]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/ext4/inode.c
ext4 crypto: add symlink encryption
[karo-tx-linux.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/quotaops.h>
26 #include <linux/string.h>
27 #include <linux/buffer_head.h>
28 #include <linux/writeback.h>
29 #include <linux/pagevec.h>
30 #include <linux/mpage.h>
31 #include <linux/namei.h>
32 #include <linux/uio.h>
33 #include <linux/bio.h>
34 #include <linux/workqueue.h>
35 #include <linux/kernel.h>
36 #include <linux/printk.h>
37 #include <linux/slab.h>
38 #include <linux/aio.h>
39 #include <linux/bitops.h>
40
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45
46 #include <trace/events/ext4.h>
47
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51                               struct ext4_inode_info *ei)
52 {
53         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54         __u16 csum_lo;
55         __u16 csum_hi = 0;
56         __u32 csum;
57
58         csum_lo = le16_to_cpu(raw->i_checksum_lo);
59         raw->i_checksum_lo = 0;
60         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62                 csum_hi = le16_to_cpu(raw->i_checksum_hi);
63                 raw->i_checksum_hi = 0;
64         }
65
66         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67                            EXT4_INODE_SIZE(inode->i_sb));
68
69         raw->i_checksum_lo = cpu_to_le16(csum_lo);
70         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72                 raw->i_checksum_hi = cpu_to_le16(csum_hi);
73
74         return csum;
75 }
76
77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78                                   struct ext4_inode_info *ei)
79 {
80         __u32 provided, calculated;
81
82         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83             cpu_to_le32(EXT4_OS_LINUX) ||
84             !ext4_has_metadata_csum(inode->i_sb))
85                 return 1;
86
87         provided = le16_to_cpu(raw->i_checksum_lo);
88         calculated = ext4_inode_csum(inode, raw, ei);
89         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
90             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
91                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
92         else
93                 calculated &= 0xFFFF;
94
95         return provided == calculated;
96 }
97
98 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
99                                 struct ext4_inode_info *ei)
100 {
101         __u32 csum;
102
103         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
104             cpu_to_le32(EXT4_OS_LINUX) ||
105             !ext4_has_metadata_csum(inode->i_sb))
106                 return;
107
108         csum = ext4_inode_csum(inode, raw, ei);
109         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
110         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
111             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
112                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
113 }
114
115 static inline int ext4_begin_ordered_truncate(struct inode *inode,
116                                               loff_t new_size)
117 {
118         trace_ext4_begin_ordered_truncate(inode, new_size);
119         /*
120          * If jinode is zero, then we never opened the file for
121          * writing, so there's no need to call
122          * jbd2_journal_begin_ordered_truncate() since there's no
123          * outstanding writes we need to flush.
124          */
125         if (!EXT4_I(inode)->jinode)
126                 return 0;
127         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
128                                                    EXT4_I(inode)->jinode,
129                                                    new_size);
130 }
131
132 static void ext4_invalidatepage(struct page *page, unsigned int offset,
133                                 unsigned int length);
134 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
135 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
136 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
137                                   int pextents);
138
139 /*
140  * Test whether an inode is a fast symlink.
141  */
142 int ext4_inode_is_fast_symlink(struct inode *inode)
143 {
144         int ea_blocks = EXT4_I(inode)->i_file_acl ?
145                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
146
147         if (ext4_has_inline_data(inode))
148                 return 0;
149
150         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151 }
152
153 /*
154  * Restart the transaction associated with *handle.  This does a commit,
155  * so before we call here everything must be consistently dirtied against
156  * this transaction.
157  */
158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
159                                  int nblocks)
160 {
161         int ret;
162
163         /*
164          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
165          * moment, get_block can be called only for blocks inside i_size since
166          * page cache has been already dropped and writes are blocked by
167          * i_mutex. So we can safely drop the i_data_sem here.
168          */
169         BUG_ON(EXT4_JOURNAL(inode) == NULL);
170         jbd_debug(2, "restarting handle %p\n", handle);
171         up_write(&EXT4_I(inode)->i_data_sem);
172         ret = ext4_journal_restart(handle, nblocks);
173         down_write(&EXT4_I(inode)->i_data_sem);
174         ext4_discard_preallocations(inode);
175
176         return ret;
177 }
178
179 /*
180  * Called at the last iput() if i_nlink is zero.
181  */
182 void ext4_evict_inode(struct inode *inode)
183 {
184         handle_t *handle;
185         int err;
186
187         trace_ext4_evict_inode(inode);
188
189         if (inode->i_nlink) {
190                 /*
191                  * When journalling data dirty buffers are tracked only in the
192                  * journal. So although mm thinks everything is clean and
193                  * ready for reaping the inode might still have some pages to
194                  * write in the running transaction or waiting to be
195                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
196                  * (via truncate_inode_pages()) to discard these buffers can
197                  * cause data loss. Also even if we did not discard these
198                  * buffers, we would have no way to find them after the inode
199                  * is reaped and thus user could see stale data if he tries to
200                  * read them before the transaction is checkpointed. So be
201                  * careful and force everything to disk here... We use
202                  * ei->i_datasync_tid to store the newest transaction
203                  * containing inode's data.
204                  *
205                  * Note that directories do not have this problem because they
206                  * don't use page cache.
207                  */
208                 if (ext4_should_journal_data(inode) &&
209                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210                     inode->i_ino != EXT4_JOURNAL_INO) {
211                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213
214                         jbd2_complete_transaction(journal, commit_tid);
215                         filemap_write_and_wait(&inode->i_data);
216                 }
217                 truncate_inode_pages_final(&inode->i_data);
218
219                 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
220                 goto no_delete;
221         }
222
223         if (is_bad_inode(inode))
224                 goto no_delete;
225         dquot_initialize(inode);
226
227         if (ext4_should_order_data(inode))
228                 ext4_begin_ordered_truncate(inode, 0);
229         truncate_inode_pages_final(&inode->i_data);
230
231         WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
232
233         /*
234          * Protect us against freezing - iput() caller didn't have to have any
235          * protection against it
236          */
237         sb_start_intwrite(inode->i_sb);
238         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
239                                     ext4_blocks_for_truncate(inode)+3);
240         if (IS_ERR(handle)) {
241                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
242                 /*
243                  * If we're going to skip the normal cleanup, we still need to
244                  * make sure that the in-core orphan linked list is properly
245                  * cleaned up.
246                  */
247                 ext4_orphan_del(NULL, inode);
248                 sb_end_intwrite(inode->i_sb);
249                 goto no_delete;
250         }
251
252         if (IS_SYNC(inode))
253                 ext4_handle_sync(handle);
254         inode->i_size = 0;
255         err = ext4_mark_inode_dirty(handle, inode);
256         if (err) {
257                 ext4_warning(inode->i_sb,
258                              "couldn't mark inode dirty (err %d)", err);
259                 goto stop_handle;
260         }
261         if (inode->i_blocks)
262                 ext4_truncate(inode);
263
264         /*
265          * ext4_ext_truncate() doesn't reserve any slop when it
266          * restarts journal transactions; therefore there may not be
267          * enough credits left in the handle to remove the inode from
268          * the orphan list and set the dtime field.
269          */
270         if (!ext4_handle_has_enough_credits(handle, 3)) {
271                 err = ext4_journal_extend(handle, 3);
272                 if (err > 0)
273                         err = ext4_journal_restart(handle, 3);
274                 if (err != 0) {
275                         ext4_warning(inode->i_sb,
276                                      "couldn't extend journal (err %d)", err);
277                 stop_handle:
278                         ext4_journal_stop(handle);
279                         ext4_orphan_del(NULL, inode);
280                         sb_end_intwrite(inode->i_sb);
281                         goto no_delete;
282                 }
283         }
284
285         /*
286          * Kill off the orphan record which ext4_truncate created.
287          * AKPM: I think this can be inside the above `if'.
288          * Note that ext4_orphan_del() has to be able to cope with the
289          * deletion of a non-existent orphan - this is because we don't
290          * know if ext4_truncate() actually created an orphan record.
291          * (Well, we could do this if we need to, but heck - it works)
292          */
293         ext4_orphan_del(handle, inode);
294         EXT4_I(inode)->i_dtime  = get_seconds();
295
296         /*
297          * One subtle ordering requirement: if anything has gone wrong
298          * (transaction abort, IO errors, whatever), then we can still
299          * do these next steps (the fs will already have been marked as
300          * having errors), but we can't free the inode if the mark_dirty
301          * fails.
302          */
303         if (ext4_mark_inode_dirty(handle, inode))
304                 /* If that failed, just do the required in-core inode clear. */
305                 ext4_clear_inode(inode);
306         else
307                 ext4_free_inode(handle, inode);
308         ext4_journal_stop(handle);
309         sb_end_intwrite(inode->i_sb);
310         return;
311 no_delete:
312         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
313 }
314
315 #ifdef CONFIG_QUOTA
316 qsize_t *ext4_get_reserved_space(struct inode *inode)
317 {
318         return &EXT4_I(inode)->i_reserved_quota;
319 }
320 #endif
321
322 /*
323  * Called with i_data_sem down, which is important since we can call
324  * ext4_discard_preallocations() from here.
325  */
326 void ext4_da_update_reserve_space(struct inode *inode,
327                                         int used, int quota_claim)
328 {
329         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
330         struct ext4_inode_info *ei = EXT4_I(inode);
331
332         spin_lock(&ei->i_block_reservation_lock);
333         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
334         if (unlikely(used > ei->i_reserved_data_blocks)) {
335                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
336                          "with only %d reserved data blocks",
337                          __func__, inode->i_ino, used,
338                          ei->i_reserved_data_blocks);
339                 WARN_ON(1);
340                 used = ei->i_reserved_data_blocks;
341         }
342
343         /* Update per-inode reservations */
344         ei->i_reserved_data_blocks -= used;
345         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
346
347         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
348
349         /* Update quota subsystem for data blocks */
350         if (quota_claim)
351                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
352         else {
353                 /*
354                  * We did fallocate with an offset that is already delayed
355                  * allocated. So on delayed allocated writeback we should
356                  * not re-claim the quota for fallocated blocks.
357                  */
358                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
359         }
360
361         /*
362          * If we have done all the pending block allocations and if
363          * there aren't any writers on the inode, we can discard the
364          * inode's preallocations.
365          */
366         if ((ei->i_reserved_data_blocks == 0) &&
367             (atomic_read(&inode->i_writecount) == 0))
368                 ext4_discard_preallocations(inode);
369 }
370
371 static int __check_block_validity(struct inode *inode, const char *func,
372                                 unsigned int line,
373                                 struct ext4_map_blocks *map)
374 {
375         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
376                                    map->m_len)) {
377                 ext4_error_inode(inode, func, line, map->m_pblk,
378                                  "lblock %lu mapped to illegal pblock "
379                                  "(length %d)", (unsigned long) map->m_lblk,
380                                  map->m_len);
381                 return -EIO;
382         }
383         return 0;
384 }
385
386 #define check_block_validity(inode, map)        \
387         __check_block_validity((inode), __func__, __LINE__, (map))
388
389 #ifdef ES_AGGRESSIVE_TEST
390 static void ext4_map_blocks_es_recheck(handle_t *handle,
391                                        struct inode *inode,
392                                        struct ext4_map_blocks *es_map,
393                                        struct ext4_map_blocks *map,
394                                        int flags)
395 {
396         int retval;
397
398         map->m_flags = 0;
399         /*
400          * There is a race window that the result is not the same.
401          * e.g. xfstests #223 when dioread_nolock enables.  The reason
402          * is that we lookup a block mapping in extent status tree with
403          * out taking i_data_sem.  So at the time the unwritten extent
404          * could be converted.
405          */
406         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
407                 down_read(&EXT4_I(inode)->i_data_sem);
408         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
409                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
410                                              EXT4_GET_BLOCKS_KEEP_SIZE);
411         } else {
412                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
413                                              EXT4_GET_BLOCKS_KEEP_SIZE);
414         }
415         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
416                 up_read((&EXT4_I(inode)->i_data_sem));
417
418         /*
419          * We don't check m_len because extent will be collpased in status
420          * tree.  So the m_len might not equal.
421          */
422         if (es_map->m_lblk != map->m_lblk ||
423             es_map->m_flags != map->m_flags ||
424             es_map->m_pblk != map->m_pblk) {
425                 printk("ES cache assertion failed for inode: %lu "
426                        "es_cached ex [%d/%d/%llu/%x] != "
427                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
428                        inode->i_ino, es_map->m_lblk, es_map->m_len,
429                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
430                        map->m_len, map->m_pblk, map->m_flags,
431                        retval, flags);
432         }
433 }
434 #endif /* ES_AGGRESSIVE_TEST */
435
436 /*
437  * The ext4_map_blocks() function tries to look up the requested blocks,
438  * and returns if the blocks are already mapped.
439  *
440  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
441  * and store the allocated blocks in the result buffer head and mark it
442  * mapped.
443  *
444  * If file type is extents based, it will call ext4_ext_map_blocks(),
445  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
446  * based files
447  *
448  * On success, it returns the number of blocks being mapped or allocated.
449  * if create==0 and the blocks are pre-allocated and unwritten block,
450  * the result buffer head is unmapped. If the create ==1, it will make sure
451  * the buffer head is mapped.
452  *
453  * It returns 0 if plain look up failed (blocks have not been allocated), in
454  * that case, buffer head is unmapped
455  *
456  * It returns the error in case of allocation failure.
457  */
458 int ext4_map_blocks(handle_t *handle, struct inode *inode,
459                     struct ext4_map_blocks *map, int flags)
460 {
461         struct extent_status es;
462         int retval;
463         int ret = 0;
464 #ifdef ES_AGGRESSIVE_TEST
465         struct ext4_map_blocks orig_map;
466
467         memcpy(&orig_map, map, sizeof(*map));
468 #endif
469
470         map->m_flags = 0;
471         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
472                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
473                   (unsigned long) map->m_lblk);
474
475         /*
476          * ext4_map_blocks returns an int, and m_len is an unsigned int
477          */
478         if (unlikely(map->m_len > INT_MAX))
479                 map->m_len = INT_MAX;
480
481         /* We can handle the block number less than EXT_MAX_BLOCKS */
482         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
483                 return -EIO;
484
485         /* Lookup extent status tree firstly */
486         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
487                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
488                         map->m_pblk = ext4_es_pblock(&es) +
489                                         map->m_lblk - es.es_lblk;
490                         map->m_flags |= ext4_es_is_written(&es) ?
491                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
492                         retval = es.es_len - (map->m_lblk - es.es_lblk);
493                         if (retval > map->m_len)
494                                 retval = map->m_len;
495                         map->m_len = retval;
496                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
497                         retval = 0;
498                 } else {
499                         BUG_ON(1);
500                 }
501 #ifdef ES_AGGRESSIVE_TEST
502                 ext4_map_blocks_es_recheck(handle, inode, map,
503                                            &orig_map, flags);
504 #endif
505                 goto found;
506         }
507
508         /*
509          * Try to see if we can get the block without requesting a new
510          * file system block.
511          */
512         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
513                 down_read(&EXT4_I(inode)->i_data_sem);
514         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
515                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
516                                              EXT4_GET_BLOCKS_KEEP_SIZE);
517         } else {
518                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
519                                              EXT4_GET_BLOCKS_KEEP_SIZE);
520         }
521         if (retval > 0) {
522                 unsigned int status;
523
524                 if (unlikely(retval != map->m_len)) {
525                         ext4_warning(inode->i_sb,
526                                      "ES len assertion failed for inode "
527                                      "%lu: retval %d != map->m_len %d",
528                                      inode->i_ino, retval, map->m_len);
529                         WARN_ON(1);
530                 }
531
532                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
533                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
534                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
535                     ext4_find_delalloc_range(inode, map->m_lblk,
536                                              map->m_lblk + map->m_len - 1))
537                         status |= EXTENT_STATUS_DELAYED;
538                 ret = ext4_es_insert_extent(inode, map->m_lblk,
539                                             map->m_len, map->m_pblk, status);
540                 if (ret < 0)
541                         retval = ret;
542         }
543         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
544                 up_read((&EXT4_I(inode)->i_data_sem));
545
546 found:
547         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
548                 ret = check_block_validity(inode, map);
549                 if (ret != 0)
550                         return ret;
551         }
552
553         /* If it is only a block(s) look up */
554         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
555                 return retval;
556
557         /*
558          * Returns if the blocks have already allocated
559          *
560          * Note that if blocks have been preallocated
561          * ext4_ext_get_block() returns the create = 0
562          * with buffer head unmapped.
563          */
564         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
565                 /*
566                  * If we need to convert extent to unwritten
567                  * we continue and do the actual work in
568                  * ext4_ext_map_blocks()
569                  */
570                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
571                         return retval;
572
573         /*
574          * Here we clear m_flags because after allocating an new extent,
575          * it will be set again.
576          */
577         map->m_flags &= ~EXT4_MAP_FLAGS;
578
579         /*
580          * New blocks allocate and/or writing to unwritten extent
581          * will possibly result in updating i_data, so we take
582          * the write lock of i_data_sem, and call get_block()
583          * with create == 1 flag.
584          */
585         down_write(&EXT4_I(inode)->i_data_sem);
586
587         /*
588          * We need to check for EXT4 here because migrate
589          * could have changed the inode type in between
590          */
591         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
592                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
593         } else {
594                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
595
596                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
597                         /*
598                          * We allocated new blocks which will result in
599                          * i_data's format changing.  Force the migrate
600                          * to fail by clearing migrate flags
601                          */
602                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
603                 }
604
605                 /*
606                  * Update reserved blocks/metadata blocks after successful
607                  * block allocation which had been deferred till now. We don't
608                  * support fallocate for non extent files. So we can update
609                  * reserve space here.
610                  */
611                 if ((retval > 0) &&
612                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
613                         ext4_da_update_reserve_space(inode, retval, 1);
614         }
615
616         if (retval > 0) {
617                 unsigned int status;
618
619                 if (unlikely(retval != map->m_len)) {
620                         ext4_warning(inode->i_sb,
621                                      "ES len assertion failed for inode "
622                                      "%lu: retval %d != map->m_len %d",
623                                      inode->i_ino, retval, map->m_len);
624                         WARN_ON(1);
625                 }
626
627                 /*
628                  * If the extent has been zeroed out, we don't need to update
629                  * extent status tree.
630                  */
631                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
632                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
633                         if (ext4_es_is_written(&es))
634                                 goto has_zeroout;
635                 }
636                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
637                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
638                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
639                     ext4_find_delalloc_range(inode, map->m_lblk,
640                                              map->m_lblk + map->m_len - 1))
641                         status |= EXTENT_STATUS_DELAYED;
642                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
643                                             map->m_pblk, status);
644                 if (ret < 0)
645                         retval = ret;
646         }
647
648 has_zeroout:
649         up_write((&EXT4_I(inode)->i_data_sem));
650         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
651                 ret = check_block_validity(inode, map);
652                 if (ret != 0)
653                         return ret;
654         }
655         return retval;
656 }
657
658 static void ext4_end_io_unwritten(struct buffer_head *bh, int uptodate)
659 {
660         struct inode *inode = bh->b_assoc_map->host;
661         /* XXX: breaks on 32-bit > 16GB. Is that even supported? */
662         loff_t offset = (loff_t)(uintptr_t)bh->b_private << inode->i_blkbits;
663         int err;
664         if (!uptodate)
665                 return;
666         WARN_ON(!buffer_unwritten(bh));
667         err = ext4_convert_unwritten_extents(NULL, inode, offset, bh->b_size);
668 }
669
670 /* Maximum number of blocks we map for direct IO at once. */
671 #define DIO_MAX_BLOCKS 4096
672
673 static int _ext4_get_block(struct inode *inode, sector_t iblock,
674                            struct buffer_head *bh, int flags)
675 {
676         handle_t *handle = ext4_journal_current_handle();
677         struct ext4_map_blocks map;
678         int ret = 0, started = 0;
679         int dio_credits;
680
681         if (ext4_has_inline_data(inode))
682                 return -ERANGE;
683
684         map.m_lblk = iblock;
685         map.m_len = bh->b_size >> inode->i_blkbits;
686
687         if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
688                 /* Direct IO write... */
689                 if (map.m_len > DIO_MAX_BLOCKS)
690                         map.m_len = DIO_MAX_BLOCKS;
691                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
692                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
693                                             dio_credits);
694                 if (IS_ERR(handle)) {
695                         ret = PTR_ERR(handle);
696                         return ret;
697                 }
698                 started = 1;
699         }
700
701         ret = ext4_map_blocks(handle, inode, &map, flags);
702         if (ret > 0) {
703                 ext4_io_end_t *io_end = ext4_inode_aio(inode);
704
705                 map_bh(bh, inode->i_sb, map.m_pblk);
706                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
707                 if (IS_DAX(inode) && buffer_unwritten(bh) && !io_end) {
708                         bh->b_assoc_map = inode->i_mapping;
709                         bh->b_private = (void *)(unsigned long)iblock;
710                         bh->b_end_io = ext4_end_io_unwritten;
711                 }
712                 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
713                         set_buffer_defer_completion(bh);
714                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
715                 ret = 0;
716         }
717         if (started)
718                 ext4_journal_stop(handle);
719         return ret;
720 }
721
722 int ext4_get_block(struct inode *inode, sector_t iblock,
723                    struct buffer_head *bh, int create)
724 {
725         return _ext4_get_block(inode, iblock, bh,
726                                create ? EXT4_GET_BLOCKS_CREATE : 0);
727 }
728
729 /*
730  * `handle' can be NULL if create is zero
731  */
732 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
733                                 ext4_lblk_t block, int create)
734 {
735         struct ext4_map_blocks map;
736         struct buffer_head *bh;
737         int err;
738
739         J_ASSERT(handle != NULL || create == 0);
740
741         map.m_lblk = block;
742         map.m_len = 1;
743         err = ext4_map_blocks(handle, inode, &map,
744                               create ? EXT4_GET_BLOCKS_CREATE : 0);
745
746         if (err == 0)
747                 return create ? ERR_PTR(-ENOSPC) : NULL;
748         if (err < 0)
749                 return ERR_PTR(err);
750
751         bh = sb_getblk(inode->i_sb, map.m_pblk);
752         if (unlikely(!bh))
753                 return ERR_PTR(-ENOMEM);
754         if (map.m_flags & EXT4_MAP_NEW) {
755                 J_ASSERT(create != 0);
756                 J_ASSERT(handle != NULL);
757
758                 /*
759                  * Now that we do not always journal data, we should
760                  * keep in mind whether this should always journal the
761                  * new buffer as metadata.  For now, regular file
762                  * writes use ext4_get_block instead, so it's not a
763                  * problem.
764                  */
765                 lock_buffer(bh);
766                 BUFFER_TRACE(bh, "call get_create_access");
767                 err = ext4_journal_get_create_access(handle, bh);
768                 if (unlikely(err)) {
769                         unlock_buffer(bh);
770                         goto errout;
771                 }
772                 if (!buffer_uptodate(bh)) {
773                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
774                         set_buffer_uptodate(bh);
775                 }
776                 unlock_buffer(bh);
777                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
778                 err = ext4_handle_dirty_metadata(handle, inode, bh);
779                 if (unlikely(err))
780                         goto errout;
781         } else
782                 BUFFER_TRACE(bh, "not a new buffer");
783         return bh;
784 errout:
785         brelse(bh);
786         return ERR_PTR(err);
787 }
788
789 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
790                                ext4_lblk_t block, int create)
791 {
792         struct buffer_head *bh;
793
794         bh = ext4_getblk(handle, inode, block, create);
795         if (IS_ERR(bh))
796                 return bh;
797         if (!bh || buffer_uptodate(bh))
798                 return bh;
799         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
800         wait_on_buffer(bh);
801         if (buffer_uptodate(bh))
802                 return bh;
803         put_bh(bh);
804         return ERR_PTR(-EIO);
805 }
806
807 int ext4_walk_page_buffers(handle_t *handle,
808                            struct buffer_head *head,
809                            unsigned from,
810                            unsigned to,
811                            int *partial,
812                            int (*fn)(handle_t *handle,
813                                      struct buffer_head *bh))
814 {
815         struct buffer_head *bh;
816         unsigned block_start, block_end;
817         unsigned blocksize = head->b_size;
818         int err, ret = 0;
819         struct buffer_head *next;
820
821         for (bh = head, block_start = 0;
822              ret == 0 && (bh != head || !block_start);
823              block_start = block_end, bh = next) {
824                 next = bh->b_this_page;
825                 block_end = block_start + blocksize;
826                 if (block_end <= from || block_start >= to) {
827                         if (partial && !buffer_uptodate(bh))
828                                 *partial = 1;
829                         continue;
830                 }
831                 err = (*fn)(handle, bh);
832                 if (!ret)
833                         ret = err;
834         }
835         return ret;
836 }
837
838 /*
839  * To preserve ordering, it is essential that the hole instantiation and
840  * the data write be encapsulated in a single transaction.  We cannot
841  * close off a transaction and start a new one between the ext4_get_block()
842  * and the commit_write().  So doing the jbd2_journal_start at the start of
843  * prepare_write() is the right place.
844  *
845  * Also, this function can nest inside ext4_writepage().  In that case, we
846  * *know* that ext4_writepage() has generated enough buffer credits to do the
847  * whole page.  So we won't block on the journal in that case, which is good,
848  * because the caller may be PF_MEMALLOC.
849  *
850  * By accident, ext4 can be reentered when a transaction is open via
851  * quota file writes.  If we were to commit the transaction while thus
852  * reentered, there can be a deadlock - we would be holding a quota
853  * lock, and the commit would never complete if another thread had a
854  * transaction open and was blocking on the quota lock - a ranking
855  * violation.
856  *
857  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
858  * will _not_ run commit under these circumstances because handle->h_ref
859  * is elevated.  We'll still have enough credits for the tiny quotafile
860  * write.
861  */
862 int do_journal_get_write_access(handle_t *handle,
863                                 struct buffer_head *bh)
864 {
865         int dirty = buffer_dirty(bh);
866         int ret;
867
868         if (!buffer_mapped(bh) || buffer_freed(bh))
869                 return 0;
870         /*
871          * __block_write_begin() could have dirtied some buffers. Clean
872          * the dirty bit as jbd2_journal_get_write_access() could complain
873          * otherwise about fs integrity issues. Setting of the dirty bit
874          * by __block_write_begin() isn't a real problem here as we clear
875          * the bit before releasing a page lock and thus writeback cannot
876          * ever write the buffer.
877          */
878         if (dirty)
879                 clear_buffer_dirty(bh);
880         BUFFER_TRACE(bh, "get write access");
881         ret = ext4_journal_get_write_access(handle, bh);
882         if (!ret && dirty)
883                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
884         return ret;
885 }
886
887 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
888                    struct buffer_head *bh_result, int create);
889
890 #ifdef CONFIG_EXT4_FS_ENCRYPTION
891 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
892                                   get_block_t *get_block)
893 {
894         unsigned from = pos & (PAGE_CACHE_SIZE - 1);
895         unsigned to = from + len;
896         struct inode *inode = page->mapping->host;
897         unsigned block_start, block_end;
898         sector_t block;
899         int err = 0;
900         unsigned blocksize = inode->i_sb->s_blocksize;
901         unsigned bbits;
902         struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
903         bool decrypt = false;
904
905         BUG_ON(!PageLocked(page));
906         BUG_ON(from > PAGE_CACHE_SIZE);
907         BUG_ON(to > PAGE_CACHE_SIZE);
908         BUG_ON(from > to);
909
910         if (!page_has_buffers(page))
911                 create_empty_buffers(page, blocksize, 0);
912         head = page_buffers(page);
913         bbits = ilog2(blocksize);
914         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
915
916         for (bh = head, block_start = 0; bh != head || !block_start;
917             block++, block_start = block_end, bh = bh->b_this_page) {
918                 block_end = block_start + blocksize;
919                 if (block_end <= from || block_start >= to) {
920                         if (PageUptodate(page)) {
921                                 if (!buffer_uptodate(bh))
922                                         set_buffer_uptodate(bh);
923                         }
924                         continue;
925                 }
926                 if (buffer_new(bh))
927                         clear_buffer_new(bh);
928                 if (!buffer_mapped(bh)) {
929                         WARN_ON(bh->b_size != blocksize);
930                         err = get_block(inode, block, bh, 1);
931                         if (err)
932                                 break;
933                         if (buffer_new(bh)) {
934                                 unmap_underlying_metadata(bh->b_bdev,
935                                                           bh->b_blocknr);
936                                 if (PageUptodate(page)) {
937                                         clear_buffer_new(bh);
938                                         set_buffer_uptodate(bh);
939                                         mark_buffer_dirty(bh);
940                                         continue;
941                                 }
942                                 if (block_end > to || block_start < from)
943                                         zero_user_segments(page, to, block_end,
944                                                            block_start, from);
945                                 continue;
946                         }
947                 }
948                 if (PageUptodate(page)) {
949                         if (!buffer_uptodate(bh))
950                                 set_buffer_uptodate(bh);
951                         continue;
952                 }
953                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
954                     !buffer_unwritten(bh) &&
955                     (block_start < from || block_end > to)) {
956                         ll_rw_block(READ, 1, &bh);
957                         *wait_bh++ = bh;
958                         decrypt = ext4_encrypted_inode(inode) &&
959                                 S_ISREG(inode->i_mode);
960                 }
961         }
962         /*
963          * If we issued read requests, let them complete.
964          */
965         while (wait_bh > wait) {
966                 wait_on_buffer(*--wait_bh);
967                 if (!buffer_uptodate(*wait_bh))
968                         err = -EIO;
969         }
970         if (unlikely(err))
971                 page_zero_new_buffers(page, from, to);
972         else if (decrypt)
973                 err = ext4_decrypt_one(inode, page);
974         return err;
975 }
976 #endif
977
978 static int ext4_write_begin(struct file *file, struct address_space *mapping,
979                             loff_t pos, unsigned len, unsigned flags,
980                             struct page **pagep, void **fsdata)
981 {
982         struct inode *inode = mapping->host;
983         int ret, needed_blocks;
984         handle_t *handle;
985         int retries = 0;
986         struct page *page;
987         pgoff_t index;
988         unsigned from, to;
989
990         trace_ext4_write_begin(inode, pos, len, flags);
991         /*
992          * Reserve one block more for addition to orphan list in case
993          * we allocate blocks but write fails for some reason
994          */
995         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
996         index = pos >> PAGE_CACHE_SHIFT;
997         from = pos & (PAGE_CACHE_SIZE - 1);
998         to = from + len;
999
1000         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1001                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1002                                                     flags, pagep);
1003                 if (ret < 0)
1004                         return ret;
1005                 if (ret == 1)
1006                         return 0;
1007         }
1008
1009         /*
1010          * grab_cache_page_write_begin() can take a long time if the
1011          * system is thrashing due to memory pressure, or if the page
1012          * is being written back.  So grab it first before we start
1013          * the transaction handle.  This also allows us to allocate
1014          * the page (if needed) without using GFP_NOFS.
1015          */
1016 retry_grab:
1017         page = grab_cache_page_write_begin(mapping, index, flags);
1018         if (!page)
1019                 return -ENOMEM;
1020         unlock_page(page);
1021
1022 retry_journal:
1023         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1024         if (IS_ERR(handle)) {
1025                 page_cache_release(page);
1026                 return PTR_ERR(handle);
1027         }
1028
1029         lock_page(page);
1030         if (page->mapping != mapping) {
1031                 /* The page got truncated from under us */
1032                 unlock_page(page);
1033                 page_cache_release(page);
1034                 ext4_journal_stop(handle);
1035                 goto retry_grab;
1036         }
1037         /* In case writeback began while the page was unlocked */
1038         wait_for_stable_page(page);
1039
1040 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1041         if (ext4_should_dioread_nolock(inode))
1042                 ret = ext4_block_write_begin(page, pos, len,
1043                                              ext4_get_block_write);
1044         else
1045                 ret = ext4_block_write_begin(page, pos, len,
1046                                              ext4_get_block);
1047 #else
1048         if (ext4_should_dioread_nolock(inode))
1049                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1050         else
1051                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1052 #endif
1053         if (!ret && ext4_should_journal_data(inode)) {
1054                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1055                                              from, to, NULL,
1056                                              do_journal_get_write_access);
1057         }
1058
1059         if (ret) {
1060                 unlock_page(page);
1061                 /*
1062                  * __block_write_begin may have instantiated a few blocks
1063                  * outside i_size.  Trim these off again. Don't need
1064                  * i_size_read because we hold i_mutex.
1065                  *
1066                  * Add inode to orphan list in case we crash before
1067                  * truncate finishes
1068                  */
1069                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1070                         ext4_orphan_add(handle, inode);
1071
1072                 ext4_journal_stop(handle);
1073                 if (pos + len > inode->i_size) {
1074                         ext4_truncate_failed_write(inode);
1075                         /*
1076                          * If truncate failed early the inode might
1077                          * still be on the orphan list; we need to
1078                          * make sure the inode is removed from the
1079                          * orphan list in that case.
1080                          */
1081                         if (inode->i_nlink)
1082                                 ext4_orphan_del(NULL, inode);
1083                 }
1084
1085                 if (ret == -ENOSPC &&
1086                     ext4_should_retry_alloc(inode->i_sb, &retries))
1087                         goto retry_journal;
1088                 page_cache_release(page);
1089                 return ret;
1090         }
1091         *pagep = page;
1092         return ret;
1093 }
1094
1095 /* For write_end() in data=journal mode */
1096 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1097 {
1098         int ret;
1099         if (!buffer_mapped(bh) || buffer_freed(bh))
1100                 return 0;
1101         set_buffer_uptodate(bh);
1102         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1103         clear_buffer_meta(bh);
1104         clear_buffer_prio(bh);
1105         return ret;
1106 }
1107
1108 /*
1109  * We need to pick up the new inode size which generic_commit_write gave us
1110  * `file' can be NULL - eg, when called from page_symlink().
1111  *
1112  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1113  * buffers are managed internally.
1114  */
1115 static int ext4_write_end(struct file *file,
1116                           struct address_space *mapping,
1117                           loff_t pos, unsigned len, unsigned copied,
1118                           struct page *page, void *fsdata)
1119 {
1120         handle_t *handle = ext4_journal_current_handle();
1121         struct inode *inode = mapping->host;
1122         loff_t old_size = inode->i_size;
1123         int ret = 0, ret2;
1124         int i_size_changed = 0;
1125
1126         trace_ext4_write_end(inode, pos, len, copied);
1127         if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1128                 ret = ext4_jbd2_file_inode(handle, inode);
1129                 if (ret) {
1130                         unlock_page(page);
1131                         page_cache_release(page);
1132                         goto errout;
1133                 }
1134         }
1135
1136         if (ext4_has_inline_data(inode)) {
1137                 ret = ext4_write_inline_data_end(inode, pos, len,
1138                                                  copied, page);
1139                 if (ret < 0)
1140                         goto errout;
1141                 copied = ret;
1142         } else
1143                 copied = block_write_end(file, mapping, pos,
1144                                          len, copied, page, fsdata);
1145         /*
1146          * it's important to update i_size while still holding page lock:
1147          * page writeout could otherwise come in and zero beyond i_size.
1148          */
1149         i_size_changed = ext4_update_inode_size(inode, pos + copied);
1150         unlock_page(page);
1151         page_cache_release(page);
1152
1153         if (old_size < pos)
1154                 pagecache_isize_extended(inode, old_size, pos);
1155         /*
1156          * Don't mark the inode dirty under page lock. First, it unnecessarily
1157          * makes the holding time of page lock longer. Second, it forces lock
1158          * ordering of page lock and transaction start for journaling
1159          * filesystems.
1160          */
1161         if (i_size_changed)
1162                 ext4_mark_inode_dirty(handle, inode);
1163
1164         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1165                 /* if we have allocated more blocks and copied
1166                  * less. We will have blocks allocated outside
1167                  * inode->i_size. So truncate them
1168                  */
1169                 ext4_orphan_add(handle, inode);
1170 errout:
1171         ret2 = ext4_journal_stop(handle);
1172         if (!ret)
1173                 ret = ret2;
1174
1175         if (pos + len > inode->i_size) {
1176                 ext4_truncate_failed_write(inode);
1177                 /*
1178                  * If truncate failed early the inode might still be
1179                  * on the orphan list; we need to make sure the inode
1180                  * is removed from the orphan list in that case.
1181                  */
1182                 if (inode->i_nlink)
1183                         ext4_orphan_del(NULL, inode);
1184         }
1185
1186         return ret ? ret : copied;
1187 }
1188
1189 static int ext4_journalled_write_end(struct file *file,
1190                                      struct address_space *mapping,
1191                                      loff_t pos, unsigned len, unsigned copied,
1192                                      struct page *page, void *fsdata)
1193 {
1194         handle_t *handle = ext4_journal_current_handle();
1195         struct inode *inode = mapping->host;
1196         loff_t old_size = inode->i_size;
1197         int ret = 0, ret2;
1198         int partial = 0;
1199         unsigned from, to;
1200         int size_changed = 0;
1201
1202         trace_ext4_journalled_write_end(inode, pos, len, copied);
1203         from = pos & (PAGE_CACHE_SIZE - 1);
1204         to = from + len;
1205
1206         BUG_ON(!ext4_handle_valid(handle));
1207
1208         if (ext4_has_inline_data(inode))
1209                 copied = ext4_write_inline_data_end(inode, pos, len,
1210                                                     copied, page);
1211         else {
1212                 if (copied < len) {
1213                         if (!PageUptodate(page))
1214                                 copied = 0;
1215                         page_zero_new_buffers(page, from+copied, to);
1216                 }
1217
1218                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1219                                              to, &partial, write_end_fn);
1220                 if (!partial)
1221                         SetPageUptodate(page);
1222         }
1223         size_changed = ext4_update_inode_size(inode, pos + copied);
1224         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1225         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1226         unlock_page(page);
1227         page_cache_release(page);
1228
1229         if (old_size < pos)
1230                 pagecache_isize_extended(inode, old_size, pos);
1231
1232         if (size_changed) {
1233                 ret2 = ext4_mark_inode_dirty(handle, inode);
1234                 if (!ret)
1235                         ret = ret2;
1236         }
1237
1238         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1239                 /* if we have allocated more blocks and copied
1240                  * less. We will have blocks allocated outside
1241                  * inode->i_size. So truncate them
1242                  */
1243                 ext4_orphan_add(handle, inode);
1244
1245         ret2 = ext4_journal_stop(handle);
1246         if (!ret)
1247                 ret = ret2;
1248         if (pos + len > inode->i_size) {
1249                 ext4_truncate_failed_write(inode);
1250                 /*
1251                  * If truncate failed early the inode might still be
1252                  * on the orphan list; we need to make sure the inode
1253                  * is removed from the orphan list in that case.
1254                  */
1255                 if (inode->i_nlink)
1256                         ext4_orphan_del(NULL, inode);
1257         }
1258
1259         return ret ? ret : copied;
1260 }
1261
1262 /*
1263  * Reserve a single cluster located at lblock
1264  */
1265 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1266 {
1267         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1268         struct ext4_inode_info *ei = EXT4_I(inode);
1269         unsigned int md_needed;
1270         int ret;
1271
1272         /*
1273          * We will charge metadata quota at writeout time; this saves
1274          * us from metadata over-estimation, though we may go over by
1275          * a small amount in the end.  Here we just reserve for data.
1276          */
1277         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1278         if (ret)
1279                 return ret;
1280
1281         /*
1282          * recalculate the amount of metadata blocks to reserve
1283          * in order to allocate nrblocks
1284          * worse case is one extent per block
1285          */
1286         spin_lock(&ei->i_block_reservation_lock);
1287         /*
1288          * ext4_calc_metadata_amount() has side effects, which we have
1289          * to be prepared undo if we fail to claim space.
1290          */
1291         md_needed = 0;
1292         trace_ext4_da_reserve_space(inode, 0);
1293
1294         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1295                 spin_unlock(&ei->i_block_reservation_lock);
1296                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1297                 return -ENOSPC;
1298         }
1299         ei->i_reserved_data_blocks++;
1300         spin_unlock(&ei->i_block_reservation_lock);
1301
1302         return 0;       /* success */
1303 }
1304
1305 static void ext4_da_release_space(struct inode *inode, int to_free)
1306 {
1307         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1308         struct ext4_inode_info *ei = EXT4_I(inode);
1309
1310         if (!to_free)
1311                 return;         /* Nothing to release, exit */
1312
1313         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1314
1315         trace_ext4_da_release_space(inode, to_free);
1316         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1317                 /*
1318                  * if there aren't enough reserved blocks, then the
1319                  * counter is messed up somewhere.  Since this
1320                  * function is called from invalidate page, it's
1321                  * harmless to return without any action.
1322                  */
1323                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1324                          "ino %lu, to_free %d with only %d reserved "
1325                          "data blocks", inode->i_ino, to_free,
1326                          ei->i_reserved_data_blocks);
1327                 WARN_ON(1);
1328                 to_free = ei->i_reserved_data_blocks;
1329         }
1330         ei->i_reserved_data_blocks -= to_free;
1331
1332         /* update fs dirty data blocks counter */
1333         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1334
1335         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1336
1337         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1338 }
1339
1340 static void ext4_da_page_release_reservation(struct page *page,
1341                                              unsigned int offset,
1342                                              unsigned int length)
1343 {
1344         int to_release = 0;
1345         struct buffer_head *head, *bh;
1346         unsigned int curr_off = 0;
1347         struct inode *inode = page->mapping->host;
1348         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1349         unsigned int stop = offset + length;
1350         int num_clusters;
1351         ext4_fsblk_t lblk;
1352
1353         BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1354
1355         head = page_buffers(page);
1356         bh = head;
1357         do {
1358                 unsigned int next_off = curr_off + bh->b_size;
1359
1360                 if (next_off > stop)
1361                         break;
1362
1363                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1364                         to_release++;
1365                         clear_buffer_delay(bh);
1366                 }
1367                 curr_off = next_off;
1368         } while ((bh = bh->b_this_page) != head);
1369
1370         if (to_release) {
1371                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1372                 ext4_es_remove_extent(inode, lblk, to_release);
1373         }
1374
1375         /* If we have released all the blocks belonging to a cluster, then we
1376          * need to release the reserved space for that cluster. */
1377         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1378         while (num_clusters > 0) {
1379                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1380                         ((num_clusters - 1) << sbi->s_cluster_bits);
1381                 if (sbi->s_cluster_ratio == 1 ||
1382                     !ext4_find_delalloc_cluster(inode, lblk))
1383                         ext4_da_release_space(inode, 1);
1384
1385                 num_clusters--;
1386         }
1387 }
1388
1389 /*
1390  * Delayed allocation stuff
1391  */
1392
1393 struct mpage_da_data {
1394         struct inode *inode;
1395         struct writeback_control *wbc;
1396
1397         pgoff_t first_page;     /* The first page to write */
1398         pgoff_t next_page;      /* Current page to examine */
1399         pgoff_t last_page;      /* Last page to examine */
1400         /*
1401          * Extent to map - this can be after first_page because that can be
1402          * fully mapped. We somewhat abuse m_flags to store whether the extent
1403          * is delalloc or unwritten.
1404          */
1405         struct ext4_map_blocks map;
1406         struct ext4_io_submit io_submit;        /* IO submission data */
1407 };
1408
1409 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1410                                        bool invalidate)
1411 {
1412         int nr_pages, i;
1413         pgoff_t index, end;
1414         struct pagevec pvec;
1415         struct inode *inode = mpd->inode;
1416         struct address_space *mapping = inode->i_mapping;
1417
1418         /* This is necessary when next_page == 0. */
1419         if (mpd->first_page >= mpd->next_page)
1420                 return;
1421
1422         index = mpd->first_page;
1423         end   = mpd->next_page - 1;
1424         if (invalidate) {
1425                 ext4_lblk_t start, last;
1426                 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1427                 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1428                 ext4_es_remove_extent(inode, start, last - start + 1);
1429         }
1430
1431         pagevec_init(&pvec, 0);
1432         while (index <= end) {
1433                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1434                 if (nr_pages == 0)
1435                         break;
1436                 for (i = 0; i < nr_pages; i++) {
1437                         struct page *page = pvec.pages[i];
1438                         if (page->index > end)
1439                                 break;
1440                         BUG_ON(!PageLocked(page));
1441                         BUG_ON(PageWriteback(page));
1442                         if (invalidate) {
1443                                 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1444                                 ClearPageUptodate(page);
1445                         }
1446                         unlock_page(page);
1447                 }
1448                 index = pvec.pages[nr_pages - 1]->index + 1;
1449                 pagevec_release(&pvec);
1450         }
1451 }
1452
1453 static void ext4_print_free_blocks(struct inode *inode)
1454 {
1455         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1456         struct super_block *sb = inode->i_sb;
1457         struct ext4_inode_info *ei = EXT4_I(inode);
1458
1459         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1460                EXT4_C2B(EXT4_SB(inode->i_sb),
1461                         ext4_count_free_clusters(sb)));
1462         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1463         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1464                (long long) EXT4_C2B(EXT4_SB(sb),
1465                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1466         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1467                (long long) EXT4_C2B(EXT4_SB(sb),
1468                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1469         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1470         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1471                  ei->i_reserved_data_blocks);
1472         return;
1473 }
1474
1475 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1476 {
1477         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1478 }
1479
1480 /*
1481  * This function is grabs code from the very beginning of
1482  * ext4_map_blocks, but assumes that the caller is from delayed write
1483  * time. This function looks up the requested blocks and sets the
1484  * buffer delay bit under the protection of i_data_sem.
1485  */
1486 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1487                               struct ext4_map_blocks *map,
1488                               struct buffer_head *bh)
1489 {
1490         struct extent_status es;
1491         int retval;
1492         sector_t invalid_block = ~((sector_t) 0xffff);
1493 #ifdef ES_AGGRESSIVE_TEST
1494         struct ext4_map_blocks orig_map;
1495
1496         memcpy(&orig_map, map, sizeof(*map));
1497 #endif
1498
1499         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1500                 invalid_block = ~0;
1501
1502         map->m_flags = 0;
1503         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1504                   "logical block %lu\n", inode->i_ino, map->m_len,
1505                   (unsigned long) map->m_lblk);
1506
1507         /* Lookup extent status tree firstly */
1508         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1509                 if (ext4_es_is_hole(&es)) {
1510                         retval = 0;
1511                         down_read(&EXT4_I(inode)->i_data_sem);
1512                         goto add_delayed;
1513                 }
1514
1515                 /*
1516                  * Delayed extent could be allocated by fallocate.
1517                  * So we need to check it.
1518                  */
1519                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1520                         map_bh(bh, inode->i_sb, invalid_block);
1521                         set_buffer_new(bh);
1522                         set_buffer_delay(bh);
1523                         return 0;
1524                 }
1525
1526                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1527                 retval = es.es_len - (iblock - es.es_lblk);
1528                 if (retval > map->m_len)
1529                         retval = map->m_len;
1530                 map->m_len = retval;
1531                 if (ext4_es_is_written(&es))
1532                         map->m_flags |= EXT4_MAP_MAPPED;
1533                 else if (ext4_es_is_unwritten(&es))
1534                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1535                 else
1536                         BUG_ON(1);
1537
1538 #ifdef ES_AGGRESSIVE_TEST
1539                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1540 #endif
1541                 return retval;
1542         }
1543
1544         /*
1545          * Try to see if we can get the block without requesting a new
1546          * file system block.
1547          */
1548         down_read(&EXT4_I(inode)->i_data_sem);
1549         if (ext4_has_inline_data(inode))
1550                 retval = 0;
1551         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1552                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1553         else
1554                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1555
1556 add_delayed:
1557         if (retval == 0) {
1558                 int ret;
1559                 /*
1560                  * XXX: __block_prepare_write() unmaps passed block,
1561                  * is it OK?
1562                  */
1563                 /*
1564                  * If the block was allocated from previously allocated cluster,
1565                  * then we don't need to reserve it again. However we still need
1566                  * to reserve metadata for every block we're going to write.
1567                  */
1568                 if (EXT4_SB(inode->i_sb)->s_cluster_ratio <= 1 ||
1569                     !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1570                         ret = ext4_da_reserve_space(inode, iblock);
1571                         if (ret) {
1572                                 /* not enough space to reserve */
1573                                 retval = ret;
1574                                 goto out_unlock;
1575                         }
1576                 }
1577
1578                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1579                                             ~0, EXTENT_STATUS_DELAYED);
1580                 if (ret) {
1581                         retval = ret;
1582                         goto out_unlock;
1583                 }
1584
1585                 map_bh(bh, inode->i_sb, invalid_block);
1586                 set_buffer_new(bh);
1587                 set_buffer_delay(bh);
1588         } else if (retval > 0) {
1589                 int ret;
1590                 unsigned int status;
1591
1592                 if (unlikely(retval != map->m_len)) {
1593                         ext4_warning(inode->i_sb,
1594                                      "ES len assertion failed for inode "
1595                                      "%lu: retval %d != map->m_len %d",
1596                                      inode->i_ino, retval, map->m_len);
1597                         WARN_ON(1);
1598                 }
1599
1600                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1601                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1602                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1603                                             map->m_pblk, status);
1604                 if (ret != 0)
1605                         retval = ret;
1606         }
1607
1608 out_unlock:
1609         up_read((&EXT4_I(inode)->i_data_sem));
1610
1611         return retval;
1612 }
1613
1614 /*
1615  * This is a special get_block_t callback which is used by
1616  * ext4_da_write_begin().  It will either return mapped block or
1617  * reserve space for a single block.
1618  *
1619  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1620  * We also have b_blocknr = -1 and b_bdev initialized properly
1621  *
1622  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1623  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1624  * initialized properly.
1625  */
1626 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1627                            struct buffer_head *bh, int create)
1628 {
1629         struct ext4_map_blocks map;
1630         int ret = 0;
1631
1632         BUG_ON(create == 0);
1633         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1634
1635         map.m_lblk = iblock;
1636         map.m_len = 1;
1637
1638         /*
1639          * first, we need to know whether the block is allocated already
1640          * preallocated blocks are unmapped but should treated
1641          * the same as allocated blocks.
1642          */
1643         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1644         if (ret <= 0)
1645                 return ret;
1646
1647         map_bh(bh, inode->i_sb, map.m_pblk);
1648         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1649
1650         if (buffer_unwritten(bh)) {
1651                 /* A delayed write to unwritten bh should be marked
1652                  * new and mapped.  Mapped ensures that we don't do
1653                  * get_block multiple times when we write to the same
1654                  * offset and new ensures that we do proper zero out
1655                  * for partial write.
1656                  */
1657                 set_buffer_new(bh);
1658                 set_buffer_mapped(bh);
1659         }
1660         return 0;
1661 }
1662
1663 static int bget_one(handle_t *handle, struct buffer_head *bh)
1664 {
1665         get_bh(bh);
1666         return 0;
1667 }
1668
1669 static int bput_one(handle_t *handle, struct buffer_head *bh)
1670 {
1671         put_bh(bh);
1672         return 0;
1673 }
1674
1675 static int __ext4_journalled_writepage(struct page *page,
1676                                        unsigned int len)
1677 {
1678         struct address_space *mapping = page->mapping;
1679         struct inode *inode = mapping->host;
1680         struct buffer_head *page_bufs = NULL;
1681         handle_t *handle = NULL;
1682         int ret = 0, err = 0;
1683         int inline_data = ext4_has_inline_data(inode);
1684         struct buffer_head *inode_bh = NULL;
1685
1686         ClearPageChecked(page);
1687
1688         if (inline_data) {
1689                 BUG_ON(page->index != 0);
1690                 BUG_ON(len > ext4_get_max_inline_size(inode));
1691                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1692                 if (inode_bh == NULL)
1693                         goto out;
1694         } else {
1695                 page_bufs = page_buffers(page);
1696                 if (!page_bufs) {
1697                         BUG();
1698                         goto out;
1699                 }
1700                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1701                                        NULL, bget_one);
1702         }
1703         /* As soon as we unlock the page, it can go away, but we have
1704          * references to buffers so we are safe */
1705         unlock_page(page);
1706
1707         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1708                                     ext4_writepage_trans_blocks(inode));
1709         if (IS_ERR(handle)) {
1710                 ret = PTR_ERR(handle);
1711                 goto out;
1712         }
1713
1714         BUG_ON(!ext4_handle_valid(handle));
1715
1716         if (inline_data) {
1717                 BUFFER_TRACE(inode_bh, "get write access");
1718                 ret = ext4_journal_get_write_access(handle, inode_bh);
1719
1720                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1721
1722         } else {
1723                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1724                                              do_journal_get_write_access);
1725
1726                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1727                                              write_end_fn);
1728         }
1729         if (ret == 0)
1730                 ret = err;
1731         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1732         err = ext4_journal_stop(handle);
1733         if (!ret)
1734                 ret = err;
1735
1736         if (!ext4_has_inline_data(inode))
1737                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1738                                        NULL, bput_one);
1739         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1740 out:
1741         brelse(inode_bh);
1742         return ret;
1743 }
1744
1745 /*
1746  * Note that we don't need to start a transaction unless we're journaling data
1747  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1748  * need to file the inode to the transaction's list in ordered mode because if
1749  * we are writing back data added by write(), the inode is already there and if
1750  * we are writing back data modified via mmap(), no one guarantees in which
1751  * transaction the data will hit the disk. In case we are journaling data, we
1752  * cannot start transaction directly because transaction start ranks above page
1753  * lock so we have to do some magic.
1754  *
1755  * This function can get called via...
1756  *   - ext4_writepages after taking page lock (have journal handle)
1757  *   - journal_submit_inode_data_buffers (no journal handle)
1758  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1759  *   - grab_page_cache when doing write_begin (have journal handle)
1760  *
1761  * We don't do any block allocation in this function. If we have page with
1762  * multiple blocks we need to write those buffer_heads that are mapped. This
1763  * is important for mmaped based write. So if we do with blocksize 1K
1764  * truncate(f, 1024);
1765  * a = mmap(f, 0, 4096);
1766  * a[0] = 'a';
1767  * truncate(f, 4096);
1768  * we have in the page first buffer_head mapped via page_mkwrite call back
1769  * but other buffer_heads would be unmapped but dirty (dirty done via the
1770  * do_wp_page). So writepage should write the first block. If we modify
1771  * the mmap area beyond 1024 we will again get a page_fault and the
1772  * page_mkwrite callback will do the block allocation and mark the
1773  * buffer_heads mapped.
1774  *
1775  * We redirty the page if we have any buffer_heads that is either delay or
1776  * unwritten in the page.
1777  *
1778  * We can get recursively called as show below.
1779  *
1780  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1781  *              ext4_writepage()
1782  *
1783  * But since we don't do any block allocation we should not deadlock.
1784  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1785  */
1786 static int ext4_writepage(struct page *page,
1787                           struct writeback_control *wbc)
1788 {
1789         int ret = 0;
1790         loff_t size;
1791         unsigned int len;
1792         struct buffer_head *page_bufs = NULL;
1793         struct inode *inode = page->mapping->host;
1794         struct ext4_io_submit io_submit;
1795         bool keep_towrite = false;
1796
1797         trace_ext4_writepage(page);
1798         size = i_size_read(inode);
1799         if (page->index == size >> PAGE_CACHE_SHIFT)
1800                 len = size & ~PAGE_CACHE_MASK;
1801         else
1802                 len = PAGE_CACHE_SIZE;
1803
1804         page_bufs = page_buffers(page);
1805         /*
1806          * We cannot do block allocation or other extent handling in this
1807          * function. If there are buffers needing that, we have to redirty
1808          * the page. But we may reach here when we do a journal commit via
1809          * journal_submit_inode_data_buffers() and in that case we must write
1810          * allocated buffers to achieve data=ordered mode guarantees.
1811          */
1812         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1813                                    ext4_bh_delay_or_unwritten)) {
1814                 redirty_page_for_writepage(wbc, page);
1815                 if (current->flags & PF_MEMALLOC) {
1816                         /*
1817                          * For memory cleaning there's no point in writing only
1818                          * some buffers. So just bail out. Warn if we came here
1819                          * from direct reclaim.
1820                          */
1821                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1822                                                         == PF_MEMALLOC);
1823                         unlock_page(page);
1824                         return 0;
1825                 }
1826                 keep_towrite = true;
1827         }
1828
1829         if (PageChecked(page) && ext4_should_journal_data(inode))
1830                 /*
1831                  * It's mmapped pagecache.  Add buffers and journal it.  There
1832                  * doesn't seem much point in redirtying the page here.
1833                  */
1834                 return __ext4_journalled_writepage(page, len);
1835
1836         ext4_io_submit_init(&io_submit, wbc);
1837         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1838         if (!io_submit.io_end) {
1839                 redirty_page_for_writepage(wbc, page);
1840                 unlock_page(page);
1841                 return -ENOMEM;
1842         }
1843         ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
1844         ext4_io_submit(&io_submit);
1845         /* Drop io_end reference we got from init */
1846         ext4_put_io_end_defer(io_submit.io_end);
1847         return ret;
1848 }
1849
1850 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1851 {
1852         int len;
1853         loff_t size = i_size_read(mpd->inode);
1854         int err;
1855
1856         BUG_ON(page->index != mpd->first_page);
1857         if (page->index == size >> PAGE_CACHE_SHIFT)
1858                 len = size & ~PAGE_CACHE_MASK;
1859         else
1860                 len = PAGE_CACHE_SIZE;
1861         clear_page_dirty_for_io(page);
1862         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
1863         if (!err)
1864                 mpd->wbc->nr_to_write--;
1865         mpd->first_page++;
1866
1867         return err;
1868 }
1869
1870 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1871
1872 /*
1873  * mballoc gives us at most this number of blocks...
1874  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1875  * The rest of mballoc seems to handle chunks up to full group size.
1876  */
1877 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1878
1879 /*
1880  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1881  *
1882  * @mpd - extent of blocks
1883  * @lblk - logical number of the block in the file
1884  * @bh - buffer head we want to add to the extent
1885  *
1886  * The function is used to collect contig. blocks in the same state. If the
1887  * buffer doesn't require mapping for writeback and we haven't started the
1888  * extent of buffers to map yet, the function returns 'true' immediately - the
1889  * caller can write the buffer right away. Otherwise the function returns true
1890  * if the block has been added to the extent, false if the block couldn't be
1891  * added.
1892  */
1893 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1894                                    struct buffer_head *bh)
1895 {
1896         struct ext4_map_blocks *map = &mpd->map;
1897
1898         /* Buffer that doesn't need mapping for writeback? */
1899         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1900             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1901                 /* So far no extent to map => we write the buffer right away */
1902                 if (map->m_len == 0)
1903                         return true;
1904                 return false;
1905         }
1906
1907         /* First block in the extent? */
1908         if (map->m_len == 0) {
1909                 map->m_lblk = lblk;
1910                 map->m_len = 1;
1911                 map->m_flags = bh->b_state & BH_FLAGS;
1912                 return true;
1913         }
1914
1915         /* Don't go larger than mballoc is willing to allocate */
1916         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1917                 return false;
1918
1919         /* Can we merge the block to our big extent? */
1920         if (lblk == map->m_lblk + map->m_len &&
1921             (bh->b_state & BH_FLAGS) == map->m_flags) {
1922                 map->m_len++;
1923                 return true;
1924         }
1925         return false;
1926 }
1927
1928 /*
1929  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1930  *
1931  * @mpd - extent of blocks for mapping
1932  * @head - the first buffer in the page
1933  * @bh - buffer we should start processing from
1934  * @lblk - logical number of the block in the file corresponding to @bh
1935  *
1936  * Walk through page buffers from @bh upto @head (exclusive) and either submit
1937  * the page for IO if all buffers in this page were mapped and there's no
1938  * accumulated extent of buffers to map or add buffers in the page to the
1939  * extent of buffers to map. The function returns 1 if the caller can continue
1940  * by processing the next page, 0 if it should stop adding buffers to the
1941  * extent to map because we cannot extend it anymore. It can also return value
1942  * < 0 in case of error during IO submission.
1943  */
1944 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1945                                    struct buffer_head *head,
1946                                    struct buffer_head *bh,
1947                                    ext4_lblk_t lblk)
1948 {
1949         struct inode *inode = mpd->inode;
1950         int err;
1951         ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1952                                                         >> inode->i_blkbits;
1953
1954         do {
1955                 BUG_ON(buffer_locked(bh));
1956
1957                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
1958                         /* Found extent to map? */
1959                         if (mpd->map.m_len)
1960                                 return 0;
1961                         /* Everything mapped so far and we hit EOF */
1962                         break;
1963                 }
1964         } while (lblk++, (bh = bh->b_this_page) != head);
1965         /* So far everything mapped? Submit the page for IO. */
1966         if (mpd->map.m_len == 0) {
1967                 err = mpage_submit_page(mpd, head->b_page);
1968                 if (err < 0)
1969                         return err;
1970         }
1971         return lblk < blocks;
1972 }
1973
1974 /*
1975  * mpage_map_buffers - update buffers corresponding to changed extent and
1976  *                     submit fully mapped pages for IO
1977  *
1978  * @mpd - description of extent to map, on return next extent to map
1979  *
1980  * Scan buffers corresponding to changed extent (we expect corresponding pages
1981  * to be already locked) and update buffer state according to new extent state.
1982  * We map delalloc buffers to their physical location, clear unwritten bits,
1983  * and mark buffers as uninit when we perform writes to unwritten extents
1984  * and do extent conversion after IO is finished. If the last page is not fully
1985  * mapped, we update @map to the next extent in the last page that needs
1986  * mapping. Otherwise we submit the page for IO.
1987  */
1988 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
1989 {
1990         struct pagevec pvec;
1991         int nr_pages, i;
1992         struct inode *inode = mpd->inode;
1993         struct buffer_head *head, *bh;
1994         int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
1995         pgoff_t start, end;
1996         ext4_lblk_t lblk;
1997         sector_t pblock;
1998         int err;
1999
2000         start = mpd->map.m_lblk >> bpp_bits;
2001         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2002         lblk = start << bpp_bits;
2003         pblock = mpd->map.m_pblk;
2004
2005         pagevec_init(&pvec, 0);
2006         while (start <= end) {
2007                 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2008                                           PAGEVEC_SIZE);
2009                 if (nr_pages == 0)
2010                         break;
2011                 for (i = 0; i < nr_pages; i++) {
2012                         struct page *page = pvec.pages[i];
2013
2014                         if (page->index > end)
2015                                 break;
2016                         /* Up to 'end' pages must be contiguous */
2017                         BUG_ON(page->index != start);
2018                         bh = head = page_buffers(page);
2019                         do {
2020                                 if (lblk < mpd->map.m_lblk)
2021                                         continue;
2022                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2023                                         /*
2024                                          * Buffer after end of mapped extent.
2025                                          * Find next buffer in the page to map.
2026                                          */
2027                                         mpd->map.m_len = 0;
2028                                         mpd->map.m_flags = 0;
2029                                         /*
2030                                          * FIXME: If dioread_nolock supports
2031                                          * blocksize < pagesize, we need to make
2032                                          * sure we add size mapped so far to
2033                                          * io_end->size as the following call
2034                                          * can submit the page for IO.
2035                                          */
2036                                         err = mpage_process_page_bufs(mpd, head,
2037                                                                       bh, lblk);
2038                                         pagevec_release(&pvec);
2039                                         if (err > 0)
2040                                                 err = 0;
2041                                         return err;
2042                                 }
2043                                 if (buffer_delay(bh)) {
2044                                         clear_buffer_delay(bh);
2045                                         bh->b_blocknr = pblock++;
2046                                 }
2047                                 clear_buffer_unwritten(bh);
2048                         } while (lblk++, (bh = bh->b_this_page) != head);
2049
2050                         /*
2051                          * FIXME: This is going to break if dioread_nolock
2052                          * supports blocksize < pagesize as we will try to
2053                          * convert potentially unmapped parts of inode.
2054                          */
2055                         mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2056                         /* Page fully mapped - let IO run! */
2057                         err = mpage_submit_page(mpd, page);
2058                         if (err < 0) {
2059                                 pagevec_release(&pvec);
2060                                 return err;
2061                         }
2062                         start++;
2063                 }
2064                 pagevec_release(&pvec);
2065         }
2066         /* Extent fully mapped and matches with page boundary. We are done. */
2067         mpd->map.m_len = 0;
2068         mpd->map.m_flags = 0;
2069         return 0;
2070 }
2071
2072 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2073 {
2074         struct inode *inode = mpd->inode;
2075         struct ext4_map_blocks *map = &mpd->map;
2076         int get_blocks_flags;
2077         int err, dioread_nolock;
2078
2079         trace_ext4_da_write_pages_extent(inode, map);
2080         /*
2081          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2082          * to convert an unwritten extent to be initialized (in the case
2083          * where we have written into one or more preallocated blocks).  It is
2084          * possible that we're going to need more metadata blocks than
2085          * previously reserved. However we must not fail because we're in
2086          * writeback and there is nothing we can do about it so it might result
2087          * in data loss.  So use reserved blocks to allocate metadata if
2088          * possible.
2089          *
2090          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2091          * the blocks in question are delalloc blocks.  This indicates
2092          * that the blocks and quotas has already been checked when
2093          * the data was copied into the page cache.
2094          */
2095         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2096                            EXT4_GET_BLOCKS_METADATA_NOFAIL;
2097         dioread_nolock = ext4_should_dioread_nolock(inode);
2098         if (dioread_nolock)
2099                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2100         if (map->m_flags & (1 << BH_Delay))
2101                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2102
2103         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2104         if (err < 0)
2105                 return err;
2106         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2107                 if (!mpd->io_submit.io_end->handle &&
2108                     ext4_handle_valid(handle)) {
2109                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2110                         handle->h_rsv_handle = NULL;
2111                 }
2112                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2113         }
2114
2115         BUG_ON(map->m_len == 0);
2116         if (map->m_flags & EXT4_MAP_NEW) {
2117                 struct block_device *bdev = inode->i_sb->s_bdev;
2118                 int i;
2119
2120                 for (i = 0; i < map->m_len; i++)
2121                         unmap_underlying_metadata(bdev, map->m_pblk + i);
2122         }
2123         return 0;
2124 }
2125
2126 /*
2127  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2128  *                               mpd->len and submit pages underlying it for IO
2129  *
2130  * @handle - handle for journal operations
2131  * @mpd - extent to map
2132  * @give_up_on_write - we set this to true iff there is a fatal error and there
2133  *                     is no hope of writing the data. The caller should discard
2134  *                     dirty pages to avoid infinite loops.
2135  *
2136  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2137  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2138  * them to initialized or split the described range from larger unwritten
2139  * extent. Note that we need not map all the described range since allocation
2140  * can return less blocks or the range is covered by more unwritten extents. We
2141  * cannot map more because we are limited by reserved transaction credits. On
2142  * the other hand we always make sure that the last touched page is fully
2143  * mapped so that it can be written out (and thus forward progress is
2144  * guaranteed). After mapping we submit all mapped pages for IO.
2145  */
2146 static int mpage_map_and_submit_extent(handle_t *handle,
2147                                        struct mpage_da_data *mpd,
2148                                        bool *give_up_on_write)
2149 {
2150         struct inode *inode = mpd->inode;
2151         struct ext4_map_blocks *map = &mpd->map;
2152         int err;
2153         loff_t disksize;
2154         int progress = 0;
2155
2156         mpd->io_submit.io_end->offset =
2157                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2158         do {
2159                 err = mpage_map_one_extent(handle, mpd);
2160                 if (err < 0) {
2161                         struct super_block *sb = inode->i_sb;
2162
2163                         if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2164                                 goto invalidate_dirty_pages;
2165                         /*
2166                          * Let the uper layers retry transient errors.
2167                          * In the case of ENOSPC, if ext4_count_free_blocks()
2168                          * is non-zero, a commit should free up blocks.
2169                          */
2170                         if ((err == -ENOMEM) ||
2171                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2172                                 if (progress)
2173                                         goto update_disksize;
2174                                 return err;
2175                         }
2176                         ext4_msg(sb, KERN_CRIT,
2177                                  "Delayed block allocation failed for "
2178                                  "inode %lu at logical offset %llu with"
2179                                  " max blocks %u with error %d",
2180                                  inode->i_ino,
2181                                  (unsigned long long)map->m_lblk,
2182                                  (unsigned)map->m_len, -err);
2183                         ext4_msg(sb, KERN_CRIT,
2184                                  "This should not happen!! Data will "
2185                                  "be lost\n");
2186                         if (err == -ENOSPC)
2187                                 ext4_print_free_blocks(inode);
2188                 invalidate_dirty_pages:
2189                         *give_up_on_write = true;
2190                         return err;
2191                 }
2192                 progress = 1;
2193                 /*
2194                  * Update buffer state, submit mapped pages, and get us new
2195                  * extent to map
2196                  */
2197                 err = mpage_map_and_submit_buffers(mpd);
2198                 if (err < 0)
2199                         goto update_disksize;
2200         } while (map->m_len);
2201
2202 update_disksize:
2203         /*
2204          * Update on-disk size after IO is submitted.  Races with
2205          * truncate are avoided by checking i_size under i_data_sem.
2206          */
2207         disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2208         if (disksize > EXT4_I(inode)->i_disksize) {
2209                 int err2;
2210                 loff_t i_size;
2211
2212                 down_write(&EXT4_I(inode)->i_data_sem);
2213                 i_size = i_size_read(inode);
2214                 if (disksize > i_size)
2215                         disksize = i_size;
2216                 if (disksize > EXT4_I(inode)->i_disksize)
2217                         EXT4_I(inode)->i_disksize = disksize;
2218                 err2 = ext4_mark_inode_dirty(handle, inode);
2219                 up_write(&EXT4_I(inode)->i_data_sem);
2220                 if (err2)
2221                         ext4_error(inode->i_sb,
2222                                    "Failed to mark inode %lu dirty",
2223                                    inode->i_ino);
2224                 if (!err)
2225                         err = err2;
2226         }
2227         return err;
2228 }
2229
2230 /*
2231  * Calculate the total number of credits to reserve for one writepages
2232  * iteration. This is called from ext4_writepages(). We map an extent of
2233  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2234  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2235  * bpp - 1 blocks in bpp different extents.
2236  */
2237 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2238 {
2239         int bpp = ext4_journal_blocks_per_page(inode);
2240
2241         return ext4_meta_trans_blocks(inode,
2242                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2243 }
2244
2245 /*
2246  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2247  *                               and underlying extent to map
2248  *
2249  * @mpd - where to look for pages
2250  *
2251  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2252  * IO immediately. When we find a page which isn't mapped we start accumulating
2253  * extent of buffers underlying these pages that needs mapping (formed by
2254  * either delayed or unwritten buffers). We also lock the pages containing
2255  * these buffers. The extent found is returned in @mpd structure (starting at
2256  * mpd->lblk with length mpd->len blocks).
2257  *
2258  * Note that this function can attach bios to one io_end structure which are
2259  * neither logically nor physically contiguous. Although it may seem as an
2260  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2261  * case as we need to track IO to all buffers underlying a page in one io_end.
2262  */
2263 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2264 {
2265         struct address_space *mapping = mpd->inode->i_mapping;
2266         struct pagevec pvec;
2267         unsigned int nr_pages;
2268         long left = mpd->wbc->nr_to_write;
2269         pgoff_t index = mpd->first_page;
2270         pgoff_t end = mpd->last_page;
2271         int tag;
2272         int i, err = 0;
2273         int blkbits = mpd->inode->i_blkbits;
2274         ext4_lblk_t lblk;
2275         struct buffer_head *head;
2276
2277         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2278                 tag = PAGECACHE_TAG_TOWRITE;
2279         else
2280                 tag = PAGECACHE_TAG_DIRTY;
2281
2282         pagevec_init(&pvec, 0);
2283         mpd->map.m_len = 0;
2284         mpd->next_page = index;
2285         while (index <= end) {
2286                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2287                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2288                 if (nr_pages == 0)
2289                         goto out;
2290
2291                 for (i = 0; i < nr_pages; i++) {
2292                         struct page *page = pvec.pages[i];
2293
2294                         /*
2295                          * At this point, the page may be truncated or
2296                          * invalidated (changing page->mapping to NULL), or
2297                          * even swizzled back from swapper_space to tmpfs file
2298                          * mapping. However, page->index will not change
2299                          * because we have a reference on the page.
2300                          */
2301                         if (page->index > end)
2302                                 goto out;
2303
2304                         /*
2305                          * Accumulated enough dirty pages? This doesn't apply
2306                          * to WB_SYNC_ALL mode. For integrity sync we have to
2307                          * keep going because someone may be concurrently
2308                          * dirtying pages, and we might have synced a lot of
2309                          * newly appeared dirty pages, but have not synced all
2310                          * of the old dirty pages.
2311                          */
2312                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2313                                 goto out;
2314
2315                         /* If we can't merge this page, we are done. */
2316                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2317                                 goto out;
2318
2319                         lock_page(page);
2320                         /*
2321                          * If the page is no longer dirty, or its mapping no
2322                          * longer corresponds to inode we are writing (which
2323                          * means it has been truncated or invalidated), or the
2324                          * page is already under writeback and we are not doing
2325                          * a data integrity writeback, skip the page
2326                          */
2327                         if (!PageDirty(page) ||
2328                             (PageWriteback(page) &&
2329                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2330                             unlikely(page->mapping != mapping)) {
2331                                 unlock_page(page);
2332                                 continue;
2333                         }
2334
2335                         wait_on_page_writeback(page);
2336                         BUG_ON(PageWriteback(page));
2337
2338                         if (mpd->map.m_len == 0)
2339                                 mpd->first_page = page->index;
2340                         mpd->next_page = page->index + 1;
2341                         /* Add all dirty buffers to mpd */
2342                         lblk = ((ext4_lblk_t)page->index) <<
2343                                 (PAGE_CACHE_SHIFT - blkbits);
2344                         head = page_buffers(page);
2345                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2346                         if (err <= 0)
2347                                 goto out;
2348                         err = 0;
2349                         left--;
2350                 }
2351                 pagevec_release(&pvec);
2352                 cond_resched();
2353         }
2354         return 0;
2355 out:
2356         pagevec_release(&pvec);
2357         return err;
2358 }
2359
2360 static int __writepage(struct page *page, struct writeback_control *wbc,
2361                        void *data)
2362 {
2363         struct address_space *mapping = data;
2364         int ret = ext4_writepage(page, wbc);
2365         mapping_set_error(mapping, ret);
2366         return ret;
2367 }
2368
2369 static int ext4_writepages(struct address_space *mapping,
2370                            struct writeback_control *wbc)
2371 {
2372         pgoff_t writeback_index = 0;
2373         long nr_to_write = wbc->nr_to_write;
2374         int range_whole = 0;
2375         int cycled = 1;
2376         handle_t *handle = NULL;
2377         struct mpage_da_data mpd;
2378         struct inode *inode = mapping->host;
2379         int needed_blocks, rsv_blocks = 0, ret = 0;
2380         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2381         bool done;
2382         struct blk_plug plug;
2383         bool give_up_on_write = false;
2384
2385         trace_ext4_writepages(inode, wbc);
2386
2387         /*
2388          * No pages to write? This is mainly a kludge to avoid starting
2389          * a transaction for special inodes like journal inode on last iput()
2390          * because that could violate lock ordering on umount
2391          */
2392         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2393                 goto out_writepages;
2394
2395         if (ext4_should_journal_data(inode)) {
2396                 struct blk_plug plug;
2397
2398                 blk_start_plug(&plug);
2399                 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2400                 blk_finish_plug(&plug);
2401                 goto out_writepages;
2402         }
2403
2404         /*
2405          * If the filesystem has aborted, it is read-only, so return
2406          * right away instead of dumping stack traces later on that
2407          * will obscure the real source of the problem.  We test
2408          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2409          * the latter could be true if the filesystem is mounted
2410          * read-only, and in that case, ext4_writepages should
2411          * *never* be called, so if that ever happens, we would want
2412          * the stack trace.
2413          */
2414         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2415                 ret = -EROFS;
2416                 goto out_writepages;
2417         }
2418
2419         if (ext4_should_dioread_nolock(inode)) {
2420                 /*
2421                  * We may need to convert up to one extent per block in
2422                  * the page and we may dirty the inode.
2423                  */
2424                 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2425         }
2426
2427         /*
2428          * If we have inline data and arrive here, it means that
2429          * we will soon create the block for the 1st page, so
2430          * we'd better clear the inline data here.
2431          */
2432         if (ext4_has_inline_data(inode)) {
2433                 /* Just inode will be modified... */
2434                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2435                 if (IS_ERR(handle)) {
2436                         ret = PTR_ERR(handle);
2437                         goto out_writepages;
2438                 }
2439                 BUG_ON(ext4_test_inode_state(inode,
2440                                 EXT4_STATE_MAY_INLINE_DATA));
2441                 ext4_destroy_inline_data(handle, inode);
2442                 ext4_journal_stop(handle);
2443         }
2444
2445         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2446                 range_whole = 1;
2447
2448         if (wbc->range_cyclic) {
2449                 writeback_index = mapping->writeback_index;
2450                 if (writeback_index)
2451                         cycled = 0;
2452                 mpd.first_page = writeback_index;
2453                 mpd.last_page = -1;
2454         } else {
2455                 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2456                 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2457         }
2458
2459         mpd.inode = inode;
2460         mpd.wbc = wbc;
2461         ext4_io_submit_init(&mpd.io_submit, wbc);
2462 retry:
2463         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2464                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2465         done = false;
2466         blk_start_plug(&plug);
2467         while (!done && mpd.first_page <= mpd.last_page) {
2468                 /* For each extent of pages we use new io_end */
2469                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2470                 if (!mpd.io_submit.io_end) {
2471                         ret = -ENOMEM;
2472                         break;
2473                 }
2474
2475                 /*
2476                  * We have two constraints: We find one extent to map and we
2477                  * must always write out whole page (makes a difference when
2478                  * blocksize < pagesize) so that we don't block on IO when we
2479                  * try to write out the rest of the page. Journalled mode is
2480                  * not supported by delalloc.
2481                  */
2482                 BUG_ON(ext4_should_journal_data(inode));
2483                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2484
2485                 /* start a new transaction */
2486                 handle = ext4_journal_start_with_reserve(inode,
2487                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2488                 if (IS_ERR(handle)) {
2489                         ret = PTR_ERR(handle);
2490                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2491                                "%ld pages, ino %lu; err %d", __func__,
2492                                 wbc->nr_to_write, inode->i_ino, ret);
2493                         /* Release allocated io_end */
2494                         ext4_put_io_end(mpd.io_submit.io_end);
2495                         break;
2496                 }
2497
2498                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2499                 ret = mpage_prepare_extent_to_map(&mpd);
2500                 if (!ret) {
2501                         if (mpd.map.m_len)
2502                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2503                                         &give_up_on_write);
2504                         else {
2505                                 /*
2506                                  * We scanned the whole range (or exhausted
2507                                  * nr_to_write), submitted what was mapped and
2508                                  * didn't find anything needing mapping. We are
2509                                  * done.
2510                                  */
2511                                 done = true;
2512                         }
2513                 }
2514                 ext4_journal_stop(handle);
2515                 /* Submit prepared bio */
2516                 ext4_io_submit(&mpd.io_submit);
2517                 /* Unlock pages we didn't use */
2518                 mpage_release_unused_pages(&mpd, give_up_on_write);
2519                 /* Drop our io_end reference we got from init */
2520                 ext4_put_io_end(mpd.io_submit.io_end);
2521
2522                 if (ret == -ENOSPC && sbi->s_journal) {
2523                         /*
2524                          * Commit the transaction which would
2525                          * free blocks released in the transaction
2526                          * and try again
2527                          */
2528                         jbd2_journal_force_commit_nested(sbi->s_journal);
2529                         ret = 0;
2530                         continue;
2531                 }
2532                 /* Fatal error - ENOMEM, EIO... */
2533                 if (ret)
2534                         break;
2535         }
2536         blk_finish_plug(&plug);
2537         if (!ret && !cycled && wbc->nr_to_write > 0) {
2538                 cycled = 1;
2539                 mpd.last_page = writeback_index - 1;
2540                 mpd.first_page = 0;
2541                 goto retry;
2542         }
2543
2544         /* Update index */
2545         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2546                 /*
2547                  * Set the writeback_index so that range_cyclic
2548                  * mode will write it back later
2549                  */
2550                 mapping->writeback_index = mpd.first_page;
2551
2552 out_writepages:
2553         trace_ext4_writepages_result(inode, wbc, ret,
2554                                      nr_to_write - wbc->nr_to_write);
2555         return ret;
2556 }
2557
2558 static int ext4_nonda_switch(struct super_block *sb)
2559 {
2560         s64 free_clusters, dirty_clusters;
2561         struct ext4_sb_info *sbi = EXT4_SB(sb);
2562
2563         /*
2564          * switch to non delalloc mode if we are running low
2565          * on free block. The free block accounting via percpu
2566          * counters can get slightly wrong with percpu_counter_batch getting
2567          * accumulated on each CPU without updating global counters
2568          * Delalloc need an accurate free block accounting. So switch
2569          * to non delalloc when we are near to error range.
2570          */
2571         free_clusters =
2572                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2573         dirty_clusters =
2574                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2575         /*
2576          * Start pushing delalloc when 1/2 of free blocks are dirty.
2577          */
2578         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2579                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2580
2581         if (2 * free_clusters < 3 * dirty_clusters ||
2582             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2583                 /*
2584                  * free block count is less than 150% of dirty blocks
2585                  * or free blocks is less than watermark
2586                  */
2587                 return 1;
2588         }
2589         return 0;
2590 }
2591
2592 /* We always reserve for an inode update; the superblock could be there too */
2593 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2594 {
2595         if (likely(EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
2596                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE)))
2597                 return 1;
2598
2599         if (pos + len <= 0x7fffffffULL)
2600                 return 1;
2601
2602         /* We might need to update the superblock to set LARGE_FILE */
2603         return 2;
2604 }
2605
2606 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2607                                loff_t pos, unsigned len, unsigned flags,
2608                                struct page **pagep, void **fsdata)
2609 {
2610         int ret, retries = 0;
2611         struct page *page;
2612         pgoff_t index;
2613         struct inode *inode = mapping->host;
2614         handle_t *handle;
2615
2616         index = pos >> PAGE_CACHE_SHIFT;
2617
2618         if (ext4_nonda_switch(inode->i_sb)) {
2619                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2620                 return ext4_write_begin(file, mapping, pos,
2621                                         len, flags, pagep, fsdata);
2622         }
2623         *fsdata = (void *)0;
2624         trace_ext4_da_write_begin(inode, pos, len, flags);
2625
2626         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2627                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2628                                                       pos, len, flags,
2629                                                       pagep, fsdata);
2630                 if (ret < 0)
2631                         return ret;
2632                 if (ret == 1)
2633                         return 0;
2634         }
2635
2636         /*
2637          * grab_cache_page_write_begin() can take a long time if the
2638          * system is thrashing due to memory pressure, or if the page
2639          * is being written back.  So grab it first before we start
2640          * the transaction handle.  This also allows us to allocate
2641          * the page (if needed) without using GFP_NOFS.
2642          */
2643 retry_grab:
2644         page = grab_cache_page_write_begin(mapping, index, flags);
2645         if (!page)
2646                 return -ENOMEM;
2647         unlock_page(page);
2648
2649         /*
2650          * With delayed allocation, we don't log the i_disksize update
2651          * if there is delayed block allocation. But we still need
2652          * to journalling the i_disksize update if writes to the end
2653          * of file which has an already mapped buffer.
2654          */
2655 retry_journal:
2656         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2657                                 ext4_da_write_credits(inode, pos, len));
2658         if (IS_ERR(handle)) {
2659                 page_cache_release(page);
2660                 return PTR_ERR(handle);
2661         }
2662
2663         lock_page(page);
2664         if (page->mapping != mapping) {
2665                 /* The page got truncated from under us */
2666                 unlock_page(page);
2667                 page_cache_release(page);
2668                 ext4_journal_stop(handle);
2669                 goto retry_grab;
2670         }
2671         /* In case writeback began while the page was unlocked */
2672         wait_for_stable_page(page);
2673
2674 #ifdef CONFIG_EXT4_FS_ENCRYPTION
2675         ret = ext4_block_write_begin(page, pos, len,
2676                                      ext4_da_get_block_prep);
2677 #else
2678         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2679 #endif
2680         if (ret < 0) {
2681                 unlock_page(page);
2682                 ext4_journal_stop(handle);
2683                 /*
2684                  * block_write_begin may have instantiated a few blocks
2685                  * outside i_size.  Trim these off again. Don't need
2686                  * i_size_read because we hold i_mutex.
2687                  */
2688                 if (pos + len > inode->i_size)
2689                         ext4_truncate_failed_write(inode);
2690
2691                 if (ret == -ENOSPC &&
2692                     ext4_should_retry_alloc(inode->i_sb, &retries))
2693                         goto retry_journal;
2694
2695                 page_cache_release(page);
2696                 return ret;
2697         }
2698
2699         *pagep = page;
2700         return ret;
2701 }
2702
2703 /*
2704  * Check if we should update i_disksize
2705  * when write to the end of file but not require block allocation
2706  */
2707 static int ext4_da_should_update_i_disksize(struct page *page,
2708                                             unsigned long offset)
2709 {
2710         struct buffer_head *bh;
2711         struct inode *inode = page->mapping->host;
2712         unsigned int idx;
2713         int i;
2714
2715         bh = page_buffers(page);
2716         idx = offset >> inode->i_blkbits;
2717
2718         for (i = 0; i < idx; i++)
2719                 bh = bh->b_this_page;
2720
2721         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2722                 return 0;
2723         return 1;
2724 }
2725
2726 static int ext4_da_write_end(struct file *file,
2727                              struct address_space *mapping,
2728                              loff_t pos, unsigned len, unsigned copied,
2729                              struct page *page, void *fsdata)
2730 {
2731         struct inode *inode = mapping->host;
2732         int ret = 0, ret2;
2733         handle_t *handle = ext4_journal_current_handle();
2734         loff_t new_i_size;
2735         unsigned long start, end;
2736         int write_mode = (int)(unsigned long)fsdata;
2737
2738         if (write_mode == FALL_BACK_TO_NONDELALLOC)
2739                 return ext4_write_end(file, mapping, pos,
2740                                       len, copied, page, fsdata);
2741
2742         trace_ext4_da_write_end(inode, pos, len, copied);
2743         start = pos & (PAGE_CACHE_SIZE - 1);
2744         end = start + copied - 1;
2745
2746         /*
2747          * generic_write_end() will run mark_inode_dirty() if i_size
2748          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2749          * into that.
2750          */
2751         new_i_size = pos + copied;
2752         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2753                 if (ext4_has_inline_data(inode) ||
2754                     ext4_da_should_update_i_disksize(page, end)) {
2755                         ext4_update_i_disksize(inode, new_i_size);
2756                         /* We need to mark inode dirty even if
2757                          * new_i_size is less that inode->i_size
2758                          * bu greater than i_disksize.(hint delalloc)
2759                          */
2760                         ext4_mark_inode_dirty(handle, inode);
2761                 }
2762         }
2763
2764         if (write_mode != CONVERT_INLINE_DATA &&
2765             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2766             ext4_has_inline_data(inode))
2767                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2768                                                      page);
2769         else
2770                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2771                                                         page, fsdata);
2772
2773         copied = ret2;
2774         if (ret2 < 0)
2775                 ret = ret2;
2776         ret2 = ext4_journal_stop(handle);
2777         if (!ret)
2778                 ret = ret2;
2779
2780         return ret ? ret : copied;
2781 }
2782
2783 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2784                                    unsigned int length)
2785 {
2786         /*
2787          * Drop reserved blocks
2788          */
2789         BUG_ON(!PageLocked(page));
2790         if (!page_has_buffers(page))
2791                 goto out;
2792
2793         ext4_da_page_release_reservation(page, offset, length);
2794
2795 out:
2796         ext4_invalidatepage(page, offset, length);
2797
2798         return;
2799 }
2800
2801 /*
2802  * Force all delayed allocation blocks to be allocated for a given inode.
2803  */
2804 int ext4_alloc_da_blocks(struct inode *inode)
2805 {
2806         trace_ext4_alloc_da_blocks(inode);
2807
2808         if (!EXT4_I(inode)->i_reserved_data_blocks)
2809                 return 0;
2810
2811         /*
2812          * We do something simple for now.  The filemap_flush() will
2813          * also start triggering a write of the data blocks, which is
2814          * not strictly speaking necessary (and for users of
2815          * laptop_mode, not even desirable).  However, to do otherwise
2816          * would require replicating code paths in:
2817          *
2818          * ext4_writepages() ->
2819          *    write_cache_pages() ---> (via passed in callback function)
2820          *        __mpage_da_writepage() -->
2821          *           mpage_add_bh_to_extent()
2822          *           mpage_da_map_blocks()
2823          *
2824          * The problem is that write_cache_pages(), located in
2825          * mm/page-writeback.c, marks pages clean in preparation for
2826          * doing I/O, which is not desirable if we're not planning on
2827          * doing I/O at all.
2828          *
2829          * We could call write_cache_pages(), and then redirty all of
2830          * the pages by calling redirty_page_for_writepage() but that
2831          * would be ugly in the extreme.  So instead we would need to
2832          * replicate parts of the code in the above functions,
2833          * simplifying them because we wouldn't actually intend to
2834          * write out the pages, but rather only collect contiguous
2835          * logical block extents, call the multi-block allocator, and
2836          * then update the buffer heads with the block allocations.
2837          *
2838          * For now, though, we'll cheat by calling filemap_flush(),
2839          * which will map the blocks, and start the I/O, but not
2840          * actually wait for the I/O to complete.
2841          */
2842         return filemap_flush(inode->i_mapping);
2843 }
2844
2845 /*
2846  * bmap() is special.  It gets used by applications such as lilo and by
2847  * the swapper to find the on-disk block of a specific piece of data.
2848  *
2849  * Naturally, this is dangerous if the block concerned is still in the
2850  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2851  * filesystem and enables swap, then they may get a nasty shock when the
2852  * data getting swapped to that swapfile suddenly gets overwritten by
2853  * the original zero's written out previously to the journal and
2854  * awaiting writeback in the kernel's buffer cache.
2855  *
2856  * So, if we see any bmap calls here on a modified, data-journaled file,
2857  * take extra steps to flush any blocks which might be in the cache.
2858  */
2859 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2860 {
2861         struct inode *inode = mapping->host;
2862         journal_t *journal;
2863         int err;
2864
2865         /*
2866          * We can get here for an inline file via the FIBMAP ioctl
2867          */
2868         if (ext4_has_inline_data(inode))
2869                 return 0;
2870
2871         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2872                         test_opt(inode->i_sb, DELALLOC)) {
2873                 /*
2874                  * With delalloc we want to sync the file
2875                  * so that we can make sure we allocate
2876                  * blocks for file
2877                  */
2878                 filemap_write_and_wait(mapping);
2879         }
2880
2881         if (EXT4_JOURNAL(inode) &&
2882             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2883                 /*
2884                  * This is a REALLY heavyweight approach, but the use of
2885                  * bmap on dirty files is expected to be extremely rare:
2886                  * only if we run lilo or swapon on a freshly made file
2887                  * do we expect this to happen.
2888                  *
2889                  * (bmap requires CAP_SYS_RAWIO so this does not
2890                  * represent an unprivileged user DOS attack --- we'd be
2891                  * in trouble if mortal users could trigger this path at
2892                  * will.)
2893                  *
2894                  * NB. EXT4_STATE_JDATA is not set on files other than
2895                  * regular files.  If somebody wants to bmap a directory
2896                  * or symlink and gets confused because the buffer
2897                  * hasn't yet been flushed to disk, they deserve
2898                  * everything they get.
2899                  */
2900
2901                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2902                 journal = EXT4_JOURNAL(inode);
2903                 jbd2_journal_lock_updates(journal);
2904                 err = jbd2_journal_flush(journal);
2905                 jbd2_journal_unlock_updates(journal);
2906
2907                 if (err)
2908                         return 0;
2909         }
2910
2911         return generic_block_bmap(mapping, block, ext4_get_block);
2912 }
2913
2914 static int ext4_readpage(struct file *file, struct page *page)
2915 {
2916         int ret = -EAGAIN;
2917         struct inode *inode = page->mapping->host;
2918
2919         trace_ext4_readpage(page);
2920
2921         if (ext4_has_inline_data(inode))
2922                 ret = ext4_readpage_inline(inode, page);
2923
2924         if (ret == -EAGAIN)
2925                 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
2926
2927         return ret;
2928 }
2929
2930 static int
2931 ext4_readpages(struct file *file, struct address_space *mapping,
2932                 struct list_head *pages, unsigned nr_pages)
2933 {
2934         struct inode *inode = mapping->host;
2935
2936         /* If the file has inline data, no need to do readpages. */
2937         if (ext4_has_inline_data(inode))
2938                 return 0;
2939
2940         return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
2941 }
2942
2943 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2944                                 unsigned int length)
2945 {
2946         trace_ext4_invalidatepage(page, offset, length);
2947
2948         /* No journalling happens on data buffers when this function is used */
2949         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2950
2951         block_invalidatepage(page, offset, length);
2952 }
2953
2954 static int __ext4_journalled_invalidatepage(struct page *page,
2955                                             unsigned int offset,
2956                                             unsigned int length)
2957 {
2958         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2959
2960         trace_ext4_journalled_invalidatepage(page, offset, length);
2961
2962         /*
2963          * If it's a full truncate we just forget about the pending dirtying
2964          */
2965         if (offset == 0 && length == PAGE_CACHE_SIZE)
2966                 ClearPageChecked(page);
2967
2968         return jbd2_journal_invalidatepage(journal, page, offset, length);
2969 }
2970
2971 /* Wrapper for aops... */
2972 static void ext4_journalled_invalidatepage(struct page *page,
2973                                            unsigned int offset,
2974                                            unsigned int length)
2975 {
2976         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
2977 }
2978
2979 static int ext4_releasepage(struct page *page, gfp_t wait)
2980 {
2981         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2982
2983         trace_ext4_releasepage(page);
2984
2985         /* Page has dirty journalled data -> cannot release */
2986         if (PageChecked(page))
2987                 return 0;
2988         if (journal)
2989                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2990         else
2991                 return try_to_free_buffers(page);
2992 }
2993
2994 /*
2995  * ext4_get_block used when preparing for a DIO write or buffer write.
2996  * We allocate an uinitialized extent if blocks haven't been allocated.
2997  * The extent will be converted to initialized after the IO is complete.
2998  */
2999 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3000                    struct buffer_head *bh_result, int create)
3001 {
3002         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3003                    inode->i_ino, create);
3004         return _ext4_get_block(inode, iblock, bh_result,
3005                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
3006 }
3007
3008 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3009                    struct buffer_head *bh_result, int create)
3010 {
3011         ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3012                    inode->i_ino, create);
3013         return _ext4_get_block(inode, iblock, bh_result,
3014                                EXT4_GET_BLOCKS_NO_LOCK);
3015 }
3016
3017 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3018                             ssize_t size, void *private)
3019 {
3020         ext4_io_end_t *io_end = iocb->private;
3021
3022         /* if not async direct IO just return */
3023         if (!io_end)
3024                 return;
3025
3026         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3027                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3028                   iocb->private, io_end->inode->i_ino, iocb, offset,
3029                   size);
3030
3031         iocb->private = NULL;
3032         io_end->offset = offset;
3033         io_end->size = size;
3034         ext4_put_io_end(io_end);
3035 }
3036
3037 /*
3038  * For ext4 extent files, ext4 will do direct-io write to holes,
3039  * preallocated extents, and those write extend the file, no need to
3040  * fall back to buffered IO.
3041  *
3042  * For holes, we fallocate those blocks, mark them as unwritten
3043  * If those blocks were preallocated, we mark sure they are split, but
3044  * still keep the range to write as unwritten.
3045  *
3046  * The unwritten extents will be converted to written when DIO is completed.
3047  * For async direct IO, since the IO may still pending when return, we
3048  * set up an end_io call back function, which will do the conversion
3049  * when async direct IO completed.
3050  *
3051  * If the O_DIRECT write will extend the file then add this inode to the
3052  * orphan list.  So recovery will truncate it back to the original size
3053  * if the machine crashes during the write.
3054  *
3055  */
3056 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3057                               struct iov_iter *iter, loff_t offset)
3058 {
3059         struct file *file = iocb->ki_filp;
3060         struct inode *inode = file->f_mapping->host;
3061         ssize_t ret;
3062         size_t count = iov_iter_count(iter);
3063         int overwrite = 0;
3064         get_block_t *get_block_func = NULL;
3065         int dio_flags = 0;
3066         loff_t final_size = offset + count;
3067         ext4_io_end_t *io_end = NULL;
3068
3069         /* Use the old path for reads and writes beyond i_size. */
3070         if (rw != WRITE || final_size > inode->i_size)
3071                 return ext4_ind_direct_IO(rw, iocb, iter, offset);
3072
3073         BUG_ON(iocb->private == NULL);
3074
3075         /*
3076          * Make all waiters for direct IO properly wait also for extent
3077          * conversion. This also disallows race between truncate() and
3078          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3079          */
3080         if (rw == WRITE)
3081                 atomic_inc(&inode->i_dio_count);
3082
3083         /* If we do a overwrite dio, i_mutex locking can be released */
3084         overwrite = *((int *)iocb->private);
3085
3086         if (overwrite) {
3087                 down_read(&EXT4_I(inode)->i_data_sem);
3088                 mutex_unlock(&inode->i_mutex);
3089         }
3090
3091         /*
3092          * We could direct write to holes and fallocate.
3093          *
3094          * Allocated blocks to fill the hole are marked as
3095          * unwritten to prevent parallel buffered read to expose
3096          * the stale data before DIO complete the data IO.
3097          *
3098          * As to previously fallocated extents, ext4 get_block will
3099          * just simply mark the buffer mapped but still keep the
3100          * extents unwritten.
3101          *
3102          * For non AIO case, we will convert those unwritten extents
3103          * to written after return back from blockdev_direct_IO.
3104          *
3105          * For async DIO, the conversion needs to be deferred when the
3106          * IO is completed. The ext4 end_io callback function will be
3107          * called to take care of the conversion work.  Here for async
3108          * case, we allocate an io_end structure to hook to the iocb.
3109          */
3110         iocb->private = NULL;
3111         ext4_inode_aio_set(inode, NULL);
3112         if (!is_sync_kiocb(iocb)) {
3113                 io_end = ext4_init_io_end(inode, GFP_NOFS);
3114                 if (!io_end) {
3115                         ret = -ENOMEM;
3116                         goto retake_lock;
3117                 }
3118                 /*
3119                  * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3120                  */
3121                 iocb->private = ext4_get_io_end(io_end);
3122                 /*
3123                  * we save the io structure for current async direct
3124                  * IO, so that later ext4_map_blocks() could flag the
3125                  * io structure whether there is a unwritten extents
3126                  * needs to be converted when IO is completed.
3127                  */
3128                 ext4_inode_aio_set(inode, io_end);
3129         }
3130
3131         if (overwrite) {
3132                 get_block_func = ext4_get_block_write_nolock;
3133         } else {
3134                 get_block_func = ext4_get_block_write;
3135                 dio_flags = DIO_LOCKING;
3136         }
3137 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3138         BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3139 #endif
3140         if (IS_DAX(inode))
3141                 ret = dax_do_io(rw, iocb, inode, iter, offset, get_block_func,
3142                                 ext4_end_io_dio, dio_flags);
3143         else
3144                 ret = __blockdev_direct_IO(rw, iocb, inode,
3145                                            inode->i_sb->s_bdev, iter, offset,
3146                                            get_block_func,
3147                                            ext4_end_io_dio, NULL, dio_flags);
3148
3149         /*
3150          * Put our reference to io_end. This can free the io_end structure e.g.
3151          * in sync IO case or in case of error. It can even perform extent
3152          * conversion if all bios we submitted finished before we got here.
3153          * Note that in that case iocb->private can be already set to NULL
3154          * here.
3155          */
3156         if (io_end) {
3157                 ext4_inode_aio_set(inode, NULL);
3158                 ext4_put_io_end(io_end);
3159                 /*
3160                  * When no IO was submitted ext4_end_io_dio() was not
3161                  * called so we have to put iocb's reference.
3162                  */
3163                 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3164                         WARN_ON(iocb->private != io_end);
3165                         WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3166                         ext4_put_io_end(io_end);
3167                         iocb->private = NULL;
3168                 }
3169         }
3170         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3171                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3172                 int err;
3173                 /*
3174                  * for non AIO case, since the IO is already
3175                  * completed, we could do the conversion right here
3176                  */
3177                 err = ext4_convert_unwritten_extents(NULL, inode,
3178                                                      offset, ret);
3179                 if (err < 0)
3180                         ret = err;
3181                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3182         }
3183
3184 retake_lock:
3185         if (rw == WRITE)
3186                 inode_dio_done(inode);
3187         /* take i_mutex locking again if we do a ovewrite dio */
3188         if (overwrite) {
3189                 up_read(&EXT4_I(inode)->i_data_sem);
3190                 mutex_lock(&inode->i_mutex);
3191         }
3192
3193         return ret;
3194 }
3195
3196 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3197                               struct iov_iter *iter, loff_t offset)
3198 {
3199         struct file *file = iocb->ki_filp;
3200         struct inode *inode = file->f_mapping->host;
3201         size_t count = iov_iter_count(iter);
3202         ssize_t ret;
3203
3204 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3205         if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3206                 return 0;
3207 #endif
3208
3209         /*
3210          * If we are doing data journalling we don't support O_DIRECT
3211          */
3212         if (ext4_should_journal_data(inode))
3213                 return 0;
3214
3215         /* Let buffer I/O handle the inline data case. */
3216         if (ext4_has_inline_data(inode))
3217                 return 0;
3218
3219         trace_ext4_direct_IO_enter(inode, offset, count, rw);
3220         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3221                 ret = ext4_ext_direct_IO(rw, iocb, iter, offset);
3222         else
3223                 ret = ext4_ind_direct_IO(rw, iocb, iter, offset);
3224         trace_ext4_direct_IO_exit(inode, offset, count, rw, ret);
3225         return ret;
3226 }
3227
3228 /*
3229  * Pages can be marked dirty completely asynchronously from ext4's journalling
3230  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3231  * much here because ->set_page_dirty is called under VFS locks.  The page is
3232  * not necessarily locked.
3233  *
3234  * We cannot just dirty the page and leave attached buffers clean, because the
3235  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3236  * or jbddirty because all the journalling code will explode.
3237  *
3238  * So what we do is to mark the page "pending dirty" and next time writepage
3239  * is called, propagate that into the buffers appropriately.
3240  */
3241 static int ext4_journalled_set_page_dirty(struct page *page)
3242 {
3243         SetPageChecked(page);
3244         return __set_page_dirty_nobuffers(page);
3245 }
3246
3247 static const struct address_space_operations ext4_aops = {
3248         .readpage               = ext4_readpage,
3249         .readpages              = ext4_readpages,
3250         .writepage              = ext4_writepage,
3251         .writepages             = ext4_writepages,
3252         .write_begin            = ext4_write_begin,
3253         .write_end              = ext4_write_end,
3254         .bmap                   = ext4_bmap,
3255         .invalidatepage         = ext4_invalidatepage,
3256         .releasepage            = ext4_releasepage,
3257         .direct_IO              = ext4_direct_IO,
3258         .migratepage            = buffer_migrate_page,
3259         .is_partially_uptodate  = block_is_partially_uptodate,
3260         .error_remove_page      = generic_error_remove_page,
3261 };
3262
3263 static const struct address_space_operations ext4_journalled_aops = {
3264         .readpage               = ext4_readpage,
3265         .readpages              = ext4_readpages,
3266         .writepage              = ext4_writepage,
3267         .writepages             = ext4_writepages,
3268         .write_begin            = ext4_write_begin,
3269         .write_end              = ext4_journalled_write_end,
3270         .set_page_dirty         = ext4_journalled_set_page_dirty,
3271         .bmap                   = ext4_bmap,
3272         .invalidatepage         = ext4_journalled_invalidatepage,
3273         .releasepage            = ext4_releasepage,
3274         .direct_IO              = ext4_direct_IO,
3275         .is_partially_uptodate  = block_is_partially_uptodate,
3276         .error_remove_page      = generic_error_remove_page,
3277 };
3278
3279 static const struct address_space_operations ext4_da_aops = {
3280         .readpage               = ext4_readpage,
3281         .readpages              = ext4_readpages,
3282         .writepage              = ext4_writepage,
3283         .writepages             = ext4_writepages,
3284         .write_begin            = ext4_da_write_begin,
3285         .write_end              = ext4_da_write_end,
3286         .bmap                   = ext4_bmap,
3287         .invalidatepage         = ext4_da_invalidatepage,
3288         .releasepage            = ext4_releasepage,
3289         .direct_IO              = ext4_direct_IO,
3290         .migratepage            = buffer_migrate_page,
3291         .is_partially_uptodate  = block_is_partially_uptodate,
3292         .error_remove_page      = generic_error_remove_page,
3293 };
3294
3295 void ext4_set_aops(struct inode *inode)
3296 {
3297         switch (ext4_inode_journal_mode(inode)) {
3298         case EXT4_INODE_ORDERED_DATA_MODE:
3299                 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3300                 break;
3301         case EXT4_INODE_WRITEBACK_DATA_MODE:
3302                 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3303                 break;
3304         case EXT4_INODE_JOURNAL_DATA_MODE:
3305                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3306                 return;
3307         default:
3308                 BUG();
3309         }
3310         if (test_opt(inode->i_sb, DELALLOC))
3311                 inode->i_mapping->a_ops = &ext4_da_aops;
3312         else
3313                 inode->i_mapping->a_ops = &ext4_aops;
3314 }
3315
3316 static int __ext4_block_zero_page_range(handle_t *handle,
3317                 struct address_space *mapping, loff_t from, loff_t length)
3318 {
3319         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3320         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3321         unsigned blocksize, pos;
3322         ext4_lblk_t iblock;
3323         struct inode *inode = mapping->host;
3324         struct buffer_head *bh;
3325         struct page *page;
3326         int err = 0;
3327
3328         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3329                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3330         if (!page)
3331                 return -ENOMEM;
3332
3333         blocksize = inode->i_sb->s_blocksize;
3334
3335         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3336
3337         if (!page_has_buffers(page))
3338                 create_empty_buffers(page, blocksize, 0);
3339
3340         /* Find the buffer that contains "offset" */
3341         bh = page_buffers(page);
3342         pos = blocksize;
3343         while (offset >= pos) {
3344                 bh = bh->b_this_page;
3345                 iblock++;
3346                 pos += blocksize;
3347         }
3348         if (buffer_freed(bh)) {
3349                 BUFFER_TRACE(bh, "freed: skip");
3350                 goto unlock;
3351         }
3352         if (!buffer_mapped(bh)) {
3353                 BUFFER_TRACE(bh, "unmapped");
3354                 ext4_get_block(inode, iblock, bh, 0);
3355                 /* unmapped? It's a hole - nothing to do */
3356                 if (!buffer_mapped(bh)) {
3357                         BUFFER_TRACE(bh, "still unmapped");
3358                         goto unlock;
3359                 }
3360         }
3361
3362         /* Ok, it's mapped. Make sure it's up-to-date */
3363         if (PageUptodate(page))
3364                 set_buffer_uptodate(bh);
3365
3366         if (!buffer_uptodate(bh)) {
3367                 err = -EIO;
3368                 ll_rw_block(READ, 1, &bh);
3369                 wait_on_buffer(bh);
3370                 /* Uhhuh. Read error. Complain and punt. */
3371                 if (!buffer_uptodate(bh))
3372                         goto unlock;
3373                 if (S_ISREG(inode->i_mode) &&
3374                     ext4_encrypted_inode(inode)) {
3375                         /* We expect the key to be set. */
3376                         BUG_ON(!ext4_has_encryption_key(inode));
3377                         BUG_ON(blocksize != PAGE_CACHE_SIZE);
3378                         WARN_ON_ONCE(ext4_decrypt_one(inode, page));
3379                 }
3380         }
3381         if (ext4_should_journal_data(inode)) {
3382                 BUFFER_TRACE(bh, "get write access");
3383                 err = ext4_journal_get_write_access(handle, bh);
3384                 if (err)
3385                         goto unlock;
3386         }
3387         zero_user(page, offset, length);
3388         BUFFER_TRACE(bh, "zeroed end of block");
3389
3390         if (ext4_should_journal_data(inode)) {
3391                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3392         } else {
3393                 err = 0;
3394                 mark_buffer_dirty(bh);
3395                 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3396                         err = ext4_jbd2_file_inode(handle, inode);
3397         }
3398
3399 unlock:
3400         unlock_page(page);
3401         page_cache_release(page);
3402         return err;
3403 }
3404
3405 /*
3406  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3407  * starting from file offset 'from'.  The range to be zero'd must
3408  * be contained with in one block.  If the specified range exceeds
3409  * the end of the block it will be shortened to end of the block
3410  * that cooresponds to 'from'
3411  */
3412 static int ext4_block_zero_page_range(handle_t *handle,
3413                 struct address_space *mapping, loff_t from, loff_t length)
3414 {
3415         struct inode *inode = mapping->host;
3416         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3417         unsigned blocksize = inode->i_sb->s_blocksize;
3418         unsigned max = blocksize - (offset & (blocksize - 1));
3419
3420         /*
3421          * correct length if it does not fall between
3422          * 'from' and the end of the block
3423          */
3424         if (length > max || length < 0)
3425                 length = max;
3426
3427         if (IS_DAX(inode))
3428                 return dax_zero_page_range(inode, from, length, ext4_get_block);
3429         return __ext4_block_zero_page_range(handle, mapping, from, length);
3430 }
3431
3432 /*
3433  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3434  * up to the end of the block which corresponds to `from'.
3435  * This required during truncate. We need to physically zero the tail end
3436  * of that block so it doesn't yield old data if the file is later grown.
3437  */
3438 static int ext4_block_truncate_page(handle_t *handle,
3439                 struct address_space *mapping, loff_t from)
3440 {
3441         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3442         unsigned length;
3443         unsigned blocksize;
3444         struct inode *inode = mapping->host;
3445
3446         blocksize = inode->i_sb->s_blocksize;
3447         length = blocksize - (offset & (blocksize - 1));
3448
3449         return ext4_block_zero_page_range(handle, mapping, from, length);
3450 }
3451
3452 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3453                              loff_t lstart, loff_t length)
3454 {
3455         struct super_block *sb = inode->i_sb;
3456         struct address_space *mapping = inode->i_mapping;
3457         unsigned partial_start, partial_end;
3458         ext4_fsblk_t start, end;
3459         loff_t byte_end = (lstart + length - 1);
3460         int err = 0;
3461
3462         partial_start = lstart & (sb->s_blocksize - 1);
3463         partial_end = byte_end & (sb->s_blocksize - 1);
3464
3465         start = lstart >> sb->s_blocksize_bits;
3466         end = byte_end >> sb->s_blocksize_bits;
3467
3468         /* Handle partial zero within the single block */
3469         if (start == end &&
3470             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3471                 err = ext4_block_zero_page_range(handle, mapping,
3472                                                  lstart, length);
3473                 return err;
3474         }
3475         /* Handle partial zero out on the start of the range */
3476         if (partial_start) {
3477                 err = ext4_block_zero_page_range(handle, mapping,
3478                                                  lstart, sb->s_blocksize);
3479                 if (err)
3480                         return err;
3481         }
3482         /* Handle partial zero out on the end of the range */
3483         if (partial_end != sb->s_blocksize - 1)
3484                 err = ext4_block_zero_page_range(handle, mapping,
3485                                                  byte_end - partial_end,
3486                                                  partial_end + 1);
3487         return err;
3488 }
3489
3490 int ext4_can_truncate(struct inode *inode)
3491 {
3492         if (S_ISREG(inode->i_mode))
3493                 return 1;
3494         if (S_ISDIR(inode->i_mode))
3495                 return 1;
3496         if (S_ISLNK(inode->i_mode))
3497                 return !ext4_inode_is_fast_symlink(inode);
3498         return 0;
3499 }
3500
3501 /*
3502  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3503  * associated with the given offset and length
3504  *
3505  * @inode:  File inode
3506  * @offset: The offset where the hole will begin
3507  * @len:    The length of the hole
3508  *
3509  * Returns: 0 on success or negative on failure
3510  */
3511
3512 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3513 {
3514         struct super_block *sb = inode->i_sb;
3515         ext4_lblk_t first_block, stop_block;
3516         struct address_space *mapping = inode->i_mapping;
3517         loff_t first_block_offset, last_block_offset;
3518         handle_t *handle;
3519         unsigned int credits;
3520         int ret = 0;
3521
3522         if (!S_ISREG(inode->i_mode))
3523                 return -EOPNOTSUPP;
3524
3525         trace_ext4_punch_hole(inode, offset, length, 0);
3526
3527         /*
3528          * Write out all dirty pages to avoid race conditions
3529          * Then release them.
3530          */
3531         if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3532                 ret = filemap_write_and_wait_range(mapping, offset,
3533                                                    offset + length - 1);
3534                 if (ret)
3535                         return ret;
3536         }
3537
3538         mutex_lock(&inode->i_mutex);
3539
3540         /* No need to punch hole beyond i_size */
3541         if (offset >= inode->i_size)
3542                 goto out_mutex;
3543
3544         /*
3545          * If the hole extends beyond i_size, set the hole
3546          * to end after the page that contains i_size
3547          */
3548         if (offset + length > inode->i_size) {
3549                 length = inode->i_size +
3550                    PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3551                    offset;
3552         }
3553
3554         if (offset & (sb->s_blocksize - 1) ||
3555             (offset + length) & (sb->s_blocksize - 1)) {
3556                 /*
3557                  * Attach jinode to inode for jbd2 if we do any zeroing of
3558                  * partial block
3559                  */
3560                 ret = ext4_inode_attach_jinode(inode);
3561                 if (ret < 0)
3562                         goto out_mutex;
3563
3564         }
3565
3566         first_block_offset = round_up(offset, sb->s_blocksize);
3567         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3568
3569         /* Now release the pages and zero block aligned part of pages*/
3570         if (last_block_offset > first_block_offset)
3571                 truncate_pagecache_range(inode, first_block_offset,
3572                                          last_block_offset);
3573
3574         /* Wait all existing dio workers, newcomers will block on i_mutex */
3575         ext4_inode_block_unlocked_dio(inode);
3576         inode_dio_wait(inode);
3577
3578         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3579                 credits = ext4_writepage_trans_blocks(inode);
3580         else
3581                 credits = ext4_blocks_for_truncate(inode);
3582         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3583         if (IS_ERR(handle)) {
3584                 ret = PTR_ERR(handle);
3585                 ext4_std_error(sb, ret);
3586                 goto out_dio;
3587         }
3588
3589         ret = ext4_zero_partial_blocks(handle, inode, offset,
3590                                        length);
3591         if (ret)
3592                 goto out_stop;
3593
3594         first_block = (offset + sb->s_blocksize - 1) >>
3595                 EXT4_BLOCK_SIZE_BITS(sb);
3596         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3597
3598         /* If there are no blocks to remove, return now */
3599         if (first_block >= stop_block)
3600                 goto out_stop;
3601
3602         down_write(&EXT4_I(inode)->i_data_sem);
3603         ext4_discard_preallocations(inode);
3604
3605         ret = ext4_es_remove_extent(inode, first_block,
3606                                     stop_block - first_block);
3607         if (ret) {
3608                 up_write(&EXT4_I(inode)->i_data_sem);
3609                 goto out_stop;
3610         }
3611
3612         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3613                 ret = ext4_ext_remove_space(inode, first_block,
3614                                             stop_block - 1);
3615         else
3616                 ret = ext4_ind_remove_space(handle, inode, first_block,
3617                                             stop_block);
3618
3619         up_write(&EXT4_I(inode)->i_data_sem);
3620         if (IS_SYNC(inode))
3621                 ext4_handle_sync(handle);
3622
3623         /* Now release the pages again to reduce race window */
3624         if (last_block_offset > first_block_offset)
3625                 truncate_pagecache_range(inode, first_block_offset,
3626                                          last_block_offset);
3627
3628         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3629         ext4_mark_inode_dirty(handle, inode);
3630 out_stop:
3631         ext4_journal_stop(handle);
3632 out_dio:
3633         ext4_inode_resume_unlocked_dio(inode);
3634 out_mutex:
3635         mutex_unlock(&inode->i_mutex);
3636         return ret;
3637 }
3638
3639 int ext4_inode_attach_jinode(struct inode *inode)
3640 {
3641         struct ext4_inode_info *ei = EXT4_I(inode);
3642         struct jbd2_inode *jinode;
3643
3644         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3645                 return 0;
3646
3647         jinode = jbd2_alloc_inode(GFP_KERNEL);
3648         spin_lock(&inode->i_lock);
3649         if (!ei->jinode) {
3650                 if (!jinode) {
3651                         spin_unlock(&inode->i_lock);
3652                         return -ENOMEM;
3653                 }
3654                 ei->jinode = jinode;
3655                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3656                 jinode = NULL;
3657         }
3658         spin_unlock(&inode->i_lock);
3659         if (unlikely(jinode != NULL))
3660                 jbd2_free_inode(jinode);
3661         return 0;
3662 }
3663
3664 /*
3665  * ext4_truncate()
3666  *
3667  * We block out ext4_get_block() block instantiations across the entire
3668  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3669  * simultaneously on behalf of the same inode.
3670  *
3671  * As we work through the truncate and commit bits of it to the journal there
3672  * is one core, guiding principle: the file's tree must always be consistent on
3673  * disk.  We must be able to restart the truncate after a crash.
3674  *
3675  * The file's tree may be transiently inconsistent in memory (although it
3676  * probably isn't), but whenever we close off and commit a journal transaction,
3677  * the contents of (the filesystem + the journal) must be consistent and
3678  * restartable.  It's pretty simple, really: bottom up, right to left (although
3679  * left-to-right works OK too).
3680  *
3681  * Note that at recovery time, journal replay occurs *before* the restart of
3682  * truncate against the orphan inode list.
3683  *
3684  * The committed inode has the new, desired i_size (which is the same as
3685  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3686  * that this inode's truncate did not complete and it will again call
3687  * ext4_truncate() to have another go.  So there will be instantiated blocks
3688  * to the right of the truncation point in a crashed ext4 filesystem.  But
3689  * that's fine - as long as they are linked from the inode, the post-crash
3690  * ext4_truncate() run will find them and release them.
3691  */
3692 void ext4_truncate(struct inode *inode)
3693 {
3694         struct ext4_inode_info *ei = EXT4_I(inode);
3695         unsigned int credits;
3696         handle_t *handle;
3697         struct address_space *mapping = inode->i_mapping;
3698
3699         /*
3700          * There is a possibility that we're either freeing the inode
3701          * or it's a completely new inode. In those cases we might not
3702          * have i_mutex locked because it's not necessary.
3703          */
3704         if (!(inode->i_state & (I_NEW|I_FREEING)))
3705                 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3706         trace_ext4_truncate_enter(inode);
3707
3708         if (!ext4_can_truncate(inode))
3709                 return;
3710
3711         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3712
3713         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3714                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3715
3716         if (ext4_has_inline_data(inode)) {
3717                 int has_inline = 1;
3718
3719                 ext4_inline_data_truncate(inode, &has_inline);
3720                 if (has_inline)
3721                         return;
3722         }
3723
3724         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3725         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3726                 if (ext4_inode_attach_jinode(inode) < 0)
3727                         return;
3728         }
3729
3730         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3731                 credits = ext4_writepage_trans_blocks(inode);
3732         else
3733                 credits = ext4_blocks_for_truncate(inode);
3734
3735         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3736         if (IS_ERR(handle)) {
3737                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3738                 return;
3739         }
3740
3741         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3742                 ext4_block_truncate_page(handle, mapping, inode->i_size);
3743
3744         /*
3745          * We add the inode to the orphan list, so that if this
3746          * truncate spans multiple transactions, and we crash, we will
3747          * resume the truncate when the filesystem recovers.  It also
3748          * marks the inode dirty, to catch the new size.
3749          *
3750          * Implication: the file must always be in a sane, consistent
3751          * truncatable state while each transaction commits.
3752          */
3753         if (ext4_orphan_add(handle, inode))
3754                 goto out_stop;
3755
3756         down_write(&EXT4_I(inode)->i_data_sem);
3757
3758         ext4_discard_preallocations(inode);
3759
3760         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3761                 ext4_ext_truncate(handle, inode);
3762         else
3763                 ext4_ind_truncate(handle, inode);
3764
3765         up_write(&ei->i_data_sem);
3766
3767         if (IS_SYNC(inode))
3768                 ext4_handle_sync(handle);
3769
3770 out_stop:
3771         /*
3772          * If this was a simple ftruncate() and the file will remain alive,
3773          * then we need to clear up the orphan record which we created above.
3774          * However, if this was a real unlink then we were called by
3775          * ext4_evict_inode(), and we allow that function to clean up the
3776          * orphan info for us.
3777          */
3778         if (inode->i_nlink)
3779                 ext4_orphan_del(handle, inode);
3780
3781         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3782         ext4_mark_inode_dirty(handle, inode);
3783         ext4_journal_stop(handle);
3784
3785         trace_ext4_truncate_exit(inode);
3786 }
3787
3788 /*
3789  * ext4_get_inode_loc returns with an extra refcount against the inode's
3790  * underlying buffer_head on success. If 'in_mem' is true, we have all
3791  * data in memory that is needed to recreate the on-disk version of this
3792  * inode.
3793  */
3794 static int __ext4_get_inode_loc(struct inode *inode,
3795                                 struct ext4_iloc *iloc, int in_mem)
3796 {
3797         struct ext4_group_desc  *gdp;
3798         struct buffer_head      *bh;
3799         struct super_block      *sb = inode->i_sb;
3800         ext4_fsblk_t            block;
3801         int                     inodes_per_block, inode_offset;
3802
3803         iloc->bh = NULL;
3804         if (!ext4_valid_inum(sb, inode->i_ino))
3805                 return -EIO;
3806
3807         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3808         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3809         if (!gdp)
3810                 return -EIO;
3811
3812         /*
3813          * Figure out the offset within the block group inode table
3814          */
3815         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3816         inode_offset = ((inode->i_ino - 1) %
3817                         EXT4_INODES_PER_GROUP(sb));
3818         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3819         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3820
3821         bh = sb_getblk(sb, block);
3822         if (unlikely(!bh))
3823                 return -ENOMEM;
3824         if (!buffer_uptodate(bh)) {
3825                 lock_buffer(bh);
3826
3827                 /*
3828                  * If the buffer has the write error flag, we have failed
3829                  * to write out another inode in the same block.  In this
3830                  * case, we don't have to read the block because we may
3831                  * read the old inode data successfully.
3832                  */
3833                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3834                         set_buffer_uptodate(bh);
3835
3836                 if (buffer_uptodate(bh)) {
3837                         /* someone brought it uptodate while we waited */
3838                         unlock_buffer(bh);
3839                         goto has_buffer;
3840                 }
3841
3842                 /*
3843                  * If we have all information of the inode in memory and this
3844                  * is the only valid inode in the block, we need not read the
3845                  * block.
3846                  */
3847                 if (in_mem) {
3848                         struct buffer_head *bitmap_bh;
3849                         int i, start;
3850
3851                         start = inode_offset & ~(inodes_per_block - 1);
3852
3853                         /* Is the inode bitmap in cache? */
3854                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3855                         if (unlikely(!bitmap_bh))
3856                                 goto make_io;
3857
3858                         /*
3859                          * If the inode bitmap isn't in cache then the
3860                          * optimisation may end up performing two reads instead
3861                          * of one, so skip it.
3862                          */
3863                         if (!buffer_uptodate(bitmap_bh)) {
3864                                 brelse(bitmap_bh);
3865                                 goto make_io;
3866                         }
3867                         for (i = start; i < start + inodes_per_block; i++) {
3868                                 if (i == inode_offset)
3869                                         continue;
3870                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3871                                         break;
3872                         }
3873                         brelse(bitmap_bh);
3874                         if (i == start + inodes_per_block) {
3875                                 /* all other inodes are free, so skip I/O */
3876                                 memset(bh->b_data, 0, bh->b_size);
3877                                 set_buffer_uptodate(bh);
3878                                 unlock_buffer(bh);
3879                                 goto has_buffer;
3880                         }
3881                 }
3882
3883 make_io:
3884                 /*
3885                  * If we need to do any I/O, try to pre-readahead extra
3886                  * blocks from the inode table.
3887                  */
3888                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3889                         ext4_fsblk_t b, end, table;
3890                         unsigned num;
3891                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3892
3893                         table = ext4_inode_table(sb, gdp);
3894                         /* s_inode_readahead_blks is always a power of 2 */
3895                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
3896                         if (table > b)
3897                                 b = table;
3898                         end = b + ra_blks;
3899                         num = EXT4_INODES_PER_GROUP(sb);
3900                         if (ext4_has_group_desc_csum(sb))
3901                                 num -= ext4_itable_unused_count(sb, gdp);
3902                         table += num / inodes_per_block;
3903                         if (end > table)
3904                                 end = table;
3905                         while (b <= end)
3906                                 sb_breadahead(sb, b++);
3907                 }
3908
3909                 /*
3910                  * There are other valid inodes in the buffer, this inode
3911                  * has in-inode xattrs, or we don't have this inode in memory.
3912                  * Read the block from disk.
3913                  */
3914                 trace_ext4_load_inode(inode);
3915                 get_bh(bh);
3916                 bh->b_end_io = end_buffer_read_sync;
3917                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3918                 wait_on_buffer(bh);
3919                 if (!buffer_uptodate(bh)) {
3920                         EXT4_ERROR_INODE_BLOCK(inode, block,
3921                                                "unable to read itable block");
3922                         brelse(bh);
3923                         return -EIO;
3924                 }
3925         }
3926 has_buffer:
3927         iloc->bh = bh;
3928         return 0;
3929 }
3930
3931 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3932 {
3933         /* We have all inode data except xattrs in memory here. */
3934         return __ext4_get_inode_loc(inode, iloc,
3935                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3936 }
3937
3938 void ext4_set_inode_flags(struct inode *inode)
3939 {
3940         unsigned int flags = EXT4_I(inode)->i_flags;
3941         unsigned int new_fl = 0;
3942
3943         if (flags & EXT4_SYNC_FL)
3944                 new_fl |= S_SYNC;
3945         if (flags & EXT4_APPEND_FL)
3946                 new_fl |= S_APPEND;
3947         if (flags & EXT4_IMMUTABLE_FL)
3948                 new_fl |= S_IMMUTABLE;
3949         if (flags & EXT4_NOATIME_FL)
3950                 new_fl |= S_NOATIME;
3951         if (flags & EXT4_DIRSYNC_FL)
3952                 new_fl |= S_DIRSYNC;
3953         if (test_opt(inode->i_sb, DAX))
3954                 new_fl |= S_DAX;
3955         inode_set_flags(inode, new_fl,
3956                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
3957 }
3958
3959 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3960 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3961 {
3962         unsigned int vfs_fl;
3963         unsigned long old_fl, new_fl;
3964
3965         do {
3966                 vfs_fl = ei->vfs_inode.i_flags;
3967                 old_fl = ei->i_flags;
3968                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3969                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3970                                 EXT4_DIRSYNC_FL);
3971                 if (vfs_fl & S_SYNC)
3972                         new_fl |= EXT4_SYNC_FL;
3973                 if (vfs_fl & S_APPEND)
3974                         new_fl |= EXT4_APPEND_FL;
3975                 if (vfs_fl & S_IMMUTABLE)
3976                         new_fl |= EXT4_IMMUTABLE_FL;
3977                 if (vfs_fl & S_NOATIME)
3978                         new_fl |= EXT4_NOATIME_FL;
3979                 if (vfs_fl & S_DIRSYNC)
3980                         new_fl |= EXT4_DIRSYNC_FL;
3981         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3982 }
3983
3984 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3985                                   struct ext4_inode_info *ei)
3986 {
3987         blkcnt_t i_blocks ;
3988         struct inode *inode = &(ei->vfs_inode);
3989         struct super_block *sb = inode->i_sb;
3990
3991         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3992                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3993                 /* we are using combined 48 bit field */
3994                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3995                                         le32_to_cpu(raw_inode->i_blocks_lo);
3996                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3997                         /* i_blocks represent file system block size */
3998                         return i_blocks  << (inode->i_blkbits - 9);
3999                 } else {
4000                         return i_blocks;
4001                 }
4002         } else {
4003                 return le32_to_cpu(raw_inode->i_blocks_lo);
4004         }
4005 }
4006
4007 static inline void ext4_iget_extra_inode(struct inode *inode,
4008                                          struct ext4_inode *raw_inode,
4009                                          struct ext4_inode_info *ei)
4010 {
4011         __le32 *magic = (void *)raw_inode +
4012                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4013         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4014                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4015                 ext4_find_inline_data_nolock(inode);
4016         } else
4017                 EXT4_I(inode)->i_inline_off = 0;
4018 }
4019
4020 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4021 {
4022         struct ext4_iloc iloc;
4023         struct ext4_inode *raw_inode;
4024         struct ext4_inode_info *ei;
4025         struct inode *inode;
4026         journal_t *journal = EXT4_SB(sb)->s_journal;
4027         long ret;
4028         int block;
4029         uid_t i_uid;
4030         gid_t i_gid;
4031
4032         inode = iget_locked(sb, ino);
4033         if (!inode)
4034                 return ERR_PTR(-ENOMEM);
4035         if (!(inode->i_state & I_NEW))
4036                 return inode;
4037
4038         ei = EXT4_I(inode);
4039         iloc.bh = NULL;
4040
4041         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4042         if (ret < 0)
4043                 goto bad_inode;
4044         raw_inode = ext4_raw_inode(&iloc);
4045
4046         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4047                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4048                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4049                     EXT4_INODE_SIZE(inode->i_sb)) {
4050                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4051                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4052                                 EXT4_INODE_SIZE(inode->i_sb));
4053                         ret = -EIO;
4054                         goto bad_inode;
4055                 }
4056         } else
4057                 ei->i_extra_isize = 0;
4058
4059         /* Precompute checksum seed for inode metadata */
4060         if (ext4_has_metadata_csum(sb)) {
4061                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4062                 __u32 csum;
4063                 __le32 inum = cpu_to_le32(inode->i_ino);
4064                 __le32 gen = raw_inode->i_generation;
4065                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4066                                    sizeof(inum));
4067                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4068                                               sizeof(gen));
4069         }
4070
4071         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4072                 EXT4_ERROR_INODE(inode, "checksum invalid");
4073                 ret = -EIO;
4074                 goto bad_inode;
4075         }
4076
4077         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4078         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4079         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4080         if (!(test_opt(inode->i_sb, NO_UID32))) {
4081                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4082                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4083         }
4084         i_uid_write(inode, i_uid);
4085         i_gid_write(inode, i_gid);
4086         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4087
4088         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4089         ei->i_inline_off = 0;
4090         ei->i_dir_start_lookup = 0;
4091         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4092         /* We now have enough fields to check if the inode was active or not.
4093          * This is needed because nfsd might try to access dead inodes
4094          * the test is that same one that e2fsck uses
4095          * NeilBrown 1999oct15
4096          */
4097         if (inode->i_nlink == 0) {
4098                 if ((inode->i_mode == 0 ||
4099                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4100                     ino != EXT4_BOOT_LOADER_INO) {
4101                         /* this inode is deleted */
4102                         ret = -ESTALE;
4103                         goto bad_inode;
4104                 }
4105                 /* The only unlinked inodes we let through here have
4106                  * valid i_mode and are being read by the orphan
4107                  * recovery code: that's fine, we're about to complete
4108                  * the process of deleting those.
4109                  * OR it is the EXT4_BOOT_LOADER_INO which is
4110                  * not initialized on a new filesystem. */
4111         }
4112         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4113         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4114         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4115         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4116                 ei->i_file_acl |=
4117                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4118         inode->i_size = ext4_isize(raw_inode);
4119         ei->i_disksize = inode->i_size;
4120 #ifdef CONFIG_QUOTA
4121         ei->i_reserved_quota = 0;
4122 #endif
4123         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4124         ei->i_block_group = iloc.block_group;
4125         ei->i_last_alloc_group = ~0;
4126         /*
4127          * NOTE! The in-memory inode i_data array is in little-endian order
4128          * even on big-endian machines: we do NOT byteswap the block numbers!
4129          */
4130         for (block = 0; block < EXT4_N_BLOCKS; block++)
4131                 ei->i_data[block] = raw_inode->i_block[block];
4132         INIT_LIST_HEAD(&ei->i_orphan);
4133
4134         /*
4135          * Set transaction id's of transactions that have to be committed
4136          * to finish f[data]sync. We set them to currently running transaction
4137          * as we cannot be sure that the inode or some of its metadata isn't
4138          * part of the transaction - the inode could have been reclaimed and
4139          * now it is reread from disk.
4140          */
4141         if (journal) {
4142                 transaction_t *transaction;
4143                 tid_t tid;
4144
4145                 read_lock(&journal->j_state_lock);
4146                 if (journal->j_running_transaction)
4147                         transaction = journal->j_running_transaction;
4148                 else
4149                         transaction = journal->j_committing_transaction;
4150                 if (transaction)
4151                         tid = transaction->t_tid;
4152                 else
4153                         tid = journal->j_commit_sequence;
4154                 read_unlock(&journal->j_state_lock);
4155                 ei->i_sync_tid = tid;
4156                 ei->i_datasync_tid = tid;
4157         }
4158
4159         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4160                 if (ei->i_extra_isize == 0) {
4161                         /* The extra space is currently unused. Use it. */
4162                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4163                                             EXT4_GOOD_OLD_INODE_SIZE;
4164                 } else {
4165                         ext4_iget_extra_inode(inode, raw_inode, ei);
4166                 }
4167         }
4168
4169         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4170         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4171         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4172         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4173
4174         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4175                 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4176                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4177                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4178                                 inode->i_version |=
4179                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4180                 }
4181         }
4182
4183         ret = 0;
4184         if (ei->i_file_acl &&
4185             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4186                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4187                                  ei->i_file_acl);
4188                 ret = -EIO;
4189                 goto bad_inode;
4190         } else if (!ext4_has_inline_data(inode)) {
4191                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4192                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4193                             (S_ISLNK(inode->i_mode) &&
4194                              !ext4_inode_is_fast_symlink(inode))))
4195                                 /* Validate extent which is part of inode */
4196                                 ret = ext4_ext_check_inode(inode);
4197                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4198                            (S_ISLNK(inode->i_mode) &&
4199                             !ext4_inode_is_fast_symlink(inode))) {
4200                         /* Validate block references which are part of inode */
4201                         ret = ext4_ind_check_inode(inode);
4202                 }
4203         }
4204         if (ret)
4205                 goto bad_inode;
4206
4207         if (S_ISREG(inode->i_mode)) {
4208                 inode->i_op = &ext4_file_inode_operations;
4209                 if (test_opt(inode->i_sb, DAX))
4210                         inode->i_fop = &ext4_dax_file_operations;
4211                 else
4212                         inode->i_fop = &ext4_file_operations;
4213                 ext4_set_aops(inode);
4214         } else if (S_ISDIR(inode->i_mode)) {
4215                 inode->i_op = &ext4_dir_inode_operations;
4216                 inode->i_fop = &ext4_dir_operations;
4217         } else if (S_ISLNK(inode->i_mode)) {
4218                 if (ext4_inode_is_fast_symlink(inode) &&
4219                     !ext4_encrypted_inode(inode)) {
4220                         inode->i_op = &ext4_fast_symlink_inode_operations;
4221                         nd_terminate_link(ei->i_data, inode->i_size,
4222                                 sizeof(ei->i_data) - 1);
4223                 } else {
4224                         inode->i_op = &ext4_symlink_inode_operations;
4225                         ext4_set_aops(inode);
4226                 }
4227         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4228               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4229                 inode->i_op = &ext4_special_inode_operations;
4230                 if (raw_inode->i_block[0])
4231                         init_special_inode(inode, inode->i_mode,
4232                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4233                 else
4234                         init_special_inode(inode, inode->i_mode,
4235                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4236         } else if (ino == EXT4_BOOT_LOADER_INO) {
4237                 make_bad_inode(inode);
4238         } else {
4239                 ret = -EIO;
4240                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4241                 goto bad_inode;
4242         }
4243         brelse(iloc.bh);
4244         ext4_set_inode_flags(inode);
4245         unlock_new_inode(inode);
4246         return inode;
4247
4248 bad_inode:
4249         brelse(iloc.bh);
4250         iget_failed(inode);
4251         return ERR_PTR(ret);
4252 }
4253
4254 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4255 {
4256         if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4257                 return ERR_PTR(-EIO);
4258         return ext4_iget(sb, ino);
4259 }
4260
4261 static int ext4_inode_blocks_set(handle_t *handle,
4262                                 struct ext4_inode *raw_inode,
4263                                 struct ext4_inode_info *ei)
4264 {
4265         struct inode *inode = &(ei->vfs_inode);
4266         u64 i_blocks = inode->i_blocks;
4267         struct super_block *sb = inode->i_sb;
4268
4269         if (i_blocks <= ~0U) {
4270                 /*
4271                  * i_blocks can be represented in a 32 bit variable
4272                  * as multiple of 512 bytes
4273                  */
4274                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4275                 raw_inode->i_blocks_high = 0;
4276                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4277                 return 0;
4278         }
4279         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4280                 return -EFBIG;
4281
4282         if (i_blocks <= 0xffffffffffffULL) {
4283                 /*
4284                  * i_blocks can be represented in a 48 bit variable
4285                  * as multiple of 512 bytes
4286                  */
4287                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4288                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4289                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4290         } else {
4291                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4292                 /* i_block is stored in file system block size */
4293                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4294                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4295                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4296         }
4297         return 0;
4298 }
4299
4300 struct other_inode {
4301         unsigned long           orig_ino;
4302         struct ext4_inode       *raw_inode;
4303 };
4304
4305 static int other_inode_match(struct inode * inode, unsigned long ino,
4306                              void *data)
4307 {
4308         struct other_inode *oi = (struct other_inode *) data;
4309
4310         if ((inode->i_ino != ino) ||
4311             (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4312                                I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4313             ((inode->i_state & I_DIRTY_TIME) == 0))
4314                 return 0;
4315         spin_lock(&inode->i_lock);
4316         if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4317                                 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4318             (inode->i_state & I_DIRTY_TIME)) {
4319                 struct ext4_inode_info  *ei = EXT4_I(inode);
4320
4321                 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4322                 spin_unlock(&inode->i_lock);
4323
4324                 spin_lock(&ei->i_raw_lock);
4325                 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4326                 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4327                 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4328                 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4329                 spin_unlock(&ei->i_raw_lock);
4330                 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4331                 return -1;
4332         }
4333         spin_unlock(&inode->i_lock);
4334         return -1;
4335 }
4336
4337 /*
4338  * Opportunistically update the other time fields for other inodes in
4339  * the same inode table block.
4340  */
4341 static void ext4_update_other_inodes_time(struct super_block *sb,
4342                                           unsigned long orig_ino, char *buf)
4343 {
4344         struct other_inode oi;
4345         unsigned long ino;
4346         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4347         int inode_size = EXT4_INODE_SIZE(sb);
4348
4349         oi.orig_ino = orig_ino;
4350         ino = orig_ino & ~(inodes_per_block - 1);
4351         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4352                 if (ino == orig_ino)
4353                         continue;
4354                 oi.raw_inode = (struct ext4_inode *) buf;
4355                 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4356         }
4357 }
4358
4359 /*
4360  * Post the struct inode info into an on-disk inode location in the
4361  * buffer-cache.  This gobbles the caller's reference to the
4362  * buffer_head in the inode location struct.
4363  *
4364  * The caller must have write access to iloc->bh.
4365  */
4366 static int ext4_do_update_inode(handle_t *handle,
4367                                 struct inode *inode,
4368                                 struct ext4_iloc *iloc)
4369 {
4370         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4371         struct ext4_inode_info *ei = EXT4_I(inode);
4372         struct buffer_head *bh = iloc->bh;
4373         struct super_block *sb = inode->i_sb;
4374         int err = 0, rc, block;
4375         int need_datasync = 0, set_large_file = 0;
4376         uid_t i_uid;
4377         gid_t i_gid;
4378
4379         spin_lock(&ei->i_raw_lock);
4380
4381         /* For fields not tracked in the in-memory inode,
4382          * initialise them to zero for new inodes. */
4383         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4384                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4385
4386         ext4_get_inode_flags(ei);
4387         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4388         i_uid = i_uid_read(inode);
4389         i_gid = i_gid_read(inode);
4390         if (!(test_opt(inode->i_sb, NO_UID32))) {
4391                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4392                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4393 /*
4394  * Fix up interoperability with old kernels. Otherwise, old inodes get
4395  * re-used with the upper 16 bits of the uid/gid intact
4396  */
4397                 if (!ei->i_dtime) {
4398                         raw_inode->i_uid_high =
4399                                 cpu_to_le16(high_16_bits(i_uid));
4400                         raw_inode->i_gid_high =
4401                                 cpu_to_le16(high_16_bits(i_gid));
4402                 } else {
4403                         raw_inode->i_uid_high = 0;
4404                         raw_inode->i_gid_high = 0;
4405                 }
4406         } else {
4407                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4408                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4409                 raw_inode->i_uid_high = 0;
4410                 raw_inode->i_gid_high = 0;
4411         }
4412         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4413
4414         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4415         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4416         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4417         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4418
4419         err = ext4_inode_blocks_set(handle, raw_inode, ei);
4420         if (err) {
4421                 spin_unlock(&ei->i_raw_lock);
4422                 goto out_brelse;
4423         }
4424         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4425         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4426         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4427                 raw_inode->i_file_acl_high =
4428                         cpu_to_le16(ei->i_file_acl >> 32);
4429         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4430         if (ei->i_disksize != ext4_isize(raw_inode)) {
4431                 ext4_isize_set(raw_inode, ei->i_disksize);
4432                 need_datasync = 1;
4433         }
4434         if (ei->i_disksize > 0x7fffffffULL) {
4435                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4436                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4437                                 EXT4_SB(sb)->s_es->s_rev_level ==
4438                     cpu_to_le32(EXT4_GOOD_OLD_REV))
4439                         set_large_file = 1;
4440         }
4441         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4442         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4443                 if (old_valid_dev(inode->i_rdev)) {
4444                         raw_inode->i_block[0] =
4445                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4446                         raw_inode->i_block[1] = 0;
4447                 } else {
4448                         raw_inode->i_block[0] = 0;
4449                         raw_inode->i_block[1] =
4450                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4451                         raw_inode->i_block[2] = 0;
4452                 }
4453         } else if (!ext4_has_inline_data(inode)) {
4454                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4455                         raw_inode->i_block[block] = ei->i_data[block];
4456         }
4457
4458         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4459                 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4460                 if (ei->i_extra_isize) {
4461                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4462                                 raw_inode->i_version_hi =
4463                                         cpu_to_le32(inode->i_version >> 32);
4464                         raw_inode->i_extra_isize =
4465                                 cpu_to_le16(ei->i_extra_isize);
4466                 }
4467         }
4468         ext4_inode_csum_set(inode, raw_inode, ei);
4469         spin_unlock(&ei->i_raw_lock);
4470         if (inode->i_sb->s_flags & MS_LAZYTIME)
4471                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4472                                               bh->b_data);
4473
4474         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4475         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4476         if (!err)
4477                 err = rc;
4478         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4479         if (set_large_file) {
4480                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4481                 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4482                 if (err)
4483                         goto out_brelse;
4484                 ext4_update_dynamic_rev(sb);
4485                 EXT4_SET_RO_COMPAT_FEATURE(sb,
4486                                            EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4487                 ext4_handle_sync(handle);
4488                 err = ext4_handle_dirty_super(handle, sb);
4489         }
4490         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4491 out_brelse:
4492         brelse(bh);
4493         ext4_std_error(inode->i_sb, err);
4494         return err;
4495 }
4496
4497 /*
4498  * ext4_write_inode()
4499  *
4500  * We are called from a few places:
4501  *
4502  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4503  *   Here, there will be no transaction running. We wait for any running
4504  *   transaction to commit.
4505  *
4506  * - Within flush work (sys_sync(), kupdate and such).
4507  *   We wait on commit, if told to.
4508  *
4509  * - Within iput_final() -> write_inode_now()
4510  *   We wait on commit, if told to.
4511  *
4512  * In all cases it is actually safe for us to return without doing anything,
4513  * because the inode has been copied into a raw inode buffer in
4514  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
4515  * writeback.
4516  *
4517  * Note that we are absolutely dependent upon all inode dirtiers doing the
4518  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4519  * which we are interested.
4520  *
4521  * It would be a bug for them to not do this.  The code:
4522  *
4523  *      mark_inode_dirty(inode)
4524  *      stuff();
4525  *      inode->i_size = expr;
4526  *
4527  * is in error because write_inode() could occur while `stuff()' is running,
4528  * and the new i_size will be lost.  Plus the inode will no longer be on the
4529  * superblock's dirty inode list.
4530  */
4531 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4532 {
4533         int err;
4534
4535         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4536                 return 0;
4537
4538         if (EXT4_SB(inode->i_sb)->s_journal) {
4539                 if (ext4_journal_current_handle()) {
4540                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4541                         dump_stack();
4542                         return -EIO;
4543                 }
4544
4545                 /*
4546                  * No need to force transaction in WB_SYNC_NONE mode. Also
4547                  * ext4_sync_fs() will force the commit after everything is
4548                  * written.
4549                  */
4550                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4551                         return 0;
4552
4553                 err = ext4_force_commit(inode->i_sb);
4554         } else {
4555                 struct ext4_iloc iloc;
4556
4557                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4558                 if (err)
4559                         return err;
4560                 /*
4561                  * sync(2) will flush the whole buffer cache. No need to do
4562                  * it here separately for each inode.
4563                  */
4564                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4565                         sync_dirty_buffer(iloc.bh);
4566                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4567                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4568                                          "IO error syncing inode");
4569                         err = -EIO;
4570                 }
4571                 brelse(iloc.bh);
4572         }
4573         return err;
4574 }
4575
4576 /*
4577  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4578  * buffers that are attached to a page stradding i_size and are undergoing
4579  * commit. In that case we have to wait for commit to finish and try again.
4580  */
4581 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4582 {
4583         struct page *page;
4584         unsigned offset;
4585         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4586         tid_t commit_tid = 0;
4587         int ret;
4588
4589         offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4590         /*
4591          * All buffers in the last page remain valid? Then there's nothing to
4592          * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4593          * blocksize case
4594          */
4595         if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4596                 return;
4597         while (1) {
4598                 page = find_lock_page(inode->i_mapping,
4599                                       inode->i_size >> PAGE_CACHE_SHIFT);
4600                 if (!page)
4601                         return;
4602                 ret = __ext4_journalled_invalidatepage(page, offset,
4603                                                 PAGE_CACHE_SIZE - offset);
4604                 unlock_page(page);
4605                 page_cache_release(page);
4606                 if (ret != -EBUSY)
4607                         return;
4608                 commit_tid = 0;
4609                 read_lock(&journal->j_state_lock);
4610                 if (journal->j_committing_transaction)
4611                         commit_tid = journal->j_committing_transaction->t_tid;
4612                 read_unlock(&journal->j_state_lock);
4613                 if (commit_tid)
4614                         jbd2_log_wait_commit(journal, commit_tid);
4615         }
4616 }
4617
4618 /*
4619  * ext4_setattr()
4620  *
4621  * Called from notify_change.
4622  *
4623  * We want to trap VFS attempts to truncate the file as soon as
4624  * possible.  In particular, we want to make sure that when the VFS
4625  * shrinks i_size, we put the inode on the orphan list and modify
4626  * i_disksize immediately, so that during the subsequent flushing of
4627  * dirty pages and freeing of disk blocks, we can guarantee that any
4628  * commit will leave the blocks being flushed in an unused state on
4629  * disk.  (On recovery, the inode will get truncated and the blocks will
4630  * be freed, so we have a strong guarantee that no future commit will
4631  * leave these blocks visible to the user.)
4632  *
4633  * Another thing we have to assure is that if we are in ordered mode
4634  * and inode is still attached to the committing transaction, we must
4635  * we start writeout of all the dirty pages which are being truncated.
4636  * This way we are sure that all the data written in the previous
4637  * transaction are already on disk (truncate waits for pages under
4638  * writeback).
4639  *
4640  * Called with inode->i_mutex down.
4641  */
4642 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4643 {
4644         struct inode *inode = dentry->d_inode;
4645         int error, rc = 0;
4646         int orphan = 0;
4647         const unsigned int ia_valid = attr->ia_valid;
4648
4649         error = inode_change_ok(inode, attr);
4650         if (error)
4651                 return error;
4652
4653         if (is_quota_modification(inode, attr))
4654                 dquot_initialize(inode);
4655         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4656             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4657                 handle_t *handle;
4658
4659                 /* (user+group)*(old+new) structure, inode write (sb,
4660                  * inode block, ? - but truncate inode update has it) */
4661                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4662                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4663                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4664                 if (IS_ERR(handle)) {
4665                         error = PTR_ERR(handle);
4666                         goto err_out;
4667                 }
4668                 error = dquot_transfer(inode, attr);
4669                 if (error) {
4670                         ext4_journal_stop(handle);
4671                         return error;
4672                 }
4673                 /* Update corresponding info in inode so that everything is in
4674                  * one transaction */
4675                 if (attr->ia_valid & ATTR_UID)
4676                         inode->i_uid = attr->ia_uid;
4677                 if (attr->ia_valid & ATTR_GID)
4678                         inode->i_gid = attr->ia_gid;
4679                 error = ext4_mark_inode_dirty(handle, inode);
4680                 ext4_journal_stop(handle);
4681         }
4682
4683         if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4684                 handle_t *handle;
4685
4686                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4687                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4688
4689                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4690                                 return -EFBIG;
4691                 }
4692
4693                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4694                         inode_inc_iversion(inode);
4695
4696                 if (S_ISREG(inode->i_mode) &&
4697                     (attr->ia_size < inode->i_size)) {
4698                         if (ext4_should_order_data(inode)) {
4699                                 error = ext4_begin_ordered_truncate(inode,
4700                                                             attr->ia_size);
4701                                 if (error)
4702                                         goto err_out;
4703                         }
4704                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4705                         if (IS_ERR(handle)) {
4706                                 error = PTR_ERR(handle);
4707                                 goto err_out;
4708                         }
4709                         if (ext4_handle_valid(handle)) {
4710                                 error = ext4_orphan_add(handle, inode);
4711                                 orphan = 1;
4712                         }
4713                         down_write(&EXT4_I(inode)->i_data_sem);
4714                         EXT4_I(inode)->i_disksize = attr->ia_size;
4715                         rc = ext4_mark_inode_dirty(handle, inode);
4716                         if (!error)
4717                                 error = rc;
4718                         /*
4719                          * We have to update i_size under i_data_sem together
4720                          * with i_disksize to avoid races with writeback code
4721                          * running ext4_wb_update_i_disksize().
4722                          */
4723                         if (!error)
4724                                 i_size_write(inode, attr->ia_size);
4725                         up_write(&EXT4_I(inode)->i_data_sem);
4726                         ext4_journal_stop(handle);
4727                         if (error) {
4728                                 ext4_orphan_del(NULL, inode);
4729                                 goto err_out;
4730                         }
4731                 } else {
4732                         loff_t oldsize = inode->i_size;
4733
4734                         i_size_write(inode, attr->ia_size);
4735                         pagecache_isize_extended(inode, oldsize, inode->i_size);
4736                 }
4737
4738                 /*
4739                  * Blocks are going to be removed from the inode. Wait
4740                  * for dio in flight.  Temporarily disable
4741                  * dioread_nolock to prevent livelock.
4742                  */
4743                 if (orphan) {
4744                         if (!ext4_should_journal_data(inode)) {
4745                                 ext4_inode_block_unlocked_dio(inode);
4746                                 inode_dio_wait(inode);
4747                                 ext4_inode_resume_unlocked_dio(inode);
4748                         } else
4749                                 ext4_wait_for_tail_page_commit(inode);
4750                 }
4751                 /*
4752                  * Truncate pagecache after we've waited for commit
4753                  * in data=journal mode to make pages freeable.
4754                  */
4755                 truncate_pagecache(inode, inode->i_size);
4756         }
4757         /*
4758          * We want to call ext4_truncate() even if attr->ia_size ==
4759          * inode->i_size for cases like truncation of fallocated space
4760          */
4761         if (attr->ia_valid & ATTR_SIZE)
4762                 ext4_truncate(inode);
4763
4764         if (!rc) {
4765                 setattr_copy(inode, attr);
4766                 mark_inode_dirty(inode);
4767         }
4768
4769         /*
4770          * If the call to ext4_truncate failed to get a transaction handle at
4771          * all, we need to clean up the in-core orphan list manually.
4772          */
4773         if (orphan && inode->i_nlink)
4774                 ext4_orphan_del(NULL, inode);
4775
4776         if (!rc && (ia_valid & ATTR_MODE))
4777                 rc = posix_acl_chmod(inode, inode->i_mode);
4778
4779 err_out:
4780         ext4_std_error(inode->i_sb, error);
4781         if (!error)
4782                 error = rc;
4783         return error;
4784 }
4785
4786 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4787                  struct kstat *stat)
4788 {
4789         struct inode *inode;
4790         unsigned long long delalloc_blocks;
4791
4792         inode = dentry->d_inode;
4793         generic_fillattr(inode, stat);
4794
4795         /*
4796          * If there is inline data in the inode, the inode will normally not
4797          * have data blocks allocated (it may have an external xattr block).
4798          * Report at least one sector for such files, so tools like tar, rsync,
4799          * others doen't incorrectly think the file is completely sparse.
4800          */
4801         if (unlikely(ext4_has_inline_data(inode)))
4802                 stat->blocks += (stat->size + 511) >> 9;
4803
4804         /*
4805          * We can't update i_blocks if the block allocation is delayed
4806          * otherwise in the case of system crash before the real block
4807          * allocation is done, we will have i_blocks inconsistent with
4808          * on-disk file blocks.
4809          * We always keep i_blocks updated together with real
4810          * allocation. But to not confuse with user, stat
4811          * will return the blocks that include the delayed allocation
4812          * blocks for this file.
4813          */
4814         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4815                                    EXT4_I(inode)->i_reserved_data_blocks);
4816         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
4817         return 0;
4818 }
4819
4820 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4821                                    int pextents)
4822 {
4823         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4824                 return ext4_ind_trans_blocks(inode, lblocks);
4825         return ext4_ext_index_trans_blocks(inode, pextents);
4826 }
4827
4828 /*
4829  * Account for index blocks, block groups bitmaps and block group
4830  * descriptor blocks if modify datablocks and index blocks
4831  * worse case, the indexs blocks spread over different block groups
4832  *
4833  * If datablocks are discontiguous, they are possible to spread over
4834  * different block groups too. If they are contiguous, with flexbg,
4835  * they could still across block group boundary.
4836  *
4837  * Also account for superblock, inode, quota and xattr blocks
4838  */
4839 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4840                                   int pextents)
4841 {
4842         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4843         int gdpblocks;
4844         int idxblocks;
4845         int ret = 0;
4846
4847         /*
4848          * How many index blocks need to touch to map @lblocks logical blocks
4849          * to @pextents physical extents?
4850          */
4851         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4852
4853         ret = idxblocks;
4854
4855         /*
4856          * Now let's see how many group bitmaps and group descriptors need
4857          * to account
4858          */
4859         groups = idxblocks + pextents;
4860         gdpblocks = groups;
4861         if (groups > ngroups)
4862                 groups = ngroups;
4863         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4864                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4865
4866         /* bitmaps and block group descriptor blocks */
4867         ret += groups + gdpblocks;
4868
4869         /* Blocks for super block, inode, quota and xattr blocks */
4870         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4871
4872         return ret;
4873 }
4874
4875 /*
4876  * Calculate the total number of credits to reserve to fit
4877  * the modification of a single pages into a single transaction,
4878  * which may include multiple chunks of block allocations.
4879  *
4880  * This could be called via ext4_write_begin()
4881  *
4882  * We need to consider the worse case, when
4883  * one new block per extent.
4884  */
4885 int ext4_writepage_trans_blocks(struct inode *inode)
4886 {
4887         int bpp = ext4_journal_blocks_per_page(inode);
4888         int ret;
4889
4890         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4891
4892         /* Account for data blocks for journalled mode */
4893         if (ext4_should_journal_data(inode))
4894                 ret += bpp;
4895         return ret;
4896 }
4897
4898 /*
4899  * Calculate the journal credits for a chunk of data modification.
4900  *
4901  * This is called from DIO, fallocate or whoever calling
4902  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4903  *
4904  * journal buffers for data blocks are not included here, as DIO
4905  * and fallocate do no need to journal data buffers.
4906  */
4907 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4908 {
4909         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4910 }
4911
4912 /*
4913  * The caller must have previously called ext4_reserve_inode_write().
4914  * Give this, we know that the caller already has write access to iloc->bh.
4915  */
4916 int ext4_mark_iloc_dirty(handle_t *handle,
4917                          struct inode *inode, struct ext4_iloc *iloc)
4918 {
4919         int err = 0;
4920
4921         if (IS_I_VERSION(inode))
4922                 inode_inc_iversion(inode);
4923
4924         /* the do_update_inode consumes one bh->b_count */
4925         get_bh(iloc->bh);
4926
4927         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4928         err = ext4_do_update_inode(handle, inode, iloc);
4929         put_bh(iloc->bh);
4930         return err;
4931 }
4932
4933 /*
4934  * On success, We end up with an outstanding reference count against
4935  * iloc->bh.  This _must_ be cleaned up later.
4936  */
4937
4938 int
4939 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4940                          struct ext4_iloc *iloc)
4941 {
4942         int err;
4943
4944         err = ext4_get_inode_loc(inode, iloc);
4945         if (!err) {
4946                 BUFFER_TRACE(iloc->bh, "get_write_access");
4947                 err = ext4_journal_get_write_access(handle, iloc->bh);
4948                 if (err) {
4949                         brelse(iloc->bh);
4950                         iloc->bh = NULL;
4951                 }
4952         }
4953         ext4_std_error(inode->i_sb, err);
4954         return err;
4955 }
4956
4957 /*
4958  * Expand an inode by new_extra_isize bytes.
4959  * Returns 0 on success or negative error number on failure.
4960  */
4961 static int ext4_expand_extra_isize(struct inode *inode,
4962                                    unsigned int new_extra_isize,
4963                                    struct ext4_iloc iloc,
4964                                    handle_t *handle)
4965 {
4966         struct ext4_inode *raw_inode;
4967         struct ext4_xattr_ibody_header *header;
4968
4969         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4970                 return 0;
4971
4972         raw_inode = ext4_raw_inode(&iloc);
4973
4974         header = IHDR(inode, raw_inode);
4975
4976         /* No extended attributes present */
4977         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4978             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4979                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4980                         new_extra_isize);
4981                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4982                 return 0;
4983         }
4984
4985         /* try to expand with EAs present */
4986         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4987                                           raw_inode, handle);
4988 }
4989
4990 /*
4991  * What we do here is to mark the in-core inode as clean with respect to inode
4992  * dirtiness (it may still be data-dirty).
4993  * This means that the in-core inode may be reaped by prune_icache
4994  * without having to perform any I/O.  This is a very good thing,
4995  * because *any* task may call prune_icache - even ones which
4996  * have a transaction open against a different journal.
4997  *
4998  * Is this cheating?  Not really.  Sure, we haven't written the
4999  * inode out, but prune_icache isn't a user-visible syncing function.
5000  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5001  * we start and wait on commits.
5002  */
5003 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5004 {
5005         struct ext4_iloc iloc;
5006         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5007         static unsigned int mnt_count;
5008         int err, ret;
5009
5010         might_sleep();
5011         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5012         err = ext4_reserve_inode_write(handle, inode, &iloc);
5013         if (ext4_handle_valid(handle) &&
5014             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5015             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5016                 /*
5017                  * We need extra buffer credits since we may write into EA block
5018                  * with this same handle. If journal_extend fails, then it will
5019                  * only result in a minor loss of functionality for that inode.
5020                  * If this is felt to be critical, then e2fsck should be run to
5021                  * force a large enough s_min_extra_isize.
5022                  */
5023                 if ((jbd2_journal_extend(handle,
5024                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5025                         ret = ext4_expand_extra_isize(inode,
5026                                                       sbi->s_want_extra_isize,
5027                                                       iloc, handle);
5028                         if (ret) {
5029                                 ext4_set_inode_state(inode,
5030                                                      EXT4_STATE_NO_EXPAND);
5031                                 if (mnt_count !=
5032                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5033                                         ext4_warning(inode->i_sb,
5034                                         "Unable to expand inode %lu. Delete"
5035                                         " some EAs or run e2fsck.",
5036                                         inode->i_ino);
5037                                         mnt_count =
5038                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5039                                 }
5040                         }
5041                 }
5042         }
5043         if (!err)
5044                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5045         return err;
5046 }
5047
5048 /*
5049  * ext4_dirty_inode() is called from __mark_inode_dirty()
5050  *
5051  * We're really interested in the case where a file is being extended.
5052  * i_size has been changed by generic_commit_write() and we thus need
5053  * to include the updated inode in the current transaction.
5054  *
5055  * Also, dquot_alloc_block() will always dirty the inode when blocks
5056  * are allocated to the file.
5057  *
5058  * If the inode is marked synchronous, we don't honour that here - doing
5059  * so would cause a commit on atime updates, which we don't bother doing.
5060  * We handle synchronous inodes at the highest possible level.
5061  *
5062  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5063  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5064  * to copy into the on-disk inode structure are the timestamp files.
5065  */
5066 void ext4_dirty_inode(struct inode *inode, int flags)
5067 {
5068         handle_t *handle;
5069
5070         if (flags == I_DIRTY_TIME)
5071                 return;
5072         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5073         if (IS_ERR(handle))
5074                 goto out;
5075
5076         ext4_mark_inode_dirty(handle, inode);
5077
5078         ext4_journal_stop(handle);
5079 out:
5080         return;
5081 }
5082
5083 #if 0
5084 /*
5085  * Bind an inode's backing buffer_head into this transaction, to prevent
5086  * it from being flushed to disk early.  Unlike
5087  * ext4_reserve_inode_write, this leaves behind no bh reference and
5088  * returns no iloc structure, so the caller needs to repeat the iloc
5089  * lookup to mark the inode dirty later.
5090  */
5091 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5092 {
5093         struct ext4_iloc iloc;
5094
5095         int err = 0;
5096         if (handle) {
5097                 err = ext4_get_inode_loc(inode, &iloc);
5098                 if (!err) {
5099                         BUFFER_TRACE(iloc.bh, "get_write_access");
5100                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5101                         if (!err)
5102                                 err = ext4_handle_dirty_metadata(handle,
5103                                                                  NULL,
5104                                                                  iloc.bh);
5105                         brelse(iloc.bh);
5106                 }
5107         }
5108         ext4_std_error(inode->i_sb, err);
5109         return err;
5110 }
5111 #endif
5112
5113 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5114 {
5115         journal_t *journal;
5116         handle_t *handle;
5117         int err;
5118
5119         /*
5120          * We have to be very careful here: changing a data block's
5121          * journaling status dynamically is dangerous.  If we write a
5122          * data block to the journal, change the status and then delete
5123          * that block, we risk forgetting to revoke the old log record
5124          * from the journal and so a subsequent replay can corrupt data.
5125          * So, first we make sure that the journal is empty and that
5126          * nobody is changing anything.
5127          */
5128
5129         journal = EXT4_JOURNAL(inode);
5130         if (!journal)
5131                 return 0;
5132         if (is_journal_aborted(journal))
5133                 return -EROFS;
5134         /* We have to allocate physical blocks for delalloc blocks
5135          * before flushing journal. otherwise delalloc blocks can not
5136          * be allocated any more. even more truncate on delalloc blocks
5137          * could trigger BUG by flushing delalloc blocks in journal.
5138          * There is no delalloc block in non-journal data mode.
5139          */
5140         if (val && test_opt(inode->i_sb, DELALLOC)) {
5141                 err = ext4_alloc_da_blocks(inode);
5142                 if (err < 0)
5143                         return err;
5144         }
5145
5146         /* Wait for all existing dio workers */
5147         ext4_inode_block_unlocked_dio(inode);
5148         inode_dio_wait(inode);
5149
5150         jbd2_journal_lock_updates(journal);
5151
5152         /*
5153          * OK, there are no updates running now, and all cached data is
5154          * synced to disk.  We are now in a completely consistent state
5155          * which doesn't have anything in the journal, and we know that
5156          * no filesystem updates are running, so it is safe to modify
5157          * the inode's in-core data-journaling state flag now.
5158          */
5159
5160         if (val)
5161                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5162         else {
5163                 err = jbd2_journal_flush(journal);
5164                 if (err < 0) {
5165                         jbd2_journal_unlock_updates(journal);
5166                         ext4_inode_resume_unlocked_dio(inode);
5167                         return err;
5168                 }
5169                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5170         }
5171         ext4_set_aops(inode);
5172
5173         jbd2_journal_unlock_updates(journal);
5174         ext4_inode_resume_unlocked_dio(inode);
5175
5176         /* Finally we can mark the inode as dirty. */
5177
5178         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5179         if (IS_ERR(handle))
5180                 return PTR_ERR(handle);
5181
5182         err = ext4_mark_inode_dirty(handle, inode);
5183         ext4_handle_sync(handle);
5184         ext4_journal_stop(handle);
5185         ext4_std_error(inode->i_sb, err);
5186
5187         return err;
5188 }
5189
5190 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5191 {
5192         return !buffer_mapped(bh);
5193 }
5194
5195 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5196 {
5197         struct page *page = vmf->page;
5198         loff_t size;
5199         unsigned long len;
5200         int ret;
5201         struct file *file = vma->vm_file;
5202         struct inode *inode = file_inode(file);
5203         struct address_space *mapping = inode->i_mapping;
5204         handle_t *handle;
5205         get_block_t *get_block;
5206         int retries = 0;
5207
5208         sb_start_pagefault(inode->i_sb);
5209         file_update_time(vma->vm_file);
5210         /* Delalloc case is easy... */
5211         if (test_opt(inode->i_sb, DELALLOC) &&
5212             !ext4_should_journal_data(inode) &&
5213             !ext4_nonda_switch(inode->i_sb)) {
5214                 do {
5215                         ret = __block_page_mkwrite(vma, vmf,
5216                                                    ext4_da_get_block_prep);
5217                 } while (ret == -ENOSPC &&
5218                        ext4_should_retry_alloc(inode->i_sb, &retries));
5219                 goto out_ret;
5220         }
5221
5222         lock_page(page);
5223         size = i_size_read(inode);
5224         /* Page got truncated from under us? */
5225         if (page->mapping != mapping || page_offset(page) > size) {
5226                 unlock_page(page);
5227                 ret = VM_FAULT_NOPAGE;
5228                 goto out;
5229         }
5230
5231         if (page->index == size >> PAGE_CACHE_SHIFT)
5232                 len = size & ~PAGE_CACHE_MASK;
5233         else
5234                 len = PAGE_CACHE_SIZE;
5235         /*
5236          * Return if we have all the buffers mapped. This avoids the need to do
5237          * journal_start/journal_stop which can block and take a long time
5238          */
5239         if (page_has_buffers(page)) {
5240                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5241                                             0, len, NULL,
5242                                             ext4_bh_unmapped)) {
5243                         /* Wait so that we don't change page under IO */
5244                         wait_for_stable_page(page);
5245                         ret = VM_FAULT_LOCKED;
5246                         goto out;
5247                 }
5248         }
5249         unlock_page(page);
5250         /* OK, we need to fill the hole... */
5251         if (ext4_should_dioread_nolock(inode))
5252                 get_block = ext4_get_block_write;
5253         else
5254                 get_block = ext4_get_block;
5255 retry_alloc:
5256         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5257                                     ext4_writepage_trans_blocks(inode));
5258         if (IS_ERR(handle)) {
5259                 ret = VM_FAULT_SIGBUS;
5260                 goto out;
5261         }
5262         ret = __block_page_mkwrite(vma, vmf, get_block);
5263         if (!ret && ext4_should_journal_data(inode)) {
5264                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5265                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5266                         unlock_page(page);
5267                         ret = VM_FAULT_SIGBUS;
5268                         ext4_journal_stop(handle);
5269                         goto out;
5270                 }
5271                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5272         }
5273         ext4_journal_stop(handle);
5274         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5275                 goto retry_alloc;
5276 out_ret:
5277         ret = block_page_mkwrite_return(ret);
5278 out:
5279         sb_end_pagefault(inode->i_sb);
5280         return ret;
5281 }