]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/ext4/inode.c
ext4: Call ext4_jbd2_file_inode() after zeroing block
[karo-tx-linux.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "truncate.h"
46
47 #include <trace/events/ext4.h>
48
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52                               struct ext4_inode_info *ei)
53 {
54         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55         __u16 csum_lo;
56         __u16 csum_hi = 0;
57         __u32 csum;
58
59         csum_lo = le16_to_cpu(raw->i_checksum_lo);
60         raw->i_checksum_lo = 0;
61         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
62             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
63                 csum_hi = le16_to_cpu(raw->i_checksum_hi);
64                 raw->i_checksum_hi = 0;
65         }
66
67         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
68                            EXT4_INODE_SIZE(inode->i_sb));
69
70         raw->i_checksum_lo = cpu_to_le16(csum_lo);
71         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
72             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
73                 raw->i_checksum_hi = cpu_to_le16(csum_hi);
74
75         return csum;
76 }
77
78 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
79                                   struct ext4_inode_info *ei)
80 {
81         __u32 provided, calculated;
82
83         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
84             cpu_to_le32(EXT4_OS_LINUX) ||
85             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
86                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
87                 return 1;
88
89         provided = le16_to_cpu(raw->i_checksum_lo);
90         calculated = ext4_inode_csum(inode, raw, ei);
91         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
92             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
93                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
94         else
95                 calculated &= 0xFFFF;
96
97         return provided == calculated;
98 }
99
100 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
101                                 struct ext4_inode_info *ei)
102 {
103         __u32 csum;
104
105         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
106             cpu_to_le32(EXT4_OS_LINUX) ||
107             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
108                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
109                 return;
110
111         csum = ext4_inode_csum(inode, raw, ei);
112         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
113         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
114             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
115                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
116 }
117
118 static inline int ext4_begin_ordered_truncate(struct inode *inode,
119                                               loff_t new_size)
120 {
121         trace_ext4_begin_ordered_truncate(inode, new_size);
122         /*
123          * If jinode is zero, then we never opened the file for
124          * writing, so there's no need to call
125          * jbd2_journal_begin_ordered_truncate() since there's no
126          * outstanding writes we need to flush.
127          */
128         if (!EXT4_I(inode)->jinode)
129                 return 0;
130         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
131                                                    EXT4_I(inode)->jinode,
132                                                    new_size);
133 }
134
135 static void ext4_invalidatepage(struct page *page, unsigned int offset,
136                                 unsigned int length);
137 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
138 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
139 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
140                 struct inode *inode, struct page *page, loff_t from,
141                 loff_t length, int flags);
142
143 /*
144  * Test whether an inode is a fast symlink.
145  */
146 static int ext4_inode_is_fast_symlink(struct inode *inode)
147 {
148         int ea_blocks = EXT4_I(inode)->i_file_acl ?
149                 (inode->i_sb->s_blocksize >> 9) : 0;
150
151         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
152 }
153
154 /*
155  * Restart the transaction associated with *handle.  This does a commit,
156  * so before we call here everything must be consistently dirtied against
157  * this transaction.
158  */
159 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
160                                  int nblocks)
161 {
162         int ret;
163
164         /*
165          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
166          * moment, get_block can be called only for blocks inside i_size since
167          * page cache has been already dropped and writes are blocked by
168          * i_mutex. So we can safely drop the i_data_sem here.
169          */
170         BUG_ON(EXT4_JOURNAL(inode) == NULL);
171         jbd_debug(2, "restarting handle %p\n", handle);
172         up_write(&EXT4_I(inode)->i_data_sem);
173         ret = ext4_journal_restart(handle, nblocks);
174         down_write(&EXT4_I(inode)->i_data_sem);
175         ext4_discard_preallocations(inode);
176
177         return ret;
178 }
179
180 /*
181  * Called at the last iput() if i_nlink is zero.
182  */
183 void ext4_evict_inode(struct inode *inode)
184 {
185         handle_t *handle;
186         int err;
187
188         trace_ext4_evict_inode(inode);
189
190         if (inode->i_nlink) {
191                 /*
192                  * When journalling data dirty buffers are tracked only in the
193                  * journal. So although mm thinks everything is clean and
194                  * ready for reaping the inode might still have some pages to
195                  * write in the running transaction or waiting to be
196                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
197                  * (via truncate_inode_pages()) to discard these buffers can
198                  * cause data loss. Also even if we did not discard these
199                  * buffers, we would have no way to find them after the inode
200                  * is reaped and thus user could see stale data if he tries to
201                  * read them before the transaction is checkpointed. So be
202                  * careful and force everything to disk here... We use
203                  * ei->i_datasync_tid to store the newest transaction
204                  * containing inode's data.
205                  *
206                  * Note that directories do not have this problem because they
207                  * don't use page cache.
208                  */
209                 if (ext4_should_journal_data(inode) &&
210                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
211                     inode->i_ino != EXT4_JOURNAL_INO) {
212                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
213                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
214
215                         jbd2_complete_transaction(journal, commit_tid);
216                         filemap_write_and_wait(&inode->i_data);
217                 }
218                 truncate_inode_pages(&inode->i_data, 0);
219                 ext4_ioend_shutdown(inode);
220                 goto no_delete;
221         }
222
223         if (!is_bad_inode(inode))
224                 dquot_initialize(inode);
225
226         if (ext4_should_order_data(inode))
227                 ext4_begin_ordered_truncate(inode, 0);
228         truncate_inode_pages(&inode->i_data, 0);
229         ext4_ioend_shutdown(inode);
230
231         if (is_bad_inode(inode))
232                 goto no_delete;
233
234         /*
235          * Protect us against freezing - iput() caller didn't have to have any
236          * protection against it
237          */
238         sb_start_intwrite(inode->i_sb);
239         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
240                                     ext4_blocks_for_truncate(inode)+3);
241         if (IS_ERR(handle)) {
242                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
243                 /*
244                  * If we're going to skip the normal cleanup, we still need to
245                  * make sure that the in-core orphan linked list is properly
246                  * cleaned up.
247                  */
248                 ext4_orphan_del(NULL, inode);
249                 sb_end_intwrite(inode->i_sb);
250                 goto no_delete;
251         }
252
253         if (IS_SYNC(inode))
254                 ext4_handle_sync(handle);
255         inode->i_size = 0;
256         err = ext4_mark_inode_dirty(handle, inode);
257         if (err) {
258                 ext4_warning(inode->i_sb,
259                              "couldn't mark inode dirty (err %d)", err);
260                 goto stop_handle;
261         }
262         if (inode->i_blocks)
263                 ext4_truncate(inode);
264
265         /*
266          * ext4_ext_truncate() doesn't reserve any slop when it
267          * restarts journal transactions; therefore there may not be
268          * enough credits left in the handle to remove the inode from
269          * the orphan list and set the dtime field.
270          */
271         if (!ext4_handle_has_enough_credits(handle, 3)) {
272                 err = ext4_journal_extend(handle, 3);
273                 if (err > 0)
274                         err = ext4_journal_restart(handle, 3);
275                 if (err != 0) {
276                         ext4_warning(inode->i_sb,
277                                      "couldn't extend journal (err %d)", err);
278                 stop_handle:
279                         ext4_journal_stop(handle);
280                         ext4_orphan_del(NULL, inode);
281                         sb_end_intwrite(inode->i_sb);
282                         goto no_delete;
283                 }
284         }
285
286         /*
287          * Kill off the orphan record which ext4_truncate created.
288          * AKPM: I think this can be inside the above `if'.
289          * Note that ext4_orphan_del() has to be able to cope with the
290          * deletion of a non-existent orphan - this is because we don't
291          * know if ext4_truncate() actually created an orphan record.
292          * (Well, we could do this if we need to, but heck - it works)
293          */
294         ext4_orphan_del(handle, inode);
295         EXT4_I(inode)->i_dtime  = get_seconds();
296
297         /*
298          * One subtle ordering requirement: if anything has gone wrong
299          * (transaction abort, IO errors, whatever), then we can still
300          * do these next steps (the fs will already have been marked as
301          * having errors), but we can't free the inode if the mark_dirty
302          * fails.
303          */
304         if (ext4_mark_inode_dirty(handle, inode))
305                 /* If that failed, just do the required in-core inode clear. */
306                 ext4_clear_inode(inode);
307         else
308                 ext4_free_inode(handle, inode);
309         ext4_journal_stop(handle);
310         sb_end_intwrite(inode->i_sb);
311         return;
312 no_delete:
313         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
314 }
315
316 #ifdef CONFIG_QUOTA
317 qsize_t *ext4_get_reserved_space(struct inode *inode)
318 {
319         return &EXT4_I(inode)->i_reserved_quota;
320 }
321 #endif
322
323 /*
324  * Calculate the number of metadata blocks need to reserve
325  * to allocate a block located at @lblock
326  */
327 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
328 {
329         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
330                 return ext4_ext_calc_metadata_amount(inode, lblock);
331
332         return ext4_ind_calc_metadata_amount(inode, lblock);
333 }
334
335 /*
336  * Called with i_data_sem down, which is important since we can call
337  * ext4_discard_preallocations() from here.
338  */
339 void ext4_da_update_reserve_space(struct inode *inode,
340                                         int used, int quota_claim)
341 {
342         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
343         struct ext4_inode_info *ei = EXT4_I(inode);
344
345         spin_lock(&ei->i_block_reservation_lock);
346         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
347         if (unlikely(used > ei->i_reserved_data_blocks)) {
348                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
349                          "with only %d reserved data blocks",
350                          __func__, inode->i_ino, used,
351                          ei->i_reserved_data_blocks);
352                 WARN_ON(1);
353                 used = ei->i_reserved_data_blocks;
354         }
355
356         if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
357                 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
358                         "with only %d reserved metadata blocks "
359                         "(releasing %d blocks with reserved %d data blocks)",
360                         inode->i_ino, ei->i_allocated_meta_blocks,
361                              ei->i_reserved_meta_blocks, used,
362                              ei->i_reserved_data_blocks);
363                 WARN_ON(1);
364                 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
365         }
366
367         /* Update per-inode reservations */
368         ei->i_reserved_data_blocks -= used;
369         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
370         percpu_counter_sub(&sbi->s_dirtyclusters_counter,
371                            used + ei->i_allocated_meta_blocks);
372         ei->i_allocated_meta_blocks = 0;
373
374         if (ei->i_reserved_data_blocks == 0) {
375                 /*
376                  * We can release all of the reserved metadata blocks
377                  * only when we have written all of the delayed
378                  * allocation blocks.
379                  */
380                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
381                                    ei->i_reserved_meta_blocks);
382                 ei->i_reserved_meta_blocks = 0;
383                 ei->i_da_metadata_calc_len = 0;
384         }
385         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
386
387         /* Update quota subsystem for data blocks */
388         if (quota_claim)
389                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
390         else {
391                 /*
392                  * We did fallocate with an offset that is already delayed
393                  * allocated. So on delayed allocated writeback we should
394                  * not re-claim the quota for fallocated blocks.
395                  */
396                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
397         }
398
399         /*
400          * If we have done all the pending block allocations and if
401          * there aren't any writers on the inode, we can discard the
402          * inode's preallocations.
403          */
404         if ((ei->i_reserved_data_blocks == 0) &&
405             (atomic_read(&inode->i_writecount) == 0))
406                 ext4_discard_preallocations(inode);
407 }
408
409 static int __check_block_validity(struct inode *inode, const char *func,
410                                 unsigned int line,
411                                 struct ext4_map_blocks *map)
412 {
413         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
414                                    map->m_len)) {
415                 ext4_error_inode(inode, func, line, map->m_pblk,
416                                  "lblock %lu mapped to illegal pblock "
417                                  "(length %d)", (unsigned long) map->m_lblk,
418                                  map->m_len);
419                 return -EIO;
420         }
421         return 0;
422 }
423
424 #define check_block_validity(inode, map)        \
425         __check_block_validity((inode), __func__, __LINE__, (map))
426
427 /*
428  * Return the number of contiguous dirty pages in a given inode
429  * starting at page frame idx.
430  */
431 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
432                                     unsigned int max_pages)
433 {
434         struct address_space *mapping = inode->i_mapping;
435         pgoff_t index;
436         struct pagevec pvec;
437         pgoff_t num = 0;
438         int i, nr_pages, done = 0;
439
440         if (max_pages == 0)
441                 return 0;
442         pagevec_init(&pvec, 0);
443         while (!done) {
444                 index = idx;
445                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
446                                               PAGECACHE_TAG_DIRTY,
447                                               (pgoff_t)PAGEVEC_SIZE);
448                 if (nr_pages == 0)
449                         break;
450                 for (i = 0; i < nr_pages; i++) {
451                         struct page *page = pvec.pages[i];
452                         struct buffer_head *bh, *head;
453
454                         lock_page(page);
455                         if (unlikely(page->mapping != mapping) ||
456                             !PageDirty(page) ||
457                             PageWriteback(page) ||
458                             page->index != idx) {
459                                 done = 1;
460                                 unlock_page(page);
461                                 break;
462                         }
463                         if (page_has_buffers(page)) {
464                                 bh = head = page_buffers(page);
465                                 do {
466                                         if (!buffer_delay(bh) &&
467                                             !buffer_unwritten(bh))
468                                                 done = 1;
469                                         bh = bh->b_this_page;
470                                 } while (!done && (bh != head));
471                         }
472                         unlock_page(page);
473                         if (done)
474                                 break;
475                         idx++;
476                         num++;
477                         if (num >= max_pages) {
478                                 done = 1;
479                                 break;
480                         }
481                 }
482                 pagevec_release(&pvec);
483         }
484         return num;
485 }
486
487 #ifdef ES_AGGRESSIVE_TEST
488 static void ext4_map_blocks_es_recheck(handle_t *handle,
489                                        struct inode *inode,
490                                        struct ext4_map_blocks *es_map,
491                                        struct ext4_map_blocks *map,
492                                        int flags)
493 {
494         int retval;
495
496         map->m_flags = 0;
497         /*
498          * There is a race window that the result is not the same.
499          * e.g. xfstests #223 when dioread_nolock enables.  The reason
500          * is that we lookup a block mapping in extent status tree with
501          * out taking i_data_sem.  So at the time the unwritten extent
502          * could be converted.
503          */
504         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
505                 down_read((&EXT4_I(inode)->i_data_sem));
506         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
507                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
508                                              EXT4_GET_BLOCKS_KEEP_SIZE);
509         } else {
510                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
511                                              EXT4_GET_BLOCKS_KEEP_SIZE);
512         }
513         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
514                 up_read((&EXT4_I(inode)->i_data_sem));
515         /*
516          * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
517          * because it shouldn't be marked in es_map->m_flags.
518          */
519         map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
520
521         /*
522          * We don't check m_len because extent will be collpased in status
523          * tree.  So the m_len might not equal.
524          */
525         if (es_map->m_lblk != map->m_lblk ||
526             es_map->m_flags != map->m_flags ||
527             es_map->m_pblk != map->m_pblk) {
528                 printk("ES cache assertation failed for inode: %lu "
529                        "es_cached ex [%d/%d/%llu/%x] != "
530                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
531                        inode->i_ino, es_map->m_lblk, es_map->m_len,
532                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
533                        map->m_len, map->m_pblk, map->m_flags,
534                        retval, flags);
535         }
536 }
537 #endif /* ES_AGGRESSIVE_TEST */
538
539 /*
540  * The ext4_map_blocks() function tries to look up the requested blocks,
541  * and returns if the blocks are already mapped.
542  *
543  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
544  * and store the allocated blocks in the result buffer head and mark it
545  * mapped.
546  *
547  * If file type is extents based, it will call ext4_ext_map_blocks(),
548  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
549  * based files
550  *
551  * On success, it returns the number of blocks being mapped or allocate.
552  * if create==0 and the blocks are pre-allocated and uninitialized block,
553  * the result buffer head is unmapped. If the create ==1, it will make sure
554  * the buffer head is mapped.
555  *
556  * It returns 0 if plain look up failed (blocks have not been allocated), in
557  * that case, buffer head is unmapped
558  *
559  * It returns the error in case of allocation failure.
560  */
561 int ext4_map_blocks(handle_t *handle, struct inode *inode,
562                     struct ext4_map_blocks *map, int flags)
563 {
564         struct extent_status es;
565         int retval;
566 #ifdef ES_AGGRESSIVE_TEST
567         struct ext4_map_blocks orig_map;
568
569         memcpy(&orig_map, map, sizeof(*map));
570 #endif
571
572         map->m_flags = 0;
573         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
574                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
575                   (unsigned long) map->m_lblk);
576
577         /* Lookup extent status tree firstly */
578         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
579                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
580                         map->m_pblk = ext4_es_pblock(&es) +
581                                         map->m_lblk - es.es_lblk;
582                         map->m_flags |= ext4_es_is_written(&es) ?
583                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
584                         retval = es.es_len - (map->m_lblk - es.es_lblk);
585                         if (retval > map->m_len)
586                                 retval = map->m_len;
587                         map->m_len = retval;
588                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
589                         retval = 0;
590                 } else {
591                         BUG_ON(1);
592                 }
593 #ifdef ES_AGGRESSIVE_TEST
594                 ext4_map_blocks_es_recheck(handle, inode, map,
595                                            &orig_map, flags);
596 #endif
597                 goto found;
598         }
599
600         /*
601          * Try to see if we can get the block without requesting a new
602          * file system block.
603          */
604         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
605                 down_read((&EXT4_I(inode)->i_data_sem));
606         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
607                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
608                                              EXT4_GET_BLOCKS_KEEP_SIZE);
609         } else {
610                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
611                                              EXT4_GET_BLOCKS_KEEP_SIZE);
612         }
613         if (retval > 0) {
614                 int ret;
615                 unsigned long long status;
616
617 #ifdef ES_AGGRESSIVE_TEST
618                 if (retval != map->m_len) {
619                         printk("ES len assertation failed for inode: %lu "
620                                "retval %d != map->m_len %d "
621                                "in %s (lookup)\n", inode->i_ino, retval,
622                                map->m_len, __func__);
623                 }
624 #endif
625
626                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
627                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
628                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
629                     ext4_find_delalloc_range(inode, map->m_lblk,
630                                              map->m_lblk + map->m_len - 1))
631                         status |= EXTENT_STATUS_DELAYED;
632                 ret = ext4_es_insert_extent(inode, map->m_lblk,
633                                             map->m_len, map->m_pblk, status);
634                 if (ret < 0)
635                         retval = ret;
636         }
637         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
638                 up_read((&EXT4_I(inode)->i_data_sem));
639
640 found:
641         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
642                 int ret = check_block_validity(inode, map);
643                 if (ret != 0)
644                         return ret;
645         }
646
647         /* If it is only a block(s) look up */
648         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
649                 return retval;
650
651         /*
652          * Returns if the blocks have already allocated
653          *
654          * Note that if blocks have been preallocated
655          * ext4_ext_get_block() returns the create = 0
656          * with buffer head unmapped.
657          */
658         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
659                 return retval;
660
661         /*
662          * Here we clear m_flags because after allocating an new extent,
663          * it will be set again.
664          */
665         map->m_flags &= ~EXT4_MAP_FLAGS;
666
667         /*
668          * New blocks allocate and/or writing to uninitialized extent
669          * will possibly result in updating i_data, so we take
670          * the write lock of i_data_sem, and call get_blocks()
671          * with create == 1 flag.
672          */
673         down_write((&EXT4_I(inode)->i_data_sem));
674
675         /*
676          * if the caller is from delayed allocation writeout path
677          * we have already reserved fs blocks for allocation
678          * let the underlying get_block() function know to
679          * avoid double accounting
680          */
681         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
682                 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
683         /*
684          * We need to check for EXT4 here because migrate
685          * could have changed the inode type in between
686          */
687         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
688                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
689         } else {
690                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
691
692                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
693                         /*
694                          * We allocated new blocks which will result in
695                          * i_data's format changing.  Force the migrate
696                          * to fail by clearing migrate flags
697                          */
698                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
699                 }
700
701                 /*
702                  * Update reserved blocks/metadata blocks after successful
703                  * block allocation which had been deferred till now. We don't
704                  * support fallocate for non extent files. So we can update
705                  * reserve space here.
706                  */
707                 if ((retval > 0) &&
708                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
709                         ext4_da_update_reserve_space(inode, retval, 1);
710         }
711         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
712                 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
713
714         if (retval > 0) {
715                 int ret;
716                 unsigned long long status;
717
718 #ifdef ES_AGGRESSIVE_TEST
719                 if (retval != map->m_len) {
720                         printk("ES len assertation failed for inode: %lu "
721                                "retval %d != map->m_len %d "
722                                "in %s (allocation)\n", inode->i_ino, retval,
723                                map->m_len, __func__);
724                 }
725 #endif
726
727                 /*
728                  * If the extent has been zeroed out, we don't need to update
729                  * extent status tree.
730                  */
731                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
732                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
733                         if (ext4_es_is_written(&es))
734                                 goto has_zeroout;
735                 }
736                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
737                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
738                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
739                     ext4_find_delalloc_range(inode, map->m_lblk,
740                                              map->m_lblk + map->m_len - 1))
741                         status |= EXTENT_STATUS_DELAYED;
742                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
743                                             map->m_pblk, status);
744                 if (ret < 0)
745                         retval = ret;
746         }
747
748 has_zeroout:
749         up_write((&EXT4_I(inode)->i_data_sem));
750         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
751                 int ret = check_block_validity(inode, map);
752                 if (ret != 0)
753                         return ret;
754         }
755         return retval;
756 }
757
758 /* Maximum number of blocks we map for direct IO at once. */
759 #define DIO_MAX_BLOCKS 4096
760
761 static int _ext4_get_block(struct inode *inode, sector_t iblock,
762                            struct buffer_head *bh, int flags)
763 {
764         handle_t *handle = ext4_journal_current_handle();
765         struct ext4_map_blocks map;
766         int ret = 0, started = 0;
767         int dio_credits;
768
769         if (ext4_has_inline_data(inode))
770                 return -ERANGE;
771
772         map.m_lblk = iblock;
773         map.m_len = bh->b_size >> inode->i_blkbits;
774
775         if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
776                 /* Direct IO write... */
777                 if (map.m_len > DIO_MAX_BLOCKS)
778                         map.m_len = DIO_MAX_BLOCKS;
779                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
780                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
781                                             dio_credits);
782                 if (IS_ERR(handle)) {
783                         ret = PTR_ERR(handle);
784                         return ret;
785                 }
786                 started = 1;
787         }
788
789         ret = ext4_map_blocks(handle, inode, &map, flags);
790         if (ret > 0) {
791                 map_bh(bh, inode->i_sb, map.m_pblk);
792                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
793                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
794                 ret = 0;
795         }
796         if (started)
797                 ext4_journal_stop(handle);
798         return ret;
799 }
800
801 int ext4_get_block(struct inode *inode, sector_t iblock,
802                    struct buffer_head *bh, int create)
803 {
804         return _ext4_get_block(inode, iblock, bh,
805                                create ? EXT4_GET_BLOCKS_CREATE : 0);
806 }
807
808 /*
809  * `handle' can be NULL if create is zero
810  */
811 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
812                                 ext4_lblk_t block, int create, int *errp)
813 {
814         struct ext4_map_blocks map;
815         struct buffer_head *bh;
816         int fatal = 0, err;
817
818         J_ASSERT(handle != NULL || create == 0);
819
820         map.m_lblk = block;
821         map.m_len = 1;
822         err = ext4_map_blocks(handle, inode, &map,
823                               create ? EXT4_GET_BLOCKS_CREATE : 0);
824
825         /* ensure we send some value back into *errp */
826         *errp = 0;
827
828         if (create && err == 0)
829                 err = -ENOSPC;  /* should never happen */
830         if (err < 0)
831                 *errp = err;
832         if (err <= 0)
833                 return NULL;
834
835         bh = sb_getblk(inode->i_sb, map.m_pblk);
836         if (unlikely(!bh)) {
837                 *errp = -ENOMEM;
838                 return NULL;
839         }
840         if (map.m_flags & EXT4_MAP_NEW) {
841                 J_ASSERT(create != 0);
842                 J_ASSERT(handle != NULL);
843
844                 /*
845                  * Now that we do not always journal data, we should
846                  * keep in mind whether this should always journal the
847                  * new buffer as metadata.  For now, regular file
848                  * writes use ext4_get_block instead, so it's not a
849                  * problem.
850                  */
851                 lock_buffer(bh);
852                 BUFFER_TRACE(bh, "call get_create_access");
853                 fatal = ext4_journal_get_create_access(handle, bh);
854                 if (!fatal && !buffer_uptodate(bh)) {
855                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
856                         set_buffer_uptodate(bh);
857                 }
858                 unlock_buffer(bh);
859                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
860                 err = ext4_handle_dirty_metadata(handle, inode, bh);
861                 if (!fatal)
862                         fatal = err;
863         } else {
864                 BUFFER_TRACE(bh, "not a new buffer");
865         }
866         if (fatal) {
867                 *errp = fatal;
868                 brelse(bh);
869                 bh = NULL;
870         }
871         return bh;
872 }
873
874 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
875                                ext4_lblk_t block, int create, int *err)
876 {
877         struct buffer_head *bh;
878
879         bh = ext4_getblk(handle, inode, block, create, err);
880         if (!bh)
881                 return bh;
882         if (buffer_uptodate(bh))
883                 return bh;
884         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
885         wait_on_buffer(bh);
886         if (buffer_uptodate(bh))
887                 return bh;
888         put_bh(bh);
889         *err = -EIO;
890         return NULL;
891 }
892
893 int ext4_walk_page_buffers(handle_t *handle,
894                            struct buffer_head *head,
895                            unsigned from,
896                            unsigned to,
897                            int *partial,
898                            int (*fn)(handle_t *handle,
899                                      struct buffer_head *bh))
900 {
901         struct buffer_head *bh;
902         unsigned block_start, block_end;
903         unsigned blocksize = head->b_size;
904         int err, ret = 0;
905         struct buffer_head *next;
906
907         for (bh = head, block_start = 0;
908              ret == 0 && (bh != head || !block_start);
909              block_start = block_end, bh = next) {
910                 next = bh->b_this_page;
911                 block_end = block_start + blocksize;
912                 if (block_end <= from || block_start >= to) {
913                         if (partial && !buffer_uptodate(bh))
914                                 *partial = 1;
915                         continue;
916                 }
917                 err = (*fn)(handle, bh);
918                 if (!ret)
919                         ret = err;
920         }
921         return ret;
922 }
923
924 /*
925  * To preserve ordering, it is essential that the hole instantiation and
926  * the data write be encapsulated in a single transaction.  We cannot
927  * close off a transaction and start a new one between the ext4_get_block()
928  * and the commit_write().  So doing the jbd2_journal_start at the start of
929  * prepare_write() is the right place.
930  *
931  * Also, this function can nest inside ext4_writepage().  In that case, we
932  * *know* that ext4_writepage() has generated enough buffer credits to do the
933  * whole page.  So we won't block on the journal in that case, which is good,
934  * because the caller may be PF_MEMALLOC.
935  *
936  * By accident, ext4 can be reentered when a transaction is open via
937  * quota file writes.  If we were to commit the transaction while thus
938  * reentered, there can be a deadlock - we would be holding a quota
939  * lock, and the commit would never complete if another thread had a
940  * transaction open and was blocking on the quota lock - a ranking
941  * violation.
942  *
943  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
944  * will _not_ run commit under these circumstances because handle->h_ref
945  * is elevated.  We'll still have enough credits for the tiny quotafile
946  * write.
947  */
948 int do_journal_get_write_access(handle_t *handle,
949                                 struct buffer_head *bh)
950 {
951         int dirty = buffer_dirty(bh);
952         int ret;
953
954         if (!buffer_mapped(bh) || buffer_freed(bh))
955                 return 0;
956         /*
957          * __block_write_begin() could have dirtied some buffers. Clean
958          * the dirty bit as jbd2_journal_get_write_access() could complain
959          * otherwise about fs integrity issues. Setting of the dirty bit
960          * by __block_write_begin() isn't a real problem here as we clear
961          * the bit before releasing a page lock and thus writeback cannot
962          * ever write the buffer.
963          */
964         if (dirty)
965                 clear_buffer_dirty(bh);
966         ret = ext4_journal_get_write_access(handle, bh);
967         if (!ret && dirty)
968                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
969         return ret;
970 }
971
972 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
973                    struct buffer_head *bh_result, int create);
974 static int ext4_write_begin(struct file *file, struct address_space *mapping,
975                             loff_t pos, unsigned len, unsigned flags,
976                             struct page **pagep, void **fsdata)
977 {
978         struct inode *inode = mapping->host;
979         int ret, needed_blocks;
980         handle_t *handle;
981         int retries = 0;
982         struct page *page;
983         pgoff_t index;
984         unsigned from, to;
985
986         trace_ext4_write_begin(inode, pos, len, flags);
987         /*
988          * Reserve one block more for addition to orphan list in case
989          * we allocate blocks but write fails for some reason
990          */
991         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
992         index = pos >> PAGE_CACHE_SHIFT;
993         from = pos & (PAGE_CACHE_SIZE - 1);
994         to = from + len;
995
996         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
997                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
998                                                     flags, pagep);
999                 if (ret < 0)
1000                         return ret;
1001                 if (ret == 1)
1002                         return 0;
1003         }
1004
1005         /*
1006          * grab_cache_page_write_begin() can take a long time if the
1007          * system is thrashing due to memory pressure, or if the page
1008          * is being written back.  So grab it first before we start
1009          * the transaction handle.  This also allows us to allocate
1010          * the page (if needed) without using GFP_NOFS.
1011          */
1012 retry_grab:
1013         page = grab_cache_page_write_begin(mapping, index, flags);
1014         if (!page)
1015                 return -ENOMEM;
1016         unlock_page(page);
1017
1018 retry_journal:
1019         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1020         if (IS_ERR(handle)) {
1021                 page_cache_release(page);
1022                 return PTR_ERR(handle);
1023         }
1024
1025         lock_page(page);
1026         if (page->mapping != mapping) {
1027                 /* The page got truncated from under us */
1028                 unlock_page(page);
1029                 page_cache_release(page);
1030                 ext4_journal_stop(handle);
1031                 goto retry_grab;
1032         }
1033         wait_on_page_writeback(page);
1034
1035         if (ext4_should_dioread_nolock(inode))
1036                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1037         else
1038                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1039
1040         if (!ret && ext4_should_journal_data(inode)) {
1041                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1042                                              from, to, NULL,
1043                                              do_journal_get_write_access);
1044         }
1045
1046         if (ret) {
1047                 unlock_page(page);
1048                 /*
1049                  * __block_write_begin may have instantiated a few blocks
1050                  * outside i_size.  Trim these off again. Don't need
1051                  * i_size_read because we hold i_mutex.
1052                  *
1053                  * Add inode to orphan list in case we crash before
1054                  * truncate finishes
1055                  */
1056                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1057                         ext4_orphan_add(handle, inode);
1058
1059                 ext4_journal_stop(handle);
1060                 if (pos + len > inode->i_size) {
1061                         ext4_truncate_failed_write(inode);
1062                         /*
1063                          * If truncate failed early the inode might
1064                          * still be on the orphan list; we need to
1065                          * make sure the inode is removed from the
1066                          * orphan list in that case.
1067                          */
1068                         if (inode->i_nlink)
1069                                 ext4_orphan_del(NULL, inode);
1070                 }
1071
1072                 if (ret == -ENOSPC &&
1073                     ext4_should_retry_alloc(inode->i_sb, &retries))
1074                         goto retry_journal;
1075                 page_cache_release(page);
1076                 return ret;
1077         }
1078         *pagep = page;
1079         return ret;
1080 }
1081
1082 /* For write_end() in data=journal mode */
1083 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1084 {
1085         int ret;
1086         if (!buffer_mapped(bh) || buffer_freed(bh))
1087                 return 0;
1088         set_buffer_uptodate(bh);
1089         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1090         clear_buffer_meta(bh);
1091         clear_buffer_prio(bh);
1092         return ret;
1093 }
1094
1095 /*
1096  * We need to pick up the new inode size which generic_commit_write gave us
1097  * `file' can be NULL - eg, when called from page_symlink().
1098  *
1099  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1100  * buffers are managed internally.
1101  */
1102 static int ext4_write_end(struct file *file,
1103                           struct address_space *mapping,
1104                           loff_t pos, unsigned len, unsigned copied,
1105                           struct page *page, void *fsdata)
1106 {
1107         handle_t *handle = ext4_journal_current_handle();
1108         struct inode *inode = mapping->host;
1109         int ret = 0, ret2;
1110         int i_size_changed = 0;
1111
1112         trace_ext4_write_end(inode, pos, len, copied);
1113         if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1114                 ret = ext4_jbd2_file_inode(handle, inode);
1115                 if (ret) {
1116                         unlock_page(page);
1117                         page_cache_release(page);
1118                         goto errout;
1119                 }
1120         }
1121
1122         if (ext4_has_inline_data(inode))
1123                 copied = ext4_write_inline_data_end(inode, pos, len,
1124                                                     copied, page);
1125         else
1126                 copied = block_write_end(file, mapping, pos,
1127                                          len, copied, page, fsdata);
1128
1129         /*
1130          * No need to use i_size_read() here, the i_size
1131          * cannot change under us because we hole i_mutex.
1132          *
1133          * But it's important to update i_size while still holding page lock:
1134          * page writeout could otherwise come in and zero beyond i_size.
1135          */
1136         if (pos + copied > inode->i_size) {
1137                 i_size_write(inode, pos + copied);
1138                 i_size_changed = 1;
1139         }
1140
1141         if (pos + copied > EXT4_I(inode)->i_disksize) {
1142                 /* We need to mark inode dirty even if
1143                  * new_i_size is less that inode->i_size
1144                  * but greater than i_disksize. (hint delalloc)
1145                  */
1146                 ext4_update_i_disksize(inode, (pos + copied));
1147                 i_size_changed = 1;
1148         }
1149         unlock_page(page);
1150         page_cache_release(page);
1151
1152         /*
1153          * Don't mark the inode dirty under page lock. First, it unnecessarily
1154          * makes the holding time of page lock longer. Second, it forces lock
1155          * ordering of page lock and transaction start for journaling
1156          * filesystems.
1157          */
1158         if (i_size_changed)
1159                 ext4_mark_inode_dirty(handle, inode);
1160
1161         if (copied < 0)
1162                 ret = copied;
1163         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1164                 /* if we have allocated more blocks and copied
1165                  * less. We will have blocks allocated outside
1166                  * inode->i_size. So truncate them
1167                  */
1168                 ext4_orphan_add(handle, inode);
1169 errout:
1170         ret2 = ext4_journal_stop(handle);
1171         if (!ret)
1172                 ret = ret2;
1173
1174         if (pos + len > inode->i_size) {
1175                 ext4_truncate_failed_write(inode);
1176                 /*
1177                  * If truncate failed early the inode might still be
1178                  * on the orphan list; we need to make sure the inode
1179                  * is removed from the orphan list in that case.
1180                  */
1181                 if (inode->i_nlink)
1182                         ext4_orphan_del(NULL, inode);
1183         }
1184
1185         return ret ? ret : copied;
1186 }
1187
1188 static int ext4_journalled_write_end(struct file *file,
1189                                      struct address_space *mapping,
1190                                      loff_t pos, unsigned len, unsigned copied,
1191                                      struct page *page, void *fsdata)
1192 {
1193         handle_t *handle = ext4_journal_current_handle();
1194         struct inode *inode = mapping->host;
1195         int ret = 0, ret2;
1196         int partial = 0;
1197         unsigned from, to;
1198         loff_t new_i_size;
1199
1200         trace_ext4_journalled_write_end(inode, pos, len, copied);
1201         from = pos & (PAGE_CACHE_SIZE - 1);
1202         to = from + len;
1203
1204         BUG_ON(!ext4_handle_valid(handle));
1205
1206         if (ext4_has_inline_data(inode))
1207                 copied = ext4_write_inline_data_end(inode, pos, len,
1208                                                     copied, page);
1209         else {
1210                 if (copied < len) {
1211                         if (!PageUptodate(page))
1212                                 copied = 0;
1213                         page_zero_new_buffers(page, from+copied, to);
1214                 }
1215
1216                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1217                                              to, &partial, write_end_fn);
1218                 if (!partial)
1219                         SetPageUptodate(page);
1220         }
1221         new_i_size = pos + copied;
1222         if (new_i_size > inode->i_size)
1223                 i_size_write(inode, pos+copied);
1224         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1225         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1226         if (new_i_size > EXT4_I(inode)->i_disksize) {
1227                 ext4_update_i_disksize(inode, new_i_size);
1228                 ret2 = ext4_mark_inode_dirty(handle, inode);
1229                 if (!ret)
1230                         ret = ret2;
1231         }
1232
1233         unlock_page(page);
1234         page_cache_release(page);
1235         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1236                 /* if we have allocated more blocks and copied
1237                  * less. We will have blocks allocated outside
1238                  * inode->i_size. So truncate them
1239                  */
1240                 ext4_orphan_add(handle, inode);
1241
1242         ret2 = ext4_journal_stop(handle);
1243         if (!ret)
1244                 ret = ret2;
1245         if (pos + len > inode->i_size) {
1246                 ext4_truncate_failed_write(inode);
1247                 /*
1248                  * If truncate failed early the inode might still be
1249                  * on the orphan list; we need to make sure the inode
1250                  * is removed from the orphan list in that case.
1251                  */
1252                 if (inode->i_nlink)
1253                         ext4_orphan_del(NULL, inode);
1254         }
1255
1256         return ret ? ret : copied;
1257 }
1258
1259 /*
1260  * Reserve a metadata for a single block located at lblock
1261  */
1262 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1263 {
1264         int retries = 0;
1265         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1266         struct ext4_inode_info *ei = EXT4_I(inode);
1267         unsigned int md_needed;
1268         ext4_lblk_t save_last_lblock;
1269         int save_len;
1270
1271         /*
1272          * recalculate the amount of metadata blocks to reserve
1273          * in order to allocate nrblocks
1274          * worse case is one extent per block
1275          */
1276 repeat:
1277         spin_lock(&ei->i_block_reservation_lock);
1278         /*
1279          * ext4_calc_metadata_amount() has side effects, which we have
1280          * to be prepared undo if we fail to claim space.
1281          */
1282         save_len = ei->i_da_metadata_calc_len;
1283         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1284         md_needed = EXT4_NUM_B2C(sbi,
1285                                  ext4_calc_metadata_amount(inode, lblock));
1286         trace_ext4_da_reserve_space(inode, md_needed);
1287
1288         /*
1289          * We do still charge estimated metadata to the sb though;
1290          * we cannot afford to run out of free blocks.
1291          */
1292         if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1293                 ei->i_da_metadata_calc_len = save_len;
1294                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1295                 spin_unlock(&ei->i_block_reservation_lock);
1296                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1297                         cond_resched();
1298                         goto repeat;
1299                 }
1300                 return -ENOSPC;
1301         }
1302         ei->i_reserved_meta_blocks += md_needed;
1303         spin_unlock(&ei->i_block_reservation_lock);
1304
1305         return 0;       /* success */
1306 }
1307
1308 /*
1309  * Reserve a single cluster located at lblock
1310  */
1311 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1312 {
1313         int retries = 0;
1314         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1315         struct ext4_inode_info *ei = EXT4_I(inode);
1316         unsigned int md_needed;
1317         int ret;
1318         ext4_lblk_t save_last_lblock;
1319         int save_len;
1320
1321         /*
1322          * We will charge metadata quota at writeout time; this saves
1323          * us from metadata over-estimation, though we may go over by
1324          * a small amount in the end.  Here we just reserve for data.
1325          */
1326         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1327         if (ret)
1328                 return ret;
1329
1330         /*
1331          * recalculate the amount of metadata blocks to reserve
1332          * in order to allocate nrblocks
1333          * worse case is one extent per block
1334          */
1335 repeat:
1336         spin_lock(&ei->i_block_reservation_lock);
1337         /*
1338          * ext4_calc_metadata_amount() has side effects, which we have
1339          * to be prepared undo if we fail to claim space.
1340          */
1341         save_len = ei->i_da_metadata_calc_len;
1342         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1343         md_needed = EXT4_NUM_B2C(sbi,
1344                                  ext4_calc_metadata_amount(inode, lblock));
1345         trace_ext4_da_reserve_space(inode, md_needed);
1346
1347         /*
1348          * We do still charge estimated metadata to the sb though;
1349          * we cannot afford to run out of free blocks.
1350          */
1351         if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1352                 ei->i_da_metadata_calc_len = save_len;
1353                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1354                 spin_unlock(&ei->i_block_reservation_lock);
1355                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1356                         cond_resched();
1357                         goto repeat;
1358                 }
1359                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1360                 return -ENOSPC;
1361         }
1362         ei->i_reserved_data_blocks++;
1363         ei->i_reserved_meta_blocks += md_needed;
1364         spin_unlock(&ei->i_block_reservation_lock);
1365
1366         return 0;       /* success */
1367 }
1368
1369 static void ext4_da_release_space(struct inode *inode, int to_free)
1370 {
1371         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1372         struct ext4_inode_info *ei = EXT4_I(inode);
1373
1374         if (!to_free)
1375                 return;         /* Nothing to release, exit */
1376
1377         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1378
1379         trace_ext4_da_release_space(inode, to_free);
1380         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1381                 /*
1382                  * if there aren't enough reserved blocks, then the
1383                  * counter is messed up somewhere.  Since this
1384                  * function is called from invalidate page, it's
1385                  * harmless to return without any action.
1386                  */
1387                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1388                          "ino %lu, to_free %d with only %d reserved "
1389                          "data blocks", inode->i_ino, to_free,
1390                          ei->i_reserved_data_blocks);
1391                 WARN_ON(1);
1392                 to_free = ei->i_reserved_data_blocks;
1393         }
1394         ei->i_reserved_data_blocks -= to_free;
1395
1396         if (ei->i_reserved_data_blocks == 0) {
1397                 /*
1398                  * We can release all of the reserved metadata blocks
1399                  * only when we have written all of the delayed
1400                  * allocation blocks.
1401                  * Note that in case of bigalloc, i_reserved_meta_blocks,
1402                  * i_reserved_data_blocks, etc. refer to number of clusters.
1403                  */
1404                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1405                                    ei->i_reserved_meta_blocks);
1406                 ei->i_reserved_meta_blocks = 0;
1407                 ei->i_da_metadata_calc_len = 0;
1408         }
1409
1410         /* update fs dirty data blocks counter */
1411         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1412
1413         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1414
1415         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1416 }
1417
1418 static void ext4_da_page_release_reservation(struct page *page,
1419                                              unsigned int offset,
1420                                              unsigned int length)
1421 {
1422         int to_release = 0;
1423         struct buffer_head *head, *bh;
1424         unsigned int curr_off = 0;
1425         struct inode *inode = page->mapping->host;
1426         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1427         unsigned int stop = offset + length;
1428         int num_clusters;
1429         ext4_fsblk_t lblk;
1430
1431         BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1432
1433         head = page_buffers(page);
1434         bh = head;
1435         do {
1436                 unsigned int next_off = curr_off + bh->b_size;
1437
1438                 if (next_off > stop)
1439                         break;
1440
1441                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1442                         to_release++;
1443                         clear_buffer_delay(bh);
1444                 }
1445                 curr_off = next_off;
1446         } while ((bh = bh->b_this_page) != head);
1447
1448         if (to_release) {
1449                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1450                 ext4_es_remove_extent(inode, lblk, to_release);
1451         }
1452
1453         /* If we have released all the blocks belonging to a cluster, then we
1454          * need to release the reserved space for that cluster. */
1455         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1456         while (num_clusters > 0) {
1457                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1458                         ((num_clusters - 1) << sbi->s_cluster_bits);
1459                 if (sbi->s_cluster_ratio == 1 ||
1460                     !ext4_find_delalloc_cluster(inode, lblk))
1461                         ext4_da_release_space(inode, 1);
1462
1463                 num_clusters--;
1464         }
1465 }
1466
1467 /*
1468  * Delayed allocation stuff
1469  */
1470
1471 /*
1472  * mpage_da_submit_io - walks through extent of pages and try to write
1473  * them with writepage() call back
1474  *
1475  * @mpd->inode: inode
1476  * @mpd->first_page: first page of the extent
1477  * @mpd->next_page: page after the last page of the extent
1478  *
1479  * By the time mpage_da_submit_io() is called we expect all blocks
1480  * to be allocated. this may be wrong if allocation failed.
1481  *
1482  * As pages are already locked by write_cache_pages(), we can't use it
1483  */
1484 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1485                               struct ext4_map_blocks *map)
1486 {
1487         struct pagevec pvec;
1488         unsigned long index, end;
1489         int ret = 0, err, nr_pages, i;
1490         struct inode *inode = mpd->inode;
1491         struct address_space *mapping = inode->i_mapping;
1492         loff_t size = i_size_read(inode);
1493         unsigned int len, block_start;
1494         struct buffer_head *bh, *page_bufs = NULL;
1495         sector_t pblock = 0, cur_logical = 0;
1496         struct ext4_io_submit io_submit;
1497
1498         BUG_ON(mpd->next_page <= mpd->first_page);
1499         memset(&io_submit, 0, sizeof(io_submit));
1500         /*
1501          * We need to start from the first_page to the next_page - 1
1502          * to make sure we also write the mapped dirty buffer_heads.
1503          * If we look at mpd->b_blocknr we would only be looking
1504          * at the currently mapped buffer_heads.
1505          */
1506         index = mpd->first_page;
1507         end = mpd->next_page - 1;
1508
1509         pagevec_init(&pvec, 0);
1510         while (index <= end) {
1511                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1512                 if (nr_pages == 0)
1513                         break;
1514                 for (i = 0; i < nr_pages; i++) {
1515                         int skip_page = 0;
1516                         struct page *page = pvec.pages[i];
1517
1518                         index = page->index;
1519                         if (index > end)
1520                                 break;
1521
1522                         if (index == size >> PAGE_CACHE_SHIFT)
1523                                 len = size & ~PAGE_CACHE_MASK;
1524                         else
1525                                 len = PAGE_CACHE_SIZE;
1526                         if (map) {
1527                                 cur_logical = index << (PAGE_CACHE_SHIFT -
1528                                                         inode->i_blkbits);
1529                                 pblock = map->m_pblk + (cur_logical -
1530                                                         map->m_lblk);
1531                         }
1532                         index++;
1533
1534                         BUG_ON(!PageLocked(page));
1535                         BUG_ON(PageWriteback(page));
1536
1537                         bh = page_bufs = page_buffers(page);
1538                         block_start = 0;
1539                         do {
1540                                 if (map && (cur_logical >= map->m_lblk) &&
1541                                     (cur_logical <= (map->m_lblk +
1542                                                      (map->m_len - 1)))) {
1543                                         if (buffer_delay(bh)) {
1544                                                 clear_buffer_delay(bh);
1545                                                 bh->b_blocknr = pblock;
1546                                         }
1547                                         if (buffer_unwritten(bh) ||
1548                                             buffer_mapped(bh))
1549                                                 BUG_ON(bh->b_blocknr != pblock);
1550                                         if (map->m_flags & EXT4_MAP_UNINIT)
1551                                                 set_buffer_uninit(bh);
1552                                         clear_buffer_unwritten(bh);
1553                                 }
1554
1555                                 /*
1556                                  * skip page if block allocation undone and
1557                                  * block is dirty
1558                                  */
1559                                 if (ext4_bh_delay_or_unwritten(NULL, bh))
1560                                         skip_page = 1;
1561                                 bh = bh->b_this_page;
1562                                 block_start += bh->b_size;
1563                                 cur_logical++;
1564                                 pblock++;
1565                         } while (bh != page_bufs);
1566
1567                         if (skip_page) {
1568                                 unlock_page(page);
1569                                 continue;
1570                         }
1571
1572                         clear_page_dirty_for_io(page);
1573                         err = ext4_bio_write_page(&io_submit, page, len,
1574                                                   mpd->wbc);
1575                         if (!err)
1576                                 mpd->pages_written++;
1577                         /*
1578                          * In error case, we have to continue because
1579                          * remaining pages are still locked
1580                          */
1581                         if (ret == 0)
1582                                 ret = err;
1583                 }
1584                 pagevec_release(&pvec);
1585         }
1586         ext4_io_submit(&io_submit);
1587         return ret;
1588 }
1589
1590 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1591 {
1592         int nr_pages, i;
1593         pgoff_t index, end;
1594         struct pagevec pvec;
1595         struct inode *inode = mpd->inode;
1596         struct address_space *mapping = inode->i_mapping;
1597         ext4_lblk_t start, last;
1598
1599         index = mpd->first_page;
1600         end   = mpd->next_page - 1;
1601
1602         start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1603         last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1604         ext4_es_remove_extent(inode, start, last - start + 1);
1605
1606         pagevec_init(&pvec, 0);
1607         while (index <= end) {
1608                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1609                 if (nr_pages == 0)
1610                         break;
1611                 for (i = 0; i < nr_pages; i++) {
1612                         struct page *page = pvec.pages[i];
1613                         if (page->index > end)
1614                                 break;
1615                         BUG_ON(!PageLocked(page));
1616                         BUG_ON(PageWriteback(page));
1617                         block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1618                         ClearPageUptodate(page);
1619                         unlock_page(page);
1620                 }
1621                 index = pvec.pages[nr_pages - 1]->index + 1;
1622                 pagevec_release(&pvec);
1623         }
1624         return;
1625 }
1626
1627 static void ext4_print_free_blocks(struct inode *inode)
1628 {
1629         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1630         struct super_block *sb = inode->i_sb;
1631         struct ext4_inode_info *ei = EXT4_I(inode);
1632
1633         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1634                EXT4_C2B(EXT4_SB(inode->i_sb),
1635                         ext4_count_free_clusters(sb)));
1636         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1637         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1638                (long long) EXT4_C2B(EXT4_SB(sb),
1639                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1640         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1641                (long long) EXT4_C2B(EXT4_SB(sb),
1642                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1643         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1644         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1645                  ei->i_reserved_data_blocks);
1646         ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1647                ei->i_reserved_meta_blocks);
1648         ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1649                ei->i_allocated_meta_blocks);
1650         return;
1651 }
1652
1653 /*
1654  * mpage_da_map_and_submit - go through given space, map them
1655  *       if necessary, and then submit them for I/O
1656  *
1657  * @mpd - bh describing space
1658  *
1659  * The function skips space we know is already mapped to disk blocks.
1660  *
1661  */
1662 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1663 {
1664         int err, blks, get_blocks_flags;
1665         struct ext4_map_blocks map, *mapp = NULL;
1666         sector_t next = mpd->b_blocknr;
1667         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1668         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1669         handle_t *handle = NULL;
1670
1671         /*
1672          * If the blocks are mapped already, or we couldn't accumulate
1673          * any blocks, then proceed immediately to the submission stage.
1674          */
1675         if ((mpd->b_size == 0) ||
1676             ((mpd->b_state  & (1 << BH_Mapped)) &&
1677              !(mpd->b_state & (1 << BH_Delay)) &&
1678              !(mpd->b_state & (1 << BH_Unwritten))))
1679                 goto submit_io;
1680
1681         handle = ext4_journal_current_handle();
1682         BUG_ON(!handle);
1683
1684         /*
1685          * Call ext4_map_blocks() to allocate any delayed allocation
1686          * blocks, or to convert an uninitialized extent to be
1687          * initialized (in the case where we have written into
1688          * one or more preallocated blocks).
1689          *
1690          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1691          * indicate that we are on the delayed allocation path.  This
1692          * affects functions in many different parts of the allocation
1693          * call path.  This flag exists primarily because we don't
1694          * want to change *many* call functions, so ext4_map_blocks()
1695          * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1696          * inode's allocation semaphore is taken.
1697          *
1698          * If the blocks in questions were delalloc blocks, set
1699          * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1700          * variables are updated after the blocks have been allocated.
1701          */
1702         map.m_lblk = next;
1703         map.m_len = max_blocks;
1704         /*
1705          * We're in delalloc path and it is possible that we're going to
1706          * need more metadata blocks than previously reserved. However
1707          * we must not fail because we're in writeback and there is
1708          * nothing we can do about it so it might result in data loss.
1709          * So use reserved blocks to allocate metadata if possible.
1710          */
1711         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
1712                            EXT4_GET_BLOCKS_METADATA_NOFAIL;
1713         if (ext4_should_dioread_nolock(mpd->inode))
1714                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1715         if (mpd->b_state & (1 << BH_Delay))
1716                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1717
1718
1719         blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1720         if (blks < 0) {
1721                 struct super_block *sb = mpd->inode->i_sb;
1722
1723                 err = blks;
1724                 /*
1725                  * If get block returns EAGAIN or ENOSPC and there
1726                  * appears to be free blocks we will just let
1727                  * mpage_da_submit_io() unlock all of the pages.
1728                  */
1729                 if (err == -EAGAIN)
1730                         goto submit_io;
1731
1732                 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1733                         mpd->retval = err;
1734                         goto submit_io;
1735                 }
1736
1737                 /*
1738                  * get block failure will cause us to loop in
1739                  * writepages, because a_ops->writepage won't be able
1740                  * to make progress. The page will be redirtied by
1741                  * writepage and writepages will again try to write
1742                  * the same.
1743                  */
1744                 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1745                         ext4_msg(sb, KERN_CRIT,
1746                                  "delayed block allocation failed for inode %lu "
1747                                  "at logical offset %llu with max blocks %zd "
1748                                  "with error %d", mpd->inode->i_ino,
1749                                  (unsigned long long) next,
1750                                  mpd->b_size >> mpd->inode->i_blkbits, err);
1751                         ext4_msg(sb, KERN_CRIT,
1752                                 "This should not happen!! Data will be lost");
1753                         if (err == -ENOSPC)
1754                                 ext4_print_free_blocks(mpd->inode);
1755                 }
1756                 /* invalidate all the pages */
1757                 ext4_da_block_invalidatepages(mpd);
1758
1759                 /* Mark this page range as having been completed */
1760                 mpd->io_done = 1;
1761                 return;
1762         }
1763         BUG_ON(blks == 0);
1764
1765         mapp = &map;
1766         if (map.m_flags & EXT4_MAP_NEW) {
1767                 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1768                 int i;
1769
1770                 for (i = 0; i < map.m_len; i++)
1771                         unmap_underlying_metadata(bdev, map.m_pblk + i);
1772         }
1773
1774         /*
1775          * Update on-disk size along with block allocation.
1776          */
1777         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1778         if (disksize > i_size_read(mpd->inode))
1779                 disksize = i_size_read(mpd->inode);
1780         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1781                 ext4_update_i_disksize(mpd->inode, disksize);
1782                 err = ext4_mark_inode_dirty(handle, mpd->inode);
1783                 if (err)
1784                         ext4_error(mpd->inode->i_sb,
1785                                    "Failed to mark inode %lu dirty",
1786                                    mpd->inode->i_ino);
1787         }
1788
1789 submit_io:
1790         mpage_da_submit_io(mpd, mapp);
1791         mpd->io_done = 1;
1792 }
1793
1794 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1795                 (1 << BH_Delay) | (1 << BH_Unwritten))
1796
1797 /*
1798  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1799  *
1800  * @mpd->lbh - extent of blocks
1801  * @logical - logical number of the block in the file
1802  * @b_state - b_state of the buffer head added
1803  *
1804  * the function is used to collect contig. blocks in same state
1805  */
1806 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical,
1807                                    unsigned long b_state)
1808 {
1809         sector_t next;
1810         int blkbits = mpd->inode->i_blkbits;
1811         int nrblocks = mpd->b_size >> blkbits;
1812
1813         /*
1814          * XXX Don't go larger than mballoc is willing to allocate
1815          * This is a stopgap solution.  We eventually need to fold
1816          * mpage_da_submit_io() into this function and then call
1817          * ext4_map_blocks() multiple times in a loop
1818          */
1819         if (nrblocks >= (8*1024*1024 >> blkbits))
1820                 goto flush_it;
1821
1822         /* check if the reserved journal credits might overflow */
1823         if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) {
1824                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1825                         /*
1826                          * With non-extent format we are limited by the journal
1827                          * credit available.  Total credit needed to insert
1828                          * nrblocks contiguous blocks is dependent on the
1829                          * nrblocks.  So limit nrblocks.
1830                          */
1831                         goto flush_it;
1832                 }
1833         }
1834         /*
1835          * First block in the extent
1836          */
1837         if (mpd->b_size == 0) {
1838                 mpd->b_blocknr = logical;
1839                 mpd->b_size = 1 << blkbits;
1840                 mpd->b_state = b_state & BH_FLAGS;
1841                 return;
1842         }
1843
1844         next = mpd->b_blocknr + nrblocks;
1845         /*
1846          * Can we merge the block to our big extent?
1847          */
1848         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1849                 mpd->b_size += 1 << blkbits;
1850                 return;
1851         }
1852
1853 flush_it:
1854         /*
1855          * We couldn't merge the block to our extent, so we
1856          * need to flush current  extent and start new one
1857          */
1858         mpage_da_map_and_submit(mpd);
1859         return;
1860 }
1861
1862 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1863 {
1864         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1865 }
1866
1867 /*
1868  * This function is grabs code from the very beginning of
1869  * ext4_map_blocks, but assumes that the caller is from delayed write
1870  * time. This function looks up the requested blocks and sets the
1871  * buffer delay bit under the protection of i_data_sem.
1872  */
1873 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1874                               struct ext4_map_blocks *map,
1875                               struct buffer_head *bh)
1876 {
1877         struct extent_status es;
1878         int retval;
1879         sector_t invalid_block = ~((sector_t) 0xffff);
1880 #ifdef ES_AGGRESSIVE_TEST
1881         struct ext4_map_blocks orig_map;
1882
1883         memcpy(&orig_map, map, sizeof(*map));
1884 #endif
1885
1886         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1887                 invalid_block = ~0;
1888
1889         map->m_flags = 0;
1890         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1891                   "logical block %lu\n", inode->i_ino, map->m_len,
1892                   (unsigned long) map->m_lblk);
1893
1894         /* Lookup extent status tree firstly */
1895         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1896
1897                 if (ext4_es_is_hole(&es)) {
1898                         retval = 0;
1899                         down_read((&EXT4_I(inode)->i_data_sem));
1900                         goto add_delayed;
1901                 }
1902
1903                 /*
1904                  * Delayed extent could be allocated by fallocate.
1905                  * So we need to check it.
1906                  */
1907                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1908                         map_bh(bh, inode->i_sb, invalid_block);
1909                         set_buffer_new(bh);
1910                         set_buffer_delay(bh);
1911                         return 0;
1912                 }
1913
1914                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1915                 retval = es.es_len - (iblock - es.es_lblk);
1916                 if (retval > map->m_len)
1917                         retval = map->m_len;
1918                 map->m_len = retval;
1919                 if (ext4_es_is_written(&es))
1920                         map->m_flags |= EXT4_MAP_MAPPED;
1921                 else if (ext4_es_is_unwritten(&es))
1922                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1923                 else
1924                         BUG_ON(1);
1925
1926 #ifdef ES_AGGRESSIVE_TEST
1927                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1928 #endif
1929                 return retval;
1930         }
1931
1932         /*
1933          * Try to see if we can get the block without requesting a new
1934          * file system block.
1935          */
1936         down_read((&EXT4_I(inode)->i_data_sem));
1937         if (ext4_has_inline_data(inode)) {
1938                 /*
1939                  * We will soon create blocks for this page, and let
1940                  * us pretend as if the blocks aren't allocated yet.
1941                  * In case of clusters, we have to handle the work
1942                  * of mapping from cluster so that the reserved space
1943                  * is calculated properly.
1944                  */
1945                 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1946                     ext4_find_delalloc_cluster(inode, map->m_lblk))
1947                         map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1948                 retval = 0;
1949         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1950                 retval = ext4_ext_map_blocks(NULL, inode, map,
1951                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1952         else
1953                 retval = ext4_ind_map_blocks(NULL, inode, map,
1954                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1955
1956 add_delayed:
1957         if (retval == 0) {
1958                 int ret;
1959                 /*
1960                  * XXX: __block_prepare_write() unmaps passed block,
1961                  * is it OK?
1962                  */
1963                 /*
1964                  * If the block was allocated from previously allocated cluster,
1965                  * then we don't need to reserve it again. However we still need
1966                  * to reserve metadata for every block we're going to write.
1967                  */
1968                 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1969                         ret = ext4_da_reserve_space(inode, iblock);
1970                         if (ret) {
1971                                 /* not enough space to reserve */
1972                                 retval = ret;
1973                                 goto out_unlock;
1974                         }
1975                 } else {
1976                         ret = ext4_da_reserve_metadata(inode, iblock);
1977                         if (ret) {
1978                                 /* not enough space to reserve */
1979                                 retval = ret;
1980                                 goto out_unlock;
1981                         }
1982                 }
1983
1984                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1985                                             ~0, EXTENT_STATUS_DELAYED);
1986                 if (ret) {
1987                         retval = ret;
1988                         goto out_unlock;
1989                 }
1990
1991                 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1992                  * and it should not appear on the bh->b_state.
1993                  */
1994                 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1995
1996                 map_bh(bh, inode->i_sb, invalid_block);
1997                 set_buffer_new(bh);
1998                 set_buffer_delay(bh);
1999         } else if (retval > 0) {
2000                 int ret;
2001                 unsigned long long status;
2002
2003 #ifdef ES_AGGRESSIVE_TEST
2004                 if (retval != map->m_len) {
2005                         printk("ES len assertation failed for inode: %lu "
2006                                "retval %d != map->m_len %d "
2007                                "in %s (lookup)\n", inode->i_ino, retval,
2008                                map->m_len, __func__);
2009                 }
2010 #endif
2011
2012                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
2013                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
2014                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
2015                                             map->m_pblk, status);
2016                 if (ret != 0)
2017                         retval = ret;
2018         }
2019
2020 out_unlock:
2021         up_read((&EXT4_I(inode)->i_data_sem));
2022
2023         return retval;
2024 }
2025
2026 /*
2027  * This is a special get_blocks_t callback which is used by
2028  * ext4_da_write_begin().  It will either return mapped block or
2029  * reserve space for a single block.
2030  *
2031  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2032  * We also have b_blocknr = -1 and b_bdev initialized properly
2033  *
2034  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2035  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2036  * initialized properly.
2037  */
2038 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2039                            struct buffer_head *bh, int create)
2040 {
2041         struct ext4_map_blocks map;
2042         int ret = 0;
2043
2044         BUG_ON(create == 0);
2045         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2046
2047         map.m_lblk = iblock;
2048         map.m_len = 1;
2049
2050         /*
2051          * first, we need to know whether the block is allocated already
2052          * preallocated blocks are unmapped but should treated
2053          * the same as allocated blocks.
2054          */
2055         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
2056         if (ret <= 0)
2057                 return ret;
2058
2059         map_bh(bh, inode->i_sb, map.m_pblk);
2060         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2061
2062         if (buffer_unwritten(bh)) {
2063                 /* A delayed write to unwritten bh should be marked
2064                  * new and mapped.  Mapped ensures that we don't do
2065                  * get_block multiple times when we write to the same
2066                  * offset and new ensures that we do proper zero out
2067                  * for partial write.
2068                  */
2069                 set_buffer_new(bh);
2070                 set_buffer_mapped(bh);
2071         }
2072         return 0;
2073 }
2074
2075 static int bget_one(handle_t *handle, struct buffer_head *bh)
2076 {
2077         get_bh(bh);
2078         return 0;
2079 }
2080
2081 static int bput_one(handle_t *handle, struct buffer_head *bh)
2082 {
2083         put_bh(bh);
2084         return 0;
2085 }
2086
2087 static int __ext4_journalled_writepage(struct page *page,
2088                                        unsigned int len)
2089 {
2090         struct address_space *mapping = page->mapping;
2091         struct inode *inode = mapping->host;
2092         struct buffer_head *page_bufs = NULL;
2093         handle_t *handle = NULL;
2094         int ret = 0, err = 0;
2095         int inline_data = ext4_has_inline_data(inode);
2096         struct buffer_head *inode_bh = NULL;
2097
2098         ClearPageChecked(page);
2099
2100         if (inline_data) {
2101                 BUG_ON(page->index != 0);
2102                 BUG_ON(len > ext4_get_max_inline_size(inode));
2103                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2104                 if (inode_bh == NULL)
2105                         goto out;
2106         } else {
2107                 page_bufs = page_buffers(page);
2108                 if (!page_bufs) {
2109                         BUG();
2110                         goto out;
2111                 }
2112                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2113                                        NULL, bget_one);
2114         }
2115         /* As soon as we unlock the page, it can go away, but we have
2116          * references to buffers so we are safe */
2117         unlock_page(page);
2118
2119         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2120                                     ext4_writepage_trans_blocks(inode));
2121         if (IS_ERR(handle)) {
2122                 ret = PTR_ERR(handle);
2123                 goto out;
2124         }
2125
2126         BUG_ON(!ext4_handle_valid(handle));
2127
2128         if (inline_data) {
2129                 ret = ext4_journal_get_write_access(handle, inode_bh);
2130
2131                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2132
2133         } else {
2134                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2135                                              do_journal_get_write_access);
2136
2137                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2138                                              write_end_fn);
2139         }
2140         if (ret == 0)
2141                 ret = err;
2142         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2143         err = ext4_journal_stop(handle);
2144         if (!ret)
2145                 ret = err;
2146
2147         if (!ext4_has_inline_data(inode))
2148                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2149                                        NULL, bput_one);
2150         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2151 out:
2152         brelse(inode_bh);
2153         return ret;
2154 }
2155
2156 /*
2157  * Note that we don't need to start a transaction unless we're journaling data
2158  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2159  * need to file the inode to the transaction's list in ordered mode because if
2160  * we are writing back data added by write(), the inode is already there and if
2161  * we are writing back data modified via mmap(), no one guarantees in which
2162  * transaction the data will hit the disk. In case we are journaling data, we
2163  * cannot start transaction directly because transaction start ranks above page
2164  * lock so we have to do some magic.
2165  *
2166  * This function can get called via...
2167  *   - ext4_da_writepages after taking page lock (have journal handle)
2168  *   - journal_submit_inode_data_buffers (no journal handle)
2169  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2170  *   - grab_page_cache when doing write_begin (have journal handle)
2171  *
2172  * We don't do any block allocation in this function. If we have page with
2173  * multiple blocks we need to write those buffer_heads that are mapped. This
2174  * is important for mmaped based write. So if we do with blocksize 1K
2175  * truncate(f, 1024);
2176  * a = mmap(f, 0, 4096);
2177  * a[0] = 'a';
2178  * truncate(f, 4096);
2179  * we have in the page first buffer_head mapped via page_mkwrite call back
2180  * but other buffer_heads would be unmapped but dirty (dirty done via the
2181  * do_wp_page). So writepage should write the first block. If we modify
2182  * the mmap area beyond 1024 we will again get a page_fault and the
2183  * page_mkwrite callback will do the block allocation and mark the
2184  * buffer_heads mapped.
2185  *
2186  * We redirty the page if we have any buffer_heads that is either delay or
2187  * unwritten in the page.
2188  *
2189  * We can get recursively called as show below.
2190  *
2191  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2192  *              ext4_writepage()
2193  *
2194  * But since we don't do any block allocation we should not deadlock.
2195  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2196  */
2197 static int ext4_writepage(struct page *page,
2198                           struct writeback_control *wbc)
2199 {
2200         int ret = 0;
2201         loff_t size;
2202         unsigned int len;
2203         struct buffer_head *page_bufs = NULL;
2204         struct inode *inode = page->mapping->host;
2205         struct ext4_io_submit io_submit;
2206
2207         trace_ext4_writepage(page);
2208         size = i_size_read(inode);
2209         if (page->index == size >> PAGE_CACHE_SHIFT)
2210                 len = size & ~PAGE_CACHE_MASK;
2211         else
2212                 len = PAGE_CACHE_SIZE;
2213
2214         page_bufs = page_buffers(page);
2215         /*
2216          * We cannot do block allocation or other extent handling in this
2217          * function. If there are buffers needing that, we have to redirty
2218          * the page. But we may reach here when we do a journal commit via
2219          * journal_submit_inode_data_buffers() and in that case we must write
2220          * allocated buffers to achieve data=ordered mode guarantees.
2221          */
2222         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2223                                    ext4_bh_delay_or_unwritten)) {
2224                 redirty_page_for_writepage(wbc, page);
2225                 if (current->flags & PF_MEMALLOC) {
2226                         /*
2227                          * For memory cleaning there's no point in writing only
2228                          * some buffers. So just bail out. Warn if we came here
2229                          * from direct reclaim.
2230                          */
2231                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2232                                                         == PF_MEMALLOC);
2233                         unlock_page(page);
2234                         return 0;
2235                 }
2236         }
2237
2238         if (PageChecked(page) && ext4_should_journal_data(inode))
2239                 /*
2240                  * It's mmapped pagecache.  Add buffers and journal it.  There
2241                  * doesn't seem much point in redirtying the page here.
2242                  */
2243                 return __ext4_journalled_writepage(page, len);
2244
2245         memset(&io_submit, 0, sizeof(io_submit));
2246         ret = ext4_bio_write_page(&io_submit, page, len, wbc);
2247         ext4_io_submit(&io_submit);
2248         return ret;
2249 }
2250
2251 /*
2252  * This is called via ext4_da_writepages() to
2253  * calculate the total number of credits to reserve to fit
2254  * a single extent allocation into a single transaction,
2255  * ext4_da_writpeages() will loop calling this before
2256  * the block allocation.
2257  */
2258
2259 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2260 {
2261         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2262
2263         /*
2264          * With non-extent format the journal credit needed to
2265          * insert nrblocks contiguous block is dependent on
2266          * number of contiguous block. So we will limit
2267          * number of contiguous block to a sane value
2268          */
2269         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2270             (max_blocks > EXT4_MAX_TRANS_DATA))
2271                 max_blocks = EXT4_MAX_TRANS_DATA;
2272
2273         return ext4_chunk_trans_blocks(inode, max_blocks);
2274 }
2275
2276 /*
2277  * write_cache_pages_da - walk the list of dirty pages of the given
2278  * address space and accumulate pages that need writing, and call
2279  * mpage_da_map_and_submit to map a single contiguous memory region
2280  * and then write them.
2281  */
2282 static int write_cache_pages_da(handle_t *handle,
2283                                 struct address_space *mapping,
2284                                 struct writeback_control *wbc,
2285                                 struct mpage_da_data *mpd,
2286                                 pgoff_t *done_index)
2287 {
2288         struct buffer_head      *bh, *head;
2289         struct inode            *inode = mapping->host;
2290         struct pagevec          pvec;
2291         unsigned int            nr_pages;
2292         sector_t                logical;
2293         pgoff_t                 index, end;
2294         long                    nr_to_write = wbc->nr_to_write;
2295         int                     i, tag, ret = 0;
2296
2297         memset(mpd, 0, sizeof(struct mpage_da_data));
2298         mpd->wbc = wbc;
2299         mpd->inode = inode;
2300         pagevec_init(&pvec, 0);
2301         index = wbc->range_start >> PAGE_CACHE_SHIFT;
2302         end = wbc->range_end >> PAGE_CACHE_SHIFT;
2303
2304         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2305                 tag = PAGECACHE_TAG_TOWRITE;
2306         else
2307                 tag = PAGECACHE_TAG_DIRTY;
2308
2309         *done_index = index;
2310         while (index <= end) {
2311                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2312                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2313                 if (nr_pages == 0)
2314                         return 0;
2315
2316                 for (i = 0; i < nr_pages; i++) {
2317                         struct page *page = pvec.pages[i];
2318
2319                         /*
2320                          * At this point, the page may be truncated or
2321                          * invalidated (changing page->mapping to NULL), or
2322                          * even swizzled back from swapper_space to tmpfs file
2323                          * mapping. However, page->index will not change
2324                          * because we have a reference on the page.
2325                          */
2326                         if (page->index > end)
2327                                 goto out;
2328
2329                         *done_index = page->index + 1;
2330
2331                         /*
2332                          * If we can't merge this page, and we have
2333                          * accumulated an contiguous region, write it
2334                          */
2335                         if ((mpd->next_page != page->index) &&
2336                             (mpd->next_page != mpd->first_page)) {
2337                                 mpage_da_map_and_submit(mpd);
2338                                 goto ret_extent_tail;
2339                         }
2340
2341                         lock_page(page);
2342
2343                         /*
2344                          * If the page is no longer dirty, or its
2345                          * mapping no longer corresponds to inode we
2346                          * are writing (which means it has been
2347                          * truncated or invalidated), or the page is
2348                          * already under writeback and we are not
2349                          * doing a data integrity writeback, skip the page
2350                          */
2351                         if (!PageDirty(page) ||
2352                             (PageWriteback(page) &&
2353                              (wbc->sync_mode == WB_SYNC_NONE)) ||
2354                             unlikely(page->mapping != mapping)) {
2355                                 unlock_page(page);
2356                                 continue;
2357                         }
2358
2359                         wait_on_page_writeback(page);
2360                         BUG_ON(PageWriteback(page));
2361
2362                         /*
2363                          * If we have inline data and arrive here, it means that
2364                          * we will soon create the block for the 1st page, so
2365                          * we'd better clear the inline data here.
2366                          */
2367                         if (ext4_has_inline_data(inode)) {
2368                                 BUG_ON(ext4_test_inode_state(inode,
2369                                                 EXT4_STATE_MAY_INLINE_DATA));
2370                                 ext4_destroy_inline_data(handle, inode);
2371                         }
2372
2373                         if (mpd->next_page != page->index)
2374                                 mpd->first_page = page->index;
2375                         mpd->next_page = page->index + 1;
2376                         logical = (sector_t) page->index <<
2377                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2378
2379                         /* Add all dirty buffers to mpd */
2380                         head = page_buffers(page);
2381                         bh = head;
2382                         do {
2383                                 BUG_ON(buffer_locked(bh));
2384                                 /*
2385                                  * We need to try to allocate unmapped blocks
2386                                  * in the same page.  Otherwise we won't make
2387                                  * progress with the page in ext4_writepage
2388                                  */
2389                                 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2390                                         mpage_add_bh_to_extent(mpd, logical,
2391                                                                bh->b_state);
2392                                         if (mpd->io_done)
2393                                                 goto ret_extent_tail;
2394                                 } else if (buffer_dirty(bh) &&
2395                                            buffer_mapped(bh)) {
2396                                         /*
2397                                          * mapped dirty buffer. We need to
2398                                          * update the b_state because we look
2399                                          * at b_state in mpage_da_map_blocks.
2400                                          * We don't update b_size because if we
2401                                          * find an unmapped buffer_head later
2402                                          * we need to use the b_state flag of
2403                                          * that buffer_head.
2404                                          */
2405                                         if (mpd->b_size == 0)
2406                                                 mpd->b_state =
2407                                                         bh->b_state & BH_FLAGS;
2408                                 }
2409                                 logical++;
2410                         } while ((bh = bh->b_this_page) != head);
2411
2412                         if (nr_to_write > 0) {
2413                                 nr_to_write--;
2414                                 if (nr_to_write == 0 &&
2415                                     wbc->sync_mode == WB_SYNC_NONE)
2416                                         /*
2417                                          * We stop writing back only if we are
2418                                          * not doing integrity sync. In case of
2419                                          * integrity sync we have to keep going
2420                                          * because someone may be concurrently
2421                                          * dirtying pages, and we might have
2422                                          * synced a lot of newly appeared dirty
2423                                          * pages, but have not synced all of the
2424                                          * old dirty pages.
2425                                          */
2426                                         goto out;
2427                         }
2428                 }
2429                 pagevec_release(&pvec);
2430                 cond_resched();
2431         }
2432         return 0;
2433 ret_extent_tail:
2434         ret = MPAGE_DA_EXTENT_TAIL;
2435 out:
2436         pagevec_release(&pvec);
2437         cond_resched();
2438         return ret;
2439 }
2440
2441
2442 static int ext4_da_writepages(struct address_space *mapping,
2443                               struct writeback_control *wbc)
2444 {
2445         pgoff_t index;
2446         int range_whole = 0;
2447         handle_t *handle = NULL;
2448         struct mpage_da_data mpd;
2449         struct inode *inode = mapping->host;
2450         int pages_written = 0;
2451         unsigned int max_pages;
2452         int range_cyclic, cycled = 1, io_done = 0;
2453         int needed_blocks, ret = 0;
2454         long desired_nr_to_write, nr_to_writebump = 0;
2455         loff_t range_start = wbc->range_start;
2456         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2457         pgoff_t done_index = 0;
2458         pgoff_t end;
2459         struct blk_plug plug;
2460
2461         trace_ext4_da_writepages(inode, wbc);
2462
2463         /*
2464          * No pages to write? This is mainly a kludge to avoid starting
2465          * a transaction for special inodes like journal inode on last iput()
2466          * because that could violate lock ordering on umount
2467          */
2468         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2469                 return 0;
2470
2471         /*
2472          * If the filesystem has aborted, it is read-only, so return
2473          * right away instead of dumping stack traces later on that
2474          * will obscure the real source of the problem.  We test
2475          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2476          * the latter could be true if the filesystem is mounted
2477          * read-only, and in that case, ext4_da_writepages should
2478          * *never* be called, so if that ever happens, we would want
2479          * the stack trace.
2480          */
2481         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2482                 return -EROFS;
2483
2484         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2485                 range_whole = 1;
2486
2487         range_cyclic = wbc->range_cyclic;
2488         if (wbc->range_cyclic) {
2489                 index = mapping->writeback_index;
2490                 if (index)
2491                         cycled = 0;
2492                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2493                 wbc->range_end  = LLONG_MAX;
2494                 wbc->range_cyclic = 0;
2495                 end = -1;
2496         } else {
2497                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2498                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2499         }
2500
2501         /*
2502          * This works around two forms of stupidity.  The first is in
2503          * the writeback code, which caps the maximum number of pages
2504          * written to be 1024 pages.  This is wrong on multiple
2505          * levels; different architectues have a different page size,
2506          * which changes the maximum amount of data which gets
2507          * written.  Secondly, 4 megabytes is way too small.  XFS
2508          * forces this value to be 16 megabytes by multiplying
2509          * nr_to_write parameter by four, and then relies on its
2510          * allocator to allocate larger extents to make them
2511          * contiguous.  Unfortunately this brings us to the second
2512          * stupidity, which is that ext4's mballoc code only allocates
2513          * at most 2048 blocks.  So we force contiguous writes up to
2514          * the number of dirty blocks in the inode, or
2515          * sbi->max_writeback_mb_bump whichever is smaller.
2516          */
2517         max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2518         if (!range_cyclic && range_whole) {
2519                 if (wbc->nr_to_write == LONG_MAX)
2520                         desired_nr_to_write = wbc->nr_to_write;
2521                 else
2522                         desired_nr_to_write = wbc->nr_to_write * 8;
2523         } else
2524                 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2525                                                            max_pages);
2526         if (desired_nr_to_write > max_pages)
2527                 desired_nr_to_write = max_pages;
2528
2529         if (wbc->nr_to_write < desired_nr_to_write) {
2530                 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2531                 wbc->nr_to_write = desired_nr_to_write;
2532         }
2533
2534 retry:
2535         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2536                 tag_pages_for_writeback(mapping, index, end);
2537
2538         blk_start_plug(&plug);
2539         while (!ret && wbc->nr_to_write > 0) {
2540
2541                 /*
2542                  * we  insert one extent at a time. So we need
2543                  * credit needed for single extent allocation.
2544                  * journalled mode is currently not supported
2545                  * by delalloc
2546                  */
2547                 BUG_ON(ext4_should_journal_data(inode));
2548                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2549
2550                 /* start a new transaction*/
2551                 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2552                                             needed_blocks);
2553                 if (IS_ERR(handle)) {
2554                         ret = PTR_ERR(handle);
2555                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2556                                "%ld pages, ino %lu; err %d", __func__,
2557                                 wbc->nr_to_write, inode->i_ino, ret);
2558                         blk_finish_plug(&plug);
2559                         goto out_writepages;
2560                 }
2561
2562                 /*
2563                  * Now call write_cache_pages_da() to find the next
2564                  * contiguous region of logical blocks that need
2565                  * blocks to be allocated by ext4 and submit them.
2566                  */
2567                 ret = write_cache_pages_da(handle, mapping,
2568                                            wbc, &mpd, &done_index);
2569                 /*
2570                  * If we have a contiguous extent of pages and we
2571                  * haven't done the I/O yet, map the blocks and submit
2572                  * them for I/O.
2573                  */
2574                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2575                         mpage_da_map_and_submit(&mpd);
2576                         ret = MPAGE_DA_EXTENT_TAIL;
2577                 }
2578                 trace_ext4_da_write_pages(inode, &mpd);
2579                 wbc->nr_to_write -= mpd.pages_written;
2580
2581                 ext4_journal_stop(handle);
2582
2583                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2584                         /* commit the transaction which would
2585                          * free blocks released in the transaction
2586                          * and try again
2587                          */
2588                         jbd2_journal_force_commit_nested(sbi->s_journal);
2589                         ret = 0;
2590                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2591                         /*
2592                          * Got one extent now try with rest of the pages.
2593                          * If mpd.retval is set -EIO, journal is aborted.
2594                          * So we don't need to write any more.
2595                          */
2596                         pages_written += mpd.pages_written;
2597                         ret = mpd.retval;
2598                         io_done = 1;
2599                 } else if (wbc->nr_to_write)
2600                         /*
2601                          * There is no more writeout needed
2602                          * or we requested for a noblocking writeout
2603                          * and we found the device congested
2604                          */
2605                         break;
2606         }
2607         blk_finish_plug(&plug);
2608         if (!io_done && !cycled) {
2609                 cycled = 1;
2610                 index = 0;
2611                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2612                 wbc->range_end  = mapping->writeback_index - 1;
2613                 goto retry;
2614         }
2615
2616         /* Update index */
2617         wbc->range_cyclic = range_cyclic;
2618         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2619                 /*
2620                  * set the writeback_index so that range_cyclic
2621                  * mode will write it back later
2622                  */
2623                 mapping->writeback_index = done_index;
2624
2625 out_writepages:
2626         wbc->nr_to_write -= nr_to_writebump;
2627         wbc->range_start = range_start;
2628         trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2629         return ret;
2630 }
2631
2632 static int ext4_nonda_switch(struct super_block *sb)
2633 {
2634         s64 free_clusters, dirty_clusters;
2635         struct ext4_sb_info *sbi = EXT4_SB(sb);
2636
2637         /*
2638          * switch to non delalloc mode if we are running low
2639          * on free block. The free block accounting via percpu
2640          * counters can get slightly wrong with percpu_counter_batch getting
2641          * accumulated on each CPU without updating global counters
2642          * Delalloc need an accurate free block accounting. So switch
2643          * to non delalloc when we are near to error range.
2644          */
2645         free_clusters =
2646                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2647         dirty_clusters =
2648                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2649         /*
2650          * Start pushing delalloc when 1/2 of free blocks are dirty.
2651          */
2652         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2653                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2654
2655         if (2 * free_clusters < 3 * dirty_clusters ||
2656             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2657                 /*
2658                  * free block count is less than 150% of dirty blocks
2659                  * or free blocks is less than watermark
2660                  */
2661                 return 1;
2662         }
2663         return 0;
2664 }
2665
2666 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2667                                loff_t pos, unsigned len, unsigned flags,
2668                                struct page **pagep, void **fsdata)
2669 {
2670         int ret, retries = 0;
2671         struct page *page;
2672         pgoff_t index;
2673         struct inode *inode = mapping->host;
2674         handle_t *handle;
2675
2676         index = pos >> PAGE_CACHE_SHIFT;
2677
2678         if (ext4_nonda_switch(inode->i_sb)) {
2679                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2680                 return ext4_write_begin(file, mapping, pos,
2681                                         len, flags, pagep, fsdata);
2682         }
2683         *fsdata = (void *)0;
2684         trace_ext4_da_write_begin(inode, pos, len, flags);
2685
2686         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2687                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2688                                                       pos, len, flags,
2689                                                       pagep, fsdata);
2690                 if (ret < 0)
2691                         return ret;
2692                 if (ret == 1)
2693                         return 0;
2694         }
2695
2696         /*
2697          * grab_cache_page_write_begin() can take a long time if the
2698          * system is thrashing due to memory pressure, or if the page
2699          * is being written back.  So grab it first before we start
2700          * the transaction handle.  This also allows us to allocate
2701          * the page (if needed) without using GFP_NOFS.
2702          */
2703 retry_grab:
2704         page = grab_cache_page_write_begin(mapping, index, flags);
2705         if (!page)
2706                 return -ENOMEM;
2707         unlock_page(page);
2708
2709         /*
2710          * With delayed allocation, we don't log the i_disksize update
2711          * if there is delayed block allocation. But we still need
2712          * to journalling the i_disksize update if writes to the end
2713          * of file which has an already mapped buffer.
2714          */
2715 retry_journal:
2716         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2717         if (IS_ERR(handle)) {
2718                 page_cache_release(page);
2719                 return PTR_ERR(handle);
2720         }
2721
2722         lock_page(page);
2723         if (page->mapping != mapping) {
2724                 /* The page got truncated from under us */
2725                 unlock_page(page);
2726                 page_cache_release(page);
2727                 ext4_journal_stop(handle);
2728                 goto retry_grab;
2729         }
2730         /* In case writeback began while the page was unlocked */
2731         wait_on_page_writeback(page);
2732
2733         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2734         if (ret < 0) {
2735                 unlock_page(page);
2736                 ext4_journal_stop(handle);
2737                 /*
2738                  * block_write_begin may have instantiated a few blocks
2739                  * outside i_size.  Trim these off again. Don't need
2740                  * i_size_read because we hold i_mutex.
2741                  */
2742                 if (pos + len > inode->i_size)
2743                         ext4_truncate_failed_write(inode);
2744
2745                 if (ret == -ENOSPC &&
2746                     ext4_should_retry_alloc(inode->i_sb, &retries))
2747                         goto retry_journal;
2748
2749                 page_cache_release(page);
2750                 return ret;
2751         }
2752
2753         *pagep = page;
2754         return ret;
2755 }
2756
2757 /*
2758  * Check if we should update i_disksize
2759  * when write to the end of file but not require block allocation
2760  */
2761 static int ext4_da_should_update_i_disksize(struct page *page,
2762                                             unsigned long offset)
2763 {
2764         struct buffer_head *bh;
2765         struct inode *inode = page->mapping->host;
2766         unsigned int idx;
2767         int i;
2768
2769         bh = page_buffers(page);
2770         idx = offset >> inode->i_blkbits;
2771
2772         for (i = 0; i < idx; i++)
2773                 bh = bh->b_this_page;
2774
2775         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2776                 return 0;
2777         return 1;
2778 }
2779
2780 static int ext4_da_write_end(struct file *file,
2781                              struct address_space *mapping,
2782                              loff_t pos, unsigned len, unsigned copied,
2783                              struct page *page, void *fsdata)
2784 {
2785         struct inode *inode = mapping->host;
2786         int ret = 0, ret2;
2787         handle_t *handle = ext4_journal_current_handle();
2788         loff_t new_i_size;
2789         unsigned long start, end;
2790         int write_mode = (int)(unsigned long)fsdata;
2791
2792         if (write_mode == FALL_BACK_TO_NONDELALLOC)
2793                 return ext4_write_end(file, mapping, pos,
2794                                       len, copied, page, fsdata);
2795
2796         trace_ext4_da_write_end(inode, pos, len, copied);
2797         start = pos & (PAGE_CACHE_SIZE - 1);
2798         end = start + copied - 1;
2799
2800         /*
2801          * generic_write_end() will run mark_inode_dirty() if i_size
2802          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2803          * into that.
2804          */
2805         new_i_size = pos + copied;
2806         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2807                 if (ext4_has_inline_data(inode) ||
2808                     ext4_da_should_update_i_disksize(page, end)) {
2809                         down_write(&EXT4_I(inode)->i_data_sem);
2810                         if (new_i_size > EXT4_I(inode)->i_disksize)
2811                                 EXT4_I(inode)->i_disksize = new_i_size;
2812                         up_write(&EXT4_I(inode)->i_data_sem);
2813                         /* We need to mark inode dirty even if
2814                          * new_i_size is less that inode->i_size
2815                          * bu greater than i_disksize.(hint delalloc)
2816                          */
2817                         ext4_mark_inode_dirty(handle, inode);
2818                 }
2819         }
2820
2821         if (write_mode != CONVERT_INLINE_DATA &&
2822             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2823             ext4_has_inline_data(inode))
2824                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2825                                                      page);
2826         else
2827                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2828                                                         page, fsdata);
2829
2830         copied = ret2;
2831         if (ret2 < 0)
2832                 ret = ret2;
2833         ret2 = ext4_journal_stop(handle);
2834         if (!ret)
2835                 ret = ret2;
2836
2837         return ret ? ret : copied;
2838 }
2839
2840 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2841                                    unsigned int length)
2842 {
2843         /*
2844          * Drop reserved blocks
2845          */
2846         BUG_ON(!PageLocked(page));
2847         if (!page_has_buffers(page))
2848                 goto out;
2849
2850         ext4_da_page_release_reservation(page, offset, length);
2851
2852 out:
2853         ext4_invalidatepage(page, offset, length);
2854
2855         return;
2856 }
2857
2858 /*
2859  * Force all delayed allocation blocks to be allocated for a given inode.
2860  */
2861 int ext4_alloc_da_blocks(struct inode *inode)
2862 {
2863         trace_ext4_alloc_da_blocks(inode);
2864
2865         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2866             !EXT4_I(inode)->i_reserved_meta_blocks)
2867                 return 0;
2868
2869         /*
2870          * We do something simple for now.  The filemap_flush() will
2871          * also start triggering a write of the data blocks, which is
2872          * not strictly speaking necessary (and for users of
2873          * laptop_mode, not even desirable).  However, to do otherwise
2874          * would require replicating code paths in:
2875          *
2876          * ext4_da_writepages() ->
2877          *    write_cache_pages() ---> (via passed in callback function)
2878          *        __mpage_da_writepage() -->
2879          *           mpage_add_bh_to_extent()
2880          *           mpage_da_map_blocks()
2881          *
2882          * The problem is that write_cache_pages(), located in
2883          * mm/page-writeback.c, marks pages clean in preparation for
2884          * doing I/O, which is not desirable if we're not planning on
2885          * doing I/O at all.
2886          *
2887          * We could call write_cache_pages(), and then redirty all of
2888          * the pages by calling redirty_page_for_writepage() but that
2889          * would be ugly in the extreme.  So instead we would need to
2890          * replicate parts of the code in the above functions,
2891          * simplifying them because we wouldn't actually intend to
2892          * write out the pages, but rather only collect contiguous
2893          * logical block extents, call the multi-block allocator, and
2894          * then update the buffer heads with the block allocations.
2895          *
2896          * For now, though, we'll cheat by calling filemap_flush(),
2897          * which will map the blocks, and start the I/O, but not
2898          * actually wait for the I/O to complete.
2899          */
2900         return filemap_flush(inode->i_mapping);
2901 }
2902
2903 /*
2904  * bmap() is special.  It gets used by applications such as lilo and by
2905  * the swapper to find the on-disk block of a specific piece of data.
2906  *
2907  * Naturally, this is dangerous if the block concerned is still in the
2908  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2909  * filesystem and enables swap, then they may get a nasty shock when the
2910  * data getting swapped to that swapfile suddenly gets overwritten by
2911  * the original zero's written out previously to the journal and
2912  * awaiting writeback in the kernel's buffer cache.
2913  *
2914  * So, if we see any bmap calls here on a modified, data-journaled file,
2915  * take extra steps to flush any blocks which might be in the cache.
2916  */
2917 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2918 {
2919         struct inode *inode = mapping->host;
2920         journal_t *journal;
2921         int err;
2922
2923         /*
2924          * We can get here for an inline file via the FIBMAP ioctl
2925          */
2926         if (ext4_has_inline_data(inode))
2927                 return 0;
2928
2929         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2930                         test_opt(inode->i_sb, DELALLOC)) {
2931                 /*
2932                  * With delalloc we want to sync the file
2933                  * so that we can make sure we allocate
2934                  * blocks for file
2935                  */
2936                 filemap_write_and_wait(mapping);
2937         }
2938
2939         if (EXT4_JOURNAL(inode) &&
2940             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2941                 /*
2942                  * This is a REALLY heavyweight approach, but the use of
2943                  * bmap on dirty files is expected to be extremely rare:
2944                  * only if we run lilo or swapon on a freshly made file
2945                  * do we expect this to happen.
2946                  *
2947                  * (bmap requires CAP_SYS_RAWIO so this does not
2948                  * represent an unprivileged user DOS attack --- we'd be
2949                  * in trouble if mortal users could trigger this path at
2950                  * will.)
2951                  *
2952                  * NB. EXT4_STATE_JDATA is not set on files other than
2953                  * regular files.  If somebody wants to bmap a directory
2954                  * or symlink and gets confused because the buffer
2955                  * hasn't yet been flushed to disk, they deserve
2956                  * everything they get.
2957                  */
2958
2959                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2960                 journal = EXT4_JOURNAL(inode);
2961                 jbd2_journal_lock_updates(journal);
2962                 err = jbd2_journal_flush(journal);
2963                 jbd2_journal_unlock_updates(journal);
2964
2965                 if (err)
2966                         return 0;
2967         }
2968
2969         return generic_block_bmap(mapping, block, ext4_get_block);
2970 }
2971
2972 static int ext4_readpage(struct file *file, struct page *page)
2973 {
2974         int ret = -EAGAIN;
2975         struct inode *inode = page->mapping->host;
2976
2977         trace_ext4_readpage(page);
2978
2979         if (ext4_has_inline_data(inode))
2980                 ret = ext4_readpage_inline(inode, page);
2981
2982         if (ret == -EAGAIN)
2983                 return mpage_readpage(page, ext4_get_block);
2984
2985         return ret;
2986 }
2987
2988 static int
2989 ext4_readpages(struct file *file, struct address_space *mapping,
2990                 struct list_head *pages, unsigned nr_pages)
2991 {
2992         struct inode *inode = mapping->host;
2993
2994         /* If the file has inline data, no need to do readpages. */
2995         if (ext4_has_inline_data(inode))
2996                 return 0;
2997
2998         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2999 }
3000
3001 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3002                                 unsigned int length)
3003 {
3004         trace_ext4_invalidatepage(page, offset, length);
3005
3006         /* No journalling happens on data buffers when this function is used */
3007         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3008
3009         block_invalidatepage(page, offset, length);
3010 }
3011
3012 static int __ext4_journalled_invalidatepage(struct page *page,
3013                                             unsigned int offset,
3014                                             unsigned int length)
3015 {
3016         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3017
3018         trace_ext4_journalled_invalidatepage(page, offset, length);
3019
3020         /*
3021          * If it's a full truncate we just forget about the pending dirtying
3022          */
3023         if (offset == 0 && length == PAGE_CACHE_SIZE)
3024                 ClearPageChecked(page);
3025
3026         return jbd2_journal_invalidatepage(journal, page, offset, length);
3027 }
3028
3029 /* Wrapper for aops... */
3030 static void ext4_journalled_invalidatepage(struct page *page,
3031                                            unsigned int offset,
3032                                            unsigned int length)
3033 {
3034         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3035 }
3036
3037 static int ext4_releasepage(struct page *page, gfp_t wait)
3038 {
3039         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3040
3041         trace_ext4_releasepage(page);
3042
3043         /* Page has dirty journalled data -> cannot release */
3044         if (PageChecked(page))
3045                 return 0;
3046         if (journal)
3047                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3048         else
3049                 return try_to_free_buffers(page);
3050 }
3051
3052 /*
3053  * ext4_get_block used when preparing for a DIO write or buffer write.
3054  * We allocate an uinitialized extent if blocks haven't been allocated.
3055  * The extent will be converted to initialized after the IO is complete.
3056  */
3057 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3058                    struct buffer_head *bh_result, int create)
3059 {
3060         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3061                    inode->i_ino, create);
3062         return _ext4_get_block(inode, iblock, bh_result,
3063                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
3064 }
3065
3066 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3067                    struct buffer_head *bh_result, int create)
3068 {
3069         ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3070                    inode->i_ino, create);
3071         return _ext4_get_block(inode, iblock, bh_result,
3072                                EXT4_GET_BLOCKS_NO_LOCK);
3073 }
3074
3075 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3076                             ssize_t size, void *private, int ret,
3077                             bool is_async)
3078 {
3079         struct inode *inode = file_inode(iocb->ki_filp);
3080         ext4_io_end_t *io_end = iocb->private;
3081
3082         /* if not async direct IO or dio with 0 bytes write, just return */
3083         if (!io_end || !size)
3084                 goto out;
3085
3086         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3087                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3088                   iocb->private, io_end->inode->i_ino, iocb, offset,
3089                   size);
3090
3091         iocb->private = NULL;
3092
3093         /* if not aio dio with unwritten extents, just free io and return */
3094         if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
3095                 ext4_free_io_end(io_end);
3096 out:
3097                 inode_dio_done(inode);
3098                 if (is_async)
3099                         aio_complete(iocb, ret, 0);
3100                 return;
3101         }
3102
3103         io_end->offset = offset;
3104         io_end->size = size;
3105         if (is_async) {
3106                 io_end->iocb = iocb;
3107                 io_end->result = ret;
3108         }
3109
3110         ext4_add_complete_io(io_end);
3111 }
3112
3113 /*
3114  * For ext4 extent files, ext4 will do direct-io write to holes,
3115  * preallocated extents, and those write extend the file, no need to
3116  * fall back to buffered IO.
3117  *
3118  * For holes, we fallocate those blocks, mark them as uninitialized
3119  * If those blocks were preallocated, we mark sure they are split, but
3120  * still keep the range to write as uninitialized.
3121  *
3122  * The unwritten extents will be converted to written when DIO is completed.
3123  * For async direct IO, since the IO may still pending when return, we
3124  * set up an end_io call back function, which will do the conversion
3125  * when async direct IO completed.
3126  *
3127  * If the O_DIRECT write will extend the file then add this inode to the
3128  * orphan list.  So recovery will truncate it back to the original size
3129  * if the machine crashes during the write.
3130  *
3131  */
3132 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3133                               const struct iovec *iov, loff_t offset,
3134                               unsigned long nr_segs)
3135 {
3136         struct file *file = iocb->ki_filp;
3137         struct inode *inode = file->f_mapping->host;
3138         ssize_t ret;
3139         size_t count = iov_length(iov, nr_segs);
3140         int overwrite = 0;
3141         get_block_t *get_block_func = NULL;
3142         int dio_flags = 0;
3143         loff_t final_size = offset + count;
3144
3145         /* Use the old path for reads and writes beyond i_size. */
3146         if (rw != WRITE || final_size > inode->i_size)
3147                 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3148
3149         BUG_ON(iocb->private == NULL);
3150
3151         /* If we do a overwrite dio, i_mutex locking can be released */
3152         overwrite = *((int *)iocb->private);
3153
3154         if (overwrite) {
3155                 atomic_inc(&inode->i_dio_count);
3156                 down_read(&EXT4_I(inode)->i_data_sem);
3157                 mutex_unlock(&inode->i_mutex);
3158         }
3159
3160         /*
3161          * We could direct write to holes and fallocate.
3162          *
3163          * Allocated blocks to fill the hole are marked as
3164          * uninitialized to prevent parallel buffered read to expose
3165          * the stale data before DIO complete the data IO.
3166          *
3167          * As to previously fallocated extents, ext4 get_block will
3168          * just simply mark the buffer mapped but still keep the
3169          * extents uninitialized.
3170          *
3171          * For non AIO case, we will convert those unwritten extents
3172          * to written after return back from blockdev_direct_IO.
3173          *
3174          * For async DIO, the conversion needs to be deferred when the
3175          * IO is completed. The ext4 end_io callback function will be
3176          * called to take care of the conversion work.  Here for async
3177          * case, we allocate an io_end structure to hook to the iocb.
3178          */
3179         iocb->private = NULL;
3180         ext4_inode_aio_set(inode, NULL);
3181         if (!is_sync_kiocb(iocb)) {
3182                 ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
3183                 if (!io_end) {
3184                         ret = -ENOMEM;
3185                         goto retake_lock;
3186                 }
3187                 io_end->flag |= EXT4_IO_END_DIRECT;
3188                 iocb->private = io_end;
3189                 /*
3190                  * we save the io structure for current async direct
3191                  * IO, so that later ext4_map_blocks() could flag the
3192                  * io structure whether there is a unwritten extents
3193                  * needs to be converted when IO is completed.
3194                  */
3195                 ext4_inode_aio_set(inode, io_end);
3196         }
3197
3198         if (overwrite) {
3199                 get_block_func = ext4_get_block_write_nolock;
3200         } else {
3201                 get_block_func = ext4_get_block_write;
3202                 dio_flags = DIO_LOCKING;
3203         }
3204         ret = __blockdev_direct_IO(rw, iocb, inode,
3205                                    inode->i_sb->s_bdev, iov,
3206                                    offset, nr_segs,
3207                                    get_block_func,
3208                                    ext4_end_io_dio,
3209                                    NULL,
3210                                    dio_flags);
3211
3212         if (iocb->private)
3213                 ext4_inode_aio_set(inode, NULL);
3214         /*
3215          * The io_end structure takes a reference to the inode, that
3216          * structure needs to be destroyed and the reference to the
3217          * inode need to be dropped, when IO is complete, even with 0
3218          * byte write, or failed.
3219          *
3220          * In the successful AIO DIO case, the io_end structure will
3221          * be destroyed and the reference to the inode will be dropped
3222          * after the end_io call back function is called.
3223          *
3224          * In the case there is 0 byte write, or error case, since VFS
3225          * direct IO won't invoke the end_io call back function, we
3226          * need to free the end_io structure here.
3227          */
3228         if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3229                 ext4_free_io_end(iocb->private);
3230                 iocb->private = NULL;
3231         } else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3232                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3233                 int err;
3234                 /*
3235                  * for non AIO case, since the IO is already
3236                  * completed, we could do the conversion right here
3237                  */
3238                 err = ext4_convert_unwritten_extents(inode,
3239                                                      offset, ret);
3240                 if (err < 0)
3241                         ret = err;
3242                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3243         }
3244
3245 retake_lock:
3246         /* take i_mutex locking again if we do a ovewrite dio */
3247         if (overwrite) {
3248                 inode_dio_done(inode);
3249                 up_read(&EXT4_I(inode)->i_data_sem);
3250                 mutex_lock(&inode->i_mutex);
3251         }
3252
3253         return ret;
3254 }
3255
3256 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3257                               const struct iovec *iov, loff_t offset,
3258                               unsigned long nr_segs)
3259 {
3260         struct file *file = iocb->ki_filp;
3261         struct inode *inode = file->f_mapping->host;
3262         ssize_t ret;
3263
3264         /*
3265          * If we are doing data journalling we don't support O_DIRECT
3266          */
3267         if (ext4_should_journal_data(inode))
3268                 return 0;
3269
3270         /* Let buffer I/O handle the inline data case. */
3271         if (ext4_has_inline_data(inode))
3272                 return 0;
3273
3274         trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3275         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3276                 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3277         else
3278                 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3279         trace_ext4_direct_IO_exit(inode, offset,
3280                                 iov_length(iov, nr_segs), rw, ret);
3281         return ret;
3282 }
3283
3284 /*
3285  * Pages can be marked dirty completely asynchronously from ext4's journalling
3286  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3287  * much here because ->set_page_dirty is called under VFS locks.  The page is
3288  * not necessarily locked.
3289  *
3290  * We cannot just dirty the page and leave attached buffers clean, because the
3291  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3292  * or jbddirty because all the journalling code will explode.
3293  *
3294  * So what we do is to mark the page "pending dirty" and next time writepage
3295  * is called, propagate that into the buffers appropriately.
3296  */
3297 static int ext4_journalled_set_page_dirty(struct page *page)
3298 {
3299         SetPageChecked(page);
3300         return __set_page_dirty_nobuffers(page);
3301 }
3302
3303 static const struct address_space_operations ext4_aops = {
3304         .readpage               = ext4_readpage,
3305         .readpages              = ext4_readpages,
3306         .writepage              = ext4_writepage,
3307         .write_begin            = ext4_write_begin,
3308         .write_end              = ext4_write_end,
3309         .bmap                   = ext4_bmap,
3310         .invalidatepage         = ext4_invalidatepage,
3311         .releasepage            = ext4_releasepage,
3312         .direct_IO              = ext4_direct_IO,
3313         .migratepage            = buffer_migrate_page,
3314         .is_partially_uptodate  = block_is_partially_uptodate,
3315         .error_remove_page      = generic_error_remove_page,
3316 };
3317
3318 static const struct address_space_operations ext4_journalled_aops = {
3319         .readpage               = ext4_readpage,
3320         .readpages              = ext4_readpages,
3321         .writepage              = ext4_writepage,
3322         .write_begin            = ext4_write_begin,
3323         .write_end              = ext4_journalled_write_end,
3324         .set_page_dirty         = ext4_journalled_set_page_dirty,
3325         .bmap                   = ext4_bmap,
3326         .invalidatepage         = ext4_journalled_invalidatepage,
3327         .releasepage            = ext4_releasepage,
3328         .direct_IO              = ext4_direct_IO,
3329         .is_partially_uptodate  = block_is_partially_uptodate,
3330         .error_remove_page      = generic_error_remove_page,
3331 };
3332
3333 static const struct address_space_operations ext4_da_aops = {
3334         .readpage               = ext4_readpage,
3335         .readpages              = ext4_readpages,
3336         .writepage              = ext4_writepage,
3337         .writepages             = ext4_da_writepages,
3338         .write_begin            = ext4_da_write_begin,
3339         .write_end              = ext4_da_write_end,
3340         .bmap                   = ext4_bmap,
3341         .invalidatepage         = ext4_da_invalidatepage,
3342         .releasepage            = ext4_releasepage,
3343         .direct_IO              = ext4_direct_IO,
3344         .migratepage            = buffer_migrate_page,
3345         .is_partially_uptodate  = block_is_partially_uptodate,
3346         .error_remove_page      = generic_error_remove_page,
3347 };
3348
3349 void ext4_set_aops(struct inode *inode)
3350 {
3351         switch (ext4_inode_journal_mode(inode)) {
3352         case EXT4_INODE_ORDERED_DATA_MODE:
3353                 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3354                 break;
3355         case EXT4_INODE_WRITEBACK_DATA_MODE:
3356                 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3357                 break;
3358         case EXT4_INODE_JOURNAL_DATA_MODE:
3359                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3360                 return;
3361         default:
3362                 BUG();
3363         }
3364         if (test_opt(inode->i_sb, DELALLOC))
3365                 inode->i_mapping->a_ops = &ext4_da_aops;
3366         else
3367                 inode->i_mapping->a_ops = &ext4_aops;
3368 }
3369
3370
3371 /*
3372  * ext4_discard_partial_page_buffers()
3373  * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3374  * This function finds and locks the page containing the offset
3375  * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3376  * Calling functions that already have the page locked should call
3377  * ext4_discard_partial_page_buffers_no_lock directly.
3378  */
3379 int ext4_discard_partial_page_buffers(handle_t *handle,
3380                 struct address_space *mapping, loff_t from,
3381                 loff_t length, int flags)
3382 {
3383         struct inode *inode = mapping->host;
3384         struct page *page;
3385         int err = 0;
3386
3387         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3388                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3389         if (!page)
3390                 return -ENOMEM;
3391
3392         err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3393                 from, length, flags);
3394
3395         unlock_page(page);
3396         page_cache_release(page);
3397         return err;
3398 }
3399
3400 /*
3401  * ext4_discard_partial_page_buffers_no_lock()
3402  * Zeros a page range of length 'length' starting from offset 'from'.
3403  * Buffer heads that correspond to the block aligned regions of the
3404  * zeroed range will be unmapped.  Unblock aligned regions
3405  * will have the corresponding buffer head mapped if needed so that
3406  * that region of the page can be updated with the partial zero out.
3407  *
3408  * This function assumes that the page has already been  locked.  The
3409  * The range to be discarded must be contained with in the given page.
3410  * If the specified range exceeds the end of the page it will be shortened
3411  * to the end of the page that corresponds to 'from'.  This function is
3412  * appropriate for updating a page and it buffer heads to be unmapped and
3413  * zeroed for blocks that have been either released, or are going to be
3414  * released.
3415  *
3416  * handle: The journal handle
3417  * inode:  The files inode
3418  * page:   A locked page that contains the offset "from"
3419  * from:   The starting byte offset (from the beginning of the file)
3420  *         to begin discarding
3421  * len:    The length of bytes to discard
3422  * flags:  Optional flags that may be used:
3423  *
3424  *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3425  *         Only zero the regions of the page whose buffer heads
3426  *         have already been unmapped.  This flag is appropriate
3427  *         for updating the contents of a page whose blocks may
3428  *         have already been released, and we only want to zero
3429  *         out the regions that correspond to those released blocks.
3430  *
3431  * Returns zero on success or negative on failure.
3432  */
3433 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3434                 struct inode *inode, struct page *page, loff_t from,
3435                 loff_t length, int flags)
3436 {
3437         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3438         unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3439         unsigned int blocksize, max, pos;
3440         ext4_lblk_t iblock;
3441         struct buffer_head *bh;
3442         int err = 0;
3443
3444         blocksize = inode->i_sb->s_blocksize;
3445         max = PAGE_CACHE_SIZE - offset;
3446
3447         if (index != page->index)
3448                 return -EINVAL;
3449
3450         /*
3451          * correct length if it does not fall between
3452          * 'from' and the end of the page
3453          */
3454         if (length > max || length < 0)
3455                 length = max;
3456
3457         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3458
3459         if (!page_has_buffers(page))
3460                 create_empty_buffers(page, blocksize, 0);
3461
3462         /* Find the buffer that contains "offset" */
3463         bh = page_buffers(page);
3464         pos = blocksize;
3465         while (offset >= pos) {
3466                 bh = bh->b_this_page;
3467                 iblock++;
3468                 pos += blocksize;
3469         }
3470
3471         pos = offset;
3472         while (pos < offset + length) {
3473                 unsigned int end_of_block, range_to_discard;
3474
3475                 err = 0;
3476
3477                 /* The length of space left to zero and unmap */
3478                 range_to_discard = offset + length - pos;
3479
3480                 /* The length of space until the end of the block */
3481                 end_of_block = blocksize - (pos & (blocksize-1));
3482
3483                 /*
3484                  * Do not unmap or zero past end of block
3485                  * for this buffer head
3486                  */
3487                 if (range_to_discard > end_of_block)
3488                         range_to_discard = end_of_block;
3489
3490
3491                 /*
3492                  * Skip this buffer head if we are only zeroing unampped
3493                  * regions of the page
3494                  */
3495                 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3496                         buffer_mapped(bh))
3497                                 goto next;
3498
3499                 /* If the range is block aligned, unmap */
3500                 if (range_to_discard == blocksize) {
3501                         clear_buffer_dirty(bh);
3502                         bh->b_bdev = NULL;
3503                         clear_buffer_mapped(bh);
3504                         clear_buffer_req(bh);
3505                         clear_buffer_new(bh);
3506                         clear_buffer_delay(bh);
3507                         clear_buffer_unwritten(bh);
3508                         clear_buffer_uptodate(bh);
3509                         zero_user(page, pos, range_to_discard);
3510                         BUFFER_TRACE(bh, "Buffer discarded");
3511                         goto next;
3512                 }
3513
3514                 /*
3515                  * If this block is not completely contained in the range
3516                  * to be discarded, then it is not going to be released. Because
3517                  * we need to keep this block, we need to make sure this part
3518                  * of the page is uptodate before we modify it by writeing
3519                  * partial zeros on it.
3520                  */
3521                 if (!buffer_mapped(bh)) {
3522                         /*
3523                          * Buffer head must be mapped before we can read
3524                          * from the block
3525                          */
3526                         BUFFER_TRACE(bh, "unmapped");
3527                         ext4_get_block(inode, iblock, bh, 0);
3528                         /* unmapped? It's a hole - nothing to do */
3529                         if (!buffer_mapped(bh)) {
3530                                 BUFFER_TRACE(bh, "still unmapped");
3531                                 goto next;
3532                         }
3533                 }
3534
3535                 /* Ok, it's mapped. Make sure it's up-to-date */
3536                 if (PageUptodate(page))
3537                         set_buffer_uptodate(bh);
3538
3539                 if (!buffer_uptodate(bh)) {
3540                         err = -EIO;
3541                         ll_rw_block(READ, 1, &bh);
3542                         wait_on_buffer(bh);
3543                         /* Uhhuh. Read error. Complain and punt.*/
3544                         if (!buffer_uptodate(bh))
3545                                 goto next;
3546                 }
3547
3548                 if (ext4_should_journal_data(inode)) {
3549                         BUFFER_TRACE(bh, "get write access");
3550                         err = ext4_journal_get_write_access(handle, bh);
3551                         if (err)
3552                                 goto next;
3553                 }
3554
3555                 zero_user(page, pos, range_to_discard);
3556
3557                 err = 0;
3558                 if (ext4_should_journal_data(inode)) {
3559                         err = ext4_handle_dirty_metadata(handle, inode, bh);
3560                 } else
3561                         mark_buffer_dirty(bh);
3562
3563                 BUFFER_TRACE(bh, "Partial buffer zeroed");
3564 next:
3565                 bh = bh->b_this_page;
3566                 iblock++;
3567                 pos += range_to_discard;
3568         }
3569
3570         return err;
3571 }
3572
3573 /*
3574  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3575  * up to the end of the block which corresponds to `from'.
3576  * This required during truncate. We need to physically zero the tail end
3577  * of that block so it doesn't yield old data if the file is later grown.
3578  */
3579 int ext4_block_truncate_page(handle_t *handle,
3580                 struct address_space *mapping, loff_t from)
3581 {
3582         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3583         unsigned length;
3584         unsigned blocksize;
3585         struct inode *inode = mapping->host;
3586
3587         blocksize = inode->i_sb->s_blocksize;
3588         length = blocksize - (offset & (blocksize - 1));
3589
3590         return ext4_block_zero_page_range(handle, mapping, from, length);
3591 }
3592
3593 /*
3594  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3595  * starting from file offset 'from'.  The range to be zero'd must
3596  * be contained with in one block.  If the specified range exceeds
3597  * the end of the block it will be shortened to end of the block
3598  * that cooresponds to 'from'
3599  */
3600 int ext4_block_zero_page_range(handle_t *handle,
3601                 struct address_space *mapping, loff_t from, loff_t length)
3602 {
3603         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3604         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3605         unsigned blocksize, max, pos;
3606         ext4_lblk_t iblock;
3607         struct inode *inode = mapping->host;
3608         struct buffer_head *bh;
3609         struct page *page;
3610         int err = 0;
3611
3612         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3613                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3614         if (!page)
3615                 return -ENOMEM;
3616
3617         blocksize = inode->i_sb->s_blocksize;
3618         max = blocksize - (offset & (blocksize - 1));
3619
3620         /*
3621          * correct length if it does not fall between
3622          * 'from' and the end of the block
3623          */
3624         if (length > max || length < 0)
3625                 length = max;
3626
3627         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3628
3629         if (!page_has_buffers(page))
3630                 create_empty_buffers(page, blocksize, 0);
3631
3632         /* Find the buffer that contains "offset" */
3633         bh = page_buffers(page);
3634         pos = blocksize;
3635         while (offset >= pos) {
3636                 bh = bh->b_this_page;
3637                 iblock++;
3638                 pos += blocksize;
3639         }
3640
3641         err = 0;
3642         if (buffer_freed(bh)) {
3643                 BUFFER_TRACE(bh, "freed: skip");
3644                 goto unlock;
3645         }
3646
3647         if (!buffer_mapped(bh)) {
3648                 BUFFER_TRACE(bh, "unmapped");
3649                 ext4_get_block(inode, iblock, bh, 0);
3650                 /* unmapped? It's a hole - nothing to do */
3651                 if (!buffer_mapped(bh)) {
3652                         BUFFER_TRACE(bh, "still unmapped");
3653                         goto unlock;
3654                 }
3655         }
3656
3657         /* Ok, it's mapped. Make sure it's up-to-date */
3658         if (PageUptodate(page))
3659                 set_buffer_uptodate(bh);
3660
3661         if (!buffer_uptodate(bh)) {
3662                 err = -EIO;
3663                 ll_rw_block(READ, 1, &bh);
3664                 wait_on_buffer(bh);
3665                 /* Uhhuh. Read error. Complain and punt. */
3666                 if (!buffer_uptodate(bh))
3667                         goto unlock;
3668         }
3669
3670         if (ext4_should_journal_data(inode)) {
3671                 BUFFER_TRACE(bh, "get write access");
3672                 err = ext4_journal_get_write_access(handle, bh);
3673                 if (err)
3674                         goto unlock;
3675         }
3676
3677         zero_user(page, offset, length);
3678
3679         BUFFER_TRACE(bh, "zeroed end of block");
3680
3681         err = 0;
3682         if (ext4_should_journal_data(inode)) {
3683                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3684         } else {
3685                 mark_buffer_dirty(bh);
3686                 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3687                         err = ext4_jbd2_file_inode(handle, inode);
3688         }
3689
3690 unlock:
3691         unlock_page(page);
3692         page_cache_release(page);
3693         return err;
3694 }
3695
3696 int ext4_can_truncate(struct inode *inode)
3697 {
3698         if (S_ISREG(inode->i_mode))
3699                 return 1;
3700         if (S_ISDIR(inode->i_mode))
3701                 return 1;
3702         if (S_ISLNK(inode->i_mode))
3703                 return !ext4_inode_is_fast_symlink(inode);
3704         return 0;
3705 }
3706
3707 /*
3708  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3709  * associated with the given offset and length
3710  *
3711  * @inode:  File inode
3712  * @offset: The offset where the hole will begin
3713  * @len:    The length of the hole
3714  *
3715  * Returns: 0 on success or negative on failure
3716  */
3717
3718 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3719 {
3720         struct inode *inode = file_inode(file);
3721         struct super_block *sb = inode->i_sb;
3722         ext4_lblk_t first_block, stop_block;
3723         struct address_space *mapping = inode->i_mapping;
3724         loff_t first_page, last_page, page_len;
3725         loff_t first_page_offset, last_page_offset;
3726         handle_t *handle;
3727         unsigned int credits;
3728         int ret = 0;
3729
3730         if (!S_ISREG(inode->i_mode))
3731                 return -EOPNOTSUPP;
3732
3733         if (EXT4_SB(sb)->s_cluster_ratio > 1) {
3734                 /* TODO: Add support for bigalloc file systems */
3735                 return -EOPNOTSUPP;
3736         }
3737
3738         trace_ext4_punch_hole(inode, offset, length);
3739
3740         /*
3741          * Write out all dirty pages to avoid race conditions
3742          * Then release them.
3743          */
3744         if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3745                 ret = filemap_write_and_wait_range(mapping, offset,
3746                                                    offset + length - 1);
3747                 if (ret)
3748                         return ret;
3749         }
3750
3751         mutex_lock(&inode->i_mutex);
3752         /* It's not possible punch hole on append only file */
3753         if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3754                 ret = -EPERM;
3755                 goto out_mutex;
3756         }
3757         if (IS_SWAPFILE(inode)) {
3758                 ret = -ETXTBSY;
3759                 goto out_mutex;
3760         }
3761
3762         /* No need to punch hole beyond i_size */
3763         if (offset >= inode->i_size)
3764                 goto out_mutex;
3765
3766         /*
3767          * If the hole extends beyond i_size, set the hole
3768          * to end after the page that contains i_size
3769          */
3770         if (offset + length > inode->i_size) {
3771                 length = inode->i_size +
3772                    PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3773                    offset;
3774         }
3775
3776         first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
3777         last_page = (offset + length) >> PAGE_CACHE_SHIFT;
3778
3779         first_page_offset = first_page << PAGE_CACHE_SHIFT;
3780         last_page_offset = last_page << PAGE_CACHE_SHIFT;
3781
3782         /* Now release the pages */
3783         if (last_page_offset > first_page_offset) {
3784                 truncate_pagecache_range(inode, first_page_offset,
3785                                          last_page_offset - 1);
3786         }
3787
3788         /* Wait all existing dio workers, newcomers will block on i_mutex */
3789         ext4_inode_block_unlocked_dio(inode);
3790         ret = ext4_flush_unwritten_io(inode);
3791         if (ret)
3792                 goto out_dio;
3793         inode_dio_wait(inode);
3794
3795         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3796                 credits = ext4_writepage_trans_blocks(inode);
3797         else
3798                 credits = ext4_blocks_for_truncate(inode);
3799         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3800         if (IS_ERR(handle)) {
3801                 ret = PTR_ERR(handle);
3802                 ext4_std_error(sb, ret);
3803                 goto out_dio;
3804         }
3805
3806         /*
3807          * Now we need to zero out the non-page-aligned data in the
3808          * pages at the start and tail of the hole, and unmap the
3809          * buffer heads for the block aligned regions of the page that
3810          * were completely zeroed.
3811          */
3812         if (first_page > last_page) {
3813                 /*
3814                  * If the file space being truncated is contained
3815                  * within a page just zero out and unmap the middle of
3816                  * that page
3817                  */
3818                 ret = ext4_discard_partial_page_buffers(handle,
3819                         mapping, offset, length, 0);
3820
3821                 if (ret)
3822                         goto out_stop;
3823         } else {
3824                 /*
3825                  * zero out and unmap the partial page that contains
3826                  * the start of the hole
3827                  */
3828                 page_len = first_page_offset - offset;
3829                 if (page_len > 0) {
3830                         ret = ext4_discard_partial_page_buffers(handle, mapping,
3831                                                 offset, page_len, 0);
3832                         if (ret)
3833                                 goto out_stop;
3834                 }
3835
3836                 /*
3837                  * zero out and unmap the partial page that contains
3838                  * the end of the hole
3839                  */
3840                 page_len = offset + length - last_page_offset;
3841                 if (page_len > 0) {
3842                         ret = ext4_discard_partial_page_buffers(handle, mapping,
3843                                         last_page_offset, page_len, 0);
3844                         if (ret)
3845                                 goto out_stop;
3846                 }
3847         }
3848
3849         /*
3850          * If i_size is contained in the last page, we need to
3851          * unmap and zero the partial page after i_size
3852          */
3853         if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
3854            inode->i_size % PAGE_CACHE_SIZE != 0) {
3855                 page_len = PAGE_CACHE_SIZE -
3856                         (inode->i_size & (PAGE_CACHE_SIZE - 1));
3857
3858                 if (page_len > 0) {
3859                         ret = ext4_discard_partial_page_buffers(handle,
3860                                         mapping, inode->i_size, page_len, 0);
3861
3862                         if (ret)
3863                                 goto out_stop;
3864                 }
3865         }
3866
3867         first_block = (offset + sb->s_blocksize - 1) >>
3868                 EXT4_BLOCK_SIZE_BITS(sb);
3869         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3870
3871         /* If there are no blocks to remove, return now */
3872         if (first_block >= stop_block)
3873                 goto out_stop;
3874
3875         down_write(&EXT4_I(inode)->i_data_sem);
3876         ext4_discard_preallocations(inode);
3877
3878         ret = ext4_es_remove_extent(inode, first_block,
3879                                     stop_block - first_block);
3880         if (ret) {
3881                 up_write(&EXT4_I(inode)->i_data_sem);
3882                 goto out_stop;
3883         }
3884
3885         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3886                 ret = ext4_ext_remove_space(inode, first_block,
3887                                             stop_block - 1);
3888         else
3889                 ret = ext4_free_hole_blocks(handle, inode, first_block,
3890                                             stop_block);
3891
3892         ext4_discard_preallocations(inode);
3893         up_write(&EXT4_I(inode)->i_data_sem);
3894         if (IS_SYNC(inode))
3895                 ext4_handle_sync(handle);
3896         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3897         ext4_mark_inode_dirty(handle, inode);
3898 out_stop:
3899         ext4_journal_stop(handle);
3900 out_dio:
3901         ext4_inode_resume_unlocked_dio(inode);
3902 out_mutex:
3903         mutex_unlock(&inode->i_mutex);
3904         return ret;
3905 }
3906
3907 /*
3908  * ext4_truncate()
3909  *
3910  * We block out ext4_get_block() block instantiations across the entire
3911  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3912  * simultaneously on behalf of the same inode.
3913  *
3914  * As we work through the truncate and commit bits of it to the journal there
3915  * is one core, guiding principle: the file's tree must always be consistent on
3916  * disk.  We must be able to restart the truncate after a crash.
3917  *
3918  * The file's tree may be transiently inconsistent in memory (although it
3919  * probably isn't), but whenever we close off and commit a journal transaction,
3920  * the contents of (the filesystem + the journal) must be consistent and
3921  * restartable.  It's pretty simple, really: bottom up, right to left (although
3922  * left-to-right works OK too).
3923  *
3924  * Note that at recovery time, journal replay occurs *before* the restart of
3925  * truncate against the orphan inode list.
3926  *
3927  * The committed inode has the new, desired i_size (which is the same as
3928  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3929  * that this inode's truncate did not complete and it will again call
3930  * ext4_truncate() to have another go.  So there will be instantiated blocks
3931  * to the right of the truncation point in a crashed ext4 filesystem.  But
3932  * that's fine - as long as they are linked from the inode, the post-crash
3933  * ext4_truncate() run will find them and release them.
3934  */
3935 void ext4_truncate(struct inode *inode)
3936 {
3937         struct ext4_inode_info *ei = EXT4_I(inode);
3938         unsigned int credits;
3939         handle_t *handle;
3940         struct address_space *mapping = inode->i_mapping;
3941         loff_t page_len;
3942
3943         /*
3944          * There is a possibility that we're either freeing the inode
3945          * or it completely new indode. In those cases we might not
3946          * have i_mutex locked because it's not necessary.
3947          */
3948         if (!(inode->i_state & (I_NEW|I_FREEING)))
3949                 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3950         trace_ext4_truncate_enter(inode);
3951
3952         if (!ext4_can_truncate(inode))
3953                 return;
3954
3955         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3956
3957         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3958                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3959
3960         if (ext4_has_inline_data(inode)) {
3961                 int has_inline = 1;
3962
3963                 ext4_inline_data_truncate(inode, &has_inline);
3964                 if (has_inline)
3965                         return;
3966         }
3967
3968         /*
3969          * finish any pending end_io work so we won't run the risk of
3970          * converting any truncated blocks to initialized later
3971          */
3972         ext4_flush_unwritten_io(inode);
3973
3974         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3975                 credits = ext4_writepage_trans_blocks(inode);
3976         else
3977                 credits = ext4_blocks_for_truncate(inode);
3978
3979         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3980         if (IS_ERR(handle)) {
3981                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3982                 return;
3983         }
3984
3985         if (inode->i_size % PAGE_CACHE_SIZE != 0) {
3986                 page_len = PAGE_CACHE_SIZE -
3987                         (inode->i_size & (PAGE_CACHE_SIZE - 1));
3988
3989                 if (ext4_discard_partial_page_buffers(handle,
3990                                 mapping, inode->i_size, page_len, 0))
3991                         goto out_stop;
3992         }
3993
3994         /*
3995          * We add the inode to the orphan list, so that if this
3996          * truncate spans multiple transactions, and we crash, we will
3997          * resume the truncate when the filesystem recovers.  It also
3998          * marks the inode dirty, to catch the new size.
3999          *
4000          * Implication: the file must always be in a sane, consistent
4001          * truncatable state while each transaction commits.
4002          */
4003         if (ext4_orphan_add(handle, inode))
4004                 goto out_stop;
4005
4006         down_write(&EXT4_I(inode)->i_data_sem);
4007
4008         ext4_discard_preallocations(inode);
4009
4010         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4011                 ext4_ext_truncate(handle, inode);
4012         else
4013                 ext4_ind_truncate(handle, inode);
4014
4015         up_write(&ei->i_data_sem);
4016
4017         if (IS_SYNC(inode))
4018                 ext4_handle_sync(handle);
4019
4020 out_stop:
4021         /*
4022          * If this was a simple ftruncate() and the file will remain alive,
4023          * then we need to clear up the orphan record which we created above.
4024          * However, if this was a real unlink then we were called by
4025          * ext4_delete_inode(), and we allow that function to clean up the
4026          * orphan info for us.
4027          */
4028         if (inode->i_nlink)
4029                 ext4_orphan_del(handle, inode);
4030
4031         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4032         ext4_mark_inode_dirty(handle, inode);
4033         ext4_journal_stop(handle);
4034
4035         trace_ext4_truncate_exit(inode);
4036 }
4037
4038 /*
4039  * ext4_get_inode_loc returns with an extra refcount against the inode's
4040  * underlying buffer_head on success. If 'in_mem' is true, we have all
4041  * data in memory that is needed to recreate the on-disk version of this
4042  * inode.
4043  */
4044 static int __ext4_get_inode_loc(struct inode *inode,
4045                                 struct ext4_iloc *iloc, int in_mem)
4046 {
4047         struct ext4_group_desc  *gdp;
4048         struct buffer_head      *bh;
4049         struct super_block      *sb = inode->i_sb;
4050         ext4_fsblk_t            block;
4051         int                     inodes_per_block, inode_offset;
4052
4053         iloc->bh = NULL;
4054         if (!ext4_valid_inum(sb, inode->i_ino))
4055                 return -EIO;
4056
4057         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4058         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4059         if (!gdp)
4060                 return -EIO;
4061
4062         /*
4063          * Figure out the offset within the block group inode table
4064          */
4065         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4066         inode_offset = ((inode->i_ino - 1) %
4067                         EXT4_INODES_PER_GROUP(sb));
4068         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4069         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4070
4071         bh = sb_getblk(sb, block);
4072         if (unlikely(!bh))
4073                 return -ENOMEM;
4074         if (!buffer_uptodate(bh)) {
4075                 lock_buffer(bh);
4076
4077                 /*
4078                  * If the buffer has the write error flag, we have failed
4079                  * to write out another inode in the same block.  In this
4080                  * case, we don't have to read the block because we may
4081                  * read the old inode data successfully.
4082                  */
4083                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4084                         set_buffer_uptodate(bh);
4085
4086                 if (buffer_uptodate(bh)) {
4087                         /* someone brought it uptodate while we waited */
4088                         unlock_buffer(bh);
4089                         goto has_buffer;
4090                 }
4091
4092                 /*
4093                  * If we have all information of the inode in memory and this
4094                  * is the only valid inode in the block, we need not read the
4095                  * block.
4096                  */
4097                 if (in_mem) {
4098                         struct buffer_head *bitmap_bh;
4099                         int i, start;
4100
4101                         start = inode_offset & ~(inodes_per_block - 1);
4102
4103                         /* Is the inode bitmap in cache? */
4104                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4105                         if (unlikely(!bitmap_bh))
4106                                 goto make_io;
4107
4108                         /*
4109                          * If the inode bitmap isn't in cache then the
4110                          * optimisation may end up performing two reads instead
4111                          * of one, so skip it.
4112                          */
4113                         if (!buffer_uptodate(bitmap_bh)) {
4114                                 brelse(bitmap_bh);
4115                                 goto make_io;
4116                         }
4117                         for (i = start; i < start + inodes_per_block; i++) {
4118                                 if (i == inode_offset)
4119                                         continue;
4120                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4121                                         break;
4122                         }
4123                         brelse(bitmap_bh);
4124                         if (i == start + inodes_per_block) {
4125                                 /* all other inodes are free, so skip I/O */
4126                                 memset(bh->b_data, 0, bh->b_size);
4127                                 set_buffer_uptodate(bh);
4128                                 unlock_buffer(bh);
4129                                 goto has_buffer;
4130                         }
4131                 }
4132
4133 make_io:
4134                 /*
4135                  * If we need to do any I/O, try to pre-readahead extra
4136                  * blocks from the inode table.
4137                  */
4138                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4139                         ext4_fsblk_t b, end, table;
4140                         unsigned num;
4141                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4142
4143                         table = ext4_inode_table(sb, gdp);
4144                         /* s_inode_readahead_blks is always a power of 2 */
4145                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
4146                         if (table > b)
4147                                 b = table;
4148                         end = b + ra_blks;
4149                         num = EXT4_INODES_PER_GROUP(sb);
4150                         if (ext4_has_group_desc_csum(sb))
4151                                 num -= ext4_itable_unused_count(sb, gdp);
4152                         table += num / inodes_per_block;
4153                         if (end > table)
4154                                 end = table;
4155                         while (b <= end)
4156                                 sb_breadahead(sb, b++);
4157                 }
4158
4159                 /*
4160                  * There are other valid inodes in the buffer, this inode
4161                  * has in-inode xattrs, or we don't have this inode in memory.
4162                  * Read the block from disk.
4163                  */
4164                 trace_ext4_load_inode(inode);
4165                 get_bh(bh);
4166                 bh->b_end_io = end_buffer_read_sync;
4167                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
4168                 wait_on_buffer(bh);
4169                 if (!buffer_uptodate(bh)) {
4170                         EXT4_ERROR_INODE_BLOCK(inode, block,
4171                                                "unable to read itable block");
4172                         brelse(bh);
4173                         return -EIO;
4174                 }
4175         }
4176 has_buffer:
4177         iloc->bh = bh;
4178         return 0;
4179 }
4180
4181 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4182 {
4183         /* We have all inode data except xattrs in memory here. */
4184         return __ext4_get_inode_loc(inode, iloc,
4185                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4186 }
4187
4188 void ext4_set_inode_flags(struct inode *inode)
4189 {
4190         unsigned int flags = EXT4_I(inode)->i_flags;
4191
4192         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4193         if (flags & EXT4_SYNC_FL)
4194                 inode->i_flags |= S_SYNC;
4195         if (flags & EXT4_APPEND_FL)
4196                 inode->i_flags |= S_APPEND;
4197         if (flags & EXT4_IMMUTABLE_FL)
4198                 inode->i_flags |= S_IMMUTABLE;
4199         if (flags & EXT4_NOATIME_FL)
4200                 inode->i_flags |= S_NOATIME;
4201         if (flags & EXT4_DIRSYNC_FL)
4202                 inode->i_flags |= S_DIRSYNC;
4203 }
4204
4205 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4206 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4207 {
4208         unsigned int vfs_fl;
4209         unsigned long old_fl, new_fl;
4210
4211         do {
4212                 vfs_fl = ei->vfs_inode.i_flags;
4213                 old_fl = ei->i_flags;
4214                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4215                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4216                                 EXT4_DIRSYNC_FL);
4217                 if (vfs_fl & S_SYNC)
4218                         new_fl |= EXT4_SYNC_FL;
4219                 if (vfs_fl & S_APPEND)
4220                         new_fl |= EXT4_APPEND_FL;
4221                 if (vfs_fl & S_IMMUTABLE)
4222                         new_fl |= EXT4_IMMUTABLE_FL;
4223                 if (vfs_fl & S_NOATIME)
4224                         new_fl |= EXT4_NOATIME_FL;
4225                 if (vfs_fl & S_DIRSYNC)
4226                         new_fl |= EXT4_DIRSYNC_FL;
4227         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4228 }
4229
4230 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4231                                   struct ext4_inode_info *ei)
4232 {
4233         blkcnt_t i_blocks ;
4234         struct inode *inode = &(ei->vfs_inode);
4235         struct super_block *sb = inode->i_sb;
4236
4237         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4238                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4239                 /* we are using combined 48 bit field */
4240                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4241                                         le32_to_cpu(raw_inode->i_blocks_lo);
4242                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4243                         /* i_blocks represent file system block size */
4244                         return i_blocks  << (inode->i_blkbits - 9);
4245                 } else {
4246                         return i_blocks;
4247                 }
4248         } else {
4249                 return le32_to_cpu(raw_inode->i_blocks_lo);
4250         }
4251 }
4252
4253 static inline void ext4_iget_extra_inode(struct inode *inode,
4254                                          struct ext4_inode *raw_inode,
4255                                          struct ext4_inode_info *ei)
4256 {
4257         __le32 *magic = (void *)raw_inode +
4258                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4259         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4260                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4261                 ext4_find_inline_data_nolock(inode);
4262         } else
4263                 EXT4_I(inode)->i_inline_off = 0;
4264 }
4265
4266 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4267 {
4268         struct ext4_iloc iloc;
4269         struct ext4_inode *raw_inode;
4270         struct ext4_inode_info *ei;
4271         struct inode *inode;
4272         journal_t *journal = EXT4_SB(sb)->s_journal;
4273         long ret;
4274         int block;
4275         uid_t i_uid;
4276         gid_t i_gid;
4277
4278         inode = iget_locked(sb, ino);
4279         if (!inode)
4280                 return ERR_PTR(-ENOMEM);
4281         if (!(inode->i_state & I_NEW))
4282                 return inode;
4283
4284         ei = EXT4_I(inode);
4285         iloc.bh = NULL;
4286
4287         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4288         if (ret < 0)
4289                 goto bad_inode;
4290         raw_inode = ext4_raw_inode(&iloc);
4291
4292         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4293                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4294                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4295                     EXT4_INODE_SIZE(inode->i_sb)) {
4296                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4297                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4298                                 EXT4_INODE_SIZE(inode->i_sb));
4299                         ret = -EIO;
4300                         goto bad_inode;
4301                 }
4302         } else
4303                 ei->i_extra_isize = 0;
4304
4305         /* Precompute checksum seed for inode metadata */
4306         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4307                         EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
4308                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4309                 __u32 csum;
4310                 __le32 inum = cpu_to_le32(inode->i_ino);
4311                 __le32 gen = raw_inode->i_generation;
4312                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4313                                    sizeof(inum));
4314                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4315                                               sizeof(gen));
4316         }
4317
4318         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4319                 EXT4_ERROR_INODE(inode, "checksum invalid");
4320                 ret = -EIO;
4321                 goto bad_inode;
4322         }
4323
4324         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4325         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4326         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4327         if (!(test_opt(inode->i_sb, NO_UID32))) {
4328                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4329                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4330         }
4331         i_uid_write(inode, i_uid);
4332         i_gid_write(inode, i_gid);
4333         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4334
4335         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4336         ei->i_inline_off = 0;
4337         ei->i_dir_start_lookup = 0;
4338         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4339         /* We now have enough fields to check if the inode was active or not.
4340          * This is needed because nfsd might try to access dead inodes
4341          * the test is that same one that e2fsck uses
4342          * NeilBrown 1999oct15
4343          */
4344         if (inode->i_nlink == 0) {
4345                 if ((inode->i_mode == 0 ||
4346                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4347                     ino != EXT4_BOOT_LOADER_INO) {
4348                         /* this inode is deleted */
4349                         ret = -ESTALE;
4350                         goto bad_inode;
4351                 }
4352                 /* The only unlinked inodes we let through here have
4353                  * valid i_mode and are being read by the orphan
4354                  * recovery code: that's fine, we're about to complete
4355                  * the process of deleting those.
4356                  * OR it is the EXT4_BOOT_LOADER_INO which is
4357                  * not initialized on a new filesystem. */
4358         }
4359         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4360         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4361         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4362         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4363                 ei->i_file_acl |=
4364                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4365         inode->i_size = ext4_isize(raw_inode);
4366         ei->i_disksize = inode->i_size;
4367 #ifdef CONFIG_QUOTA
4368         ei->i_reserved_quota = 0;
4369 #endif
4370         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4371         ei->i_block_group = iloc.block_group;
4372         ei->i_last_alloc_group = ~0;
4373         /*
4374          * NOTE! The in-memory inode i_data array is in little-endian order
4375          * even on big-endian machines: we do NOT byteswap the block numbers!
4376          */
4377         for (block = 0; block < EXT4_N_BLOCKS; block++)
4378                 ei->i_data[block] = raw_inode->i_block[block];
4379         INIT_LIST_HEAD(&ei->i_orphan);
4380
4381         /*
4382          * Set transaction id's of transactions that have to be committed
4383          * to finish f[data]sync. We set them to currently running transaction
4384          * as we cannot be sure that the inode or some of its metadata isn't
4385          * part of the transaction - the inode could have been reclaimed and
4386          * now it is reread from disk.
4387          */
4388         if (journal) {
4389                 transaction_t *transaction;
4390                 tid_t tid;
4391
4392                 read_lock(&journal->j_state_lock);
4393                 if (journal->j_running_transaction)
4394                         transaction = journal->j_running_transaction;
4395                 else
4396                         transaction = journal->j_committing_transaction;
4397                 if (transaction)
4398                         tid = transaction->t_tid;
4399                 else
4400                         tid = journal->j_commit_sequence;
4401                 read_unlock(&journal->j_state_lock);
4402                 ei->i_sync_tid = tid;
4403                 ei->i_datasync_tid = tid;
4404         }
4405
4406         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4407                 if (ei->i_extra_isize == 0) {
4408                         /* The extra space is currently unused. Use it. */
4409                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4410                                             EXT4_GOOD_OLD_INODE_SIZE;
4411                 } else {
4412                         ext4_iget_extra_inode(inode, raw_inode, ei);
4413                 }
4414         }
4415
4416         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4417         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4418         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4419         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4420
4421         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4422         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4423                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4424                         inode->i_version |=
4425                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4426         }
4427
4428         ret = 0;
4429         if (ei->i_file_acl &&
4430             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4431                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4432                                  ei->i_file_acl);
4433                 ret = -EIO;
4434                 goto bad_inode;
4435         } else if (!ext4_has_inline_data(inode)) {
4436                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4437                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4438                             (S_ISLNK(inode->i_mode) &&
4439                              !ext4_inode_is_fast_symlink(inode))))
4440                                 /* Validate extent which is part of inode */
4441                                 ret = ext4_ext_check_inode(inode);
4442                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4443                            (S_ISLNK(inode->i_mode) &&
4444                             !ext4_inode_is_fast_symlink(inode))) {
4445                         /* Validate block references which are part of inode */
4446                         ret = ext4_ind_check_inode(inode);
4447                 }
4448         }
4449         if (ret)
4450                 goto bad_inode;
4451
4452         if (S_ISREG(inode->i_mode)) {
4453                 inode->i_op = &ext4_file_inode_operations;
4454                 inode->i_fop = &ext4_file_operations;
4455                 ext4_set_aops(inode);
4456         } else if (S_ISDIR(inode->i_mode)) {
4457                 inode->i_op = &ext4_dir_inode_operations;
4458                 inode->i_fop = &ext4_dir_operations;
4459         } else if (S_ISLNK(inode->i_mode)) {
4460                 if (ext4_inode_is_fast_symlink(inode)) {
4461                         inode->i_op = &ext4_fast_symlink_inode_operations;
4462                         nd_terminate_link(ei->i_data, inode->i_size,
4463                                 sizeof(ei->i_data) - 1);
4464                 } else {
4465                         inode->i_op = &ext4_symlink_inode_operations;
4466                         ext4_set_aops(inode);
4467                 }
4468         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4469               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4470                 inode->i_op = &ext4_special_inode_operations;
4471                 if (raw_inode->i_block[0])
4472                         init_special_inode(inode, inode->i_mode,
4473                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4474                 else
4475                         init_special_inode(inode, inode->i_mode,
4476                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4477         } else if (ino == EXT4_BOOT_LOADER_INO) {
4478                 make_bad_inode(inode);
4479         } else {
4480                 ret = -EIO;
4481                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4482                 goto bad_inode;
4483         }
4484         brelse(iloc.bh);
4485         ext4_set_inode_flags(inode);
4486         unlock_new_inode(inode);
4487         return inode;
4488
4489 bad_inode:
4490         brelse(iloc.bh);
4491         iget_failed(inode);
4492         return ERR_PTR(ret);
4493 }
4494
4495 static int ext4_inode_blocks_set(handle_t *handle,
4496                                 struct ext4_inode *raw_inode,
4497                                 struct ext4_inode_info *ei)
4498 {
4499         struct inode *inode = &(ei->vfs_inode);
4500         u64 i_blocks = inode->i_blocks;
4501         struct super_block *sb = inode->i_sb;
4502
4503         if (i_blocks <= ~0U) {
4504                 /*
4505                  * i_blocks can be represented in a 32 bit variable
4506                  * as multiple of 512 bytes
4507                  */
4508                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4509                 raw_inode->i_blocks_high = 0;
4510                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4511                 return 0;
4512         }
4513         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4514                 return -EFBIG;
4515
4516         if (i_blocks <= 0xffffffffffffULL) {
4517                 /*
4518                  * i_blocks can be represented in a 48 bit variable
4519                  * as multiple of 512 bytes
4520                  */
4521                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4522                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4523                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4524         } else {
4525                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4526                 /* i_block is stored in file system block size */
4527                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4528                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4529                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4530         }
4531         return 0;
4532 }
4533
4534 /*
4535  * Post the struct inode info into an on-disk inode location in the
4536  * buffer-cache.  This gobbles the caller's reference to the
4537  * buffer_head in the inode location struct.
4538  *
4539  * The caller must have write access to iloc->bh.
4540  */
4541 static int ext4_do_update_inode(handle_t *handle,
4542                                 struct inode *inode,
4543                                 struct ext4_iloc *iloc)
4544 {
4545         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4546         struct ext4_inode_info *ei = EXT4_I(inode);
4547         struct buffer_head *bh = iloc->bh;
4548         int err = 0, rc, block;
4549         int need_datasync = 0;
4550         uid_t i_uid;
4551         gid_t i_gid;
4552
4553         /* For fields not not tracking in the in-memory inode,
4554          * initialise them to zero for new inodes. */
4555         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4556                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4557
4558         ext4_get_inode_flags(ei);
4559         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4560         i_uid = i_uid_read(inode);
4561         i_gid = i_gid_read(inode);
4562         if (!(test_opt(inode->i_sb, NO_UID32))) {
4563                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4564                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4565 /*
4566  * Fix up interoperability with old kernels. Otherwise, old inodes get
4567  * re-used with the upper 16 bits of the uid/gid intact
4568  */
4569                 if (!ei->i_dtime) {
4570                         raw_inode->i_uid_high =
4571                                 cpu_to_le16(high_16_bits(i_uid));
4572                         raw_inode->i_gid_high =
4573                                 cpu_to_le16(high_16_bits(i_gid));
4574                 } else {
4575                         raw_inode->i_uid_high = 0;
4576                         raw_inode->i_gid_high = 0;
4577                 }
4578         } else {
4579                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4580                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4581                 raw_inode->i_uid_high = 0;
4582                 raw_inode->i_gid_high = 0;
4583         }
4584         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4585
4586         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4587         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4588         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4589         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4590
4591         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4592                 goto out_brelse;
4593         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4594         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4595         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4596             cpu_to_le32(EXT4_OS_HURD))
4597                 raw_inode->i_file_acl_high =
4598                         cpu_to_le16(ei->i_file_acl >> 32);
4599         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4600         if (ei->i_disksize != ext4_isize(raw_inode)) {
4601                 ext4_isize_set(raw_inode, ei->i_disksize);
4602                 need_datasync = 1;
4603         }
4604         if (ei->i_disksize > 0x7fffffffULL) {
4605                 struct super_block *sb = inode->i_sb;
4606                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4607                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4608                                 EXT4_SB(sb)->s_es->s_rev_level ==
4609                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4610                         /* If this is the first large file
4611                          * created, add a flag to the superblock.
4612                          */
4613                         err = ext4_journal_get_write_access(handle,
4614                                         EXT4_SB(sb)->s_sbh);
4615                         if (err)
4616                                 goto out_brelse;
4617                         ext4_update_dynamic_rev(sb);
4618                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4619                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4620                         ext4_handle_sync(handle);
4621                         err = ext4_handle_dirty_super(handle, sb);
4622                 }
4623         }
4624         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4625         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4626                 if (old_valid_dev(inode->i_rdev)) {
4627                         raw_inode->i_block[0] =
4628                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4629                         raw_inode->i_block[1] = 0;
4630                 } else {
4631                         raw_inode->i_block[0] = 0;
4632                         raw_inode->i_block[1] =
4633                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4634                         raw_inode->i_block[2] = 0;
4635                 }
4636         } else if (!ext4_has_inline_data(inode)) {
4637                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4638                         raw_inode->i_block[block] = ei->i_data[block];
4639         }
4640
4641         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4642         if (ei->i_extra_isize) {
4643                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4644                         raw_inode->i_version_hi =
4645                         cpu_to_le32(inode->i_version >> 32);
4646                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4647         }
4648
4649         ext4_inode_csum_set(inode, raw_inode, ei);
4650
4651         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4652         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4653         if (!err)
4654                 err = rc;
4655         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4656
4657         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4658 out_brelse:
4659         brelse(bh);
4660         ext4_std_error(inode->i_sb, err);
4661         return err;
4662 }
4663
4664 /*
4665  * ext4_write_inode()
4666  *
4667  * We are called from a few places:
4668  *
4669  * - Within generic_file_write() for O_SYNC files.
4670  *   Here, there will be no transaction running. We wait for any running
4671  *   transaction to commit.
4672  *
4673  * - Within sys_sync(), kupdate and such.
4674  *   We wait on commit, if tol to.
4675  *
4676  * - Within prune_icache() (PF_MEMALLOC == true)
4677  *   Here we simply return.  We can't afford to block kswapd on the
4678  *   journal commit.
4679  *
4680  * In all cases it is actually safe for us to return without doing anything,
4681  * because the inode has been copied into a raw inode buffer in
4682  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4683  * knfsd.
4684  *
4685  * Note that we are absolutely dependent upon all inode dirtiers doing the
4686  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4687  * which we are interested.
4688  *
4689  * It would be a bug for them to not do this.  The code:
4690  *
4691  *      mark_inode_dirty(inode)
4692  *      stuff();
4693  *      inode->i_size = expr;
4694  *
4695  * is in error because a kswapd-driven write_inode() could occur while
4696  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4697  * will no longer be on the superblock's dirty inode list.
4698  */
4699 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4700 {
4701         int err;
4702
4703         if (current->flags & PF_MEMALLOC)
4704                 return 0;
4705
4706         if (EXT4_SB(inode->i_sb)->s_journal) {
4707                 if (ext4_journal_current_handle()) {
4708                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4709                         dump_stack();
4710                         return -EIO;
4711                 }
4712
4713                 if (wbc->sync_mode != WB_SYNC_ALL)
4714                         return 0;
4715
4716                 err = ext4_force_commit(inode->i_sb);
4717         } else {
4718                 struct ext4_iloc iloc;
4719
4720                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4721                 if (err)
4722                         return err;
4723                 if (wbc->sync_mode == WB_SYNC_ALL)
4724                         sync_dirty_buffer(iloc.bh);
4725                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4726                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4727                                          "IO error syncing inode");
4728                         err = -EIO;
4729                 }
4730                 brelse(iloc.bh);
4731         }
4732         return err;
4733 }
4734
4735 /*
4736  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4737  * buffers that are attached to a page stradding i_size and are undergoing
4738  * commit. In that case we have to wait for commit to finish and try again.
4739  */
4740 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4741 {
4742         struct page *page;
4743         unsigned offset;
4744         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4745         tid_t commit_tid = 0;
4746         int ret;
4747
4748         offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4749         /*
4750          * All buffers in the last page remain valid? Then there's nothing to
4751          * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4752          * blocksize case
4753          */
4754         if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4755                 return;
4756         while (1) {
4757                 page = find_lock_page(inode->i_mapping,
4758                                       inode->i_size >> PAGE_CACHE_SHIFT);
4759                 if (!page)
4760                         return;
4761                 ret = __ext4_journalled_invalidatepage(page, offset,
4762                                                 PAGE_CACHE_SIZE - offset);
4763                 unlock_page(page);
4764                 page_cache_release(page);
4765                 if (ret != -EBUSY)
4766                         return;
4767                 commit_tid = 0;
4768                 read_lock(&journal->j_state_lock);
4769                 if (journal->j_committing_transaction)
4770                         commit_tid = journal->j_committing_transaction->t_tid;
4771                 read_unlock(&journal->j_state_lock);
4772                 if (commit_tid)
4773                         jbd2_log_wait_commit(journal, commit_tid);
4774         }
4775 }
4776
4777 /*
4778  * ext4_setattr()
4779  *
4780  * Called from notify_change.
4781  *
4782  * We want to trap VFS attempts to truncate the file as soon as
4783  * possible.  In particular, we want to make sure that when the VFS
4784  * shrinks i_size, we put the inode on the orphan list and modify
4785  * i_disksize immediately, so that during the subsequent flushing of
4786  * dirty pages and freeing of disk blocks, we can guarantee that any
4787  * commit will leave the blocks being flushed in an unused state on
4788  * disk.  (On recovery, the inode will get truncated and the blocks will
4789  * be freed, so we have a strong guarantee that no future commit will
4790  * leave these blocks visible to the user.)
4791  *
4792  * Another thing we have to assure is that if we are in ordered mode
4793  * and inode is still attached to the committing transaction, we must
4794  * we start writeout of all the dirty pages which are being truncated.
4795  * This way we are sure that all the data written in the previous
4796  * transaction are already on disk (truncate waits for pages under
4797  * writeback).
4798  *
4799  * Called with inode->i_mutex down.
4800  */
4801 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4802 {
4803         struct inode *inode = dentry->d_inode;
4804         int error, rc = 0;
4805         int orphan = 0;
4806         const unsigned int ia_valid = attr->ia_valid;
4807
4808         error = inode_change_ok(inode, attr);
4809         if (error)
4810                 return error;
4811
4812         if (is_quota_modification(inode, attr))
4813                 dquot_initialize(inode);
4814         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4815             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4816                 handle_t *handle;
4817
4818                 /* (user+group)*(old+new) structure, inode write (sb,
4819                  * inode block, ? - but truncate inode update has it) */
4820                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4821                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4822                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4823                 if (IS_ERR(handle)) {
4824                         error = PTR_ERR(handle);
4825                         goto err_out;
4826                 }
4827                 error = dquot_transfer(inode, attr);
4828                 if (error) {
4829                         ext4_journal_stop(handle);
4830                         return error;
4831                 }
4832                 /* Update corresponding info in inode so that everything is in
4833                  * one transaction */
4834                 if (attr->ia_valid & ATTR_UID)
4835                         inode->i_uid = attr->ia_uid;
4836                 if (attr->ia_valid & ATTR_GID)
4837                         inode->i_gid = attr->ia_gid;
4838                 error = ext4_mark_inode_dirty(handle, inode);
4839                 ext4_journal_stop(handle);
4840         }
4841
4842         if (attr->ia_valid & ATTR_SIZE) {
4843
4844                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4845                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4846
4847                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4848                                 return -EFBIG;
4849                 }
4850         }
4851
4852         if (S_ISREG(inode->i_mode) &&
4853             attr->ia_valid & ATTR_SIZE &&
4854             (attr->ia_size < inode->i_size)) {
4855                 handle_t *handle;
4856
4857                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4858                 if (IS_ERR(handle)) {
4859                         error = PTR_ERR(handle);
4860                         goto err_out;
4861                 }
4862                 if (ext4_handle_valid(handle)) {
4863                         error = ext4_orphan_add(handle, inode);
4864                         orphan = 1;
4865                 }
4866                 EXT4_I(inode)->i_disksize = attr->ia_size;
4867                 rc = ext4_mark_inode_dirty(handle, inode);
4868                 if (!error)
4869                         error = rc;
4870                 ext4_journal_stop(handle);
4871
4872                 if (ext4_should_order_data(inode)) {
4873                         error = ext4_begin_ordered_truncate(inode,
4874                                                             attr->ia_size);
4875                         if (error) {
4876                                 /* Do as much error cleanup as possible */
4877                                 handle = ext4_journal_start(inode,
4878                                                             EXT4_HT_INODE, 3);
4879                                 if (IS_ERR(handle)) {
4880                                         ext4_orphan_del(NULL, inode);
4881                                         goto err_out;
4882                                 }
4883                                 ext4_orphan_del(handle, inode);
4884                                 orphan = 0;
4885                                 ext4_journal_stop(handle);
4886                                 goto err_out;
4887                         }
4888                 }
4889         }
4890
4891         if (attr->ia_valid & ATTR_SIZE) {
4892                 if (attr->ia_size != inode->i_size) {
4893                         loff_t oldsize = inode->i_size;
4894
4895                         i_size_write(inode, attr->ia_size);
4896                         /*
4897                          * Blocks are going to be removed from the inode. Wait
4898                          * for dio in flight.  Temporarily disable
4899                          * dioread_nolock to prevent livelock.
4900                          */
4901                         if (orphan) {
4902                                 if (!ext4_should_journal_data(inode)) {
4903                                         ext4_inode_block_unlocked_dio(inode);
4904                                         inode_dio_wait(inode);
4905                                         ext4_inode_resume_unlocked_dio(inode);
4906                                 } else
4907                                         ext4_wait_for_tail_page_commit(inode);
4908                         }
4909                         /*
4910                          * Truncate pagecache after we've waited for commit
4911                          * in data=journal mode to make pages freeable.
4912                          */
4913                         truncate_pagecache(inode, oldsize, inode->i_size);
4914                 }
4915                 ext4_truncate(inode);
4916         }
4917
4918         if (!rc) {
4919                 setattr_copy(inode, attr);
4920                 mark_inode_dirty(inode);
4921         }
4922
4923         /*
4924          * If the call to ext4_truncate failed to get a transaction handle at
4925          * all, we need to clean up the in-core orphan list manually.
4926          */
4927         if (orphan && inode->i_nlink)
4928                 ext4_orphan_del(NULL, inode);
4929
4930         if (!rc && (ia_valid & ATTR_MODE))
4931                 rc = ext4_acl_chmod(inode);
4932
4933 err_out:
4934         ext4_std_error(inode->i_sb, error);
4935         if (!error)
4936                 error = rc;
4937         return error;
4938 }
4939
4940 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4941                  struct kstat *stat)
4942 {
4943         struct inode *inode;
4944         unsigned long delalloc_blocks;
4945
4946         inode = dentry->d_inode;
4947         generic_fillattr(inode, stat);
4948
4949         /*
4950          * We can't update i_blocks if the block allocation is delayed
4951          * otherwise in the case of system crash before the real block
4952          * allocation is done, we will have i_blocks inconsistent with
4953          * on-disk file blocks.
4954          * We always keep i_blocks updated together with real
4955          * allocation. But to not confuse with user, stat
4956          * will return the blocks that include the delayed allocation
4957          * blocks for this file.
4958          */
4959         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4960                                 EXT4_I(inode)->i_reserved_data_blocks);
4961
4962         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4963         return 0;
4964 }
4965
4966 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4967 {
4968         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4969                 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4970         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4971 }
4972
4973 /*
4974  * Account for index blocks, block groups bitmaps and block group
4975  * descriptor blocks if modify datablocks and index blocks
4976  * worse case, the indexs blocks spread over different block groups
4977  *
4978  * If datablocks are discontiguous, they are possible to spread over
4979  * different block groups too. If they are contiguous, with flexbg,
4980  * they could still across block group boundary.
4981  *
4982  * Also account for superblock, inode, quota and xattr blocks
4983  */
4984 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4985 {
4986         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4987         int gdpblocks;
4988         int idxblocks;
4989         int ret = 0;
4990
4991         /*
4992          * How many index blocks need to touch to modify nrblocks?
4993          * The "Chunk" flag indicating whether the nrblocks is
4994          * physically contiguous on disk
4995          *
4996          * For Direct IO and fallocate, they calls get_block to allocate
4997          * one single extent at a time, so they could set the "Chunk" flag
4998          */
4999         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5000
5001         ret = idxblocks;
5002
5003         /*
5004          * Now let's see how many group bitmaps and group descriptors need
5005          * to account
5006          */
5007         groups = idxblocks;
5008         if (chunk)
5009                 groups += 1;
5010         else
5011                 groups += nrblocks;
5012
5013         gdpblocks = groups;
5014         if (groups > ngroups)
5015                 groups = ngroups;
5016         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5017                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5018
5019         /* bitmaps and block group descriptor blocks */
5020         ret += groups + gdpblocks;
5021
5022         /* Blocks for super block, inode, quota and xattr blocks */
5023         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5024
5025         return ret;
5026 }
5027
5028 /*
5029  * Calculate the total number of credits to reserve to fit
5030  * the modification of a single pages into a single transaction,
5031  * which may include multiple chunks of block allocations.
5032  *
5033  * This could be called via ext4_write_begin()
5034  *
5035  * We need to consider the worse case, when
5036  * one new block per extent.
5037  */
5038 int ext4_writepage_trans_blocks(struct inode *inode)
5039 {
5040         int bpp = ext4_journal_blocks_per_page(inode);
5041         int ret;
5042
5043         ret = ext4_meta_trans_blocks(inode, bpp, 0);
5044
5045         /* Account for data blocks for journalled mode */
5046         if (ext4_should_journal_data(inode))
5047                 ret += bpp;
5048         return ret;
5049 }
5050
5051 /*
5052  * Calculate the journal credits for a chunk of data modification.
5053  *
5054  * This is called from DIO, fallocate or whoever calling
5055  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5056  *
5057  * journal buffers for data blocks are not included here, as DIO
5058  * and fallocate do no need to journal data buffers.
5059  */
5060 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5061 {
5062         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5063 }
5064
5065 /*
5066  * The caller must have previously called ext4_reserve_inode_write().
5067  * Give this, we know that the caller already has write access to iloc->bh.
5068  */
5069 int ext4_mark_iloc_dirty(handle_t *handle,
5070                          struct inode *inode, struct ext4_iloc *iloc)
5071 {
5072         int err = 0;
5073
5074         if (IS_I_VERSION(inode))
5075                 inode_inc_iversion(inode);
5076
5077         /* the do_update_inode consumes one bh->b_count */
5078         get_bh(iloc->bh);
5079
5080         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5081         err = ext4_do_update_inode(handle, inode, iloc);
5082         put_bh(iloc->bh);
5083         return err;
5084 }
5085
5086 /*
5087  * On success, We end up with an outstanding reference count against
5088  * iloc->bh.  This _must_ be cleaned up later.
5089  */
5090
5091 int
5092 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5093                          struct ext4_iloc *iloc)
5094 {
5095         int err;
5096
5097         err = ext4_get_inode_loc(inode, iloc);
5098         if (!err) {
5099                 BUFFER_TRACE(iloc->bh, "get_write_access");
5100                 err = ext4_journal_get_write_access(handle, iloc->bh);
5101                 if (err) {
5102                         brelse(iloc->bh);
5103                         iloc->bh = NULL;
5104                 }
5105         }
5106         ext4_std_error(inode->i_sb, err);
5107         return err;
5108 }
5109
5110 /*
5111  * Expand an inode by new_extra_isize bytes.
5112  * Returns 0 on success or negative error number on failure.
5113  */
5114 static int ext4_expand_extra_isize(struct inode *inode,
5115                                    unsigned int new_extra_isize,
5116                                    struct ext4_iloc iloc,
5117                                    handle_t *handle)
5118 {
5119         struct ext4_inode *raw_inode;
5120         struct ext4_xattr_ibody_header *header;
5121
5122         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5123                 return 0;
5124
5125         raw_inode = ext4_raw_inode(&iloc);
5126
5127         header = IHDR(inode, raw_inode);
5128
5129         /* No extended attributes present */
5130         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5131             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5132                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5133                         new_extra_isize);
5134                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5135                 return 0;
5136         }
5137
5138         /* try to expand with EAs present */
5139         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5140                                           raw_inode, handle);
5141 }
5142
5143 /*
5144  * What we do here is to mark the in-core inode as clean with respect to inode
5145  * dirtiness (it may still be data-dirty).
5146  * This means that the in-core inode may be reaped by prune_icache
5147  * without having to perform any I/O.  This is a very good thing,
5148  * because *any* task may call prune_icache - even ones which
5149  * have a transaction open against a different journal.
5150  *
5151  * Is this cheating?  Not really.  Sure, we haven't written the
5152  * inode out, but prune_icache isn't a user-visible syncing function.
5153  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5154  * we start and wait on commits.
5155  */
5156 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5157 {
5158         struct ext4_iloc iloc;
5159         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5160         static unsigned int mnt_count;
5161         int err, ret;
5162
5163         might_sleep();
5164         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5165         err = ext4_reserve_inode_write(handle, inode, &iloc);
5166         if (ext4_handle_valid(handle) &&
5167             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5168             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5169                 /*
5170                  * We need extra buffer credits since we may write into EA block
5171                  * with this same handle. If journal_extend fails, then it will
5172                  * only result in a minor loss of functionality for that inode.
5173                  * If this is felt to be critical, then e2fsck should be run to
5174                  * force a large enough s_min_extra_isize.
5175                  */
5176                 if ((jbd2_journal_extend(handle,
5177                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5178                         ret = ext4_expand_extra_isize(inode,
5179                                                       sbi->s_want_extra_isize,
5180                                                       iloc, handle);
5181                         if (ret) {
5182                                 ext4_set_inode_state(inode,
5183                                                      EXT4_STATE_NO_EXPAND);
5184                                 if (mnt_count !=
5185                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5186                                         ext4_warning(inode->i_sb,
5187                                         "Unable to expand inode %lu. Delete"
5188                                         " some EAs or run e2fsck.",
5189                                         inode->i_ino);
5190                                         mnt_count =
5191                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5192                                 }
5193                         }
5194                 }
5195         }
5196         if (!err)
5197                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5198         return err;
5199 }
5200
5201 /*
5202  * ext4_dirty_inode() is called from __mark_inode_dirty()
5203  *
5204  * We're really interested in the case where a file is being extended.
5205  * i_size has been changed by generic_commit_write() and we thus need
5206  * to include the updated inode in the current transaction.
5207  *
5208  * Also, dquot_alloc_block() will always dirty the inode when blocks
5209  * are allocated to the file.
5210  *
5211  * If the inode is marked synchronous, we don't honour that here - doing
5212  * so would cause a commit on atime updates, which we don't bother doing.
5213  * We handle synchronous inodes at the highest possible level.
5214  */
5215 void ext4_dirty_inode(struct inode *inode, int flags)
5216 {
5217         handle_t *handle;
5218
5219         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5220         if (IS_ERR(handle))
5221                 goto out;
5222
5223         ext4_mark_inode_dirty(handle, inode);
5224
5225         ext4_journal_stop(handle);
5226 out:
5227         return;
5228 }
5229
5230 #if 0
5231 /*
5232  * Bind an inode's backing buffer_head into this transaction, to prevent
5233  * it from being flushed to disk early.  Unlike
5234  * ext4_reserve_inode_write, this leaves behind no bh reference and
5235  * returns no iloc structure, so the caller needs to repeat the iloc
5236  * lookup to mark the inode dirty later.
5237  */
5238 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5239 {
5240         struct ext4_iloc iloc;
5241
5242         int err = 0;
5243         if (handle) {
5244                 err = ext4_get_inode_loc(inode, &iloc);
5245                 if (!err) {
5246                         BUFFER_TRACE(iloc.bh, "get_write_access");
5247                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5248                         if (!err)
5249                                 err = ext4_handle_dirty_metadata(handle,
5250                                                                  NULL,
5251                                                                  iloc.bh);
5252                         brelse(iloc.bh);
5253                 }
5254         }
5255         ext4_std_error(inode->i_sb, err);
5256         return err;
5257 }
5258 #endif
5259
5260 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5261 {
5262         journal_t *journal;
5263         handle_t *handle;
5264         int err;
5265
5266         /*
5267          * We have to be very careful here: changing a data block's
5268          * journaling status dynamically is dangerous.  If we write a
5269          * data block to the journal, change the status and then delete
5270          * that block, we risk forgetting to revoke the old log record
5271          * from the journal and so a subsequent replay can corrupt data.
5272          * So, first we make sure that the journal is empty and that
5273          * nobody is changing anything.
5274          */
5275
5276         journal = EXT4_JOURNAL(inode);
5277         if (!journal)
5278                 return 0;
5279         if (is_journal_aborted(journal))
5280                 return -EROFS;
5281         /* We have to allocate physical blocks for delalloc blocks
5282          * before flushing journal. otherwise delalloc blocks can not
5283          * be allocated any more. even more truncate on delalloc blocks
5284          * could trigger BUG by flushing delalloc blocks in journal.
5285          * There is no delalloc block in non-journal data mode.
5286          */
5287         if (val && test_opt(inode->i_sb, DELALLOC)) {
5288                 err = ext4_alloc_da_blocks(inode);
5289                 if (err < 0)
5290                         return err;
5291         }
5292
5293         /* Wait for all existing dio workers */
5294         ext4_inode_block_unlocked_dio(inode);
5295         inode_dio_wait(inode);
5296
5297         jbd2_journal_lock_updates(journal);
5298
5299         /*
5300          * OK, there are no updates running now, and all cached data is
5301          * synced to disk.  We are now in a completely consistent state
5302          * which doesn't have anything in the journal, and we know that
5303          * no filesystem updates are running, so it is safe to modify
5304          * the inode's in-core data-journaling state flag now.
5305          */
5306
5307         if (val)
5308                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5309         else {
5310                 jbd2_journal_flush(journal);
5311                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5312         }
5313         ext4_set_aops(inode);
5314
5315         jbd2_journal_unlock_updates(journal);
5316         ext4_inode_resume_unlocked_dio(inode);
5317
5318         /* Finally we can mark the inode as dirty. */
5319
5320         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5321         if (IS_ERR(handle))
5322                 return PTR_ERR(handle);
5323
5324         err = ext4_mark_inode_dirty(handle, inode);
5325         ext4_handle_sync(handle);
5326         ext4_journal_stop(handle);
5327         ext4_std_error(inode->i_sb, err);
5328
5329         return err;
5330 }
5331
5332 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5333 {
5334         return !buffer_mapped(bh);
5335 }
5336
5337 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5338 {
5339         struct page *page = vmf->page;
5340         loff_t size;
5341         unsigned long len;
5342         int ret;
5343         struct file *file = vma->vm_file;
5344         struct inode *inode = file_inode(file);
5345         struct address_space *mapping = inode->i_mapping;
5346         handle_t *handle;
5347         get_block_t *get_block;
5348         int retries = 0;
5349
5350         sb_start_pagefault(inode->i_sb);
5351         file_update_time(vma->vm_file);
5352         /* Delalloc case is easy... */
5353         if (test_opt(inode->i_sb, DELALLOC) &&
5354             !ext4_should_journal_data(inode) &&
5355             !ext4_nonda_switch(inode->i_sb)) {
5356                 do {
5357                         ret = __block_page_mkwrite(vma, vmf,
5358                                                    ext4_da_get_block_prep);
5359                 } while (ret == -ENOSPC &&
5360                        ext4_should_retry_alloc(inode->i_sb, &retries));
5361                 goto out_ret;
5362         }
5363
5364         lock_page(page);
5365         size = i_size_read(inode);
5366         /* Page got truncated from under us? */
5367         if (page->mapping != mapping || page_offset(page) > size) {
5368                 unlock_page(page);
5369                 ret = VM_FAULT_NOPAGE;
5370                 goto out;
5371         }
5372
5373         if (page->index == size >> PAGE_CACHE_SHIFT)
5374                 len = size & ~PAGE_CACHE_MASK;
5375         else
5376                 len = PAGE_CACHE_SIZE;
5377         /*
5378          * Return if we have all the buffers mapped. This avoids the need to do
5379          * journal_start/journal_stop which can block and take a long time
5380          */
5381         if (page_has_buffers(page)) {
5382                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5383                                             0, len, NULL,
5384                                             ext4_bh_unmapped)) {
5385                         /* Wait so that we don't change page under IO */
5386                         wait_for_stable_page(page);
5387                         ret = VM_FAULT_LOCKED;
5388                         goto out;
5389                 }
5390         }
5391         unlock_page(page);
5392         /* OK, we need to fill the hole... */
5393         if (ext4_should_dioread_nolock(inode))
5394                 get_block = ext4_get_block_write;
5395         else
5396                 get_block = ext4_get_block;
5397 retry_alloc:
5398         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5399                                     ext4_writepage_trans_blocks(inode));
5400         if (IS_ERR(handle)) {
5401                 ret = VM_FAULT_SIGBUS;
5402                 goto out;
5403         }
5404         ret = __block_page_mkwrite(vma, vmf, get_block);
5405         if (!ret && ext4_should_journal_data(inode)) {
5406                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5407                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5408                         unlock_page(page);
5409                         ret = VM_FAULT_SIGBUS;
5410                         ext4_journal_stop(handle);
5411                         goto out;
5412                 }
5413                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5414         }
5415         ext4_journal_stop(handle);
5416         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5417                 goto retry_alloc;
5418 out_ret:
5419         ret = block_page_mkwrite_return(ret);
5420 out:
5421         sb_end_pagefault(inode->i_sb);
5422         return ret;
5423 }