]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/hugetlbfs/inode.c
719bbe0cf8b4a03b61d5828c44ecdc9aa8fd5b22
[karo-tx-linux.git] / fs / hugetlbfs / inode.c
1 /*
2  * hugetlbpage-backed filesystem.  Based on ramfs.
3  *
4  * Nadia Yvette Chambers, 2002
5  *
6  * Copyright (C) 2002 Linus Torvalds.
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/module.h>
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/sched.h>                /* remove ASAP */
15 #include <linux/falloc.h>
16 #include <linux/fs.h>
17 #include <linux/mount.h>
18 #include <linux/file.h>
19 #include <linux/kernel.h>
20 #include <linux/writeback.h>
21 #include <linux/pagemap.h>
22 #include <linux/highmem.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/capability.h>
26 #include <linux/ctype.h>
27 #include <linux/backing-dev.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagevec.h>
30 #include <linux/parser.h>
31 #include <linux/mman.h>
32 #include <linux/slab.h>
33 #include <linux/dnotify.h>
34 #include <linux/statfs.h>
35 #include <linux/security.h>
36 #include <linux/magic.h>
37 #include <linux/migrate.h>
38 #include <linux/uio.h>
39
40 #include <asm/uaccess.h>
41
42 static const struct super_operations hugetlbfs_ops;
43 static const struct address_space_operations hugetlbfs_aops;
44 const struct file_operations hugetlbfs_file_operations;
45 static const struct inode_operations hugetlbfs_dir_inode_operations;
46 static const struct inode_operations hugetlbfs_inode_operations;
47
48 struct hugetlbfs_config {
49         kuid_t   uid;
50         kgid_t   gid;
51         umode_t mode;
52         long    max_hpages;
53         long    nr_inodes;
54         struct hstate *hstate;
55         long    min_hpages;
56 };
57
58 struct hugetlbfs_inode_info {
59         struct shared_policy policy;
60         struct inode vfs_inode;
61 };
62
63 static inline struct hugetlbfs_inode_info *HUGETLBFS_I(struct inode *inode)
64 {
65         return container_of(inode, struct hugetlbfs_inode_info, vfs_inode);
66 }
67
68 int sysctl_hugetlb_shm_group;
69
70 enum {
71         Opt_size, Opt_nr_inodes,
72         Opt_mode, Opt_uid, Opt_gid,
73         Opt_pagesize, Opt_min_size,
74         Opt_err,
75 };
76
77 static const match_table_t tokens = {
78         {Opt_size,      "size=%s"},
79         {Opt_nr_inodes, "nr_inodes=%s"},
80         {Opt_mode,      "mode=%o"},
81         {Opt_uid,       "uid=%u"},
82         {Opt_gid,       "gid=%u"},
83         {Opt_pagesize,  "pagesize=%s"},
84         {Opt_min_size,  "min_size=%s"},
85         {Opt_err,       NULL},
86 };
87
88 #ifdef CONFIG_NUMA
89 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
90                                         struct inode *inode, pgoff_t index)
91 {
92         vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
93                                                         index);
94 }
95
96 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
97 {
98         mpol_cond_put(vma->vm_policy);
99 }
100 #else
101 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
102                                         struct inode *inode, pgoff_t index)
103 {
104 }
105
106 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
107 {
108 }
109 #endif
110
111 static void huge_pagevec_release(struct pagevec *pvec)
112 {
113         int i;
114
115         for (i = 0; i < pagevec_count(pvec); ++i)
116                 put_page(pvec->pages[i]);
117
118         pagevec_reinit(pvec);
119 }
120
121 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
122 {
123         struct inode *inode = file_inode(file);
124         loff_t len, vma_len;
125         int ret;
126         struct hstate *h = hstate_file(file);
127
128         /*
129          * vma address alignment (but not the pgoff alignment) has
130          * already been checked by prepare_hugepage_range.  If you add
131          * any error returns here, do so after setting VM_HUGETLB, so
132          * is_vm_hugetlb_page tests below unmap_region go the right
133          * way when do_mmap_pgoff unwinds (may be important on powerpc
134          * and ia64).
135          */
136         vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
137         vma->vm_ops = &hugetlb_vm_ops;
138
139         if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
140                 return -EINVAL;
141
142         vma_len = (loff_t)(vma->vm_end - vma->vm_start);
143
144         mutex_lock(&inode->i_mutex);
145         file_accessed(file);
146
147         ret = -ENOMEM;
148         len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
149
150         if (hugetlb_reserve_pages(inode,
151                                 vma->vm_pgoff >> huge_page_order(h),
152                                 len >> huge_page_shift(h), vma,
153                                 vma->vm_flags))
154                 goto out;
155
156         ret = 0;
157         if (vma->vm_flags & VM_WRITE && inode->i_size < len)
158                 inode->i_size = len;
159 out:
160         mutex_unlock(&inode->i_mutex);
161
162         return ret;
163 }
164
165 /*
166  * Called under down_write(mmap_sem).
167  */
168
169 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
170 static unsigned long
171 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
172                 unsigned long len, unsigned long pgoff, unsigned long flags)
173 {
174         struct mm_struct *mm = current->mm;
175         struct vm_area_struct *vma;
176         struct hstate *h = hstate_file(file);
177         struct vm_unmapped_area_info info;
178
179         if (len & ~huge_page_mask(h))
180                 return -EINVAL;
181         if (len > TASK_SIZE)
182                 return -ENOMEM;
183
184         if (flags & MAP_FIXED) {
185                 if (prepare_hugepage_range(file, addr, len))
186                         return -EINVAL;
187                 return addr;
188         }
189
190         if (addr) {
191                 addr = ALIGN(addr, huge_page_size(h));
192                 vma = find_vma(mm, addr);
193                 if (TASK_SIZE - len >= addr &&
194                     (!vma || addr + len <= vma->vm_start))
195                         return addr;
196         }
197
198         info.flags = 0;
199         info.length = len;
200         info.low_limit = TASK_UNMAPPED_BASE;
201         info.high_limit = TASK_SIZE;
202         info.align_mask = PAGE_MASK & ~huge_page_mask(h);
203         info.align_offset = 0;
204         return vm_unmapped_area(&info);
205 }
206 #endif
207
208 static size_t
209 hugetlbfs_read_actor(struct page *page, unsigned long offset,
210                         struct iov_iter *to, unsigned long size)
211 {
212         size_t copied = 0;
213         int i, chunksize;
214
215         /* Find which 4k chunk and offset with in that chunk */
216         i = offset >> PAGE_CACHE_SHIFT;
217         offset = offset & ~PAGE_CACHE_MASK;
218
219         while (size) {
220                 size_t n;
221                 chunksize = PAGE_CACHE_SIZE;
222                 if (offset)
223                         chunksize -= offset;
224                 if (chunksize > size)
225                         chunksize = size;
226                 n = copy_page_to_iter(&page[i], offset, chunksize, to);
227                 copied += n;
228                 if (n != chunksize)
229                         return copied;
230                 offset = 0;
231                 size -= chunksize;
232                 i++;
233         }
234         return copied;
235 }
236
237 /*
238  * Support for read() - Find the page attached to f_mapping and copy out the
239  * data. Its *very* similar to do_generic_mapping_read(), we can't use that
240  * since it has PAGE_CACHE_SIZE assumptions.
241  */
242 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
243 {
244         struct file *file = iocb->ki_filp;
245         struct hstate *h = hstate_file(file);
246         struct address_space *mapping = file->f_mapping;
247         struct inode *inode = mapping->host;
248         unsigned long index = iocb->ki_pos >> huge_page_shift(h);
249         unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
250         unsigned long end_index;
251         loff_t isize;
252         ssize_t retval = 0;
253
254         while (iov_iter_count(to)) {
255                 struct page *page;
256                 size_t nr, copied;
257
258                 /* nr is the maximum number of bytes to copy from this page */
259                 nr = huge_page_size(h);
260                 isize = i_size_read(inode);
261                 if (!isize)
262                         break;
263                 end_index = (isize - 1) >> huge_page_shift(h);
264                 if (index > end_index)
265                         break;
266                 if (index == end_index) {
267                         nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
268                         if (nr <= offset)
269                                 break;
270                 }
271                 nr = nr - offset;
272
273                 /* Find the page */
274                 page = find_lock_page(mapping, index);
275                 if (unlikely(page == NULL)) {
276                         /*
277                          * We have a HOLE, zero out the user-buffer for the
278                          * length of the hole or request.
279                          */
280                         copied = iov_iter_zero(nr, to);
281                 } else {
282                         unlock_page(page);
283
284                         /*
285                          * We have the page, copy it to user space buffer.
286                          */
287                         copied = hugetlbfs_read_actor(page, offset, to, nr);
288                         page_cache_release(page);
289                 }
290                 offset += copied;
291                 retval += copied;
292                 if (copied != nr && iov_iter_count(to)) {
293                         if (!retval)
294                                 retval = -EFAULT;
295                         break;
296                 }
297                 index += offset >> huge_page_shift(h);
298                 offset &= ~huge_page_mask(h);
299         }
300         iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
301         return retval;
302 }
303
304 static int hugetlbfs_write_begin(struct file *file,
305                         struct address_space *mapping,
306                         loff_t pos, unsigned len, unsigned flags,
307                         struct page **pagep, void **fsdata)
308 {
309         return -EINVAL;
310 }
311
312 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
313                         loff_t pos, unsigned len, unsigned copied,
314                         struct page *page, void *fsdata)
315 {
316         BUG();
317         return -EINVAL;
318 }
319
320 static void remove_huge_page(struct page *page)
321 {
322         ClearPageDirty(page);
323         ClearPageUptodate(page);
324         delete_from_page_cache(page);
325 }
326
327
328 /*
329  * remove_inode_hugepages handles two distinct cases: truncation and hole
330  * punch.  There are subtle differences in operation for each case.
331
332  * truncation is indicated by end of range being LLONG_MAX
333  *      In this case, we first scan the range and release found pages.
334  *      After releasing pages, hugetlb_unreserve_pages cleans up region/reserv
335  *      maps and global counts.
336  * hole punch is indicated if end is not LLONG_MAX
337  *      In the hole punch case we scan the range and release found pages.
338  *      Only when releasing a page is the associated region/reserv map
339  *      deleted.  The region/reserv map for ranges without associated
340  *      pages are not modified.
341  * Note: If the passed end of range value is beyond the end of file, but
342  * not LLONG_MAX this routine still performs a hole punch operation.
343  */
344 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
345                                    loff_t lend)
346 {
347         struct hstate *h = hstate_inode(inode);
348         struct address_space *mapping = &inode->i_data;
349         const pgoff_t start = lstart >> huge_page_shift(h);
350         const pgoff_t end = lend >> huge_page_shift(h);
351         struct vm_area_struct pseudo_vma;
352         struct pagevec pvec;
353         pgoff_t next;
354         int i, freed = 0;
355         long lookup_nr = PAGEVEC_SIZE;
356         bool truncate_op = (lend == LLONG_MAX);
357
358         memset(&pseudo_vma, 0, sizeof(struct vm_area_struct));
359         pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
360         pagevec_init(&pvec, 0);
361         next = start;
362         while (next < end) {
363                 /*
364                  * Make sure to never grab more pages that we
365                  * might possibly need.
366                  */
367                 if (end - next < lookup_nr)
368                         lookup_nr = end - next;
369
370                 /*
371                  * This pagevec_lookup() may return pages past 'end',
372                  * so we must check for page->index > end.
373                  */
374                 if (!pagevec_lookup(&pvec, mapping, next, lookup_nr)) {
375                         if (next == start)
376                                 break;
377                         next = start;
378                         continue;
379                 }
380
381                 for (i = 0; i < pagevec_count(&pvec); ++i) {
382                         struct page *page = pvec.pages[i];
383                         u32 hash;
384
385                         hash = hugetlb_fault_mutex_hash(h, current->mm,
386                                                         &pseudo_vma,
387                                                         mapping, next, 0);
388                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
389
390                         lock_page(page);
391                         if (page->index >= end) {
392                                 unlock_page(page);
393                                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
394                                 next = end;     /* we are done */
395                                 break;
396                         }
397
398                         /*
399                          * If page is mapped, it was faulted in after being
400                          * unmapped.  Do nothing in this race case.  In the
401                          * normal case page is not mapped.
402                          */
403                         if (!page_mapped(page)) {
404                                 bool rsv_on_error = !PagePrivate(page);
405                                 /*
406                                  * We must free the huge page and remove
407                                  * from page cache (remove_huge_page) BEFORE
408                                  * removing the region/reserve map
409                                  * (hugetlb_unreserve_pages).  In rare out
410                                  * of memory conditions, removal of the
411                                  * region/reserve map could fail.  Before
412                                  * free'ing the page, note PagePrivate which
413                                  * is used in case of error.
414                                  */
415                                 remove_huge_page(page);
416                                 freed++;
417                                 if (!truncate_op) {
418                                         if (unlikely(hugetlb_unreserve_pages(
419                                                         inode, next,
420                                                         next + 1, 1)))
421                                                 hugetlb_fix_reserve_counts(
422                                                         inode, rsv_on_error);
423                                 }
424                         }
425
426                         if (page->index > next)
427                                 next = page->index;
428
429                         ++next;
430                         unlock_page(page);
431
432                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
433                 }
434                 huge_pagevec_release(&pvec);
435         }
436
437         if (truncate_op)
438                 (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
439 }
440
441 static void hugetlbfs_evict_inode(struct inode *inode)
442 {
443         struct resv_map *resv_map;
444
445         remove_inode_hugepages(inode, 0, LLONG_MAX);
446         resv_map = (struct resv_map *)inode->i_mapping->private_data;
447         /* root inode doesn't have the resv_map, so we should check it */
448         if (resv_map)
449                 resv_map_release(&resv_map->refs);
450         clear_inode(inode);
451 }
452
453 static inline void
454 hugetlb_vmdelete_list(struct rb_root *root, pgoff_t start, pgoff_t end)
455 {
456         struct vm_area_struct *vma;
457
458         /*
459          * end == 0 indicates that the entire range after
460          * start should be unmapped.
461          */
462         vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) {
463                 unsigned long v_offset;
464
465                 /*
466                  * Can the expression below overflow on 32-bit arches?
467                  * No, because the interval tree returns us only those vmas
468                  * which overlap the truncated area starting at pgoff,
469                  * and no vma on a 32-bit arch can span beyond the 4GB.
470                  */
471                 if (vma->vm_pgoff < start)
472                         v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
473                 else
474                         v_offset = 0;
475
476                 if (end) {
477                         end = ((end - start) << PAGE_SHIFT) +
478                                vma->vm_start + v_offset;
479                         if (end > vma->vm_end)
480                                 end = vma->vm_end;
481                 } else
482                         end = vma->vm_end;
483
484                 unmap_hugepage_range(vma, vma->vm_start + v_offset, end, NULL);
485         }
486 }
487
488 static int hugetlb_vmtruncate(struct inode *inode, loff_t offset)
489 {
490         pgoff_t pgoff;
491         struct address_space *mapping = inode->i_mapping;
492         struct hstate *h = hstate_inode(inode);
493
494         BUG_ON(offset & ~huge_page_mask(h));
495         pgoff = offset >> PAGE_SHIFT;
496
497         i_size_write(inode, offset);
498         i_mmap_lock_write(mapping);
499         if (!RB_EMPTY_ROOT(&mapping->i_mmap))
500                 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0);
501         i_mmap_unlock_write(mapping);
502         remove_inode_hugepages(inode, offset, LLONG_MAX);
503         return 0;
504 }
505
506 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
507 {
508         struct hstate *h = hstate_inode(inode);
509         loff_t hpage_size = huge_page_size(h);
510         unsigned long hpage_shift = huge_page_shift(h);
511         loff_t hole_start, hole_end;
512
513         /*
514          * For hole punch round up the beginning offset of the hole and
515          * round down the end.
516          */
517         hole_start = round_up(offset, hpage_size);
518         hole_end = round_down(offset + len, hpage_size);
519
520         if (hole_end > hole_start) {
521                 struct address_space *mapping = inode->i_mapping;
522                 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(hugetlb_falloc_waitq);
523                 /*
524                  * Page faults on the area to be hole punched must be stopped
525                  * during the operation.  Initialize struct and have
526                  * inode->i_private point to it.
527                  */
528                 struct hugetlb_falloc hugetlb_falloc = {
529                         .waitq = &hugetlb_falloc_waitq,
530                         .start = hole_start >> hpage_shift,
531                         .end = hole_end >> hpage_shift
532                 };
533
534                 mutex_lock(&inode->i_mutex);
535
536                 /*
537                  * inode->i_private will be checked in the page fault path.
538                  * The locking assures that all writes to the structure are
539                  * complete before assigning to i_private.  A fault on another
540                  * CPU will see the fully initialized structure.
541                  */
542                 spin_lock(&inode->i_lock);
543                 inode->i_private = &hugetlb_falloc;
544                 spin_unlock(&inode->i_lock);
545
546                 i_mmap_lock_write(mapping);
547                 if (!RB_EMPTY_ROOT(&mapping->i_mmap))
548                         hugetlb_vmdelete_list(&mapping->i_mmap,
549                                                 hole_start >> PAGE_SHIFT,
550                                                 hole_end  >> PAGE_SHIFT);
551                 i_mmap_unlock_write(mapping);
552                 remove_inode_hugepages(inode, hole_start, hole_end);
553
554                 spin_lock(&inode->i_lock);
555                 inode->i_private = NULL;
556                 wake_up_all(&hugetlb_falloc_waitq);
557                 spin_unlock(&inode->i_lock);
558
559                 mutex_unlock(&inode->i_mutex);
560         }
561
562         return 0;
563 }
564
565 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
566                                 loff_t len)
567 {
568         struct inode *inode = file_inode(file);
569         struct address_space *mapping = inode->i_mapping;
570         struct hstate *h = hstate_inode(inode);
571         struct vm_area_struct pseudo_vma;
572         struct mm_struct *mm = current->mm;
573         loff_t hpage_size = huge_page_size(h);
574         unsigned long hpage_shift = huge_page_shift(h);
575         pgoff_t start, index, end;
576         int error;
577         u32 hash;
578
579         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
580                 return -EOPNOTSUPP;
581
582         if (mode & FALLOC_FL_PUNCH_HOLE)
583                 return hugetlbfs_punch_hole(inode, offset, len);
584
585         /*
586          * Default preallocate case.
587          * For this range, start is rounded down and end is rounded up
588          * as well as being converted to page offsets.
589          */
590         start = offset >> hpage_shift;
591         end = (offset + len + hpage_size - 1) >> hpage_shift;
592
593         mutex_lock(&inode->i_mutex);
594
595         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
596         error = inode_newsize_ok(inode, offset + len);
597         if (error)
598                 goto out;
599
600         /*
601          * Initialize a pseudo vma as this is required by the huge page
602          * allocation routines.  If NUMA is configured, use page index
603          * as input to create an allocation policy.
604          */
605         memset(&pseudo_vma, 0, sizeof(struct vm_area_struct));
606         pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
607         pseudo_vma.vm_file = file;
608
609         for (index = start; index < end; index++) {
610                 /*
611                  * This is supposed to be the vaddr where the page is being
612                  * faulted in, but we have no vaddr here.
613                  */
614                 struct page *page;
615                 unsigned long addr;
616                 int avoid_reserve = 0;
617
618                 cond_resched();
619
620                 /*
621                  * fallocate(2) manpage permits EINTR; we may have been
622                  * interrupted because we are using up too much memory.
623                  */
624                 if (signal_pending(current)) {
625                         error = -EINTR;
626                         break;
627                 }
628
629                 /* Set numa allocation policy based on index */
630                 hugetlb_set_vma_policy(&pseudo_vma, inode, index);
631
632                 /* addr is the offset within the file (zero based) */
633                 addr = index * hpage_size;
634
635                 /* mutex taken here, fault path and hole punch */
636                 hash = hugetlb_fault_mutex_hash(h, mm, &pseudo_vma, mapping,
637                                                 index, addr);
638                 mutex_lock(&hugetlb_fault_mutex_table[hash]);
639
640                 /* See if already present in mapping to avoid alloc/free */
641                 page = find_get_page(mapping, index);
642                 if (page) {
643                         put_page(page);
644                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
645                         hugetlb_drop_vma_policy(&pseudo_vma);
646                         continue;
647                 }
648
649                 /* Allocate page and add to page cache */
650                 page = alloc_huge_page(&pseudo_vma, addr, avoid_reserve);
651                 hugetlb_drop_vma_policy(&pseudo_vma);
652                 if (IS_ERR(page)) {
653                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
654                         error = PTR_ERR(page);
655                         goto out;
656                 }
657                 clear_huge_page(page, addr, pages_per_huge_page(h));
658                 __SetPageUptodate(page);
659                 error = huge_add_to_page_cache(page, mapping, index);
660                 if (unlikely(error)) {
661                         put_page(page);
662                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
663                         goto out;
664                 }
665
666                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
667
668                 /*
669                  * page_put due to reference from alloc_huge_page()
670                  * unlock_page because locked by add_to_page_cache()
671                  */
672                 put_page(page);
673                 unlock_page(page);
674         }
675
676         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
677                 i_size_write(inode, offset + len);
678         inode->i_ctime = CURRENT_TIME;
679 out:
680         mutex_unlock(&inode->i_mutex);
681         return error;
682 }
683
684 static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr)
685 {
686         struct inode *inode = d_inode(dentry);
687         struct hstate *h = hstate_inode(inode);
688         int error;
689         unsigned int ia_valid = attr->ia_valid;
690
691         BUG_ON(!inode);
692
693         error = inode_change_ok(inode, attr);
694         if (error)
695                 return error;
696
697         if (ia_valid & ATTR_SIZE) {
698                 error = -EINVAL;
699                 if (attr->ia_size & ~huge_page_mask(h))
700                         return -EINVAL;
701                 error = hugetlb_vmtruncate(inode, attr->ia_size);
702                 if (error)
703                         return error;
704         }
705
706         setattr_copy(inode, attr);
707         mark_inode_dirty(inode);
708         return 0;
709 }
710
711 static struct inode *hugetlbfs_get_root(struct super_block *sb,
712                                         struct hugetlbfs_config *config)
713 {
714         struct inode *inode;
715
716         inode = new_inode(sb);
717         if (inode) {
718                 struct hugetlbfs_inode_info *info;
719                 inode->i_ino = get_next_ino();
720                 inode->i_mode = S_IFDIR | config->mode;
721                 inode->i_uid = config->uid;
722                 inode->i_gid = config->gid;
723                 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
724                 info = HUGETLBFS_I(inode);
725                 mpol_shared_policy_init(&info->policy, NULL);
726                 inode->i_op = &hugetlbfs_dir_inode_operations;
727                 inode->i_fop = &simple_dir_operations;
728                 /* directory inodes start off with i_nlink == 2 (for "." entry) */
729                 inc_nlink(inode);
730                 lockdep_annotate_inode_mutex_key(inode);
731         }
732         return inode;
733 }
734
735 /*
736  * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
737  * be taken from reclaim -- unlike regular filesystems. This needs an
738  * annotation because huge_pmd_share() does an allocation under
739  * i_mmap_rwsem.
740  */
741 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
742
743 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
744                                         struct inode *dir,
745                                         umode_t mode, dev_t dev)
746 {
747         struct inode *inode;
748         struct resv_map *resv_map;
749
750         resv_map = resv_map_alloc();
751         if (!resv_map)
752                 return NULL;
753
754         inode = new_inode(sb);
755         if (inode) {
756                 struct hugetlbfs_inode_info *info;
757                 inode->i_ino = get_next_ino();
758                 inode_init_owner(inode, dir, mode);
759                 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
760                                 &hugetlbfs_i_mmap_rwsem_key);
761                 inode->i_mapping->a_ops = &hugetlbfs_aops;
762                 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
763                 inode->i_mapping->private_data = resv_map;
764                 info = HUGETLBFS_I(inode);
765                 /*
766                  * The policy is initialized here even if we are creating a
767                  * private inode because initialization simply creates an
768                  * an empty rb tree and calls spin_lock_init(), later when we
769                  * call mpol_free_shared_policy() it will just return because
770                  * the rb tree will still be empty.
771                  */
772                 mpol_shared_policy_init(&info->policy, NULL);
773                 switch (mode & S_IFMT) {
774                 default:
775                         init_special_inode(inode, mode, dev);
776                         break;
777                 case S_IFREG:
778                         inode->i_op = &hugetlbfs_inode_operations;
779                         inode->i_fop = &hugetlbfs_file_operations;
780                         break;
781                 case S_IFDIR:
782                         inode->i_op = &hugetlbfs_dir_inode_operations;
783                         inode->i_fop = &simple_dir_operations;
784
785                         /* directory inodes start off with i_nlink == 2 (for "." entry) */
786                         inc_nlink(inode);
787                         break;
788                 case S_IFLNK:
789                         inode->i_op = &page_symlink_inode_operations;
790                         break;
791                 }
792                 lockdep_annotate_inode_mutex_key(inode);
793         } else
794                 kref_put(&resv_map->refs, resv_map_release);
795
796         return inode;
797 }
798
799 /*
800  * File creation. Allocate an inode, and we're done..
801  */
802 static int hugetlbfs_mknod(struct inode *dir,
803                         struct dentry *dentry, umode_t mode, dev_t dev)
804 {
805         struct inode *inode;
806         int error = -ENOSPC;
807
808         inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
809         if (inode) {
810                 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
811                 d_instantiate(dentry, inode);
812                 dget(dentry);   /* Extra count - pin the dentry in core */
813                 error = 0;
814         }
815         return error;
816 }
817
818 static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
819 {
820         int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0);
821         if (!retval)
822                 inc_nlink(dir);
823         return retval;
824 }
825
826 static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, bool excl)
827 {
828         return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0);
829 }
830
831 static int hugetlbfs_symlink(struct inode *dir,
832                         struct dentry *dentry, const char *symname)
833 {
834         struct inode *inode;
835         int error = -ENOSPC;
836
837         inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
838         if (inode) {
839                 int l = strlen(symname)+1;
840                 error = page_symlink(inode, symname, l);
841                 if (!error) {
842                         d_instantiate(dentry, inode);
843                         dget(dentry);
844                 } else
845                         iput(inode);
846         }
847         dir->i_ctime = dir->i_mtime = CURRENT_TIME;
848
849         return error;
850 }
851
852 /*
853  * mark the head page dirty
854  */
855 static int hugetlbfs_set_page_dirty(struct page *page)
856 {
857         struct page *head = compound_head(page);
858
859         SetPageDirty(head);
860         return 0;
861 }
862
863 static int hugetlbfs_migrate_page(struct address_space *mapping,
864                                 struct page *newpage, struct page *page,
865                                 enum migrate_mode mode)
866 {
867         int rc;
868
869         rc = migrate_huge_page_move_mapping(mapping, newpage, page);
870         if (rc != MIGRATEPAGE_SUCCESS)
871                 return rc;
872         migrate_page_copy(newpage, page);
873
874         return MIGRATEPAGE_SUCCESS;
875 }
876
877 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
878 {
879         struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
880         struct hstate *h = hstate_inode(d_inode(dentry));
881
882         buf->f_type = HUGETLBFS_MAGIC;
883         buf->f_bsize = huge_page_size(h);
884         if (sbinfo) {
885                 spin_lock(&sbinfo->stat_lock);
886                 /* If no limits set, just report 0 for max/free/used
887                  * blocks, like simple_statfs() */
888                 if (sbinfo->spool) {
889                         long free_pages;
890
891                         spin_lock(&sbinfo->spool->lock);
892                         buf->f_blocks = sbinfo->spool->max_hpages;
893                         free_pages = sbinfo->spool->max_hpages
894                                 - sbinfo->spool->used_hpages;
895                         buf->f_bavail = buf->f_bfree = free_pages;
896                         spin_unlock(&sbinfo->spool->lock);
897                         buf->f_files = sbinfo->max_inodes;
898                         buf->f_ffree = sbinfo->free_inodes;
899                 }
900                 spin_unlock(&sbinfo->stat_lock);
901         }
902         buf->f_namelen = NAME_MAX;
903         return 0;
904 }
905
906 static void hugetlbfs_put_super(struct super_block *sb)
907 {
908         struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
909
910         if (sbi) {
911                 sb->s_fs_info = NULL;
912
913                 if (sbi->spool)
914                         hugepage_put_subpool(sbi->spool);
915
916                 kfree(sbi);
917         }
918 }
919
920 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
921 {
922         if (sbinfo->free_inodes >= 0) {
923                 spin_lock(&sbinfo->stat_lock);
924                 if (unlikely(!sbinfo->free_inodes)) {
925                         spin_unlock(&sbinfo->stat_lock);
926                         return 0;
927                 }
928                 sbinfo->free_inodes--;
929                 spin_unlock(&sbinfo->stat_lock);
930         }
931
932         return 1;
933 }
934
935 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
936 {
937         if (sbinfo->free_inodes >= 0) {
938                 spin_lock(&sbinfo->stat_lock);
939                 sbinfo->free_inodes++;
940                 spin_unlock(&sbinfo->stat_lock);
941         }
942 }
943
944
945 static struct kmem_cache *hugetlbfs_inode_cachep;
946
947 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
948 {
949         struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
950         struct hugetlbfs_inode_info *p;
951
952         if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
953                 return NULL;
954         p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL);
955         if (unlikely(!p)) {
956                 hugetlbfs_inc_free_inodes(sbinfo);
957                 return NULL;
958         }
959         return &p->vfs_inode;
960 }
961
962 static void hugetlbfs_i_callback(struct rcu_head *head)
963 {
964         struct inode *inode = container_of(head, struct inode, i_rcu);
965         kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
966 }
967
968 static void hugetlbfs_destroy_inode(struct inode *inode)
969 {
970         hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
971         mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
972         call_rcu(&inode->i_rcu, hugetlbfs_i_callback);
973 }
974
975 static const struct address_space_operations hugetlbfs_aops = {
976         .write_begin    = hugetlbfs_write_begin,
977         .write_end      = hugetlbfs_write_end,
978         .set_page_dirty = hugetlbfs_set_page_dirty,
979         .migratepage    = hugetlbfs_migrate_page,
980 };
981
982
983 static void init_once(void *foo)
984 {
985         struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
986
987         inode_init_once(&ei->vfs_inode);
988 }
989
990 const struct file_operations hugetlbfs_file_operations = {
991         .read_iter              = hugetlbfs_read_iter,
992         .mmap                   = hugetlbfs_file_mmap,
993         .fsync                  = noop_fsync,
994         .get_unmapped_area      = hugetlb_get_unmapped_area,
995         .llseek                 = default_llseek,
996         .fallocate              = hugetlbfs_fallocate,
997 };
998
999 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1000         .create         = hugetlbfs_create,
1001         .lookup         = simple_lookup,
1002         .link           = simple_link,
1003         .unlink         = simple_unlink,
1004         .symlink        = hugetlbfs_symlink,
1005         .mkdir          = hugetlbfs_mkdir,
1006         .rmdir          = simple_rmdir,
1007         .mknod          = hugetlbfs_mknod,
1008         .rename         = simple_rename,
1009         .setattr        = hugetlbfs_setattr,
1010 };
1011
1012 static const struct inode_operations hugetlbfs_inode_operations = {
1013         .setattr        = hugetlbfs_setattr,
1014 };
1015
1016 static const struct super_operations hugetlbfs_ops = {
1017         .alloc_inode    = hugetlbfs_alloc_inode,
1018         .destroy_inode  = hugetlbfs_destroy_inode,
1019         .evict_inode    = hugetlbfs_evict_inode,
1020         .statfs         = hugetlbfs_statfs,
1021         .put_super      = hugetlbfs_put_super,
1022         .show_options   = generic_show_options,
1023 };
1024
1025 enum { NO_SIZE, SIZE_STD, SIZE_PERCENT };
1026
1027 /*
1028  * Convert size option passed from command line to number of huge pages
1029  * in the pool specified by hstate.  Size option could be in bytes
1030  * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1031  */
1032 static long long
1033 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1034                                                                 int val_type)
1035 {
1036         if (val_type == NO_SIZE)
1037                 return -1;
1038
1039         if (val_type == SIZE_PERCENT) {
1040                 size_opt <<= huge_page_shift(h);
1041                 size_opt *= h->max_huge_pages;
1042                 do_div(size_opt, 100);
1043         }
1044
1045         size_opt >>= huge_page_shift(h);
1046         return size_opt;
1047 }
1048
1049 static int
1050 hugetlbfs_parse_options(char *options, struct hugetlbfs_config *pconfig)
1051 {
1052         char *p, *rest;
1053         substring_t args[MAX_OPT_ARGS];
1054         int option;
1055         unsigned long long max_size_opt = 0, min_size_opt = 0;
1056         int max_val_type = NO_SIZE, min_val_type = NO_SIZE;
1057
1058         if (!options)
1059                 return 0;
1060
1061         while ((p = strsep(&options, ",")) != NULL) {
1062                 int token;
1063                 if (!*p)
1064                         continue;
1065
1066                 token = match_token(p, tokens, args);
1067                 switch (token) {
1068                 case Opt_uid:
1069                         if (match_int(&args[0], &option))
1070                                 goto bad_val;
1071                         pconfig->uid = make_kuid(current_user_ns(), option);
1072                         if (!uid_valid(pconfig->uid))
1073                                 goto bad_val;
1074                         break;
1075
1076                 case Opt_gid:
1077                         if (match_int(&args[0], &option))
1078                                 goto bad_val;
1079                         pconfig->gid = make_kgid(current_user_ns(), option);
1080                         if (!gid_valid(pconfig->gid))
1081                                 goto bad_val;
1082                         break;
1083
1084                 case Opt_mode:
1085                         if (match_octal(&args[0], &option))
1086                                 goto bad_val;
1087                         pconfig->mode = option & 01777U;
1088                         break;
1089
1090                 case Opt_size: {
1091                         /* memparse() will accept a K/M/G without a digit */
1092                         if (!isdigit(*args[0].from))
1093                                 goto bad_val;
1094                         max_size_opt = memparse(args[0].from, &rest);
1095                         max_val_type = SIZE_STD;
1096                         if (*rest == '%')
1097                                 max_val_type = SIZE_PERCENT;
1098                         break;
1099                 }
1100
1101                 case Opt_nr_inodes:
1102                         /* memparse() will accept a K/M/G without a digit */
1103                         if (!isdigit(*args[0].from))
1104                                 goto bad_val;
1105                         pconfig->nr_inodes = memparse(args[0].from, &rest);
1106                         break;
1107
1108                 case Opt_pagesize: {
1109                         unsigned long ps;
1110                         ps = memparse(args[0].from, &rest);
1111                         pconfig->hstate = size_to_hstate(ps);
1112                         if (!pconfig->hstate) {
1113                                 pr_err("Unsupported page size %lu MB\n",
1114                                         ps >> 20);
1115                                 return -EINVAL;
1116                         }
1117                         break;
1118                 }
1119
1120                 case Opt_min_size: {
1121                         /* memparse() will accept a K/M/G without a digit */
1122                         if (!isdigit(*args[0].from))
1123                                 goto bad_val;
1124                         min_size_opt = memparse(args[0].from, &rest);
1125                         min_val_type = SIZE_STD;
1126                         if (*rest == '%')
1127                                 min_val_type = SIZE_PERCENT;
1128                         break;
1129                 }
1130
1131                 default:
1132                         pr_err("Bad mount option: \"%s\"\n", p);
1133                         return -EINVAL;
1134                         break;
1135                 }
1136         }
1137
1138         /*
1139          * Use huge page pool size (in hstate) to convert the size
1140          * options to number of huge pages.  If NO_SIZE, -1 is returned.
1141          */
1142         pconfig->max_hpages = hugetlbfs_size_to_hpages(pconfig->hstate,
1143                                                 max_size_opt, max_val_type);
1144         pconfig->min_hpages = hugetlbfs_size_to_hpages(pconfig->hstate,
1145                                                 min_size_opt, min_val_type);
1146
1147         /*
1148          * If max_size was specified, then min_size must be smaller
1149          */
1150         if (max_val_type > NO_SIZE &&
1151             pconfig->min_hpages > pconfig->max_hpages) {
1152                 pr_err("minimum size can not be greater than maximum size\n");
1153                 return -EINVAL;
1154         }
1155
1156         return 0;
1157
1158 bad_val:
1159         pr_err("Bad value '%s' for mount option '%s'\n", args[0].from, p);
1160         return -EINVAL;
1161 }
1162
1163 static int
1164 hugetlbfs_fill_super(struct super_block *sb, void *data, int silent)
1165 {
1166         int ret;
1167         struct hugetlbfs_config config;
1168         struct hugetlbfs_sb_info *sbinfo;
1169
1170         save_mount_options(sb, data);
1171
1172         config.max_hpages = -1; /* No limit on size by default */
1173         config.nr_inodes = -1; /* No limit on number of inodes by default */
1174         config.uid = current_fsuid();
1175         config.gid = current_fsgid();
1176         config.mode = 0755;
1177         config.hstate = &default_hstate;
1178         config.min_hpages = -1; /* No default minimum size */
1179         ret = hugetlbfs_parse_options(data, &config);
1180         if (ret)
1181                 return ret;
1182
1183         sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1184         if (!sbinfo)
1185                 return -ENOMEM;
1186         sb->s_fs_info = sbinfo;
1187         sbinfo->hstate = config.hstate;
1188         spin_lock_init(&sbinfo->stat_lock);
1189         sbinfo->max_inodes = config.nr_inodes;
1190         sbinfo->free_inodes = config.nr_inodes;
1191         sbinfo->spool = NULL;
1192         /*
1193          * Allocate and initialize subpool if maximum or minimum size is
1194          * specified.  Any needed reservations (for minimim size) are taken
1195          * taken when the subpool is created.
1196          */
1197         if (config.max_hpages != -1 || config.min_hpages != -1) {
1198                 sbinfo->spool = hugepage_new_subpool(config.hstate,
1199                                                         config.max_hpages,
1200                                                         config.min_hpages);
1201                 if (!sbinfo->spool)
1202                         goto out_free;
1203         }
1204         sb->s_maxbytes = MAX_LFS_FILESIZE;
1205         sb->s_blocksize = huge_page_size(config.hstate);
1206         sb->s_blocksize_bits = huge_page_shift(config.hstate);
1207         sb->s_magic = HUGETLBFS_MAGIC;
1208         sb->s_op = &hugetlbfs_ops;
1209         sb->s_time_gran = 1;
1210         sb->s_root = d_make_root(hugetlbfs_get_root(sb, &config));
1211         if (!sb->s_root)
1212                 goto out_free;
1213         return 0;
1214 out_free:
1215         kfree(sbinfo->spool);
1216         kfree(sbinfo);
1217         return -ENOMEM;
1218 }
1219
1220 static struct dentry *hugetlbfs_mount(struct file_system_type *fs_type,
1221         int flags, const char *dev_name, void *data)
1222 {
1223         return mount_nodev(fs_type, flags, data, hugetlbfs_fill_super);
1224 }
1225
1226 static struct file_system_type hugetlbfs_fs_type = {
1227         .name           = "hugetlbfs",
1228         .mount          = hugetlbfs_mount,
1229         .kill_sb        = kill_litter_super,
1230 };
1231 MODULE_ALIAS_FS("hugetlbfs");
1232
1233 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1234
1235 static int can_do_hugetlb_shm(void)
1236 {
1237         kgid_t shm_group;
1238         shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1239         return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1240 }
1241
1242 static int get_hstate_idx(int page_size_log)
1243 {
1244         struct hstate *h = hstate_sizelog(page_size_log);
1245
1246         if (!h)
1247                 return -1;
1248         return h - hstates;
1249 }
1250
1251 static const struct dentry_operations anon_ops = {
1252         .d_dname = simple_dname
1253 };
1254
1255 /*
1256  * Note that size should be aligned to proper hugepage size in caller side,
1257  * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1258  */
1259 struct file *hugetlb_file_setup(const char *name, size_t size,
1260                                 vm_flags_t acctflag, struct user_struct **user,
1261                                 int creat_flags, int page_size_log)
1262 {
1263         struct file *file = ERR_PTR(-ENOMEM);
1264         struct inode *inode;
1265         struct path path;
1266         struct super_block *sb;
1267         struct qstr quick_string;
1268         int hstate_idx;
1269
1270         hstate_idx = get_hstate_idx(page_size_log);
1271         if (hstate_idx < 0)
1272                 return ERR_PTR(-ENODEV);
1273
1274         *user = NULL;
1275         if (!hugetlbfs_vfsmount[hstate_idx])
1276                 return ERR_PTR(-ENOENT);
1277
1278         if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1279                 *user = current_user();
1280                 if (user_shm_lock(size, *user)) {
1281                         task_lock(current);
1282                         pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n",
1283                                 current->comm, current->pid);
1284                         task_unlock(current);
1285                 } else {
1286                         *user = NULL;
1287                         return ERR_PTR(-EPERM);
1288                 }
1289         }
1290
1291         sb = hugetlbfs_vfsmount[hstate_idx]->mnt_sb;
1292         quick_string.name = name;
1293         quick_string.len = strlen(quick_string.name);
1294         quick_string.hash = 0;
1295         path.dentry = d_alloc_pseudo(sb, &quick_string);
1296         if (!path.dentry)
1297                 goto out_shm_unlock;
1298
1299         d_set_d_op(path.dentry, &anon_ops);
1300         path.mnt = mntget(hugetlbfs_vfsmount[hstate_idx]);
1301         file = ERR_PTR(-ENOSPC);
1302         inode = hugetlbfs_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0);
1303         if (!inode)
1304                 goto out_dentry;
1305         if (creat_flags == HUGETLB_SHMFS_INODE)
1306                 inode->i_flags |= S_PRIVATE;
1307
1308         file = ERR_PTR(-ENOMEM);
1309         if (hugetlb_reserve_pages(inode, 0,
1310                         size >> huge_page_shift(hstate_inode(inode)), NULL,
1311                         acctflag))
1312                 goto out_inode;
1313
1314         d_instantiate(path.dentry, inode);
1315         inode->i_size = size;
1316         clear_nlink(inode);
1317
1318         file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
1319                         &hugetlbfs_file_operations);
1320         if (IS_ERR(file))
1321                 goto out_dentry; /* inode is already attached */
1322
1323         return file;
1324
1325 out_inode:
1326         iput(inode);
1327 out_dentry:
1328         path_put(&path);
1329 out_shm_unlock:
1330         if (*user) {
1331                 user_shm_unlock(size, *user);
1332                 *user = NULL;
1333         }
1334         return file;
1335 }
1336
1337 static int __init init_hugetlbfs_fs(void)
1338 {
1339         struct hstate *h;
1340         int error;
1341         int i;
1342
1343         if (!hugepages_supported()) {
1344                 pr_info("disabling because there are no supported hugepage sizes\n");
1345                 return -ENOTSUPP;
1346         }
1347
1348         error = -ENOMEM;
1349         hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1350                                         sizeof(struct hugetlbfs_inode_info),
1351                                         0, 0, init_once);
1352         if (hugetlbfs_inode_cachep == NULL)
1353                 goto out2;
1354
1355         error = register_filesystem(&hugetlbfs_fs_type);
1356         if (error)
1357                 goto out;
1358
1359         i = 0;
1360         for_each_hstate(h) {
1361                 char buf[50];
1362                 unsigned ps_kb = 1U << (h->order + PAGE_SHIFT - 10);
1363
1364                 snprintf(buf, sizeof(buf), "pagesize=%uK", ps_kb);
1365                 hugetlbfs_vfsmount[i] = kern_mount_data(&hugetlbfs_fs_type,
1366                                                         buf);
1367
1368                 if (IS_ERR(hugetlbfs_vfsmount[i])) {
1369                         pr_err("Cannot mount internal hugetlbfs for "
1370                                 "page size %uK", ps_kb);
1371                         error = PTR_ERR(hugetlbfs_vfsmount[i]);
1372                         hugetlbfs_vfsmount[i] = NULL;
1373                 }
1374                 i++;
1375         }
1376         /* Non default hstates are optional */
1377         if (!IS_ERR_OR_NULL(hugetlbfs_vfsmount[default_hstate_idx]))
1378                 return 0;
1379
1380  out:
1381         kmem_cache_destroy(hugetlbfs_inode_cachep);
1382  out2:
1383         return error;
1384 }
1385
1386 static void __exit exit_hugetlbfs_fs(void)
1387 {
1388         struct hstate *h;
1389         int i;
1390
1391
1392         /*
1393          * Make sure all delayed rcu free inodes are flushed before we
1394          * destroy cache.
1395          */
1396         rcu_barrier();
1397         kmem_cache_destroy(hugetlbfs_inode_cachep);
1398         i = 0;
1399         for_each_hstate(h)
1400                 kern_unmount(hugetlbfs_vfsmount[i++]);
1401         unregister_filesystem(&hugetlbfs_fs_type);
1402 }
1403
1404 module_init(init_hugetlbfs_fs)
1405 module_exit(exit_hugetlbfs_fs)
1406
1407 MODULE_LICENSE("GPL");