]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/f2fs/checkpoint.c
Merge tag 'v3.8-rc6' into x86/urgent
[karo-tx-linux.git] / fs / f2fs / checkpoint.c
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23
24 static struct kmem_cache *orphan_entry_slab;
25 static struct kmem_cache *inode_entry_slab;
26
27 /*
28  * We guarantee no failure on the returned page.
29  */
30 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
31 {
32         struct address_space *mapping = sbi->meta_inode->i_mapping;
33         struct page *page = NULL;
34 repeat:
35         page = grab_cache_page(mapping, index);
36         if (!page) {
37                 cond_resched();
38                 goto repeat;
39         }
40
41         /* We wait writeback only inside grab_meta_page() */
42         wait_on_page_writeback(page);
43         SetPageUptodate(page);
44         return page;
45 }
46
47 /*
48  * We guarantee no failure on the returned page.
49  */
50 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
51 {
52         struct address_space *mapping = sbi->meta_inode->i_mapping;
53         struct page *page;
54 repeat:
55         page = grab_cache_page(mapping, index);
56         if (!page) {
57                 cond_resched();
58                 goto repeat;
59         }
60         if (f2fs_readpage(sbi, page, index, READ_SYNC)) {
61                 f2fs_put_page(page, 1);
62                 goto repeat;
63         }
64         mark_page_accessed(page);
65
66         /* We do not allow returning an errorneous page */
67         return page;
68 }
69
70 static int f2fs_write_meta_page(struct page *page,
71                                 struct writeback_control *wbc)
72 {
73         struct inode *inode = page->mapping->host;
74         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
75         int err;
76
77         wait_on_page_writeback(page);
78
79         err = write_meta_page(sbi, page, wbc);
80         if (err) {
81                 wbc->pages_skipped++;
82                 set_page_dirty(page);
83         }
84
85         dec_page_count(sbi, F2FS_DIRTY_META);
86
87         /* In this case, we should not unlock this page */
88         if (err != AOP_WRITEPAGE_ACTIVATE)
89                 unlock_page(page);
90         return err;
91 }
92
93 static int f2fs_write_meta_pages(struct address_space *mapping,
94                                 struct writeback_control *wbc)
95 {
96         struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
97         struct block_device *bdev = sbi->sb->s_bdev;
98         long written;
99
100         if (wbc->for_kupdate)
101                 return 0;
102
103         if (get_pages(sbi, F2FS_DIRTY_META) == 0)
104                 return 0;
105
106         /* if mounting is failed, skip writing node pages */
107         mutex_lock(&sbi->cp_mutex);
108         written = sync_meta_pages(sbi, META, bio_get_nr_vecs(bdev));
109         mutex_unlock(&sbi->cp_mutex);
110         wbc->nr_to_write -= written;
111         return 0;
112 }
113
114 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
115                                                 long nr_to_write)
116 {
117         struct address_space *mapping = sbi->meta_inode->i_mapping;
118         pgoff_t index = 0, end = LONG_MAX;
119         struct pagevec pvec;
120         long nwritten = 0;
121         struct writeback_control wbc = {
122                 .for_reclaim = 0,
123         };
124
125         pagevec_init(&pvec, 0);
126
127         while (index <= end) {
128                 int i, nr_pages;
129                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
130                                 PAGECACHE_TAG_DIRTY,
131                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
132                 if (nr_pages == 0)
133                         break;
134
135                 for (i = 0; i < nr_pages; i++) {
136                         struct page *page = pvec.pages[i];
137                         lock_page(page);
138                         BUG_ON(page->mapping != mapping);
139                         BUG_ON(!PageDirty(page));
140                         clear_page_dirty_for_io(page);
141                         f2fs_write_meta_page(page, &wbc);
142                         if (nwritten++ >= nr_to_write)
143                                 break;
144                 }
145                 pagevec_release(&pvec);
146                 cond_resched();
147         }
148
149         if (nwritten)
150                 f2fs_submit_bio(sbi, type, nr_to_write == LONG_MAX);
151
152         return nwritten;
153 }
154
155 static int f2fs_set_meta_page_dirty(struct page *page)
156 {
157         struct address_space *mapping = page->mapping;
158         struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
159
160         SetPageUptodate(page);
161         if (!PageDirty(page)) {
162                 __set_page_dirty_nobuffers(page);
163                 inc_page_count(sbi, F2FS_DIRTY_META);
164                 F2FS_SET_SB_DIRT(sbi);
165                 return 1;
166         }
167         return 0;
168 }
169
170 const struct address_space_operations f2fs_meta_aops = {
171         .writepage      = f2fs_write_meta_page,
172         .writepages     = f2fs_write_meta_pages,
173         .set_page_dirty = f2fs_set_meta_page_dirty,
174 };
175
176 int check_orphan_space(struct f2fs_sb_info *sbi)
177 {
178         unsigned int max_orphans;
179         int err = 0;
180
181         /*
182          * considering 512 blocks in a segment 5 blocks are needed for cp
183          * and log segment summaries. Remaining blocks are used to keep
184          * orphan entries with the limitation one reserved segment
185          * for cp pack we can have max 1020*507 orphan entries
186          */
187         max_orphans = (sbi->blocks_per_seg - 5) * F2FS_ORPHANS_PER_BLOCK;
188         mutex_lock(&sbi->orphan_inode_mutex);
189         if (sbi->n_orphans >= max_orphans)
190                 err = -ENOSPC;
191         mutex_unlock(&sbi->orphan_inode_mutex);
192         return err;
193 }
194
195 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
196 {
197         struct list_head *head, *this;
198         struct orphan_inode_entry *new = NULL, *orphan = NULL;
199
200         mutex_lock(&sbi->orphan_inode_mutex);
201         head = &sbi->orphan_inode_list;
202         list_for_each(this, head) {
203                 orphan = list_entry(this, struct orphan_inode_entry, list);
204                 if (orphan->ino == ino)
205                         goto out;
206                 if (orphan->ino > ino)
207                         break;
208                 orphan = NULL;
209         }
210 retry:
211         new = kmem_cache_alloc(orphan_entry_slab, GFP_ATOMIC);
212         if (!new) {
213                 cond_resched();
214                 goto retry;
215         }
216         new->ino = ino;
217
218         /* add new_oentry into list which is sorted by inode number */
219         if (orphan) {
220                 struct orphan_inode_entry *prev;
221
222                 /* get previous entry */
223                 prev = list_entry(orphan->list.prev, typeof(*prev), list);
224                 if (&prev->list != head)
225                         /* insert new orphan inode entry */
226                         list_add(&new->list, &prev->list);
227                 else
228                         list_add(&new->list, head);
229         } else {
230                 list_add_tail(&new->list, head);
231         }
232         sbi->n_orphans++;
233 out:
234         mutex_unlock(&sbi->orphan_inode_mutex);
235 }
236
237 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
238 {
239         struct list_head *this, *next, *head;
240         struct orphan_inode_entry *orphan;
241
242         mutex_lock(&sbi->orphan_inode_mutex);
243         head = &sbi->orphan_inode_list;
244         list_for_each_safe(this, next, head) {
245                 orphan = list_entry(this, struct orphan_inode_entry, list);
246                 if (orphan->ino == ino) {
247                         list_del(&orphan->list);
248                         kmem_cache_free(orphan_entry_slab, orphan);
249                         sbi->n_orphans--;
250                         break;
251                 }
252         }
253         mutex_unlock(&sbi->orphan_inode_mutex);
254 }
255
256 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
257 {
258         struct inode *inode = f2fs_iget(sbi->sb, ino);
259         BUG_ON(IS_ERR(inode));
260         clear_nlink(inode);
261
262         /* truncate all the data during iput */
263         iput(inode);
264 }
265
266 int recover_orphan_inodes(struct f2fs_sb_info *sbi)
267 {
268         block_t start_blk, orphan_blkaddr, i, j;
269
270         if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
271                 return 0;
272
273         sbi->por_doing = 1;
274         start_blk = __start_cp_addr(sbi) + 1;
275         orphan_blkaddr = __start_sum_addr(sbi) - 1;
276
277         for (i = 0; i < orphan_blkaddr; i++) {
278                 struct page *page = get_meta_page(sbi, start_blk + i);
279                 struct f2fs_orphan_block *orphan_blk;
280
281                 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
282                 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
283                         nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
284                         recover_orphan_inode(sbi, ino);
285                 }
286                 f2fs_put_page(page, 1);
287         }
288         /* clear Orphan Flag */
289         clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
290         sbi->por_doing = 0;
291         return 0;
292 }
293
294 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
295 {
296         struct list_head *head, *this, *next;
297         struct f2fs_orphan_block *orphan_blk = NULL;
298         struct page *page = NULL;
299         unsigned int nentries = 0;
300         unsigned short index = 1;
301         unsigned short orphan_blocks;
302
303         orphan_blocks = (unsigned short)((sbi->n_orphans +
304                 (F2FS_ORPHANS_PER_BLOCK - 1)) / F2FS_ORPHANS_PER_BLOCK);
305
306         mutex_lock(&sbi->orphan_inode_mutex);
307         head = &sbi->orphan_inode_list;
308
309         /* loop for each orphan inode entry and write them in Jornal block */
310         list_for_each_safe(this, next, head) {
311                 struct orphan_inode_entry *orphan;
312
313                 orphan = list_entry(this, struct orphan_inode_entry, list);
314
315                 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
316                         /*
317                          * an orphan block is full of 1020 entries,
318                          * then we need to flush current orphan blocks
319                          * and bring another one in memory
320                          */
321                         orphan_blk->blk_addr = cpu_to_le16(index);
322                         orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
323                         orphan_blk->entry_count = cpu_to_le32(nentries);
324                         set_page_dirty(page);
325                         f2fs_put_page(page, 1);
326                         index++;
327                         start_blk++;
328                         nentries = 0;
329                         page = NULL;
330                 }
331                 if (page)
332                         goto page_exist;
333
334                 page = grab_meta_page(sbi, start_blk);
335                 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
336                 memset(orphan_blk, 0, sizeof(*orphan_blk));
337 page_exist:
338                 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
339         }
340         if (!page)
341                 goto end;
342
343         orphan_blk->blk_addr = cpu_to_le16(index);
344         orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
345         orphan_blk->entry_count = cpu_to_le32(nentries);
346         set_page_dirty(page);
347         f2fs_put_page(page, 1);
348 end:
349         mutex_unlock(&sbi->orphan_inode_mutex);
350 }
351
352 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
353                                 block_t cp_addr, unsigned long long *version)
354 {
355         struct page *cp_page_1, *cp_page_2 = NULL;
356         unsigned long blk_size = sbi->blocksize;
357         struct f2fs_checkpoint *cp_block;
358         unsigned long long cur_version = 0, pre_version = 0;
359         unsigned int crc = 0;
360         size_t crc_offset;
361
362         /* Read the 1st cp block in this CP pack */
363         cp_page_1 = get_meta_page(sbi, cp_addr);
364
365         /* get the version number */
366         cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
367         crc_offset = le32_to_cpu(cp_block->checksum_offset);
368         if (crc_offset >= blk_size)
369                 goto invalid_cp1;
370
371         crc = *(unsigned int *)((unsigned char *)cp_block + crc_offset);
372         if (!f2fs_crc_valid(crc, cp_block, crc_offset))
373                 goto invalid_cp1;
374
375         pre_version = le64_to_cpu(cp_block->checkpoint_ver);
376
377         /* Read the 2nd cp block in this CP pack */
378         cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
379         cp_page_2 = get_meta_page(sbi, cp_addr);
380
381         cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
382         crc_offset = le32_to_cpu(cp_block->checksum_offset);
383         if (crc_offset >= blk_size)
384                 goto invalid_cp2;
385
386         crc = *(unsigned int *)((unsigned char *)cp_block + crc_offset);
387         if (!f2fs_crc_valid(crc, cp_block, crc_offset))
388                 goto invalid_cp2;
389
390         cur_version = le64_to_cpu(cp_block->checkpoint_ver);
391
392         if (cur_version == pre_version) {
393                 *version = cur_version;
394                 f2fs_put_page(cp_page_2, 1);
395                 return cp_page_1;
396         }
397 invalid_cp2:
398         f2fs_put_page(cp_page_2, 1);
399 invalid_cp1:
400         f2fs_put_page(cp_page_1, 1);
401         return NULL;
402 }
403
404 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
405 {
406         struct f2fs_checkpoint *cp_block;
407         struct f2fs_super_block *fsb = sbi->raw_super;
408         struct page *cp1, *cp2, *cur_page;
409         unsigned long blk_size = sbi->blocksize;
410         unsigned long long cp1_version = 0, cp2_version = 0;
411         unsigned long long cp_start_blk_no;
412
413         sbi->ckpt = kzalloc(blk_size, GFP_KERNEL);
414         if (!sbi->ckpt)
415                 return -ENOMEM;
416         /*
417          * Finding out valid cp block involves read both
418          * sets( cp pack1 and cp pack 2)
419          */
420         cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
421         cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
422
423         /* The second checkpoint pack should start at the next segment */
424         cp_start_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
425         cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
426
427         if (cp1 && cp2) {
428                 if (ver_after(cp2_version, cp1_version))
429                         cur_page = cp2;
430                 else
431                         cur_page = cp1;
432         } else if (cp1) {
433                 cur_page = cp1;
434         } else if (cp2) {
435                 cur_page = cp2;
436         } else {
437                 goto fail_no_cp;
438         }
439
440         cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
441         memcpy(sbi->ckpt, cp_block, blk_size);
442
443         f2fs_put_page(cp1, 1);
444         f2fs_put_page(cp2, 1);
445         return 0;
446
447 fail_no_cp:
448         kfree(sbi->ckpt);
449         return -EINVAL;
450 }
451
452 void set_dirty_dir_page(struct inode *inode, struct page *page)
453 {
454         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
455         struct list_head *head = &sbi->dir_inode_list;
456         struct dir_inode_entry *new;
457         struct list_head *this;
458
459         if (!S_ISDIR(inode->i_mode))
460                 return;
461 retry:
462         new = kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
463         if (!new) {
464                 cond_resched();
465                 goto retry;
466         }
467         new->inode = inode;
468         INIT_LIST_HEAD(&new->list);
469
470         spin_lock(&sbi->dir_inode_lock);
471         list_for_each(this, head) {
472                 struct dir_inode_entry *entry;
473                 entry = list_entry(this, struct dir_inode_entry, list);
474                 if (entry->inode == inode) {
475                         kmem_cache_free(inode_entry_slab, new);
476                         goto out;
477                 }
478         }
479         list_add_tail(&new->list, head);
480         sbi->n_dirty_dirs++;
481
482         BUG_ON(!S_ISDIR(inode->i_mode));
483 out:
484         inc_page_count(sbi, F2FS_DIRTY_DENTS);
485         inode_inc_dirty_dents(inode);
486         SetPagePrivate(page);
487
488         spin_unlock(&sbi->dir_inode_lock);
489 }
490
491 void remove_dirty_dir_inode(struct inode *inode)
492 {
493         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
494         struct list_head *head = &sbi->dir_inode_list;
495         struct list_head *this;
496
497         if (!S_ISDIR(inode->i_mode))
498                 return;
499
500         spin_lock(&sbi->dir_inode_lock);
501         if (atomic_read(&F2FS_I(inode)->dirty_dents))
502                 goto out;
503
504         list_for_each(this, head) {
505                 struct dir_inode_entry *entry;
506                 entry = list_entry(this, struct dir_inode_entry, list);
507                 if (entry->inode == inode) {
508                         list_del(&entry->list);
509                         kmem_cache_free(inode_entry_slab, entry);
510                         sbi->n_dirty_dirs--;
511                         break;
512                 }
513         }
514 out:
515         spin_unlock(&sbi->dir_inode_lock);
516 }
517
518 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
519 {
520         struct list_head *head = &sbi->dir_inode_list;
521         struct dir_inode_entry *entry;
522         struct inode *inode;
523 retry:
524         spin_lock(&sbi->dir_inode_lock);
525         if (list_empty(head)) {
526                 spin_unlock(&sbi->dir_inode_lock);
527                 return;
528         }
529         entry = list_entry(head->next, struct dir_inode_entry, list);
530         inode = igrab(entry->inode);
531         spin_unlock(&sbi->dir_inode_lock);
532         if (inode) {
533                 filemap_flush(inode->i_mapping);
534                 iput(inode);
535         } else {
536                 /*
537                  * We should submit bio, since it exists several
538                  * wribacking dentry pages in the freeing inode.
539                  */
540                 f2fs_submit_bio(sbi, DATA, true);
541         }
542         goto retry;
543 }
544
545 /*
546  * Freeze all the FS-operations for checkpoint.
547  */
548 void block_operations(struct f2fs_sb_info *sbi)
549 {
550         int t;
551         struct writeback_control wbc = {
552                 .sync_mode = WB_SYNC_ALL,
553                 .nr_to_write = LONG_MAX,
554                 .for_reclaim = 0,
555         };
556
557         /* Stop renaming operation */
558         mutex_lock_op(sbi, RENAME);
559         mutex_lock_op(sbi, DENTRY_OPS);
560
561 retry_dents:
562         /* write all the dirty dentry pages */
563         sync_dirty_dir_inodes(sbi);
564
565         mutex_lock_op(sbi, DATA_WRITE);
566         if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
567                 mutex_unlock_op(sbi, DATA_WRITE);
568                 goto retry_dents;
569         }
570
571         /* block all the operations */
572         for (t = DATA_NEW; t <= NODE_TRUNC; t++)
573                 mutex_lock_op(sbi, t);
574
575         mutex_lock(&sbi->write_inode);
576
577         /*
578          * POR: we should ensure that there is no dirty node pages
579          * until finishing nat/sit flush.
580          */
581 retry:
582         sync_node_pages(sbi, 0, &wbc);
583
584         mutex_lock_op(sbi, NODE_WRITE);
585
586         if (get_pages(sbi, F2FS_DIRTY_NODES)) {
587                 mutex_unlock_op(sbi, NODE_WRITE);
588                 goto retry;
589         }
590         mutex_unlock(&sbi->write_inode);
591 }
592
593 static void unblock_operations(struct f2fs_sb_info *sbi)
594 {
595         int t;
596         for (t = NODE_WRITE; t >= RENAME; t--)
597                 mutex_unlock_op(sbi, t);
598 }
599
600 static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
601 {
602         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
603         nid_t last_nid = 0;
604         block_t start_blk;
605         struct page *cp_page;
606         unsigned int data_sum_blocks, orphan_blocks;
607         unsigned int crc32 = 0;
608         void *kaddr;
609         int i;
610
611         /* Flush all the NAT/SIT pages */
612         while (get_pages(sbi, F2FS_DIRTY_META))
613                 sync_meta_pages(sbi, META, LONG_MAX);
614
615         next_free_nid(sbi, &last_nid);
616
617         /*
618          * modify checkpoint
619          * version number is already updated
620          */
621         ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
622         ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
623         ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
624         for (i = 0; i < 3; i++) {
625                 ckpt->cur_node_segno[i] =
626                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
627                 ckpt->cur_node_blkoff[i] =
628                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
629                 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
630                                 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
631         }
632         for (i = 0; i < 3; i++) {
633                 ckpt->cur_data_segno[i] =
634                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
635                 ckpt->cur_data_blkoff[i] =
636                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
637                 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
638                                 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
639         }
640
641         ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
642         ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
643         ckpt->next_free_nid = cpu_to_le32(last_nid);
644
645         /* 2 cp  + n data seg summary + orphan inode blocks */
646         data_sum_blocks = npages_for_summary_flush(sbi);
647         if (data_sum_blocks < 3)
648                 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
649         else
650                 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
651
652         orphan_blocks = (sbi->n_orphans + F2FS_ORPHANS_PER_BLOCK - 1)
653                                         / F2FS_ORPHANS_PER_BLOCK;
654         ckpt->cp_pack_start_sum = cpu_to_le32(1 + orphan_blocks);
655
656         if (is_umount) {
657                 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
658                 ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
659                         data_sum_blocks + orphan_blocks + NR_CURSEG_NODE_TYPE);
660         } else {
661                 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
662                 ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
663                         data_sum_blocks + orphan_blocks);
664         }
665
666         if (sbi->n_orphans)
667                 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
668         else
669                 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
670
671         /* update SIT/NAT bitmap */
672         get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
673         get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
674
675         crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
676         *(__le32 *)((unsigned char *)ckpt +
677                                 le32_to_cpu(ckpt->checksum_offset))
678                                 = cpu_to_le32(crc32);
679
680         start_blk = __start_cp_addr(sbi);
681
682         /* write out checkpoint buffer at block 0 */
683         cp_page = grab_meta_page(sbi, start_blk++);
684         kaddr = page_address(cp_page);
685         memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
686         set_page_dirty(cp_page);
687         f2fs_put_page(cp_page, 1);
688
689         if (sbi->n_orphans) {
690                 write_orphan_inodes(sbi, start_blk);
691                 start_blk += orphan_blocks;
692         }
693
694         write_data_summaries(sbi, start_blk);
695         start_blk += data_sum_blocks;
696         if (is_umount) {
697                 write_node_summaries(sbi, start_blk);
698                 start_blk += NR_CURSEG_NODE_TYPE;
699         }
700
701         /* writeout checkpoint block */
702         cp_page = grab_meta_page(sbi, start_blk);
703         kaddr = page_address(cp_page);
704         memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
705         set_page_dirty(cp_page);
706         f2fs_put_page(cp_page, 1);
707
708         /* wait for previous submitted node/meta pages writeback */
709         while (get_pages(sbi, F2FS_WRITEBACK))
710                 congestion_wait(BLK_RW_ASYNC, HZ / 50);
711
712         filemap_fdatawait_range(sbi->node_inode->i_mapping, 0, LONG_MAX);
713         filemap_fdatawait_range(sbi->meta_inode->i_mapping, 0, LONG_MAX);
714
715         /* update user_block_counts */
716         sbi->last_valid_block_count = sbi->total_valid_block_count;
717         sbi->alloc_valid_block_count = 0;
718
719         /* Here, we only have one bio having CP pack */
720         if (is_set_ckpt_flags(ckpt, CP_ERROR_FLAG))
721                 sbi->sb->s_flags |= MS_RDONLY;
722         else
723                 sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
724
725         clear_prefree_segments(sbi);
726         F2FS_RESET_SB_DIRT(sbi);
727 }
728
729 /*
730  * We guarantee that this checkpoint procedure should not fail.
731  */
732 void write_checkpoint(struct f2fs_sb_info *sbi, bool blocked, bool is_umount)
733 {
734         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
735         unsigned long long ckpt_ver;
736
737         if (!blocked) {
738                 mutex_lock(&sbi->cp_mutex);
739                 block_operations(sbi);
740         }
741
742         f2fs_submit_bio(sbi, DATA, true);
743         f2fs_submit_bio(sbi, NODE, true);
744         f2fs_submit_bio(sbi, META, true);
745
746         /*
747          * update checkpoint pack index
748          * Increase the version number so that
749          * SIT entries and seg summaries are written at correct place
750          */
751         ckpt_ver = le64_to_cpu(ckpt->checkpoint_ver);
752         ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
753
754         /* write cached NAT/SIT entries to NAT/SIT area */
755         flush_nat_entries(sbi);
756         flush_sit_entries(sbi);
757
758         reset_victim_segmap(sbi);
759
760         /* unlock all the fs_lock[] in do_checkpoint() */
761         do_checkpoint(sbi, is_umount);
762
763         unblock_operations(sbi);
764         mutex_unlock(&sbi->cp_mutex);
765 }
766
767 void init_orphan_info(struct f2fs_sb_info *sbi)
768 {
769         mutex_init(&sbi->orphan_inode_mutex);
770         INIT_LIST_HEAD(&sbi->orphan_inode_list);
771         sbi->n_orphans = 0;
772 }
773
774 int __init create_checkpoint_caches(void)
775 {
776         orphan_entry_slab = f2fs_kmem_cache_create("f2fs_orphan_entry",
777                         sizeof(struct orphan_inode_entry), NULL);
778         if (unlikely(!orphan_entry_slab))
779                 return -ENOMEM;
780         inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
781                         sizeof(struct dir_inode_entry), NULL);
782         if (unlikely(!inode_entry_slab)) {
783                 kmem_cache_destroy(orphan_entry_slab);
784                 return -ENOMEM;
785         }
786         return 0;
787 }
788
789 void destroy_checkpoint_caches(void)
790 {
791         kmem_cache_destroy(orphan_entry_slab);
792         kmem_cache_destroy(inode_entry_slab);
793 }