]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/f2fs/segment.c
Merge tag 'rdma-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/roland...
[karo-tx-linux.git] / fs / f2fs / segment.c
1 /*
2  * fs/f2fs/segment.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/kthread.h>
17 #include <linux/vmalloc.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "segment.h"
22 #include "node.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 #define __reverse_ffz(x) __reverse_ffs(~(x))
27
28 static struct kmem_cache *discard_entry_slab;
29 static struct kmem_cache *sit_entry_set_slab;
30 static struct kmem_cache *inmem_entry_slab;
31
32 /*
33  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
34  * MSB and LSB are reversed in a byte by f2fs_set_bit.
35  */
36 static inline unsigned long __reverse_ffs(unsigned long word)
37 {
38         int num = 0;
39
40 #if BITS_PER_LONG == 64
41         if ((word & 0xffffffff) == 0) {
42                 num += 32;
43                 word >>= 32;
44         }
45 #endif
46         if ((word & 0xffff) == 0) {
47                 num += 16;
48                 word >>= 16;
49         }
50         if ((word & 0xff) == 0) {
51                 num += 8;
52                 word >>= 8;
53         }
54         if ((word & 0xf0) == 0)
55                 num += 4;
56         else
57                 word >>= 4;
58         if ((word & 0xc) == 0)
59                 num += 2;
60         else
61                 word >>= 2;
62         if ((word & 0x2) == 0)
63                 num += 1;
64         return num;
65 }
66
67 /*
68  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
69  * f2fs_set_bit makes MSB and LSB reversed in a byte.
70  * Example:
71  *                             LSB <--> MSB
72  *   f2fs_set_bit(0, bitmap) => 0000 0001
73  *   f2fs_set_bit(7, bitmap) => 1000 0000
74  */
75 static unsigned long __find_rev_next_bit(const unsigned long *addr,
76                         unsigned long size, unsigned long offset)
77 {
78         const unsigned long *p = addr + BIT_WORD(offset);
79         unsigned long result = offset & ~(BITS_PER_LONG - 1);
80         unsigned long tmp;
81         unsigned long mask, submask;
82         unsigned long quot, rest;
83
84         if (offset >= size)
85                 return size;
86
87         size -= result;
88         offset %= BITS_PER_LONG;
89         if (!offset)
90                 goto aligned;
91
92         tmp = *(p++);
93         quot = (offset >> 3) << 3;
94         rest = offset & 0x7;
95         mask = ~0UL << quot;
96         submask = (unsigned char)(0xff << rest) >> rest;
97         submask <<= quot;
98         mask &= submask;
99         tmp &= mask;
100         if (size < BITS_PER_LONG)
101                 goto found_first;
102         if (tmp)
103                 goto found_middle;
104
105         size -= BITS_PER_LONG;
106         result += BITS_PER_LONG;
107 aligned:
108         while (size & ~(BITS_PER_LONG-1)) {
109                 tmp = *(p++);
110                 if (tmp)
111                         goto found_middle;
112                 result += BITS_PER_LONG;
113                 size -= BITS_PER_LONG;
114         }
115         if (!size)
116                 return result;
117         tmp = *p;
118 found_first:
119         tmp &= (~0UL >> (BITS_PER_LONG - size));
120         if (tmp == 0UL)         /* Are any bits set? */
121                 return result + size;   /* Nope. */
122 found_middle:
123         return result + __reverse_ffs(tmp);
124 }
125
126 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
127                         unsigned long size, unsigned long offset)
128 {
129         const unsigned long *p = addr + BIT_WORD(offset);
130         unsigned long result = offset & ~(BITS_PER_LONG - 1);
131         unsigned long tmp;
132         unsigned long mask, submask;
133         unsigned long quot, rest;
134
135         if (offset >= size)
136                 return size;
137
138         size -= result;
139         offset %= BITS_PER_LONG;
140         if (!offset)
141                 goto aligned;
142
143         tmp = *(p++);
144         quot = (offset >> 3) << 3;
145         rest = offset & 0x7;
146         mask = ~(~0UL << quot);
147         submask = (unsigned char)~((unsigned char)(0xff << rest) >> rest);
148         submask <<= quot;
149         mask += submask;
150         tmp |= mask;
151         if (size < BITS_PER_LONG)
152                 goto found_first;
153         if (~tmp)
154                 goto found_middle;
155
156         size -= BITS_PER_LONG;
157         result += BITS_PER_LONG;
158 aligned:
159         while (size & ~(BITS_PER_LONG - 1)) {
160                 tmp = *(p++);
161                 if (~tmp)
162                         goto found_middle;
163                 result += BITS_PER_LONG;
164                 size -= BITS_PER_LONG;
165         }
166         if (!size)
167                 return result;
168         tmp = *p;
169
170 found_first:
171         tmp |= ~0UL << size;
172         if (tmp == ~0UL)        /* Are any bits zero? */
173                 return result + size;   /* Nope. */
174 found_middle:
175         return result + __reverse_ffz(tmp);
176 }
177
178 void register_inmem_page(struct inode *inode, struct page *page)
179 {
180         struct f2fs_inode_info *fi = F2FS_I(inode);
181         struct inmem_pages *new;
182         int err;
183
184         SetPagePrivate(page);
185         f2fs_trace_pid(page);
186
187         new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
188
189         /* add atomic page indices to the list */
190         new->page = page;
191         INIT_LIST_HEAD(&new->list);
192 retry:
193         /* increase reference count with clean state */
194         mutex_lock(&fi->inmem_lock);
195         err = radix_tree_insert(&fi->inmem_root, page->index, new);
196         if (err == -EEXIST) {
197                 mutex_unlock(&fi->inmem_lock);
198                 kmem_cache_free(inmem_entry_slab, new);
199                 return;
200         } else if (err) {
201                 mutex_unlock(&fi->inmem_lock);
202                 goto retry;
203         }
204         get_page(page);
205         list_add_tail(&new->list, &fi->inmem_pages);
206         inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
207         mutex_unlock(&fi->inmem_lock);
208 }
209
210 void commit_inmem_pages(struct inode *inode, bool abort)
211 {
212         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
213         struct f2fs_inode_info *fi = F2FS_I(inode);
214         struct inmem_pages *cur, *tmp;
215         bool submit_bio = false;
216         struct f2fs_io_info fio = {
217                 .type = DATA,
218                 .rw = WRITE_SYNC | REQ_PRIO,
219         };
220
221         /*
222          * The abort is true only when f2fs_evict_inode is called.
223          * Basically, the f2fs_evict_inode doesn't produce any data writes, so
224          * that we don't need to call f2fs_balance_fs.
225          * Otherwise, f2fs_gc in f2fs_balance_fs can wait forever until this
226          * inode becomes free by iget_locked in f2fs_iget.
227          */
228         if (!abort) {
229                 f2fs_balance_fs(sbi);
230                 f2fs_lock_op(sbi);
231         }
232
233         mutex_lock(&fi->inmem_lock);
234         list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
235                 if (!abort) {
236                         lock_page(cur->page);
237                         if (cur->page->mapping == inode->i_mapping) {
238                                 f2fs_wait_on_page_writeback(cur->page, DATA);
239                                 if (clear_page_dirty_for_io(cur->page))
240                                         inode_dec_dirty_pages(inode);
241                                 do_write_data_page(cur->page, &fio);
242                                 submit_bio = true;
243                         }
244                         f2fs_put_page(cur->page, 1);
245                 } else {
246                         put_page(cur->page);
247                 }
248                 radix_tree_delete(&fi->inmem_root, cur->page->index);
249                 list_del(&cur->list);
250                 kmem_cache_free(inmem_entry_slab, cur);
251                 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
252         }
253         mutex_unlock(&fi->inmem_lock);
254
255         if (!abort) {
256                 f2fs_unlock_op(sbi);
257                 if (submit_bio)
258                         f2fs_submit_merged_bio(sbi, DATA, WRITE);
259         }
260 }
261
262 /*
263  * This function balances dirty node and dentry pages.
264  * In addition, it controls garbage collection.
265  */
266 void f2fs_balance_fs(struct f2fs_sb_info *sbi)
267 {
268         /*
269          * We should do GC or end up with checkpoint, if there are so many dirty
270          * dir/node pages without enough free segments.
271          */
272         if (has_not_enough_free_secs(sbi, 0)) {
273                 mutex_lock(&sbi->gc_mutex);
274                 f2fs_gc(sbi);
275         }
276 }
277
278 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
279 {
280         /* check the # of cached NAT entries and prefree segments */
281         if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK) ||
282                         excess_prefree_segs(sbi) ||
283                         !available_free_memory(sbi, INO_ENTRIES))
284                 f2fs_sync_fs(sbi->sb, true);
285 }
286
287 static int issue_flush_thread(void *data)
288 {
289         struct f2fs_sb_info *sbi = data;
290         struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
291         wait_queue_head_t *q = &fcc->flush_wait_queue;
292 repeat:
293         if (kthread_should_stop())
294                 return 0;
295
296         if (!llist_empty(&fcc->issue_list)) {
297                 struct bio *bio = bio_alloc(GFP_NOIO, 0);
298                 struct flush_cmd *cmd, *next;
299                 int ret;
300
301                 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
302                 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
303
304                 bio->bi_bdev = sbi->sb->s_bdev;
305                 ret = submit_bio_wait(WRITE_FLUSH, bio);
306
307                 llist_for_each_entry_safe(cmd, next,
308                                           fcc->dispatch_list, llnode) {
309                         cmd->ret = ret;
310                         complete(&cmd->wait);
311                 }
312                 bio_put(bio);
313                 fcc->dispatch_list = NULL;
314         }
315
316         wait_event_interruptible(*q,
317                 kthread_should_stop() || !llist_empty(&fcc->issue_list));
318         goto repeat;
319 }
320
321 int f2fs_issue_flush(struct f2fs_sb_info *sbi)
322 {
323         struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
324         struct flush_cmd cmd;
325
326         trace_f2fs_issue_flush(sbi->sb, test_opt(sbi, NOBARRIER),
327                                         test_opt(sbi, FLUSH_MERGE));
328
329         if (test_opt(sbi, NOBARRIER))
330                 return 0;
331
332         if (!test_opt(sbi, FLUSH_MERGE))
333                 return blkdev_issue_flush(sbi->sb->s_bdev, GFP_KERNEL, NULL);
334
335         init_completion(&cmd.wait);
336
337         llist_add(&cmd.llnode, &fcc->issue_list);
338
339         if (!fcc->dispatch_list)
340                 wake_up(&fcc->flush_wait_queue);
341
342         wait_for_completion(&cmd.wait);
343
344         return cmd.ret;
345 }
346
347 int create_flush_cmd_control(struct f2fs_sb_info *sbi)
348 {
349         dev_t dev = sbi->sb->s_bdev->bd_dev;
350         struct flush_cmd_control *fcc;
351         int err = 0;
352
353         fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL);
354         if (!fcc)
355                 return -ENOMEM;
356         init_waitqueue_head(&fcc->flush_wait_queue);
357         init_llist_head(&fcc->issue_list);
358         SM_I(sbi)->cmd_control_info = fcc;
359         fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
360                                 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
361         if (IS_ERR(fcc->f2fs_issue_flush)) {
362                 err = PTR_ERR(fcc->f2fs_issue_flush);
363                 kfree(fcc);
364                 SM_I(sbi)->cmd_control_info = NULL;
365                 return err;
366         }
367
368         return err;
369 }
370
371 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi)
372 {
373         struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
374
375         if (fcc && fcc->f2fs_issue_flush)
376                 kthread_stop(fcc->f2fs_issue_flush);
377         kfree(fcc);
378         SM_I(sbi)->cmd_control_info = NULL;
379 }
380
381 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
382                 enum dirty_type dirty_type)
383 {
384         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
385
386         /* need not be added */
387         if (IS_CURSEG(sbi, segno))
388                 return;
389
390         if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
391                 dirty_i->nr_dirty[dirty_type]++;
392
393         if (dirty_type == DIRTY) {
394                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
395                 enum dirty_type t = sentry->type;
396
397                 if (unlikely(t >= DIRTY)) {
398                         f2fs_bug_on(sbi, 1);
399                         return;
400                 }
401                 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
402                         dirty_i->nr_dirty[t]++;
403         }
404 }
405
406 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
407                 enum dirty_type dirty_type)
408 {
409         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
410
411         if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
412                 dirty_i->nr_dirty[dirty_type]--;
413
414         if (dirty_type == DIRTY) {
415                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
416                 enum dirty_type t = sentry->type;
417
418                 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
419                         dirty_i->nr_dirty[t]--;
420
421                 if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
422                         clear_bit(GET_SECNO(sbi, segno),
423                                                 dirty_i->victim_secmap);
424         }
425 }
426
427 /*
428  * Should not occur error such as -ENOMEM.
429  * Adding dirty entry into seglist is not critical operation.
430  * If a given segment is one of current working segments, it won't be added.
431  */
432 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
433 {
434         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
435         unsigned short valid_blocks;
436
437         if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
438                 return;
439
440         mutex_lock(&dirty_i->seglist_lock);
441
442         valid_blocks = get_valid_blocks(sbi, segno, 0);
443
444         if (valid_blocks == 0) {
445                 __locate_dirty_segment(sbi, segno, PRE);
446                 __remove_dirty_segment(sbi, segno, DIRTY);
447         } else if (valid_blocks < sbi->blocks_per_seg) {
448                 __locate_dirty_segment(sbi, segno, DIRTY);
449         } else {
450                 /* Recovery routine with SSR needs this */
451                 __remove_dirty_segment(sbi, segno, DIRTY);
452         }
453
454         mutex_unlock(&dirty_i->seglist_lock);
455 }
456
457 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
458                                 block_t blkstart, block_t blklen)
459 {
460         sector_t start = SECTOR_FROM_BLOCK(blkstart);
461         sector_t len = SECTOR_FROM_BLOCK(blklen);
462         trace_f2fs_issue_discard(sbi->sb, blkstart, blklen);
463         return blkdev_issue_discard(sbi->sb->s_bdev, start, len, GFP_NOFS, 0);
464 }
465
466 void discard_next_dnode(struct f2fs_sb_info *sbi, block_t blkaddr)
467 {
468         if (f2fs_issue_discard(sbi, blkaddr, 1)) {
469                 struct page *page = grab_meta_page(sbi, blkaddr);
470                 /* zero-filled page */
471                 set_page_dirty(page);
472                 f2fs_put_page(page, 1);
473         }
474 }
475
476 static void __add_discard_entry(struct f2fs_sb_info *sbi,
477                 struct cp_control *cpc, unsigned int start, unsigned int end)
478 {
479         struct list_head *head = &SM_I(sbi)->discard_list;
480         struct discard_entry *new, *last;
481
482         if (!list_empty(head)) {
483                 last = list_last_entry(head, struct discard_entry, list);
484                 if (START_BLOCK(sbi, cpc->trim_start) + start ==
485                                                 last->blkaddr + last->len) {
486                         last->len += end - start;
487                         goto done;
488                 }
489         }
490
491         new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS);
492         INIT_LIST_HEAD(&new->list);
493         new->blkaddr = START_BLOCK(sbi, cpc->trim_start) + start;
494         new->len = end - start;
495         list_add_tail(&new->list, head);
496 done:
497         SM_I(sbi)->nr_discards += end - start;
498         cpc->trimmed += end - start;
499 }
500
501 static void add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc)
502 {
503         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
504         int max_blocks = sbi->blocks_per_seg;
505         struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
506         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
507         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
508         unsigned long *dmap = SIT_I(sbi)->tmp_map;
509         unsigned int start = 0, end = -1;
510         bool force = (cpc->reason == CP_DISCARD);
511         int i;
512
513         if (!force && (!test_opt(sbi, DISCARD) ||
514                         SM_I(sbi)->nr_discards >= SM_I(sbi)->max_discards))
515                 return;
516
517         if (force && !se->valid_blocks) {
518                 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
519                 /*
520                  * if this segment is registered in the prefree list, then
521                  * we should skip adding a discard candidate, and let the
522                  * checkpoint do that later.
523                  */
524                 mutex_lock(&dirty_i->seglist_lock);
525                 if (test_bit(cpc->trim_start, dirty_i->dirty_segmap[PRE])) {
526                         mutex_unlock(&dirty_i->seglist_lock);
527                         cpc->trimmed += sbi->blocks_per_seg;
528                         return;
529                 }
530                 mutex_unlock(&dirty_i->seglist_lock);
531
532                 __add_discard_entry(sbi, cpc, 0, sbi->blocks_per_seg);
533                 return;
534         }
535
536         /* zero block will be discarded through the prefree list */
537         if (!se->valid_blocks || se->valid_blocks == max_blocks)
538                 return;
539
540         /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
541         for (i = 0; i < entries; i++)
542                 dmap[i] = force ? ~ckpt_map[i] :
543                                 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
544
545         while (force || SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) {
546                 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
547                 if (start >= max_blocks)
548                         break;
549
550                 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
551
552                 if (end - start < cpc->trim_minlen)
553                         continue;
554
555                 __add_discard_entry(sbi, cpc, start, end);
556         }
557 }
558
559 void release_discard_addrs(struct f2fs_sb_info *sbi)
560 {
561         struct list_head *head = &(SM_I(sbi)->discard_list);
562         struct discard_entry *entry, *this;
563
564         /* drop caches */
565         list_for_each_entry_safe(entry, this, head, list) {
566                 list_del(&entry->list);
567                 kmem_cache_free(discard_entry_slab, entry);
568         }
569 }
570
571 /*
572  * Should call clear_prefree_segments after checkpoint is done.
573  */
574 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
575 {
576         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
577         unsigned int segno;
578
579         mutex_lock(&dirty_i->seglist_lock);
580         for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
581                 __set_test_and_free(sbi, segno);
582         mutex_unlock(&dirty_i->seglist_lock);
583 }
584
585 void clear_prefree_segments(struct f2fs_sb_info *sbi)
586 {
587         struct list_head *head = &(SM_I(sbi)->discard_list);
588         struct discard_entry *entry, *this;
589         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
590         unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
591         unsigned int start = 0, end = -1;
592
593         mutex_lock(&dirty_i->seglist_lock);
594
595         while (1) {
596                 int i;
597                 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
598                 if (start >= MAIN_SEGS(sbi))
599                         break;
600                 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
601                                                                 start + 1);
602
603                 for (i = start; i < end; i++)
604                         clear_bit(i, prefree_map);
605
606                 dirty_i->nr_dirty[PRE] -= end - start;
607
608                 if (!test_opt(sbi, DISCARD))
609                         continue;
610
611                 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
612                                 (end - start) << sbi->log_blocks_per_seg);
613         }
614         mutex_unlock(&dirty_i->seglist_lock);
615
616         /* send small discards */
617         list_for_each_entry_safe(entry, this, head, list) {
618                 f2fs_issue_discard(sbi, entry->blkaddr, entry->len);
619                 list_del(&entry->list);
620                 SM_I(sbi)->nr_discards -= entry->len;
621                 kmem_cache_free(discard_entry_slab, entry);
622         }
623 }
624
625 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
626 {
627         struct sit_info *sit_i = SIT_I(sbi);
628
629         if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
630                 sit_i->dirty_sentries++;
631                 return false;
632         }
633
634         return true;
635 }
636
637 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
638                                         unsigned int segno, int modified)
639 {
640         struct seg_entry *se = get_seg_entry(sbi, segno);
641         se->type = type;
642         if (modified)
643                 __mark_sit_entry_dirty(sbi, segno);
644 }
645
646 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
647 {
648         struct seg_entry *se;
649         unsigned int segno, offset;
650         long int new_vblocks;
651
652         segno = GET_SEGNO(sbi, blkaddr);
653
654         se = get_seg_entry(sbi, segno);
655         new_vblocks = se->valid_blocks + del;
656         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
657
658         f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
659                                 (new_vblocks > sbi->blocks_per_seg)));
660
661         se->valid_blocks = new_vblocks;
662         se->mtime = get_mtime(sbi);
663         SIT_I(sbi)->max_mtime = se->mtime;
664
665         /* Update valid block bitmap */
666         if (del > 0) {
667                 if (f2fs_test_and_set_bit(offset, se->cur_valid_map))
668                         f2fs_bug_on(sbi, 1);
669         } else {
670                 if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map))
671                         f2fs_bug_on(sbi, 1);
672         }
673         if (!f2fs_test_bit(offset, se->ckpt_valid_map))
674                 se->ckpt_valid_blocks += del;
675
676         __mark_sit_entry_dirty(sbi, segno);
677
678         /* update total number of valid blocks to be written in ckpt area */
679         SIT_I(sbi)->written_valid_blocks += del;
680
681         if (sbi->segs_per_sec > 1)
682                 get_sec_entry(sbi, segno)->valid_blocks += del;
683 }
684
685 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new)
686 {
687         update_sit_entry(sbi, new, 1);
688         if (GET_SEGNO(sbi, old) != NULL_SEGNO)
689                 update_sit_entry(sbi, old, -1);
690
691         locate_dirty_segment(sbi, GET_SEGNO(sbi, old));
692         locate_dirty_segment(sbi, GET_SEGNO(sbi, new));
693 }
694
695 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
696 {
697         unsigned int segno = GET_SEGNO(sbi, addr);
698         struct sit_info *sit_i = SIT_I(sbi);
699
700         f2fs_bug_on(sbi, addr == NULL_ADDR);
701         if (addr == NEW_ADDR)
702                 return;
703
704         /* add it into sit main buffer */
705         mutex_lock(&sit_i->sentry_lock);
706
707         update_sit_entry(sbi, addr, -1);
708
709         /* add it into dirty seglist */
710         locate_dirty_segment(sbi, segno);
711
712         mutex_unlock(&sit_i->sentry_lock);
713 }
714
715 /*
716  * This function should be resided under the curseg_mutex lock
717  */
718 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
719                                         struct f2fs_summary *sum)
720 {
721         struct curseg_info *curseg = CURSEG_I(sbi, type);
722         void *addr = curseg->sum_blk;
723         addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
724         memcpy(addr, sum, sizeof(struct f2fs_summary));
725 }
726
727 /*
728  * Calculate the number of current summary pages for writing
729  */
730 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
731 {
732         int valid_sum_count = 0;
733         int i, sum_in_page;
734
735         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
736                 if (sbi->ckpt->alloc_type[i] == SSR)
737                         valid_sum_count += sbi->blocks_per_seg;
738                 else {
739                         if (for_ra)
740                                 valid_sum_count += le16_to_cpu(
741                                         F2FS_CKPT(sbi)->cur_data_blkoff[i]);
742                         else
743                                 valid_sum_count += curseg_blkoff(sbi, i);
744                 }
745         }
746
747         sum_in_page = (PAGE_CACHE_SIZE - 2 * SUM_JOURNAL_SIZE -
748                         SUM_FOOTER_SIZE) / SUMMARY_SIZE;
749         if (valid_sum_count <= sum_in_page)
750                 return 1;
751         else if ((valid_sum_count - sum_in_page) <=
752                 (PAGE_CACHE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
753                 return 2;
754         return 3;
755 }
756
757 /*
758  * Caller should put this summary page
759  */
760 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
761 {
762         return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
763 }
764
765 static void write_sum_page(struct f2fs_sb_info *sbi,
766                         struct f2fs_summary_block *sum_blk, block_t blk_addr)
767 {
768         struct page *page = grab_meta_page(sbi, blk_addr);
769         void *kaddr = page_address(page);
770         memcpy(kaddr, sum_blk, PAGE_CACHE_SIZE);
771         set_page_dirty(page);
772         f2fs_put_page(page, 1);
773 }
774
775 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
776 {
777         struct curseg_info *curseg = CURSEG_I(sbi, type);
778         unsigned int segno = curseg->segno + 1;
779         struct free_segmap_info *free_i = FREE_I(sbi);
780
781         if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
782                 return !test_bit(segno, free_i->free_segmap);
783         return 0;
784 }
785
786 /*
787  * Find a new segment from the free segments bitmap to right order
788  * This function should be returned with success, otherwise BUG
789  */
790 static void get_new_segment(struct f2fs_sb_info *sbi,
791                         unsigned int *newseg, bool new_sec, int dir)
792 {
793         struct free_segmap_info *free_i = FREE_I(sbi);
794         unsigned int segno, secno, zoneno;
795         unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
796         unsigned int hint = *newseg / sbi->segs_per_sec;
797         unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
798         unsigned int left_start = hint;
799         bool init = true;
800         int go_left = 0;
801         int i;
802
803         spin_lock(&free_i->segmap_lock);
804
805         if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
806                 segno = find_next_zero_bit(free_i->free_segmap,
807                                         MAIN_SEGS(sbi), *newseg + 1);
808                 if (segno - *newseg < sbi->segs_per_sec -
809                                         (*newseg % sbi->segs_per_sec))
810                         goto got_it;
811         }
812 find_other_zone:
813         secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
814         if (secno >= MAIN_SECS(sbi)) {
815                 if (dir == ALLOC_RIGHT) {
816                         secno = find_next_zero_bit(free_i->free_secmap,
817                                                         MAIN_SECS(sbi), 0);
818                         f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
819                 } else {
820                         go_left = 1;
821                         left_start = hint - 1;
822                 }
823         }
824         if (go_left == 0)
825                 goto skip_left;
826
827         while (test_bit(left_start, free_i->free_secmap)) {
828                 if (left_start > 0) {
829                         left_start--;
830                         continue;
831                 }
832                 left_start = find_next_zero_bit(free_i->free_secmap,
833                                                         MAIN_SECS(sbi), 0);
834                 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
835                 break;
836         }
837         secno = left_start;
838 skip_left:
839         hint = secno;
840         segno = secno * sbi->segs_per_sec;
841         zoneno = secno / sbi->secs_per_zone;
842
843         /* give up on finding another zone */
844         if (!init)
845                 goto got_it;
846         if (sbi->secs_per_zone == 1)
847                 goto got_it;
848         if (zoneno == old_zoneno)
849                 goto got_it;
850         if (dir == ALLOC_LEFT) {
851                 if (!go_left && zoneno + 1 >= total_zones)
852                         goto got_it;
853                 if (go_left && zoneno == 0)
854                         goto got_it;
855         }
856         for (i = 0; i < NR_CURSEG_TYPE; i++)
857                 if (CURSEG_I(sbi, i)->zone == zoneno)
858                         break;
859
860         if (i < NR_CURSEG_TYPE) {
861                 /* zone is in user, try another */
862                 if (go_left)
863                         hint = zoneno * sbi->secs_per_zone - 1;
864                 else if (zoneno + 1 >= total_zones)
865                         hint = 0;
866                 else
867                         hint = (zoneno + 1) * sbi->secs_per_zone;
868                 init = false;
869                 goto find_other_zone;
870         }
871 got_it:
872         /* set it as dirty segment in free segmap */
873         f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
874         __set_inuse(sbi, segno);
875         *newseg = segno;
876         spin_unlock(&free_i->segmap_lock);
877 }
878
879 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
880 {
881         struct curseg_info *curseg = CURSEG_I(sbi, type);
882         struct summary_footer *sum_footer;
883
884         curseg->segno = curseg->next_segno;
885         curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
886         curseg->next_blkoff = 0;
887         curseg->next_segno = NULL_SEGNO;
888
889         sum_footer = &(curseg->sum_blk->footer);
890         memset(sum_footer, 0, sizeof(struct summary_footer));
891         if (IS_DATASEG(type))
892                 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
893         if (IS_NODESEG(type))
894                 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
895         __set_sit_entry_type(sbi, type, curseg->segno, modified);
896 }
897
898 /*
899  * Allocate a current working segment.
900  * This function always allocates a free segment in LFS manner.
901  */
902 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
903 {
904         struct curseg_info *curseg = CURSEG_I(sbi, type);
905         unsigned int segno = curseg->segno;
906         int dir = ALLOC_LEFT;
907
908         write_sum_page(sbi, curseg->sum_blk,
909                                 GET_SUM_BLOCK(sbi, segno));
910         if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
911                 dir = ALLOC_RIGHT;
912
913         if (test_opt(sbi, NOHEAP))
914                 dir = ALLOC_RIGHT;
915
916         get_new_segment(sbi, &segno, new_sec, dir);
917         curseg->next_segno = segno;
918         reset_curseg(sbi, type, 1);
919         curseg->alloc_type = LFS;
920 }
921
922 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
923                         struct curseg_info *seg, block_t start)
924 {
925         struct seg_entry *se = get_seg_entry(sbi, seg->segno);
926         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
927         unsigned long *target_map = SIT_I(sbi)->tmp_map;
928         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
929         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
930         int i, pos;
931
932         for (i = 0; i < entries; i++)
933                 target_map[i] = ckpt_map[i] | cur_map[i];
934
935         pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
936
937         seg->next_blkoff = pos;
938 }
939
940 /*
941  * If a segment is written by LFS manner, next block offset is just obtained
942  * by increasing the current block offset. However, if a segment is written by
943  * SSR manner, next block offset obtained by calling __next_free_blkoff
944  */
945 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
946                                 struct curseg_info *seg)
947 {
948         if (seg->alloc_type == SSR)
949                 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
950         else
951                 seg->next_blkoff++;
952 }
953
954 /*
955  * This function always allocates a used segment(from dirty seglist) by SSR
956  * manner, so it should recover the existing segment information of valid blocks
957  */
958 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
959 {
960         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
961         struct curseg_info *curseg = CURSEG_I(sbi, type);
962         unsigned int new_segno = curseg->next_segno;
963         struct f2fs_summary_block *sum_node;
964         struct page *sum_page;
965
966         write_sum_page(sbi, curseg->sum_blk,
967                                 GET_SUM_BLOCK(sbi, curseg->segno));
968         __set_test_and_inuse(sbi, new_segno);
969
970         mutex_lock(&dirty_i->seglist_lock);
971         __remove_dirty_segment(sbi, new_segno, PRE);
972         __remove_dirty_segment(sbi, new_segno, DIRTY);
973         mutex_unlock(&dirty_i->seglist_lock);
974
975         reset_curseg(sbi, type, 1);
976         curseg->alloc_type = SSR;
977         __next_free_blkoff(sbi, curseg, 0);
978
979         if (reuse) {
980                 sum_page = get_sum_page(sbi, new_segno);
981                 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
982                 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
983                 f2fs_put_page(sum_page, 1);
984         }
985 }
986
987 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
988 {
989         struct curseg_info *curseg = CURSEG_I(sbi, type);
990         const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
991
992         if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0))
993                 return v_ops->get_victim(sbi,
994                                 &(curseg)->next_segno, BG_GC, type, SSR);
995
996         /* For data segments, let's do SSR more intensively */
997         for (; type >= CURSEG_HOT_DATA; type--)
998                 if (v_ops->get_victim(sbi, &(curseg)->next_segno,
999                                                 BG_GC, type, SSR))
1000                         return 1;
1001         return 0;
1002 }
1003
1004 /*
1005  * flush out current segment and replace it with new segment
1006  * This function should be returned with success, otherwise BUG
1007  */
1008 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
1009                                                 int type, bool force)
1010 {
1011         struct curseg_info *curseg = CURSEG_I(sbi, type);
1012
1013         if (force)
1014                 new_curseg(sbi, type, true);
1015         else if (type == CURSEG_WARM_NODE)
1016                 new_curseg(sbi, type, false);
1017         else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
1018                 new_curseg(sbi, type, false);
1019         else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
1020                 change_curseg(sbi, type, true);
1021         else
1022                 new_curseg(sbi, type, false);
1023
1024         stat_inc_seg_type(sbi, curseg);
1025 }
1026
1027 static void __allocate_new_segments(struct f2fs_sb_info *sbi, int type)
1028 {
1029         struct curseg_info *curseg = CURSEG_I(sbi, type);
1030         unsigned int old_segno;
1031
1032         old_segno = curseg->segno;
1033         SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true);
1034         locate_dirty_segment(sbi, old_segno);
1035 }
1036
1037 void allocate_new_segments(struct f2fs_sb_info *sbi)
1038 {
1039         int i;
1040
1041         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
1042                 __allocate_new_segments(sbi, i);
1043 }
1044
1045 static const struct segment_allocation default_salloc_ops = {
1046         .allocate_segment = allocate_segment_by_default,
1047 };
1048
1049 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
1050 {
1051         __u64 start = F2FS_BYTES_TO_BLK(range->start);
1052         __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
1053         unsigned int start_segno, end_segno;
1054         struct cp_control cpc;
1055
1056         if (range->minlen > SEGMENT_SIZE(sbi) || start >= MAX_BLKADDR(sbi) ||
1057                                                 range->len < sbi->blocksize)
1058                 return -EINVAL;
1059
1060         cpc.trimmed = 0;
1061         if (end <= MAIN_BLKADDR(sbi))
1062                 goto out;
1063
1064         /* start/end segment number in main_area */
1065         start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
1066         end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
1067                                                 GET_SEGNO(sbi, end);
1068         cpc.reason = CP_DISCARD;
1069         cpc.trim_minlen = F2FS_BYTES_TO_BLK(range->minlen);
1070
1071         /* do checkpoint to issue discard commands safely */
1072         for (; start_segno <= end_segno; start_segno = cpc.trim_end + 1) {
1073                 cpc.trim_start = start_segno;
1074                 cpc.trim_end = min_t(unsigned int, rounddown(start_segno +
1075                                 BATCHED_TRIM_SEGMENTS(sbi),
1076                                 sbi->segs_per_sec) - 1, end_segno);
1077
1078                 mutex_lock(&sbi->gc_mutex);
1079                 write_checkpoint(sbi, &cpc);
1080                 mutex_unlock(&sbi->gc_mutex);
1081         }
1082 out:
1083         range->len = F2FS_BLK_TO_BYTES(cpc.trimmed);
1084         return 0;
1085 }
1086
1087 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
1088 {
1089         struct curseg_info *curseg = CURSEG_I(sbi, type);
1090         if (curseg->next_blkoff < sbi->blocks_per_seg)
1091                 return true;
1092         return false;
1093 }
1094
1095 static int __get_segment_type_2(struct page *page, enum page_type p_type)
1096 {
1097         if (p_type == DATA)
1098                 return CURSEG_HOT_DATA;
1099         else
1100                 return CURSEG_HOT_NODE;
1101 }
1102
1103 static int __get_segment_type_4(struct page *page, enum page_type p_type)
1104 {
1105         if (p_type == DATA) {
1106                 struct inode *inode = page->mapping->host;
1107
1108                 if (S_ISDIR(inode->i_mode))
1109                         return CURSEG_HOT_DATA;
1110                 else
1111                         return CURSEG_COLD_DATA;
1112         } else {
1113                 if (IS_DNODE(page) && is_cold_node(page))
1114                         return CURSEG_WARM_NODE;
1115                 else
1116                         return CURSEG_COLD_NODE;
1117         }
1118 }
1119
1120 static int __get_segment_type_6(struct page *page, enum page_type p_type)
1121 {
1122         if (p_type == DATA) {
1123                 struct inode *inode = page->mapping->host;
1124
1125                 if (S_ISDIR(inode->i_mode))
1126                         return CURSEG_HOT_DATA;
1127                 else if (is_cold_data(page) || file_is_cold(inode))
1128                         return CURSEG_COLD_DATA;
1129                 else
1130                         return CURSEG_WARM_DATA;
1131         } else {
1132                 if (IS_DNODE(page))
1133                         return is_cold_node(page) ? CURSEG_WARM_NODE :
1134                                                 CURSEG_HOT_NODE;
1135                 else
1136                         return CURSEG_COLD_NODE;
1137         }
1138 }
1139
1140 static int __get_segment_type(struct page *page, enum page_type p_type)
1141 {
1142         switch (F2FS_P_SB(page)->active_logs) {
1143         case 2:
1144                 return __get_segment_type_2(page, p_type);
1145         case 4:
1146                 return __get_segment_type_4(page, p_type);
1147         }
1148         /* NR_CURSEG_TYPE(6) logs by default */
1149         f2fs_bug_on(F2FS_P_SB(page),
1150                 F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE);
1151         return __get_segment_type_6(page, p_type);
1152 }
1153
1154 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
1155                 block_t old_blkaddr, block_t *new_blkaddr,
1156                 struct f2fs_summary *sum, int type)
1157 {
1158         struct sit_info *sit_i = SIT_I(sbi);
1159         struct curseg_info *curseg;
1160         bool direct_io = (type == CURSEG_DIRECT_IO);
1161
1162         type = direct_io ? CURSEG_WARM_DATA : type;
1163
1164         curseg = CURSEG_I(sbi, type);
1165
1166         mutex_lock(&curseg->curseg_mutex);
1167
1168         /* direct_io'ed data is aligned to the segment for better performance */
1169         if (direct_io && curseg->next_blkoff)
1170                 __allocate_new_segments(sbi, type);
1171
1172         *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
1173
1174         /*
1175          * __add_sum_entry should be resided under the curseg_mutex
1176          * because, this function updates a summary entry in the
1177          * current summary block.
1178          */
1179         __add_sum_entry(sbi, type, sum);
1180
1181         mutex_lock(&sit_i->sentry_lock);
1182         __refresh_next_blkoff(sbi, curseg);
1183
1184         stat_inc_block_count(sbi, curseg);
1185
1186         if (!__has_curseg_space(sbi, type))
1187                 sit_i->s_ops->allocate_segment(sbi, type, false);
1188         /*
1189          * SIT information should be updated before segment allocation,
1190          * since SSR needs latest valid block information.
1191          */
1192         refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
1193
1194         mutex_unlock(&sit_i->sentry_lock);
1195
1196         if (page && IS_NODESEG(type))
1197                 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
1198
1199         mutex_unlock(&curseg->curseg_mutex);
1200 }
1201
1202 static void do_write_page(struct f2fs_sb_info *sbi, struct page *page,
1203                         struct f2fs_summary *sum,
1204                         struct f2fs_io_info *fio)
1205 {
1206         int type = __get_segment_type(page, fio->type);
1207
1208         allocate_data_block(sbi, page, fio->blk_addr, &fio->blk_addr, sum, type);
1209
1210         /* writeout dirty page into bdev */
1211         f2fs_submit_page_mbio(sbi, page, fio);
1212 }
1213
1214 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
1215 {
1216         struct f2fs_io_info fio = {
1217                 .type = META,
1218                 .rw = WRITE_SYNC | REQ_META | REQ_PRIO,
1219                 .blk_addr = page->index,
1220         };
1221
1222         set_page_writeback(page);
1223         f2fs_submit_page_mbio(sbi, page, &fio);
1224 }
1225
1226 void write_node_page(struct f2fs_sb_info *sbi, struct page *page,
1227                         unsigned int nid, struct f2fs_io_info *fio)
1228 {
1229         struct f2fs_summary sum;
1230         set_summary(&sum, nid, 0, 0);
1231         do_write_page(sbi, page, &sum, fio);
1232 }
1233
1234 void write_data_page(struct page *page, struct dnode_of_data *dn,
1235                                 struct f2fs_io_info *fio)
1236 {
1237         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1238         struct f2fs_summary sum;
1239         struct node_info ni;
1240
1241         f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
1242         get_node_info(sbi, dn->nid, &ni);
1243         set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1244         do_write_page(sbi, page, &sum, fio);
1245         dn->data_blkaddr = fio->blk_addr;
1246 }
1247
1248 void rewrite_data_page(struct page *page, struct f2fs_io_info *fio)
1249 {
1250         stat_inc_inplace_blocks(F2FS_P_SB(page));
1251         f2fs_submit_page_mbio(F2FS_P_SB(page), page, fio);
1252 }
1253
1254 void recover_data_page(struct f2fs_sb_info *sbi,
1255                         struct page *page, struct f2fs_summary *sum,
1256                         block_t old_blkaddr, block_t new_blkaddr)
1257 {
1258         struct sit_info *sit_i = SIT_I(sbi);
1259         struct curseg_info *curseg;
1260         unsigned int segno, old_cursegno;
1261         struct seg_entry *se;
1262         int type;
1263
1264         segno = GET_SEGNO(sbi, new_blkaddr);
1265         se = get_seg_entry(sbi, segno);
1266         type = se->type;
1267
1268         if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
1269                 if (old_blkaddr == NULL_ADDR)
1270                         type = CURSEG_COLD_DATA;
1271                 else
1272                         type = CURSEG_WARM_DATA;
1273         }
1274         curseg = CURSEG_I(sbi, type);
1275
1276         mutex_lock(&curseg->curseg_mutex);
1277         mutex_lock(&sit_i->sentry_lock);
1278
1279         old_cursegno = curseg->segno;
1280
1281         /* change the current segment */
1282         if (segno != curseg->segno) {
1283                 curseg->next_segno = segno;
1284                 change_curseg(sbi, type, true);
1285         }
1286
1287         curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
1288         __add_sum_entry(sbi, type, sum);
1289
1290         refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
1291         locate_dirty_segment(sbi, old_cursegno);
1292
1293         mutex_unlock(&sit_i->sentry_lock);
1294         mutex_unlock(&curseg->curseg_mutex);
1295 }
1296
1297 static inline bool is_merged_page(struct f2fs_sb_info *sbi,
1298                                         struct page *page, enum page_type type)
1299 {
1300         enum page_type btype = PAGE_TYPE_OF_BIO(type);
1301         struct f2fs_bio_info *io = &sbi->write_io[btype];
1302         struct bio_vec *bvec;
1303         int i;
1304
1305         down_read(&io->io_rwsem);
1306         if (!io->bio)
1307                 goto out;
1308
1309         bio_for_each_segment_all(bvec, io->bio, i) {
1310                 if (page == bvec->bv_page) {
1311                         up_read(&io->io_rwsem);
1312                         return true;
1313                 }
1314         }
1315
1316 out:
1317         up_read(&io->io_rwsem);
1318         return false;
1319 }
1320
1321 void f2fs_wait_on_page_writeback(struct page *page,
1322                                 enum page_type type)
1323 {
1324         if (PageWriteback(page)) {
1325                 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1326
1327                 if (is_merged_page(sbi, page, type))
1328                         f2fs_submit_merged_bio(sbi, type, WRITE);
1329                 wait_on_page_writeback(page);
1330         }
1331 }
1332
1333 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
1334 {
1335         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1336         struct curseg_info *seg_i;
1337         unsigned char *kaddr;
1338         struct page *page;
1339         block_t start;
1340         int i, j, offset;
1341
1342         start = start_sum_block(sbi);
1343
1344         page = get_meta_page(sbi, start++);
1345         kaddr = (unsigned char *)page_address(page);
1346
1347         /* Step 1: restore nat cache */
1348         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1349         memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE);
1350
1351         /* Step 2: restore sit cache */
1352         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1353         memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE,
1354                                                 SUM_JOURNAL_SIZE);
1355         offset = 2 * SUM_JOURNAL_SIZE;
1356
1357         /* Step 3: restore summary entries */
1358         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1359                 unsigned short blk_off;
1360                 unsigned int segno;
1361
1362                 seg_i = CURSEG_I(sbi, i);
1363                 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
1364                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
1365                 seg_i->next_segno = segno;
1366                 reset_curseg(sbi, i, 0);
1367                 seg_i->alloc_type = ckpt->alloc_type[i];
1368                 seg_i->next_blkoff = blk_off;
1369
1370                 if (seg_i->alloc_type == SSR)
1371                         blk_off = sbi->blocks_per_seg;
1372
1373                 for (j = 0; j < blk_off; j++) {
1374                         struct f2fs_summary *s;
1375                         s = (struct f2fs_summary *)(kaddr + offset);
1376                         seg_i->sum_blk->entries[j] = *s;
1377                         offset += SUMMARY_SIZE;
1378                         if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1379                                                 SUM_FOOTER_SIZE)
1380                                 continue;
1381
1382                         f2fs_put_page(page, 1);
1383                         page = NULL;
1384
1385                         page = get_meta_page(sbi, start++);
1386                         kaddr = (unsigned char *)page_address(page);
1387                         offset = 0;
1388                 }
1389         }
1390         f2fs_put_page(page, 1);
1391         return 0;
1392 }
1393
1394 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1395 {
1396         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1397         struct f2fs_summary_block *sum;
1398         struct curseg_info *curseg;
1399         struct page *new;
1400         unsigned short blk_off;
1401         unsigned int segno = 0;
1402         block_t blk_addr = 0;
1403
1404         /* get segment number and block addr */
1405         if (IS_DATASEG(type)) {
1406                 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1407                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1408                                                         CURSEG_HOT_DATA]);
1409                 if (__exist_node_summaries(sbi))
1410                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1411                 else
1412                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1413         } else {
1414                 segno = le32_to_cpu(ckpt->cur_node_segno[type -
1415                                                         CURSEG_HOT_NODE]);
1416                 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1417                                                         CURSEG_HOT_NODE]);
1418                 if (__exist_node_summaries(sbi))
1419                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1420                                                         type - CURSEG_HOT_NODE);
1421                 else
1422                         blk_addr = GET_SUM_BLOCK(sbi, segno);
1423         }
1424
1425         new = get_meta_page(sbi, blk_addr);
1426         sum = (struct f2fs_summary_block *)page_address(new);
1427
1428         if (IS_NODESEG(type)) {
1429                 if (__exist_node_summaries(sbi)) {
1430                         struct f2fs_summary *ns = &sum->entries[0];
1431                         int i;
1432                         for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1433                                 ns->version = 0;
1434                                 ns->ofs_in_node = 0;
1435                         }
1436                 } else {
1437                         int err;
1438
1439                         err = restore_node_summary(sbi, segno, sum);
1440                         if (err) {
1441                                 f2fs_put_page(new, 1);
1442                                 return err;
1443                         }
1444                 }
1445         }
1446
1447         /* set uncompleted segment to curseg */
1448         curseg = CURSEG_I(sbi, type);
1449         mutex_lock(&curseg->curseg_mutex);
1450         memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE);
1451         curseg->next_segno = segno;
1452         reset_curseg(sbi, type, 0);
1453         curseg->alloc_type = ckpt->alloc_type[type];
1454         curseg->next_blkoff = blk_off;
1455         mutex_unlock(&curseg->curseg_mutex);
1456         f2fs_put_page(new, 1);
1457         return 0;
1458 }
1459
1460 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1461 {
1462         int type = CURSEG_HOT_DATA;
1463         int err;
1464
1465         if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
1466                 int npages = npages_for_summary_flush(sbi, true);
1467
1468                 if (npages >= 2)
1469                         ra_meta_pages(sbi, start_sum_block(sbi), npages,
1470                                                                 META_CP);
1471
1472                 /* restore for compacted data summary */
1473                 if (read_compacted_summaries(sbi))
1474                         return -EINVAL;
1475                 type = CURSEG_HOT_NODE;
1476         }
1477
1478         if (__exist_node_summaries(sbi))
1479                 ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
1480                                         NR_CURSEG_TYPE - type, META_CP);
1481
1482         for (; type <= CURSEG_COLD_NODE; type++) {
1483                 err = read_normal_summaries(sbi, type);
1484                 if (err)
1485                         return err;
1486         }
1487
1488         return 0;
1489 }
1490
1491 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1492 {
1493         struct page *page;
1494         unsigned char *kaddr;
1495         struct f2fs_summary *summary;
1496         struct curseg_info *seg_i;
1497         int written_size = 0;
1498         int i, j;
1499
1500         page = grab_meta_page(sbi, blkaddr++);
1501         kaddr = (unsigned char *)page_address(page);
1502
1503         /* Step 1: write nat cache */
1504         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1505         memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE);
1506         written_size += SUM_JOURNAL_SIZE;
1507
1508         /* Step 2: write sit cache */
1509         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1510         memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits,
1511                                                 SUM_JOURNAL_SIZE);
1512         written_size += SUM_JOURNAL_SIZE;
1513
1514         /* Step 3: write summary entries */
1515         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1516                 unsigned short blkoff;
1517                 seg_i = CURSEG_I(sbi, i);
1518                 if (sbi->ckpt->alloc_type[i] == SSR)
1519                         blkoff = sbi->blocks_per_seg;
1520                 else
1521                         blkoff = curseg_blkoff(sbi, i);
1522
1523                 for (j = 0; j < blkoff; j++) {
1524                         if (!page) {
1525                                 page = grab_meta_page(sbi, blkaddr++);
1526                                 kaddr = (unsigned char *)page_address(page);
1527                                 written_size = 0;
1528                         }
1529                         summary = (struct f2fs_summary *)(kaddr + written_size);
1530                         *summary = seg_i->sum_blk->entries[j];
1531                         written_size += SUMMARY_SIZE;
1532
1533                         if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1534                                                         SUM_FOOTER_SIZE)
1535                                 continue;
1536
1537                         set_page_dirty(page);
1538                         f2fs_put_page(page, 1);
1539                         page = NULL;
1540                 }
1541         }
1542         if (page) {
1543                 set_page_dirty(page);
1544                 f2fs_put_page(page, 1);
1545         }
1546 }
1547
1548 static void write_normal_summaries(struct f2fs_sb_info *sbi,
1549                                         block_t blkaddr, int type)
1550 {
1551         int i, end;
1552         if (IS_DATASEG(type))
1553                 end = type + NR_CURSEG_DATA_TYPE;
1554         else
1555                 end = type + NR_CURSEG_NODE_TYPE;
1556
1557         for (i = type; i < end; i++) {
1558                 struct curseg_info *sum = CURSEG_I(sbi, i);
1559                 mutex_lock(&sum->curseg_mutex);
1560                 write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type));
1561                 mutex_unlock(&sum->curseg_mutex);
1562         }
1563 }
1564
1565 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1566 {
1567         if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG))
1568                 write_compacted_summaries(sbi, start_blk);
1569         else
1570                 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
1571 }
1572
1573 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1574 {
1575         write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
1576 }
1577
1578 int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type,
1579                                         unsigned int val, int alloc)
1580 {
1581         int i;
1582
1583         if (type == NAT_JOURNAL) {
1584                 for (i = 0; i < nats_in_cursum(sum); i++) {
1585                         if (le32_to_cpu(nid_in_journal(sum, i)) == val)
1586                                 return i;
1587                 }
1588                 if (alloc && nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES)
1589                         return update_nats_in_cursum(sum, 1);
1590         } else if (type == SIT_JOURNAL) {
1591                 for (i = 0; i < sits_in_cursum(sum); i++)
1592                         if (le32_to_cpu(segno_in_journal(sum, i)) == val)
1593                                 return i;
1594                 if (alloc && sits_in_cursum(sum) < SIT_JOURNAL_ENTRIES)
1595                         return update_sits_in_cursum(sum, 1);
1596         }
1597         return -1;
1598 }
1599
1600 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
1601                                         unsigned int segno)
1602 {
1603         return get_meta_page(sbi, current_sit_addr(sbi, segno));
1604 }
1605
1606 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
1607                                         unsigned int start)
1608 {
1609         struct sit_info *sit_i = SIT_I(sbi);
1610         struct page *src_page, *dst_page;
1611         pgoff_t src_off, dst_off;
1612         void *src_addr, *dst_addr;
1613
1614         src_off = current_sit_addr(sbi, start);
1615         dst_off = next_sit_addr(sbi, src_off);
1616
1617         /* get current sit block page without lock */
1618         src_page = get_meta_page(sbi, src_off);
1619         dst_page = grab_meta_page(sbi, dst_off);
1620         f2fs_bug_on(sbi, PageDirty(src_page));
1621
1622         src_addr = page_address(src_page);
1623         dst_addr = page_address(dst_page);
1624         memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
1625
1626         set_page_dirty(dst_page);
1627         f2fs_put_page(src_page, 1);
1628
1629         set_to_next_sit(sit_i, start);
1630
1631         return dst_page;
1632 }
1633
1634 static struct sit_entry_set *grab_sit_entry_set(void)
1635 {
1636         struct sit_entry_set *ses =
1637                         f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_ATOMIC);
1638
1639         ses->entry_cnt = 0;
1640         INIT_LIST_HEAD(&ses->set_list);
1641         return ses;
1642 }
1643
1644 static void release_sit_entry_set(struct sit_entry_set *ses)
1645 {
1646         list_del(&ses->set_list);
1647         kmem_cache_free(sit_entry_set_slab, ses);
1648 }
1649
1650 static void adjust_sit_entry_set(struct sit_entry_set *ses,
1651                                                 struct list_head *head)
1652 {
1653         struct sit_entry_set *next = ses;
1654
1655         if (list_is_last(&ses->set_list, head))
1656                 return;
1657
1658         list_for_each_entry_continue(next, head, set_list)
1659                 if (ses->entry_cnt <= next->entry_cnt)
1660                         break;
1661
1662         list_move_tail(&ses->set_list, &next->set_list);
1663 }
1664
1665 static void add_sit_entry(unsigned int segno, struct list_head *head)
1666 {
1667         struct sit_entry_set *ses;
1668         unsigned int start_segno = START_SEGNO(segno);
1669
1670         list_for_each_entry(ses, head, set_list) {
1671                 if (ses->start_segno == start_segno) {
1672                         ses->entry_cnt++;
1673                         adjust_sit_entry_set(ses, head);
1674                         return;
1675                 }
1676         }
1677
1678         ses = grab_sit_entry_set();
1679
1680         ses->start_segno = start_segno;
1681         ses->entry_cnt++;
1682         list_add(&ses->set_list, head);
1683 }
1684
1685 static void add_sits_in_set(struct f2fs_sb_info *sbi)
1686 {
1687         struct f2fs_sm_info *sm_info = SM_I(sbi);
1688         struct list_head *set_list = &sm_info->sit_entry_set;
1689         unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
1690         unsigned int segno;
1691
1692         for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
1693                 add_sit_entry(segno, set_list);
1694 }
1695
1696 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
1697 {
1698         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1699         struct f2fs_summary_block *sum = curseg->sum_blk;
1700         int i;
1701
1702         for (i = sits_in_cursum(sum) - 1; i >= 0; i--) {
1703                 unsigned int segno;
1704                 bool dirtied;
1705
1706                 segno = le32_to_cpu(segno_in_journal(sum, i));
1707                 dirtied = __mark_sit_entry_dirty(sbi, segno);
1708
1709                 if (!dirtied)
1710                         add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
1711         }
1712         update_sits_in_cursum(sum, -sits_in_cursum(sum));
1713 }
1714
1715 /*
1716  * CP calls this function, which flushes SIT entries including sit_journal,
1717  * and moves prefree segs to free segs.
1718  */
1719 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1720 {
1721         struct sit_info *sit_i = SIT_I(sbi);
1722         unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
1723         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1724         struct f2fs_summary_block *sum = curseg->sum_blk;
1725         struct sit_entry_set *ses, *tmp;
1726         struct list_head *head = &SM_I(sbi)->sit_entry_set;
1727         bool to_journal = true;
1728         struct seg_entry *se;
1729
1730         mutex_lock(&curseg->curseg_mutex);
1731         mutex_lock(&sit_i->sentry_lock);
1732
1733         /*
1734          * add and account sit entries of dirty bitmap in sit entry
1735          * set temporarily
1736          */
1737         add_sits_in_set(sbi);
1738
1739         /*
1740          * if there are no enough space in journal to store dirty sit
1741          * entries, remove all entries from journal and add and account
1742          * them in sit entry set.
1743          */
1744         if (!__has_cursum_space(sum, sit_i->dirty_sentries, SIT_JOURNAL))
1745                 remove_sits_in_journal(sbi);
1746
1747         if (!sit_i->dirty_sentries)
1748                 goto out;
1749
1750         /*
1751          * there are two steps to flush sit entries:
1752          * #1, flush sit entries to journal in current cold data summary block.
1753          * #2, flush sit entries to sit page.
1754          */
1755         list_for_each_entry_safe(ses, tmp, head, set_list) {
1756                 struct page *page = NULL;
1757                 struct f2fs_sit_block *raw_sit = NULL;
1758                 unsigned int start_segno = ses->start_segno;
1759                 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
1760                                                 (unsigned long)MAIN_SEGS(sbi));
1761                 unsigned int segno = start_segno;
1762
1763                 if (to_journal &&
1764                         !__has_cursum_space(sum, ses->entry_cnt, SIT_JOURNAL))
1765                         to_journal = false;
1766
1767                 if (!to_journal) {
1768                         page = get_next_sit_page(sbi, start_segno);
1769                         raw_sit = page_address(page);
1770                 }
1771
1772                 /* flush dirty sit entries in region of current sit set */
1773                 for_each_set_bit_from(segno, bitmap, end) {
1774                         int offset, sit_offset;
1775
1776                         se = get_seg_entry(sbi, segno);
1777
1778                         /* add discard candidates */
1779                         if (cpc->reason != CP_DISCARD) {
1780                                 cpc->trim_start = segno;
1781                                 add_discard_addrs(sbi, cpc);
1782                         }
1783
1784                         if (to_journal) {
1785                                 offset = lookup_journal_in_cursum(sum,
1786                                                         SIT_JOURNAL, segno, 1);
1787                                 f2fs_bug_on(sbi, offset < 0);
1788                                 segno_in_journal(sum, offset) =
1789                                                         cpu_to_le32(segno);
1790                                 seg_info_to_raw_sit(se,
1791                                                 &sit_in_journal(sum, offset));
1792                         } else {
1793                                 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
1794                                 seg_info_to_raw_sit(se,
1795                                                 &raw_sit->entries[sit_offset]);
1796                         }
1797
1798                         __clear_bit(segno, bitmap);
1799                         sit_i->dirty_sentries--;
1800                         ses->entry_cnt--;
1801                 }
1802
1803                 if (!to_journal)
1804                         f2fs_put_page(page, 1);
1805
1806                 f2fs_bug_on(sbi, ses->entry_cnt);
1807                 release_sit_entry_set(ses);
1808         }
1809
1810         f2fs_bug_on(sbi, !list_empty(head));
1811         f2fs_bug_on(sbi, sit_i->dirty_sentries);
1812 out:
1813         if (cpc->reason == CP_DISCARD) {
1814                 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
1815                         add_discard_addrs(sbi, cpc);
1816         }
1817         mutex_unlock(&sit_i->sentry_lock);
1818         mutex_unlock(&curseg->curseg_mutex);
1819
1820         set_prefree_as_free_segments(sbi);
1821 }
1822
1823 static int build_sit_info(struct f2fs_sb_info *sbi)
1824 {
1825         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1826         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1827         struct sit_info *sit_i;
1828         unsigned int sit_segs, start;
1829         char *src_bitmap, *dst_bitmap;
1830         unsigned int bitmap_size;
1831
1832         /* allocate memory for SIT information */
1833         sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
1834         if (!sit_i)
1835                 return -ENOMEM;
1836
1837         SM_I(sbi)->sit_info = sit_i;
1838
1839         sit_i->sentries = vzalloc(MAIN_SEGS(sbi) * sizeof(struct seg_entry));
1840         if (!sit_i->sentries)
1841                 return -ENOMEM;
1842
1843         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
1844         sit_i->dirty_sentries_bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1845         if (!sit_i->dirty_sentries_bitmap)
1846                 return -ENOMEM;
1847
1848         for (start = 0; start < MAIN_SEGS(sbi); start++) {
1849                 sit_i->sentries[start].cur_valid_map
1850                         = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1851                 sit_i->sentries[start].ckpt_valid_map
1852                         = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1853                 if (!sit_i->sentries[start].cur_valid_map
1854                                 || !sit_i->sentries[start].ckpt_valid_map)
1855                         return -ENOMEM;
1856         }
1857
1858         sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1859         if (!sit_i->tmp_map)
1860                 return -ENOMEM;
1861
1862         if (sbi->segs_per_sec > 1) {
1863                 sit_i->sec_entries = vzalloc(MAIN_SECS(sbi) *
1864                                         sizeof(struct sec_entry));
1865                 if (!sit_i->sec_entries)
1866                         return -ENOMEM;
1867         }
1868
1869         /* get information related with SIT */
1870         sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
1871
1872         /* setup SIT bitmap from ckeckpoint pack */
1873         bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
1874         src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
1875
1876         dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
1877         if (!dst_bitmap)
1878                 return -ENOMEM;
1879
1880         /* init SIT information */
1881         sit_i->s_ops = &default_salloc_ops;
1882
1883         sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
1884         sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
1885         sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
1886         sit_i->sit_bitmap = dst_bitmap;
1887         sit_i->bitmap_size = bitmap_size;
1888         sit_i->dirty_sentries = 0;
1889         sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
1890         sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
1891         sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
1892         mutex_init(&sit_i->sentry_lock);
1893         return 0;
1894 }
1895
1896 static int build_free_segmap(struct f2fs_sb_info *sbi)
1897 {
1898         struct free_segmap_info *free_i;
1899         unsigned int bitmap_size, sec_bitmap_size;
1900
1901         /* allocate memory for free segmap information */
1902         free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
1903         if (!free_i)
1904                 return -ENOMEM;
1905
1906         SM_I(sbi)->free_info = free_i;
1907
1908         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
1909         free_i->free_segmap = kmalloc(bitmap_size, GFP_KERNEL);
1910         if (!free_i->free_segmap)
1911                 return -ENOMEM;
1912
1913         sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
1914         free_i->free_secmap = kmalloc(sec_bitmap_size, GFP_KERNEL);
1915         if (!free_i->free_secmap)
1916                 return -ENOMEM;
1917
1918         /* set all segments as dirty temporarily */
1919         memset(free_i->free_segmap, 0xff, bitmap_size);
1920         memset(free_i->free_secmap, 0xff, sec_bitmap_size);
1921
1922         /* init free segmap information */
1923         free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
1924         free_i->free_segments = 0;
1925         free_i->free_sections = 0;
1926         spin_lock_init(&free_i->segmap_lock);
1927         return 0;
1928 }
1929
1930 static int build_curseg(struct f2fs_sb_info *sbi)
1931 {
1932         struct curseg_info *array;
1933         int i;
1934
1935         array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL);
1936         if (!array)
1937                 return -ENOMEM;
1938
1939         SM_I(sbi)->curseg_array = array;
1940
1941         for (i = 0; i < NR_CURSEG_TYPE; i++) {
1942                 mutex_init(&array[i].curseg_mutex);
1943                 array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL);
1944                 if (!array[i].sum_blk)
1945                         return -ENOMEM;
1946                 array[i].segno = NULL_SEGNO;
1947                 array[i].next_blkoff = 0;
1948         }
1949         return restore_curseg_summaries(sbi);
1950 }
1951
1952 static void build_sit_entries(struct f2fs_sb_info *sbi)
1953 {
1954         struct sit_info *sit_i = SIT_I(sbi);
1955         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1956         struct f2fs_summary_block *sum = curseg->sum_blk;
1957         int sit_blk_cnt = SIT_BLK_CNT(sbi);
1958         unsigned int i, start, end;
1959         unsigned int readed, start_blk = 0;
1960         int nrpages = MAX_BIO_BLOCKS(sbi);
1961
1962         do {
1963                 readed = ra_meta_pages(sbi, start_blk, nrpages, META_SIT);
1964
1965                 start = start_blk * sit_i->sents_per_block;
1966                 end = (start_blk + readed) * sit_i->sents_per_block;
1967
1968                 for (; start < end && start < MAIN_SEGS(sbi); start++) {
1969                         struct seg_entry *se = &sit_i->sentries[start];
1970                         struct f2fs_sit_block *sit_blk;
1971                         struct f2fs_sit_entry sit;
1972                         struct page *page;
1973
1974                         mutex_lock(&curseg->curseg_mutex);
1975                         for (i = 0; i < sits_in_cursum(sum); i++) {
1976                                 if (le32_to_cpu(segno_in_journal(sum, i))
1977                                                                 == start) {
1978                                         sit = sit_in_journal(sum, i);
1979                                         mutex_unlock(&curseg->curseg_mutex);
1980                                         goto got_it;
1981                                 }
1982                         }
1983                         mutex_unlock(&curseg->curseg_mutex);
1984
1985                         page = get_current_sit_page(sbi, start);
1986                         sit_blk = (struct f2fs_sit_block *)page_address(page);
1987                         sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
1988                         f2fs_put_page(page, 1);
1989 got_it:
1990                         check_block_count(sbi, start, &sit);
1991                         seg_info_from_raw_sit(se, &sit);
1992                         if (sbi->segs_per_sec > 1) {
1993                                 struct sec_entry *e = get_sec_entry(sbi, start);
1994                                 e->valid_blocks += se->valid_blocks;
1995                         }
1996                 }
1997                 start_blk += readed;
1998         } while (start_blk < sit_blk_cnt);
1999 }
2000
2001 static void init_free_segmap(struct f2fs_sb_info *sbi)
2002 {
2003         unsigned int start;
2004         int type;
2005
2006         for (start = 0; start < MAIN_SEGS(sbi); start++) {
2007                 struct seg_entry *sentry = get_seg_entry(sbi, start);
2008                 if (!sentry->valid_blocks)
2009                         __set_free(sbi, start);
2010         }
2011
2012         /* set use the current segments */
2013         for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
2014                 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
2015                 __set_test_and_inuse(sbi, curseg_t->segno);
2016         }
2017 }
2018
2019 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
2020 {
2021         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2022         struct free_segmap_info *free_i = FREE_I(sbi);
2023         unsigned int segno = 0, offset = 0;
2024         unsigned short valid_blocks;
2025
2026         while (1) {
2027                 /* find dirty segment based on free segmap */
2028                 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
2029                 if (segno >= MAIN_SEGS(sbi))
2030                         break;
2031                 offset = segno + 1;
2032                 valid_blocks = get_valid_blocks(sbi, segno, 0);
2033                 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
2034                         continue;
2035                 if (valid_blocks > sbi->blocks_per_seg) {
2036                         f2fs_bug_on(sbi, 1);
2037                         continue;
2038                 }
2039                 mutex_lock(&dirty_i->seglist_lock);
2040                 __locate_dirty_segment(sbi, segno, DIRTY);
2041                 mutex_unlock(&dirty_i->seglist_lock);
2042         }
2043 }
2044
2045 static int init_victim_secmap(struct f2fs_sb_info *sbi)
2046 {
2047         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2048         unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
2049
2050         dirty_i->victim_secmap = kzalloc(bitmap_size, GFP_KERNEL);
2051         if (!dirty_i->victim_secmap)
2052                 return -ENOMEM;
2053         return 0;
2054 }
2055
2056 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
2057 {
2058         struct dirty_seglist_info *dirty_i;
2059         unsigned int bitmap_size, i;
2060
2061         /* allocate memory for dirty segments list information */
2062         dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
2063         if (!dirty_i)
2064                 return -ENOMEM;
2065
2066         SM_I(sbi)->dirty_info = dirty_i;
2067         mutex_init(&dirty_i->seglist_lock);
2068
2069         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2070
2071         for (i = 0; i < NR_DIRTY_TYPE; i++) {
2072                 dirty_i->dirty_segmap[i] = kzalloc(bitmap_size, GFP_KERNEL);
2073                 if (!dirty_i->dirty_segmap[i])
2074                         return -ENOMEM;
2075         }
2076
2077         init_dirty_segmap(sbi);
2078         return init_victim_secmap(sbi);
2079 }
2080
2081 /*
2082  * Update min, max modified time for cost-benefit GC algorithm
2083  */
2084 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
2085 {
2086         struct sit_info *sit_i = SIT_I(sbi);
2087         unsigned int segno;
2088
2089         mutex_lock(&sit_i->sentry_lock);
2090
2091         sit_i->min_mtime = LLONG_MAX;
2092
2093         for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
2094                 unsigned int i;
2095                 unsigned long long mtime = 0;
2096
2097                 for (i = 0; i < sbi->segs_per_sec; i++)
2098                         mtime += get_seg_entry(sbi, segno + i)->mtime;
2099
2100                 mtime = div_u64(mtime, sbi->segs_per_sec);
2101
2102                 if (sit_i->min_mtime > mtime)
2103                         sit_i->min_mtime = mtime;
2104         }
2105         sit_i->max_mtime = get_mtime(sbi);
2106         mutex_unlock(&sit_i->sentry_lock);
2107 }
2108
2109 int build_segment_manager(struct f2fs_sb_info *sbi)
2110 {
2111         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2112         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2113         struct f2fs_sm_info *sm_info;
2114         int err;
2115
2116         sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
2117         if (!sm_info)
2118                 return -ENOMEM;
2119
2120         /* init sm info */
2121         sbi->sm_info = sm_info;
2122         sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2123         sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2124         sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
2125         sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2126         sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2127         sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
2128         sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2129         sm_info->rec_prefree_segments = sm_info->main_segments *
2130                                         DEF_RECLAIM_PREFREE_SEGMENTS / 100;
2131         sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
2132         sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
2133         sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
2134
2135         INIT_LIST_HEAD(&sm_info->discard_list);
2136         sm_info->nr_discards = 0;
2137         sm_info->max_discards = 0;
2138
2139         sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS;
2140
2141         INIT_LIST_HEAD(&sm_info->sit_entry_set);
2142
2143         if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) {
2144                 err = create_flush_cmd_control(sbi);
2145                 if (err)
2146                         return err;
2147         }
2148
2149         err = build_sit_info(sbi);
2150         if (err)
2151                 return err;
2152         err = build_free_segmap(sbi);
2153         if (err)
2154                 return err;
2155         err = build_curseg(sbi);
2156         if (err)
2157                 return err;
2158
2159         /* reinit free segmap based on SIT */
2160         build_sit_entries(sbi);
2161
2162         init_free_segmap(sbi);
2163         err = build_dirty_segmap(sbi);
2164         if (err)
2165                 return err;
2166
2167         init_min_max_mtime(sbi);
2168         return 0;
2169 }
2170
2171 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
2172                 enum dirty_type dirty_type)
2173 {
2174         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2175
2176         mutex_lock(&dirty_i->seglist_lock);
2177         kfree(dirty_i->dirty_segmap[dirty_type]);
2178         dirty_i->nr_dirty[dirty_type] = 0;
2179         mutex_unlock(&dirty_i->seglist_lock);
2180 }
2181
2182 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
2183 {
2184         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2185         kfree(dirty_i->victim_secmap);
2186 }
2187
2188 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
2189 {
2190         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2191         int i;
2192
2193         if (!dirty_i)
2194                 return;
2195
2196         /* discard pre-free/dirty segments list */
2197         for (i = 0; i < NR_DIRTY_TYPE; i++)
2198                 discard_dirty_segmap(sbi, i);
2199
2200         destroy_victim_secmap(sbi);
2201         SM_I(sbi)->dirty_info = NULL;
2202         kfree(dirty_i);
2203 }
2204
2205 static void destroy_curseg(struct f2fs_sb_info *sbi)
2206 {
2207         struct curseg_info *array = SM_I(sbi)->curseg_array;
2208         int i;
2209
2210         if (!array)
2211                 return;
2212         SM_I(sbi)->curseg_array = NULL;
2213         for (i = 0; i < NR_CURSEG_TYPE; i++)
2214                 kfree(array[i].sum_blk);
2215         kfree(array);
2216 }
2217
2218 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
2219 {
2220         struct free_segmap_info *free_i = SM_I(sbi)->free_info;
2221         if (!free_i)
2222                 return;
2223         SM_I(sbi)->free_info = NULL;
2224         kfree(free_i->free_segmap);
2225         kfree(free_i->free_secmap);
2226         kfree(free_i);
2227 }
2228
2229 static void destroy_sit_info(struct f2fs_sb_info *sbi)
2230 {
2231         struct sit_info *sit_i = SIT_I(sbi);
2232         unsigned int start;
2233
2234         if (!sit_i)
2235                 return;
2236
2237         if (sit_i->sentries) {
2238                 for (start = 0; start < MAIN_SEGS(sbi); start++) {
2239                         kfree(sit_i->sentries[start].cur_valid_map);
2240                         kfree(sit_i->sentries[start].ckpt_valid_map);
2241                 }
2242         }
2243         kfree(sit_i->tmp_map);
2244
2245         vfree(sit_i->sentries);
2246         vfree(sit_i->sec_entries);
2247         kfree(sit_i->dirty_sentries_bitmap);
2248
2249         SM_I(sbi)->sit_info = NULL;
2250         kfree(sit_i->sit_bitmap);
2251         kfree(sit_i);
2252 }
2253
2254 void destroy_segment_manager(struct f2fs_sb_info *sbi)
2255 {
2256         struct f2fs_sm_info *sm_info = SM_I(sbi);
2257
2258         if (!sm_info)
2259                 return;
2260         destroy_flush_cmd_control(sbi);
2261         destroy_dirty_segmap(sbi);
2262         destroy_curseg(sbi);
2263         destroy_free_segmap(sbi);
2264         destroy_sit_info(sbi);
2265         sbi->sm_info = NULL;
2266         kfree(sm_info);
2267 }
2268
2269 int __init create_segment_manager_caches(void)
2270 {
2271         discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
2272                         sizeof(struct discard_entry));
2273         if (!discard_entry_slab)
2274                 goto fail;
2275
2276         sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
2277                         sizeof(struct sit_entry_set));
2278         if (!sit_entry_set_slab)
2279                 goto destory_discard_entry;
2280
2281         inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
2282                         sizeof(struct inmem_pages));
2283         if (!inmem_entry_slab)
2284                 goto destroy_sit_entry_set;
2285         return 0;
2286
2287 destroy_sit_entry_set:
2288         kmem_cache_destroy(sit_entry_set_slab);
2289 destory_discard_entry:
2290         kmem_cache_destroy(discard_entry_slab);
2291 fail:
2292         return -ENOMEM;
2293 }
2294
2295 void destroy_segment_manager_caches(void)
2296 {
2297         kmem_cache_destroy(sit_entry_set_slab);
2298         kmem_cache_destroy(discard_entry_slab);
2299         kmem_cache_destroy(inmem_entry_slab);
2300 }