]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/fs-writeback.c
ext4: race-condition protection for ext4_convert_unwritten_extents_endio
[karo-tx-linux.git] / fs / fs-writeback.c
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002    Andrew Morton
12  *              Split out of fs/inode.c
13  *              Additions for address_space-based writeback
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/freezer.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include "internal.h"
31
32 /*
33  * 4MB minimal write chunk size
34  */
35 #define MIN_WRITEBACK_PAGES     (4096UL >> (PAGE_CACHE_SHIFT - 10))
36
37 /*
38  * Passed into wb_writeback(), essentially a subset of writeback_control
39  */
40 struct wb_writeback_work {
41         long nr_pages;
42         struct super_block *sb;
43         unsigned long *older_than_this;
44         enum writeback_sync_modes sync_mode;
45         unsigned int tagged_writepages:1;
46         unsigned int for_kupdate:1;
47         unsigned int range_cyclic:1;
48         unsigned int for_background:1;
49         enum wb_reason reason;          /* why was writeback initiated? */
50
51         struct list_head list;          /* pending work list */
52         struct completion *done;        /* set if the caller waits */
53 };
54
55 /**
56  * writeback_in_progress - determine whether there is writeback in progress
57  * @bdi: the device's backing_dev_info structure.
58  *
59  * Determine whether there is writeback waiting to be handled against a
60  * backing device.
61  */
62 int writeback_in_progress(struct backing_dev_info *bdi)
63 {
64         return test_bit(BDI_writeback_running, &bdi->state);
65 }
66 EXPORT_SYMBOL(writeback_in_progress);
67
68 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
69 {
70         struct super_block *sb = inode->i_sb;
71
72         if (strcmp(sb->s_type->name, "bdev") == 0)
73                 return inode->i_mapping->backing_dev_info;
74
75         return sb->s_bdi;
76 }
77
78 static inline struct inode *wb_inode(struct list_head *head)
79 {
80         return list_entry(head, struct inode, i_wb_list);
81 }
82
83 /*
84  * Include the creation of the trace points after defining the
85  * wb_writeback_work structure and inline functions so that the definition
86  * remains local to this file.
87  */
88 #define CREATE_TRACE_POINTS
89 #include <trace/events/writeback.h>
90
91 /* Wakeup flusher thread or forker thread to fork it. Requires bdi->wb_lock. */
92 static void bdi_wakeup_flusher(struct backing_dev_info *bdi)
93 {
94         if (bdi->wb.task) {
95                 wake_up_process(bdi->wb.task);
96         } else {
97                 /*
98                  * The bdi thread isn't there, wake up the forker thread which
99                  * will create and run it.
100                  */
101                 wake_up_process(default_backing_dev_info.wb.task);
102         }
103 }
104
105 static void bdi_queue_work(struct backing_dev_info *bdi,
106                            struct wb_writeback_work *work)
107 {
108         trace_writeback_queue(bdi, work);
109
110         spin_lock_bh(&bdi->wb_lock);
111         list_add_tail(&work->list, &bdi->work_list);
112         if (!bdi->wb.task)
113                 trace_writeback_nothread(bdi, work);
114         bdi_wakeup_flusher(bdi);
115         spin_unlock_bh(&bdi->wb_lock);
116 }
117
118 static void
119 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
120                       bool range_cyclic, enum wb_reason reason)
121 {
122         struct wb_writeback_work *work;
123
124         /*
125          * This is WB_SYNC_NONE writeback, so if allocation fails just
126          * wakeup the thread for old dirty data writeback
127          */
128         work = kzalloc(sizeof(*work), GFP_ATOMIC);
129         if (!work) {
130                 if (bdi->wb.task) {
131                         trace_writeback_nowork(bdi);
132                         wake_up_process(bdi->wb.task);
133                 }
134                 return;
135         }
136
137         work->sync_mode = WB_SYNC_NONE;
138         work->nr_pages  = nr_pages;
139         work->range_cyclic = range_cyclic;
140         work->reason    = reason;
141
142         bdi_queue_work(bdi, work);
143 }
144
145 /**
146  * bdi_start_writeback - start writeback
147  * @bdi: the backing device to write from
148  * @nr_pages: the number of pages to write
149  * @reason: reason why some writeback work was initiated
150  *
151  * Description:
152  *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
153  *   started when this function returns, we make no guarantees on
154  *   completion. Caller need not hold sb s_umount semaphore.
155  *
156  */
157 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
158                         enum wb_reason reason)
159 {
160         __bdi_start_writeback(bdi, nr_pages, true, reason);
161 }
162
163 /**
164  * bdi_start_background_writeback - start background writeback
165  * @bdi: the backing device to write from
166  *
167  * Description:
168  *   This makes sure WB_SYNC_NONE background writeback happens. When
169  *   this function returns, it is only guaranteed that for given BDI
170  *   some IO is happening if we are over background dirty threshold.
171  *   Caller need not hold sb s_umount semaphore.
172  */
173 void bdi_start_background_writeback(struct backing_dev_info *bdi)
174 {
175         /*
176          * We just wake up the flusher thread. It will perform background
177          * writeback as soon as there is no other work to do.
178          */
179         trace_writeback_wake_background(bdi);
180         spin_lock_bh(&bdi->wb_lock);
181         bdi_wakeup_flusher(bdi);
182         spin_unlock_bh(&bdi->wb_lock);
183 }
184
185 /*
186  * Remove the inode from the writeback list it is on.
187  */
188 void inode_wb_list_del(struct inode *inode)
189 {
190         struct backing_dev_info *bdi = inode_to_bdi(inode);
191
192         spin_lock(&bdi->wb.list_lock);
193         list_del_init(&inode->i_wb_list);
194         spin_unlock(&bdi->wb.list_lock);
195 }
196
197 /*
198  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
199  * furthest end of its superblock's dirty-inode list.
200  *
201  * Before stamping the inode's ->dirtied_when, we check to see whether it is
202  * already the most-recently-dirtied inode on the b_dirty list.  If that is
203  * the case then the inode must have been redirtied while it was being written
204  * out and we don't reset its dirtied_when.
205  */
206 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
207 {
208         assert_spin_locked(&wb->list_lock);
209         if (!list_empty(&wb->b_dirty)) {
210                 struct inode *tail;
211
212                 tail = wb_inode(wb->b_dirty.next);
213                 if (time_before(inode->dirtied_when, tail->dirtied_when))
214                         inode->dirtied_when = jiffies;
215         }
216         list_move(&inode->i_wb_list, &wb->b_dirty);
217 }
218
219 /*
220  * requeue inode for re-scanning after bdi->b_io list is exhausted.
221  */
222 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
223 {
224         assert_spin_locked(&wb->list_lock);
225         list_move(&inode->i_wb_list, &wb->b_more_io);
226 }
227
228 static void inode_sync_complete(struct inode *inode)
229 {
230         inode->i_state &= ~I_SYNC;
231         /* Waiters must see I_SYNC cleared before being woken up */
232         smp_mb();
233         wake_up_bit(&inode->i_state, __I_SYNC);
234 }
235
236 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
237 {
238         bool ret = time_after(inode->dirtied_when, t);
239 #ifndef CONFIG_64BIT
240         /*
241          * For inodes being constantly redirtied, dirtied_when can get stuck.
242          * It _appears_ to be in the future, but is actually in distant past.
243          * This test is necessary to prevent such wrapped-around relative times
244          * from permanently stopping the whole bdi writeback.
245          */
246         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
247 #endif
248         return ret;
249 }
250
251 /*
252  * Move expired (dirtied after work->older_than_this) dirty inodes from
253  * @delaying_queue to @dispatch_queue.
254  */
255 static int move_expired_inodes(struct list_head *delaying_queue,
256                                struct list_head *dispatch_queue,
257                                struct wb_writeback_work *work)
258 {
259         LIST_HEAD(tmp);
260         struct list_head *pos, *node;
261         struct super_block *sb = NULL;
262         struct inode *inode;
263         int do_sb_sort = 0;
264         int moved = 0;
265
266         while (!list_empty(delaying_queue)) {
267                 inode = wb_inode(delaying_queue->prev);
268                 if (work->older_than_this &&
269                     inode_dirtied_after(inode, *work->older_than_this))
270                         break;
271                 if (sb && sb != inode->i_sb)
272                         do_sb_sort = 1;
273                 sb = inode->i_sb;
274                 list_move(&inode->i_wb_list, &tmp);
275                 moved++;
276         }
277
278         /* just one sb in list, splice to dispatch_queue and we're done */
279         if (!do_sb_sort) {
280                 list_splice(&tmp, dispatch_queue);
281                 goto out;
282         }
283
284         /* Move inodes from one superblock together */
285         while (!list_empty(&tmp)) {
286                 sb = wb_inode(tmp.prev)->i_sb;
287                 list_for_each_prev_safe(pos, node, &tmp) {
288                         inode = wb_inode(pos);
289                         if (inode->i_sb == sb)
290                                 list_move(&inode->i_wb_list, dispatch_queue);
291                 }
292         }
293 out:
294         return moved;
295 }
296
297 /*
298  * Queue all expired dirty inodes for io, eldest first.
299  * Before
300  *         newly dirtied     b_dirty    b_io    b_more_io
301  *         =============>    gf         edc     BA
302  * After
303  *         newly dirtied     b_dirty    b_io    b_more_io
304  *         =============>    g          fBAedc
305  *                                           |
306  *                                           +--> dequeue for IO
307  */
308 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
309 {
310         int moved;
311         assert_spin_locked(&wb->list_lock);
312         list_splice_init(&wb->b_more_io, &wb->b_io);
313         moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work);
314         trace_writeback_queue_io(wb, work, moved);
315 }
316
317 static int write_inode(struct inode *inode, struct writeback_control *wbc)
318 {
319         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
320                 return inode->i_sb->s_op->write_inode(inode, wbc);
321         return 0;
322 }
323
324 /*
325  * Wait for writeback on an inode to complete. Called with i_lock held.
326  * Caller must make sure inode cannot go away when we drop i_lock.
327  */
328 static void __inode_wait_for_writeback(struct inode *inode)
329         __releases(inode->i_lock)
330         __acquires(inode->i_lock)
331 {
332         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
333         wait_queue_head_t *wqh;
334
335         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
336         while (inode->i_state & I_SYNC) {
337                 spin_unlock(&inode->i_lock);
338                 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
339                 spin_lock(&inode->i_lock);
340         }
341 }
342
343 /*
344  * Wait for writeback on an inode to complete. Caller must have inode pinned.
345  */
346 void inode_wait_for_writeback(struct inode *inode)
347 {
348         spin_lock(&inode->i_lock);
349         __inode_wait_for_writeback(inode);
350         spin_unlock(&inode->i_lock);
351 }
352
353 /*
354  * Sleep until I_SYNC is cleared. This function must be called with i_lock
355  * held and drops it. It is aimed for callers not holding any inode reference
356  * so once i_lock is dropped, inode can go away.
357  */
358 static void inode_sleep_on_writeback(struct inode *inode)
359         __releases(inode->i_lock)
360 {
361         DEFINE_WAIT(wait);
362         wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
363         int sleep;
364
365         prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
366         sleep = inode->i_state & I_SYNC;
367         spin_unlock(&inode->i_lock);
368         if (sleep)
369                 schedule();
370         finish_wait(wqh, &wait);
371 }
372
373 /*
374  * Find proper writeback list for the inode depending on its current state and
375  * possibly also change of its state while we were doing writeback.  Here we
376  * handle things such as livelock prevention or fairness of writeback among
377  * inodes. This function can be called only by flusher thread - noone else
378  * processes all inodes in writeback lists and requeueing inodes behind flusher
379  * thread's back can have unexpected consequences.
380  */
381 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
382                           struct writeback_control *wbc)
383 {
384         if (inode->i_state & I_FREEING)
385                 return;
386
387         /*
388          * Sync livelock prevention. Each inode is tagged and synced in one
389          * shot. If still dirty, it will be redirty_tail()'ed below.  Update
390          * the dirty time to prevent enqueue and sync it again.
391          */
392         if ((inode->i_state & I_DIRTY) &&
393             (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
394                 inode->dirtied_when = jiffies;
395
396         if (wbc->pages_skipped) {
397                 /*
398                  * writeback is not making progress due to locked
399                  * buffers. Skip this inode for now.
400                  */
401                 redirty_tail(inode, wb);
402                 return;
403         }
404
405         if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
406                 /*
407                  * We didn't write back all the pages.  nfs_writepages()
408                  * sometimes bales out without doing anything.
409                  */
410                 if (wbc->nr_to_write <= 0) {
411                         /* Slice used up. Queue for next turn. */
412                         requeue_io(inode, wb);
413                 } else {
414                         /*
415                          * Writeback blocked by something other than
416                          * congestion. Delay the inode for some time to
417                          * avoid spinning on the CPU (100% iowait)
418                          * retrying writeback of the dirty page/inode
419                          * that cannot be performed immediately.
420                          */
421                         redirty_tail(inode, wb);
422                 }
423         } else if (inode->i_state & I_DIRTY) {
424                 /*
425                  * Filesystems can dirty the inode during writeback operations,
426                  * such as delayed allocation during submission or metadata
427                  * updates after data IO completion.
428                  */
429                 redirty_tail(inode, wb);
430         } else {
431                 /* The inode is clean. Remove from writeback lists. */
432                 list_del_init(&inode->i_wb_list);
433         }
434 }
435
436 /*
437  * Write out an inode and its dirty pages. Do not update the writeback list
438  * linkage. That is left to the caller. The caller is also responsible for
439  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
440  */
441 static int
442 __writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
443                          struct writeback_control *wbc)
444 {
445         struct address_space *mapping = inode->i_mapping;
446         long nr_to_write = wbc->nr_to_write;
447         unsigned dirty;
448         int ret;
449
450         WARN_ON(!(inode->i_state & I_SYNC));
451
452         ret = do_writepages(mapping, wbc);
453
454         /*
455          * Make sure to wait on the data before writing out the metadata.
456          * This is important for filesystems that modify metadata on data
457          * I/O completion.
458          */
459         if (wbc->sync_mode == WB_SYNC_ALL) {
460                 int err = filemap_fdatawait(mapping);
461                 if (ret == 0)
462                         ret = err;
463         }
464
465         /*
466          * Some filesystems may redirty the inode during the writeback
467          * due to delalloc, clear dirty metadata flags right before
468          * write_inode()
469          */
470         spin_lock(&inode->i_lock);
471         /* Clear I_DIRTY_PAGES if we've written out all dirty pages */
472         if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
473                 inode->i_state &= ~I_DIRTY_PAGES;
474         dirty = inode->i_state & I_DIRTY;
475         inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
476         spin_unlock(&inode->i_lock);
477         /* Don't write the inode if only I_DIRTY_PAGES was set */
478         if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
479                 int err = write_inode(inode, wbc);
480                 if (ret == 0)
481                         ret = err;
482         }
483         trace_writeback_single_inode(inode, wbc, nr_to_write);
484         return ret;
485 }
486
487 /*
488  * Write out an inode's dirty pages. Either the caller has an active reference
489  * on the inode or the inode has I_WILL_FREE set.
490  *
491  * This function is designed to be called for writing back one inode which
492  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
493  * and does more profound writeback list handling in writeback_sb_inodes().
494  */
495 static int
496 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
497                        struct writeback_control *wbc)
498 {
499         int ret = 0;
500
501         spin_lock(&inode->i_lock);
502         if (!atomic_read(&inode->i_count))
503                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
504         else
505                 WARN_ON(inode->i_state & I_WILL_FREE);
506
507         if (inode->i_state & I_SYNC) {
508                 if (wbc->sync_mode != WB_SYNC_ALL)
509                         goto out;
510                 /*
511                  * It's a data-integrity sync. We must wait. Since callers hold
512                  * inode reference or inode has I_WILL_FREE set, it cannot go
513                  * away under us.
514                  */
515                 __inode_wait_for_writeback(inode);
516         }
517         WARN_ON(inode->i_state & I_SYNC);
518         /*
519          * Skip inode if it is clean. We don't want to mess with writeback
520          * lists in this function since flusher thread may be doing for example
521          * sync in parallel and if we move the inode, it could get skipped. So
522          * here we make sure inode is on some writeback list and leave it there
523          * unless we have completely cleaned the inode.
524          */
525         if (!(inode->i_state & I_DIRTY))
526                 goto out;
527         inode->i_state |= I_SYNC;
528         spin_unlock(&inode->i_lock);
529
530         ret = __writeback_single_inode(inode, wb, wbc);
531
532         spin_lock(&wb->list_lock);
533         spin_lock(&inode->i_lock);
534         /*
535          * If inode is clean, remove it from writeback lists. Otherwise don't
536          * touch it. See comment above for explanation.
537          */
538         if (!(inode->i_state & I_DIRTY))
539                 list_del_init(&inode->i_wb_list);
540         spin_unlock(&wb->list_lock);
541         inode_sync_complete(inode);
542 out:
543         spin_unlock(&inode->i_lock);
544         return ret;
545 }
546
547 static long writeback_chunk_size(struct backing_dev_info *bdi,
548                                  struct wb_writeback_work *work)
549 {
550         long pages;
551
552         /*
553          * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
554          * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
555          * here avoids calling into writeback_inodes_wb() more than once.
556          *
557          * The intended call sequence for WB_SYNC_ALL writeback is:
558          *
559          *      wb_writeback()
560          *          writeback_sb_inodes()       <== called only once
561          *              write_cache_pages()     <== called once for each inode
562          *                   (quickly) tag currently dirty pages
563          *                   (maybe slowly) sync all tagged pages
564          */
565         if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
566                 pages = LONG_MAX;
567         else {
568                 pages = min(bdi->avg_write_bandwidth / 2,
569                             global_dirty_limit / DIRTY_SCOPE);
570                 pages = min(pages, work->nr_pages);
571                 pages = round_down(pages + MIN_WRITEBACK_PAGES,
572                                    MIN_WRITEBACK_PAGES);
573         }
574
575         return pages;
576 }
577
578 /*
579  * Write a portion of b_io inodes which belong to @sb.
580  *
581  * If @only_this_sb is true, then find and write all such
582  * inodes. Otherwise write only ones which go sequentially
583  * in reverse order.
584  *
585  * Return the number of pages and/or inodes written.
586  */
587 static long writeback_sb_inodes(struct super_block *sb,
588                                 struct bdi_writeback *wb,
589                                 struct wb_writeback_work *work)
590 {
591         struct writeback_control wbc = {
592                 .sync_mode              = work->sync_mode,
593                 .tagged_writepages      = work->tagged_writepages,
594                 .for_kupdate            = work->for_kupdate,
595                 .for_background         = work->for_background,
596                 .range_cyclic           = work->range_cyclic,
597                 .range_start            = 0,
598                 .range_end              = LLONG_MAX,
599         };
600         unsigned long start_time = jiffies;
601         long write_chunk;
602         long wrote = 0;  /* count both pages and inodes */
603
604         while (!list_empty(&wb->b_io)) {
605                 struct inode *inode = wb_inode(wb->b_io.prev);
606
607                 if (inode->i_sb != sb) {
608                         if (work->sb) {
609                                 /*
610                                  * We only want to write back data for this
611                                  * superblock, move all inodes not belonging
612                                  * to it back onto the dirty list.
613                                  */
614                                 redirty_tail(inode, wb);
615                                 continue;
616                         }
617
618                         /*
619                          * The inode belongs to a different superblock.
620                          * Bounce back to the caller to unpin this and
621                          * pin the next superblock.
622                          */
623                         break;
624                 }
625
626                 /*
627                  * Don't bother with new inodes or inodes being freed, first
628                  * kind does not need periodic writeout yet, and for the latter
629                  * kind writeout is handled by the freer.
630                  */
631                 spin_lock(&inode->i_lock);
632                 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
633                         spin_unlock(&inode->i_lock);
634                         redirty_tail(inode, wb);
635                         continue;
636                 }
637                 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
638                         /*
639                          * If this inode is locked for writeback and we are not
640                          * doing writeback-for-data-integrity, move it to
641                          * b_more_io so that writeback can proceed with the
642                          * other inodes on s_io.
643                          *
644                          * We'll have another go at writing back this inode
645                          * when we completed a full scan of b_io.
646                          */
647                         spin_unlock(&inode->i_lock);
648                         requeue_io(inode, wb);
649                         trace_writeback_sb_inodes_requeue(inode);
650                         continue;
651                 }
652                 spin_unlock(&wb->list_lock);
653
654                 /*
655                  * We already requeued the inode if it had I_SYNC set and we
656                  * are doing WB_SYNC_NONE writeback. So this catches only the
657                  * WB_SYNC_ALL case.
658                  */
659                 if (inode->i_state & I_SYNC) {
660                         /* Wait for I_SYNC. This function drops i_lock... */
661                         inode_sleep_on_writeback(inode);
662                         /* Inode may be gone, start again */
663                         spin_lock(&wb->list_lock);
664                         continue;
665                 }
666                 inode->i_state |= I_SYNC;
667                 spin_unlock(&inode->i_lock);
668
669                 write_chunk = writeback_chunk_size(wb->bdi, work);
670                 wbc.nr_to_write = write_chunk;
671                 wbc.pages_skipped = 0;
672
673                 /*
674                  * We use I_SYNC to pin the inode in memory. While it is set
675                  * evict_inode() will wait so the inode cannot be freed.
676                  */
677                 __writeback_single_inode(inode, wb, &wbc);
678
679                 work->nr_pages -= write_chunk - wbc.nr_to_write;
680                 wrote += write_chunk - wbc.nr_to_write;
681                 spin_lock(&wb->list_lock);
682                 spin_lock(&inode->i_lock);
683                 if (!(inode->i_state & I_DIRTY))
684                         wrote++;
685                 requeue_inode(inode, wb, &wbc);
686                 inode_sync_complete(inode);
687                 spin_unlock(&inode->i_lock);
688                 cond_resched_lock(&wb->list_lock);
689                 /*
690                  * bail out to wb_writeback() often enough to check
691                  * background threshold and other termination conditions.
692                  */
693                 if (wrote) {
694                         if (time_is_before_jiffies(start_time + HZ / 10UL))
695                                 break;
696                         if (work->nr_pages <= 0)
697                                 break;
698                 }
699         }
700         return wrote;
701 }
702
703 static long __writeback_inodes_wb(struct bdi_writeback *wb,
704                                   struct wb_writeback_work *work)
705 {
706         unsigned long start_time = jiffies;
707         long wrote = 0;
708
709         while (!list_empty(&wb->b_io)) {
710                 struct inode *inode = wb_inode(wb->b_io.prev);
711                 struct super_block *sb = inode->i_sb;
712
713                 if (!grab_super_passive(sb)) {
714                         /*
715                          * grab_super_passive() may fail consistently due to
716                          * s_umount being grabbed by someone else. Don't use
717                          * requeue_io() to avoid busy retrying the inode/sb.
718                          */
719                         redirty_tail(inode, wb);
720                         continue;
721                 }
722                 wrote += writeback_sb_inodes(sb, wb, work);
723                 drop_super(sb);
724
725                 /* refer to the same tests at the end of writeback_sb_inodes */
726                 if (wrote) {
727                         if (time_is_before_jiffies(start_time + HZ / 10UL))
728                                 break;
729                         if (work->nr_pages <= 0)
730                                 break;
731                 }
732         }
733         /* Leave any unwritten inodes on b_io */
734         return wrote;
735 }
736
737 long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
738                                 enum wb_reason reason)
739 {
740         struct wb_writeback_work work = {
741                 .nr_pages       = nr_pages,
742                 .sync_mode      = WB_SYNC_NONE,
743                 .range_cyclic   = 1,
744                 .reason         = reason,
745         };
746
747         spin_lock(&wb->list_lock);
748         if (list_empty(&wb->b_io))
749                 queue_io(wb, &work);
750         __writeback_inodes_wb(wb, &work);
751         spin_unlock(&wb->list_lock);
752
753         return nr_pages - work.nr_pages;
754 }
755
756 static bool over_bground_thresh(struct backing_dev_info *bdi)
757 {
758         unsigned long background_thresh, dirty_thresh;
759
760         global_dirty_limits(&background_thresh, &dirty_thresh);
761
762         if (global_page_state(NR_FILE_DIRTY) +
763             global_page_state(NR_UNSTABLE_NFS) > background_thresh)
764                 return true;
765
766         if (bdi_stat(bdi, BDI_RECLAIMABLE) >
767                                 bdi_dirty_limit(bdi, background_thresh))
768                 return true;
769
770         return false;
771 }
772
773 /*
774  * Called under wb->list_lock. If there are multiple wb per bdi,
775  * only the flusher working on the first wb should do it.
776  */
777 static void wb_update_bandwidth(struct bdi_writeback *wb,
778                                 unsigned long start_time)
779 {
780         __bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time);
781 }
782
783 /*
784  * Explicit flushing or periodic writeback of "old" data.
785  *
786  * Define "old": the first time one of an inode's pages is dirtied, we mark the
787  * dirtying-time in the inode's address_space.  So this periodic writeback code
788  * just walks the superblock inode list, writing back any inodes which are
789  * older than a specific point in time.
790  *
791  * Try to run once per dirty_writeback_interval.  But if a writeback event
792  * takes longer than a dirty_writeback_interval interval, then leave a
793  * one-second gap.
794  *
795  * older_than_this takes precedence over nr_to_write.  So we'll only write back
796  * all dirty pages if they are all attached to "old" mappings.
797  */
798 static long wb_writeback(struct bdi_writeback *wb,
799                          struct wb_writeback_work *work)
800 {
801         unsigned long wb_start = jiffies;
802         long nr_pages = work->nr_pages;
803         unsigned long oldest_jif;
804         struct inode *inode;
805         long progress;
806
807         oldest_jif = jiffies;
808         work->older_than_this = &oldest_jif;
809
810         spin_lock(&wb->list_lock);
811         for (;;) {
812                 /*
813                  * Stop writeback when nr_pages has been consumed
814                  */
815                 if (work->nr_pages <= 0)
816                         break;
817
818                 /*
819                  * Background writeout and kupdate-style writeback may
820                  * run forever. Stop them if there is other work to do
821                  * so that e.g. sync can proceed. They'll be restarted
822                  * after the other works are all done.
823                  */
824                 if ((work->for_background || work->for_kupdate) &&
825                     !list_empty(&wb->bdi->work_list))
826                         break;
827
828                 /*
829                  * For background writeout, stop when we are below the
830                  * background dirty threshold
831                  */
832                 if (work->for_background && !over_bground_thresh(wb->bdi))
833                         break;
834
835                 /*
836                  * Kupdate and background works are special and we want to
837                  * include all inodes that need writing. Livelock avoidance is
838                  * handled by these works yielding to any other work so we are
839                  * safe.
840                  */
841                 if (work->for_kupdate) {
842                         oldest_jif = jiffies -
843                                 msecs_to_jiffies(dirty_expire_interval * 10);
844                 } else if (work->for_background)
845                         oldest_jif = jiffies;
846
847                 trace_writeback_start(wb->bdi, work);
848                 if (list_empty(&wb->b_io))
849                         queue_io(wb, work);
850                 if (work->sb)
851                         progress = writeback_sb_inodes(work->sb, wb, work);
852                 else
853                         progress = __writeback_inodes_wb(wb, work);
854                 trace_writeback_written(wb->bdi, work);
855
856                 wb_update_bandwidth(wb, wb_start);
857
858                 /*
859                  * Did we write something? Try for more
860                  *
861                  * Dirty inodes are moved to b_io for writeback in batches.
862                  * The completion of the current batch does not necessarily
863                  * mean the overall work is done. So we keep looping as long
864                  * as made some progress on cleaning pages or inodes.
865                  */
866                 if (progress)
867                         continue;
868                 /*
869                  * No more inodes for IO, bail
870                  */
871                 if (list_empty(&wb->b_more_io))
872                         break;
873                 /*
874                  * Nothing written. Wait for some inode to
875                  * become available for writeback. Otherwise
876                  * we'll just busyloop.
877                  */
878                 if (!list_empty(&wb->b_more_io))  {
879                         trace_writeback_wait(wb->bdi, work);
880                         inode = wb_inode(wb->b_more_io.prev);
881                         spin_lock(&inode->i_lock);
882                         spin_unlock(&wb->list_lock);
883                         /* This function drops i_lock... */
884                         inode_sleep_on_writeback(inode);
885                         spin_lock(&wb->list_lock);
886                 }
887         }
888         spin_unlock(&wb->list_lock);
889
890         return nr_pages - work->nr_pages;
891 }
892
893 /*
894  * Return the next wb_writeback_work struct that hasn't been processed yet.
895  */
896 static struct wb_writeback_work *
897 get_next_work_item(struct backing_dev_info *bdi)
898 {
899         struct wb_writeback_work *work = NULL;
900
901         spin_lock_bh(&bdi->wb_lock);
902         if (!list_empty(&bdi->work_list)) {
903                 work = list_entry(bdi->work_list.next,
904                                   struct wb_writeback_work, list);
905                 list_del_init(&work->list);
906         }
907         spin_unlock_bh(&bdi->wb_lock);
908         return work;
909 }
910
911 /*
912  * Add in the number of potentially dirty inodes, because each inode
913  * write can dirty pagecache in the underlying blockdev.
914  */
915 static unsigned long get_nr_dirty_pages(void)
916 {
917         return global_page_state(NR_FILE_DIRTY) +
918                 global_page_state(NR_UNSTABLE_NFS) +
919                 get_nr_dirty_inodes();
920 }
921
922 static long wb_check_background_flush(struct bdi_writeback *wb)
923 {
924         if (over_bground_thresh(wb->bdi)) {
925
926                 struct wb_writeback_work work = {
927                         .nr_pages       = LONG_MAX,
928                         .sync_mode      = WB_SYNC_NONE,
929                         .for_background = 1,
930                         .range_cyclic   = 1,
931                         .reason         = WB_REASON_BACKGROUND,
932                 };
933
934                 return wb_writeback(wb, &work);
935         }
936
937         return 0;
938 }
939
940 static long wb_check_old_data_flush(struct bdi_writeback *wb)
941 {
942         unsigned long expired;
943         long nr_pages;
944
945         /*
946          * When set to zero, disable periodic writeback
947          */
948         if (!dirty_writeback_interval)
949                 return 0;
950
951         expired = wb->last_old_flush +
952                         msecs_to_jiffies(dirty_writeback_interval * 10);
953         if (time_before(jiffies, expired))
954                 return 0;
955
956         wb->last_old_flush = jiffies;
957         nr_pages = get_nr_dirty_pages();
958
959         if (nr_pages) {
960                 struct wb_writeback_work work = {
961                         .nr_pages       = nr_pages,
962                         .sync_mode      = WB_SYNC_NONE,
963                         .for_kupdate    = 1,
964                         .range_cyclic   = 1,
965                         .reason         = WB_REASON_PERIODIC,
966                 };
967
968                 return wb_writeback(wb, &work);
969         }
970
971         return 0;
972 }
973
974 /*
975  * Retrieve work items and do the writeback they describe
976  */
977 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
978 {
979         struct backing_dev_info *bdi = wb->bdi;
980         struct wb_writeback_work *work;
981         long wrote = 0;
982
983         set_bit(BDI_writeback_running, &wb->bdi->state);
984         while ((work = get_next_work_item(bdi)) != NULL) {
985                 /*
986                  * Override sync mode, in case we must wait for completion
987                  * because this thread is exiting now.
988                  */
989                 if (force_wait)
990                         work->sync_mode = WB_SYNC_ALL;
991
992                 trace_writeback_exec(bdi, work);
993
994                 wrote += wb_writeback(wb, work);
995
996                 /*
997                  * Notify the caller of completion if this is a synchronous
998                  * work item, otherwise just free it.
999                  */
1000                 if (work->done)
1001                         complete(work->done);
1002                 else
1003                         kfree(work);
1004         }
1005
1006         /*
1007          * Check for periodic writeback, kupdated() style
1008          */
1009         wrote += wb_check_old_data_flush(wb);
1010         wrote += wb_check_background_flush(wb);
1011         clear_bit(BDI_writeback_running, &wb->bdi->state);
1012
1013         return wrote;
1014 }
1015
1016 /*
1017  * Handle writeback of dirty data for the device backed by this bdi. Also
1018  * wakes up periodically and does kupdated style flushing.
1019  */
1020 int bdi_writeback_thread(void *data)
1021 {
1022         struct bdi_writeback *wb = data;
1023         struct backing_dev_info *bdi = wb->bdi;
1024         long pages_written;
1025
1026         current->flags |= PF_SWAPWRITE;
1027         set_freezable();
1028         wb->last_active = jiffies;
1029
1030         /*
1031          * Our parent may run at a different priority, just set us to normal
1032          */
1033         set_user_nice(current, 0);
1034
1035         trace_writeback_thread_start(bdi);
1036
1037         while (!kthread_freezable_should_stop(NULL)) {
1038                 /*
1039                  * Remove own delayed wake-up timer, since we are already awake
1040                  * and we'll take care of the preriodic write-back.
1041                  */
1042                 del_timer(&wb->wakeup_timer);
1043
1044                 pages_written = wb_do_writeback(wb, 0);
1045
1046                 trace_writeback_pages_written(pages_written);
1047
1048                 if (pages_written)
1049                         wb->last_active = jiffies;
1050
1051                 set_current_state(TASK_INTERRUPTIBLE);
1052                 if (!list_empty(&bdi->work_list) || kthread_should_stop()) {
1053                         __set_current_state(TASK_RUNNING);
1054                         continue;
1055                 }
1056
1057                 if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1058                         schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10));
1059                 else {
1060                         /*
1061                          * We have nothing to do, so can go sleep without any
1062                          * timeout and save power. When a work is queued or
1063                          * something is made dirty - we will be woken up.
1064                          */
1065                         schedule();
1066                 }
1067         }
1068
1069         /* Flush any work that raced with us exiting */
1070         if (!list_empty(&bdi->work_list))
1071                 wb_do_writeback(wb, 1);
1072
1073         trace_writeback_thread_stop(bdi);
1074         return 0;
1075 }
1076
1077
1078 /*
1079  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
1080  * the whole world.
1081  */
1082 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1083 {
1084         struct backing_dev_info *bdi;
1085
1086         if (!nr_pages) {
1087                 nr_pages = global_page_state(NR_FILE_DIRTY) +
1088                                 global_page_state(NR_UNSTABLE_NFS);
1089         }
1090
1091         rcu_read_lock();
1092         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1093                 if (!bdi_has_dirty_io(bdi))
1094                         continue;
1095                 __bdi_start_writeback(bdi, nr_pages, false, reason);
1096         }
1097         rcu_read_unlock();
1098 }
1099
1100 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1101 {
1102         if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1103                 struct dentry *dentry;
1104                 const char *name = "?";
1105
1106                 dentry = d_find_alias(inode);
1107                 if (dentry) {
1108                         spin_lock(&dentry->d_lock);
1109                         name = (const char *) dentry->d_name.name;
1110                 }
1111                 printk(KERN_DEBUG
1112                        "%s(%d): dirtied inode %lu (%s) on %s\n",
1113                        current->comm, task_pid_nr(current), inode->i_ino,
1114                        name, inode->i_sb->s_id);
1115                 if (dentry) {
1116                         spin_unlock(&dentry->d_lock);
1117                         dput(dentry);
1118                 }
1119         }
1120 }
1121
1122 /**
1123  *      __mark_inode_dirty -    internal function
1124  *      @inode: inode to mark
1125  *      @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1126  *      Mark an inode as dirty. Callers should use mark_inode_dirty or
1127  *      mark_inode_dirty_sync.
1128  *
1129  * Put the inode on the super block's dirty list.
1130  *
1131  * CAREFUL! We mark it dirty unconditionally, but move it onto the
1132  * dirty list only if it is hashed or if it refers to a blockdev.
1133  * If it was not hashed, it will never be added to the dirty list
1134  * even if it is later hashed, as it will have been marked dirty already.
1135  *
1136  * In short, make sure you hash any inodes _before_ you start marking
1137  * them dirty.
1138  *
1139  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1140  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
1141  * the kernel-internal blockdev inode represents the dirtying time of the
1142  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
1143  * page->mapping->host, so the page-dirtying time is recorded in the internal
1144  * blockdev inode.
1145  */
1146 void __mark_inode_dirty(struct inode *inode, int flags)
1147 {
1148         struct super_block *sb = inode->i_sb;
1149         struct backing_dev_info *bdi = NULL;
1150
1151         /*
1152          * Don't do this for I_DIRTY_PAGES - that doesn't actually
1153          * dirty the inode itself
1154          */
1155         if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1156                 if (sb->s_op->dirty_inode)
1157                         sb->s_op->dirty_inode(inode, flags);
1158         }
1159
1160         /*
1161          * make sure that changes are seen by all cpus before we test i_state
1162          * -- mikulas
1163          */
1164         smp_mb();
1165
1166         /* avoid the locking if we can */
1167         if ((inode->i_state & flags) == flags)
1168                 return;
1169
1170         if (unlikely(block_dump))
1171                 block_dump___mark_inode_dirty(inode);
1172
1173         spin_lock(&inode->i_lock);
1174         if ((inode->i_state & flags) != flags) {
1175                 const int was_dirty = inode->i_state & I_DIRTY;
1176
1177                 inode->i_state |= flags;
1178
1179                 /*
1180                  * If the inode is being synced, just update its dirty state.
1181                  * The unlocker will place the inode on the appropriate
1182                  * superblock list, based upon its state.
1183                  */
1184                 if (inode->i_state & I_SYNC)
1185                         goto out_unlock_inode;
1186
1187                 /*
1188                  * Only add valid (hashed) inodes to the superblock's
1189                  * dirty list.  Add blockdev inodes as well.
1190                  */
1191                 if (!S_ISBLK(inode->i_mode)) {
1192                         if (inode_unhashed(inode))
1193                                 goto out_unlock_inode;
1194                 }
1195                 if (inode->i_state & I_FREEING)
1196                         goto out_unlock_inode;
1197
1198                 /*
1199                  * If the inode was already on b_dirty/b_io/b_more_io, don't
1200                  * reposition it (that would break b_dirty time-ordering).
1201                  */
1202                 if (!was_dirty) {
1203                         bool wakeup_bdi = false;
1204                         bdi = inode_to_bdi(inode);
1205
1206                         if (bdi_cap_writeback_dirty(bdi)) {
1207                                 WARN(!test_bit(BDI_registered, &bdi->state),
1208                                      "bdi-%s not registered\n", bdi->name);
1209
1210                                 /*
1211                                  * If this is the first dirty inode for this
1212                                  * bdi, we have to wake-up the corresponding
1213                                  * bdi thread to make sure background
1214                                  * write-back happens later.
1215                                  */
1216                                 if (!wb_has_dirty_io(&bdi->wb))
1217                                         wakeup_bdi = true;
1218                         }
1219
1220                         spin_unlock(&inode->i_lock);
1221                         spin_lock(&bdi->wb.list_lock);
1222                         inode->dirtied_when = jiffies;
1223                         list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1224                         spin_unlock(&bdi->wb.list_lock);
1225
1226                         if (wakeup_bdi)
1227                                 bdi_wakeup_thread_delayed(bdi);
1228                         return;
1229                 }
1230         }
1231 out_unlock_inode:
1232         spin_unlock(&inode->i_lock);
1233
1234 }
1235 EXPORT_SYMBOL(__mark_inode_dirty);
1236
1237 static void wait_sb_inodes(struct super_block *sb)
1238 {
1239         struct inode *inode, *old_inode = NULL;
1240
1241         /*
1242          * We need to be protected against the filesystem going from
1243          * r/o to r/w or vice versa.
1244          */
1245         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1246
1247         spin_lock(&inode_sb_list_lock);
1248
1249         /*
1250          * Data integrity sync. Must wait for all pages under writeback,
1251          * because there may have been pages dirtied before our sync
1252          * call, but which had writeout started before we write it out.
1253          * In which case, the inode may not be on the dirty list, but
1254          * we still have to wait for that writeout.
1255          */
1256         list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1257                 struct address_space *mapping = inode->i_mapping;
1258
1259                 spin_lock(&inode->i_lock);
1260                 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1261                     (mapping->nrpages == 0)) {
1262                         spin_unlock(&inode->i_lock);
1263                         continue;
1264                 }
1265                 __iget(inode);
1266                 spin_unlock(&inode->i_lock);
1267                 spin_unlock(&inode_sb_list_lock);
1268
1269                 /*
1270                  * We hold a reference to 'inode' so it couldn't have been
1271                  * removed from s_inodes list while we dropped the
1272                  * inode_sb_list_lock.  We cannot iput the inode now as we can
1273                  * be holding the last reference and we cannot iput it under
1274                  * inode_sb_list_lock. So we keep the reference and iput it
1275                  * later.
1276                  */
1277                 iput(old_inode);
1278                 old_inode = inode;
1279
1280                 filemap_fdatawait(mapping);
1281
1282                 cond_resched();
1283
1284                 spin_lock(&inode_sb_list_lock);
1285         }
1286         spin_unlock(&inode_sb_list_lock);
1287         iput(old_inode);
1288 }
1289
1290 /**
1291  * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
1292  * @sb: the superblock
1293  * @nr: the number of pages to write
1294  * @reason: reason why some writeback work initiated
1295  *
1296  * Start writeback on some inodes on this super_block. No guarantees are made
1297  * on how many (if any) will be written, and this function does not wait
1298  * for IO completion of submitted IO.
1299  */
1300 void writeback_inodes_sb_nr(struct super_block *sb,
1301                             unsigned long nr,
1302                             enum wb_reason reason)
1303 {
1304         DECLARE_COMPLETION_ONSTACK(done);
1305         struct wb_writeback_work work = {
1306                 .sb                     = sb,
1307                 .sync_mode              = WB_SYNC_NONE,
1308                 .tagged_writepages      = 1,
1309                 .done                   = &done,
1310                 .nr_pages               = nr,
1311                 .reason                 = reason,
1312         };
1313
1314         if (sb->s_bdi == &noop_backing_dev_info)
1315                 return;
1316         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1317         bdi_queue_work(sb->s_bdi, &work);
1318         wait_for_completion(&done);
1319 }
1320 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1321
1322 /**
1323  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
1324  * @sb: the superblock
1325  * @reason: reason why some writeback work was initiated
1326  *
1327  * Start writeback on some inodes on this super_block. No guarantees are made
1328  * on how many (if any) will be written, and this function does not wait
1329  * for IO completion of submitted IO.
1330  */
1331 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1332 {
1333         return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1334 }
1335 EXPORT_SYMBOL(writeback_inodes_sb);
1336
1337 /**
1338  * writeback_inodes_sb_if_idle  -       start writeback if none underway
1339  * @sb: the superblock
1340  * @reason: reason why some writeback work was initiated
1341  *
1342  * Invoke writeback_inodes_sb if no writeback is currently underway.
1343  * Returns 1 if writeback was started, 0 if not.
1344  */
1345 int writeback_inodes_sb_if_idle(struct super_block *sb, enum wb_reason reason)
1346 {
1347         if (!writeback_in_progress(sb->s_bdi)) {
1348                 down_read(&sb->s_umount);
1349                 writeback_inodes_sb(sb, reason);
1350                 up_read(&sb->s_umount);
1351                 return 1;
1352         } else
1353                 return 0;
1354 }
1355 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1356
1357 /**
1358  * writeback_inodes_sb_nr_if_idle       -       start writeback if none underway
1359  * @sb: the superblock
1360  * @nr: the number of pages to write
1361  * @reason: reason why some writeback work was initiated
1362  *
1363  * Invoke writeback_inodes_sb if no writeback is currently underway.
1364  * Returns 1 if writeback was started, 0 if not.
1365  */
1366 int writeback_inodes_sb_nr_if_idle(struct super_block *sb,
1367                                    unsigned long nr,
1368                                    enum wb_reason reason)
1369 {
1370         if (!writeback_in_progress(sb->s_bdi)) {
1371                 down_read(&sb->s_umount);
1372                 writeback_inodes_sb_nr(sb, nr, reason);
1373                 up_read(&sb->s_umount);
1374                 return 1;
1375         } else
1376                 return 0;
1377 }
1378 EXPORT_SYMBOL(writeback_inodes_sb_nr_if_idle);
1379
1380 /**
1381  * sync_inodes_sb       -       sync sb inode pages
1382  * @sb: the superblock
1383  *
1384  * This function writes and waits on any dirty inode belonging to this
1385  * super_block.
1386  */
1387 void sync_inodes_sb(struct super_block *sb)
1388 {
1389         DECLARE_COMPLETION_ONSTACK(done);
1390         struct wb_writeback_work work = {
1391                 .sb             = sb,
1392                 .sync_mode      = WB_SYNC_ALL,
1393                 .nr_pages       = LONG_MAX,
1394                 .range_cyclic   = 0,
1395                 .done           = &done,
1396                 .reason         = WB_REASON_SYNC,
1397         };
1398
1399         /* Nothing to do? */
1400         if (sb->s_bdi == &noop_backing_dev_info)
1401                 return;
1402         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1403
1404         bdi_queue_work(sb->s_bdi, &work);
1405         wait_for_completion(&done);
1406
1407         wait_sb_inodes(sb);
1408 }
1409 EXPORT_SYMBOL(sync_inodes_sb);
1410
1411 /**
1412  * write_inode_now      -       write an inode to disk
1413  * @inode: inode to write to disk
1414  * @sync: whether the write should be synchronous or not
1415  *
1416  * This function commits an inode to disk immediately if it is dirty. This is
1417  * primarily needed by knfsd.
1418  *
1419  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1420  */
1421 int write_inode_now(struct inode *inode, int sync)
1422 {
1423         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1424         struct writeback_control wbc = {
1425                 .nr_to_write = LONG_MAX,
1426                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1427                 .range_start = 0,
1428                 .range_end = LLONG_MAX,
1429         };
1430
1431         if (!mapping_cap_writeback_dirty(inode->i_mapping))
1432                 wbc.nr_to_write = 0;
1433
1434         might_sleep();
1435         return writeback_single_inode(inode, wb, &wbc);
1436 }
1437 EXPORT_SYMBOL(write_inode_now);
1438
1439 /**
1440  * sync_inode - write an inode and its pages to disk.
1441  * @inode: the inode to sync
1442  * @wbc: controls the writeback mode
1443  *
1444  * sync_inode() will write an inode and its pages to disk.  It will also
1445  * correctly update the inode on its superblock's dirty inode lists and will
1446  * update inode->i_state.
1447  *
1448  * The caller must have a ref on the inode.
1449  */
1450 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1451 {
1452         return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
1453 }
1454 EXPORT_SYMBOL(sync_inode);
1455
1456 /**
1457  * sync_inode_metadata - write an inode to disk
1458  * @inode: the inode to sync
1459  * @wait: wait for I/O to complete.
1460  *
1461  * Write an inode to disk and adjust its dirty state after completion.
1462  *
1463  * Note: only writes the actual inode, no associated data or other metadata.
1464  */
1465 int sync_inode_metadata(struct inode *inode, int wait)
1466 {
1467         struct writeback_control wbc = {
1468                 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1469                 .nr_to_write = 0, /* metadata-only */
1470         };
1471
1472         return sync_inode(inode, &wbc);
1473 }
1474 EXPORT_SYMBOL(sync_inode_metadata);