]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/fs-writeback.c
Merge tag 'char-misc-3.20-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregk...
[karo-tx-linux.git] / fs / fs-writeback.c
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002    Andrew Morton
12  *              Split out of fs/inode.c
13  *              Additions for address_space-based writeback
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include "internal.h"
31
32 /*
33  * 4MB minimal write chunk size
34  */
35 #define MIN_WRITEBACK_PAGES     (4096UL >> (PAGE_CACHE_SHIFT - 10))
36
37 /*
38  * Passed into wb_writeback(), essentially a subset of writeback_control
39  */
40 struct wb_writeback_work {
41         long nr_pages;
42         struct super_block *sb;
43         unsigned long *older_than_this;
44         enum writeback_sync_modes sync_mode;
45         unsigned int tagged_writepages:1;
46         unsigned int for_kupdate:1;
47         unsigned int range_cyclic:1;
48         unsigned int for_background:1;
49         unsigned int for_sync:1;        /* sync(2) WB_SYNC_ALL writeback */
50         enum wb_reason reason;          /* why was writeback initiated? */
51
52         struct list_head list;          /* pending work list */
53         struct completion *done;        /* set if the caller waits */
54 };
55
56 /**
57  * writeback_in_progress - determine whether there is writeback in progress
58  * @bdi: the device's backing_dev_info structure.
59  *
60  * Determine whether there is writeback waiting to be handled against a
61  * backing device.
62  */
63 int writeback_in_progress(struct backing_dev_info *bdi)
64 {
65         return test_bit(BDI_writeback_running, &bdi->state);
66 }
67 EXPORT_SYMBOL(writeback_in_progress);
68
69 struct backing_dev_info *inode_to_bdi(struct inode *inode)
70 {
71         struct super_block *sb;
72
73         if (!inode)
74                 return &noop_backing_dev_info;
75
76         sb = inode->i_sb;
77 #ifdef CONFIG_BLOCK
78         if (sb_is_blkdev_sb(sb))
79                 return blk_get_backing_dev_info(I_BDEV(inode));
80 #endif
81         return sb->s_bdi;
82 }
83 EXPORT_SYMBOL_GPL(inode_to_bdi);
84
85 static inline struct inode *wb_inode(struct list_head *head)
86 {
87         return list_entry(head, struct inode, i_wb_list);
88 }
89
90 /*
91  * Include the creation of the trace points after defining the
92  * wb_writeback_work structure and inline functions so that the definition
93  * remains local to this file.
94  */
95 #define CREATE_TRACE_POINTS
96 #include <trace/events/writeback.h>
97
98 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
99
100 static void bdi_wakeup_thread(struct backing_dev_info *bdi)
101 {
102         spin_lock_bh(&bdi->wb_lock);
103         if (test_bit(BDI_registered, &bdi->state))
104                 mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
105         spin_unlock_bh(&bdi->wb_lock);
106 }
107
108 static void bdi_queue_work(struct backing_dev_info *bdi,
109                            struct wb_writeback_work *work)
110 {
111         trace_writeback_queue(bdi, work);
112
113         spin_lock_bh(&bdi->wb_lock);
114         if (!test_bit(BDI_registered, &bdi->state)) {
115                 if (work->done)
116                         complete(work->done);
117                 goto out_unlock;
118         }
119         list_add_tail(&work->list, &bdi->work_list);
120         mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
121 out_unlock:
122         spin_unlock_bh(&bdi->wb_lock);
123 }
124
125 static void
126 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
127                       bool range_cyclic, enum wb_reason reason)
128 {
129         struct wb_writeback_work *work;
130
131         /*
132          * This is WB_SYNC_NONE writeback, so if allocation fails just
133          * wakeup the thread for old dirty data writeback
134          */
135         work = kzalloc(sizeof(*work), GFP_ATOMIC);
136         if (!work) {
137                 trace_writeback_nowork(bdi);
138                 bdi_wakeup_thread(bdi);
139                 return;
140         }
141
142         work->sync_mode = WB_SYNC_NONE;
143         work->nr_pages  = nr_pages;
144         work->range_cyclic = range_cyclic;
145         work->reason    = reason;
146
147         bdi_queue_work(bdi, work);
148 }
149
150 /**
151  * bdi_start_writeback - start writeback
152  * @bdi: the backing device to write from
153  * @nr_pages: the number of pages to write
154  * @reason: reason why some writeback work was initiated
155  *
156  * Description:
157  *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
158  *   started when this function returns, we make no guarantees on
159  *   completion. Caller need not hold sb s_umount semaphore.
160  *
161  */
162 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
163                         enum wb_reason reason)
164 {
165         __bdi_start_writeback(bdi, nr_pages, true, reason);
166 }
167
168 /**
169  * bdi_start_background_writeback - start background writeback
170  * @bdi: the backing device to write from
171  *
172  * Description:
173  *   This makes sure WB_SYNC_NONE background writeback happens. When
174  *   this function returns, it is only guaranteed that for given BDI
175  *   some IO is happening if we are over background dirty threshold.
176  *   Caller need not hold sb s_umount semaphore.
177  */
178 void bdi_start_background_writeback(struct backing_dev_info *bdi)
179 {
180         /*
181          * We just wake up the flusher thread. It will perform background
182          * writeback as soon as there is no other work to do.
183          */
184         trace_writeback_wake_background(bdi);
185         bdi_wakeup_thread(bdi);
186 }
187
188 /*
189  * Remove the inode from the writeback list it is on.
190  */
191 void inode_wb_list_del(struct inode *inode)
192 {
193         struct backing_dev_info *bdi = inode_to_bdi(inode);
194
195         spin_lock(&bdi->wb.list_lock);
196         list_del_init(&inode->i_wb_list);
197         spin_unlock(&bdi->wb.list_lock);
198 }
199
200 /*
201  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
202  * furthest end of its superblock's dirty-inode list.
203  *
204  * Before stamping the inode's ->dirtied_when, we check to see whether it is
205  * already the most-recently-dirtied inode on the b_dirty list.  If that is
206  * the case then the inode must have been redirtied while it was being written
207  * out and we don't reset its dirtied_when.
208  */
209 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
210 {
211         assert_spin_locked(&wb->list_lock);
212         if (!list_empty(&wb->b_dirty)) {
213                 struct inode *tail;
214
215                 tail = wb_inode(wb->b_dirty.next);
216                 if (time_before(inode->dirtied_when, tail->dirtied_when))
217                         inode->dirtied_when = jiffies;
218         }
219         list_move(&inode->i_wb_list, &wb->b_dirty);
220 }
221
222 /*
223  * requeue inode for re-scanning after bdi->b_io list is exhausted.
224  */
225 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
226 {
227         assert_spin_locked(&wb->list_lock);
228         list_move(&inode->i_wb_list, &wb->b_more_io);
229 }
230
231 static void inode_sync_complete(struct inode *inode)
232 {
233         inode->i_state &= ~I_SYNC;
234         /* If inode is clean an unused, put it into LRU now... */
235         inode_add_lru(inode);
236         /* Waiters must see I_SYNC cleared before being woken up */
237         smp_mb();
238         wake_up_bit(&inode->i_state, __I_SYNC);
239 }
240
241 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
242 {
243         bool ret = time_after(inode->dirtied_when, t);
244 #ifndef CONFIG_64BIT
245         /*
246          * For inodes being constantly redirtied, dirtied_when can get stuck.
247          * It _appears_ to be in the future, but is actually in distant past.
248          * This test is necessary to prevent such wrapped-around relative times
249          * from permanently stopping the whole bdi writeback.
250          */
251         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
252 #endif
253         return ret;
254 }
255
256 /*
257  * Move expired (dirtied before work->older_than_this) dirty inodes from
258  * @delaying_queue to @dispatch_queue.
259  */
260 static int move_expired_inodes(struct list_head *delaying_queue,
261                                struct list_head *dispatch_queue,
262                                struct wb_writeback_work *work)
263 {
264         LIST_HEAD(tmp);
265         struct list_head *pos, *node;
266         struct super_block *sb = NULL;
267         struct inode *inode;
268         int do_sb_sort = 0;
269         int moved = 0;
270
271         while (!list_empty(delaying_queue)) {
272                 inode = wb_inode(delaying_queue->prev);
273                 if (work->older_than_this &&
274                     inode_dirtied_after(inode, *work->older_than_this))
275                         break;
276                 list_move(&inode->i_wb_list, &tmp);
277                 moved++;
278                 if (sb_is_blkdev_sb(inode->i_sb))
279                         continue;
280                 if (sb && sb != inode->i_sb)
281                         do_sb_sort = 1;
282                 sb = inode->i_sb;
283         }
284
285         /* just one sb in list, splice to dispatch_queue and we're done */
286         if (!do_sb_sort) {
287                 list_splice(&tmp, dispatch_queue);
288                 goto out;
289         }
290
291         /* Move inodes from one superblock together */
292         while (!list_empty(&tmp)) {
293                 sb = wb_inode(tmp.prev)->i_sb;
294                 list_for_each_prev_safe(pos, node, &tmp) {
295                         inode = wb_inode(pos);
296                         if (inode->i_sb == sb)
297                                 list_move(&inode->i_wb_list, dispatch_queue);
298                 }
299         }
300 out:
301         return moved;
302 }
303
304 /*
305  * Queue all expired dirty inodes for io, eldest first.
306  * Before
307  *         newly dirtied     b_dirty    b_io    b_more_io
308  *         =============>    gf         edc     BA
309  * After
310  *         newly dirtied     b_dirty    b_io    b_more_io
311  *         =============>    g          fBAedc
312  *                                           |
313  *                                           +--> dequeue for IO
314  */
315 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
316 {
317         int moved;
318         assert_spin_locked(&wb->list_lock);
319         list_splice_init(&wb->b_more_io, &wb->b_io);
320         moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work);
321         trace_writeback_queue_io(wb, work, moved);
322 }
323
324 static int write_inode(struct inode *inode, struct writeback_control *wbc)
325 {
326         int ret;
327
328         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
329                 trace_writeback_write_inode_start(inode, wbc);
330                 ret = inode->i_sb->s_op->write_inode(inode, wbc);
331                 trace_writeback_write_inode(inode, wbc);
332                 return ret;
333         }
334         return 0;
335 }
336
337 /*
338  * Wait for writeback on an inode to complete. Called with i_lock held.
339  * Caller must make sure inode cannot go away when we drop i_lock.
340  */
341 static void __inode_wait_for_writeback(struct inode *inode)
342         __releases(inode->i_lock)
343         __acquires(inode->i_lock)
344 {
345         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
346         wait_queue_head_t *wqh;
347
348         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
349         while (inode->i_state & I_SYNC) {
350                 spin_unlock(&inode->i_lock);
351                 __wait_on_bit(wqh, &wq, bit_wait,
352                               TASK_UNINTERRUPTIBLE);
353                 spin_lock(&inode->i_lock);
354         }
355 }
356
357 /*
358  * Wait for writeback on an inode to complete. Caller must have inode pinned.
359  */
360 void inode_wait_for_writeback(struct inode *inode)
361 {
362         spin_lock(&inode->i_lock);
363         __inode_wait_for_writeback(inode);
364         spin_unlock(&inode->i_lock);
365 }
366
367 /*
368  * Sleep until I_SYNC is cleared. This function must be called with i_lock
369  * held and drops it. It is aimed for callers not holding any inode reference
370  * so once i_lock is dropped, inode can go away.
371  */
372 static void inode_sleep_on_writeback(struct inode *inode)
373         __releases(inode->i_lock)
374 {
375         DEFINE_WAIT(wait);
376         wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
377         int sleep;
378
379         prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
380         sleep = inode->i_state & I_SYNC;
381         spin_unlock(&inode->i_lock);
382         if (sleep)
383                 schedule();
384         finish_wait(wqh, &wait);
385 }
386
387 /*
388  * Find proper writeback list for the inode depending on its current state and
389  * possibly also change of its state while we were doing writeback.  Here we
390  * handle things such as livelock prevention or fairness of writeback among
391  * inodes. This function can be called only by flusher thread - noone else
392  * processes all inodes in writeback lists and requeueing inodes behind flusher
393  * thread's back can have unexpected consequences.
394  */
395 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
396                           struct writeback_control *wbc)
397 {
398         if (inode->i_state & I_FREEING)
399                 return;
400
401         /*
402          * Sync livelock prevention. Each inode is tagged and synced in one
403          * shot. If still dirty, it will be redirty_tail()'ed below.  Update
404          * the dirty time to prevent enqueue and sync it again.
405          */
406         if ((inode->i_state & I_DIRTY) &&
407             (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
408                 inode->dirtied_when = jiffies;
409
410         if (wbc->pages_skipped) {
411                 /*
412                  * writeback is not making progress due to locked
413                  * buffers. Skip this inode for now.
414                  */
415                 redirty_tail(inode, wb);
416                 return;
417         }
418
419         if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
420                 /*
421                  * We didn't write back all the pages.  nfs_writepages()
422                  * sometimes bales out without doing anything.
423                  */
424                 if (wbc->nr_to_write <= 0) {
425                         /* Slice used up. Queue for next turn. */
426                         requeue_io(inode, wb);
427                 } else {
428                         /*
429                          * Writeback blocked by something other than
430                          * congestion. Delay the inode for some time to
431                          * avoid spinning on the CPU (100% iowait)
432                          * retrying writeback of the dirty page/inode
433                          * that cannot be performed immediately.
434                          */
435                         redirty_tail(inode, wb);
436                 }
437         } else if (inode->i_state & I_DIRTY) {
438                 /*
439                  * Filesystems can dirty the inode during writeback operations,
440                  * such as delayed allocation during submission or metadata
441                  * updates after data IO completion.
442                  */
443                 redirty_tail(inode, wb);
444         } else {
445                 /* The inode is clean. Remove from writeback lists. */
446                 list_del_init(&inode->i_wb_list);
447         }
448 }
449
450 /*
451  * Write out an inode and its dirty pages. Do not update the writeback list
452  * linkage. That is left to the caller. The caller is also responsible for
453  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
454  */
455 static int
456 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
457 {
458         struct address_space *mapping = inode->i_mapping;
459         long nr_to_write = wbc->nr_to_write;
460         unsigned dirty;
461         int ret;
462
463         WARN_ON(!(inode->i_state & I_SYNC));
464
465         trace_writeback_single_inode_start(inode, wbc, nr_to_write);
466
467         ret = do_writepages(mapping, wbc);
468
469         /*
470          * Make sure to wait on the data before writing out the metadata.
471          * This is important for filesystems that modify metadata on data
472          * I/O completion. We don't do it for sync(2) writeback because it has a
473          * separate, external IO completion path and ->sync_fs for guaranteeing
474          * inode metadata is written back correctly.
475          */
476         if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
477                 int err = filemap_fdatawait(mapping);
478                 if (ret == 0)
479                         ret = err;
480         }
481
482         /*
483          * Some filesystems may redirty the inode during the writeback
484          * due to delalloc, clear dirty metadata flags right before
485          * write_inode()
486          */
487         spin_lock(&inode->i_lock);
488
489         dirty = inode->i_state & I_DIRTY;
490         inode->i_state &= ~I_DIRTY;
491
492         /*
493          * Paired with smp_mb() in __mark_inode_dirty().  This allows
494          * __mark_inode_dirty() to test i_state without grabbing i_lock -
495          * either they see the I_DIRTY bits cleared or we see the dirtied
496          * inode.
497          *
498          * I_DIRTY_PAGES is always cleared together above even if @mapping
499          * still has dirty pages.  The flag is reinstated after smp_mb() if
500          * necessary.  This guarantees that either __mark_inode_dirty()
501          * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
502          */
503         smp_mb();
504
505         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
506                 inode->i_state |= I_DIRTY_PAGES;
507
508         spin_unlock(&inode->i_lock);
509
510         /* Don't write the inode if only I_DIRTY_PAGES was set */
511         if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
512                 int err = write_inode(inode, wbc);
513                 if (ret == 0)
514                         ret = err;
515         }
516         trace_writeback_single_inode(inode, wbc, nr_to_write);
517         return ret;
518 }
519
520 /*
521  * Write out an inode's dirty pages. Either the caller has an active reference
522  * on the inode or the inode has I_WILL_FREE set.
523  *
524  * This function is designed to be called for writing back one inode which
525  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
526  * and does more profound writeback list handling in writeback_sb_inodes().
527  */
528 static int
529 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
530                        struct writeback_control *wbc)
531 {
532         int ret = 0;
533
534         spin_lock(&inode->i_lock);
535         if (!atomic_read(&inode->i_count))
536                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
537         else
538                 WARN_ON(inode->i_state & I_WILL_FREE);
539
540         if (inode->i_state & I_SYNC) {
541                 if (wbc->sync_mode != WB_SYNC_ALL)
542                         goto out;
543                 /*
544                  * It's a data-integrity sync. We must wait. Since callers hold
545                  * inode reference or inode has I_WILL_FREE set, it cannot go
546                  * away under us.
547                  */
548                 __inode_wait_for_writeback(inode);
549         }
550         WARN_ON(inode->i_state & I_SYNC);
551         /*
552          * Skip inode if it is clean and we have no outstanding writeback in
553          * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
554          * function since flusher thread may be doing for example sync in
555          * parallel and if we move the inode, it could get skipped. So here we
556          * make sure inode is on some writeback list and leave it there unless
557          * we have completely cleaned the inode.
558          */
559         if (!(inode->i_state & I_DIRTY) &&
560             (wbc->sync_mode != WB_SYNC_ALL ||
561              !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
562                 goto out;
563         inode->i_state |= I_SYNC;
564         spin_unlock(&inode->i_lock);
565
566         ret = __writeback_single_inode(inode, wbc);
567
568         spin_lock(&wb->list_lock);
569         spin_lock(&inode->i_lock);
570         /*
571          * If inode is clean, remove it from writeback lists. Otherwise don't
572          * touch it. See comment above for explanation.
573          */
574         if (!(inode->i_state & I_DIRTY))
575                 list_del_init(&inode->i_wb_list);
576         spin_unlock(&wb->list_lock);
577         inode_sync_complete(inode);
578 out:
579         spin_unlock(&inode->i_lock);
580         return ret;
581 }
582
583 static long writeback_chunk_size(struct backing_dev_info *bdi,
584                                  struct wb_writeback_work *work)
585 {
586         long pages;
587
588         /*
589          * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
590          * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
591          * here avoids calling into writeback_inodes_wb() more than once.
592          *
593          * The intended call sequence for WB_SYNC_ALL writeback is:
594          *
595          *      wb_writeback()
596          *          writeback_sb_inodes()       <== called only once
597          *              write_cache_pages()     <== called once for each inode
598          *                   (quickly) tag currently dirty pages
599          *                   (maybe slowly) sync all tagged pages
600          */
601         if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
602                 pages = LONG_MAX;
603         else {
604                 pages = min(bdi->avg_write_bandwidth / 2,
605                             global_dirty_limit / DIRTY_SCOPE);
606                 pages = min(pages, work->nr_pages);
607                 pages = round_down(pages + MIN_WRITEBACK_PAGES,
608                                    MIN_WRITEBACK_PAGES);
609         }
610
611         return pages;
612 }
613
614 /*
615  * Write a portion of b_io inodes which belong to @sb.
616  *
617  * Return the number of pages and/or inodes written.
618  */
619 static long writeback_sb_inodes(struct super_block *sb,
620                                 struct bdi_writeback *wb,
621                                 struct wb_writeback_work *work)
622 {
623         struct writeback_control wbc = {
624                 .sync_mode              = work->sync_mode,
625                 .tagged_writepages      = work->tagged_writepages,
626                 .for_kupdate            = work->for_kupdate,
627                 .for_background         = work->for_background,
628                 .for_sync               = work->for_sync,
629                 .range_cyclic           = work->range_cyclic,
630                 .range_start            = 0,
631                 .range_end              = LLONG_MAX,
632         };
633         unsigned long start_time = jiffies;
634         long write_chunk;
635         long wrote = 0;  /* count both pages and inodes */
636
637         while (!list_empty(&wb->b_io)) {
638                 struct inode *inode = wb_inode(wb->b_io.prev);
639
640                 if (inode->i_sb != sb) {
641                         if (work->sb) {
642                                 /*
643                                  * We only want to write back data for this
644                                  * superblock, move all inodes not belonging
645                                  * to it back onto the dirty list.
646                                  */
647                                 redirty_tail(inode, wb);
648                                 continue;
649                         }
650
651                         /*
652                          * The inode belongs to a different superblock.
653                          * Bounce back to the caller to unpin this and
654                          * pin the next superblock.
655                          */
656                         break;
657                 }
658
659                 /*
660                  * Don't bother with new inodes or inodes being freed, first
661                  * kind does not need periodic writeout yet, and for the latter
662                  * kind writeout is handled by the freer.
663                  */
664                 spin_lock(&inode->i_lock);
665                 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
666                         spin_unlock(&inode->i_lock);
667                         redirty_tail(inode, wb);
668                         continue;
669                 }
670                 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
671                         /*
672                          * If this inode is locked for writeback and we are not
673                          * doing writeback-for-data-integrity, move it to
674                          * b_more_io so that writeback can proceed with the
675                          * other inodes on s_io.
676                          *
677                          * We'll have another go at writing back this inode
678                          * when we completed a full scan of b_io.
679                          */
680                         spin_unlock(&inode->i_lock);
681                         requeue_io(inode, wb);
682                         trace_writeback_sb_inodes_requeue(inode);
683                         continue;
684                 }
685                 spin_unlock(&wb->list_lock);
686
687                 /*
688                  * We already requeued the inode if it had I_SYNC set and we
689                  * are doing WB_SYNC_NONE writeback. So this catches only the
690                  * WB_SYNC_ALL case.
691                  */
692                 if (inode->i_state & I_SYNC) {
693                         /* Wait for I_SYNC. This function drops i_lock... */
694                         inode_sleep_on_writeback(inode);
695                         /* Inode may be gone, start again */
696                         spin_lock(&wb->list_lock);
697                         continue;
698                 }
699                 inode->i_state |= I_SYNC;
700                 spin_unlock(&inode->i_lock);
701
702                 write_chunk = writeback_chunk_size(wb->bdi, work);
703                 wbc.nr_to_write = write_chunk;
704                 wbc.pages_skipped = 0;
705
706                 /*
707                  * We use I_SYNC to pin the inode in memory. While it is set
708                  * evict_inode() will wait so the inode cannot be freed.
709                  */
710                 __writeback_single_inode(inode, &wbc);
711
712                 work->nr_pages -= write_chunk - wbc.nr_to_write;
713                 wrote += write_chunk - wbc.nr_to_write;
714                 spin_lock(&wb->list_lock);
715                 spin_lock(&inode->i_lock);
716                 if (!(inode->i_state & I_DIRTY))
717                         wrote++;
718                 requeue_inode(inode, wb, &wbc);
719                 inode_sync_complete(inode);
720                 spin_unlock(&inode->i_lock);
721                 cond_resched_lock(&wb->list_lock);
722                 /*
723                  * bail out to wb_writeback() often enough to check
724                  * background threshold and other termination conditions.
725                  */
726                 if (wrote) {
727                         if (time_is_before_jiffies(start_time + HZ / 10UL))
728                                 break;
729                         if (work->nr_pages <= 0)
730                                 break;
731                 }
732         }
733         return wrote;
734 }
735
736 static long __writeback_inodes_wb(struct bdi_writeback *wb,
737                                   struct wb_writeback_work *work)
738 {
739         unsigned long start_time = jiffies;
740         long wrote = 0;
741
742         while (!list_empty(&wb->b_io)) {
743                 struct inode *inode = wb_inode(wb->b_io.prev);
744                 struct super_block *sb = inode->i_sb;
745
746                 if (!grab_super_passive(sb)) {
747                         /*
748                          * grab_super_passive() may fail consistently due to
749                          * s_umount being grabbed by someone else. Don't use
750                          * requeue_io() to avoid busy retrying the inode/sb.
751                          */
752                         redirty_tail(inode, wb);
753                         continue;
754                 }
755                 wrote += writeback_sb_inodes(sb, wb, work);
756                 drop_super(sb);
757
758                 /* refer to the same tests at the end of writeback_sb_inodes */
759                 if (wrote) {
760                         if (time_is_before_jiffies(start_time + HZ / 10UL))
761                                 break;
762                         if (work->nr_pages <= 0)
763                                 break;
764                 }
765         }
766         /* Leave any unwritten inodes on b_io */
767         return wrote;
768 }
769
770 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
771                                 enum wb_reason reason)
772 {
773         struct wb_writeback_work work = {
774                 .nr_pages       = nr_pages,
775                 .sync_mode      = WB_SYNC_NONE,
776                 .range_cyclic   = 1,
777                 .reason         = reason,
778         };
779
780         spin_lock(&wb->list_lock);
781         if (list_empty(&wb->b_io))
782                 queue_io(wb, &work);
783         __writeback_inodes_wb(wb, &work);
784         spin_unlock(&wb->list_lock);
785
786         return nr_pages - work.nr_pages;
787 }
788
789 static bool over_bground_thresh(struct backing_dev_info *bdi)
790 {
791         unsigned long background_thresh, dirty_thresh;
792
793         global_dirty_limits(&background_thresh, &dirty_thresh);
794
795         if (global_page_state(NR_FILE_DIRTY) +
796             global_page_state(NR_UNSTABLE_NFS) > background_thresh)
797                 return true;
798
799         if (bdi_stat(bdi, BDI_RECLAIMABLE) >
800                                 bdi_dirty_limit(bdi, background_thresh))
801                 return true;
802
803         return false;
804 }
805
806 /*
807  * Called under wb->list_lock. If there are multiple wb per bdi,
808  * only the flusher working on the first wb should do it.
809  */
810 static void wb_update_bandwidth(struct bdi_writeback *wb,
811                                 unsigned long start_time)
812 {
813         __bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time);
814 }
815
816 /*
817  * Explicit flushing or periodic writeback of "old" data.
818  *
819  * Define "old": the first time one of an inode's pages is dirtied, we mark the
820  * dirtying-time in the inode's address_space.  So this periodic writeback code
821  * just walks the superblock inode list, writing back any inodes which are
822  * older than a specific point in time.
823  *
824  * Try to run once per dirty_writeback_interval.  But if a writeback event
825  * takes longer than a dirty_writeback_interval interval, then leave a
826  * one-second gap.
827  *
828  * older_than_this takes precedence over nr_to_write.  So we'll only write back
829  * all dirty pages if they are all attached to "old" mappings.
830  */
831 static long wb_writeback(struct bdi_writeback *wb,
832                          struct wb_writeback_work *work)
833 {
834         unsigned long wb_start = jiffies;
835         long nr_pages = work->nr_pages;
836         unsigned long oldest_jif;
837         struct inode *inode;
838         long progress;
839
840         oldest_jif = jiffies;
841         work->older_than_this = &oldest_jif;
842
843         spin_lock(&wb->list_lock);
844         for (;;) {
845                 /*
846                  * Stop writeback when nr_pages has been consumed
847                  */
848                 if (work->nr_pages <= 0)
849                         break;
850
851                 /*
852                  * Background writeout and kupdate-style writeback may
853                  * run forever. Stop them if there is other work to do
854                  * so that e.g. sync can proceed. They'll be restarted
855                  * after the other works are all done.
856                  */
857                 if ((work->for_background || work->for_kupdate) &&
858                     !list_empty(&wb->bdi->work_list))
859                         break;
860
861                 /*
862                  * For background writeout, stop when we are below the
863                  * background dirty threshold
864                  */
865                 if (work->for_background && !over_bground_thresh(wb->bdi))
866                         break;
867
868                 /*
869                  * Kupdate and background works are special and we want to
870                  * include all inodes that need writing. Livelock avoidance is
871                  * handled by these works yielding to any other work so we are
872                  * safe.
873                  */
874                 if (work->for_kupdate) {
875                         oldest_jif = jiffies -
876                                 msecs_to_jiffies(dirty_expire_interval * 10);
877                 } else if (work->for_background)
878                         oldest_jif = jiffies;
879
880                 trace_writeback_start(wb->bdi, work);
881                 if (list_empty(&wb->b_io))
882                         queue_io(wb, work);
883                 if (work->sb)
884                         progress = writeback_sb_inodes(work->sb, wb, work);
885                 else
886                         progress = __writeback_inodes_wb(wb, work);
887                 trace_writeback_written(wb->bdi, work);
888
889                 wb_update_bandwidth(wb, wb_start);
890
891                 /*
892                  * Did we write something? Try for more
893                  *
894                  * Dirty inodes are moved to b_io for writeback in batches.
895                  * The completion of the current batch does not necessarily
896                  * mean the overall work is done. So we keep looping as long
897                  * as made some progress on cleaning pages or inodes.
898                  */
899                 if (progress)
900                         continue;
901                 /*
902                  * No more inodes for IO, bail
903                  */
904                 if (list_empty(&wb->b_more_io))
905                         break;
906                 /*
907                  * Nothing written. Wait for some inode to
908                  * become available for writeback. Otherwise
909                  * we'll just busyloop.
910                  */
911                 if (!list_empty(&wb->b_more_io))  {
912                         trace_writeback_wait(wb->bdi, work);
913                         inode = wb_inode(wb->b_more_io.prev);
914                         spin_lock(&inode->i_lock);
915                         spin_unlock(&wb->list_lock);
916                         /* This function drops i_lock... */
917                         inode_sleep_on_writeback(inode);
918                         spin_lock(&wb->list_lock);
919                 }
920         }
921         spin_unlock(&wb->list_lock);
922
923         return nr_pages - work->nr_pages;
924 }
925
926 /*
927  * Return the next wb_writeback_work struct that hasn't been processed yet.
928  */
929 static struct wb_writeback_work *
930 get_next_work_item(struct backing_dev_info *bdi)
931 {
932         struct wb_writeback_work *work = NULL;
933
934         spin_lock_bh(&bdi->wb_lock);
935         if (!list_empty(&bdi->work_list)) {
936                 work = list_entry(bdi->work_list.next,
937                                   struct wb_writeback_work, list);
938                 list_del_init(&work->list);
939         }
940         spin_unlock_bh(&bdi->wb_lock);
941         return work;
942 }
943
944 /*
945  * Add in the number of potentially dirty inodes, because each inode
946  * write can dirty pagecache in the underlying blockdev.
947  */
948 static unsigned long get_nr_dirty_pages(void)
949 {
950         return global_page_state(NR_FILE_DIRTY) +
951                 global_page_state(NR_UNSTABLE_NFS) +
952                 get_nr_dirty_inodes();
953 }
954
955 static long wb_check_background_flush(struct bdi_writeback *wb)
956 {
957         if (over_bground_thresh(wb->bdi)) {
958
959                 struct wb_writeback_work work = {
960                         .nr_pages       = LONG_MAX,
961                         .sync_mode      = WB_SYNC_NONE,
962                         .for_background = 1,
963                         .range_cyclic   = 1,
964                         .reason         = WB_REASON_BACKGROUND,
965                 };
966
967                 return wb_writeback(wb, &work);
968         }
969
970         return 0;
971 }
972
973 static long wb_check_old_data_flush(struct bdi_writeback *wb)
974 {
975         unsigned long expired;
976         long nr_pages;
977
978         /*
979          * When set to zero, disable periodic writeback
980          */
981         if (!dirty_writeback_interval)
982                 return 0;
983
984         expired = wb->last_old_flush +
985                         msecs_to_jiffies(dirty_writeback_interval * 10);
986         if (time_before(jiffies, expired))
987                 return 0;
988
989         wb->last_old_flush = jiffies;
990         nr_pages = get_nr_dirty_pages();
991
992         if (nr_pages) {
993                 struct wb_writeback_work work = {
994                         .nr_pages       = nr_pages,
995                         .sync_mode      = WB_SYNC_NONE,
996                         .for_kupdate    = 1,
997                         .range_cyclic   = 1,
998                         .reason         = WB_REASON_PERIODIC,
999                 };
1000
1001                 return wb_writeback(wb, &work);
1002         }
1003
1004         return 0;
1005 }
1006
1007 /*
1008  * Retrieve work items and do the writeback they describe
1009  */
1010 static long wb_do_writeback(struct bdi_writeback *wb)
1011 {
1012         struct backing_dev_info *bdi = wb->bdi;
1013         struct wb_writeback_work *work;
1014         long wrote = 0;
1015
1016         set_bit(BDI_writeback_running, &wb->bdi->state);
1017         while ((work = get_next_work_item(bdi)) != NULL) {
1018
1019                 trace_writeback_exec(bdi, work);
1020
1021                 wrote += wb_writeback(wb, work);
1022
1023                 /*
1024                  * Notify the caller of completion if this is a synchronous
1025                  * work item, otherwise just free it.
1026                  */
1027                 if (work->done)
1028                         complete(work->done);
1029                 else
1030                         kfree(work);
1031         }
1032
1033         /*
1034          * Check for periodic writeback, kupdated() style
1035          */
1036         wrote += wb_check_old_data_flush(wb);
1037         wrote += wb_check_background_flush(wb);
1038         clear_bit(BDI_writeback_running, &wb->bdi->state);
1039
1040         return wrote;
1041 }
1042
1043 /*
1044  * Handle writeback of dirty data for the device backed by this bdi. Also
1045  * reschedules periodically and does kupdated style flushing.
1046  */
1047 void bdi_writeback_workfn(struct work_struct *work)
1048 {
1049         struct bdi_writeback *wb = container_of(to_delayed_work(work),
1050                                                 struct bdi_writeback, dwork);
1051         struct backing_dev_info *bdi = wb->bdi;
1052         long pages_written;
1053
1054         set_worker_desc("flush-%s", dev_name(bdi->dev));
1055         current->flags |= PF_SWAPWRITE;
1056
1057         if (likely(!current_is_workqueue_rescuer() ||
1058                    !test_bit(BDI_registered, &bdi->state))) {
1059                 /*
1060                  * The normal path.  Keep writing back @bdi until its
1061                  * work_list is empty.  Note that this path is also taken
1062                  * if @bdi is shutting down even when we're running off the
1063                  * rescuer as work_list needs to be drained.
1064                  */
1065                 do {
1066                         pages_written = wb_do_writeback(wb);
1067                         trace_writeback_pages_written(pages_written);
1068                 } while (!list_empty(&bdi->work_list));
1069         } else {
1070                 /*
1071                  * bdi_wq can't get enough workers and we're running off
1072                  * the emergency worker.  Don't hog it.  Hopefully, 1024 is
1073                  * enough for efficient IO.
1074                  */
1075                 pages_written = writeback_inodes_wb(&bdi->wb, 1024,
1076                                                     WB_REASON_FORKER_THREAD);
1077                 trace_writeback_pages_written(pages_written);
1078         }
1079
1080         if (!list_empty(&bdi->work_list))
1081                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
1082         else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1083                 bdi_wakeup_thread_delayed(bdi);
1084
1085         current->flags &= ~PF_SWAPWRITE;
1086 }
1087
1088 /*
1089  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
1090  * the whole world.
1091  */
1092 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1093 {
1094         struct backing_dev_info *bdi;
1095
1096         if (!nr_pages)
1097                 nr_pages = get_nr_dirty_pages();
1098
1099         rcu_read_lock();
1100         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1101                 if (!bdi_has_dirty_io(bdi))
1102                         continue;
1103                 __bdi_start_writeback(bdi, nr_pages, false, reason);
1104         }
1105         rcu_read_unlock();
1106 }
1107
1108 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1109 {
1110         if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1111                 struct dentry *dentry;
1112                 const char *name = "?";
1113
1114                 dentry = d_find_alias(inode);
1115                 if (dentry) {
1116                         spin_lock(&dentry->d_lock);
1117                         name = (const char *) dentry->d_name.name;
1118                 }
1119                 printk(KERN_DEBUG
1120                        "%s(%d): dirtied inode %lu (%s) on %s\n",
1121                        current->comm, task_pid_nr(current), inode->i_ino,
1122                        name, inode->i_sb->s_id);
1123                 if (dentry) {
1124                         spin_unlock(&dentry->d_lock);
1125                         dput(dentry);
1126                 }
1127         }
1128 }
1129
1130 /**
1131  *      __mark_inode_dirty -    internal function
1132  *      @inode: inode to mark
1133  *      @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1134  *      Mark an inode as dirty. Callers should use mark_inode_dirty or
1135  *      mark_inode_dirty_sync.
1136  *
1137  * Put the inode on the super block's dirty list.
1138  *
1139  * CAREFUL! We mark it dirty unconditionally, but move it onto the
1140  * dirty list only if it is hashed or if it refers to a blockdev.
1141  * If it was not hashed, it will never be added to the dirty list
1142  * even if it is later hashed, as it will have been marked dirty already.
1143  *
1144  * In short, make sure you hash any inodes _before_ you start marking
1145  * them dirty.
1146  *
1147  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1148  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
1149  * the kernel-internal blockdev inode represents the dirtying time of the
1150  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
1151  * page->mapping->host, so the page-dirtying time is recorded in the internal
1152  * blockdev inode.
1153  */
1154 void __mark_inode_dirty(struct inode *inode, int flags)
1155 {
1156         struct super_block *sb = inode->i_sb;
1157         struct backing_dev_info *bdi = NULL;
1158
1159         /*
1160          * Don't do this for I_DIRTY_PAGES - that doesn't actually
1161          * dirty the inode itself
1162          */
1163         if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1164                 trace_writeback_dirty_inode_start(inode, flags);
1165
1166                 if (sb->s_op->dirty_inode)
1167                         sb->s_op->dirty_inode(inode, flags);
1168
1169                 trace_writeback_dirty_inode(inode, flags);
1170         }
1171
1172         /*
1173          * Paired with smp_mb() in __writeback_single_inode() for the
1174          * following lockless i_state test.  See there for details.
1175          */
1176         smp_mb();
1177
1178         if ((inode->i_state & flags) == flags)
1179                 return;
1180
1181         if (unlikely(block_dump))
1182                 block_dump___mark_inode_dirty(inode);
1183
1184         spin_lock(&inode->i_lock);
1185         if ((inode->i_state & flags) != flags) {
1186                 const int was_dirty = inode->i_state & I_DIRTY;
1187
1188                 inode->i_state |= flags;
1189
1190                 /*
1191                  * If the inode is being synced, just update its dirty state.
1192                  * The unlocker will place the inode on the appropriate
1193                  * superblock list, based upon its state.
1194                  */
1195                 if (inode->i_state & I_SYNC)
1196                         goto out_unlock_inode;
1197
1198                 /*
1199                  * Only add valid (hashed) inodes to the superblock's
1200                  * dirty list.  Add blockdev inodes as well.
1201                  */
1202                 if (!S_ISBLK(inode->i_mode)) {
1203                         if (inode_unhashed(inode))
1204                                 goto out_unlock_inode;
1205                 }
1206                 if (inode->i_state & I_FREEING)
1207                         goto out_unlock_inode;
1208
1209                 /*
1210                  * If the inode was already on b_dirty/b_io/b_more_io, don't
1211                  * reposition it (that would break b_dirty time-ordering).
1212                  */
1213                 if (!was_dirty) {
1214                         bool wakeup_bdi = false;
1215                         bdi = inode_to_bdi(inode);
1216
1217                         spin_unlock(&inode->i_lock);
1218                         spin_lock(&bdi->wb.list_lock);
1219                         if (bdi_cap_writeback_dirty(bdi)) {
1220                                 WARN(!test_bit(BDI_registered, &bdi->state),
1221                                      "bdi-%s not registered\n", bdi->name);
1222
1223                                 /*
1224                                  * If this is the first dirty inode for this
1225                                  * bdi, we have to wake-up the corresponding
1226                                  * bdi thread to make sure background
1227                                  * write-back happens later.
1228                                  */
1229                                 if (!wb_has_dirty_io(&bdi->wb))
1230                                         wakeup_bdi = true;
1231                         }
1232
1233                         inode->dirtied_when = jiffies;
1234                         list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1235                         spin_unlock(&bdi->wb.list_lock);
1236
1237                         if (wakeup_bdi)
1238                                 bdi_wakeup_thread_delayed(bdi);
1239                         return;
1240                 }
1241         }
1242 out_unlock_inode:
1243         spin_unlock(&inode->i_lock);
1244
1245 }
1246 EXPORT_SYMBOL(__mark_inode_dirty);
1247
1248 static void wait_sb_inodes(struct super_block *sb)
1249 {
1250         struct inode *inode, *old_inode = NULL;
1251
1252         /*
1253          * We need to be protected against the filesystem going from
1254          * r/o to r/w or vice versa.
1255          */
1256         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1257
1258         spin_lock(&inode_sb_list_lock);
1259
1260         /*
1261          * Data integrity sync. Must wait for all pages under writeback,
1262          * because there may have been pages dirtied before our sync
1263          * call, but which had writeout started before we write it out.
1264          * In which case, the inode may not be on the dirty list, but
1265          * we still have to wait for that writeout.
1266          */
1267         list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1268                 struct address_space *mapping = inode->i_mapping;
1269
1270                 spin_lock(&inode->i_lock);
1271                 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1272                     (mapping->nrpages == 0)) {
1273                         spin_unlock(&inode->i_lock);
1274                         continue;
1275                 }
1276                 __iget(inode);
1277                 spin_unlock(&inode->i_lock);
1278                 spin_unlock(&inode_sb_list_lock);
1279
1280                 /*
1281                  * We hold a reference to 'inode' so it couldn't have been
1282                  * removed from s_inodes list while we dropped the
1283                  * inode_sb_list_lock.  We cannot iput the inode now as we can
1284                  * be holding the last reference and we cannot iput it under
1285                  * inode_sb_list_lock. So we keep the reference and iput it
1286                  * later.
1287                  */
1288                 iput(old_inode);
1289                 old_inode = inode;
1290
1291                 filemap_fdatawait(mapping);
1292
1293                 cond_resched();
1294
1295                 spin_lock(&inode_sb_list_lock);
1296         }
1297         spin_unlock(&inode_sb_list_lock);
1298         iput(old_inode);
1299 }
1300
1301 /**
1302  * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
1303  * @sb: the superblock
1304  * @nr: the number of pages to write
1305  * @reason: reason why some writeback work initiated
1306  *
1307  * Start writeback on some inodes on this super_block. No guarantees are made
1308  * on how many (if any) will be written, and this function does not wait
1309  * for IO completion of submitted IO.
1310  */
1311 void writeback_inodes_sb_nr(struct super_block *sb,
1312                             unsigned long nr,
1313                             enum wb_reason reason)
1314 {
1315         DECLARE_COMPLETION_ONSTACK(done);
1316         struct wb_writeback_work work = {
1317                 .sb                     = sb,
1318                 .sync_mode              = WB_SYNC_NONE,
1319                 .tagged_writepages      = 1,
1320                 .done                   = &done,
1321                 .nr_pages               = nr,
1322                 .reason                 = reason,
1323         };
1324
1325         if (sb->s_bdi == &noop_backing_dev_info)
1326                 return;
1327         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1328         bdi_queue_work(sb->s_bdi, &work);
1329         wait_for_completion(&done);
1330 }
1331 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1332
1333 /**
1334  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
1335  * @sb: the superblock
1336  * @reason: reason why some writeback work was initiated
1337  *
1338  * Start writeback on some inodes on this super_block. No guarantees are made
1339  * on how many (if any) will be written, and this function does not wait
1340  * for IO completion of submitted IO.
1341  */
1342 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1343 {
1344         return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1345 }
1346 EXPORT_SYMBOL(writeback_inodes_sb);
1347
1348 /**
1349  * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
1350  * @sb: the superblock
1351  * @nr: the number of pages to write
1352  * @reason: the reason of writeback
1353  *
1354  * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
1355  * Returns 1 if writeback was started, 0 if not.
1356  */
1357 int try_to_writeback_inodes_sb_nr(struct super_block *sb,
1358                                   unsigned long nr,
1359                                   enum wb_reason reason)
1360 {
1361         if (writeback_in_progress(sb->s_bdi))
1362                 return 1;
1363
1364         if (!down_read_trylock(&sb->s_umount))
1365                 return 0;
1366
1367         writeback_inodes_sb_nr(sb, nr, reason);
1368         up_read(&sb->s_umount);
1369         return 1;
1370 }
1371 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
1372
1373 /**
1374  * try_to_writeback_inodes_sb - try to start writeback if none underway
1375  * @sb: the superblock
1376  * @reason: reason why some writeback work was initiated
1377  *
1378  * Implement by try_to_writeback_inodes_sb_nr()
1379  * Returns 1 if writeback was started, 0 if not.
1380  */
1381 int try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1382 {
1383         return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1384 }
1385 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
1386
1387 /**
1388  * sync_inodes_sb       -       sync sb inode pages
1389  * @sb: the superblock
1390  *
1391  * This function writes and waits on any dirty inode belonging to this
1392  * super_block.
1393  */
1394 void sync_inodes_sb(struct super_block *sb)
1395 {
1396         DECLARE_COMPLETION_ONSTACK(done);
1397         struct wb_writeback_work work = {
1398                 .sb             = sb,
1399                 .sync_mode      = WB_SYNC_ALL,
1400                 .nr_pages       = LONG_MAX,
1401                 .range_cyclic   = 0,
1402                 .done           = &done,
1403                 .reason         = WB_REASON_SYNC,
1404                 .for_sync       = 1,
1405         };
1406
1407         /* Nothing to do? */
1408         if (sb->s_bdi == &noop_backing_dev_info)
1409                 return;
1410         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1411
1412         bdi_queue_work(sb->s_bdi, &work);
1413         wait_for_completion(&done);
1414
1415         wait_sb_inodes(sb);
1416 }
1417 EXPORT_SYMBOL(sync_inodes_sb);
1418
1419 /**
1420  * write_inode_now      -       write an inode to disk
1421  * @inode: inode to write to disk
1422  * @sync: whether the write should be synchronous or not
1423  *
1424  * This function commits an inode to disk immediately if it is dirty. This is
1425  * primarily needed by knfsd.
1426  *
1427  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1428  */
1429 int write_inode_now(struct inode *inode, int sync)
1430 {
1431         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1432         struct writeback_control wbc = {
1433                 .nr_to_write = LONG_MAX,
1434                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1435                 .range_start = 0,
1436                 .range_end = LLONG_MAX,
1437         };
1438
1439         if (!mapping_cap_writeback_dirty(inode->i_mapping))
1440                 wbc.nr_to_write = 0;
1441
1442         might_sleep();
1443         return writeback_single_inode(inode, wb, &wbc);
1444 }
1445 EXPORT_SYMBOL(write_inode_now);
1446
1447 /**
1448  * sync_inode - write an inode and its pages to disk.
1449  * @inode: the inode to sync
1450  * @wbc: controls the writeback mode
1451  *
1452  * sync_inode() will write an inode and its pages to disk.  It will also
1453  * correctly update the inode on its superblock's dirty inode lists and will
1454  * update inode->i_state.
1455  *
1456  * The caller must have a ref on the inode.
1457  */
1458 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1459 {
1460         return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
1461 }
1462 EXPORT_SYMBOL(sync_inode);
1463
1464 /**
1465  * sync_inode_metadata - write an inode to disk
1466  * @inode: the inode to sync
1467  * @wait: wait for I/O to complete.
1468  *
1469  * Write an inode to disk and adjust its dirty state after completion.
1470  *
1471  * Note: only writes the actual inode, no associated data or other metadata.
1472  */
1473 int sync_inode_metadata(struct inode *inode, int wait)
1474 {
1475         struct writeback_control wbc = {
1476                 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1477                 .nr_to_write = 0, /* metadata-only */
1478         };
1479
1480         return sync_inode(inode, &wbc);
1481 }
1482 EXPORT_SYMBOL(sync_inode_metadata);