submit);
1748         /* Drop io_end reference we got from init */
1749         ext4_put_io_end_defer(io_submit.io_end);
1750         return ret;
1751 }
1752
1753 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1754 {
1755         int len;
1756         loff_t size = i_size_read(mpd->inode);
1757         int err;
1758
1759         BUG_ON(page->index != mpd->first_page);
1760         if (page->index == size >> PAGE_CACHE_SHIFT)
1761                 len = size & ~PAGE_CACHE_MASK;
1762         else
1763                 len = PAGE_CACHE_SIZE;
1764         clear_page_dirty_for_io(page);
1765         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
1766         if (!err)
1767                 mpd->wbc->nr_to_write--;
1768         mpd->first_page++;
1769
1770         return err;
1771 }
1772
1773 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1774
1775 /*
1776  * mballoc gives us at most this number of blocks...
1777  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1778  * The rest of mballoc seems to handle chunks up to full group size.
1779  */
1780 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1781
1782 /*
1783  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1784  *
1785  * @mpd - extent of blocks
1786  * @lblk - logical number of the block in the file
1787  * @bh - buffer head we want to add to the extent
1788  *
1789  * The function is used to collect contig. blocks in the same state. If the
1790  * buffer doesn't require mapping for writeback and we haven't started the
1791  * extent of buffers to map yet, the function returns 'true' immediately - the
1792  * caller can write the buffer right away. Otherwise the function returns true
1793  * if the block has been added to the extent, false if the block couldn't be
1794  * added.
1795  */
1796 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1797                                    struct buffer_head *bh)
1798 {
1799         struct ext4_map_blocks *map = &mpd->map;
1800
1801         /* Buffer that doesn't need mapping for writeback? */
1802         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1803             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1804                 /* So far no extent to map => we write the buffer right away */
1805                 if (map->m_len == 0)
1806                         return true;
1807                 return false;
1808         }
1809
1810         /* First block in the extent? */
1811         if (map->m_len == 0) {
1812                 map->m_lblk = lblk;
1813                 map->m_len = 1;
1814                 map->m_flags = bh->b_state & BH_FLAGS;
1815                 return true;
1816         }
1817
1818         /* Don't go larger than mballoc is willing to allocate */
1819         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1820                 return false;
1821
1822         /* Can we merge the block to our big extent? */
1823         if (lblk == map->m_lblk + map->m_len &&
1824             (bh->b_state & BH_FLAGS) == map->m_flags) {
1825                 map->m_len++;
1826                 return true;
1827         }
1828         return false;
1829 }
1830
1831 /*
1832  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1833  *
1834  * @mpd - extent of blocks for mapping
1835  * @head - the first buffer in the page
1836  * @bh - buffer we should start processing from
1837  * @lblk - logical number of the block in the file corresponding to @bh
1838  *
1839  * Walk through page buffers from @bh upto @head (exclusive) and either submit
1840  * the page for IO if all buffers in this page were mapped and there's no
1841  * accumulated extent of buffers to map or add buffers in the page to the
1842  * extent of buffers to map. The function returns 1 if the caller can continue
1843  * by processing the next page, 0 if it should stop adding buffers to the
1844  * extent to map because we cannot extend it anymore. It can also return value
1845  * < 0 in case of error during IO submission.
1846  */
1847 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1848                                    struct buffer_head *head,
1849                                    struct buffer_head *bh,
1850                                    ext4_lblk_t lblk)
1851 {
1852         struct inode *inode = mpd->inode;
1853         int err;
1854         ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1855                                                         >> inode->i_blkbits;
1856
1857         do {
1858                 BUG_ON(buffer_locked(bh));
1859
1860                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
1861                         /* Found extent to map? */
1862                         if (mpd->map.m_len)
1863                                 return 0;
1864                         /* Everything mapped so far and we hit EOF */
1865                         break;
1866                 }
1867         } while (lblk++, (bh = bh->b_this_page) != head);
1868         /* So far everything mapped? Submit the page for IO. */
1869         if (mpd->map.m_len == 0) {
1870                 err = mpage_submit_page(mpd, head->b_page);
1871                 if (err < 0)
1872                         return err;
1873         }
1874         return lblk < blocks;
1875 }
1876
1877 /*
1878  * mpage_map_buffers - update buffers corresponding to changed extent and
1879  *                     submit fully mapped pages for IO
1880  *
1881  * @mpd - description of extent to map, on return next extent to map
1882  *
1883  * Scan buffers corresponding to changed extent (we expect corresponding pages
1884  * to be already locked) and update buffer state according to new extent state.
1885  * We map delalloc buffers to their physical location, clear unwritten bits,
1886  * and mark buffers as uninit when we perform writes to unwritten extents
1887  * and do extent conversion after IO is finished. If the last page is not fully
1888  * mapped, we update @map to the next extent in the last page that needs
1889  * mapping. Otherwise we submit the page for IO.
1890  */
1891 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
1892 {
1893         struct pagevec pvec;
1894         int nr_pages, i;
1895         struct inode *inode = mpd->inode;
1896         struct buffer_head *head, *bh;
1897         int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
1898         pgoff_t start, end;
1899         ext4_lblk_t lblk;
1900         sector_t pblock;
1901         int err;
1902
1903         start = mpd->map.m_lblk >> bpp_bits;
1904         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
1905         lblk = start << bpp_bits;
1906         pblock = mpd->map.m_pblk;
1907
1908         pagevec_init(&pvec, 0);
1909         while (start <= end) {
1910                 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
1911                                           PAGEVEC_SIZE);
1912                 if (nr_pages == 0)
1913                         break;
1914                 for (i = 0; i < nr_pages; i++) {
1915                         struct page *page = pvec.pages[i];
1916
1917                         if (page->index > end)
1918                                 break;
1919                         /* Up to 'end' pages must be contiguous */
1920                         BUG_ON(page->index != start);
1921                         bh = head = page_buffers(page);
1922                         do {
1923                                 if (lblk < mpd->map.m_lblk)
1924                                         continue;
1925                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
1926                                         /*
1927                                          * Buffer after end of mapped extent.
1928                                          * Find next buffer in the page to map.
1929                                          */
1930                                         mpd->map.m_len = 0;
1931                                         mpd->map.m_flags = 0;
1932                                         /*
1933                                          * FIXME: If dioread_nolock supports
1934                                          * blocksize < pagesize, we need to make
1935                                          * sure we add size mapped so far to
1936                                          * io_end->size as the following call
1937                                          * can submit the page for IO.
1938                                          */
1939                                         err = mpage_process_page_bufs(mpd, head,
1940                                                                       bh, lblk);
1941                                         pagevec_release(&pvec);
1942                                         if (err > 0)
1943                                                 err = 0;
1944                                         return err;
1945                                 }
1946                                 if (buffer_delay(bh)) {
1947                                         clear_buffer_delay(bh);
1948                                         bh->b_blocknr = pblock++;
1949                                 }
1950                                 clear_buffer_unwritten(bh);
1951                         } while (lblk++, (bh = bh->b_this_page) != head);
1952
1953                         /*
1954                          * FIXME: This is going to break if dioread_nolock
1955                          * supports blocksize < pagesize as we will try to
1956                          * convert potentially unmapped parts of inode.
1957                          */
1958                         mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
1959                         /* Page fully mapped - let IO run! */
1960                         err = mpage_submit_page(mpd, page);
1961                         if (err < 0) {
1962                                 pagevec_release(&pvec);
1963                                 return err;
1964                         }
1965                         start++;
1966                 }
1967                 pagevec_release(&pvec);
1968         }
1969         /* Extent fully mapped and matches with page boundary. We are done. */
1970         mpd->map.m_len = 0;
1971         mpd->map.m_flags = 0;
1972         return 0;
1973 }
1974
1975 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
1976 {
1977         struct inode *inode = mpd->inode;
1978         struct ext4_map_blocks *map = &mpd->map;
1979         int get_blocks_flags;
1980         int err, dioread_nolock;
1981
1982         trace_ext4_da_write_pages_extent(inode, map);
1983         /*
1984          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
1985          * to convert an unwritten extent to be initialized (in the case
1986          * where we have written into one or more preallocated blocks).  It is
1987          * possible that we're going to need more metadata blocks than
1988          * previously reserved. However we must not fail because we're in
1989          * writeback and there is nothing we can do about it so it might result
1990          * in data loss.  So use reserved blocks to allocate metadata if
1991          * possible.
1992          *
1993          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
1994          * the blocks in question are delalloc blocks.  This indicates
1995          * that the blocks and quotas has already been checked when
1996          * the data was copied into the page cache.
1997          */
1998         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
1999                            EXT4_GET_BLOCKS_METADATA_NOFAIL;
2000         dioread_nolock = ext4_should_dioread_nolock(inode);
2001         if (dioread_nolock)
2002                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2003         if (map->m_flags & (1 << BH_Delay))
2004                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2005
2006         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2007         if (err < 0)
2008                 return err;
2009         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2010                 if (!mpd->io_submit.io_end->handle &&
2011                     ext4_handle_valid(handle)) {
2012                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2013                         handle->h_rsv_handle = NULL;
2014                 }
2015                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2016         }
2017
2018         BUG_ON(map->m_len == 0);
2019         if (map->m_flags & EXT4_MAP_NEW) {
2020                 struct block_device *bdev = inode->i_sb->s_bdev;
2021                 int i;
2022
2023                 for (i = 0; i < map->m_len; i++)
2024                         unmap_underlying_metadata(bdev, map->m_pblk + i);
2025         }
2026         return 0;
2027 }
2028
2029 /*
2030  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2031  *                               mpd->len and submit pages underlying it for IO
2032  *
2033  * @handle - handle for journal operations
2034  * @mpd - extent to map
2035  * @give_up_on_write - we set this to true iff there is a fatal error and there
2036  *                     is no hope of writing the data. The caller should discard
2037  *                     dirty pages to avoid infinite loops.
2038  *
2039  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2040  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2041  * them to initialized or split the described range from larger unwritten
2042  * extent. Note that we need not map all the described range since allocation
2043  * can return less blocks or the range is covered by more unwritten extents. We
2044  * cannot map more because we are limited by reserved transaction credits. On
2045  * the other hand we always make sure that the last touched page is fully
2046  * mapped so that it can be written out (and thus forward progress is
2047  * guaranteed). After mapping we submit all mapped pages for IO.
2048  */
2049 static int mpage_map_and_submit_extent(handle_t *handle,
2050                                        struct mpage_da_data *mpd,
2051                                        bool *give_up_on_write)
2052 {
2053         struct inode *inode = mpd->inode;
2054         struct ext4_map_blocks *map = &mpd->map;
2055         int err;
2056         loff_t disksize;
2057         int progress = 0;
2058
2059         mpd->io_submit.io_end->offset =
2060                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2061         do {
2062                 err = mpage_map_one_extent(handle, mpd);
2063                 if (err < 0) {
2064                         struct super_block *sb = inode->i_sb;
2065
2066                         if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2067                                 goto invalidate_dirty_pages;
2068                         /*
2069                          * Let the uper layers retry transient errors.
2070                          * In the case of ENOSPC, if ext4_count_free_blocks()
2071                          * is non-zero, a commit should free up blocks.
2072                          */
2073                         if ((err == -ENOMEM) ||
2074                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2075                                 if (progress)
2076                                         goto update_disksize;
2077                                 return err;
2078                         }
2079                         ext4_msg(sb, KERN_CRIT,
2080                                  "Delayed block allocation failed for "
2081                                  "inode %lu at logical offset %llu with"
2082                                  " max blocks %u with error %d",
2083                                  inode->i_ino,
2084                                  (unsigned long long)map->m_lblk,
2085                                  (unsigned)map->m_len, -err);
2086                         ext4_msg(sb, KERN_CRIT,
2087                                  "This should not happen!! Data will "
2088                                  "be lost\n");
2089                         if (err == -ENOSPC)
2090                                 ext4_print_free_blocks(inode);
2091                 invalidate_dirty_pages:
2092                         *give_up_on_write = true;
2093                         return err;
2094                 }
2095                 progress = 1;
2096                 /*
2097                  * Update buffer state, submit mapped pages, and get us new
2098                  * extent to map
2099                  */
2100                 err = mpage_map_and_submit_buffers(mpd);
2101                 if (err < 0)
2102                         goto update_disksize;
2103         } while (map->m_len);
2104
2105 update_disksize:
2106         /*
2107          * Update on-disk size after IO is submitted.  Races with
2108          * truncate are avoided by checking i_size under i_data_sem.
2109          */
2110         disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2111         if (disksize > EXT4_I(inode)->i_disksize) {
2112                 int err2;
2113                 loff_t i_size;
2114
2115                 down_write(&EXT4_I(inode)->i_data_sem);
2116                 i_size = i_size_read(inode);
2117                 if (disksize > i_size)
2118                         disksize = i_size;
2119                 if (disksize > EXT4_I(inode)->i_disksize)
2120                         EXT4_I(inode)->i_disksize = disksize;
2121                 err2 = ext4_mark_inode_dirty(handle, inode);
2122                 up_write(&EXT4_I(inode)->i_data_sem);
2123                 if (err2)
2124                         ext4_error(inode->i_sb,
2125                                    "Failed to mark inode %lu dirty",
2126                                    inode->i_ino);
2127                 if (!err)
2128                         err = err2;
2129         }
2130         return err;
2131 }
2132
2133 /*
2134  * Calculate the total number of credits to reserve for one writepages
2135  * iteration. This is called from ext4_writepages(). We map an extent of
2136  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2137  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2138  * bpp - 1 blocks in bpp different extents.
2139  */
2140 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2141 {
2142         int bpp = ext4_journal_blocks_per_page(inode);
2143
2144         return ext4_meta_trans_blocks(inode,
2145                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2146 }
2147
2148 /*
2149  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2150  *                               and underlying extent to map
2151  *
2152  * @mpd - where to look for pages
2153  *
2154  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2155  * IO immediately. When we find a page which isn't mapped we start accumulating
2156  * extent of buffers underlying these pages that needs mapping (formed by
2157  * either delayed or unwritten buffers). We also lock the pages containing
2158  * these buffers. The extent found is returned in @mpd structure (starting at
2159  * mpd->lblk with length mpd->len blocks).
2160  *
2161  * Note that this function can attach bios to one io_end structure which are
2162  * neither logically nor physically contiguous. Although it may seem as an
2163  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2164  * case as we need to track IO to all buffers underlying a page in one io_end.
2165  */
2166 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2167 {
2168         struct address_space *mapping = mpd->inode->i_mapping;
2169         struct pagevec pvec;
2170         unsigned int nr_pages;
2171         long left = mpd->wbc->nr_to_write;
2172         pgoff_t index = mpd->first_page;
2173         pgoff_t end = mpd->last_page;
2174         int tag;
2175         int i, err = 0;
2176         int blkbits = mpd->inode->i_blkbits;
2177         ext4_lblk_t lblk;
2178         struct buffer_head *head;
2179
2180         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2181                 tag = PAGECACHE_TAG_TOWRITE;
2182         else
2183                 tag = PAGECACHE_TAG_DIRTY;
2184
2185         pagevec_init(&pvec, 0);
2186         mpd->map.m_len = 0;
2187         mpd->next_page = index;
2188         while (index <= end) {
2189                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2190                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2191                 if (nr_pages == 0)
2192                         goto out;
2193
2194                 for (i = 0; i < nr_pages; i++) {
2195                         struct page *page = pvec.pages[i];
2196
2197                         /*
2198                          * At this point, the page may be truncated or
2199                          * invalidated (changing page->mapping to NULL), or
2200                          * even swizzled back from swapper_space to tmpfs file
2201                          * mapping. However, page->index will not change
2202                          * because we have a reference on the page.
2203                          */
2204                         if (page->index > end)
2205                                 goto out;
2206
2207                         /*
2208                          * Accumulated enough dirty pages? This doesn't apply
2209                          * to WB_SYNC_ALL mode. For integrity sync we have to
2210                          * keep going because someone may be concurrently
2211                          * dirtying pages, and we might have synced a lot of
2212                          * newly appeared dirty pages, but have not synced all
2213                          * of the old dirty pages.
2214                          */
2215                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2216                                 goto out;
2217
2218                         /* If we can't merge this page, we are done. */
2219                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2220                                 goto out;
2221
2222                         lock_page(page);
2223                         /*
2224                          * If the page is no longer dirty, or its mapping no
2225                          * longer corresponds to inode we are writing (which
2226                          * means it has been truncated or invalidated), or the
2227                          * page is already under writeback and we are not doing
2228                          * a data integrity writeback, skip the page
2229                          */
2230                         if (!PageDirty(page) ||
2231                             (PageWriteback(page) &&
2232                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2233                             unlikely(page->mapping != mapping)) {
2234                                 unlock_page(page);
2235                                 continue;
2236                         }
2237
2238                         wait_on_page_writeback(page);
2239                         BUG_ON(PageWriteback(page));
2240
2241                         if (mpd->map.m_len == 0)
2242                                 mpd->first_page = page->index;
2243                         mpd->next_page = page->index + 1;
2244                         /* Add all dirty buffers to mpd */
2245                         lblk = ((ext4_lblk_t)page->index) <<
2246                                 (PAGE_CACHE_SHIFT - blkbits);
2247                         head = page_buffers(page);
2248                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2249                         if (err <= 0)
2250                                 goto out;
2251                         err = 0;
2252                         left--;
2253                 }
2254                 pagevec_release(&pvec);
2255                 cond_resched();
2256         }
2257         return 0;
2258 out:
2259         pagevec_release(&pvec);
2260         return err;
2261 }
2262
2263 static int __writepage(struct page *page, struct writeback_control *wbc,
2264                        void *data)
2265 {
2266         struct address_space *mapping = data;
2267         int ret = ext4_writepage(page, wbc);
2268         mapping_set_error(mapping, ret);
2269         return ret;
2270 }
2271
2272 static int ext4_writepages(struct address_space *mapping,
2273                            struct writeback_control *wbc)
2274 {
2275         pgoff_t writeback_index = 0;
2276         long nr_to_write = wbc->nr_to_write;
2277         int range_whole = 0;
2278         int cycled = 1;
2279         handle_t *handle = NULL;
2280         struct mpage_da_data mpd;
2281         struct inode *inode = mapping->host;
2282         int needed_blocks, rsv_blocks = 0, ret = 0;
2283         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2284         bool done;
2285         struct blk_plug plug;
2286         bool give_up_on_write = false;
2287
2288         trace_ext4_writepages(inode, wbc);
2289
2290         /*
2291          * No pages to write? This is mainly a kludge to avoid starting
2292          * a transaction for special inodes like journal inode on last iput()
2293          * because that could violate lock ordering on umount
2294          */
2295         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2296                 goto out_writepages;
2297
2298         if (ext4_should_journal_data(inode)) {
2299                 struct blk_plug plug;
2300
2301                 blk_start_plug(&plug);
2302                 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2303                 blk_finish_plug(&plug);
2304                 goto out_writepages;
2305         }
2306
2307         /*
2308          * If the filesystem has aborted, it is read-only, so return
2309          * right away instead of dumping stack traces later on that
2310          * will obscure the real source of the problem.  We test
2311          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2312          * the latter could be true if the filesystem is mounted
2313          * read-only, and in that case, ext4_writepages should
2314          * *never* be called, so if that ever happens, we would want
2315          * the stack trace.
2316          */
2317         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2318                 ret = -EROFS;
2319                 goto out_writepages;
2320         }
2321
2322         if (ext4_should_dioread_nolock(inode)) {
2323                 /*
2324                  * We may need to convert up to one extent per block in
2325                  * the page and we may dirty the inode.
2326                  */
2327                 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2328         }
2329
2330         /*
2331          * If we have inline data and arrive here, it means that
2332          * we will soon create the block for the 1st page, so
2333          * we'd better clear the inline data here.
2334          */
2335         if (ext4_has_inline_data(inode)) {
2336                 /* Just inode will be modified... */
2337                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2338                 if (IS_ERR(handle)) {
2339                         ret = PTR_ERR(handle);
2340                         goto out_writepages;
2341                 }
2342                 BUG_ON(ext4_test_inode_state(inode,
2343                                 EXT4_STATE_MAY_INLINE_DATA));
2344                 ext4_destroy_inline_data(handle, inode);
2345                 ext4_journal_stop(handle);
2346         }
2347
2348         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2349                 range_whole = 1;
2350
2351         if (wbc->range_cyclic) {
2352                 writeback_index = mapping->writeback_index;
2353                 if (writeback_index)
2354                         cycled = 0;
2355                 mpd.first_page = writeback_index;
2356                 mpd.last_page = -1;
2357         } else {
2358                 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2359                 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2360         }
2361
2362         mpd.inode = inode;
2363         mpd.wbc = wbc;
2364         ext4_io_submit_init(&mpd.io_submit, wbc);
2365 retry:
2366         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2367                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2368         done = false;
2369         blk_start_plug(&plug);
2370         while (!done && mpd.first_page <= mpd.last_page) {
2371                 /* For each extent of pages we use new io_end */
2372                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2373                 if (!mpd.io_submit.io_end) {
2374                         ret = -ENOMEM;
2375                         break;
2376                 }
2377
2378                 /*
2379                  * We have two constraints: We find one extent to map and we
2380                  * must always write out whole page (makes a difference when
2381                  * blocksize < pagesize) so that we don't block on IO when we
2382                  * try to write out the rest of the page. Journalled mode is
2383                  * not supported by delalloc.
2384                  */
2385                 BUG_ON(ext4_should_journal_data(inode));
2386                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2387
2388                 /* start a new transaction */
2389                 handle = ext4_journal_start_with_reserve(inode,
2390                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2391                 if (IS_ERR(handle)) {
2392                         ret = PTR_ERR(handle);
2393                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2394                                "%ld pages, ino %lu; err %d", __func__,
2395                                 wbc->nr_to_write, inode->i_ino, ret);
2396                         /* Release allocated io_end */
2397                         ext4_put_io_end(mpd.io_submit.io_end);
2398                         break;
2399                 }
2400
2401                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2402                 ret = mpage_prepare_extent_to_map(&mpd);
2403                 if (!ret) {
2404                         if (mpd.map.m_len)
2405                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2406                                         &give_up_on_write);
2407                         else {
2408                                 /*
2409                                  * We scanned the whole range (or exhausted
2410                                  * nr_to_write), submitted what was mapped and
2411                                  * didn't find anything needing mapping. We are
2412                                  * done.
2413                                  */
2414                                 done = true;
2415                         }
2416                 }
2417                 ext4_journal_stop(handle);
2418                 /* Submit prepared bio */
2419                 ext4_io_submit(&mpd.io_submit);
2420                 /* Unlock pages we didn't use */
2421                 mpage_release_unused_pages(&mpd, give_up_on_write);
2422                 /* Drop our io_end reference we got from init */
2423                 ext4_put_io_end(mpd.io_submit.io_end);
2424
2425                 if (ret == -ENOSPC && sbi->s_journal) {
2426                         /*
2427                          * Commit the transaction which would
2428                          * free blocks released in the transaction
2429                          * and try again
2430                          */
2431                         jbd2_journal_force_commit_nested(sbi->s_journal);
2432                         ret = 0;
2433                         continue;
2434                 }
2435                 /* Fatal error - ENOMEM, EIO... */
2436                 if (ret)
2437                         break;
2438         }
2439         blk_finish_plug(&plug);
2440         if (!ret && !cycled && wbc->nr_to_write > 0) {
2441                 cycled = 1;
2442                 mpd.last_page = writeback_index - 1;
2443                 mpd.first_page = 0;
2444                 goto retry;
2445         }
2446
2447         /* Update index */
2448         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2449                 /*
2450                  * Set the writeback_index so that range_cyclic
2451                  * mode will write it back later
2452                  */
2453                 mapping->writeback_index = mpd.first_page;
2454
2455 out_writepages:
2456         trace_ext4_writepages_result(inode, wbc, ret,
2457                                      nr_to_write - wbc->nr_to_write);
2458         return ret;
2459 }
2460
2461 static int ext4_nonda_switch(struct super_block *sb)
2462 {
2463         s64 free_clusters, dirty_clusters;
2464         struct ext4_sb_info *sbi = EXT4_SB(sb);
2465
2466         /*
2467          * switch to non delalloc mode if we are running low
2468          * on free block. The free block accounting via percpu
2469          * counters can get slightly wrong with percpu_counter_batch getting
2470          * accumulated on each CPU without updating global counters
2471          * Delalloc need an accurate free block accounting. So switch
2472          * to non delalloc when we are near to error range.
2473          */
2474         free_clusters =
2475                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2476         dirty_clusters =
2477                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2478         /*
2479          * Start pushing delalloc when 1/2 of free blocks are dirty.
2480          */
2481         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2482                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2483
2484         if (2 * free_clusters < 3 * dirty_clusters ||
2485             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2486                 /*
2487                  * free block count is less than 150% of dirty blocks
2488                  * or free blocks is less than watermark
2489                  */
2490                 return 1;
2491         }
2492         return 0;
2493 }
2494
2495 /* We always reserve for an inode update; the superblock could be there too */
2496 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2497 {
2498         if (likely(EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
2499                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE)))
2500                 return 1;
2501
2502         if (pos + len <= 0x7fffffffULL)
2503                 return 1;
2504
2505         /* We might need to update the superblock to set LARGE_FILE */
2506         return 2;
2507 }
2508
2509 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2510                                loff_t pos, unsigned len, unsigned flags,
2511                                struct page **pagep, void **fsdata)
2512 {
2513         int ret, retries = 0;
2514         struct page *page;
2515         pgoff_t index;
2516         struct inode *inode = mapping->host;
2517         handle_t *handle;
2518
2519         index = pos >> PAGE_CACHE_SHIFT;
2520
2521         if (ext4_nonda_switch(inode->i_sb)) {
2522                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2523                 return ext4_write_begin(file, mapping, pos,
2524                                         len, flags, pagep, fsdata);
2525         }
2526         *fsdata = (void *)0;
2527         trace_ext4_da_write_begin(inode, pos, len, flags);
2528
2529         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2530                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2531                                                       pos, len, flags,
2532                                                       pagep, fsdata);
2533                 if (ret < 0)
2534                         return ret;
2535                 if (ret == 1)
2536                         return 0;
2537         }
2538
2539         /*
2540          * grab_cache_page_write_begin() can take a long time if the
2541          * system is thrashing due to memory pressure, or if the page
2542          * is being written back.  So grab it first before we start
2543          * the transaction handle.  This also allows us to allocate
2544          * the page (if needed) without using GFP_NOFS.
2545          */
2546 retry_grab:
2547         page = grab_cache_page_write_begin(mapping, index, flags);
2548         if (!page)
2549                 return -ENOMEM;
2550         unlock_page(page);
2551
2552         /*
2553          * With delayed allocation, we don't log the i_disksize update
2554          * if there is delayed block allocation. But we still need
2555          * to journalling the i_disksize update if writes to the end
2556          * of file which has an already mapped buffer.
2557          */
2558 retry_journal:
2559         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2560                                 ext4_da_write_credits(inode, pos, len));
2561         if (IS_ERR(handle)) {
2562                 page_cache_release(page);
2563                 return PTR_ERR(handle);
2564         }
2565
2566         lock_page(page);
2567         if (page->mapping != mapping) {
2568                 /* The page got truncated from under us */
2569                 unlock_page(page);
2570                 page_cache_release(page);
2571                 ext4_journal_stop(handle);
2572                 goto retry_grab;
2573         }
2574         /* In case writeback began while the page was unlocked */
2575         wait_for_stable_page(page);
2576
2577         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2578         if (ret < 0) {
2579                 unlock_page(page);
2580                 ext4_journal_stop(handle);
2581                 /*
2582                  * block_write_begin may have instantiated a few blocks
2583                  * outside i_size.  Trim these off again. Don't need
2584                  * i_size_read because we hold i_mutex.
2585                  */
2586                 if (pos + len > inode->i_size)
2587                         ext4_truncate_failed_write(inode);
2588
2589                 if (ret == -ENOSPC &&
2590                     ext4_should_retry_alloc(inode->i_sb, &retries))
2591                         goto retry_journal;
2592
2593                 page_cache_release(page);
2594                 return ret;
2595         }
2596
2597         *pagep = page;
2598         return ret;
2599 }
2600
2601 /*
2602  * Check if we should update i_disksize
2603  * when write to the end of file but not require block allocation
2604  */
2605 static int ext4_da_should_update_i_disksize(struct page *page,
2606                                             unsigned long offset)
2607 {
2608         struct buffer_head *bh;
2609         struct inode *inode = page->mapping->host;
2610         unsigned int idx;
2611         int i;
2612
2613         bh = page_buffers(page);
2614         idx = offset >> inode->i_blkbits;
2615
2616         for (i = 0; i < idx; i++)
2617                 bh = bh->b_this_page;
2618
2619         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2620                 return 0;
2621         return 1;
2622 }
2623
2624 static int ext4_da_write_end(struct file *file,
2625                              struct address_space *mapping,
2626                              loff_t pos, unsigned len, unsigned copied,
2627                              struct page *page, void *fsdata)
2628 {
2629         struct inode *inode = mapping->host;
2630         int ret = 0, ret2;
2631         handle_t *handle = ext4_journal_current_handle();
2632         loff_t new_i_size;
2633         unsigned long start, end;
2634         int write_mode = (int)(unsigned long)fsdata;
2635
2636         if (write_mode == FALL_BACK_TO_NONDELALLOC)
2637                 return ext4_write_end(file, mapping, pos,
2638                                       len, copied, page, fsdata);
2639
2640         trace_ext4_da_write_end(inode, pos, len, copied);
2641         start = pos & (PAGE_CACHE_SIZE - 1);
2642         end = start + copied - 1;
2643
2644         /*
2645          * generic_write_end() will run mark_inode_dirty() if i_size
2646          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2647          * into that.
2648          */
2649         new_i_size = pos + copied;
2650         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2651                 if (ext4_has_inline_data(inode) ||
2652                     ext4_da_should_update_i_disksize(page, end)) {
2653                         ext4_update_i_disksize(inode, new_i_size);
2654                         /* We need to mark inode dirty even if
2655                          * new_i_size is less that inode->i_size
2656                          * bu greater than i_disksize.(hint delalloc)
2657                          */
2658                         ext4_mark_inode_dirty(handle, inode);
2659                 }
2660         }
2661
2662         if (write_mode != CONVERT_INLINE_DATA &&
2663             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2664             ext4_has_inline_data(inode))
2665                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2666                                                      page);
2667         else
2668                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2669                                                         page, fsdata);
2670
2671         copied = ret2;
2672         if (ret2 < 0)
2673                 ret = ret2;
2674         ret2 = ext4_journal_stop(handle);
2675         if (!ret)
2676                 ret = ret2;
2677
2678         return ret ? ret : copied;
2679 }
2680
2681 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2682                                    unsigned int length)
2683 {
2684         /*
2685          * Drop reserved blocks
2686          */
2687         BUG_ON(!PageLocked(page));
2688         if (!page_has_buffers(page))
2689                 goto out;
2690
2691         ext4_da_page_release_reservation(page, offset, length);
2692
2693 out:
2694         ext4_invalidatepage(page, offset, length);
2695
2696         return;
2697 }
2698
2699 /*
2700  * Force all delayed allocation blocks to be allocated for a given inode.
2701  */
2702 int ext4_alloc_da_blocks(struct inode *inode)
2703 {
2704         trace_ext4_alloc_da_blocks(inode);
2705
2706         if (!EXT4_I(inode)->i_reserved_data_blocks)
2707                 return 0;
2708
2709         /*
2710          * We do something simple for now.  The filemap_flush() will
2711          * also start triggering a write of the data blocks, which is
2712          * not strictly speaking necessary (and for users of
2713          * laptop_mode, not even desirable).  However, to do otherwise
2714          * would require replicating code paths in:
2715          *
2716          * ext4_writepages() ->
2717          *    write_cache_pages() ---> (via passed in callback function)
2718          *        __mpage_da_writepage() -->
2719          *           mpage_add_bh_to_extent()
2720          *           mpage_da_map_blocks()
2721          *
2722          * The problem is that write_cache_pages(), located in
2723          * mm/page-writeback.c, marks pages clean in preparation for
2724          * doing I/O, which is not desirable if we're not planning on
2725          * doing I/O at all.
2726          *
2727          * We could call write_cache_pages(), and then redirty all of
2728          * the pages by calling redirty_page_for_writepage() but that
2729          * would be ugly in the extreme.  So instead we would need to
2730          * replicate parts of the code in the above functions,
2731          * simplifying them because we wouldn't actually intend to
2732          * write out the pages, but rather only collect contiguous
2733          * logical block extents, call the multi-block allocator, and
2734          * then update the buffer heads with the block allocations.
2735          *
2736          * For now, though, we'll cheat by calling filemap_flush(),
2737          * which will map the blocks, and start the I/O, but not
2738          * actually wait for the I/O to complete.
2739          */
2740         return filemap_flush(inode->i_mapping);
2741 }
2742
2743 /*
2744  * bmap() is special.  It gets used by applications such as lilo and by
2745  * the swapper to find the on-disk block of a specific piece of data.
2746  *
2747  * Naturally, this is dangerous if the block concerned is still in the
2748  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2749  * filesystem and enables swap, then they may get a nasty shock when the
2750  * data getting swapped to that swapfile suddenly gets overwritten by
2751  * the original zero's written out previously to the journal and
2752  * awaiting writeback in the kernel's buffer cache.
2753  *
2754  * So, if we see any bmap calls here on a modified, data-journaled file,
2755  * take extra steps to flush any blocks which might be in the cache.
2756  */
2757 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2758 {
2759         struct inode *inode = mapping->host;
2760         journal_t *journal;
2761         int err;
2762
2763         /*
2764          * We can get here for an inline file via the FIBMAP ioctl
2765          */
2766         if (ext4_has_inline_data(inode))
2767                 return 0;
2768
2769         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2770                         test_opt(inode->i_sb, DELALLOC)) {
2771                 /*
2772                  * With delalloc we want to sync the file
2773                  * so that we can make sure we allocate
2774                  * blocks for file
2775                  */
2776                 filemap_write_and_wait(mapping);
2777         }
2778
2779         if (EXT4_JOURNAL(inode) &&
2780             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2781                 /*
2782                  * This is a REALLY heavyweight approach, but the use of
2783                  * bmap on dirty files is expected to be extremely rare:
2784                  * only if we run lilo or swapon on a freshly made file
2785                  * do we expect this to happen.
2786                  *
2787                  * (bmap requires CAP_SYS_RAWIO so this does not
2788                  * represent an unprivileged user DOS attack --- we'd be
2789                  * in trouble if mortal users could trigger this path at
2790                  * will.)
2791                  *
2792                  * NB. EXT4_STATE_JDATA is not set on files other than
2793                  * regular files.  If somebody wants to bmap a directory
2794                  * or symlink and gets confused because the buffer
2795                  * hasn't yet been flushed to disk, they deserve
2796                  * everything they get.
2797                  */
2798
2799                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2800                 journal = EXT4_JOURNAL(inode);
2801                 jbd2_journal_lock_updates(journal);
2802                 err = jbd2_journal_flush(journal);
2803                 jbd2_journal_unlock_updates(journal);
2804
2805                 if (err)
2806                         return 0;
2807         }
2808
2809         return generic_block_bmap(mapping, block, ext4_get_block);
2810 }
2811
2812 static int ext4_readpage(struct file *file, struct page *page)
2813 {
2814         int ret = -EAGAIN;
2815         struct inode *inode = page->mapping->host;
2816
2817         trace_ext4_readpage(page);
2818
2819         if (ext4_has_inline_data(inode))
2820                 ret = ext4_readpage_inline(inode, page);
2821
2822         if (ret == -EAGAIN)
2823                 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
2824
2825         return ret;
2826 }
2827
2828 static int
2829 ext4_readpages(struct file *file, struct address_space *mapping,
2830                 struct list_head *pages, unsigned nr_pages)
2831 {
2832         struct inode *inode = mapping->host;
2833
2834         /* If the file has inline data, no need to do readpages. */
2835         if (ext4_has_inline_data(inode))
2836                 return 0;
2837
2838         return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
2839 }
2840
2841 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2842                                 unsigned int length)
2843 {
2844         trace_ext4_invalidatepage(page, offset, length);
2845
2846         /* No journalling happens on data buffers when this function is used */
2847         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2848
2849         block_invalidatepage(page, offset, length);
2850 }
2851
2852 static int __ext4_journalled_invalidatepage(struct page *page,
2853                                             unsigned int offset,
2854                                             unsigned int length)
2855 {
2856         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2857
2858         trace_ext4_journalled_invalidatepage(page, offset, length);
2859
2860         /*
2861          * If it's a full truncate we just forget about the pending dirtying
2862          */
2863         if (offset == 0 && length == PAGE_CACHE_SIZE)
2864                 ClearPageChecked(page);
2865
2866         return jbd2_journal_invalidatepage(journal, page, offset, length);
2867 }
2868
2869 /* Wrapper for aops... */
2870 static void ext4_journalled_invalidatepage(struct page *page,
2871                                            unsigned int offset,
2872                                            unsigned int length)
2873 {
2874         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
2875 }
2876
2877 static int ext4_releasepage(struct page *page, gfp_t wait)
2878 {
2879         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2880
2881         trace_ext4_releasepage(page);
2882
2883         /* Page has dirty journalled data -> cannot release */
2884         if (PageChecked(page))
2885                 return 0;
2886         if (journal)
2887                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2888         else
2889                 return try_to_free_buffers(page);
2890 }
2891
2892 /*
2893  * ext4_get_block used when preparing for a DIO write or buffer write.
2894  * We allocate an uinitialized extent if blocks haven't been allocated.
2895  * The extent will be converted to initialized after the IO is complete.
2896  */
2897 int ext4_get_block_write(struct inode *inode, sector_t iblock,
2898                    struct buffer_head *bh_result, int create)
2899 {
2900         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2901                    inode->i_ino, create);
2902         return _ext4_get_block(inode, iblock, bh_result,
2903                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
2904 }
2905
2906 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
2907                    struct buffer_head *bh_result, int create)
2908 {
2909         ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2910                    inode->i_ino, create);
2911         return _ext4_get_block(inode, iblock, bh_result,
2912                                EXT4_GET_BLOCKS_NO_LOCK);
2913 }
2914
2915 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2916                             ssize_t size, void *private)
2917 {
2918         ext4_io_end_t *io_end = iocb->private;
2919
2920         /* if not async direct IO just return */
2921         if (!io_end)
2922                 return;
2923
2924         ext_debug("ext4_end_io_dio(): io_end 0x%p "
2925                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2926                   iocb->private, io_end->inode->i_ino, iocb, offset,
2927                   size);
2928
2929         iocb->private = NULL;
2930         io_end->offset = offset;
2931         io_end->size = size;
2932         ext4_put_io_end(io_end);
2933 }
2934
2935 /*
2936  * For ext4 extent files, ext4 will do direct-io write to holes,
2937  * preallocated extents, and those write extend the file, no need to
2938  * fall back to buffered IO.
2939  *
2940  * For holes, we fallocate those blocks, mark them as unwritten
2941  * If those blocks were preallocated, we mark sure they are split, but
2942  * still keep the range to write as unwritten.
2943  *
2944  * The unwritten extents will be converted to written when DIO is completed.
2945  * For async direct IO, since the IO may still pending when return, we
2946  * set up an end_io call back function, which will do the conversion
2947  * when async direct IO completed.
2948  *
2949  * If the O_DIRECT write will extend the file then add this inode to the
2950  * orphan list.  So recovery will truncate it back to the original size
2951  * if the machine crashes during the write.
2952  *
2953  */
2954 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2955                               struct iov_iter *iter, loff_t offset)
2956 {
2957         struct file *file = iocb->ki_filp;
2958         struct inode *inode = file->f_mapping->host;
2959         ssize_t ret;
2960         size_t count = iov_iter_count(iter);
2961         int overwrite = 0;
2962         get_block_t *get_block_func = NULL;
2963         int dio_flags = 0;
2964         loff_t final_size = offset + count;
2965         ext4_io_end_t *io_end = NULL;
2966
2967         /* Use the old path for reads and writes beyond i_size. */
2968         if (rw != WRITE || final_size > inode->i_size)
2969                 return ext4_ind_direct_IO(rw, iocb, iter, offset);
2970
2971         BUG_ON(iocb->private == NULL);
2972
2973         /*
2974          * Make all waiters for direct IO properly wait also for extent
2975          * conversion. This also disallows race between truncate() and
2976          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
2977          */
2978         if (rw == WRITE)
2979                 atomic_inc(&inode->i_dio_count);
2980
2981         /* If we do a overwrite dio, i_mutex locking can be released */
2982         overwrite = *((int *)iocb->private);
2983
2984         if (overwrite) {
2985                 down_read(&EXT4_I(inode)->i_data_sem);
2986                 mutex_unlock(&inode->i_mutex);
2987         }
2988
2989         /*
2990          * We could direct write to holes and fallocate.
2991          *
2992          * Allocated blocks to fill the hole are marked as
2993          * unwritten to prevent parallel buffered read to expose
2994          * the stale data before DIO complete the data IO.
2995          *
2996          * As to previously fallocated extents, ext4 get_block will
2997          * just simply mark the buffer mapped but still keep the
2998          * extents unwritten.
2999          *
3000          * For non AIO case, we will convert those unwritten extents
3001          * to written after return back from blockdev_direct_IO.
3002          *
3003          * For async DIO, the conversion needs to be deferred when the
3004          * IO is completed. The ext4 end_io callback function will be
3005          * called to take care of the conversion work.  Here for async
3006          * case, we allocate an io_end structure to hook to the iocb.
3007          */
3008         iocb->private = NULL;
3009         ext4_inode_aio_set(inode, NULL);
3010         if (!is_sync_kiocb(iocb)) {
3011                 io_end = ext4_init_io_end(inode, GFP_NOFS);
3012                 if (!io_end) {
3013                         ret = -ENOMEM;
3014                         goto retake_lock;
3015                 }
3016                 /*
3017                  * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3018                  */
3019                 iocb->private = ext4_get_io_end(io_end);
3020                 /*
3021                  * we save the io structure for current async direct
3022                  * IO, so that later ext4_map_blocks() could flag the
3023                  * io structure whether there is a unwritten extents
3024                  * needs to be converted when IO is completed.
3025                  */
3026                 ext4_inode_aio_set(inode, io_end);
3027         }
3028
3029         if (overwrite) {
3030                 get_block_func = ext4_get_block_write_nolock;
3031         } else {
3032                 get_block_func = ext4_get_block_write;
3033                 dio_flags = DIO_LOCKING;
3034         }
3035         if (IS_DAX(inode))
3036                 ret = dax_do_io(rw, iocb, inode, iter, offset, get_block_func,
3037                                 ext4_end_io_dio, dio_flags);
3038         else
3039                 ret = __blockdev_direct_IO(rw, iocb, inode,
3040                                            inode->i_sb->s_bdev, iter, offset,
3041                                            get_block_func,
3042                                            ext4_end_io_dio, NULL, dio_flags);
3043
3044         /*
3045          * Put our reference to io_end. This can free the io_end structure e.g.
3046          * in sync IO case or in case of error. It can even perform extent
3047          * conversion if all bios we submitted finished before we got here.
3048          * Note that in that case iocb->private can be already set to NULL
3049          * here.
3050          */
3051         if (io_end) {
3052                 ext4_inode_aio_set(inode, NULL);
3053                 ext4_put_io_end(io_end);
3054                 /*
3055                  * When no IO was submitted ext4_end_io_dio() was not
3056                  * called so we have to put iocb's reference.
3057                  */
3058                 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3059                         WARN_ON(iocb->private != io_end);
3060                         WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3061                         ext4_put_io_end(io_end);
3062                         iocb->private = NULL;
3063                 }
3064         }
3065         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3066                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3067                 int err;
3068                 /*
3069                  * for non AIO case, since the IO is already
3070                  * completed, we could do the conversion right here
3071                  */
3072                 err = ext4_convert_unwritten_extents(NULL, inode,
3073                                                      offset, ret);
3074                 if (err < 0)
3075                         ret = err;
3076                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3077         }
3078
3079 retake_lock:
3080         if (rw == WRITE)
3081                 inode_dio_done(inode);
3082         /* take i_mutex locking again if we do a ovewrite dio */
3083         if (overwrite) {
3084                 up_read(&EXT4_I(inode)->i_data_sem);
3085                 mutex_lock(&inode->i_mutex);
3086         }
3087
3088         return ret;
3089 }
3090
3091 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3092                               struct iov_iter *iter, loff_t offset)
3093 {
3094         struct file *file = iocb->ki_filp;
3095         struct inode *inode = file->f_mapping->host;
3096         size_t count = iov_iter_count(iter);
3097         ssize_t ret;
3098
3099         /*
3100          * If we are doing data journalling we don't support O_DIRECT
3101          */
3102         if (ext4_should_journal_data(inode))
3103                 return 0;
3104
3105         /* Let buffer I/O handle the inline data case. */
3106         if (ext4_has_inline_data(inode))
3107                 return 0;
3108
3109         trace_ext4_direct_IO_enter(inode, offset, count, rw);
3110         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3111                 ret = ext4_ext_direct_IO(rw, iocb, iter, offset);
3112         else
3113                 ret = ext4_ind_direct_IO(rw, iocb, iter, offset);
3114         trace_ext4_direct_IO_exit(inode, offset, count, rw, ret);
3115         return ret;
3116 }
3117
3118 /*
3119  * Pages can be marked dirty completely asynchronously from ext4's journalling
3120  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3121  * much here because ->set_page_dirty is called under VFS locks.  The page is
3122  * not necessarily locked.
3123  *
3124  * We cannot just dirty the page and leave attached buffers clean, because the
3125  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3126  * or jbddirty because all the journalling code will explode.
3127  *
3128  * So what we do is to mark the page "pending dirty" and next time writepage
3129  * is called, propagate that into the buffers appropriately.
3130  */
3131 static int ext4_journalled_set_page_dirty(struct page *page)
3132 {
3133         SetPageChecked(page);
3134         return __set_page_dirty_nobuffers(page);
3135 }
3136
3137 static const struct address_space_operations ext4_aops = {
3138         .readpage               = ext4_readpage,
3139         .readpages              = ext4_readpages,
3140         .writepage              = ext4_writepage,
3141         .writepages             = ext4_writepages,
3142         .write_begin            = ext4_write_begin,
3143         .write_end              = ext4_write_end,
3144         .bmap                   = ext4_bmap,
3145         .invalidatepage         = ext4_invalidatepage,
3146         .releasepage            = ext4_releasepage,
3147         .direct_IO              = ext4_direct_IO,
3148         .migratepage            = buffer_migrate_page,
3149         .is_partially_uptodate  = block_is_partially_uptodate,
3150         .error_remove_page      = generic_error_remove_page,
3151 };
3152
3153 static const struct address_space_operations ext4_journalled_aops = {
3154         .readpage               = ext4_readpage,
3155         .readpages              = ext4_readpages,
3156         .writepage              = ext4_writepage,
3157         .writepages             = ext4_writepages,
3158         .write_begin            = ext4_write_begin,
3159         .write_end              = ext4_journalled_write_end,
3160         .set_page_dirty         = ext4_journalled_set_page_dirty,
3161         .bmap                   = ext4_bmap,
3162         .invalidatepage         = ext4_journalled_invalidatepage,
3163         .releasepage            = ext4_releasepage,
3164         .direct_IO              = ext4_direct_IO,
3165         .is_partially_uptodate  = block_is_partially_uptodate,
3166         .error_remove_page      = generic_error_remove_page,
3167 };
3168
3169 static const struct address_space_operations ext4_da_aops = {
3170         .readpage               = ext4_readpage,
3171         .readpages              = ext4_readpages,
3172         .writepage              = ext4_writepage,
3173         .writepages             = ext4_writepages,
3174         .write_begin            = ext4_da_write_begin,
3175         .write_end              = ext4_da_write_end,
3176         .bmap                   = ext4_bmap,
3177         .invalidatepage         = ext4_da_invalidatepage,
3178         .releasepage            = ext4_releasepage,
3179         .direct_IO              = ext4_direct_IO,
3180         .migratepage            = buffer_migrate_page,
3181         .is_partially_uptodate  = block_is_partially_uptodate,
3182         .error_remove_page      = generic_error_remove_page,
3183 };
3184
3185 void ext4_set_aops(struct inode *inode)
3186 {
3187         switch (ext4_inode_journal_mode(inode)) {
3188         case EXT4_INODE_ORDERED_DATA_MODE:
3189                 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3190                 break;
3191         case EXT4_INODE_WRITEBACK_DATA_MODE:
3192                 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3193                 break;
3194         case EXT4_INODE_JOURNAL_DATA_MODE:
3195                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3196                 return;
3197         default:
3198                 BUG();
3199         }
3200         if (test_opt(inode->i_sb, DELALLOC))
3201                 inode->i_mapping->a_ops = &ext4_da_aops;
3202         else
3203                 inode->i_mapping->a_ops = &ext4_aops;
3204 }
3205
3206 static int __ext4_block_zero_page_range(handle_t *handle,
3207                 struct address_space *mapping, loff_t from, loff_t length)
3208 {
3209         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3210         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3211         unsigned blocksize, pos;
3212         ext4_lblk_t iblock;
3213         struct inode *inode = mapping->host;
3214         struct buffer_head *bh;
3215         struct page *page;
3216         int err = 0;
3217
3218         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3219                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3220         if (!page)
3221                 return -ENOMEM;
3222
3223         blocksize = inode->i_sb->s_blocksize;
3224
3225         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3226
3227         if (!page_has_buffers(page))
3228                 create_empty_buffers(page, blocksize, 0);
3229
3230         /* Find the buffer that contains "offset" */
3231         bh = page_buffers(page);
3232         pos = blocksize;
3233         while (offset >= pos) {
3234                 bh = bh->b_this_page;
3235                 iblock++;
3236                 pos += blocksize;
3237         }
3238         if (buffer_freed(bh)) {
3239                 BUFFER_TRACE(bh, "freed: skip");
3240                 goto unlock;
3241         }
3242         if (!buffer_mapped(bh)) {
3243                 BUFFER_TRACE(bh, "unmapped");
3244                 ext4_get_block(inode, iblock, bh, 0);
3245                 /* unmapped? It's a hole - nothing to do */
3246                 if (!buffer_mapped(bh)) {
3247                         BUFFER_TRACE(bh, "still unmapped");
3248                         goto unlock;
3249                 }
3250         }
3251
3252         /* Ok, it's mapped. Make sure it's up-to-date */
3253         if (PageUptodate(page))
3254                 set_buffer_uptodate(bh);
3255
3256         if (!buffer_uptodate(bh)) {
3257                 err = -EIO;
3258                 ll_rw_block(READ, 1, &bh);
3259                 wait_on_buffer(bh);
3260                 /* Uhhuh. Read error. Complain and punt. */
3261                 if (!buffer_uptodate(bh))
3262                         goto unlock;
3263         }
3264         if (ext4_should_journal_data(inode)) {
3265                 BUFFER_TRACE(bh, "get write access");
3266                 err = ext4_journal_get_write_access(handle, bh);
3267                 if (err)
3268                         goto unlock;
3269         }
3270         zero_user(page, offset, length);
3271         BUFFER_TRACE(bh, "zeroed end of block");
3272
3273         if (ext4_should_journal_data(inode)) {
3274                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3275         } else {
3276                 err = 0;
3277                 mark_buffer_dirty(bh);
3278                 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3279                         err = ext4_jbd2_file_inode(handle, inode);
3280         }
3281
3282 unlock:
3283         unlock_page(page);
3284         page_cache_release(page);
3285         return err;
3286 }
3287
3288 /*
3289  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3290  * starting from file offset 'from'.  The range to be zero'd must
3291  * be contained with in one block.  If the specified range exceeds
3292  * the end of the block it will be shortened to end of the block
3293  * that cooresponds to 'from'
3294  */
3295 static int ext4_block_zero_page_range(handle_t *handle,
3296                 struct address_space *mapping, loff_t from, loff_t length)
3297 {
3298         struct inode *inode = mapping->host;
3299         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3300         unsigned blocksize = inode->i_sb->s_blocksize;
3301         unsigned max = blocksize - (offset & (blocksize - 1));
3302
3303         /*
3304          * correct length if it does not fall between
3305          * 'from' and the end of the block
3306          */
3307         if (length > max || length < 0)
3308                 length = max;
3309
3310         if (IS_DAX(inode))
3311                 return dax_zero_page_range(inode, from, length, ext4_get_block);
3312         return __ext4_block_zero_page_range(handle, mapping, from, length);
3313 }
3314
3315 /*
3316  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3317  * up to the end of the block which corresponds to `from'.
3318  * This required during truncate. We need to physically zero the tail end
3319  * of that block so it doesn't yield old data if the file is later grown.
3320  */
3321 static int ext4_block_truncate_page(handle_t *handle,
3322                 struct address_space *mapping, loff_t from)
3323 {
3324         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3325         unsigned length;
3326         unsigned blocksize;
3327         struct inode *inode = mapping->host;
3328
3329         blocksize = inode->i_sb->s_blocksize;
3330         length = blocksize - (offset & (blocksize - 1));
3331
3332         return ext4_block_zero_page_range(handle, mapping, from, length);
3333 }
3334
3335 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3336                              loff_t lstart, loff_t length)
3337 {
3338         struct super_block *sb = inode->i_sb;
3339         struct address_space *mapping = inode->i_mapping;
3340         unsigned partial_start, partial_end;
3341         ext4_fsblk_t start, end;
3342         loff_t byte_end = (lstart + length - 1);
3343         int err = 0;
3344
3345         partial_start = lstart & (sb->s_blocksize - 1);
3346         partial_end = byte_end & (sb->s_blocksize - 1);
3347
3348         start = lstart >> sb->s_blocksize_bits;
3349         end = byte_end >> sb->s_blocksize_bits;
3350
3351         /* Handle partial zero within the single block */
3352         if (start == end &&
3353             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3354                 err = ext4_block_zero_page_range(handle, mapping,
3355                                                  lstart, length);
3356                 return err;
3357         }
3358         /* Handle partial zero out on the start of the range */
3359         if (partial_start) {
3360                 err = ext4_block_zero_page_range(handle, mapping,
3361                                                  lstart, sb->s_blocksize);
3362                 if (err)
3363                         return err;
3364         }
3365         /* Handle partial zero out on the end of the range */
3366         if (partial_end != sb->s_blocksize - 1)
3367                 err = ext4_block_zero_page_range(handle, mapping,
3368                                                  byte_end - partial_end,
3369                                                  partial_end + 1);
3370         return err;
3371 }
3372
3373 int ext4_can_truncate(struct inode *inode)
3374 {
3375         if (S_ISREG(inode->i_mode))
3376                 return 1;
3377         if (S_ISDIR(inode->i_mode))
3378                 return 1;
3379         if (S_ISLNK(inode->i_mode))
3380                 return !ext4_inode_is_fast_symlink(inode);
3381         return 0;
3382 }
3383
3384 /*
3385  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3386  * associated with the given offset and length
3387  *
3388  * @inode:  File inode
3389  * @offset: The offset where the hole will begin
3390  * @len:    The length of the hole
3391  *
3392  * Returns: 0 on success or negative on failure
3393  */
3394
3395 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3396 {
3397         struct super_block *sb = inode->i_sb;
3398         ext4_lblk_t first_block, stop_block;
3399         struct address_space *mapping = inode->i_mapping;
3400         loff_t first_block_offset, last_block_offset;
3401         handle_t *handle;
3402         unsigned int credits;
3403         int ret = 0;
3404
3405         if (!S_ISREG(inode->i_mode))
3406                 return -EOPNOTSUPP;
3407
3408         trace_ext4_punch_hole(inode, offset, length, 0);
3409
3410         /*
3411          * Write out all dirty pages to avoid race conditions
3412          * Then release them.
3413          */
3414         if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3415                 ret = filemap_write_and_wait_range(mapping, offset,
3416                                                    offset + length - 1);
3417                 if (ret)
3418                         return ret;
3419         }
3420
3421         mutex_lock(&inode->i_mutex);
3422
3423         /* No need to punch hole beyond i_size */
3424         if (offset >= inode->i_size)
3425                 goto out_mutex;
3426
3427         /*
3428          * If the hole extends beyond i_size, set the hole
3429          * to end after the page that contains i_size
3430          */
3431         if (offset + length > inode->i_size) {
3432                 length = inode->i_size +
3433                    PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3434                    offset;
3435         }
3436
3437         if (offset & (sb->s_blocksize - 1) ||
3438             (offset + length) & (sb->s_blocksize - 1)) {
3439                 /*
3440                  * Attach jinode to inode for jbd2 if we do any zeroing of
3441                  * partial block
3442                  */
3443                 ret = ext4_inode_attach_jinode(inode);
3444                 if (ret < 0)
3445                         goto out_mutex;
3446
3447         }
3448
3449         first_block_offset = round_up(offset, sb->s_blocksize);
3450         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3451
3452         /* Now release the pages and zero block aligned part of pages*/
3453         if (last_block_offset > first_block_offset)
3454                 truncate_pagecache_range(inode, first_block_offset,
3455                                          last_block_offset);
3456
3457         /* Wait all existing dio workers, newcomers will block on i_mutex */
3458         ext4_inode_block_unlocked_dio(inode);
3459         inode_dio_wait(inode);
3460
3461         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3462                 credits = ext4_writepage_trans_blocks(inode);
3463         else
3464                 credits = ext4_blocks_for_truncate(inode);
3465         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3466         if (IS_ERR(handle)) {
3467                 ret = PTR_ERR(handle);
3468                 ext4_std_error(sb, ret);
3469                 goto out_dio;
3470         }
3471
3472         ret = ext4_zero_partial_blocks(handle, inode, offset,
3473                                        length);
3474         if (ret)
3475                 goto out_stop;
3476
3477         first_block = (offset + sb->s_blocksize - 1) >>
3478                 EXT4_BLOCK_SIZE_BITS(sb);
3479         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3480
3481         /* If there are no blocks to remove, return now */
3482         if (first_block >= stop_block)
3483                 goto out_stop;
3484
3485         down_write(&EXT4_I(inode)->i_data_sem);
3486         ext4_discard_preallocations(inode);
3487
3488         ret = ext4_es_remove_extent(inode, first_block,
3489                                     stop_block - first_block);
3490         if (ret) {
3491                 up_write(&EXT4_I(inode)->i_data_sem);
3492                 goto out_stop;
3493         }
3494
3495         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3496                 ret = ext4_ext_remove_space(inode, first_block,
3497                                             stop_block - 1);
3498         else
3499                 ret = ext4_ind_remove_space(handle, inode, first_block,
3500                                             stop_block);
3501
3502         up_write(&EXT4_I(inode)->i_data_sem);
3503         if (IS_SYNC(inode))
3504                 ext4_handle_sync(handle);
3505
3506         /* Now release the pages again to reduce race window */
3507         if (last_block_offset > first_block_offset)
3508                 truncate_pagecache_range(inode, first_block_offset,
3509                                          last_block_offset);
3510
3511         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3512         ext4_mark_inode_dirty(handle, inode);
3513 out_stop:
3514         ext4_journal_stop(handle);
3515 out_dio:
3516         ext4_inode_resume_unlocked_dio(inode);
3517 out_mutex:
3518         mutex_unlock(&inode->i_mutex);
3519         return ret;
3520 }
3521
3522 int ext4_inode_attach_jinode(struct inode *inode)
3523 {
3524         struct ext4_inode_info *ei = EXT4_I(inode);
3525         struct jbd2_inode *jinode;
3526
3527         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3528                 return 0;
3529
3530         jinode = jbd2_alloc_inode(GFP_KERNEL);
3531         spin_lock(&inode->i_lock);
3532         if (!ei->jinode) {
3533                 if (!jinode) {
3534                         spin_unlock(&inode->i_lock);
3535                         return -ENOMEM;
3536                 }
3537                 ei->jinode = jinode;
3538                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3539                 jinode = NULL;
3540         }
3541         spin_unlock(&inode->i_lock);
3542         if (unlikely(jinode != NULL))
3543                 jbd2_free_inode(jinode);
3544         return 0;
3545 }
3546
3547 /*
3548  * ext4_truncate()
3549  *
3550  * We block out ext4_get_block() block instantiations across the entire
3551  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3552  * simultaneously on behalf of the same inode.
3553  *
3554  * As we work through the truncate and commit bits of it to the journal there
3555  * is one core, guiding principle: the file's tree must always be consistent on
3556  * disk.  We must be able to restart the truncate after a crash.
3557  *
3558  * The file's tree may be transiently inconsistent in memory (although it
3559  * probably isn't), but whenever we close off and commit a journal transaction,
3560  * the contents of (the filesystem + the journal) must be consistent and
3561  * restartable.  It's pretty simple, really: bottom up, right to left (although
3562  * left-to-right works OK too).
3563  *
3564  * Note that at recovery time, journal replay occurs *before* the restart of
3565  * truncate against the orphan inode list.
3566  *
3567  * The committed inode has the new, desired i_size (which is the same as
3568  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3569  * that this inode's truncate did not complete and it will again call
3570  * ext4_truncate() to have another go.  So there will be instantiated blocks
3571  * to the right of the truncation point in a crashed ext4 filesystem.  But
3572  * that's fine - as long as they are linked from the inode, the post-crash
3573  * ext4_truncate() run will find them and release them.
3574  */
3575 void ext4_truncate(struct inode *inode)
3576 {
3577         struct ext4_inode_info *ei = EXT4_I(inode);
3578         unsigned int credits;
3579         handle_t *handle;
3580         struct address_space *mapping = inode->i_mapping;
3581
3582         /*
3583          * There is a possibility that we're either freeing the inode
3584          * or it's a completely new inode. In those cases we might not
3585          * have i_mutex locked because it's not necessary.
3586          */
3587         if (!(inode->i_state & (I_NEW|I_FREEING)))
3588                 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3589         trace_ext4_truncate_enter(inode);
3590
3591         if (!ext4_can_truncate(inode))
3592                 return;
3593
3594         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3595
3596         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3597                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3598
3599         if (ext4_has_inline_data(inode)) {
3600                 int has_inline = 1;
3601
3602                 ext4_inline_data_truncate(inode, &has_inline);
3603                 if (has_inline)
3604                         return;
3605         }
3606
3607         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3608         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3609                 if (ext4_inode_attach_jinode(inode) < 0)
3610                         return;
3611         }
3612
3613         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3614                 credits = ext4_writepage_trans_blocks(inode);
3615         else
3616                 credits = ext4_blocks_for_truncate(inode);
3617
3618         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3619         if (IS_ERR(handle)) {
3620                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3621                 return;
3622         }
3623
3624         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3625                 ext4_block_truncate_page(handle, mapping, inode->i_size);
3626
3627         /*
3628          * We add the inode to the orphan list, so that if this
3629          * truncate spans multiple transactions, and we crash, we will
3630          * resume the truncate when the filesystem recovers.  It also
3631          * marks the inode dirty, to catch the new size.
3632          *
3633          * Implication: the file must always be in a sane, consistent
3634          * truncatable state while each transaction commits.
3635          */
3636         if (ext4_orphan_add(handle, inode))
3637                 goto out_stop;
3638
3639         down_write(&EXT4_I(inode)->i_data_sem);
3640
3641         ext4_discard_preallocations(inode);
3642
3643         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3644                 ext4_ext_truncate(handle, inode);
3645         else
3646                 ext4_ind_truncate(handle, inode);
3647
3648         up_write(&ei->i_data_sem);
3649
3650         if (IS_SYNC(inode))
3651                 ext4_handle_sync(handle);
3652
3653 out_stop:
3654         /*
3655          * If this was a simple ftruncate() and the file will remain alive,
3656          * then we need to clear up the orphan record which we created above.
3657          * However, if this was a real unlink then we were called by
3658          * ext4_evict_inode(), and we allow that function to clean up the
3659          * orphan info for us.
3660          */
3661         if (inode->i_nlink)
3662                 ext4_orphan_del(handle, inode);
3663
3664         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3665         ext4_mark_inode_dirty(handle, inode);
3666         ext4_journal_stop(handle);
3667
3668         trace_ext4_truncate_exit(inode);
3669 }
3670
3671 /*
3672  * ext4_get_inode_loc returns with an extra refcount against the inode's
3673  * underlying buffer_head on success. If 'in_mem' is true, we have all
3674  * data in memory that is needed to recreate the on-disk version of this
3675  * inode.
3676  */
3677 static int __ext4_get_inode_loc(struct inode *inode,
3678                                 struct ext4_iloc *iloc, int in_mem)
3679 {
3680         struct ext4_group_desc  *gdp;
3681         struct buffer_head      *bh;
3682         struct super_block      *sb = inode->i_sb;
3683         ext4_fsblk_t            block;
3684         int                     inodes_per_block, inode_offset;
3685
3686         iloc->bh = NULL;
3687         if (!ext4_valid_inum(sb, inode->i_ino))
3688                 return -EIO;
3689
3690         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3691         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3692         if (!gdp)
3693                 return -EIO;
3694
3695         /*
3696          * Figure out the offset within the block group inode table
3697          */
3698         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3699         inode_offset = ((inode->i_ino - 1) %
3700                         EXT4_INODES_PER_GROUP(sb));
3701         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3702         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3703
3704         bh = sb_getblk(sb, block);
3705         if (unlikely(!bh))
3706                 return -ENOMEM;
3707         if (!buffer_uptodate(bh)) {
3708                 lock_buffer(bh);
3709
3710                 /*
3711                  * If the buffer has the write error flag, we have failed
3712                  * to write out another inode in the same block.  In this
3713                  * case, we don't have to read the block because we may
3714                  * read the old inode data successfully.
3715                  */
3716                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3717                         set_buffer_uptodate(bh);
3718
3719                 if (buffer_uptodate(bh)) {
3720                         /* someone brought it uptodate while we waited */
3721                         unlock_buffer(bh);
3722                         goto has_buffer;
3723                 }
3724
3725                 /*
3726                  * If we have all information of the inode in memory and this
3727                  * is the only valid inode in the block, we need not read the
3728                  * block.
3729                  */
3730                 if (in_mem) {
3731                         struct buffer_head *bitmap_bh;
3732                         int i, start;
3733
3734                         start = inode_offset & ~(inodes_per_block - 1);
3735
3736                         /* Is the inode bitmap in cache? */
3737                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3738                         if (unlikely(!bitmap_bh))
3739                                 goto make_io;
3740
3741                         /*
3742                          * If the inode bitmap isn't in cache then the
3743                          * optimisation may end up performing two reads instead
3744                          * of one, so skip it.
3745                          */
3746                         if (!buffer_uptodate(bitmap_bh)) {
3747                                 brelse(bitmap_bh);
3748                                 goto make_io;
3749                         }
3750                         for (i = start; i < start + inodes_per_block; i++) {
3751                                 if (i == inode_offset)
3752                                         continue;
3753                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3754                                         break;
3755                         }
3756                         brelse(bitmap_bh);
3757                         if (i == start + inodes_per_block) {
3758                                 /* all other inodes are free, so skip I/O */
3759                                 memset(bh->b_data, 0, bh->b_size);
3760                                 set_buffer_uptodate(bh);
3761                                 unlock_buffer(bh);
3762                                 goto has_buffer;
3763                         }
3764                 }
3765
3766 make_io:
3767                 /*
3768                  * If we need to do any I/O, try to pre-readahead extra
3769                  * blocks from the inode table.
3770                  */
3771                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3772                         ext4_fsblk_t b, end, table;
3773                         unsigned num;
3774                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3775
3776                         table = ext4_inode_table(sb, gdp);
3777                         /* s_inode_readahead_blks is always a power of 2 */
3778                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
3779                         if (table > b)
3780                                 b = table;
3781                         end = b + ra_blks;
3782                         num = EXT4_INODES_PER_GROUP(sb);
3783                         if (ext4_has_group_desc_csum(sb))
3784                                 num -= ext4_itable_unused_count(sb, gdp);
3785                         table += num / inodes_per_block;
3786                         if (end > table)
3787                                 end = table;
3788                         while (b <= end)
3789                                 sb_breadahead(sb, b++);
3790                 }
3791
3792                 /*
3793                  * There are other valid inodes in the buffer, this inode
3794                  * has in-inode xattrs, or we don't have this inode in memory.
3795                  * Read the block from disk.
3796                  */
3797                 trace_ext4_load_inode(inode);
3798                 get_bh(bh);
3799                 bh->b_end_io = end_buffer_read_sync;
3800                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3801                 wait_on_buffer(bh);
3802                 if (!buffer_uptodate(bh)) {
3803                         EXT4_ERROR_INODE_BLOCK(inode, block,
3804                                                "unable to read itable block");
3805                         brelse(bh);
3806                         return -EIO;
3807                 }
3808         }
3809 has_buffer:
3810         iloc->bh = bh;
3811         return 0;
3812 }
3813
3814 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3815 {
3816         /* We have all inode data except xattrs in memory here. */
3817         return __ext4_get_inode_loc(inode, iloc,
3818                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3819 }
3820
3821 void ext4_set_inode_flags(struct inode *inode)
3822 {
3823         unsigned int flags = EXT4_I(inode)->i_flags;
3824         unsigned int new_fl = 0;
3825
3826         if (flags & EXT4_SYNC_FL)
3827                 new_fl |= S_SYNC;
3828         if (flags & EXT4_APPEND_FL)
3829                 new_fl |= S_APPEND;
3830         if (flags & EXT4_IMMUTABLE_FL)
3831                 new_fl |= S_IMMUTABLE;
3832         if (flags & EXT4_NOATIME_FL)
3833                 new_fl |= S_NOATIME;
3834         if (flags & EXT4_DIRSYNC_FL)
3835                 new_fl |= S_DIRSYNC;
3836         if (test_opt(inode->i_sb, DAX))
3837                 new_fl |= S_DAX;
3838         inode_set_flags(inode, new_fl,
3839                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
3840 }
3841
3842 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3843 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3844 {
3845         unsigned int vfs_fl;
3846         unsigned long old_fl, new_fl;
3847
3848         do {
3849                 vfs_fl = ei->vfs_inode.i_flags;
3850                 old_fl = ei->i_flags;
3851                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3852                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3853                                 EXT4_DIRSYNC_FL);
3854                 if (vfs_fl & S_SYNC)
3855                         new_fl |= EXT4_SYNC_FL;
3856                 if (vfs_fl & S_APPEND)
3857                         new_fl |= EXT4_APPEND_FL;
3858                 if (vfs_fl & S_IMMUTABLE)
3859                         new_fl |= EXT4_IMMUTABLE_FL;
3860                 if (vfs_fl & S_NOATIME)
3861                         new_fl |= EXT4_NOATIME_FL;
3862                 if (vfs_fl & S_DIRSYNC)
3863                         new_fl |= EXT4_DIRSYNC_FL;
3864         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3865 }
3866
3867 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3868                                   struct ext4_inode_info *ei)
3869 {
3870         blkcnt_t i_blocks ;
3871         struct inode *inode = &(ei->vfs_inode);
3872         struct super_block *sb = inode->i_sb;
3873
3874         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3875                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3876                 /* we are using combined 48 bit field */
3877                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3878                                         le32_to_cpu(raw_inode->i_blocks_lo);
3879                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3880                         /* i_blocks represent file system block size */
3881                         return i_blocks  << (inode->i_blkbits - 9);
3882                 } else {
3883                         return i_blocks;
3884                 }
3885         } else {
3886                 return le32_to_cpu(raw_inode->i_blocks_lo);
3887         }
3888 }
3889
3890 static inline void ext4_iget_extra_inode(struct inode *inode,
3891                                          struct ext4_inode *raw_inode,
3892                                          struct ext4_inode_info *ei)
3893 {
3894         __le32 *magic = (void *)raw_inode +
3895                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3896         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3897                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3898                 ext4_find_inline_data_nolock(inode);
3899         } else
3900                 EXT4_I(inode)->i_inline_off = 0;
3901 }
3902
3903 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3904 {
3905         struct ext4_iloc iloc;
3906         struct ext4_inode *raw_inode;
3907         struct ext4_inode_info *ei;
3908         struct inode *inode;
3909         journal_t *journal = EXT4_SB(sb)->s_journal;
3910         long ret;
3911         int block;
3912         uid_t i_uid;
3913         gid_t i_gid;
3914
3915         inode = iget_locked(sb, ino);
3916         if (!inode)
3917                 return ERR_PTR(-ENOMEM);
3918         if (!(inode->i_state & I_NEW))
3919                 return inode;
3920
3921         ei = EXT4_I(inode);
3922         iloc.bh = NULL;
3923
3924         ret = __ext4_get_inode_loc(inode, &iloc, 0);
3925         if (ret < 0)
3926                 goto bad_inode;
3927         raw_inode = ext4_raw_inode(&iloc);
3928
3929         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3930                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3931                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3932                     EXT4_INODE_SIZE(inode->i_sb)) {
3933                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3934                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3935                                 EXT4_INODE_SIZE(inode->i_sb));
3936                         ret = -EIO;
3937                         goto bad_inode;
3938                 }
3939         } else
3940                 ei->i_extra_isize = 0;
3941
3942         /* Precompute checksum seed for inode metadata */
3943         if (ext4_has_metadata_csum(sb)) {
3944                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3945                 __u32 csum;
3946                 __le32 inum = cpu_to_le32(inode->i_ino);
3947                 __le32 gen = raw_inode->i_generation;
3948                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3949                                    sizeof(inum));
3950                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3951                                               sizeof(gen));
3952         }
3953
3954         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3955                 EXT4_ERROR_INODE(inode, "checksum invalid");
3956                 ret = -EIO;
3957                 goto bad_inode;
3958         }
3959
3960         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3961         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3962         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3963         if (!(test_opt(inode->i_sb, NO_UID32))) {
3964                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3965                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3966         }
3967         i_uid_write(inode, i_uid);
3968         i_gid_write(inode, i_gid);
3969         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3970
3971         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
3972         ei->i_inline_off = 0;
3973         ei->i_dir_start_lookup = 0;
3974         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3975         /* We now have enough fields to check if the inode was active or not.
3976          * This is needed because nfsd might try to access dead inodes
3977          * the test is that same one that e2fsck uses
3978          * NeilBrown 1999oct15
3979          */
3980         if (inode->i_nlink == 0) {
3981                 if ((inode->i_mode == 0 ||
3982                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
3983                     ino != EXT4_BOOT_LOADER_INO) {
3984                         /* this inode is deleted */
3985                         ret = -ESTALE;
3986                         goto bad_inode;
3987                 }
3988                 /* The only unlinked inodes we let through here have
3989                  * valid i_mode and are being read by the orphan
3990                  * recovery code: that's fine, we're about to complete
3991                  * the process of deleting those.
3992                  * OR it is the EXT4_BOOT_LOADER_INO which is
3993                  * not initialized on a new filesystem. */
3994         }
3995         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3996         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3997         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3998         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3999                 ei->i_file_acl |=
4000                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4001         inode->i_size = ext4_isize(raw_inode);
4002         ei->i_disksize = inode->i_size;
4003 #ifdef CONFIG_QUOTA
4004         ei->i_reserved_quota = 0;
4005 #endif
4006         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4007         ei->i_block_group = iloc.block_group;
4008         ei->i_last_alloc_group = ~0;
4009         /*
4010          * NOTE! The in-memory inode i_data array is in little-endian order
4011          * even on big-endian machines: we do NOT byteswap the block numbers!
4012          */
4013         for (block = 0; block < EXT4_N_BLOCKS; block++)
4014                 ei->i_data[block] = raw_inode->i_block[block];
4015         INIT_LIST_HEAD(&ei->i_orphan);
4016
4017         /*
4018          * Set transaction id's of transactions that have to be committed
4019          * to finish f[data]sync. We set them to currently running transaction
4020          * as we cannot be sure that the inode or some of its metadata isn't
4021          * part of the transaction - the inode could have been reclaimed and
4022          * now it is reread from disk.
4023          */
4024         if (journal) {
4025                 transaction_t *transaction;
4026                 tid_t tid;
4027
4028                 read_lock(&journal->j_state_lock);
4029                 if (journal->j_running_transaction)
4030                         transaction = journal->j_running_transaction;
4031                 else
4032                         transaction = journal->j_committing_transaction;
4033                 if (transaction)
4034                         tid = transaction->t_tid;
4035                 else
4036                         tid = journal->j_commit_sequence;
4037                 read_unlock(&journal->j_state_lock);
4038                 ei->i_sync_tid = tid;
4039                 ei->i_datasync_tid = tid;
4040         }
4041
4042         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4043                 if (ei->i_extra_isize == 0) {
4044                         /* The extra space is currently unused. Use it. */
4045                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4046                                             EXT4_GOOD_OLD_INODE_SIZE;
4047                 } else {
4048                         ext4_iget_extra_inode(inode, raw_inode, ei);
4049                 }
4050         }
4051
4052         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4053         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4054         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4055         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4056
4057         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4058                 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4059                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4060                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4061                                 inode->i_version |=
4062                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4063                 }
4064         }
4065
4066         ret = 0;
4067         if (ei->i_file_acl &&
4068             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4069                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4070                                  ei->i_file_acl);
4071                 ret = -EIO;
4072                 goto bad_inode;
4073         } else if (!ext4_has_inline_data(inode)) {
4074                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4075                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4076                             (S_ISLNK(inode->i_mode) &&
4077                              !ext4_inode_is_fast_symlink(inode))))
4078                                 /* Validate extent which is part of inode */
4079                                 ret = ext4_ext_check_inode(inode);
4080                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4081                            (S_ISLNK(inode->i_mode) &&
4082                             !ext4_inode_is_fast_symlink(inode))) {
4083                         /* Validate block references which are part of inode */
4084                         ret = ext4_ind_check_inode(inode);
4085                 }
4086         }
4087         if (ret)
4088                 goto bad_inode;
4089
4090         if (S_ISREG(inode->i_mode)) {
4091                 inode->i_op = &ext4_file_inode_operations;
4092                 if (test_opt(inode->i_sb, DAX))
4093                         inode->i_fop = &ext4_dax_file_operations;
4094                 else
4095                         inode->i_fop = &ext4_file_operations;
4096                 ext4_set_aops(inode);
4097         } else if (S_ISDIR(inode->i_mode)) {
4098                 inode->i_op = &ext4_dir_inode_operations;
4099                 inode->i_fop = &ext4_dir_operations;
4100         } else if (S_ISLNK(inode->i_mode)) {
4101                 if (ext4_inode_is_fast_symlink(inode)) {
4102                         inode->i_op = &ext4_fast_symlink_inode_operations;
4103                         nd_terminate_link(ei->i_data, inode->i_size,
4104                                 sizeof(ei->i_data) - 1);
4105                 } else {
4106                         inode->i_op = &ext4_symlink_inode_operations;
4107                         ext4_set_aops(inode);
4108                 }
4109         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4110               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4111                 inode->i_op = &ext4_special_inode_operations;
4112                 if (raw_inode->i_block[0])
4113                         init_special_inode(inode, inode->i_mode,
4114                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4115                 else
4116                         init_special_inode(inode, inode->i_mode,
4117                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4118         } else if (ino == EXT4_BOOT_LOADER_INO) {
4119                 make_bad_inode(inode);
4120         } else {
4121                 ret = -EIO;
4122                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4123                 goto bad_inode;
4124         }
4125         brelse(iloc.bh);
4126         ext4_set_inode_flags(inode);
4127         unlock_new_inode(inode);
4128         return inode;
4129
4130 bad_inode:
4131         brelse(iloc.bh);
4132         iget_failed(inode);
4133         return ERR_PTR(ret);
4134 }
4135
4136 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4137 {
4138         if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4139                 return ERR_PTR(-EIO);
4140         return ext4_iget(sb, ino);
4141 }
4142
4143 static int ext4_inode_blocks_set(handle_t *handle,
4144                                 struct ext4_inode *raw_inode,
4145                                 struct ext4_inode_info *ei)
4146 {
4147         struct inode *inode = &(ei->vfs_inode);
4148         u64 i_blocks = inode->i_blocks;
4149         struct super_block *sb = inode->i_sb;
4150
4151         if (i_blocks <= ~0U) {
4152                 /*
4153                  * i_blocks can be represented in a 32 bit variable
4154                  * as multiple of 512 bytes
4155                  */
4156                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4157                 raw_inode->i_blocks_high = 0;
4158                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4159                 return 0;
4160         }
4161         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4162                 return -EFBIG;
4163
4164         if (i_blocks <= 0xffffffffffffULL) {
4165                 /*
4166                  * i_blocks can be represented in a 48 bit variable
4167                  * as multiple of 512 bytes
4168                  */
4169                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4170                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4171                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4172         } else {
4173                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4174                 /* i_block is stored in file system block size */
4175                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4176                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4177                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4178         }
4179         return 0;
4180 }
4181
4182 struct other_inode {
4183         unsigned long           orig_ino;
4184         struct ext4_inode       *raw_inode;
4185 };
4186
4187 static int other_inode_match(struct inode * inode, unsigned long ino,
4188                              void *data)
4189 {
4190         struct other_inode *oi = (struct other_inode *) data;
4191
4192         if ((inode->i_ino != ino) ||
4193             (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4194                                I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4195             ((inode->i_state & I_DIRTY_TIME) == 0))
4196                 return 0;
4197         spin_lock(&inode->i_lock);
4198         if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4199                                 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4200             (inode->i_state & I_DIRTY_TIME)) {
4201                 struct ext4_inode_info  *ei = EXT4_I(inode);
4202
4203                 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4204                 spin_unlock(&inode->i_lock);
4205
4206                 spin_lock(&ei->i_raw_lock);
4207                 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4208                 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4209                 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4210                 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4211                 spin_unlock(&ei->i_raw_lock);
4212                 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4213                 return -1;
4214         }
4215         spin_unlock(&inode->i_lock);
4216         return -1;
4217 }
4218
4219 /*
4220  * Opportunistically update the other time fields for other inodes in
4221  * the same inode table block.
4222  */
4223 static void ext4_update_other_inodes_time(struct super_block *sb,
4224                                           unsigned long orig_ino, char *buf)
4225 {
4226         struct other_inode oi;
4227         unsigned long ino;
4228         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4229         int inode_size = EXT4_INODE_SIZE(sb);
4230
4231         oi.orig_ino = orig_ino;
4232         ino = orig_ino & ~(inodes_per_block - 1);
4233         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4234                 if (ino == orig_ino)
4235                         continue;
4236                 oi.raw_inode = (struct ext4_inode *) buf;
4237                 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4238         }
4239 }
4240
4241 /*
4242  * Post the struct inode info into an on-disk inode location in the
4243  * buffer-cache.  This gobbles the caller's reference to the
4244  * buffer_head in the inode location struct.
4245  *
4246  * The caller must have write access to iloc->bh.
4247  */
4248 static int ext4_do_update_inode(handle_t *handle,
4249                                 struct inode *inode,
4250                                 struct ext4_iloc *iloc)
4251 {
4252         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4253         struct ext4_inode_info *ei = EXT4_I(inode);
4254         struct buffer_head *bh = iloc->bh;
4255         struct super_block *sb = inode->i_sb;
4256         int err = 0, rc, block;
4257         int need_datasync = 0, set_large_file = 0;
4258         uid_t i_uid;
4259         gid_t i_gid;
4260
4261         spin_lock(&ei->i_raw_lock);
4262
4263         /* For fields not tracked in the in-memory inode,
4264          * initialise them to zero for new inodes. */
4265         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4266                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4267
4268         ext4_get_inode_flags(ei);
4269         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4270         i_uid = i_uid_read(inode);
4271         i_gid = i_gid_read(inode);
4272         if (!(test_opt(inode->i_sb, NO_UID32))) {
4273                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4274                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4275 /*
4276  * Fix up interoperability with old kernels. Otherwise, old inodes get
4277  * re-used with the upper 16 bits of the uid/gid intact
4278  */
4279                 if (!ei->i_dtime) {
4280                         raw_inode->i_uid_high =
4281                                 cpu_to_le16(high_16_bits(i_uid));
4282                         raw_inode->i_gid_high =
4283                                 cpu_to_le16(high_16_bits(i_gid));
4284                 } else {
4285                         raw_inode->i_uid_high = 0;
4286                         raw_inode->i_gid_high = 0;
4287                 }
4288         } else {
4289                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4290                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4291                 raw_inode->i_uid_high = 0;
4292                 raw_inode->i_gid_high = 0;
4293         }
4294         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4295
4296         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4297         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4298         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4299         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4300
4301         err = ext4_inode_blocks_set(handle, raw_inode, ei);
4302         if (err) {
4303                 spin_unlock(&ei->i_raw_lock);
4304                 goto out_brelse;
4305         }
4306         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4307         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4308         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4309                 raw_inode->i_file_acl_high =
4310                         cpu_to_le16(ei->i_file_acl >> 32);
4311         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4312         if (ei->i_disksize != ext4_isize(raw_inode)) {
4313                 ext4_isize_set(raw_inode, ei->i_disksize);
4314                 need_datasync = 1;
4315         }
4316         if (ei->i_disksize > 0x7fffffffULL) {
4317                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4318                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4319                                 EXT4_SB(sb)->s_es->s_rev_level ==
4320                     cpu_to_le32(EXT4_GOOD_OLD_REV))
4321                         set_large_file = 1;
4322         }
4323         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4324         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4325                 if (old_valid_dev(inode->i_rdev)) {
4326                         raw_inode->i_block[0] =
4327                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4328                         raw_inode->i_block[1] = 0;
4329                 } else {
4330                         raw_inode->i_block[0] = 0;
4331                         raw_inode->i_block[1] =
4332                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4333                         raw_inode->i_block[2] = 0;
4334                 }
4335         } else if (!ext4_has_inline_data(inode)) {
4336                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4337                         raw_inode->i_block[block] = ei->i_data[block];
4338         }
4339
4340         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4341                 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4342                 if (ei->i_extra_isize) {
4343                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4344                                 raw_inode->i_version_hi =
4345                                         cpu_to_le32(inode->i_version >> 32);
4346                         raw_inode->i_extra_isize =
4347                                 cpu_to_le16(ei->i_extra_isize);
4348                 }
4349         }
4350         ext4_inode_csum_set(inode, raw_inode, ei);
4351         spin_unlock(&ei->i_raw_lock);
4352         if (inode->i_sb->s_flags & MS_LAZYTIME)
4353                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4354                                               bh->b_data);
4355
4356         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4357         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4358         if (!err)
4359                 err = rc;
4360         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4361         if (set_large_file) {
4362                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4363                 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4364                 if (err)
4365                         goto out_brelse;
4366                 ext4_update_dynamic_rev(sb);
4367                 EXT4_SET_RO_COMPAT_FEATURE(sb,
4368                                            EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4369                 ext4_handle_sync(handle);
4370                 err = ext4_handle_dirty_super(handle, sb);
4371         }
4372         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4373 out_brelse:
4374         brelse(bh);
4375         ext4_std_error(inode->i_sb, err);
4376         return err;
4377 }
4378
4379 /*
4380  * ext4_write_inode()
4381  *
4382  * We are called from a few places:
4383  *
4384  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4385  *   Here, there will be no transaction running. We wait for any running
4386  *   transaction to commit.
4387  *
4388  * - Within flush work (sys_sync(), kupdate and such).
4389  *   We wait on commit, if told to.
4390  *
4391  * - Within iput_final() -> write_inode_now()
4392  *   We wait on commit, if told to.
4393  *
4394  * In all cases it is actually safe for us to return without doing anything,
4395  * because the inode has been copied into a raw inode buffer in
4396  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
4397  * writeback.
4398  *
4399  * Note that we are absolutely dependent upon all inode dirtiers doing the
4400  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4401  * which we are interested.
4402  *
4403  * It would be a bug for them to not do this.  The code:
4404  *
4405  *      mark_inode_dirty(inode)
4406  *      stuff();
4407  *      inode->i_size = expr;
4408  *
4409  * is in error because write_inode() could occur while `stuff()' is running,
4410  * and the new i_size will be lost.  Plus the inode will no longer be on the
4411  * superblock's dirty inode list.
4412  */
4413 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4414 {
4415         int err;
4416
4417         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4418                 return 0;
4419
4420         if (EXT4_SB(inode->i_sb)->s_journal) {
4421                 if (ext4_journal_current_handle()) {
4422                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4423                         dump_stack();
4424                         return -EIO;
4425                 }
4426
4427                 /*
4428                  * No need to force transaction in WB_SYNC_NONE mode. Also
4429                  * ext4_sync_fs() will force the commit after everything is
4430                  * written.
4431                  */
4432                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4433                         return 0;
4434
4435                 err = ext4_force_commit(inode->i_sb);
4436         } else {
4437                 struct ext4_iloc iloc;
4438
4439                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4440                 if (err)
4441                         return err;
4442                 /*
4443                  * sync(2) will flush the whole buffer cache. No need to do
4444                  * it here separately for each inode.
4445                  */
4446                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4447                         sync_dirty_buffer(iloc.bh);
4448                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4449                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4450                                          "IO error syncing inode");
4451                         err = -EIO;
4452                 }
4453                 brelse(iloc.bh);
4454         }
4455         return err;
4456 }
4457
4458 /*
4459  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4460  * buffers that are attached to a page stradding i_size and are undergoing
4461  * commit. In that case we have to wait for commit to finish and try again.
4462  */
4463 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4464 {
4465         struct page *page;
4466         unsigned offset;
4467         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4468         tid_t commit_tid = 0;
4469         int ret;
4470
4471         offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4472         /*
4473          * All buffers in the last page remain valid? Then there's nothing to
4474          * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4475          * blocksize case
4476          */
4477         if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4478                 return;
4479         while (1) {
4480                 page = find_lock_page(inode->i_mapping,
4481                                       inode->i_size >> PAGE_CACHE_SHIFT);
4482                 if (!page)
4483                         return;
4484                 ret = __ext4_journalled_invalidatepage(page, offset,
4485                                                 PAGE_CACHE_SIZE - offset);
4486                 unlock_page(page);
4487                 page_cache_release(page);
4488                 if (ret != -EBUSY)
4489                         return;
4490                 commit_tid = 0;
4491                 read_lock(&journal->j_state_lock);
4492                 if (journal->j_committing_transaction)
4493                         commit_tid = journal->j_committing_transaction->t_tid;
4494                 read_unlock(&journal->j_state_lock);
4495                 if (commit_tid)
4496                         jbd2_log_wait_commit(journal, commit_tid);
4497         }
4498 }
4499
4500 /*
4501  * ext4_setattr()
4502  *
4503  * Called from notify_change.
4504  *
4505  * We want to trap VFS attempts to truncate the file as soon as
4506  * possible.  In particular, we want to make sure that when the VFS
4507  * shrinks i_size, we put the inode on the orphan list and modify
4508  * i_disksize immediately, so that during the subsequent flushing of
4509  * dirty pages and freeing of disk blocks, we can guarantee that any
4510  * commit will leave the blocks being flushed in an unused state on
4511  * disk.  (On recovery, the inode will get truncated and the blocks will
4512  * be freed, so we have a strong guarantee that no future commit will
4513  * leave these blocks visible to the user.)
4514  *
4515  * Another thing we have to assure is that if we are in ordered mode
4516  * and inode is still attached to the committing transaction, we must
4517  * we start writeout of all the dirty pages which are being truncated.
4518  * This way we are sure that all the data written in the previous
4519  * transaction are already on disk (truncate waits for pages under
4520  * writeback).
4521  *
4522  * Called with inode->i_mutex down.
4523  */
4524 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4525 {
4526         struct inode *inode = dentry->d_inode;
4527         int error, rc = 0;
4528         int orphan = 0;
4529         const unsigned int ia_valid = attr->ia_valid;
4530
4531         error = inode_change_ok(inode, attr);
4532         if (error)
4533                 return error;
4534
4535         if (is_quota_modification(inode, attr))
4536                 dquot_initialize(inode);
4537         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4538             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4539                 handle_t *handle;
4540
4541                 /* (user+group)*(old+new) structure, inode write (sb,
4542                  * inode block, ? - but truncate inode update has it) */
4543                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4544                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4545                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4546                 if (IS_ERR(handle)) {
4547                         error = PTR_ERR(handle);
4548                         goto err_out;
4549                 }
4550                 error = dquot_transfer(inode, attr);
4551                 if (error) {
4552                         ext4_journal_stop(handle);
4553                         return error;
4554                 }
4555                 /* Update corresponding info in inode so that everything is in
4556                  * one transaction */
4557                 if (attr->ia_valid & ATTR_UID)
4558                         inode->i_uid = attr->ia_uid;
4559                 if (attr->ia_valid & ATTR_GID)
4560                         inode->i_gid = attr->ia_gid;
4561                 error = ext4_mark_inode_dirty(handle, inode);
4562                 ext4_journal_stop(handle);
4563         }
4564
4565         if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4566                 handle_t *handle;
4567
4568                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4569                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4570
4571                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4572                                 return -EFBIG;
4573                 }
4574
4575                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4576                         inode_inc_iversion(inode);
4577
4578                 if (S_ISREG(inode->i_mode) &&
4579                     (attr->ia_size < inode->i_size)) {
4580                         if (ext4_should_order_data(inode)) {
4581                                 error = ext4_begin_ordered_truncate(inode,
4582                                                             attr->ia_size);
4583                                 if (error)
4584                                         goto err_out;
4585                         }
4586                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4587                         if (IS_ERR(handle)) {
4588                                 error = PTR_ERR(handle);
4589                                 goto err_out;
4590                         }
4591                         if (ext4_handle_valid(handle)) {
4592                                 error = ext4_orphan_add(handle, inode);
4593                                 orphan = 1;
4594                         }
4595                         down_write(&EXT4_I(inode)->i_data_sem);
4596                         EXT4_I(inode)->i_disksize = attr->ia_size;
4597                         rc = ext4_mark_inode_dirty(handle, inode);
4598                         if (!error)
4599                                 error = rc;
4600                         /*
4601                          * We have to update i_size under i_data_sem together
4602                          * with i_disksize to avoid races with writeback code
4603                          * running ext4_wb_update_i_disksize().
4604                          */
4605                         if (!error)
4606                                 i_size_write(inode, attr->ia_size);
4607                         up_write(&EXT4_I(inode)->i_data_sem);
4608                         ext4_journal_stop(handle);
4609                         if (error) {
4610                                 ext4_orphan_del(NULL, inode);
4611                                 goto err_out;
4612                         }
4613                 } else {
4614                         loff_t oldsize = inode->i_size;
4615
4616                         i_size_write(inode, attr->ia_size);
4617                         pagecache_isize_extended(inode, oldsize, inode->i_size);
4618                 }
4619
4620                 /*
4621                  * Blocks are going to be removed from the inode. Wait
4622                  * for dio in flight.  Temporarily disable
4623                  * dioread_nolock to prevent livelock.
4624                  */
4625                 if (orphan) {
4626                         if (!ext4_should_journal_data(inode)) {
4627                                 ext4_inode_block_unlocked_dio(inode);
4628                                 inode_dio_wait(inode);
4629                                 ext4_inode_resume_unlocked_dio(inode);
4630                         } else
4631                                 ext4_wait_for_tail_page_commit(inode);
4632                 }
4633                 /*
4634                  * Truncate pagecache after we've waited for commit
4635                  * in data=journal mode to make pages freeable.
4636                  */
4637                 truncate_pagecache(inode, inode->i_size);
4638         }
4639         /*
4640          * We want to call ext4_truncate() even if attr->ia_size ==
4641          * inode->i_size for cases like truncation of fallocated space
4642          */
4643         if (attr->ia_valid & ATTR_SIZE)
4644                 ext4_truncate(inode);
4645
4646         if (!rc) {
4647                 setattr_copy(inode, attr);
4648                 mark_inode_dirty(inode);
4649         }
4650
4651         /*
4652          * If the call to ext4_truncate failed to get a transaction handle at
4653          * all, we need to clean up the in-core orphan list manually.
4654          */
4655         if (orphan && inode->i_nlink)
4656                 ext4_orphan_del(NULL, inode);
4657
4658         if (!rc && (ia_valid & ATTR_MODE))
4659                 rc = posix_acl_chmod(inode, inode->i_mode);
4660
4661 err_out:
4662         ext4_std_error(inode->i_sb, error);
4663         if (!error)
4664                 error = rc;
4665         return error;
4666 }
4667
4668 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4669                  struct kstat *stat)
4670 {
4671         struct inode *inode;
4672         unsigned long long delalloc_blocks;
4673
4674         inode = dentry->d_inode;
4675         generic_fillattr(inode, stat);
4676
4677         /*
4678          * If there is inline data in the inode, the inode will normally not
4679          * have data blocks allocated (it may have an external xattr block).
4680          * Report at least one sector for such files, so tools like tar, rsync,
4681          * others doen't incorrectly think the file is completely sparse.
4682          */
4683         if (unlikely(ext4_has_inline_data(inode)))
4684                 stat->blocks += (stat->size + 511) >> 9;
4685
4686         /*
4687          * We can't update i_blocks if the block allocation is delayed
4688          * otherwise in the case of system crash before the real block
4689          * allocation is done, we will have i_blocks inconsistent with
4690          * on-disk file blocks.
4691          * We always keep i_blocks updated together with real
4692          * allocation. But to not confuse with user, stat
4693          * will return the blocks that include the delayed allocation
4694          * blocks for this file.
4695          */
4696         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4697                                    EXT4_I(inode)->i_reserved_data_blocks);
4698         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
4699         return 0;
4700 }
4701
4702 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4703                                    int pextents)
4704 {
4705         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4706                 return ext4_ind_trans_blocks(inode, lblocks);
4707         return ext4_ext_index_trans_blocks(inode, pextents);
4708 }
4709
4710 /*
4711  * Account for index blocks, block groups bitmaps and block group
4712  * descriptor blocks if modify datablocks and index blocks
4713  * worse case, the indexs blocks spread over different block groups
4714  *
4715  * If datablocks are discontiguous, they are possible to spread over
4716  * different block groups too. If they are contiguous, with flexbg,
4717  * they could still across block group boundary.
4718  *
4719  * Also account for superblock, inode, quota and xattr blocks
4720  */
4721 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4722                                   int pextents)
4723 {
4724         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4725         int gdpblocks;
4726         int idxblocks;
4727         int ret = 0;
4728
4729         /*
4730          * How many index blocks need to touch to map @lblocks logical blocks
4731          * to @pextents physical extents?
4732          */
4733         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4734
4735         ret = idxblocks;
4736
4737         /*
4738          * Now let's see how many group bitmaps and group descriptors need
4739          * to account
4740          */
4741         groups = idxblocks + pextents;
4742         gdpblocks = groups;
4743         if (groups > ngroups)
4744                 groups = ngroups;
4745         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4746                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4747
4748         /* bitmaps and block group descriptor blocks */
4749         ret += groups + gdpblocks;
4750
4751         /* Blocks for super block, inode, quota and xattr blocks */
4752         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4753
4754         return ret;
4755 }
4756
4757 /*
4758  * Calculate the total number of credits to reserve to fit
4759  * the modification of a single pages into a single transaction,
4760  * which may include multiple chunks of block allocations.
4761  *
4762  * This could be called via ext4_write_begin()
4763  *
4764  * We need to consider the worse case, when
4765  * one new block per extent.
4766  */
4767 int ext4_writepage_trans_blocks(struct inode *inode)
4768 {
4769         int bpp = ext4_journal_blocks_per_page(inode);
4770         int ret;
4771
4772         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4773
4774         /* Account for data blocks for journalled mode */
4775         if (ext4_should_journal_data(inode))
4776                 ret += bpp;
4777         return ret;
4778 }
4779
4780 /*
4781  * Calculate the journal credits for a chunk of data modification.
4782  *
4783  * This is called from DIO, fallocate or whoever calling
4784  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4785  *
4786  * journal buffers for data blocks are not included here, as DIO
4787  * and fallocate do no need to journal data buffers.
4788  */
4789 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4790 {
4791         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4792 }
4793
4794 /*
4795  * The caller must have previously called ext4_reserve_inode_write().
4796  * Give this, we know that the caller already has write access to iloc->bh.
4797  */
4798 int ext4_mark_iloc_dirty(handle_t *handle,
4799                          struct inode *inode, struct ext4_iloc *iloc)
4800 {
4801         int err = 0;
4802
4803         if (IS_I_VERSION(inode))
4804                 inode_inc_iversion(inode);
4805
4806         /* the do_update_inode consumes one bh->b_count */
4807         get_bh(iloc->bh);
4808
4809         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4810         err = ext4_do_update_inode(handle, inode, iloc);
4811         put_bh(iloc->bh);
4812         return err;
4813 }
4814
4815 /*
4816  * On success, We end up with an outstanding reference count against
4817  * iloc->bh.  This _must_ be cleaned up later.
4818  */
4819
4820 int
4821 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4822                          struct ext4_iloc *iloc)
4823 {
4824         int err;
4825
4826         err = ext4_get_inode_loc(inode, iloc);
4827         if (!err) {
4828                 BUFFER_TRACE(iloc->bh, "get_write_access");
4829                 err = ext4_journal_get_write_access(handle, iloc->bh);
4830                 if (err) {
4831                         brelse(iloc->bh);
4832                         iloc->bh = NULL;
4833                 }
4834         }
4835         ext4_std_error(inode->i_sb, err);
4836         return err;
4837 }
4838
4839 /*
4840  * Expand an inode by new_extra_isize bytes.
4841  * Returns 0 on success or negative error number on failure.
4842  */
4843 static int ext4_expand_extra_isize(struct inode *inode,
4844                                    unsigned int new_extra_isize,
4845                                    struct ext4_iloc iloc,
4846                                    handle_t *handle)
4847 {
4848         struct ext4_inode *raw_inode;
4849         struct ext4_xattr_ibody_header *header;
4850
4851         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4852                 return 0;
4853
4854         raw_inode = ext4_raw_inode(&iloc);
4855
4856         header = IHDR(inode, raw_inode);
4857
4858         /* No extended attributes present */
4859         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4860             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4861                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4862                         new_extra_isize);
4863                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4864                 return 0;
4865         }
4866
4867         /* try to expand with EAs present */
4868         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4869                                           raw_inode, handle);
4870 }
4871
4872 /*
4873  * What we do here is to mark the in-core inode as clean with respect to inode
4874  * dirtiness (it may still be data-dirty).
4875  * This means that the in-core inode may be reaped by prune_icache
4876  * without having to perform any I/O.  This is a very good thing,
4877  * because *any* task may call prune_icache - even ones which
4878  * have a transaction open against a different journal.
4879  *
4880  * Is this cheating?  Not really.  Sure, we haven't written the
4881  * inode out, but prune_icache isn't a user-visible syncing function.
4882  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4883  * we start and wait on commits.
4884  */
4885 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4886 {
4887         struct ext4_iloc iloc;
4888         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4889         static unsigned int mnt_count;
4890         int err, ret;
4891
4892         might_sleep();
4893         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4894         err = ext4_reserve_inode_write(handle, inode, &iloc);
4895         if (ext4_handle_valid(handle) &&
4896             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4897             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4898                 /*
4899                  * We need extra buffer credits since we may write into EA block
4900                  * with this same handle. If journal_extend fails, then it will
4901                  * only result in a minor loss of functionality for that inode.
4902                  * If this is felt to be critical, then e2fsck should be run to
4903                  * force a large enough s_min_extra_isize.
4904                  */
4905                 if ((jbd2_journal_extend(handle,
4906                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4907                         ret = ext4_expand_extra_isize(inode,
4908                                                       sbi->s_want_extra_isize,
4909                                                       iloc, handle);
4910                         if (ret) {
4911                                 ext4_set_inode_state(inode,
4912                                                      EXT4_STATE_NO_EXPAND);
4913                                 if (mnt_count !=
4914                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4915                                         ext4_warning(inode->i_sb,
4916                                         "Unable to expand inode %lu. Delete"
4917                                         " some EAs or run e2fsck.",
4918                                         inode->i_ino);
4919                                         mnt_count =
4920                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4921                                 }
4922                         }
4923                 }
4924         }
4925         if (!err)
4926                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4927         return err;
4928 }
4929
4930 /*
4931  * ext4_dirty_inode() is called from __mark_inode_dirty()
4932  *
4933  * We're really interested in the case where a file is being extended.
4934  * i_size has been changed by generic_commit_write() and we thus need
4935  * to include the updated inode in the current transaction.
4936  *
4937  * Also, dquot_alloc_block() will always dirty the inode when blocks
4938  * are allocated to the file.
4939  *
4940  * If the inode is marked synchronous, we don't honour that here - doing
4941  * so would cause a commit on atime updates, which we don't bother doing.
4942  * We handle synchronous inodes at the highest possible level.
4943  *
4944  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
4945  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
4946  * to copy into the on-disk inode structure are the timestamp files.
4947  */
4948 void ext4_dirty_inode(struct inode *inode, int flags)
4949 {
4950         handle_t *handle;
4951
4952         if (flags == I_DIRTY_TIME)
4953                 return;
4954         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4955         if (IS_ERR(handle))
4956                 goto out;
4957
4958         ext4_mark_inode_dirty(handle, inode);
4959
4960         ext4_journal_stop(handle);
4961 out:
4962         return;
4963 }
4964
4965 #if 0
4966 /*
4967  * Bind an inode's backing buffer_head into this transaction, to prevent
4968  * it from being flushed to disk early.  Unlike
4969  * ext4_reserve_inode_write, this leaves behind no bh reference and
4970  * returns no iloc structure, so the caller needs to repeat the iloc
4971  * lookup to mark the inode dirty later.
4972  */
4973 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4974 {
4975         struct ext4_iloc iloc;
4976
4977         int err = 0;
4978         if (handle) {
4979                 err = ext4_get_inode_loc(inode, &iloc);
4980                 if (!err) {
4981                         BUFFER_TRACE(iloc.bh, "get_write_access");
4982                         err = jbd2_journal_get_write_access(handle, iloc.bh);
4983                         if (!err)
4984                                 err = ext4_handle_dirty_metadata(handle,
4985                                                                  NULL,
4986                                                                  iloc.bh);
4987                         brelse(iloc.bh);
4988                 }
4989         }
4990         ext4_std_error(inode->i_sb, err);
4991         return err;
4992 }
4993 #endif
4994
4995 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4996 {
4997         journal_t *journal;
4998         handle_t *handle;
4999         int err;
5000
5001         /*
5002          * We have to be very careful here: changing a data block's
5003          * journaling status dynamically is dangerous.  If we write a
5004          * data block to the journal, change the status and then delete
5005          * that block, we risk forgetting to revoke the old log record
5006          * from the journal and so a subsequent replay can corrupt data.
5007          * So, first we make sure that the journal is empty and that
5008          * nobody is changing anything.
5009          */
5010
5011         journal = EXT4_JOURNAL(inode);
5012         if (!journal)
5013                 return 0;
5014         if (is_journal_aborted(journal))
5015                 return -EROFS;
5016         /* We have to allocate physical blocks for delalloc blocks
5017          * before flushing journal. otherwise delalloc blocks can not
5018          * be allocated any more. even more truncate on delalloc blocks
5019          * could trigger BUG by flushing delalloc blocks in journal.
5020          * There is no delalloc block in non-journal data mode.
5021          */
5022         if (val && test_opt(inode->i_sb, DELALLOC)) {
5023                 err = ext4_alloc_da_blocks(inode);
5024                 if (err < 0)
5025                         return err;
5026         }
5027
5028         /* Wait for all existing dio workers */
5029         ext4_inode_block_unlocked_dio(inode);
5030         inode_dio_wait(inode);
5031
5032         jbd2_journal_lock_updates(journal);
5033
5034         /*
5035          * OK, there are no updates running now, and all cached data is
5036          * synced to disk.  We are now in a completely consistent state
5037          * which doesn't have anything in the journal, and we know that
5038          * no filesystem updates are running, so it is safe to modify
5039          * the inode's in-core data-journaling state flag now.
5040          */
5041
5042         if (val)
5043                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5044         else {
5045                 err = jbd2_journal_flush(journal);
5046                 if (err < 0) {
5047                         jbd2_journal_unlock_updates(journal);
5048                         ext4_inode_resume_unlocked_dio(inode);
5049                         return err;
5050                 }
5051                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5052         }
5053         ext4_set_aops(inode);
5054
5055         jbd2_journal_unlock_updates(journal);
5056         ext4_inode_resume_unlocked_dio(inode);
5057
5058         /* Finally we can mark the inode as dirty. */
5059
5060         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5061         if (IS_ERR(handle))
5062                 return PTR_ERR(handle);
5063
5064         err = ext4_mark_inode_dirty(handle, inode);
5065         ext4_handle_sync(handle);
5066         ext4_journal_stop(handle);
5067         ext4_std_error(inode->i_sb, err);
5068
5069         return err;
5070 }
5071
5072 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5073 {
5074         return !buffer_mapped(bh);
5075 }
5076
5077 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5078 {
5079         struct page *page = vmf->page;
5080         loff_t size;
5081         unsigned long len;
5082         int ret;
5083         struct file *file = vma->vm_file;
5084         struct inode *inode = file_inode(file);
5085         struct address_space *mapping = inode->i_mapping;
5086         handle_t *handle;
5087         get_block_t *get_block;
5088         int retries = 0;
5089
5090         sb_start_pagefault(inode->i_sb);
5091         file_update_time(vma->vm_file);
5092         /* Delalloc case is easy... */
5093         if (test_opt(inode->i_sb, DELALLOC) &&
5094             !ext4_should_journal_data(inode) &&
5095             !ext4_nonda_switch(inode->i_sb)) {
5096                 do {
5097                         ret = __block_page_mkwrite(vma, vmf,
5098                                                    ext4_da_get_block_prep);
5099                 } while (ret == -ENOSPC &&
5100                        ext4_should_retry_alloc(inode->i_sb, &retries));
5101                 goto out_ret;
5102         }
5103
5104         lock_page(page);
5105         size = i_size_read(inode);
5106         /* Page got truncated from under us? */
5107         if (page->mapping != mapping || page_offset(page) > size) {
5108                 unlock_page(page);
5109                 ret = VM_FAULT_NOPAGE;
5110                 goto out;
5111         }
5112
5113         if (page->index == size >> PAGE_CACHE_SHIFT)
5114                 len = size & ~PAGE_CACHE_MASK;
5115         else
5116                 len = PAGE_CACHE_SIZE;
5117         /*
5118          * Return if we have all the buffers mapped. This avoids the need to do
5119          * journal_start/journal_stop which can block and take a long time
5120          */
5121         if (page_has_buffers(page)) {
5122                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5123                                             0, len, NULL,
5124                                             ext4_bh_unmapped)) {
5125                         /* Wait so that we don't change page under IO */
5126                         wait_for_stable_page(page);
5127                         ret = VM_FAULT_LOCKED;
5128                         goto out;
5129                 }
5130         }
5131         unlock_page(page);
5132         /* OK, we need to fill the hole... */
5133         if (ext4_should_dioread_nolock(inode))
5134                 get_block = ext4_get_block_write;
5135         else
5136                 get_block = ext4_get_block;
5137 retry_alloc:
5138         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5139                                     ext4_writepage_trans_blocks(inode));
5140         if (IS_ERR(handle)) {
5141                 ret = VM_FAULT_SIGBUS;
5142                 goto out;
5143         }
5144         ret = __block_page_mkwrite(vma, vmf, get_block);
5145         if (!ret && ext4_should_journal_data(inode)) {
5146                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5147                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5148                         unlock_page(page);
5149                         ret = VM_FAULT_SIGBUS;
5150                         ext4_journal_stop(handle);
5151                         goto out;
5152                 }
5153                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5154         }
5155         ext4_journal_stop(handle);
5156         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5157                 goto retry_alloc;
5158 out_ret:
5159         ret = block_page_mkwrite_return(ret);
5160 out:
5161         sb_end_pagefault(inode->i_sb);
5162         return ret;
5163 }