]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/jbd/journal.c
net: ipv6 eliminate parameter "int addrlen" in function fib6_add_1
[karo-tx-linux.git] / fs / jbd / journal.c
1 /*
2  * linux/fs/jbd/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/debugfs.h>
39 #include <linux/ratelimit.h>
40
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/jbd.h>
43
44 #include <asm/uaccess.h>
45 #include <asm/page.h>
46
47 EXPORT_SYMBOL(journal_start);
48 EXPORT_SYMBOL(journal_restart);
49 EXPORT_SYMBOL(journal_extend);
50 EXPORT_SYMBOL(journal_stop);
51 EXPORT_SYMBOL(journal_lock_updates);
52 EXPORT_SYMBOL(journal_unlock_updates);
53 EXPORT_SYMBOL(journal_get_write_access);
54 EXPORT_SYMBOL(journal_get_create_access);
55 EXPORT_SYMBOL(journal_get_undo_access);
56 EXPORT_SYMBOL(journal_dirty_data);
57 EXPORT_SYMBOL(journal_dirty_metadata);
58 EXPORT_SYMBOL(journal_release_buffer);
59 EXPORT_SYMBOL(journal_forget);
60 #if 0
61 EXPORT_SYMBOL(journal_sync_buffer);
62 #endif
63 EXPORT_SYMBOL(journal_flush);
64 EXPORT_SYMBOL(journal_revoke);
65
66 EXPORT_SYMBOL(journal_init_dev);
67 EXPORT_SYMBOL(journal_init_inode);
68 EXPORT_SYMBOL(journal_update_format);
69 EXPORT_SYMBOL(journal_check_used_features);
70 EXPORT_SYMBOL(journal_check_available_features);
71 EXPORT_SYMBOL(journal_set_features);
72 EXPORT_SYMBOL(journal_create);
73 EXPORT_SYMBOL(journal_load);
74 EXPORT_SYMBOL(journal_destroy);
75 EXPORT_SYMBOL(journal_abort);
76 EXPORT_SYMBOL(journal_errno);
77 EXPORT_SYMBOL(journal_ack_err);
78 EXPORT_SYMBOL(journal_clear_err);
79 EXPORT_SYMBOL(log_wait_commit);
80 EXPORT_SYMBOL(log_start_commit);
81 EXPORT_SYMBOL(journal_start_commit);
82 EXPORT_SYMBOL(journal_force_commit_nested);
83 EXPORT_SYMBOL(journal_wipe);
84 EXPORT_SYMBOL(journal_blocks_per_page);
85 EXPORT_SYMBOL(journal_invalidatepage);
86 EXPORT_SYMBOL(journal_try_to_free_buffers);
87 EXPORT_SYMBOL(journal_force_commit);
88
89 static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *);
90 static void __journal_abort_soft (journal_t *journal, int errno);
91 static const char *journal_dev_name(journal_t *journal, char *buffer);
92
93 /*
94  * Helper function used to manage commit timeouts
95  */
96
97 static void commit_timeout(unsigned long __data)
98 {
99         struct task_struct * p = (struct task_struct *) __data;
100
101         wake_up_process(p);
102 }
103
104 /*
105  * kjournald: The main thread function used to manage a logging device
106  * journal.
107  *
108  * This kernel thread is responsible for two things:
109  *
110  * 1) COMMIT:  Every so often we need to commit the current state of the
111  *    filesystem to disk.  The journal thread is responsible for writing
112  *    all of the metadata buffers to disk.
113  *
114  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
115  *    of the data in that part of the log has been rewritten elsewhere on
116  *    the disk.  Flushing these old buffers to reclaim space in the log is
117  *    known as checkpointing, and this thread is responsible for that job.
118  */
119
120 static int kjournald(void *arg)
121 {
122         journal_t *journal = arg;
123         transaction_t *transaction;
124
125         /*
126          * Set up an interval timer which can be used to trigger a commit wakeup
127          * after the commit interval expires
128          */
129         setup_timer(&journal->j_commit_timer, commit_timeout,
130                         (unsigned long)current);
131
132         set_freezable();
133
134         /* Record that the journal thread is running */
135         journal->j_task = current;
136         wake_up(&journal->j_wait_done_commit);
137
138         printk(KERN_INFO "kjournald starting.  Commit interval %ld seconds\n",
139                         journal->j_commit_interval / HZ);
140
141         /*
142          * And now, wait forever for commit wakeup events.
143          */
144         spin_lock(&journal->j_state_lock);
145
146 loop:
147         if (journal->j_flags & JFS_UNMOUNT)
148                 goto end_loop;
149
150         jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
151                 journal->j_commit_sequence, journal->j_commit_request);
152
153         if (journal->j_commit_sequence != journal->j_commit_request) {
154                 jbd_debug(1, "OK, requests differ\n");
155                 spin_unlock(&journal->j_state_lock);
156                 del_timer_sync(&journal->j_commit_timer);
157                 journal_commit_transaction(journal);
158                 spin_lock(&journal->j_state_lock);
159                 goto loop;
160         }
161
162         wake_up(&journal->j_wait_done_commit);
163         if (freezing(current)) {
164                 /*
165                  * The simpler the better. Flushing journal isn't a
166                  * good idea, because that depends on threads that may
167                  * be already stopped.
168                  */
169                 jbd_debug(1, "Now suspending kjournald\n");
170                 spin_unlock(&journal->j_state_lock);
171                 try_to_freeze();
172                 spin_lock(&journal->j_state_lock);
173         } else {
174                 /*
175                  * We assume on resume that commits are already there,
176                  * so we don't sleep
177                  */
178                 DEFINE_WAIT(wait);
179                 int should_sleep = 1;
180
181                 prepare_to_wait(&journal->j_wait_commit, &wait,
182                                 TASK_INTERRUPTIBLE);
183                 if (journal->j_commit_sequence != journal->j_commit_request)
184                         should_sleep = 0;
185                 transaction = journal->j_running_transaction;
186                 if (transaction && time_after_eq(jiffies,
187                                                 transaction->t_expires))
188                         should_sleep = 0;
189                 if (journal->j_flags & JFS_UNMOUNT)
190                         should_sleep = 0;
191                 if (should_sleep) {
192                         spin_unlock(&journal->j_state_lock);
193                         schedule();
194                         spin_lock(&journal->j_state_lock);
195                 }
196                 finish_wait(&journal->j_wait_commit, &wait);
197         }
198
199         jbd_debug(1, "kjournald wakes\n");
200
201         /*
202          * Were we woken up by a commit wakeup event?
203          */
204         transaction = journal->j_running_transaction;
205         if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
206                 journal->j_commit_request = transaction->t_tid;
207                 jbd_debug(1, "woke because of timeout\n");
208         }
209         goto loop;
210
211 end_loop:
212         spin_unlock(&journal->j_state_lock);
213         del_timer_sync(&journal->j_commit_timer);
214         journal->j_task = NULL;
215         wake_up(&journal->j_wait_done_commit);
216         jbd_debug(1, "Journal thread exiting.\n");
217         return 0;
218 }
219
220 static int journal_start_thread(journal_t *journal)
221 {
222         struct task_struct *t;
223
224         t = kthread_run(kjournald, journal, "kjournald");
225         if (IS_ERR(t))
226                 return PTR_ERR(t);
227
228         wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
229         return 0;
230 }
231
232 static void journal_kill_thread(journal_t *journal)
233 {
234         spin_lock(&journal->j_state_lock);
235         journal->j_flags |= JFS_UNMOUNT;
236
237         while (journal->j_task) {
238                 wake_up(&journal->j_wait_commit);
239                 spin_unlock(&journal->j_state_lock);
240                 wait_event(journal->j_wait_done_commit,
241                                 journal->j_task == NULL);
242                 spin_lock(&journal->j_state_lock);
243         }
244         spin_unlock(&journal->j_state_lock);
245 }
246
247 /*
248  * journal_write_metadata_buffer: write a metadata buffer to the journal.
249  *
250  * Writes a metadata buffer to a given disk block.  The actual IO is not
251  * performed but a new buffer_head is constructed which labels the data
252  * to be written with the correct destination disk block.
253  *
254  * Any magic-number escaping which needs to be done will cause a
255  * copy-out here.  If the buffer happens to start with the
256  * JFS_MAGIC_NUMBER, then we can't write it to the log directly: the
257  * magic number is only written to the log for descripter blocks.  In
258  * this case, we copy the data and replace the first word with 0, and we
259  * return a result code which indicates that this buffer needs to be
260  * marked as an escaped buffer in the corresponding log descriptor
261  * block.  The missing word can then be restored when the block is read
262  * during recovery.
263  *
264  * If the source buffer has already been modified by a new transaction
265  * since we took the last commit snapshot, we use the frozen copy of
266  * that data for IO.  If we end up using the existing buffer_head's data
267  * for the write, then we *have* to lock the buffer to prevent anyone
268  * else from using and possibly modifying it while the IO is in
269  * progress.
270  *
271  * The function returns a pointer to the buffer_heads to be used for IO.
272  *
273  * We assume that the journal has already been locked in this function.
274  *
275  * Return value:
276  *  <0: Error
277  * >=0: Finished OK
278  *
279  * On success:
280  * Bit 0 set == escape performed on the data
281  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
282  */
283
284 int journal_write_metadata_buffer(transaction_t *transaction,
285                                   struct journal_head  *jh_in,
286                                   struct journal_head **jh_out,
287                                   unsigned int blocknr)
288 {
289         int need_copy_out = 0;
290         int done_copy_out = 0;
291         int do_escape = 0;
292         char *mapped_data;
293         struct buffer_head *new_bh;
294         struct journal_head *new_jh;
295         struct page *new_page;
296         unsigned int new_offset;
297         struct buffer_head *bh_in = jh2bh(jh_in);
298         journal_t *journal = transaction->t_journal;
299
300         /*
301          * The buffer really shouldn't be locked: only the current committing
302          * transaction is allowed to write it, so nobody else is allowed
303          * to do any IO.
304          *
305          * akpm: except if we're journalling data, and write() output is
306          * also part of a shared mapping, and another thread has
307          * decided to launch a writepage() against this buffer.
308          */
309         J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
310
311         new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
312         /* keep subsequent assertions sane */
313         atomic_set(&new_bh->b_count, 1);
314         new_jh = journal_add_journal_head(new_bh);      /* This sleeps */
315
316         /*
317          * If a new transaction has already done a buffer copy-out, then
318          * we use that version of the data for the commit.
319          */
320         jbd_lock_bh_state(bh_in);
321 repeat:
322         if (jh_in->b_frozen_data) {
323                 done_copy_out = 1;
324                 new_page = virt_to_page(jh_in->b_frozen_data);
325                 new_offset = offset_in_page(jh_in->b_frozen_data);
326         } else {
327                 new_page = jh2bh(jh_in)->b_page;
328                 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
329         }
330
331         mapped_data = kmap_atomic(new_page);
332         /*
333          * Check for escaping
334          */
335         if (*((__be32 *)(mapped_data + new_offset)) ==
336                                 cpu_to_be32(JFS_MAGIC_NUMBER)) {
337                 need_copy_out = 1;
338                 do_escape = 1;
339         }
340         kunmap_atomic(mapped_data);
341
342         /*
343          * Do we need to do a data copy?
344          */
345         if (need_copy_out && !done_copy_out) {
346                 char *tmp;
347
348                 jbd_unlock_bh_state(bh_in);
349                 tmp = jbd_alloc(bh_in->b_size, GFP_NOFS);
350                 jbd_lock_bh_state(bh_in);
351                 if (jh_in->b_frozen_data) {
352                         jbd_free(tmp, bh_in->b_size);
353                         goto repeat;
354                 }
355
356                 jh_in->b_frozen_data = tmp;
357                 mapped_data = kmap_atomic(new_page);
358                 memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
359                 kunmap_atomic(mapped_data);
360
361                 new_page = virt_to_page(tmp);
362                 new_offset = offset_in_page(tmp);
363                 done_copy_out = 1;
364         }
365
366         /*
367          * Did we need to do an escaping?  Now we've done all the
368          * copying, we can finally do so.
369          */
370         if (do_escape) {
371                 mapped_data = kmap_atomic(new_page);
372                 *((unsigned int *)(mapped_data + new_offset)) = 0;
373                 kunmap_atomic(mapped_data);
374         }
375
376         set_bh_page(new_bh, new_page, new_offset);
377         new_jh->b_transaction = NULL;
378         new_bh->b_size = jh2bh(jh_in)->b_size;
379         new_bh->b_bdev = transaction->t_journal->j_dev;
380         new_bh->b_blocknr = blocknr;
381         set_buffer_mapped(new_bh);
382         set_buffer_dirty(new_bh);
383
384         *jh_out = new_jh;
385
386         /*
387          * The to-be-written buffer needs to get moved to the io queue,
388          * and the original buffer whose contents we are shadowing or
389          * copying is moved to the transaction's shadow queue.
390          */
391         JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
392         spin_lock(&journal->j_list_lock);
393         __journal_file_buffer(jh_in, transaction, BJ_Shadow);
394         spin_unlock(&journal->j_list_lock);
395         jbd_unlock_bh_state(bh_in);
396
397         JBUFFER_TRACE(new_jh, "file as BJ_IO");
398         journal_file_buffer(new_jh, transaction, BJ_IO);
399
400         return do_escape | (done_copy_out << 1);
401 }
402
403 /*
404  * Allocation code for the journal file.  Manage the space left in the
405  * journal, so that we can begin checkpointing when appropriate.
406  */
407
408 /*
409  * __log_space_left: Return the number of free blocks left in the journal.
410  *
411  * Called with the journal already locked.
412  *
413  * Called under j_state_lock
414  */
415
416 int __log_space_left(journal_t *journal)
417 {
418         int left = journal->j_free;
419
420         assert_spin_locked(&journal->j_state_lock);
421
422         /*
423          * Be pessimistic here about the number of those free blocks which
424          * might be required for log descriptor control blocks.
425          */
426
427 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
428
429         left -= MIN_LOG_RESERVED_BLOCKS;
430
431         if (left <= 0)
432                 return 0;
433         left -= (left >> 3);
434         return left;
435 }
436
437 /*
438  * Called under j_state_lock.  Returns true if a transaction commit was started.
439  */
440 int __log_start_commit(journal_t *journal, tid_t target)
441 {
442         /*
443          * The only transaction we can possibly wait upon is the
444          * currently running transaction (if it exists).  Otherwise,
445          * the target tid must be an old one.
446          */
447         if (journal->j_commit_request != target &&
448             journal->j_running_transaction &&
449             journal->j_running_transaction->t_tid == target) {
450                 /*
451                  * We want a new commit: OK, mark the request and wakeup the
452                  * commit thread.  We do _not_ do the commit ourselves.
453                  */
454
455                 journal->j_commit_request = target;
456                 jbd_debug(1, "JBD: requesting commit %d/%d\n",
457                           journal->j_commit_request,
458                           journal->j_commit_sequence);
459                 wake_up(&journal->j_wait_commit);
460                 return 1;
461         } else if (!tid_geq(journal->j_commit_request, target))
462                 /* This should never happen, but if it does, preserve
463                    the evidence before kjournald goes into a loop and
464                    increments j_commit_sequence beyond all recognition. */
465                 WARN_ONCE(1, "jbd: bad log_start_commit: %u %u %u %u\n",
466                     journal->j_commit_request, journal->j_commit_sequence,
467                     target, journal->j_running_transaction ?
468                     journal->j_running_transaction->t_tid : 0);
469         return 0;
470 }
471
472 int log_start_commit(journal_t *journal, tid_t tid)
473 {
474         int ret;
475
476         spin_lock(&journal->j_state_lock);
477         ret = __log_start_commit(journal, tid);
478         spin_unlock(&journal->j_state_lock);
479         return ret;
480 }
481
482 /*
483  * Force and wait upon a commit if the calling process is not within
484  * transaction.  This is used for forcing out undo-protected data which contains
485  * bitmaps, when the fs is running out of space.
486  *
487  * We can only force the running transaction if we don't have an active handle;
488  * otherwise, we will deadlock.
489  *
490  * Returns true if a transaction was started.
491  */
492 int journal_force_commit_nested(journal_t *journal)
493 {
494         transaction_t *transaction = NULL;
495         tid_t tid;
496
497         spin_lock(&journal->j_state_lock);
498         if (journal->j_running_transaction && !current->journal_info) {
499                 transaction = journal->j_running_transaction;
500                 __log_start_commit(journal, transaction->t_tid);
501         } else if (journal->j_committing_transaction)
502                 transaction = journal->j_committing_transaction;
503
504         if (!transaction) {
505                 spin_unlock(&journal->j_state_lock);
506                 return 0;       /* Nothing to retry */
507         }
508
509         tid = transaction->t_tid;
510         spin_unlock(&journal->j_state_lock);
511         log_wait_commit(journal, tid);
512         return 1;
513 }
514
515 /*
516  * Start a commit of the current running transaction (if any).  Returns true
517  * if a transaction is going to be committed (or is currently already
518  * committing), and fills its tid in at *ptid
519  */
520 int journal_start_commit(journal_t *journal, tid_t *ptid)
521 {
522         int ret = 0;
523
524         spin_lock(&journal->j_state_lock);
525         if (journal->j_running_transaction) {
526                 tid_t tid = journal->j_running_transaction->t_tid;
527
528                 __log_start_commit(journal, tid);
529                 /* There's a running transaction and we've just made sure
530                  * it's commit has been scheduled. */
531                 if (ptid)
532                         *ptid = tid;
533                 ret = 1;
534         } else if (journal->j_committing_transaction) {
535                 /*
536                  * If commit has been started, then we have to wait for
537                  * completion of that transaction.
538                  */
539                 if (ptid)
540                         *ptid = journal->j_committing_transaction->t_tid;
541                 ret = 1;
542         }
543         spin_unlock(&journal->j_state_lock);
544         return ret;
545 }
546
547 /*
548  * Wait for a specified commit to complete.
549  * The caller may not hold the journal lock.
550  */
551 int log_wait_commit(journal_t *journal, tid_t tid)
552 {
553         int err = 0;
554
555 #ifdef CONFIG_JBD_DEBUG
556         spin_lock(&journal->j_state_lock);
557         if (!tid_geq(journal->j_commit_request, tid)) {
558                 printk(KERN_EMERG
559                        "%s: error: j_commit_request=%d, tid=%d\n",
560                        __func__, journal->j_commit_request, tid);
561         }
562         spin_unlock(&journal->j_state_lock);
563 #endif
564         spin_lock(&journal->j_state_lock);
565         /*
566          * Not running or committing trans? Must be already committed. This
567          * saves us from waiting for a *long* time when tid overflows.
568          */
569         if (!((journal->j_running_transaction &&
570                journal->j_running_transaction->t_tid == tid) ||
571               (journal->j_committing_transaction &&
572                journal->j_committing_transaction->t_tid == tid)))
573                 goto out_unlock;
574
575         if (!tid_geq(journal->j_commit_waited, tid))
576                 journal->j_commit_waited = tid;
577         while (tid_gt(tid, journal->j_commit_sequence)) {
578                 jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n",
579                                   tid, journal->j_commit_sequence);
580                 wake_up(&journal->j_wait_commit);
581                 spin_unlock(&journal->j_state_lock);
582                 wait_event(journal->j_wait_done_commit,
583                                 !tid_gt(tid, journal->j_commit_sequence));
584                 spin_lock(&journal->j_state_lock);
585         }
586 out_unlock:
587         spin_unlock(&journal->j_state_lock);
588
589         if (unlikely(is_journal_aborted(journal))) {
590                 printk(KERN_EMERG "journal commit I/O error\n");
591                 err = -EIO;
592         }
593         return err;
594 }
595
596 /*
597  * Return 1 if a given transaction has not yet sent barrier request
598  * connected with a transaction commit. If 0 is returned, transaction
599  * may or may not have sent the barrier. Used to avoid sending barrier
600  * twice in common cases.
601  */
602 int journal_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
603 {
604         int ret = 0;
605         transaction_t *commit_trans;
606
607         if (!(journal->j_flags & JFS_BARRIER))
608                 return 0;
609         spin_lock(&journal->j_state_lock);
610         /* Transaction already committed? */
611         if (tid_geq(journal->j_commit_sequence, tid))
612                 goto out;
613         /*
614          * Transaction is being committed and we already proceeded to
615          * writing commit record?
616          */
617         commit_trans = journal->j_committing_transaction;
618         if (commit_trans && commit_trans->t_tid == tid &&
619             commit_trans->t_state >= T_COMMIT_RECORD)
620                 goto out;
621         ret = 1;
622 out:
623         spin_unlock(&journal->j_state_lock);
624         return ret;
625 }
626 EXPORT_SYMBOL(journal_trans_will_send_data_barrier);
627
628 /*
629  * Log buffer allocation routines:
630  */
631
632 int journal_next_log_block(journal_t *journal, unsigned int *retp)
633 {
634         unsigned int blocknr;
635
636         spin_lock(&journal->j_state_lock);
637         J_ASSERT(journal->j_free > 1);
638
639         blocknr = journal->j_head;
640         journal->j_head++;
641         journal->j_free--;
642         if (journal->j_head == journal->j_last)
643                 journal->j_head = journal->j_first;
644         spin_unlock(&journal->j_state_lock);
645         return journal_bmap(journal, blocknr, retp);
646 }
647
648 /*
649  * Conversion of logical to physical block numbers for the journal
650  *
651  * On external journals the journal blocks are identity-mapped, so
652  * this is a no-op.  If needed, we can use j_blk_offset - everything is
653  * ready.
654  */
655 int journal_bmap(journal_t *journal, unsigned int blocknr,
656                  unsigned int *retp)
657 {
658         int err = 0;
659         unsigned int ret;
660
661         if (journal->j_inode) {
662                 ret = bmap(journal->j_inode, blocknr);
663                 if (ret)
664                         *retp = ret;
665                 else {
666                         char b[BDEVNAME_SIZE];
667
668                         printk(KERN_ALERT "%s: journal block not found "
669                                         "at offset %u on %s\n",
670                                 __func__,
671                                 blocknr,
672                                 bdevname(journal->j_dev, b));
673                         err = -EIO;
674                         __journal_abort_soft(journal, err);
675                 }
676         } else {
677                 *retp = blocknr; /* +journal->j_blk_offset */
678         }
679         return err;
680 }
681
682 /*
683  * We play buffer_head aliasing tricks to write data/metadata blocks to
684  * the journal without copying their contents, but for journal
685  * descriptor blocks we do need to generate bona fide buffers.
686  *
687  * After the caller of journal_get_descriptor_buffer() has finished modifying
688  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
689  * But we don't bother doing that, so there will be coherency problems with
690  * mmaps of blockdevs which hold live JBD-controlled filesystems.
691  */
692 struct journal_head *journal_get_descriptor_buffer(journal_t *journal)
693 {
694         struct buffer_head *bh;
695         unsigned int blocknr;
696         int err;
697
698         err = journal_next_log_block(journal, &blocknr);
699
700         if (err)
701                 return NULL;
702
703         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
704         if (!bh)
705                 return NULL;
706         lock_buffer(bh);
707         memset(bh->b_data, 0, journal->j_blocksize);
708         set_buffer_uptodate(bh);
709         unlock_buffer(bh);
710         BUFFER_TRACE(bh, "return this buffer");
711         return journal_add_journal_head(bh);
712 }
713
714 /*
715  * Management for journal control blocks: functions to create and
716  * destroy journal_t structures, and to initialise and read existing
717  * journal blocks from disk.  */
718
719 /* First: create and setup a journal_t object in memory.  We initialise
720  * very few fields yet: that has to wait until we have created the
721  * journal structures from from scratch, or loaded them from disk. */
722
723 static journal_t * journal_init_common (void)
724 {
725         journal_t *journal;
726         int err;
727
728         journal = kzalloc(sizeof(*journal), GFP_KERNEL);
729         if (!journal)
730                 goto fail;
731
732         init_waitqueue_head(&journal->j_wait_transaction_locked);
733         init_waitqueue_head(&journal->j_wait_logspace);
734         init_waitqueue_head(&journal->j_wait_done_commit);
735         init_waitqueue_head(&journal->j_wait_checkpoint);
736         init_waitqueue_head(&journal->j_wait_commit);
737         init_waitqueue_head(&journal->j_wait_updates);
738         mutex_init(&journal->j_checkpoint_mutex);
739         spin_lock_init(&journal->j_revoke_lock);
740         spin_lock_init(&journal->j_list_lock);
741         spin_lock_init(&journal->j_state_lock);
742
743         journal->j_commit_interval = (HZ * JBD_DEFAULT_MAX_COMMIT_AGE);
744
745         /* The journal is marked for error until we succeed with recovery! */
746         journal->j_flags = JFS_ABORT;
747
748         /* Set up a default-sized revoke table for the new mount. */
749         err = journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
750         if (err) {
751                 kfree(journal);
752                 goto fail;
753         }
754         return journal;
755 fail:
756         return NULL;
757 }
758
759 /* journal_init_dev and journal_init_inode:
760  *
761  * Create a journal structure assigned some fixed set of disk blocks to
762  * the journal.  We don't actually touch those disk blocks yet, but we
763  * need to set up all of the mapping information to tell the journaling
764  * system where the journal blocks are.
765  *
766  */
767
768 /**
769  *  journal_t * journal_init_dev() - creates and initialises a journal structure
770  *  @bdev: Block device on which to create the journal
771  *  @fs_dev: Device which hold journalled filesystem for this journal.
772  *  @start: Block nr Start of journal.
773  *  @len:  Length of the journal in blocks.
774  *  @blocksize: blocksize of journalling device
775  *
776  *  Returns: a newly created journal_t *
777  *
778  *  journal_init_dev creates a journal which maps a fixed contiguous
779  *  range of blocks on an arbitrary block device.
780  *
781  */
782 journal_t * journal_init_dev(struct block_device *bdev,
783                         struct block_device *fs_dev,
784                         int start, int len, int blocksize)
785 {
786         journal_t *journal = journal_init_common();
787         struct buffer_head *bh;
788         int n;
789
790         if (!journal)
791                 return NULL;
792
793         /* journal descriptor can store up to n blocks -bzzz */
794         journal->j_blocksize = blocksize;
795         n = journal->j_blocksize / sizeof(journal_block_tag_t);
796         journal->j_wbufsize = n;
797         journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
798         if (!journal->j_wbuf) {
799                 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
800                         __func__);
801                 goto out_err;
802         }
803         journal->j_dev = bdev;
804         journal->j_fs_dev = fs_dev;
805         journal->j_blk_offset = start;
806         journal->j_maxlen = len;
807
808         bh = __getblk(journal->j_dev, start, journal->j_blocksize);
809         if (!bh) {
810                 printk(KERN_ERR
811                        "%s: Cannot get buffer for journal superblock\n",
812                        __func__);
813                 goto out_err;
814         }
815         journal->j_sb_buffer = bh;
816         journal->j_superblock = (journal_superblock_t *)bh->b_data;
817
818         return journal;
819 out_err:
820         kfree(journal->j_wbuf);
821         kfree(journal);
822         return NULL;
823 }
824
825 /**
826  *  journal_t * journal_init_inode () - creates a journal which maps to a inode.
827  *  @inode: An inode to create the journal in
828  *
829  * journal_init_inode creates a journal which maps an on-disk inode as
830  * the journal.  The inode must exist already, must support bmap() and
831  * must have all data blocks preallocated.
832  */
833 journal_t * journal_init_inode (struct inode *inode)
834 {
835         struct buffer_head *bh;
836         journal_t *journal = journal_init_common();
837         int err;
838         int n;
839         unsigned int blocknr;
840
841         if (!journal)
842                 return NULL;
843
844         journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
845         journal->j_inode = inode;
846         jbd_debug(1,
847                   "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
848                   journal, inode->i_sb->s_id, inode->i_ino,
849                   (long long) inode->i_size,
850                   inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
851
852         journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
853         journal->j_blocksize = inode->i_sb->s_blocksize;
854
855         /* journal descriptor can store up to n blocks -bzzz */
856         n = journal->j_blocksize / sizeof(journal_block_tag_t);
857         journal->j_wbufsize = n;
858         journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
859         if (!journal->j_wbuf) {
860                 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
861                         __func__);
862                 goto out_err;
863         }
864
865         err = journal_bmap(journal, 0, &blocknr);
866         /* If that failed, give up */
867         if (err) {
868                 printk(KERN_ERR "%s: Cannot locate journal superblock\n",
869                        __func__);
870                 goto out_err;
871         }
872
873         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
874         if (!bh) {
875                 printk(KERN_ERR
876                        "%s: Cannot get buffer for journal superblock\n",
877                        __func__);
878                 goto out_err;
879         }
880         journal->j_sb_buffer = bh;
881         journal->j_superblock = (journal_superblock_t *)bh->b_data;
882
883         return journal;
884 out_err:
885         kfree(journal->j_wbuf);
886         kfree(journal);
887         return NULL;
888 }
889
890 /*
891  * If the journal init or create aborts, we need to mark the journal
892  * superblock as being NULL to prevent the journal destroy from writing
893  * back a bogus superblock.
894  */
895 static void journal_fail_superblock (journal_t *journal)
896 {
897         struct buffer_head *bh = journal->j_sb_buffer;
898         brelse(bh);
899         journal->j_sb_buffer = NULL;
900 }
901
902 /*
903  * Given a journal_t structure, initialise the various fields for
904  * startup of a new journaling session.  We use this both when creating
905  * a journal, and after recovering an old journal to reset it for
906  * subsequent use.
907  */
908
909 static int journal_reset(journal_t *journal)
910 {
911         journal_superblock_t *sb = journal->j_superblock;
912         unsigned int first, last;
913
914         first = be32_to_cpu(sb->s_first);
915         last = be32_to_cpu(sb->s_maxlen);
916         if (first + JFS_MIN_JOURNAL_BLOCKS > last + 1) {
917                 printk(KERN_ERR "JBD: Journal too short (blocks %u-%u).\n",
918                        first, last);
919                 journal_fail_superblock(journal);
920                 return -EINVAL;
921         }
922
923         journal->j_first = first;
924         journal->j_last = last;
925
926         journal->j_head = first;
927         journal->j_tail = first;
928         journal->j_free = last - first;
929
930         journal->j_tail_sequence = journal->j_transaction_sequence;
931         journal->j_commit_sequence = journal->j_transaction_sequence - 1;
932         journal->j_commit_request = journal->j_commit_sequence;
933
934         journal->j_max_transaction_buffers = journal->j_maxlen / 4;
935
936         /*
937          * As a special case, if the on-disk copy is already marked as needing
938          * no recovery (s_start == 0), then we can safely defer the superblock
939          * update until the next commit by setting JFS_FLUSHED.  This avoids
940          * attempting a write to a potential-readonly device.
941          */
942         if (sb->s_start == 0) {
943                 jbd_debug(1,"JBD: Skipping superblock update on recovered sb "
944                         "(start %u, seq %d, errno %d)\n",
945                         journal->j_tail, journal->j_tail_sequence,
946                         journal->j_errno);
947                 journal->j_flags |= JFS_FLUSHED;
948         } else {
949                 /* Lock here to make assertions happy... */
950                 mutex_lock(&journal->j_checkpoint_mutex);
951                 /*
952                  * Update log tail information. We use WRITE_FUA since new
953                  * transaction will start reusing journal space and so we
954                  * must make sure information about current log tail is on
955                  * disk before that.
956                  */
957                 journal_update_sb_log_tail(journal,
958                                            journal->j_tail_sequence,
959                                            journal->j_tail,
960                                            WRITE_FUA);
961                 mutex_unlock(&journal->j_checkpoint_mutex);
962         }
963         return journal_start_thread(journal);
964 }
965
966 /**
967  * int journal_create() - Initialise the new journal file
968  * @journal: Journal to create. This structure must have been initialised
969  *
970  * Given a journal_t structure which tells us which disk blocks we can
971  * use, create a new journal superblock and initialise all of the
972  * journal fields from scratch.
973  **/
974 int journal_create(journal_t *journal)
975 {
976         unsigned int blocknr;
977         struct buffer_head *bh;
978         journal_superblock_t *sb;
979         int i, err;
980
981         if (journal->j_maxlen < JFS_MIN_JOURNAL_BLOCKS) {
982                 printk (KERN_ERR "Journal length (%d blocks) too short.\n",
983                         journal->j_maxlen);
984                 journal_fail_superblock(journal);
985                 return -EINVAL;
986         }
987
988         if (journal->j_inode == NULL) {
989                 /*
990                  * We don't know what block to start at!
991                  */
992                 printk(KERN_EMERG
993                        "%s: creation of journal on external device!\n",
994                        __func__);
995                 BUG();
996         }
997
998         /* Zero out the entire journal on disk.  We cannot afford to
999            have any blocks on disk beginning with JFS_MAGIC_NUMBER. */
1000         jbd_debug(1, "JBD: Zeroing out journal blocks...\n");
1001         for (i = 0; i < journal->j_maxlen; i++) {
1002                 err = journal_bmap(journal, i, &blocknr);
1003                 if (err)
1004                         return err;
1005                 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1006                 if (unlikely(!bh))
1007                         return -ENOMEM;
1008                 lock_buffer(bh);
1009                 memset (bh->b_data, 0, journal->j_blocksize);
1010                 BUFFER_TRACE(bh, "marking dirty");
1011                 mark_buffer_dirty(bh);
1012                 BUFFER_TRACE(bh, "marking uptodate");
1013                 set_buffer_uptodate(bh);
1014                 unlock_buffer(bh);
1015                 __brelse(bh);
1016         }
1017
1018         sync_blockdev(journal->j_dev);
1019         jbd_debug(1, "JBD: journal cleared.\n");
1020
1021         /* OK, fill in the initial static fields in the new superblock */
1022         sb = journal->j_superblock;
1023
1024         sb->s_header.h_magic     = cpu_to_be32(JFS_MAGIC_NUMBER);
1025         sb->s_header.h_blocktype = cpu_to_be32(JFS_SUPERBLOCK_V2);
1026
1027         sb->s_blocksize = cpu_to_be32(journal->j_blocksize);
1028         sb->s_maxlen    = cpu_to_be32(journal->j_maxlen);
1029         sb->s_first     = cpu_to_be32(1);
1030
1031         journal->j_transaction_sequence = 1;
1032
1033         journal->j_flags &= ~JFS_ABORT;
1034         journal->j_format_version = 2;
1035
1036         return journal_reset(journal);
1037 }
1038
1039 static void journal_write_superblock(journal_t *journal, int write_op)
1040 {
1041         struct buffer_head *bh = journal->j_sb_buffer;
1042         int ret;
1043
1044         trace_journal_write_superblock(journal, write_op);
1045         if (!(journal->j_flags & JFS_BARRIER))
1046                 write_op &= ~(REQ_FUA | REQ_FLUSH);
1047         lock_buffer(bh);
1048         if (buffer_write_io_error(bh)) {
1049                 char b[BDEVNAME_SIZE];
1050                 /*
1051                  * Oh, dear.  A previous attempt to write the journal
1052                  * superblock failed.  This could happen because the
1053                  * USB device was yanked out.  Or it could happen to
1054                  * be a transient write error and maybe the block will
1055                  * be remapped.  Nothing we can do but to retry the
1056                  * write and hope for the best.
1057                  */
1058                 printk(KERN_ERR "JBD: previous I/O error detected "
1059                        "for journal superblock update for %s.\n",
1060                        journal_dev_name(journal, b));
1061                 clear_buffer_write_io_error(bh);
1062                 set_buffer_uptodate(bh);
1063         }
1064
1065         get_bh(bh);
1066         bh->b_end_io = end_buffer_write_sync;
1067         ret = submit_bh(write_op, bh);
1068         wait_on_buffer(bh);
1069         if (buffer_write_io_error(bh)) {
1070                 clear_buffer_write_io_error(bh);
1071                 set_buffer_uptodate(bh);
1072                 ret = -EIO;
1073         }
1074         if (ret) {
1075                 char b[BDEVNAME_SIZE];
1076                 printk(KERN_ERR "JBD: Error %d detected "
1077                        "when updating journal superblock for %s.\n",
1078                        ret, journal_dev_name(journal, b));
1079         }
1080 }
1081
1082 /**
1083  * journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1084  * @journal: The journal to update.
1085  * @tail_tid: TID of the new transaction at the tail of the log
1086  * @tail_block: The first block of the transaction at the tail of the log
1087  * @write_op: With which operation should we write the journal sb
1088  *
1089  * Update a journal's superblock information about log tail and write it to
1090  * disk, waiting for the IO to complete.
1091  */
1092 void journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1093                                 unsigned int tail_block, int write_op)
1094 {
1095         journal_superblock_t *sb = journal->j_superblock;
1096
1097         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1098         jbd_debug(1,"JBD: updating superblock (start %u, seq %u)\n",
1099                   tail_block, tail_tid);
1100
1101         sb->s_sequence = cpu_to_be32(tail_tid);
1102         sb->s_start    = cpu_to_be32(tail_block);
1103
1104         journal_write_superblock(journal, write_op);
1105
1106         /* Log is no longer empty */
1107         spin_lock(&journal->j_state_lock);
1108         WARN_ON(!sb->s_sequence);
1109         journal->j_flags &= ~JFS_FLUSHED;
1110         spin_unlock(&journal->j_state_lock);
1111 }
1112
1113 /**
1114  * mark_journal_empty() - Mark on disk journal as empty.
1115  * @journal: The journal to update.
1116  *
1117  * Update a journal's dynamic superblock fields to show that journal is empty.
1118  * Write updated superblock to disk waiting for IO to complete.
1119  */
1120 static void mark_journal_empty(journal_t *journal)
1121 {
1122         journal_superblock_t *sb = journal->j_superblock;
1123
1124         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1125         spin_lock(&journal->j_state_lock);
1126         /* Is it already empty? */
1127         if (sb->s_start == 0) {
1128                 spin_unlock(&journal->j_state_lock);
1129                 return;
1130         }
1131         jbd_debug(1, "JBD: Marking journal as empty (seq %d)\n",
1132                   journal->j_tail_sequence);
1133
1134         sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1135         sb->s_start    = cpu_to_be32(0);
1136         spin_unlock(&journal->j_state_lock);
1137
1138         journal_write_superblock(journal, WRITE_FUA);
1139
1140         spin_lock(&journal->j_state_lock);
1141         /* Log is empty */
1142         journal->j_flags |= JFS_FLUSHED;
1143         spin_unlock(&journal->j_state_lock);
1144 }
1145
1146 /**
1147  * journal_update_sb_errno() - Update error in the journal.
1148  * @journal: The journal to update.
1149  *
1150  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1151  * to complete.
1152  */
1153 static void journal_update_sb_errno(journal_t *journal)
1154 {
1155         journal_superblock_t *sb = journal->j_superblock;
1156
1157         spin_lock(&journal->j_state_lock);
1158         jbd_debug(1, "JBD: updating superblock error (errno %d)\n",
1159                   journal->j_errno);
1160         sb->s_errno = cpu_to_be32(journal->j_errno);
1161         spin_unlock(&journal->j_state_lock);
1162
1163         journal_write_superblock(journal, WRITE_SYNC);
1164 }
1165
1166 /*
1167  * Read the superblock for a given journal, performing initial
1168  * validation of the format.
1169  */
1170
1171 static int journal_get_superblock(journal_t *journal)
1172 {
1173         struct buffer_head *bh;
1174         journal_superblock_t *sb;
1175         int err = -EIO;
1176
1177         bh = journal->j_sb_buffer;
1178
1179         J_ASSERT(bh != NULL);
1180         if (!buffer_uptodate(bh)) {
1181                 ll_rw_block(READ, 1, &bh);
1182                 wait_on_buffer(bh);
1183                 if (!buffer_uptodate(bh)) {
1184                         printk (KERN_ERR
1185                                 "JBD: IO error reading journal superblock\n");
1186                         goto out;
1187                 }
1188         }
1189
1190         sb = journal->j_superblock;
1191
1192         err = -EINVAL;
1193
1194         if (sb->s_header.h_magic != cpu_to_be32(JFS_MAGIC_NUMBER) ||
1195             sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1196                 printk(KERN_WARNING "JBD: no valid journal superblock found\n");
1197                 goto out;
1198         }
1199
1200         switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1201         case JFS_SUPERBLOCK_V1:
1202                 journal->j_format_version = 1;
1203                 break;
1204         case JFS_SUPERBLOCK_V2:
1205                 journal->j_format_version = 2;
1206                 break;
1207         default:
1208                 printk(KERN_WARNING "JBD: unrecognised superblock format ID\n");
1209                 goto out;
1210         }
1211
1212         if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1213                 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1214         else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1215                 printk (KERN_WARNING "JBD: journal file too short\n");
1216                 goto out;
1217         }
1218
1219         if (be32_to_cpu(sb->s_first) == 0 ||
1220             be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1221                 printk(KERN_WARNING
1222                         "JBD: Invalid start block of journal: %u\n",
1223                         be32_to_cpu(sb->s_first));
1224                 goto out;
1225         }
1226
1227         return 0;
1228
1229 out:
1230         journal_fail_superblock(journal);
1231         return err;
1232 }
1233
1234 /*
1235  * Load the on-disk journal superblock and read the key fields into the
1236  * journal_t.
1237  */
1238
1239 static int load_superblock(journal_t *journal)
1240 {
1241         int err;
1242         journal_superblock_t *sb;
1243
1244         err = journal_get_superblock(journal);
1245         if (err)
1246                 return err;
1247
1248         sb = journal->j_superblock;
1249
1250         journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1251         journal->j_tail = be32_to_cpu(sb->s_start);
1252         journal->j_first = be32_to_cpu(sb->s_first);
1253         journal->j_last = be32_to_cpu(sb->s_maxlen);
1254         journal->j_errno = be32_to_cpu(sb->s_errno);
1255
1256         return 0;
1257 }
1258
1259
1260 /**
1261  * int journal_load() - Read journal from disk.
1262  * @journal: Journal to act on.
1263  *
1264  * Given a journal_t structure which tells us which disk blocks contain
1265  * a journal, read the journal from disk to initialise the in-memory
1266  * structures.
1267  */
1268 int journal_load(journal_t *journal)
1269 {
1270         int err;
1271         journal_superblock_t *sb;
1272
1273         err = load_superblock(journal);
1274         if (err)
1275                 return err;
1276
1277         sb = journal->j_superblock;
1278         /* If this is a V2 superblock, then we have to check the
1279          * features flags on it. */
1280
1281         if (journal->j_format_version >= 2) {
1282                 if ((sb->s_feature_ro_compat &
1283                      ~cpu_to_be32(JFS_KNOWN_ROCOMPAT_FEATURES)) ||
1284                     (sb->s_feature_incompat &
1285                      ~cpu_to_be32(JFS_KNOWN_INCOMPAT_FEATURES))) {
1286                         printk (KERN_WARNING
1287                                 "JBD: Unrecognised features on journal\n");
1288                         return -EINVAL;
1289                 }
1290         }
1291
1292         /* Let the recovery code check whether it needs to recover any
1293          * data from the journal. */
1294         if (journal_recover(journal))
1295                 goto recovery_error;
1296
1297         /* OK, we've finished with the dynamic journal bits:
1298          * reinitialise the dynamic contents of the superblock in memory
1299          * and reset them on disk. */
1300         if (journal_reset(journal))
1301                 goto recovery_error;
1302
1303         journal->j_flags &= ~JFS_ABORT;
1304         journal->j_flags |= JFS_LOADED;
1305         return 0;
1306
1307 recovery_error:
1308         printk (KERN_WARNING "JBD: recovery failed\n");
1309         return -EIO;
1310 }
1311
1312 /**
1313  * void journal_destroy() - Release a journal_t structure.
1314  * @journal: Journal to act on.
1315  *
1316  * Release a journal_t structure once it is no longer in use by the
1317  * journaled object.
1318  * Return <0 if we couldn't clean up the journal.
1319  */
1320 int journal_destroy(journal_t *journal)
1321 {
1322         int err = 0;
1323
1324         
1325         /* Wait for the commit thread to wake up and die. */
1326         journal_kill_thread(journal);
1327
1328         /* Force a final log commit */
1329         if (journal->j_running_transaction)
1330                 journal_commit_transaction(journal);
1331
1332         /* Force any old transactions to disk */
1333
1334         /* We cannot race with anybody but must keep assertions happy */
1335         mutex_lock(&journal->j_checkpoint_mutex);
1336         /* Totally anal locking here... */
1337         spin_lock(&journal->j_list_lock);
1338         while (journal->j_checkpoint_transactions != NULL) {
1339                 spin_unlock(&journal->j_list_lock);
1340                 log_do_checkpoint(journal);
1341                 spin_lock(&journal->j_list_lock);
1342         }
1343
1344         J_ASSERT(journal->j_running_transaction == NULL);
1345         J_ASSERT(journal->j_committing_transaction == NULL);
1346         J_ASSERT(journal->j_checkpoint_transactions == NULL);
1347         spin_unlock(&journal->j_list_lock);
1348
1349         if (journal->j_sb_buffer) {
1350                 if (!is_journal_aborted(journal)) {
1351                         journal->j_tail_sequence =
1352                                 ++journal->j_transaction_sequence;
1353                         mark_journal_empty(journal);
1354                 } else
1355                         err = -EIO;
1356                 brelse(journal->j_sb_buffer);
1357         }
1358         mutex_unlock(&journal->j_checkpoint_mutex);
1359
1360         if (journal->j_inode)
1361                 iput(journal->j_inode);
1362         if (journal->j_revoke)
1363                 journal_destroy_revoke(journal);
1364         kfree(journal->j_wbuf);
1365         kfree(journal);
1366
1367         return err;
1368 }
1369
1370
1371 /**
1372  *int journal_check_used_features () - Check if features specified are used.
1373  * @journal: Journal to check.
1374  * @compat: bitmask of compatible features
1375  * @ro: bitmask of features that force read-only mount
1376  * @incompat: bitmask of incompatible features
1377  *
1378  * Check whether the journal uses all of a given set of
1379  * features.  Return true (non-zero) if it does.
1380  **/
1381
1382 int journal_check_used_features (journal_t *journal, unsigned long compat,
1383                                  unsigned long ro, unsigned long incompat)
1384 {
1385         journal_superblock_t *sb;
1386
1387         if (!compat && !ro && !incompat)
1388                 return 1;
1389         if (journal->j_format_version == 1)
1390                 return 0;
1391
1392         sb = journal->j_superblock;
1393
1394         if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1395             ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1396             ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1397                 return 1;
1398
1399         return 0;
1400 }
1401
1402 /**
1403  * int journal_check_available_features() - Check feature set in journalling layer
1404  * @journal: Journal to check.
1405  * @compat: bitmask of compatible features
1406  * @ro: bitmask of features that force read-only mount
1407  * @incompat: bitmask of incompatible features
1408  *
1409  * Check whether the journaling code supports the use of
1410  * all of a given set of features on this journal.  Return true
1411  * (non-zero) if it can. */
1412
1413 int journal_check_available_features (journal_t *journal, unsigned long compat,
1414                                       unsigned long ro, unsigned long incompat)
1415 {
1416         if (!compat && !ro && !incompat)
1417                 return 1;
1418
1419         /* We can support any known requested features iff the
1420          * superblock is in version 2.  Otherwise we fail to support any
1421          * extended sb features. */
1422
1423         if (journal->j_format_version != 2)
1424                 return 0;
1425
1426         if ((compat   & JFS_KNOWN_COMPAT_FEATURES) == compat &&
1427             (ro       & JFS_KNOWN_ROCOMPAT_FEATURES) == ro &&
1428             (incompat & JFS_KNOWN_INCOMPAT_FEATURES) == incompat)
1429                 return 1;
1430
1431         return 0;
1432 }
1433
1434 /**
1435  * int journal_set_features () - Mark a given journal feature in the superblock
1436  * @journal: Journal to act on.
1437  * @compat: bitmask of compatible features
1438  * @ro: bitmask of features that force read-only mount
1439  * @incompat: bitmask of incompatible features
1440  *
1441  * Mark a given journal feature as present on the
1442  * superblock.  Returns true if the requested features could be set.
1443  *
1444  */
1445
1446 int journal_set_features (journal_t *journal, unsigned long compat,
1447                           unsigned long ro, unsigned long incompat)
1448 {
1449         journal_superblock_t *sb;
1450
1451         if (journal_check_used_features(journal, compat, ro, incompat))
1452                 return 1;
1453
1454         if (!journal_check_available_features(journal, compat, ro, incompat))
1455                 return 0;
1456
1457         jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1458                   compat, ro, incompat);
1459
1460         sb = journal->j_superblock;
1461
1462         sb->s_feature_compat    |= cpu_to_be32(compat);
1463         sb->s_feature_ro_compat |= cpu_to_be32(ro);
1464         sb->s_feature_incompat  |= cpu_to_be32(incompat);
1465
1466         return 1;
1467 }
1468
1469
1470 /**
1471  * int journal_update_format () - Update on-disk journal structure.
1472  * @journal: Journal to act on.
1473  *
1474  * Given an initialised but unloaded journal struct, poke about in the
1475  * on-disk structure to update it to the most recent supported version.
1476  */
1477 int journal_update_format (journal_t *journal)
1478 {
1479         journal_superblock_t *sb;
1480         int err;
1481
1482         err = journal_get_superblock(journal);
1483         if (err)
1484                 return err;
1485
1486         sb = journal->j_superblock;
1487
1488         switch (be32_to_cpu(sb->s_header.h_blocktype)) {
1489         case JFS_SUPERBLOCK_V2:
1490                 return 0;
1491         case JFS_SUPERBLOCK_V1:
1492                 return journal_convert_superblock_v1(journal, sb);
1493         default:
1494                 break;
1495         }
1496         return -EINVAL;
1497 }
1498
1499 static int journal_convert_superblock_v1(journal_t *journal,
1500                                          journal_superblock_t *sb)
1501 {
1502         int offset, blocksize;
1503         struct buffer_head *bh;
1504
1505         printk(KERN_WARNING
1506                 "JBD: Converting superblock from version 1 to 2.\n");
1507
1508         /* Pre-initialise new fields to zero */
1509         offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb);
1510         blocksize = be32_to_cpu(sb->s_blocksize);
1511         memset(&sb->s_feature_compat, 0, blocksize-offset);
1512
1513         sb->s_nr_users = cpu_to_be32(1);
1514         sb->s_header.h_blocktype = cpu_to_be32(JFS_SUPERBLOCK_V2);
1515         journal->j_format_version = 2;
1516
1517         bh = journal->j_sb_buffer;
1518         BUFFER_TRACE(bh, "marking dirty");
1519         mark_buffer_dirty(bh);
1520         sync_dirty_buffer(bh);
1521         return 0;
1522 }
1523
1524
1525 /**
1526  * int journal_flush () - Flush journal
1527  * @journal: Journal to act on.
1528  *
1529  * Flush all data for a given journal to disk and empty the journal.
1530  * Filesystems can use this when remounting readonly to ensure that
1531  * recovery does not need to happen on remount.
1532  */
1533
1534 int journal_flush(journal_t *journal)
1535 {
1536         int err = 0;
1537         transaction_t *transaction = NULL;
1538
1539         spin_lock(&journal->j_state_lock);
1540
1541         /* Force everything buffered to the log... */
1542         if (journal->j_running_transaction) {
1543                 transaction = journal->j_running_transaction;
1544                 __log_start_commit(journal, transaction->t_tid);
1545         } else if (journal->j_committing_transaction)
1546                 transaction = journal->j_committing_transaction;
1547
1548         /* Wait for the log commit to complete... */
1549         if (transaction) {
1550                 tid_t tid = transaction->t_tid;
1551
1552                 spin_unlock(&journal->j_state_lock);
1553                 log_wait_commit(journal, tid);
1554         } else {
1555                 spin_unlock(&journal->j_state_lock);
1556         }
1557
1558         /* ...and flush everything in the log out to disk. */
1559         spin_lock(&journal->j_list_lock);
1560         while (!err && journal->j_checkpoint_transactions != NULL) {
1561                 spin_unlock(&journal->j_list_lock);
1562                 mutex_lock(&journal->j_checkpoint_mutex);
1563                 err = log_do_checkpoint(journal);
1564                 mutex_unlock(&journal->j_checkpoint_mutex);
1565                 spin_lock(&journal->j_list_lock);
1566         }
1567         spin_unlock(&journal->j_list_lock);
1568
1569         if (is_journal_aborted(journal))
1570                 return -EIO;
1571
1572         mutex_lock(&journal->j_checkpoint_mutex);
1573         cleanup_journal_tail(journal);
1574
1575         /* Finally, mark the journal as really needing no recovery.
1576          * This sets s_start==0 in the underlying superblock, which is
1577          * the magic code for a fully-recovered superblock.  Any future
1578          * commits of data to the journal will restore the current
1579          * s_start value. */
1580         mark_journal_empty(journal);
1581         mutex_unlock(&journal->j_checkpoint_mutex);
1582         spin_lock(&journal->j_state_lock);
1583         J_ASSERT(!journal->j_running_transaction);
1584         J_ASSERT(!journal->j_committing_transaction);
1585         J_ASSERT(!journal->j_checkpoint_transactions);
1586         J_ASSERT(journal->j_head == journal->j_tail);
1587         J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1588         spin_unlock(&journal->j_state_lock);
1589         return 0;
1590 }
1591
1592 /**
1593  * int journal_wipe() - Wipe journal contents
1594  * @journal: Journal to act on.
1595  * @write: flag (see below)
1596  *
1597  * Wipe out all of the contents of a journal, safely.  This will produce
1598  * a warning if the journal contains any valid recovery information.
1599  * Must be called between journal_init_*() and journal_load().
1600  *
1601  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1602  * we merely suppress recovery.
1603  */
1604
1605 int journal_wipe(journal_t *journal, int write)
1606 {
1607         int err = 0;
1608
1609         J_ASSERT (!(journal->j_flags & JFS_LOADED));
1610
1611         err = load_superblock(journal);
1612         if (err)
1613                 return err;
1614
1615         if (!journal->j_tail)
1616                 goto no_recovery;
1617
1618         printk (KERN_WARNING "JBD: %s recovery information on journal\n",
1619                 write ? "Clearing" : "Ignoring");
1620
1621         err = journal_skip_recovery(journal);
1622         if (write) {
1623                 /* Lock to make assertions happy... */
1624                 mutex_lock(&journal->j_checkpoint_mutex);
1625                 mark_journal_empty(journal);
1626                 mutex_unlock(&journal->j_checkpoint_mutex);
1627         }
1628
1629  no_recovery:
1630         return err;
1631 }
1632
1633 /*
1634  * journal_dev_name: format a character string to describe on what
1635  * device this journal is present.
1636  */
1637
1638 static const char *journal_dev_name(journal_t *journal, char *buffer)
1639 {
1640         struct block_device *bdev;
1641
1642         if (journal->j_inode)
1643                 bdev = journal->j_inode->i_sb->s_bdev;
1644         else
1645                 bdev = journal->j_dev;
1646
1647         return bdevname(bdev, buffer);
1648 }
1649
1650 /*
1651  * Journal abort has very specific semantics, which we describe
1652  * for journal abort.
1653  *
1654  * Two internal function, which provide abort to te jbd layer
1655  * itself are here.
1656  */
1657
1658 /*
1659  * Quick version for internal journal use (doesn't lock the journal).
1660  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1661  * and don't attempt to make any other journal updates.
1662  */
1663 static void __journal_abort_hard(journal_t *journal)
1664 {
1665         transaction_t *transaction;
1666         char b[BDEVNAME_SIZE];
1667
1668         if (journal->j_flags & JFS_ABORT)
1669                 return;
1670
1671         printk(KERN_ERR "Aborting journal on device %s.\n",
1672                 journal_dev_name(journal, b));
1673
1674         spin_lock(&journal->j_state_lock);
1675         journal->j_flags |= JFS_ABORT;
1676         transaction = journal->j_running_transaction;
1677         if (transaction)
1678                 __log_start_commit(journal, transaction->t_tid);
1679         spin_unlock(&journal->j_state_lock);
1680 }
1681
1682 /* Soft abort: record the abort error status in the journal superblock,
1683  * but don't do any other IO. */
1684 static void __journal_abort_soft (journal_t *journal, int errno)
1685 {
1686         if (journal->j_flags & JFS_ABORT)
1687                 return;
1688
1689         if (!journal->j_errno)
1690                 journal->j_errno = errno;
1691
1692         __journal_abort_hard(journal);
1693
1694         if (errno)
1695                 journal_update_sb_errno(journal);
1696 }
1697
1698 /**
1699  * void journal_abort () - Shutdown the journal immediately.
1700  * @journal: the journal to shutdown.
1701  * @errno:   an error number to record in the journal indicating
1702  *           the reason for the shutdown.
1703  *
1704  * Perform a complete, immediate shutdown of the ENTIRE
1705  * journal (not of a single transaction).  This operation cannot be
1706  * undone without closing and reopening the journal.
1707  *
1708  * The journal_abort function is intended to support higher level error
1709  * recovery mechanisms such as the ext2/ext3 remount-readonly error
1710  * mode.
1711  *
1712  * Journal abort has very specific semantics.  Any existing dirty,
1713  * unjournaled buffers in the main filesystem will still be written to
1714  * disk by bdflush, but the journaling mechanism will be suspended
1715  * immediately and no further transaction commits will be honoured.
1716  *
1717  * Any dirty, journaled buffers will be written back to disk without
1718  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
1719  * filesystem, but we _do_ attempt to leave as much data as possible
1720  * behind for fsck to use for cleanup.
1721  *
1722  * Any attempt to get a new transaction handle on a journal which is in
1723  * ABORT state will just result in an -EROFS error return.  A
1724  * journal_stop on an existing handle will return -EIO if we have
1725  * entered abort state during the update.
1726  *
1727  * Recursive transactions are not disturbed by journal abort until the
1728  * final journal_stop, which will receive the -EIO error.
1729  *
1730  * Finally, the journal_abort call allows the caller to supply an errno
1731  * which will be recorded (if possible) in the journal superblock.  This
1732  * allows a client to record failure conditions in the middle of a
1733  * transaction without having to complete the transaction to record the
1734  * failure to disk.  ext3_error, for example, now uses this
1735  * functionality.
1736  *
1737  * Errors which originate from within the journaling layer will NOT
1738  * supply an errno; a null errno implies that absolutely no further
1739  * writes are done to the journal (unless there are any already in
1740  * progress).
1741  *
1742  */
1743
1744 void journal_abort(journal_t *journal, int errno)
1745 {
1746         __journal_abort_soft(journal, errno);
1747 }
1748
1749 /**
1750  * int journal_errno () - returns the journal's error state.
1751  * @journal: journal to examine.
1752  *
1753  * This is the errno numbet set with journal_abort(), the last
1754  * time the journal was mounted - if the journal was stopped
1755  * without calling abort this will be 0.
1756  *
1757  * If the journal has been aborted on this mount time -EROFS will
1758  * be returned.
1759  */
1760 int journal_errno(journal_t *journal)
1761 {
1762         int err;
1763
1764         spin_lock(&journal->j_state_lock);
1765         if (journal->j_flags & JFS_ABORT)
1766                 err = -EROFS;
1767         else
1768                 err = journal->j_errno;
1769         spin_unlock(&journal->j_state_lock);
1770         return err;
1771 }
1772
1773 /**
1774  * int journal_clear_err () - clears the journal's error state
1775  * @journal: journal to act on.
1776  *
1777  * An error must be cleared or Acked to take a FS out of readonly
1778  * mode.
1779  */
1780 int journal_clear_err(journal_t *journal)
1781 {
1782         int err = 0;
1783
1784         spin_lock(&journal->j_state_lock);
1785         if (journal->j_flags & JFS_ABORT)
1786                 err = -EROFS;
1787         else
1788                 journal->j_errno = 0;
1789         spin_unlock(&journal->j_state_lock);
1790         return err;
1791 }
1792
1793 /**
1794  * void journal_ack_err() - Ack journal err.
1795  * @journal: journal to act on.
1796  *
1797  * An error must be cleared or Acked to take a FS out of readonly
1798  * mode.
1799  */
1800 void journal_ack_err(journal_t *journal)
1801 {
1802         spin_lock(&journal->j_state_lock);
1803         if (journal->j_errno)
1804                 journal->j_flags |= JFS_ACK_ERR;
1805         spin_unlock(&journal->j_state_lock);
1806 }
1807
1808 int journal_blocks_per_page(struct inode *inode)
1809 {
1810         return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1811 }
1812
1813 /*
1814  * Journal_head storage management
1815  */
1816 static struct kmem_cache *journal_head_cache;
1817 #ifdef CONFIG_JBD_DEBUG
1818 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
1819 #endif
1820
1821 static int journal_init_journal_head_cache(void)
1822 {
1823         int retval;
1824
1825         J_ASSERT(journal_head_cache == NULL);
1826         journal_head_cache = kmem_cache_create("journal_head",
1827                                 sizeof(struct journal_head),
1828                                 0,              /* offset */
1829                                 SLAB_TEMPORARY, /* flags */
1830                                 NULL);          /* ctor */
1831         retval = 0;
1832         if (!journal_head_cache) {
1833                 retval = -ENOMEM;
1834                 printk(KERN_EMERG "JBD: no memory for journal_head cache\n");
1835         }
1836         return retval;
1837 }
1838
1839 static void journal_destroy_journal_head_cache(void)
1840 {
1841         if (journal_head_cache) {
1842                 kmem_cache_destroy(journal_head_cache);
1843                 journal_head_cache = NULL;
1844         }
1845 }
1846
1847 /*
1848  * journal_head splicing and dicing
1849  */
1850 static struct journal_head *journal_alloc_journal_head(void)
1851 {
1852         struct journal_head *ret;
1853
1854 #ifdef CONFIG_JBD_DEBUG
1855         atomic_inc(&nr_journal_heads);
1856 #endif
1857         ret = kmem_cache_zalloc(journal_head_cache, GFP_NOFS);
1858         if (ret == NULL) {
1859                 jbd_debug(1, "out of memory for journal_head\n");
1860                 printk_ratelimited(KERN_NOTICE "ENOMEM in %s, retrying.\n",
1861                                    __func__);
1862
1863                 while (ret == NULL) {
1864                         yield();
1865                         ret = kmem_cache_zalloc(journal_head_cache, GFP_NOFS);
1866                 }
1867         }
1868         return ret;
1869 }
1870
1871 static void journal_free_journal_head(struct journal_head *jh)
1872 {
1873 #ifdef CONFIG_JBD_DEBUG
1874         atomic_dec(&nr_journal_heads);
1875         memset(jh, JBD_POISON_FREE, sizeof(*jh));
1876 #endif
1877         kmem_cache_free(journal_head_cache, jh);
1878 }
1879
1880 /*
1881  * A journal_head is attached to a buffer_head whenever JBD has an
1882  * interest in the buffer.
1883  *
1884  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
1885  * is set.  This bit is tested in core kernel code where we need to take
1886  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
1887  * there.
1888  *
1889  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
1890  *
1891  * When a buffer has its BH_JBD bit set it is immune from being released by
1892  * core kernel code, mainly via ->b_count.
1893  *
1894  * A journal_head is detached from its buffer_head when the journal_head's
1895  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
1896  * transaction (b_cp_transaction) hold their references to b_jcount.
1897  *
1898  * Various places in the kernel want to attach a journal_head to a buffer_head
1899  * _before_ attaching the journal_head to a transaction.  To protect the
1900  * journal_head in this situation, journal_add_journal_head elevates the
1901  * journal_head's b_jcount refcount by one.  The caller must call
1902  * journal_put_journal_head() to undo this.
1903  *
1904  * So the typical usage would be:
1905  *
1906  *      (Attach a journal_head if needed.  Increments b_jcount)
1907  *      struct journal_head *jh = journal_add_journal_head(bh);
1908  *      ...
1909  *      (Get another reference for transaction)
1910  *      journal_grab_journal_head(bh);
1911  *      jh->b_transaction = xxx;
1912  *      (Put original reference)
1913  *      journal_put_journal_head(jh);
1914  */
1915
1916 /*
1917  * Give a buffer_head a journal_head.
1918  *
1919  * May sleep.
1920  */
1921 struct journal_head *journal_add_journal_head(struct buffer_head *bh)
1922 {
1923         struct journal_head *jh;
1924         struct journal_head *new_jh = NULL;
1925
1926 repeat:
1927         if (!buffer_jbd(bh))
1928                 new_jh = journal_alloc_journal_head();
1929
1930         jbd_lock_bh_journal_head(bh);
1931         if (buffer_jbd(bh)) {
1932                 jh = bh2jh(bh);
1933         } else {
1934                 J_ASSERT_BH(bh,
1935                         (atomic_read(&bh->b_count) > 0) ||
1936                         (bh->b_page && bh->b_page->mapping));
1937
1938                 if (!new_jh) {
1939                         jbd_unlock_bh_journal_head(bh);
1940                         goto repeat;
1941                 }
1942
1943                 jh = new_jh;
1944                 new_jh = NULL;          /* We consumed it */
1945                 set_buffer_jbd(bh);
1946                 bh->b_private = jh;
1947                 jh->b_bh = bh;
1948                 get_bh(bh);
1949                 BUFFER_TRACE(bh, "added journal_head");
1950         }
1951         jh->b_jcount++;
1952         jbd_unlock_bh_journal_head(bh);
1953         if (new_jh)
1954                 journal_free_journal_head(new_jh);
1955         return bh->b_private;
1956 }
1957
1958 /*
1959  * Grab a ref against this buffer_head's journal_head.  If it ended up not
1960  * having a journal_head, return NULL
1961  */
1962 struct journal_head *journal_grab_journal_head(struct buffer_head *bh)
1963 {
1964         struct journal_head *jh = NULL;
1965
1966         jbd_lock_bh_journal_head(bh);
1967         if (buffer_jbd(bh)) {
1968                 jh = bh2jh(bh);
1969                 jh->b_jcount++;
1970         }
1971         jbd_unlock_bh_journal_head(bh);
1972         return jh;
1973 }
1974
1975 static void __journal_remove_journal_head(struct buffer_head *bh)
1976 {
1977         struct journal_head *jh = bh2jh(bh);
1978
1979         J_ASSERT_JH(jh, jh->b_jcount >= 0);
1980         J_ASSERT_JH(jh, jh->b_transaction == NULL);
1981         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1982         J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
1983         J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
1984         J_ASSERT_BH(bh, buffer_jbd(bh));
1985         J_ASSERT_BH(bh, jh2bh(jh) == bh);
1986         BUFFER_TRACE(bh, "remove journal_head");
1987         if (jh->b_frozen_data) {
1988                 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
1989                 jbd_free(jh->b_frozen_data, bh->b_size);
1990         }
1991         if (jh->b_committed_data) {
1992                 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
1993                 jbd_free(jh->b_committed_data, bh->b_size);
1994         }
1995         bh->b_private = NULL;
1996         jh->b_bh = NULL;        /* debug, really */
1997         clear_buffer_jbd(bh);
1998         journal_free_journal_head(jh);
1999 }
2000
2001 /*
2002  * Drop a reference on the passed journal_head.  If it fell to zero then
2003  * release the journal_head from the buffer_head.
2004  */
2005 void journal_put_journal_head(struct journal_head *jh)
2006 {
2007         struct buffer_head *bh = jh2bh(jh);
2008
2009         jbd_lock_bh_journal_head(bh);
2010         J_ASSERT_JH(jh, jh->b_jcount > 0);
2011         --jh->b_jcount;
2012         if (!jh->b_jcount) {
2013                 __journal_remove_journal_head(bh);
2014                 jbd_unlock_bh_journal_head(bh);
2015                 __brelse(bh);
2016         } else
2017                 jbd_unlock_bh_journal_head(bh);
2018 }
2019
2020 /*
2021  * debugfs tunables
2022  */
2023 #ifdef CONFIG_JBD_DEBUG
2024
2025 u8 journal_enable_debug __read_mostly;
2026 EXPORT_SYMBOL(journal_enable_debug);
2027
2028 static struct dentry *jbd_debugfs_dir;
2029 static struct dentry *jbd_debug;
2030
2031 static void __init jbd_create_debugfs_entry(void)
2032 {
2033         jbd_debugfs_dir = debugfs_create_dir("jbd", NULL);
2034         if (jbd_debugfs_dir)
2035                 jbd_debug = debugfs_create_u8("jbd-debug", S_IRUGO | S_IWUSR,
2036                                                jbd_debugfs_dir,
2037                                                &journal_enable_debug);
2038 }
2039
2040 static void __exit jbd_remove_debugfs_entry(void)
2041 {
2042         debugfs_remove(jbd_debug);
2043         debugfs_remove(jbd_debugfs_dir);
2044 }
2045
2046 #else
2047
2048 static inline void jbd_create_debugfs_entry(void)
2049 {
2050 }
2051
2052 static inline void jbd_remove_debugfs_entry(void)
2053 {
2054 }
2055
2056 #endif
2057
2058 struct kmem_cache *jbd_handle_cache;
2059
2060 static int __init journal_init_handle_cache(void)
2061 {
2062         jbd_handle_cache = kmem_cache_create("journal_handle",
2063                                 sizeof(handle_t),
2064                                 0,              /* offset */
2065                                 SLAB_TEMPORARY, /* flags */
2066                                 NULL);          /* ctor */
2067         if (jbd_handle_cache == NULL) {
2068                 printk(KERN_EMERG "JBD: failed to create handle cache\n");
2069                 return -ENOMEM;
2070         }
2071         return 0;
2072 }
2073
2074 static void journal_destroy_handle_cache(void)
2075 {
2076         if (jbd_handle_cache)
2077                 kmem_cache_destroy(jbd_handle_cache);
2078 }
2079
2080 /*
2081  * Module startup and shutdown
2082  */
2083
2084 static int __init journal_init_caches(void)
2085 {
2086         int ret;
2087
2088         ret = journal_init_revoke_caches();
2089         if (ret == 0)
2090                 ret = journal_init_journal_head_cache();
2091         if (ret == 0)
2092                 ret = journal_init_handle_cache();
2093         return ret;
2094 }
2095
2096 static void journal_destroy_caches(void)
2097 {
2098         journal_destroy_revoke_caches();
2099         journal_destroy_journal_head_cache();
2100         journal_destroy_handle_cache();
2101 }
2102
2103 static int __init journal_init(void)
2104 {
2105         int ret;
2106
2107         BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2108
2109         ret = journal_init_caches();
2110         if (ret != 0)
2111                 journal_destroy_caches();
2112         jbd_create_debugfs_entry();
2113         return ret;
2114 }
2115
2116 static void __exit journal_exit(void)
2117 {
2118 #ifdef CONFIG_JBD_DEBUG
2119         int n = atomic_read(&nr_journal_heads);
2120         if (n)
2121                 printk(KERN_EMERG "JBD: leaked %d journal_heads!\n", n);
2122 #endif
2123         jbd_remove_debugfs_entry();
2124         journal_destroy_caches();
2125 }
2126
2127 MODULE_LICENSE("GPL");
2128 module_init(journal_init);
2129 module_exit(journal_exit);
2130