]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/f2fs/checkpoint.c
gpu: ipu-v3: Kconfig: Remove SOC_IMX6SL from IMX_IPUV3_CORE Kconfig
[karo-tx-linux.git] / fs / f2fs / checkpoint.c
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include <trace/events/f2fs.h>
24
25 static struct kmem_cache *ino_entry_slab;
26 static struct kmem_cache *inode_entry_slab;
27
28 /*
29  * We guarantee no failure on the returned page.
30  */
31 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
32 {
33         struct address_space *mapping = META_MAPPING(sbi);
34         struct page *page = NULL;
35 repeat:
36         page = grab_cache_page(mapping, index);
37         if (!page) {
38                 cond_resched();
39                 goto repeat;
40         }
41         f2fs_wait_on_page_writeback(page, META);
42         SetPageUptodate(page);
43         return page;
44 }
45
46 /*
47  * We guarantee no failure on the returned page.
48  */
49 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
50 {
51         struct address_space *mapping = META_MAPPING(sbi);
52         struct page *page;
53 repeat:
54         page = grab_cache_page(mapping, index);
55         if (!page) {
56                 cond_resched();
57                 goto repeat;
58         }
59         if (PageUptodate(page))
60                 goto out;
61
62         if (f2fs_submit_page_bio(sbi, page, index,
63                                 READ_SYNC | REQ_META | REQ_PRIO))
64                 goto repeat;
65
66         lock_page(page);
67         if (unlikely(page->mapping != mapping)) {
68                 f2fs_put_page(page, 1);
69                 goto repeat;
70         }
71 out:
72         return page;
73 }
74
75 static inline int get_max_meta_blks(struct f2fs_sb_info *sbi, int type)
76 {
77         switch (type) {
78         case META_NAT:
79                 return NM_I(sbi)->max_nid / NAT_ENTRY_PER_BLOCK;
80         case META_SIT:
81                 return SIT_BLK_CNT(sbi);
82         case META_SSA:
83         case META_CP:
84                 return 0;
85         default:
86                 BUG();
87         }
88 }
89
90 /*
91  * Readahead CP/NAT/SIT/SSA pages
92  */
93 int ra_meta_pages(struct f2fs_sb_info *sbi, int start, int nrpages, int type)
94 {
95         block_t prev_blk_addr = 0;
96         struct page *page;
97         int blkno = start;
98         int max_blks = get_max_meta_blks(sbi, type);
99
100         struct f2fs_io_info fio = {
101                 .type = META,
102                 .rw = READ_SYNC | REQ_META | REQ_PRIO
103         };
104
105         for (; nrpages-- > 0; blkno++) {
106                 block_t blk_addr;
107
108                 switch (type) {
109                 case META_NAT:
110                         /* get nat block addr */
111                         if (unlikely(blkno >= max_blks))
112                                 blkno = 0;
113                         blk_addr = current_nat_addr(sbi,
114                                         blkno * NAT_ENTRY_PER_BLOCK);
115                         break;
116                 case META_SIT:
117                         /* get sit block addr */
118                         if (unlikely(blkno >= max_blks))
119                                 goto out;
120                         blk_addr = current_sit_addr(sbi,
121                                         blkno * SIT_ENTRY_PER_BLOCK);
122                         if (blkno != start && prev_blk_addr + 1 != blk_addr)
123                                 goto out;
124                         prev_blk_addr = blk_addr;
125                         break;
126                 case META_SSA:
127                 case META_CP:
128                         /* get ssa/cp block addr */
129                         blk_addr = blkno;
130                         break;
131                 default:
132                         BUG();
133                 }
134
135                 page = grab_cache_page(META_MAPPING(sbi), blk_addr);
136                 if (!page)
137                         continue;
138                 if (PageUptodate(page)) {
139                         f2fs_put_page(page, 1);
140                         continue;
141                 }
142
143                 f2fs_submit_page_mbio(sbi, page, blk_addr, &fio);
144                 f2fs_put_page(page, 0);
145         }
146 out:
147         f2fs_submit_merged_bio(sbi, META, READ);
148         return blkno - start;
149 }
150
151 static int f2fs_write_meta_page(struct page *page,
152                                 struct writeback_control *wbc)
153 {
154         struct inode *inode = page->mapping->host;
155         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
156
157         trace_f2fs_writepage(page, META);
158
159         if (unlikely(sbi->por_doing))
160                 goto redirty_out;
161         if (wbc->for_reclaim)
162                 goto redirty_out;
163
164         /* Should not write any meta pages, if any IO error was occurred */
165         if (unlikely(is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ERROR_FLAG)))
166                 goto no_write;
167
168         f2fs_wait_on_page_writeback(page, META);
169         write_meta_page(sbi, page);
170 no_write:
171         dec_page_count(sbi, F2FS_DIRTY_META);
172         unlock_page(page);
173         return 0;
174
175 redirty_out:
176         redirty_page_for_writepage(wbc, page);
177         return AOP_WRITEPAGE_ACTIVATE;
178 }
179
180 static int f2fs_write_meta_pages(struct address_space *mapping,
181                                 struct writeback_control *wbc)
182 {
183         struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
184         long diff, written;
185
186         trace_f2fs_writepages(mapping->host, wbc, META);
187
188         /* collect a number of dirty meta pages and write together */
189         if (wbc->for_kupdate ||
190                 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
191                 goto skip_write;
192
193         /* if mounting is failed, skip writing node pages */
194         mutex_lock(&sbi->cp_mutex);
195         diff = nr_pages_to_write(sbi, META, wbc);
196         written = sync_meta_pages(sbi, META, wbc->nr_to_write);
197         mutex_unlock(&sbi->cp_mutex);
198         wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
199         return 0;
200
201 skip_write:
202         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
203         return 0;
204 }
205
206 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
207                                                 long nr_to_write)
208 {
209         struct address_space *mapping = META_MAPPING(sbi);
210         pgoff_t index = 0, end = LONG_MAX;
211         struct pagevec pvec;
212         long nwritten = 0;
213         struct writeback_control wbc = {
214                 .for_reclaim = 0,
215         };
216
217         pagevec_init(&pvec, 0);
218
219         while (index <= end) {
220                 int i, nr_pages;
221                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
222                                 PAGECACHE_TAG_DIRTY,
223                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
224                 if (unlikely(nr_pages == 0))
225                         break;
226
227                 for (i = 0; i < nr_pages; i++) {
228                         struct page *page = pvec.pages[i];
229
230                         lock_page(page);
231
232                         if (unlikely(page->mapping != mapping)) {
233 continue_unlock:
234                                 unlock_page(page);
235                                 continue;
236                         }
237                         if (!PageDirty(page)) {
238                                 /* someone wrote it for us */
239                                 goto continue_unlock;
240                         }
241
242                         if (!clear_page_dirty_for_io(page))
243                                 goto continue_unlock;
244
245                         if (f2fs_write_meta_page(page, &wbc)) {
246                                 unlock_page(page);
247                                 break;
248                         }
249                         nwritten++;
250                         if (unlikely(nwritten >= nr_to_write))
251                                 break;
252                 }
253                 pagevec_release(&pvec);
254                 cond_resched();
255         }
256
257         if (nwritten)
258                 f2fs_submit_merged_bio(sbi, type, WRITE);
259
260         return nwritten;
261 }
262
263 static int f2fs_set_meta_page_dirty(struct page *page)
264 {
265         struct address_space *mapping = page->mapping;
266         struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
267
268         trace_f2fs_set_page_dirty(page, META);
269
270         SetPageUptodate(page);
271         if (!PageDirty(page)) {
272                 __set_page_dirty_nobuffers(page);
273                 inc_page_count(sbi, F2FS_DIRTY_META);
274                 return 1;
275         }
276         return 0;
277 }
278
279 const struct address_space_operations f2fs_meta_aops = {
280         .writepage      = f2fs_write_meta_page,
281         .writepages     = f2fs_write_meta_pages,
282         .set_page_dirty = f2fs_set_meta_page_dirty,
283 };
284
285 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
286 {
287         struct ino_entry *e;
288 retry:
289         spin_lock(&sbi->ino_lock[type]);
290
291         e = radix_tree_lookup(&sbi->ino_root[type], ino);
292         if (!e) {
293                 e = kmem_cache_alloc(ino_entry_slab, GFP_ATOMIC);
294                 if (!e) {
295                         spin_unlock(&sbi->ino_lock[type]);
296                         goto retry;
297                 }
298                 if (radix_tree_insert(&sbi->ino_root[type], ino, e)) {
299                         spin_unlock(&sbi->ino_lock[type]);
300                         kmem_cache_free(ino_entry_slab, e);
301                         goto retry;
302                 }
303                 memset(e, 0, sizeof(struct ino_entry));
304                 e->ino = ino;
305
306                 list_add_tail(&e->list, &sbi->ino_list[type]);
307         }
308         spin_unlock(&sbi->ino_lock[type]);
309 }
310
311 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
312 {
313         struct ino_entry *e;
314
315         spin_lock(&sbi->ino_lock[type]);
316         e = radix_tree_lookup(&sbi->ino_root[type], ino);
317         if (e) {
318                 list_del(&e->list);
319                 radix_tree_delete(&sbi->ino_root[type], ino);
320                 if (type == ORPHAN_INO)
321                         sbi->n_orphans--;
322                 spin_unlock(&sbi->ino_lock[type]);
323                 kmem_cache_free(ino_entry_slab, e);
324                 return;
325         }
326         spin_unlock(&sbi->ino_lock[type]);
327 }
328
329 void add_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
330 {
331         /* add new dirty ino entry into list */
332         __add_ino_entry(sbi, ino, type);
333 }
334
335 void remove_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
336 {
337         /* remove dirty ino entry from list */
338         __remove_ino_entry(sbi, ino, type);
339 }
340
341 /* mode should be APPEND_INO or UPDATE_INO */
342 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
343 {
344         struct ino_entry *e;
345         spin_lock(&sbi->ino_lock[mode]);
346         e = radix_tree_lookup(&sbi->ino_root[mode], ino);
347         spin_unlock(&sbi->ino_lock[mode]);
348         return e ? true : false;
349 }
350
351 static void release_dirty_inode(struct f2fs_sb_info *sbi)
352 {
353         struct ino_entry *e, *tmp;
354         int i;
355
356         for (i = APPEND_INO; i <= UPDATE_INO; i++) {
357                 spin_lock(&sbi->ino_lock[i]);
358                 list_for_each_entry_safe(e, tmp, &sbi->ino_list[i], list) {
359                         list_del(&e->list);
360                         radix_tree_delete(&sbi->ino_root[i], e->ino);
361                         kmem_cache_free(ino_entry_slab, e);
362                 }
363                 spin_unlock(&sbi->ino_lock[i]);
364         }
365 }
366
367 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
368 {
369         int err = 0;
370
371         spin_lock(&sbi->ino_lock[ORPHAN_INO]);
372         if (unlikely(sbi->n_orphans >= sbi->max_orphans))
373                 err = -ENOSPC;
374         else
375                 sbi->n_orphans++;
376         spin_unlock(&sbi->ino_lock[ORPHAN_INO]);
377
378         return err;
379 }
380
381 void release_orphan_inode(struct f2fs_sb_info *sbi)
382 {
383         spin_lock(&sbi->ino_lock[ORPHAN_INO]);
384         f2fs_bug_on(sbi->n_orphans == 0);
385         sbi->n_orphans--;
386         spin_unlock(&sbi->ino_lock[ORPHAN_INO]);
387 }
388
389 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
390 {
391         /* add new orphan ino entry into list */
392         __add_ino_entry(sbi, ino, ORPHAN_INO);
393 }
394
395 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
396 {
397         /* remove orphan entry from orphan list */
398         __remove_ino_entry(sbi, ino, ORPHAN_INO);
399 }
400
401 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
402 {
403         struct inode *inode = f2fs_iget(sbi->sb, ino);
404         f2fs_bug_on(IS_ERR(inode));
405         clear_nlink(inode);
406
407         /* truncate all the data during iput */
408         iput(inode);
409 }
410
411 void recover_orphan_inodes(struct f2fs_sb_info *sbi)
412 {
413         block_t start_blk, orphan_blkaddr, i, j;
414
415         if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
416                 return;
417
418         sbi->por_doing = true;
419
420         start_blk = __start_cp_addr(sbi) + 1 +
421                 le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
422         orphan_blkaddr = __start_sum_addr(sbi) - 1;
423
424         ra_meta_pages(sbi, start_blk, orphan_blkaddr, META_CP);
425
426         for (i = 0; i < orphan_blkaddr; i++) {
427                 struct page *page = get_meta_page(sbi, start_blk + i);
428                 struct f2fs_orphan_block *orphan_blk;
429
430                 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
431                 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
432                         nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
433                         recover_orphan_inode(sbi, ino);
434                 }
435                 f2fs_put_page(page, 1);
436         }
437         /* clear Orphan Flag */
438         clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
439         sbi->por_doing = false;
440         return;
441 }
442
443 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
444 {
445         struct list_head *head;
446         struct f2fs_orphan_block *orphan_blk = NULL;
447         unsigned int nentries = 0;
448         unsigned short index;
449         unsigned short orphan_blocks = (unsigned short)((sbi->n_orphans +
450                 (F2FS_ORPHANS_PER_BLOCK - 1)) / F2FS_ORPHANS_PER_BLOCK);
451         struct page *page = NULL;
452         struct ino_entry *orphan = NULL;
453
454         for (index = 0; index < orphan_blocks; index++)
455                 grab_meta_page(sbi, start_blk + index);
456
457         index = 1;
458         spin_lock(&sbi->ino_lock[ORPHAN_INO]);
459         head = &sbi->ino_list[ORPHAN_INO];
460
461         /* loop for each orphan inode entry and write them in Jornal block */
462         list_for_each_entry(orphan, head, list) {
463                 if (!page) {
464                         page = find_get_page(META_MAPPING(sbi), start_blk++);
465                         f2fs_bug_on(!page);
466                         orphan_blk =
467                                 (struct f2fs_orphan_block *)page_address(page);
468                         memset(orphan_blk, 0, sizeof(*orphan_blk));
469                         f2fs_put_page(page, 0);
470                 }
471
472                 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
473
474                 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
475                         /*
476                          * an orphan block is full of 1020 entries,
477                          * then we need to flush current orphan blocks
478                          * and bring another one in memory
479                          */
480                         orphan_blk->blk_addr = cpu_to_le16(index);
481                         orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
482                         orphan_blk->entry_count = cpu_to_le32(nentries);
483                         set_page_dirty(page);
484                         f2fs_put_page(page, 1);
485                         index++;
486                         nentries = 0;
487                         page = NULL;
488                 }
489         }
490
491         if (page) {
492                 orphan_blk->blk_addr = cpu_to_le16(index);
493                 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
494                 orphan_blk->entry_count = cpu_to_le32(nentries);
495                 set_page_dirty(page);
496                 f2fs_put_page(page, 1);
497         }
498
499         spin_unlock(&sbi->ino_lock[ORPHAN_INO]);
500 }
501
502 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
503                                 block_t cp_addr, unsigned long long *version)
504 {
505         struct page *cp_page_1, *cp_page_2 = NULL;
506         unsigned long blk_size = sbi->blocksize;
507         struct f2fs_checkpoint *cp_block;
508         unsigned long long cur_version = 0, pre_version = 0;
509         size_t crc_offset;
510         __u32 crc = 0;
511
512         /* Read the 1st cp block in this CP pack */
513         cp_page_1 = get_meta_page(sbi, cp_addr);
514
515         /* get the version number */
516         cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
517         crc_offset = le32_to_cpu(cp_block->checksum_offset);
518         if (crc_offset >= blk_size)
519                 goto invalid_cp1;
520
521         crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
522         if (!f2fs_crc_valid(crc, cp_block, crc_offset))
523                 goto invalid_cp1;
524
525         pre_version = cur_cp_version(cp_block);
526
527         /* Read the 2nd cp block in this CP pack */
528         cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
529         cp_page_2 = get_meta_page(sbi, cp_addr);
530
531         cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
532         crc_offset = le32_to_cpu(cp_block->checksum_offset);
533         if (crc_offset >= blk_size)
534                 goto invalid_cp2;
535
536         crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
537         if (!f2fs_crc_valid(crc, cp_block, crc_offset))
538                 goto invalid_cp2;
539
540         cur_version = cur_cp_version(cp_block);
541
542         if (cur_version == pre_version) {
543                 *version = cur_version;
544                 f2fs_put_page(cp_page_2, 1);
545                 return cp_page_1;
546         }
547 invalid_cp2:
548         f2fs_put_page(cp_page_2, 1);
549 invalid_cp1:
550         f2fs_put_page(cp_page_1, 1);
551         return NULL;
552 }
553
554 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
555 {
556         struct f2fs_checkpoint *cp_block;
557         struct f2fs_super_block *fsb = sbi->raw_super;
558         struct page *cp1, *cp2, *cur_page;
559         unsigned long blk_size = sbi->blocksize;
560         unsigned long long cp1_version = 0, cp2_version = 0;
561         unsigned long long cp_start_blk_no;
562         unsigned int cp_blks = 1 + le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
563         block_t cp_blk_no;
564         int i;
565
566         sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
567         if (!sbi->ckpt)
568                 return -ENOMEM;
569         /*
570          * Finding out valid cp block involves read both
571          * sets( cp pack1 and cp pack 2)
572          */
573         cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
574         cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
575
576         /* The second checkpoint pack should start at the next segment */
577         cp_start_blk_no += ((unsigned long long)1) <<
578                                 le32_to_cpu(fsb->log_blocks_per_seg);
579         cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
580
581         if (cp1 && cp2) {
582                 if (ver_after(cp2_version, cp1_version))
583                         cur_page = cp2;
584                 else
585                         cur_page = cp1;
586         } else if (cp1) {
587                 cur_page = cp1;
588         } else if (cp2) {
589                 cur_page = cp2;
590         } else {
591                 goto fail_no_cp;
592         }
593
594         cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
595         memcpy(sbi->ckpt, cp_block, blk_size);
596
597         if (cp_blks <= 1)
598                 goto done;
599
600         cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
601         if (cur_page == cp2)
602                 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
603
604         for (i = 1; i < cp_blks; i++) {
605                 void *sit_bitmap_ptr;
606                 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
607
608                 cur_page = get_meta_page(sbi, cp_blk_no + i);
609                 sit_bitmap_ptr = page_address(cur_page);
610                 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
611                 f2fs_put_page(cur_page, 1);
612         }
613 done:
614         f2fs_put_page(cp1, 1);
615         f2fs_put_page(cp2, 1);
616         return 0;
617
618 fail_no_cp:
619         kfree(sbi->ckpt);
620         return -EINVAL;
621 }
622
623 static int __add_dirty_inode(struct inode *inode, struct dir_inode_entry *new)
624 {
625         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
626
627         if (is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR))
628                 return -EEXIST;
629
630         set_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
631         F2FS_I(inode)->dirty_dir = new;
632         list_add_tail(&new->list, &sbi->dir_inode_list);
633         stat_inc_dirty_dir(sbi);
634         return 0;
635 }
636
637 void set_dirty_dir_page(struct inode *inode, struct page *page)
638 {
639         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
640         struct dir_inode_entry *new;
641         int ret = 0;
642
643         if (!S_ISDIR(inode->i_mode))
644                 return;
645
646         new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
647         new->inode = inode;
648         INIT_LIST_HEAD(&new->list);
649
650         spin_lock(&sbi->dir_inode_lock);
651         ret = __add_dirty_inode(inode, new);
652         inode_inc_dirty_dents(inode);
653         SetPagePrivate(page);
654         spin_unlock(&sbi->dir_inode_lock);
655
656         if (ret)
657                 kmem_cache_free(inode_entry_slab, new);
658 }
659
660 void add_dirty_dir_inode(struct inode *inode)
661 {
662         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
663         struct dir_inode_entry *new =
664                         f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
665         int ret = 0;
666
667         new->inode = inode;
668         INIT_LIST_HEAD(&new->list);
669
670         spin_lock(&sbi->dir_inode_lock);
671         ret = __add_dirty_inode(inode, new);
672         spin_unlock(&sbi->dir_inode_lock);
673
674         if (ret)
675                 kmem_cache_free(inode_entry_slab, new);
676 }
677
678 void remove_dirty_dir_inode(struct inode *inode)
679 {
680         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
681         struct dir_inode_entry *entry;
682
683         if (!S_ISDIR(inode->i_mode))
684                 return;
685
686         spin_lock(&sbi->dir_inode_lock);
687         if (get_dirty_dents(inode) ||
688                         !is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR)) {
689                 spin_unlock(&sbi->dir_inode_lock);
690                 return;
691         }
692
693         entry = F2FS_I(inode)->dirty_dir;
694         list_del(&entry->list);
695         F2FS_I(inode)->dirty_dir = NULL;
696         clear_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
697         stat_dec_dirty_dir(sbi);
698         spin_unlock(&sbi->dir_inode_lock);
699         kmem_cache_free(inode_entry_slab, entry);
700
701         /* Only from the recovery routine */
702         if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
703                 clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
704                 iput(inode);
705         }
706 }
707
708 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
709 {
710         struct list_head *head;
711         struct dir_inode_entry *entry;
712         struct inode *inode;
713 retry:
714         spin_lock(&sbi->dir_inode_lock);
715
716         head = &sbi->dir_inode_list;
717         if (list_empty(head)) {
718                 spin_unlock(&sbi->dir_inode_lock);
719                 return;
720         }
721         entry = list_entry(head->next, struct dir_inode_entry, list);
722         inode = igrab(entry->inode);
723         spin_unlock(&sbi->dir_inode_lock);
724         if (inode) {
725                 filemap_fdatawrite(inode->i_mapping);
726                 iput(inode);
727         } else {
728                 /*
729                  * We should submit bio, since it exists several
730                  * wribacking dentry pages in the freeing inode.
731                  */
732                 f2fs_submit_merged_bio(sbi, DATA, WRITE);
733         }
734         goto retry;
735 }
736
737 /*
738  * Freeze all the FS-operations for checkpoint.
739  */
740 static void block_operations(struct f2fs_sb_info *sbi)
741 {
742         struct writeback_control wbc = {
743                 .sync_mode = WB_SYNC_ALL,
744                 .nr_to_write = LONG_MAX,
745                 .for_reclaim = 0,
746         };
747         struct blk_plug plug;
748
749         blk_start_plug(&plug);
750
751 retry_flush_dents:
752         f2fs_lock_all(sbi);
753         /* write all the dirty dentry pages */
754         if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
755                 f2fs_unlock_all(sbi);
756                 sync_dirty_dir_inodes(sbi);
757                 goto retry_flush_dents;
758         }
759
760         /*
761          * POR: we should ensure that there is no dirty node pages
762          * until finishing nat/sit flush.
763          */
764 retry_flush_nodes:
765         down_write(&sbi->node_write);
766
767         if (get_pages(sbi, F2FS_DIRTY_NODES)) {
768                 up_write(&sbi->node_write);
769                 sync_node_pages(sbi, 0, &wbc);
770                 goto retry_flush_nodes;
771         }
772         blk_finish_plug(&plug);
773 }
774
775 static void unblock_operations(struct f2fs_sb_info *sbi)
776 {
777         up_write(&sbi->node_write);
778         f2fs_unlock_all(sbi);
779 }
780
781 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
782 {
783         DEFINE_WAIT(wait);
784
785         for (;;) {
786                 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
787
788                 if (!get_pages(sbi, F2FS_WRITEBACK))
789                         break;
790
791                 io_schedule();
792         }
793         finish_wait(&sbi->cp_wait, &wait);
794 }
795
796 static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
797 {
798         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
799         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
800         nid_t last_nid = 0;
801         block_t start_blk;
802         struct page *cp_page;
803         unsigned int data_sum_blocks, orphan_blocks;
804         __u32 crc32 = 0;
805         void *kaddr;
806         int i;
807         int cp_payload_blks = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
808
809         /*
810          * This avoids to conduct wrong roll-forward operations and uses
811          * metapages, so should be called prior to sync_meta_pages below.
812          */
813         discard_next_dnode(sbi, NEXT_FREE_BLKADDR(sbi, curseg));
814
815         /* Flush all the NAT/SIT pages */
816         while (get_pages(sbi, F2FS_DIRTY_META))
817                 sync_meta_pages(sbi, META, LONG_MAX);
818
819         next_free_nid(sbi, &last_nid);
820
821         /*
822          * modify checkpoint
823          * version number is already updated
824          */
825         ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
826         ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
827         ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
828         for (i = 0; i < 3; i++) {
829                 ckpt->cur_node_segno[i] =
830                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
831                 ckpt->cur_node_blkoff[i] =
832                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
833                 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
834                                 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
835         }
836         for (i = 0; i < 3; i++) {
837                 ckpt->cur_data_segno[i] =
838                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
839                 ckpt->cur_data_blkoff[i] =
840                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
841                 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
842                                 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
843         }
844
845         ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
846         ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
847         ckpt->next_free_nid = cpu_to_le32(last_nid);
848
849         /* 2 cp  + n data seg summary + orphan inode blocks */
850         data_sum_blocks = npages_for_summary_flush(sbi);
851         if (data_sum_blocks < 3)
852                 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
853         else
854                 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
855
856         orphan_blocks = (sbi->n_orphans + F2FS_ORPHANS_PER_BLOCK - 1)
857                                         / F2FS_ORPHANS_PER_BLOCK;
858         ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
859                         orphan_blocks);
860
861         if (is_umount) {
862                 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
863                 ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
864                                 cp_payload_blks + data_sum_blocks +
865                                 orphan_blocks + NR_CURSEG_NODE_TYPE);
866         } else {
867                 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
868                 ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
869                                 cp_payload_blks + data_sum_blocks +
870                                 orphan_blocks);
871         }
872
873         if (sbi->n_orphans)
874                 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
875         else
876                 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
877
878         /* update SIT/NAT bitmap */
879         get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
880         get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
881
882         crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
883         *((__le32 *)((unsigned char *)ckpt +
884                                 le32_to_cpu(ckpt->checksum_offset)))
885                                 = cpu_to_le32(crc32);
886
887         start_blk = __start_cp_addr(sbi);
888
889         /* write out checkpoint buffer at block 0 */
890         cp_page = grab_meta_page(sbi, start_blk++);
891         kaddr = page_address(cp_page);
892         memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
893         set_page_dirty(cp_page);
894         f2fs_put_page(cp_page, 1);
895
896         for (i = 1; i < 1 + cp_payload_blks; i++) {
897                 cp_page = grab_meta_page(sbi, start_blk++);
898                 kaddr = page_address(cp_page);
899                 memcpy(kaddr, (char *)ckpt + i * F2FS_BLKSIZE,
900                                 (1 << sbi->log_blocksize));
901                 set_page_dirty(cp_page);
902                 f2fs_put_page(cp_page, 1);
903         }
904
905         if (sbi->n_orphans) {
906                 write_orphan_inodes(sbi, start_blk);
907                 start_blk += orphan_blocks;
908         }
909
910         write_data_summaries(sbi, start_blk);
911         start_blk += data_sum_blocks;
912         if (is_umount) {
913                 write_node_summaries(sbi, start_blk);
914                 start_blk += NR_CURSEG_NODE_TYPE;
915         }
916
917         /* writeout checkpoint block */
918         cp_page = grab_meta_page(sbi, start_blk);
919         kaddr = page_address(cp_page);
920         memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
921         set_page_dirty(cp_page);
922         f2fs_put_page(cp_page, 1);
923
924         /* wait for previous submitted node/meta pages writeback */
925         wait_on_all_pages_writeback(sbi);
926
927         filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX);
928         filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX);
929
930         /* update user_block_counts */
931         sbi->last_valid_block_count = sbi->total_valid_block_count;
932         sbi->alloc_valid_block_count = 0;
933
934         /* Here, we only have one bio having CP pack */
935         sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
936
937         if (!is_set_ckpt_flags(ckpt, CP_ERROR_FLAG)) {
938                 clear_prefree_segments(sbi);
939                 release_dirty_inode(sbi);
940                 F2FS_RESET_SB_DIRT(sbi);
941         }
942 }
943
944 /*
945  * We guarantee that this checkpoint procedure should not fail.
946  */
947 void write_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
948 {
949         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
950         unsigned long long ckpt_ver;
951
952         trace_f2fs_write_checkpoint(sbi->sb, is_umount, "start block_ops");
953
954         mutex_lock(&sbi->cp_mutex);
955         block_operations(sbi);
956
957         trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish block_ops");
958
959         f2fs_submit_merged_bio(sbi, DATA, WRITE);
960         f2fs_submit_merged_bio(sbi, NODE, WRITE);
961         f2fs_submit_merged_bio(sbi, META, WRITE);
962
963         /*
964          * update checkpoint pack index
965          * Increase the version number so that
966          * SIT entries and seg summaries are written at correct place
967          */
968         ckpt_ver = cur_cp_version(ckpt);
969         ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
970
971         /* write cached NAT/SIT entries to NAT/SIT area */
972         flush_nat_entries(sbi);
973         flush_sit_entries(sbi);
974
975         /* unlock all the fs_lock[] in do_checkpoint() */
976         do_checkpoint(sbi, is_umount);
977
978         unblock_operations(sbi);
979         mutex_unlock(&sbi->cp_mutex);
980
981         stat_inc_cp_count(sbi->stat_info);
982         trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish checkpoint");
983 }
984
985 void init_ino_entry_info(struct f2fs_sb_info *sbi)
986 {
987         int i;
988
989         for (i = 0; i < MAX_INO_ENTRY; i++) {
990                 INIT_RADIX_TREE(&sbi->ino_root[i], GFP_ATOMIC);
991                 spin_lock_init(&sbi->ino_lock[i]);
992                 INIT_LIST_HEAD(&sbi->ino_list[i]);
993         }
994
995         /*
996          * considering 512 blocks in a segment 8 blocks are needed for cp
997          * and log segment summaries. Remaining blocks are used to keep
998          * orphan entries with the limitation one reserved segment
999          * for cp pack we can have max 1020*504 orphan entries
1000          */
1001         sbi->n_orphans = 0;
1002         sbi->max_orphans = (sbi->blocks_per_seg - 2 - NR_CURSEG_TYPE)
1003                                 * F2FS_ORPHANS_PER_BLOCK;
1004 }
1005
1006 int __init create_checkpoint_caches(void)
1007 {
1008         ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1009                         sizeof(struct ino_entry));
1010         if (!ino_entry_slab)
1011                 return -ENOMEM;
1012         inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
1013                         sizeof(struct dir_inode_entry));
1014         if (!inode_entry_slab) {
1015                 kmem_cache_destroy(ino_entry_slab);
1016                 return -ENOMEM;
1017         }
1018         return 0;
1019 }
1020
1021 void destroy_checkpoint_caches(void)
1022 {
1023         kmem_cache_destroy(ino_entry_slab);
1024         kmem_cache_destroy(inode_entry_slab);
1025 }