]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/f2fs/segment.h
Merge tag 'ipu-fixes-3.18' of git://git.pengutronix.de/git/pza/linux into drm-next
[karo-tx-linux.git] / fs / f2fs / segment.h
1 /*
2  * fs/f2fs/segment.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/blkdev.h>
12
13 /* constant macro */
14 #define NULL_SEGNO                      ((unsigned int)(~0))
15 #define NULL_SECNO                      ((unsigned int)(~0))
16
17 #define DEF_RECLAIM_PREFREE_SEGMENTS    5       /* 5% over total segments */
18
19 /* L: Logical segment # in volume, R: Relative segment # in main area */
20 #define GET_L2R_SEGNO(free_i, segno)    (segno - free_i->start_segno)
21 #define GET_R2L_SEGNO(free_i, segno)    (segno + free_i->start_segno)
22
23 #define IS_DATASEG(t)   (t <= CURSEG_COLD_DATA)
24 #define IS_NODESEG(t)   (t >= CURSEG_HOT_NODE)
25
26 #define IS_CURSEG(sbi, seg)                                             \
27         ((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||      \
28          (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||     \
29          (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||     \
30          (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||      \
31          (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||     \
32          (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
33
34 #define IS_CURSEC(sbi, secno)                                           \
35         ((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /              \
36           sbi->segs_per_sec) || \
37          (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /             \
38           sbi->segs_per_sec) || \
39          (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /             \
40           sbi->segs_per_sec) || \
41          (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /              \
42           sbi->segs_per_sec) || \
43          (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /             \
44           sbi->segs_per_sec) || \
45          (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /             \
46           sbi->segs_per_sec))   \
47
48 #define START_BLOCK(sbi, segno)                                         \
49         (SM_I(sbi)->seg0_blkaddr +                                      \
50          (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
51 #define NEXT_FREE_BLKADDR(sbi, curseg)                                  \
52         (START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)
53
54 #define MAIN_BASE_BLOCK(sbi)    (SM_I(sbi)->main_blkaddr)
55
56 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)                             \
57         ((blk_addr) - SM_I(sbi)->seg0_blkaddr)
58 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr)                              \
59         (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
60 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr)                             \
61         (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (sbi->blocks_per_seg - 1))
62
63 #define GET_SEGNO(sbi, blk_addr)                                        \
64         (((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ?          \
65         NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),                 \
66                 GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
67 #define GET_SECNO(sbi, segno)                                   \
68         ((segno) / sbi->segs_per_sec)
69 #define GET_ZONENO_FROM_SEGNO(sbi, segno)                               \
70         ((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
71
72 #define GET_SUM_BLOCK(sbi, segno)                               \
73         ((sbi->sm_info->ssa_blkaddr) + segno)
74
75 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
76 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
77
78 #define SIT_ENTRY_OFFSET(sit_i, segno)                                  \
79         (segno % sit_i->sents_per_block)
80 #define SIT_BLOCK_OFFSET(sit_i, segno)                                  \
81         (segno / SIT_ENTRY_PER_BLOCK)
82 #define START_SEGNO(sit_i, segno)               \
83         (SIT_BLOCK_OFFSET(sit_i, segno) * SIT_ENTRY_PER_BLOCK)
84 #define SIT_BLK_CNT(sbi)                        \
85         ((TOTAL_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
86 #define f2fs_bitmap_size(nr)                    \
87         (BITS_TO_LONGS(nr) * sizeof(unsigned long))
88 #define TOTAL_SEGS(sbi) (SM_I(sbi)->main_segments)
89 #define TOTAL_SECS(sbi) (sbi->total_sections)
90
91 #define SECTOR_FROM_BLOCK(sbi, blk_addr)                                \
92         (((sector_t)blk_addr) << (sbi)->log_sectors_per_block)
93 #define SECTOR_TO_BLOCK(sbi, sectors)                                   \
94         (sectors >> (sbi)->log_sectors_per_block)
95 #define MAX_BIO_BLOCKS(max_hw_blocks)                                   \
96         (min((int)max_hw_blocks, BIO_MAX_PAGES))
97
98 /*
99  * indicate a block allocation direction: RIGHT and LEFT.
100  * RIGHT means allocating new sections towards the end of volume.
101  * LEFT means the opposite direction.
102  */
103 enum {
104         ALLOC_RIGHT = 0,
105         ALLOC_LEFT
106 };
107
108 /*
109  * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
110  * LFS writes data sequentially with cleaning operations.
111  * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
112  */
113 enum {
114         LFS = 0,
115         SSR
116 };
117
118 /*
119  * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
120  * GC_CB is based on cost-benefit algorithm.
121  * GC_GREEDY is based on greedy algorithm.
122  */
123 enum {
124         GC_CB = 0,
125         GC_GREEDY
126 };
127
128 /*
129  * BG_GC means the background cleaning job.
130  * FG_GC means the on-demand cleaning job.
131  */
132 enum {
133         BG_GC = 0,
134         FG_GC
135 };
136
137 /* for a function parameter to select a victim segment */
138 struct victim_sel_policy {
139         int alloc_mode;                 /* LFS or SSR */
140         int gc_mode;                    /* GC_CB or GC_GREEDY */
141         unsigned long *dirty_segmap;    /* dirty segment bitmap */
142         unsigned int max_search;        /* maximum # of segments to search */
143         unsigned int offset;            /* last scanned bitmap offset */
144         unsigned int ofs_unit;          /* bitmap search unit */
145         unsigned int min_cost;          /* minimum cost */
146         unsigned int min_segno;         /* segment # having min. cost */
147 };
148
149 struct seg_entry {
150         unsigned short valid_blocks;    /* # of valid blocks */
151         unsigned char *cur_valid_map;   /* validity bitmap of blocks */
152         /*
153          * # of valid blocks and the validity bitmap stored in the the last
154          * checkpoint pack. This information is used by the SSR mode.
155          */
156         unsigned short ckpt_valid_blocks;
157         unsigned char *ckpt_valid_map;
158         unsigned char type;             /* segment type like CURSEG_XXX_TYPE */
159         unsigned long long mtime;       /* modification time of the segment */
160 };
161
162 struct sec_entry {
163         unsigned int valid_blocks;      /* # of valid blocks in a section */
164 };
165
166 struct segment_allocation {
167         void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
168 };
169
170 struct sit_info {
171         const struct segment_allocation *s_ops;
172
173         block_t sit_base_addr;          /* start block address of SIT area */
174         block_t sit_blocks;             /* # of blocks used by SIT area */
175         block_t written_valid_blocks;   /* # of valid blocks in main area */
176         char *sit_bitmap;               /* SIT bitmap pointer */
177         unsigned int bitmap_size;       /* SIT bitmap size */
178
179         unsigned long *dirty_sentries_bitmap;   /* bitmap for dirty sentries */
180         unsigned int dirty_sentries;            /* # of dirty sentries */
181         unsigned int sents_per_block;           /* # of SIT entries per block */
182         struct mutex sentry_lock;               /* to protect SIT cache */
183         struct seg_entry *sentries;             /* SIT segment-level cache */
184         struct sec_entry *sec_entries;          /* SIT section-level cache */
185
186         /* for cost-benefit algorithm in cleaning procedure */
187         unsigned long long elapsed_time;        /* elapsed time after mount */
188         unsigned long long mounted_time;        /* mount time */
189         unsigned long long min_mtime;           /* min. modification time */
190         unsigned long long max_mtime;           /* max. modification time */
191 };
192
193 struct free_segmap_info {
194         unsigned int start_segno;       /* start segment number logically */
195         unsigned int free_segments;     /* # of free segments */
196         unsigned int free_sections;     /* # of free sections */
197         rwlock_t segmap_lock;           /* free segmap lock */
198         unsigned long *free_segmap;     /* free segment bitmap */
199         unsigned long *free_secmap;     /* free section bitmap */
200 };
201
202 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
203 enum dirty_type {
204         DIRTY_HOT_DATA,         /* dirty segments assigned as hot data logs */
205         DIRTY_WARM_DATA,        /* dirty segments assigned as warm data logs */
206         DIRTY_COLD_DATA,        /* dirty segments assigned as cold data logs */
207         DIRTY_HOT_NODE,         /* dirty segments assigned as hot node logs */
208         DIRTY_WARM_NODE,        /* dirty segments assigned as warm node logs */
209         DIRTY_COLD_NODE,        /* dirty segments assigned as cold node logs */
210         DIRTY,                  /* to count # of dirty segments */
211         PRE,                    /* to count # of entirely obsolete segments */
212         NR_DIRTY_TYPE
213 };
214
215 struct dirty_seglist_info {
216         const struct victim_selection *v_ops;   /* victim selction operation */
217         unsigned long *dirty_segmap[NR_DIRTY_TYPE];
218         struct mutex seglist_lock;              /* lock for segment bitmaps */
219         int nr_dirty[NR_DIRTY_TYPE];            /* # of dirty segments */
220         unsigned long *victim_secmap;           /* background GC victims */
221 };
222
223 /* victim selection function for cleaning and SSR */
224 struct victim_selection {
225         int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
226                                                         int, int, char);
227 };
228
229 /* for active log information */
230 struct curseg_info {
231         struct mutex curseg_mutex;              /* lock for consistency */
232         struct f2fs_summary_block *sum_blk;     /* cached summary block */
233         unsigned char alloc_type;               /* current allocation type */
234         unsigned int segno;                     /* current segment number */
235         unsigned short next_blkoff;             /* next block offset to write */
236         unsigned int zone;                      /* current zone number */
237         unsigned int next_segno;                /* preallocated segment */
238 };
239
240 /*
241  * inline functions
242  */
243 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
244 {
245         return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
246 }
247
248 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
249                                                 unsigned int segno)
250 {
251         struct sit_info *sit_i = SIT_I(sbi);
252         return &sit_i->sentries[segno];
253 }
254
255 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
256                                                 unsigned int segno)
257 {
258         struct sit_info *sit_i = SIT_I(sbi);
259         return &sit_i->sec_entries[GET_SECNO(sbi, segno)];
260 }
261
262 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
263                                 unsigned int segno, int section)
264 {
265         /*
266          * In order to get # of valid blocks in a section instantly from many
267          * segments, f2fs manages two counting structures separately.
268          */
269         if (section > 1)
270                 return get_sec_entry(sbi, segno)->valid_blocks;
271         else
272                 return get_seg_entry(sbi, segno)->valid_blocks;
273 }
274
275 static inline void seg_info_from_raw_sit(struct seg_entry *se,
276                                         struct f2fs_sit_entry *rs)
277 {
278         se->valid_blocks = GET_SIT_VBLOCKS(rs);
279         se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
280         memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
281         memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
282         se->type = GET_SIT_TYPE(rs);
283         se->mtime = le64_to_cpu(rs->mtime);
284 }
285
286 static inline void seg_info_to_raw_sit(struct seg_entry *se,
287                                         struct f2fs_sit_entry *rs)
288 {
289         unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
290                                         se->valid_blocks;
291         rs->vblocks = cpu_to_le16(raw_vblocks);
292         memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
293         memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
294         se->ckpt_valid_blocks = se->valid_blocks;
295         rs->mtime = cpu_to_le64(se->mtime);
296 }
297
298 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
299                 unsigned int max, unsigned int segno)
300 {
301         unsigned int ret;
302         read_lock(&free_i->segmap_lock);
303         ret = find_next_bit(free_i->free_segmap, max, segno);
304         read_unlock(&free_i->segmap_lock);
305         return ret;
306 }
307
308 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
309 {
310         struct free_segmap_info *free_i = FREE_I(sbi);
311         unsigned int secno = segno / sbi->segs_per_sec;
312         unsigned int start_segno = secno * sbi->segs_per_sec;
313         unsigned int next;
314
315         write_lock(&free_i->segmap_lock);
316         clear_bit(segno, free_i->free_segmap);
317         free_i->free_segments++;
318
319         next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi), start_segno);
320         if (next >= start_segno + sbi->segs_per_sec) {
321                 clear_bit(secno, free_i->free_secmap);
322                 free_i->free_sections++;
323         }
324         write_unlock(&free_i->segmap_lock);
325 }
326
327 static inline void __set_inuse(struct f2fs_sb_info *sbi,
328                 unsigned int segno)
329 {
330         struct free_segmap_info *free_i = FREE_I(sbi);
331         unsigned int secno = segno / sbi->segs_per_sec;
332         set_bit(segno, free_i->free_segmap);
333         free_i->free_segments--;
334         if (!test_and_set_bit(secno, free_i->free_secmap))
335                 free_i->free_sections--;
336 }
337
338 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
339                 unsigned int segno)
340 {
341         struct free_segmap_info *free_i = FREE_I(sbi);
342         unsigned int secno = segno / sbi->segs_per_sec;
343         unsigned int start_segno = secno * sbi->segs_per_sec;
344         unsigned int next;
345
346         write_lock(&free_i->segmap_lock);
347         if (test_and_clear_bit(segno, free_i->free_segmap)) {
348                 free_i->free_segments++;
349
350                 next = find_next_bit(free_i->free_segmap,
351                                 start_segno + sbi->segs_per_sec, start_segno);
352                 if (next >= start_segno + sbi->segs_per_sec) {
353                         if (test_and_clear_bit(secno, free_i->free_secmap))
354                                 free_i->free_sections++;
355                 }
356         }
357         write_unlock(&free_i->segmap_lock);
358 }
359
360 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
361                 unsigned int segno)
362 {
363         struct free_segmap_info *free_i = FREE_I(sbi);
364         unsigned int secno = segno / sbi->segs_per_sec;
365         write_lock(&free_i->segmap_lock);
366         if (!test_and_set_bit(segno, free_i->free_segmap)) {
367                 free_i->free_segments--;
368                 if (!test_and_set_bit(secno, free_i->free_secmap))
369                         free_i->free_sections--;
370         }
371         write_unlock(&free_i->segmap_lock);
372 }
373
374 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
375                 void *dst_addr)
376 {
377         struct sit_info *sit_i = SIT_I(sbi);
378         memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
379 }
380
381 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
382 {
383         return SIT_I(sbi)->written_valid_blocks;
384 }
385
386 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
387 {
388         return FREE_I(sbi)->free_segments;
389 }
390
391 static inline int reserved_segments(struct f2fs_sb_info *sbi)
392 {
393         return SM_I(sbi)->reserved_segments;
394 }
395
396 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
397 {
398         return FREE_I(sbi)->free_sections;
399 }
400
401 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
402 {
403         return DIRTY_I(sbi)->nr_dirty[PRE];
404 }
405
406 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
407 {
408         return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
409                 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
410                 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
411                 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
412                 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
413                 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
414 }
415
416 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
417 {
418         return SM_I(sbi)->ovp_segments;
419 }
420
421 static inline int overprovision_sections(struct f2fs_sb_info *sbi)
422 {
423         return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec;
424 }
425
426 static inline int reserved_sections(struct f2fs_sb_info *sbi)
427 {
428         return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec;
429 }
430
431 static inline bool need_SSR(struct f2fs_sb_info *sbi)
432 {
433         return (prefree_segments(sbi) / sbi->segs_per_sec)
434                         + free_sections(sbi) < overprovision_sections(sbi);
435 }
436
437 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, int freed)
438 {
439         int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
440         int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
441
442         if (unlikely(sbi->por_doing))
443                 return false;
444
445         return (free_sections(sbi) + freed) <= (node_secs + 2 * dent_secs +
446                                                 reserved_sections(sbi));
447 }
448
449 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
450 {
451         return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
452 }
453
454 static inline int utilization(struct f2fs_sb_info *sbi)
455 {
456         return div_u64((u64)valid_user_blocks(sbi) * 100,
457                                         sbi->user_block_count);
458 }
459
460 /*
461  * Sometimes f2fs may be better to drop out-of-place update policy.
462  * And, users can control the policy through sysfs entries.
463  * There are five policies with triggering conditions as follows.
464  * F2FS_IPU_FORCE - all the time,
465  * F2FS_IPU_SSR - if SSR mode is activated,
466  * F2FS_IPU_UTIL - if FS utilization is over threashold,
467  * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
468  *                     threashold,
469  * F2FS_IPUT_DISABLE - disable IPU. (=default option)
470  */
471 #define DEF_MIN_IPU_UTIL        70
472
473 enum {
474         F2FS_IPU_FORCE,
475         F2FS_IPU_SSR,
476         F2FS_IPU_UTIL,
477         F2FS_IPU_SSR_UTIL,
478         F2FS_IPU_DISABLE,
479 };
480
481 static inline bool need_inplace_update(struct inode *inode)
482 {
483         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
484
485         /* IPU can be done only for the user data */
486         if (S_ISDIR(inode->i_mode))
487                 return false;
488
489         /* this is only set during fdatasync */
490         if (is_inode_flag_set(F2FS_I(inode), FI_NEED_IPU))
491                 return true;
492
493         switch (SM_I(sbi)->ipu_policy) {
494         case F2FS_IPU_FORCE:
495                 return true;
496         case F2FS_IPU_SSR:
497                 if (need_SSR(sbi))
498                         return true;
499                 break;
500         case F2FS_IPU_UTIL:
501                 if (utilization(sbi) > SM_I(sbi)->min_ipu_util)
502                         return true;
503                 break;
504         case F2FS_IPU_SSR_UTIL:
505                 if (need_SSR(sbi) && utilization(sbi) > SM_I(sbi)->min_ipu_util)
506                         return true;
507                 break;
508         case F2FS_IPU_DISABLE:
509                 break;
510         }
511         return false;
512 }
513
514 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
515                 int type)
516 {
517         struct curseg_info *curseg = CURSEG_I(sbi, type);
518         return curseg->segno;
519 }
520
521 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
522                 int type)
523 {
524         struct curseg_info *curseg = CURSEG_I(sbi, type);
525         return curseg->alloc_type;
526 }
527
528 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
529 {
530         struct curseg_info *curseg = CURSEG_I(sbi, type);
531         return curseg->next_blkoff;
532 }
533
534 #ifdef CONFIG_F2FS_CHECK_FS
535 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
536 {
537         unsigned int end_segno = SM_I(sbi)->segment_count - 1;
538         BUG_ON(segno > end_segno);
539 }
540
541 static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
542 {
543         struct f2fs_sm_info *sm_info = SM_I(sbi);
544         block_t total_blks = sm_info->segment_count << sbi->log_blocks_per_seg;
545         block_t start_addr = sm_info->seg0_blkaddr;
546         block_t end_addr = start_addr + total_blks - 1;
547         BUG_ON(blk_addr < start_addr);
548         BUG_ON(blk_addr > end_addr);
549 }
550
551 /*
552  * Summary block is always treated as an invalid block
553  */
554 static inline void check_block_count(struct f2fs_sb_info *sbi,
555                 int segno, struct f2fs_sit_entry *raw_sit)
556 {
557         struct f2fs_sm_info *sm_info = SM_I(sbi);
558         unsigned int end_segno = sm_info->segment_count - 1;
559         bool is_valid  = test_bit_le(0, raw_sit->valid_map) ? true : false;
560         int valid_blocks = 0;
561         int cur_pos = 0, next_pos;
562
563         /* check segment usage */
564         BUG_ON(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg);
565
566         /* check boundary of a given segment number */
567         BUG_ON(segno > end_segno);
568
569         /* check bitmap with valid block count */
570         do {
571                 if (is_valid) {
572                         next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
573                                         sbi->blocks_per_seg,
574                                         cur_pos);
575                         valid_blocks += next_pos - cur_pos;
576                 } else
577                         next_pos = find_next_bit_le(&raw_sit->valid_map,
578                                         sbi->blocks_per_seg,
579                                         cur_pos);
580                 cur_pos = next_pos;
581                 is_valid = !is_valid;
582         } while (cur_pos < sbi->blocks_per_seg);
583         BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks);
584 }
585 #else
586 #define check_seg_range(sbi, segno)
587 #define verify_block_addr(sbi, blk_addr)
588 #define check_block_count(sbi, segno, raw_sit)
589 #endif
590
591 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
592                                                 unsigned int start)
593 {
594         struct sit_info *sit_i = SIT_I(sbi);
595         unsigned int offset = SIT_BLOCK_OFFSET(sit_i, start);
596         block_t blk_addr = sit_i->sit_base_addr + offset;
597
598         check_seg_range(sbi, start);
599
600         /* calculate sit block address */
601         if (f2fs_test_bit(offset, sit_i->sit_bitmap))
602                 blk_addr += sit_i->sit_blocks;
603
604         return blk_addr;
605 }
606
607 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
608                                                 pgoff_t block_addr)
609 {
610         struct sit_info *sit_i = SIT_I(sbi);
611         block_addr -= sit_i->sit_base_addr;
612         if (block_addr < sit_i->sit_blocks)
613                 block_addr += sit_i->sit_blocks;
614         else
615                 block_addr -= sit_i->sit_blocks;
616
617         return block_addr + sit_i->sit_base_addr;
618 }
619
620 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
621 {
622         unsigned int block_off = SIT_BLOCK_OFFSET(sit_i, start);
623
624         if (f2fs_test_bit(block_off, sit_i->sit_bitmap))
625                 f2fs_clear_bit(block_off, sit_i->sit_bitmap);
626         else
627                 f2fs_set_bit(block_off, sit_i->sit_bitmap);
628 }
629
630 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
631 {
632         struct sit_info *sit_i = SIT_I(sbi);
633         return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec -
634                                                 sit_i->mounted_time;
635 }
636
637 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
638                         unsigned int ofs_in_node, unsigned char version)
639 {
640         sum->nid = cpu_to_le32(nid);
641         sum->ofs_in_node = cpu_to_le16(ofs_in_node);
642         sum->version = version;
643 }
644
645 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
646 {
647         return __start_cp_addr(sbi) +
648                 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
649 }
650
651 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
652 {
653         return __start_cp_addr(sbi) +
654                 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
655                                 - (base + 1) + type;
656 }
657
658 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
659 {
660         if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
661                 return true;
662         return false;
663 }
664
665 static inline unsigned int max_hw_blocks(struct f2fs_sb_info *sbi)
666 {
667         struct block_device *bdev = sbi->sb->s_bdev;
668         struct request_queue *q = bdev_get_queue(bdev);
669         return SECTOR_TO_BLOCK(sbi, queue_max_sectors(q));
670 }
671
672 /*
673  * It is very important to gather dirty pages and write at once, so that we can
674  * submit a big bio without interfering other data writes.
675  * By default, 512 pages for directory data,
676  * 512 pages (2MB) * 3 for three types of nodes, and
677  * max_bio_blocks for meta are set.
678  */
679 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
680 {
681         if (type == DATA)
682                 return sbi->blocks_per_seg;
683         else if (type == NODE)
684                 return 3 * sbi->blocks_per_seg;
685         else if (type == META)
686                 return MAX_BIO_BLOCKS(max_hw_blocks(sbi));
687         else
688                 return 0;
689 }
690
691 /*
692  * When writing pages, it'd better align nr_to_write for segment size.
693  */
694 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
695                                         struct writeback_control *wbc)
696 {
697         long nr_to_write, desired;
698
699         if (wbc->sync_mode != WB_SYNC_NONE)
700                 return 0;
701
702         nr_to_write = wbc->nr_to_write;
703
704         if (type == DATA)
705                 desired = 4096;
706         else if (type == NODE)
707                 desired = 3 * max_hw_blocks(sbi);
708         else
709                 desired = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
710
711         wbc->nr_to_write = desired;
712         return desired - nr_to_write;
713 }