]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/jbd2/journal.c
NFSv4: Handle NFS4ERR_GRACE when recovering an expired lease.
[karo-tx-linux.git] / fs / jbd2 / journal.c
1 /*
2  * linux/fs/jbd2/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/debugfs.h>
39 #include <linux/seq_file.h>
40 #include <linux/math64.h>
41 #include <linux/hash.h>
42
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/jbd2.h>
45
46 #include <asm/uaccess.h>
47 #include <asm/page.h>
48
49 EXPORT_SYMBOL(jbd2_journal_start);
50 EXPORT_SYMBOL(jbd2_journal_restart);
51 EXPORT_SYMBOL(jbd2_journal_extend);
52 EXPORT_SYMBOL(jbd2_journal_stop);
53 EXPORT_SYMBOL(jbd2_journal_lock_updates);
54 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
55 EXPORT_SYMBOL(jbd2_journal_get_write_access);
56 EXPORT_SYMBOL(jbd2_journal_get_create_access);
57 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
58 EXPORT_SYMBOL(jbd2_journal_set_triggers);
59 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
60 EXPORT_SYMBOL(jbd2_journal_release_buffer);
61 EXPORT_SYMBOL(jbd2_journal_forget);
62 #if 0
63 EXPORT_SYMBOL(journal_sync_buffer);
64 #endif
65 EXPORT_SYMBOL(jbd2_journal_flush);
66 EXPORT_SYMBOL(jbd2_journal_revoke);
67
68 EXPORT_SYMBOL(jbd2_journal_init_dev);
69 EXPORT_SYMBOL(jbd2_journal_init_inode);
70 EXPORT_SYMBOL(jbd2_journal_update_format);
71 EXPORT_SYMBOL(jbd2_journal_check_used_features);
72 EXPORT_SYMBOL(jbd2_journal_check_available_features);
73 EXPORT_SYMBOL(jbd2_journal_set_features);
74 EXPORT_SYMBOL(jbd2_journal_load);
75 EXPORT_SYMBOL(jbd2_journal_destroy);
76 EXPORT_SYMBOL(jbd2_journal_abort);
77 EXPORT_SYMBOL(jbd2_journal_errno);
78 EXPORT_SYMBOL(jbd2_journal_ack_err);
79 EXPORT_SYMBOL(jbd2_journal_clear_err);
80 EXPORT_SYMBOL(jbd2_log_wait_commit);
81 EXPORT_SYMBOL(jbd2_log_start_commit);
82 EXPORT_SYMBOL(jbd2_journal_start_commit);
83 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
84 EXPORT_SYMBOL(jbd2_journal_wipe);
85 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
86 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
87 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
88 EXPORT_SYMBOL(jbd2_journal_force_commit);
89 EXPORT_SYMBOL(jbd2_journal_file_inode);
90 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
91 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
92 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
93
94 static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *);
95 static void __journal_abort_soft (journal_t *journal, int errno);
96
97 /*
98  * Helper function used to manage commit timeouts
99  */
100
101 static void commit_timeout(unsigned long __data)
102 {
103         struct task_struct * p = (struct task_struct *) __data;
104
105         wake_up_process(p);
106 }
107
108 /*
109  * kjournald2: The main thread function used to manage a logging device
110  * journal.
111  *
112  * This kernel thread is responsible for two things:
113  *
114  * 1) COMMIT:  Every so often we need to commit the current state of the
115  *    filesystem to disk.  The journal thread is responsible for writing
116  *    all of the metadata buffers to disk.
117  *
118  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
119  *    of the data in that part of the log has been rewritten elsewhere on
120  *    the disk.  Flushing these old buffers to reclaim space in the log is
121  *    known as checkpointing, and this thread is responsible for that job.
122  */
123
124 static int kjournald2(void *arg)
125 {
126         journal_t *journal = arg;
127         transaction_t *transaction;
128
129         /*
130          * Set up an interval timer which can be used to trigger a commit wakeup
131          * after the commit interval expires
132          */
133         setup_timer(&journal->j_commit_timer, commit_timeout,
134                         (unsigned long)current);
135
136         /* Record that the journal thread is running */
137         journal->j_task = current;
138         wake_up(&journal->j_wait_done_commit);
139
140         /*
141          * And now, wait forever for commit wakeup events.
142          */
143         spin_lock(&journal->j_state_lock);
144
145 loop:
146         if (journal->j_flags & JBD2_UNMOUNT)
147                 goto end_loop;
148
149         jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
150                 journal->j_commit_sequence, journal->j_commit_request);
151
152         if (journal->j_commit_sequence != journal->j_commit_request) {
153                 jbd_debug(1, "OK, requests differ\n");
154                 spin_unlock(&journal->j_state_lock);
155                 del_timer_sync(&journal->j_commit_timer);
156                 jbd2_journal_commit_transaction(journal);
157                 spin_lock(&journal->j_state_lock);
158                 goto loop;
159         }
160
161         wake_up(&journal->j_wait_done_commit);
162         if (freezing(current)) {
163                 /*
164                  * The simpler the better. Flushing journal isn't a
165                  * good idea, because that depends on threads that may
166                  * be already stopped.
167                  */
168                 jbd_debug(1, "Now suspending kjournald2\n");
169                 spin_unlock(&journal->j_state_lock);
170                 refrigerator();
171                 spin_lock(&journal->j_state_lock);
172         } else {
173                 /*
174                  * We assume on resume that commits are already there,
175                  * so we don't sleep
176                  */
177                 DEFINE_WAIT(wait);
178                 int should_sleep = 1;
179
180                 prepare_to_wait(&journal->j_wait_commit, &wait,
181                                 TASK_INTERRUPTIBLE);
182                 if (journal->j_commit_sequence != journal->j_commit_request)
183                         should_sleep = 0;
184                 transaction = journal->j_running_transaction;
185                 if (transaction && time_after_eq(jiffies,
186                                                 transaction->t_expires))
187                         should_sleep = 0;
188                 if (journal->j_flags & JBD2_UNMOUNT)
189                         should_sleep = 0;
190                 if (should_sleep) {
191                         spin_unlock(&journal->j_state_lock);
192                         schedule();
193                         spin_lock(&journal->j_state_lock);
194                 }
195                 finish_wait(&journal->j_wait_commit, &wait);
196         }
197
198         jbd_debug(1, "kjournald2 wakes\n");
199
200         /*
201          * Were we woken up by a commit wakeup event?
202          */
203         transaction = journal->j_running_transaction;
204         if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
205                 journal->j_commit_request = transaction->t_tid;
206                 jbd_debug(1, "woke because of timeout\n");
207         }
208         goto loop;
209
210 end_loop:
211         spin_unlock(&journal->j_state_lock);
212         del_timer_sync(&journal->j_commit_timer);
213         journal->j_task = NULL;
214         wake_up(&journal->j_wait_done_commit);
215         jbd_debug(1, "Journal thread exiting.\n");
216         return 0;
217 }
218
219 static int jbd2_journal_start_thread(journal_t *journal)
220 {
221         struct task_struct *t;
222
223         t = kthread_run(kjournald2, journal, "jbd2/%s",
224                         journal->j_devname);
225         if (IS_ERR(t))
226                 return PTR_ERR(t);
227
228         wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
229         return 0;
230 }
231
232 static void journal_kill_thread(journal_t *journal)
233 {
234         spin_lock(&journal->j_state_lock);
235         journal->j_flags |= JBD2_UNMOUNT;
236
237         while (journal->j_task) {
238                 wake_up(&journal->j_wait_commit);
239                 spin_unlock(&journal->j_state_lock);
240                 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
241                 spin_lock(&journal->j_state_lock);
242         }
243         spin_unlock(&journal->j_state_lock);
244 }
245
246 /*
247  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
248  *
249  * Writes a metadata buffer to a given disk block.  The actual IO is not
250  * performed but a new buffer_head is constructed which labels the data
251  * to be written with the correct destination disk block.
252  *
253  * Any magic-number escaping which needs to be done will cause a
254  * copy-out here.  If the buffer happens to start with the
255  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
256  * magic number is only written to the log for descripter blocks.  In
257  * this case, we copy the data and replace the first word with 0, and we
258  * return a result code which indicates that this buffer needs to be
259  * marked as an escaped buffer in the corresponding log descriptor
260  * block.  The missing word can then be restored when the block is read
261  * during recovery.
262  *
263  * If the source buffer has already been modified by a new transaction
264  * since we took the last commit snapshot, we use the frozen copy of
265  * that data for IO.  If we end up using the existing buffer_head's data
266  * for the write, then we *have* to lock the buffer to prevent anyone
267  * else from using and possibly modifying it while the IO is in
268  * progress.
269  *
270  * The function returns a pointer to the buffer_heads to be used for IO.
271  *
272  * We assume that the journal has already been locked in this function.
273  *
274  * Return value:
275  *  <0: Error
276  * >=0: Finished OK
277  *
278  * On success:
279  * Bit 0 set == escape performed on the data
280  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
281  */
282
283 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
284                                   struct journal_head  *jh_in,
285                                   struct journal_head **jh_out,
286                                   unsigned long long blocknr)
287 {
288         int need_copy_out = 0;
289         int done_copy_out = 0;
290         int do_escape = 0;
291         char *mapped_data;
292         struct buffer_head *new_bh;
293         struct journal_head *new_jh;
294         struct page *new_page;
295         unsigned int new_offset;
296         struct buffer_head *bh_in = jh2bh(jh_in);
297         struct jbd2_buffer_trigger_type *triggers;
298         journal_t *journal = transaction->t_journal;
299
300         /*
301          * The buffer really shouldn't be locked: only the current committing
302          * transaction is allowed to write it, so nobody else is allowed
303          * to do any IO.
304          *
305          * akpm: except if we're journalling data, and write() output is
306          * also part of a shared mapping, and another thread has
307          * decided to launch a writepage() against this buffer.
308          */
309         J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
310
311         new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
312         /* keep subsequent assertions sane */
313         new_bh->b_state = 0;
314         init_buffer(new_bh, NULL, NULL);
315         atomic_set(&new_bh->b_count, 1);
316         new_jh = jbd2_journal_add_journal_head(new_bh); /* This sleeps */
317
318         /*
319          * If a new transaction has already done a buffer copy-out, then
320          * we use that version of the data for the commit.
321          */
322         jbd_lock_bh_state(bh_in);
323 repeat:
324         if (jh_in->b_frozen_data) {
325                 done_copy_out = 1;
326                 new_page = virt_to_page(jh_in->b_frozen_data);
327                 new_offset = offset_in_page(jh_in->b_frozen_data);
328                 triggers = jh_in->b_frozen_triggers;
329         } else {
330                 new_page = jh2bh(jh_in)->b_page;
331                 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
332                 triggers = jh_in->b_triggers;
333         }
334
335         mapped_data = kmap_atomic(new_page, KM_USER0);
336         /*
337          * Fire any commit trigger.  Do this before checking for escaping,
338          * as the trigger may modify the magic offset.  If a copy-out
339          * happens afterwards, it will have the correct data in the buffer.
340          */
341         jbd2_buffer_commit_trigger(jh_in, mapped_data + new_offset,
342                                    triggers);
343
344         /*
345          * Check for escaping
346          */
347         if (*((__be32 *)(mapped_data + new_offset)) ==
348                                 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
349                 need_copy_out = 1;
350                 do_escape = 1;
351         }
352         kunmap_atomic(mapped_data, KM_USER0);
353
354         /*
355          * Do we need to do a data copy?
356          */
357         if (need_copy_out && !done_copy_out) {
358                 char *tmp;
359
360                 jbd_unlock_bh_state(bh_in);
361                 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
362                 if (!tmp) {
363                         jbd2_journal_put_journal_head(new_jh);
364                         return -ENOMEM;
365                 }
366                 jbd_lock_bh_state(bh_in);
367                 if (jh_in->b_frozen_data) {
368                         jbd2_free(tmp, bh_in->b_size);
369                         goto repeat;
370                 }
371
372                 jh_in->b_frozen_data = tmp;
373                 mapped_data = kmap_atomic(new_page, KM_USER0);
374                 memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
375                 kunmap_atomic(mapped_data, KM_USER0);
376
377                 new_page = virt_to_page(tmp);
378                 new_offset = offset_in_page(tmp);
379                 done_copy_out = 1;
380
381                 /*
382                  * This isn't strictly necessary, as we're using frozen
383                  * data for the escaping, but it keeps consistency with
384                  * b_frozen_data usage.
385                  */
386                 jh_in->b_frozen_triggers = jh_in->b_triggers;
387         }
388
389         /*
390          * Did we need to do an escaping?  Now we've done all the
391          * copying, we can finally do so.
392          */
393         if (do_escape) {
394                 mapped_data = kmap_atomic(new_page, KM_USER0);
395                 *((unsigned int *)(mapped_data + new_offset)) = 0;
396                 kunmap_atomic(mapped_data, KM_USER0);
397         }
398
399         set_bh_page(new_bh, new_page, new_offset);
400         new_jh->b_transaction = NULL;
401         new_bh->b_size = jh2bh(jh_in)->b_size;
402         new_bh->b_bdev = transaction->t_journal->j_dev;
403         new_bh->b_blocknr = blocknr;
404         set_buffer_mapped(new_bh);
405         set_buffer_dirty(new_bh);
406
407         *jh_out = new_jh;
408
409         /*
410          * The to-be-written buffer needs to get moved to the io queue,
411          * and the original buffer whose contents we are shadowing or
412          * copying is moved to the transaction's shadow queue.
413          */
414         JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
415         spin_lock(&journal->j_list_lock);
416         __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
417         spin_unlock(&journal->j_list_lock);
418         jbd_unlock_bh_state(bh_in);
419
420         JBUFFER_TRACE(new_jh, "file as BJ_IO");
421         jbd2_journal_file_buffer(new_jh, transaction, BJ_IO);
422
423         return do_escape | (done_copy_out << 1);
424 }
425
426 /*
427  * Allocation code for the journal file.  Manage the space left in the
428  * journal, so that we can begin checkpointing when appropriate.
429  */
430
431 /*
432  * __jbd2_log_space_left: Return the number of free blocks left in the journal.
433  *
434  * Called with the journal already locked.
435  *
436  * Called under j_state_lock
437  */
438
439 int __jbd2_log_space_left(journal_t *journal)
440 {
441         int left = journal->j_free;
442
443         assert_spin_locked(&journal->j_state_lock);
444
445         /*
446          * Be pessimistic here about the number of those free blocks which
447          * might be required for log descriptor control blocks.
448          */
449
450 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
451
452         left -= MIN_LOG_RESERVED_BLOCKS;
453
454         if (left <= 0)
455                 return 0;
456         left -= (left >> 3);
457         return left;
458 }
459
460 /*
461  * Called under j_state_lock.  Returns true if a transaction commit was started.
462  */
463 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
464 {
465         /*
466          * Are we already doing a recent enough commit?
467          */
468         if (!tid_geq(journal->j_commit_request, target)) {
469                 /*
470                  * We want a new commit: OK, mark the request and wakup the
471                  * commit thread.  We do _not_ do the commit ourselves.
472                  */
473
474                 journal->j_commit_request = target;
475                 jbd_debug(1, "JBD: requesting commit %d/%d\n",
476                           journal->j_commit_request,
477                           journal->j_commit_sequence);
478                 wake_up(&journal->j_wait_commit);
479                 return 1;
480         }
481         return 0;
482 }
483
484 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
485 {
486         int ret;
487
488         spin_lock(&journal->j_state_lock);
489         ret = __jbd2_log_start_commit(journal, tid);
490         spin_unlock(&journal->j_state_lock);
491         return ret;
492 }
493
494 /*
495  * Force and wait upon a commit if the calling process is not within
496  * transaction.  This is used for forcing out undo-protected data which contains
497  * bitmaps, when the fs is running out of space.
498  *
499  * We can only force the running transaction if we don't have an active handle;
500  * otherwise, we will deadlock.
501  *
502  * Returns true if a transaction was started.
503  */
504 int jbd2_journal_force_commit_nested(journal_t *journal)
505 {
506         transaction_t *transaction = NULL;
507         tid_t tid;
508
509         spin_lock(&journal->j_state_lock);
510         if (journal->j_running_transaction && !current->journal_info) {
511                 transaction = journal->j_running_transaction;
512                 __jbd2_log_start_commit(journal, transaction->t_tid);
513         } else if (journal->j_committing_transaction)
514                 transaction = journal->j_committing_transaction;
515
516         if (!transaction) {
517                 spin_unlock(&journal->j_state_lock);
518                 return 0;       /* Nothing to retry */
519         }
520
521         tid = transaction->t_tid;
522         spin_unlock(&journal->j_state_lock);
523         jbd2_log_wait_commit(journal, tid);
524         return 1;
525 }
526
527 /*
528  * Start a commit of the current running transaction (if any).  Returns true
529  * if a transaction is going to be committed (or is currently already
530  * committing), and fills its tid in at *ptid
531  */
532 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
533 {
534         int ret = 0;
535
536         spin_lock(&journal->j_state_lock);
537         if (journal->j_running_transaction) {
538                 tid_t tid = journal->j_running_transaction->t_tid;
539
540                 __jbd2_log_start_commit(journal, tid);
541                 /* There's a running transaction and we've just made sure
542                  * it's commit has been scheduled. */
543                 if (ptid)
544                         *ptid = tid;
545                 ret = 1;
546         } else if (journal->j_committing_transaction) {
547                 /*
548                  * If ext3_write_super() recently started a commit, then we
549                  * have to wait for completion of that transaction
550                  */
551                 if (ptid)
552                         *ptid = journal->j_committing_transaction->t_tid;
553                 ret = 1;
554         }
555         spin_unlock(&journal->j_state_lock);
556         return ret;
557 }
558
559 /*
560  * Wait for a specified commit to complete.
561  * The caller may not hold the journal lock.
562  */
563 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
564 {
565         int err = 0;
566
567 #ifdef CONFIG_JBD2_DEBUG
568         spin_lock(&journal->j_state_lock);
569         if (!tid_geq(journal->j_commit_request, tid)) {
570                 printk(KERN_EMERG
571                        "%s: error: j_commit_request=%d, tid=%d\n",
572                        __func__, journal->j_commit_request, tid);
573         }
574         spin_unlock(&journal->j_state_lock);
575 #endif
576         spin_lock(&journal->j_state_lock);
577         while (tid_gt(tid, journal->j_commit_sequence)) {
578                 jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n",
579                                   tid, journal->j_commit_sequence);
580                 wake_up(&journal->j_wait_commit);
581                 spin_unlock(&journal->j_state_lock);
582                 wait_event(journal->j_wait_done_commit,
583                                 !tid_gt(tid, journal->j_commit_sequence));
584                 spin_lock(&journal->j_state_lock);
585         }
586         spin_unlock(&journal->j_state_lock);
587
588         if (unlikely(is_journal_aborted(journal))) {
589                 printk(KERN_EMERG "journal commit I/O error\n");
590                 err = -EIO;
591         }
592         return err;
593 }
594
595 /*
596  * Log buffer allocation routines:
597  */
598
599 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
600 {
601         unsigned long blocknr;
602
603         spin_lock(&journal->j_state_lock);
604         J_ASSERT(journal->j_free > 1);
605
606         blocknr = journal->j_head;
607         journal->j_head++;
608         journal->j_free--;
609         if (journal->j_head == journal->j_last)
610                 journal->j_head = journal->j_first;
611         spin_unlock(&journal->j_state_lock);
612         return jbd2_journal_bmap(journal, blocknr, retp);
613 }
614
615 /*
616  * Conversion of logical to physical block numbers for the journal
617  *
618  * On external journals the journal blocks are identity-mapped, so
619  * this is a no-op.  If needed, we can use j_blk_offset - everything is
620  * ready.
621  */
622 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
623                  unsigned long long *retp)
624 {
625         int err = 0;
626         unsigned long long ret;
627
628         if (journal->j_inode) {
629                 ret = bmap(journal->j_inode, blocknr);
630                 if (ret)
631                         *retp = ret;
632                 else {
633                         printk(KERN_ALERT "%s: journal block not found "
634                                         "at offset %lu on %s\n",
635                                __func__, blocknr, journal->j_devname);
636                         err = -EIO;
637                         __journal_abort_soft(journal, err);
638                 }
639         } else {
640                 *retp = blocknr; /* +journal->j_blk_offset */
641         }
642         return err;
643 }
644
645 /*
646  * We play buffer_head aliasing tricks to write data/metadata blocks to
647  * the journal without copying their contents, but for journal
648  * descriptor blocks we do need to generate bona fide buffers.
649  *
650  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
651  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
652  * But we don't bother doing that, so there will be coherency problems with
653  * mmaps of blockdevs which hold live JBD-controlled filesystems.
654  */
655 struct journal_head *jbd2_journal_get_descriptor_buffer(journal_t *journal)
656 {
657         struct buffer_head *bh;
658         unsigned long long blocknr;
659         int err;
660
661         err = jbd2_journal_next_log_block(journal, &blocknr);
662
663         if (err)
664                 return NULL;
665
666         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
667         if (!bh)
668                 return NULL;
669         lock_buffer(bh);
670         memset(bh->b_data, 0, journal->j_blocksize);
671         set_buffer_uptodate(bh);
672         unlock_buffer(bh);
673         BUFFER_TRACE(bh, "return this buffer");
674         return jbd2_journal_add_journal_head(bh);
675 }
676
677 struct jbd2_stats_proc_session {
678         journal_t *journal;
679         struct transaction_stats_s *stats;
680         int start;
681         int max;
682 };
683
684 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
685 {
686         return *pos ? NULL : SEQ_START_TOKEN;
687 }
688
689 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
690 {
691         return NULL;
692 }
693
694 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
695 {
696         struct jbd2_stats_proc_session *s = seq->private;
697
698         if (v != SEQ_START_TOKEN)
699                 return 0;
700         seq_printf(seq, "%lu transaction, each up to %u blocks\n",
701                         s->stats->ts_tid,
702                         s->journal->j_max_transaction_buffers);
703         if (s->stats->ts_tid == 0)
704                 return 0;
705         seq_printf(seq, "average: \n  %ums waiting for transaction\n",
706             jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
707         seq_printf(seq, "  %ums running transaction\n",
708             jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
709         seq_printf(seq, "  %ums transaction was being locked\n",
710             jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
711         seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
712             jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
713         seq_printf(seq, "  %ums logging transaction\n",
714             jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
715         seq_printf(seq, "  %lluus average transaction commit time\n",
716                    div_u64(s->journal->j_average_commit_time, 1000));
717         seq_printf(seq, "  %lu handles per transaction\n",
718             s->stats->run.rs_handle_count / s->stats->ts_tid);
719         seq_printf(seq, "  %lu blocks per transaction\n",
720             s->stats->run.rs_blocks / s->stats->ts_tid);
721         seq_printf(seq, "  %lu logged blocks per transaction\n",
722             s->stats->run.rs_blocks_logged / s->stats->ts_tid);
723         return 0;
724 }
725
726 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
727 {
728 }
729
730 static const struct seq_operations jbd2_seq_info_ops = {
731         .start  = jbd2_seq_info_start,
732         .next   = jbd2_seq_info_next,
733         .stop   = jbd2_seq_info_stop,
734         .show   = jbd2_seq_info_show,
735 };
736
737 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
738 {
739         journal_t *journal = PDE(inode)->data;
740         struct jbd2_stats_proc_session *s;
741         int rc, size;
742
743         s = kmalloc(sizeof(*s), GFP_KERNEL);
744         if (s == NULL)
745                 return -ENOMEM;
746         size = sizeof(struct transaction_stats_s);
747         s->stats = kmalloc(size, GFP_KERNEL);
748         if (s->stats == NULL) {
749                 kfree(s);
750                 return -ENOMEM;
751         }
752         spin_lock(&journal->j_history_lock);
753         memcpy(s->stats, &journal->j_stats, size);
754         s->journal = journal;
755         spin_unlock(&journal->j_history_lock);
756
757         rc = seq_open(file, &jbd2_seq_info_ops);
758         if (rc == 0) {
759                 struct seq_file *m = file->private_data;
760                 m->private = s;
761         } else {
762                 kfree(s->stats);
763                 kfree(s);
764         }
765         return rc;
766
767 }
768
769 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
770 {
771         struct seq_file *seq = file->private_data;
772         struct jbd2_stats_proc_session *s = seq->private;
773         kfree(s->stats);
774         kfree(s);
775         return seq_release(inode, file);
776 }
777
778 static const struct file_operations jbd2_seq_info_fops = {
779         .owner          = THIS_MODULE,
780         .open           = jbd2_seq_info_open,
781         .read           = seq_read,
782         .llseek         = seq_lseek,
783         .release        = jbd2_seq_info_release,
784 };
785
786 static struct proc_dir_entry *proc_jbd2_stats;
787
788 static void jbd2_stats_proc_init(journal_t *journal)
789 {
790         journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
791         if (journal->j_proc_entry) {
792                 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
793                                  &jbd2_seq_info_fops, journal);
794         }
795 }
796
797 static void jbd2_stats_proc_exit(journal_t *journal)
798 {
799         remove_proc_entry("info", journal->j_proc_entry);
800         remove_proc_entry(journal->j_devname, proc_jbd2_stats);
801 }
802
803 /*
804  * Management for journal control blocks: functions to create and
805  * destroy journal_t structures, and to initialise and read existing
806  * journal blocks from disk.  */
807
808 /* First: create and setup a journal_t object in memory.  We initialise
809  * very few fields yet: that has to wait until we have created the
810  * journal structures from from scratch, or loaded them from disk. */
811
812 static journal_t * journal_init_common (void)
813 {
814         journal_t *journal;
815         int err;
816
817         journal = kzalloc(sizeof(*journal), GFP_KERNEL|__GFP_NOFAIL);
818         if (!journal)
819                 goto fail;
820
821         init_waitqueue_head(&journal->j_wait_transaction_locked);
822         init_waitqueue_head(&journal->j_wait_logspace);
823         init_waitqueue_head(&journal->j_wait_done_commit);
824         init_waitqueue_head(&journal->j_wait_checkpoint);
825         init_waitqueue_head(&journal->j_wait_commit);
826         init_waitqueue_head(&journal->j_wait_updates);
827         mutex_init(&journal->j_barrier);
828         mutex_init(&journal->j_checkpoint_mutex);
829         spin_lock_init(&journal->j_revoke_lock);
830         spin_lock_init(&journal->j_list_lock);
831         spin_lock_init(&journal->j_state_lock);
832
833         journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
834         journal->j_min_batch_time = 0;
835         journal->j_max_batch_time = 15000; /* 15ms */
836
837         /* The journal is marked for error until we succeed with recovery! */
838         journal->j_flags = JBD2_ABORT;
839
840         /* Set up a default-sized revoke table for the new mount. */
841         err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
842         if (err) {
843                 kfree(journal);
844                 goto fail;
845         }
846
847         spin_lock_init(&journal->j_history_lock);
848
849         return journal;
850 fail:
851         return NULL;
852 }
853
854 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
855  *
856  * Create a journal structure assigned some fixed set of disk blocks to
857  * the journal.  We don't actually touch those disk blocks yet, but we
858  * need to set up all of the mapping information to tell the journaling
859  * system where the journal blocks are.
860  *
861  */
862
863 /**
864  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
865  *  @bdev: Block device on which to create the journal
866  *  @fs_dev: Device which hold journalled filesystem for this journal.
867  *  @start: Block nr Start of journal.
868  *  @len:  Length of the journal in blocks.
869  *  @blocksize: blocksize of journalling device
870  *
871  *  Returns: a newly created journal_t *
872  *
873  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
874  *  range of blocks on an arbitrary block device.
875  *
876  */
877 journal_t * jbd2_journal_init_dev(struct block_device *bdev,
878                         struct block_device *fs_dev,
879                         unsigned long long start, int len, int blocksize)
880 {
881         journal_t *journal = journal_init_common();
882         struct buffer_head *bh;
883         char *p;
884         int n;
885
886         if (!journal)
887                 return NULL;
888
889         /* journal descriptor can store up to n blocks -bzzz */
890         journal->j_blocksize = blocksize;
891         jbd2_stats_proc_init(journal);
892         n = journal->j_blocksize / sizeof(journal_block_tag_t);
893         journal->j_wbufsize = n;
894         journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
895         if (!journal->j_wbuf) {
896                 printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n",
897                         __func__);
898                 goto out_err;
899         }
900         journal->j_dev = bdev;
901         journal->j_fs_dev = fs_dev;
902         journal->j_blk_offset = start;
903         journal->j_maxlen = len;
904         bdevname(journal->j_dev, journal->j_devname);
905         p = journal->j_devname;
906         while ((p = strchr(p, '/')))
907                 *p = '!';
908
909         bh = __getblk(journal->j_dev, start, journal->j_blocksize);
910         if (!bh) {
911                 printk(KERN_ERR
912                        "%s: Cannot get buffer for journal superblock\n",
913                        __func__);
914                 goto out_err;
915         }
916         journal->j_sb_buffer = bh;
917         journal->j_superblock = (journal_superblock_t *)bh->b_data;
918
919         return journal;
920 out_err:
921         kfree(journal->j_wbuf);
922         jbd2_stats_proc_exit(journal);
923         kfree(journal);
924         return NULL;
925 }
926
927 /**
928  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
929  *  @inode: An inode to create the journal in
930  *
931  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
932  * the journal.  The inode must exist already, must support bmap() and
933  * must have all data blocks preallocated.
934  */
935 journal_t * jbd2_journal_init_inode (struct inode *inode)
936 {
937         struct buffer_head *bh;
938         journal_t *journal = journal_init_common();
939         char *p;
940         int err;
941         int n;
942         unsigned long long blocknr;
943
944         if (!journal)
945                 return NULL;
946
947         journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
948         journal->j_inode = inode;
949         bdevname(journal->j_dev, journal->j_devname);
950         p = journal->j_devname;
951         while ((p = strchr(p, '/')))
952                 *p = '!';
953         p = journal->j_devname + strlen(journal->j_devname);
954         sprintf(p, "-%lu", journal->j_inode->i_ino);
955         jbd_debug(1,
956                   "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
957                   journal, inode->i_sb->s_id, inode->i_ino,
958                   (long long) inode->i_size,
959                   inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
960
961         journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
962         journal->j_blocksize = inode->i_sb->s_blocksize;
963         jbd2_stats_proc_init(journal);
964
965         /* journal descriptor can store up to n blocks -bzzz */
966         n = journal->j_blocksize / sizeof(journal_block_tag_t);
967         journal->j_wbufsize = n;
968         journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
969         if (!journal->j_wbuf) {
970                 printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n",
971                         __func__);
972                 goto out_err;
973         }
974
975         err = jbd2_journal_bmap(journal, 0, &blocknr);
976         /* If that failed, give up */
977         if (err) {
978                 printk(KERN_ERR "%s: Cannnot locate journal superblock\n",
979                        __func__);
980                 goto out_err;
981         }
982
983         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
984         if (!bh) {
985                 printk(KERN_ERR
986                        "%s: Cannot get buffer for journal superblock\n",
987                        __func__);
988                 goto out_err;
989         }
990         journal->j_sb_buffer = bh;
991         journal->j_superblock = (journal_superblock_t *)bh->b_data;
992
993         return journal;
994 out_err:
995         kfree(journal->j_wbuf);
996         jbd2_stats_proc_exit(journal);
997         kfree(journal);
998         return NULL;
999 }
1000
1001 /*
1002  * If the journal init or create aborts, we need to mark the journal
1003  * superblock as being NULL to prevent the journal destroy from writing
1004  * back a bogus superblock.
1005  */
1006 static void journal_fail_superblock (journal_t *journal)
1007 {
1008         struct buffer_head *bh = journal->j_sb_buffer;
1009         brelse(bh);
1010         journal->j_sb_buffer = NULL;
1011 }
1012
1013 /*
1014  * Given a journal_t structure, initialise the various fields for
1015  * startup of a new journaling session.  We use this both when creating
1016  * a journal, and after recovering an old journal to reset it for
1017  * subsequent use.
1018  */
1019
1020 static int journal_reset(journal_t *journal)
1021 {
1022         journal_superblock_t *sb = journal->j_superblock;
1023         unsigned long long first, last;
1024
1025         first = be32_to_cpu(sb->s_first);
1026         last = be32_to_cpu(sb->s_maxlen);
1027         if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1028                 printk(KERN_ERR "JBD: Journal too short (blocks %llu-%llu).\n",
1029                        first, last);
1030                 journal_fail_superblock(journal);
1031                 return -EINVAL;
1032         }
1033
1034         journal->j_first = first;
1035         journal->j_last = last;
1036
1037         journal->j_head = first;
1038         journal->j_tail = first;
1039         journal->j_free = last - first;
1040
1041         journal->j_tail_sequence = journal->j_transaction_sequence;
1042         journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1043         journal->j_commit_request = journal->j_commit_sequence;
1044
1045         journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1046
1047         /* Add the dynamic fields and write it to disk. */
1048         jbd2_journal_update_superblock(journal, 1);
1049         return jbd2_journal_start_thread(journal);
1050 }
1051
1052 /**
1053  * void jbd2_journal_update_superblock() - Update journal sb on disk.
1054  * @journal: The journal to update.
1055  * @wait: Set to '0' if you don't want to wait for IO completion.
1056  *
1057  * Update a journal's dynamic superblock fields and write it to disk,
1058  * optionally waiting for the IO to complete.
1059  */
1060 void jbd2_journal_update_superblock(journal_t *journal, int wait)
1061 {
1062         journal_superblock_t *sb = journal->j_superblock;
1063         struct buffer_head *bh = journal->j_sb_buffer;
1064
1065         /*
1066          * As a special case, if the on-disk copy is already marked as needing
1067          * no recovery (s_start == 0) and there are no outstanding transactions
1068          * in the filesystem, then we can safely defer the superblock update
1069          * until the next commit by setting JBD2_FLUSHED.  This avoids
1070          * attempting a write to a potential-readonly device.
1071          */
1072         if (sb->s_start == 0 && journal->j_tail_sequence ==
1073                                 journal->j_transaction_sequence) {
1074                 jbd_debug(1,"JBD: Skipping superblock update on recovered sb "
1075                         "(start %ld, seq %d, errno %d)\n",
1076                         journal->j_tail, journal->j_tail_sequence,
1077                         journal->j_errno);
1078                 goto out;
1079         }
1080
1081         if (buffer_write_io_error(bh)) {
1082                 /*
1083                  * Oh, dear.  A previous attempt to write the journal
1084                  * superblock failed.  This could happen because the
1085                  * USB device was yanked out.  Or it could happen to
1086                  * be a transient write error and maybe the block will
1087                  * be remapped.  Nothing we can do but to retry the
1088                  * write and hope for the best.
1089                  */
1090                 printk(KERN_ERR "JBD2: previous I/O error detected "
1091                        "for journal superblock update for %s.\n",
1092                        journal->j_devname);
1093                 clear_buffer_write_io_error(bh);
1094                 set_buffer_uptodate(bh);
1095         }
1096
1097         spin_lock(&journal->j_state_lock);
1098         jbd_debug(1,"JBD: updating superblock (start %ld, seq %d, errno %d)\n",
1099                   journal->j_tail, journal->j_tail_sequence, journal->j_errno);
1100
1101         sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1102         sb->s_start    = cpu_to_be32(journal->j_tail);
1103         sb->s_errno    = cpu_to_be32(journal->j_errno);
1104         spin_unlock(&journal->j_state_lock);
1105
1106         BUFFER_TRACE(bh, "marking dirty");
1107         mark_buffer_dirty(bh);
1108         if (wait) {
1109                 sync_dirty_buffer(bh);
1110                 if (buffer_write_io_error(bh)) {
1111                         printk(KERN_ERR "JBD2: I/O error detected "
1112                                "when updating journal superblock for %s.\n",
1113                                journal->j_devname);
1114                         clear_buffer_write_io_error(bh);
1115                         set_buffer_uptodate(bh);
1116                 }
1117         } else
1118                 ll_rw_block(SWRITE, 1, &bh);
1119
1120 out:
1121         /* If we have just flushed the log (by marking s_start==0), then
1122          * any future commit will have to be careful to update the
1123          * superblock again to re-record the true start of the log. */
1124
1125         spin_lock(&journal->j_state_lock);
1126         if (sb->s_start)
1127                 journal->j_flags &= ~JBD2_FLUSHED;
1128         else
1129                 journal->j_flags |= JBD2_FLUSHED;
1130         spin_unlock(&journal->j_state_lock);
1131 }
1132
1133 /*
1134  * Read the superblock for a given journal, performing initial
1135  * validation of the format.
1136  */
1137
1138 static int journal_get_superblock(journal_t *journal)
1139 {
1140         struct buffer_head *bh;
1141         journal_superblock_t *sb;
1142         int err = -EIO;
1143
1144         bh = journal->j_sb_buffer;
1145
1146         J_ASSERT(bh != NULL);
1147         if (!buffer_uptodate(bh)) {
1148                 ll_rw_block(READ, 1, &bh);
1149                 wait_on_buffer(bh);
1150                 if (!buffer_uptodate(bh)) {
1151                         printk (KERN_ERR
1152                                 "JBD: IO error reading journal superblock\n");
1153                         goto out;
1154                 }
1155         }
1156
1157         sb = journal->j_superblock;
1158
1159         err = -EINVAL;
1160
1161         if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1162             sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1163                 printk(KERN_WARNING "JBD: no valid journal superblock found\n");
1164                 goto out;
1165         }
1166
1167         switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1168         case JBD2_SUPERBLOCK_V1:
1169                 journal->j_format_version = 1;
1170                 break;
1171         case JBD2_SUPERBLOCK_V2:
1172                 journal->j_format_version = 2;
1173                 break;
1174         default:
1175                 printk(KERN_WARNING "JBD: unrecognised superblock format ID\n");
1176                 goto out;
1177         }
1178
1179         if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1180                 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1181         else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1182                 printk (KERN_WARNING "JBD: journal file too short\n");
1183                 goto out;
1184         }
1185
1186         if (be32_to_cpu(sb->s_first) == 0 ||
1187             be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1188                 printk(KERN_WARNING
1189                         "JBD2: Invalid start block of journal: %u\n",
1190                         be32_to_cpu(sb->s_first));
1191                 goto out;
1192         }
1193
1194         return 0;
1195
1196 out:
1197         journal_fail_superblock(journal);
1198         return err;
1199 }
1200
1201 /*
1202  * Load the on-disk journal superblock and read the key fields into the
1203  * journal_t.
1204  */
1205
1206 static int load_superblock(journal_t *journal)
1207 {
1208         int err;
1209         journal_superblock_t *sb;
1210
1211         err = journal_get_superblock(journal);
1212         if (err)
1213                 return err;
1214
1215         sb = journal->j_superblock;
1216
1217         journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1218         journal->j_tail = be32_to_cpu(sb->s_start);
1219         journal->j_first = be32_to_cpu(sb->s_first);
1220         journal->j_last = be32_to_cpu(sb->s_maxlen);
1221         journal->j_errno = be32_to_cpu(sb->s_errno);
1222
1223         return 0;
1224 }
1225
1226
1227 /**
1228  * int jbd2_journal_load() - Read journal from disk.
1229  * @journal: Journal to act on.
1230  *
1231  * Given a journal_t structure which tells us which disk blocks contain
1232  * a journal, read the journal from disk to initialise the in-memory
1233  * structures.
1234  */
1235 int jbd2_journal_load(journal_t *journal)
1236 {
1237         int err;
1238         journal_superblock_t *sb;
1239
1240         err = load_superblock(journal);
1241         if (err)
1242                 return err;
1243
1244         sb = journal->j_superblock;
1245         /* If this is a V2 superblock, then we have to check the
1246          * features flags on it. */
1247
1248         if (journal->j_format_version >= 2) {
1249                 if ((sb->s_feature_ro_compat &
1250                      ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1251                     (sb->s_feature_incompat &
1252                      ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1253                         printk (KERN_WARNING
1254                                 "JBD: Unrecognised features on journal\n");
1255                         return -EINVAL;
1256                 }
1257         }
1258
1259         /* Let the recovery code check whether it needs to recover any
1260          * data from the journal. */
1261         if (jbd2_journal_recover(journal))
1262                 goto recovery_error;
1263
1264         if (journal->j_failed_commit) {
1265                 printk(KERN_ERR "JBD2: journal transaction %u on %s "
1266                        "is corrupt.\n", journal->j_failed_commit,
1267                        journal->j_devname);
1268                 return -EIO;
1269         }
1270
1271         /* OK, we've finished with the dynamic journal bits:
1272          * reinitialise the dynamic contents of the superblock in memory
1273          * and reset them on disk. */
1274         if (journal_reset(journal))
1275                 goto recovery_error;
1276
1277         journal->j_flags &= ~JBD2_ABORT;
1278         journal->j_flags |= JBD2_LOADED;
1279         return 0;
1280
1281 recovery_error:
1282         printk (KERN_WARNING "JBD: recovery failed\n");
1283         return -EIO;
1284 }
1285
1286 /**
1287  * void jbd2_journal_destroy() - Release a journal_t structure.
1288  * @journal: Journal to act on.
1289  *
1290  * Release a journal_t structure once it is no longer in use by the
1291  * journaled object.
1292  * Return <0 if we couldn't clean up the journal.
1293  */
1294 int jbd2_journal_destroy(journal_t *journal)
1295 {
1296         int err = 0;
1297
1298         /* Wait for the commit thread to wake up and die. */
1299         journal_kill_thread(journal);
1300
1301         /* Force a final log commit */
1302         if (journal->j_running_transaction)
1303                 jbd2_journal_commit_transaction(journal);
1304
1305         /* Force any old transactions to disk */
1306
1307         /* Totally anal locking here... */
1308         spin_lock(&journal->j_list_lock);
1309         while (journal->j_checkpoint_transactions != NULL) {
1310                 spin_unlock(&journal->j_list_lock);
1311                 mutex_lock(&journal->j_checkpoint_mutex);
1312                 jbd2_log_do_checkpoint(journal);
1313                 mutex_unlock(&journal->j_checkpoint_mutex);
1314                 spin_lock(&journal->j_list_lock);
1315         }
1316
1317         J_ASSERT(journal->j_running_transaction == NULL);
1318         J_ASSERT(journal->j_committing_transaction == NULL);
1319         J_ASSERT(journal->j_checkpoint_transactions == NULL);
1320         spin_unlock(&journal->j_list_lock);
1321
1322         if (journal->j_sb_buffer) {
1323                 if (!is_journal_aborted(journal)) {
1324                         /* We can now mark the journal as empty. */
1325                         journal->j_tail = 0;
1326                         journal->j_tail_sequence =
1327                                 ++journal->j_transaction_sequence;
1328                         jbd2_journal_update_superblock(journal, 1);
1329                 } else {
1330                         err = -EIO;
1331                 }
1332                 brelse(journal->j_sb_buffer);
1333         }
1334
1335         if (journal->j_proc_entry)
1336                 jbd2_stats_proc_exit(journal);
1337         if (journal->j_inode)
1338                 iput(journal->j_inode);
1339         if (journal->j_revoke)
1340                 jbd2_journal_destroy_revoke(journal);
1341         kfree(journal->j_wbuf);
1342         kfree(journal);
1343
1344         return err;
1345 }
1346
1347
1348 /**
1349  *int jbd2_journal_check_used_features () - Check if features specified are used.
1350  * @journal: Journal to check.
1351  * @compat: bitmask of compatible features
1352  * @ro: bitmask of features that force read-only mount
1353  * @incompat: bitmask of incompatible features
1354  *
1355  * Check whether the journal uses all of a given set of
1356  * features.  Return true (non-zero) if it does.
1357  **/
1358
1359 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1360                                  unsigned long ro, unsigned long incompat)
1361 {
1362         journal_superblock_t *sb;
1363
1364         if (!compat && !ro && !incompat)
1365                 return 1;
1366         if (journal->j_format_version == 1)
1367                 return 0;
1368
1369         sb = journal->j_superblock;
1370
1371         if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1372             ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1373             ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1374                 return 1;
1375
1376         return 0;
1377 }
1378
1379 /**
1380  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1381  * @journal: Journal to check.
1382  * @compat: bitmask of compatible features
1383  * @ro: bitmask of features that force read-only mount
1384  * @incompat: bitmask of incompatible features
1385  *
1386  * Check whether the journaling code supports the use of
1387  * all of a given set of features on this journal.  Return true
1388  * (non-zero) if it can. */
1389
1390 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1391                                       unsigned long ro, unsigned long incompat)
1392 {
1393         journal_superblock_t *sb;
1394
1395         if (!compat && !ro && !incompat)
1396                 return 1;
1397
1398         sb = journal->j_superblock;
1399
1400         /* We can support any known requested features iff the
1401          * superblock is in version 2.  Otherwise we fail to support any
1402          * extended sb features. */
1403
1404         if (journal->j_format_version != 2)
1405                 return 0;
1406
1407         if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1408             (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1409             (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1410                 return 1;
1411
1412         return 0;
1413 }
1414
1415 /**
1416  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1417  * @journal: Journal to act on.
1418  * @compat: bitmask of compatible features
1419  * @ro: bitmask of features that force read-only mount
1420  * @incompat: bitmask of incompatible features
1421  *
1422  * Mark a given journal feature as present on the
1423  * superblock.  Returns true if the requested features could be set.
1424  *
1425  */
1426
1427 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1428                           unsigned long ro, unsigned long incompat)
1429 {
1430         journal_superblock_t *sb;
1431
1432         if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1433                 return 1;
1434
1435         if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1436                 return 0;
1437
1438         jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1439                   compat, ro, incompat);
1440
1441         sb = journal->j_superblock;
1442
1443         sb->s_feature_compat    |= cpu_to_be32(compat);
1444         sb->s_feature_ro_compat |= cpu_to_be32(ro);
1445         sb->s_feature_incompat  |= cpu_to_be32(incompat);
1446
1447         return 1;
1448 }
1449
1450 /*
1451  * jbd2_journal_clear_features () - Clear a given journal feature in the
1452  *                                  superblock
1453  * @journal: Journal to act on.
1454  * @compat: bitmask of compatible features
1455  * @ro: bitmask of features that force read-only mount
1456  * @incompat: bitmask of incompatible features
1457  *
1458  * Clear a given journal feature as present on the
1459  * superblock.
1460  */
1461 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1462                                 unsigned long ro, unsigned long incompat)
1463 {
1464         journal_superblock_t *sb;
1465
1466         jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1467                   compat, ro, incompat);
1468
1469         sb = journal->j_superblock;
1470
1471         sb->s_feature_compat    &= ~cpu_to_be32(compat);
1472         sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1473         sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1474 }
1475 EXPORT_SYMBOL(jbd2_journal_clear_features);
1476
1477 /**
1478  * int jbd2_journal_update_format () - Update on-disk journal structure.
1479  * @journal: Journal to act on.
1480  *
1481  * Given an initialised but unloaded journal struct, poke about in the
1482  * on-disk structure to update it to the most recent supported version.
1483  */
1484 int jbd2_journal_update_format (journal_t *journal)
1485 {
1486         journal_superblock_t *sb;
1487         int err;
1488
1489         err = journal_get_superblock(journal);
1490         if (err)
1491                 return err;
1492
1493         sb = journal->j_superblock;
1494
1495         switch (be32_to_cpu(sb->s_header.h_blocktype)) {
1496         case JBD2_SUPERBLOCK_V2:
1497                 return 0;
1498         case JBD2_SUPERBLOCK_V1:
1499                 return journal_convert_superblock_v1(journal, sb);
1500         default:
1501                 break;
1502         }
1503         return -EINVAL;
1504 }
1505
1506 static int journal_convert_superblock_v1(journal_t *journal,
1507                                          journal_superblock_t *sb)
1508 {
1509         int offset, blocksize;
1510         struct buffer_head *bh;
1511
1512         printk(KERN_WARNING
1513                 "JBD: Converting superblock from version 1 to 2.\n");
1514
1515         /* Pre-initialise new fields to zero */
1516         offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb);
1517         blocksize = be32_to_cpu(sb->s_blocksize);
1518         memset(&sb->s_feature_compat, 0, blocksize-offset);
1519
1520         sb->s_nr_users = cpu_to_be32(1);
1521         sb->s_header.h_blocktype = cpu_to_be32(JBD2_SUPERBLOCK_V2);
1522         journal->j_format_version = 2;
1523
1524         bh = journal->j_sb_buffer;
1525         BUFFER_TRACE(bh, "marking dirty");
1526         mark_buffer_dirty(bh);
1527         sync_dirty_buffer(bh);
1528         return 0;
1529 }
1530
1531
1532 /**
1533  * int jbd2_journal_flush () - Flush journal
1534  * @journal: Journal to act on.
1535  *
1536  * Flush all data for a given journal to disk and empty the journal.
1537  * Filesystems can use this when remounting readonly to ensure that
1538  * recovery does not need to happen on remount.
1539  */
1540
1541 int jbd2_journal_flush(journal_t *journal)
1542 {
1543         int err = 0;
1544         transaction_t *transaction = NULL;
1545         unsigned long old_tail;
1546
1547         spin_lock(&journal->j_state_lock);
1548
1549         /* Force everything buffered to the log... */
1550         if (journal->j_running_transaction) {
1551                 transaction = journal->j_running_transaction;
1552                 __jbd2_log_start_commit(journal, transaction->t_tid);
1553         } else if (journal->j_committing_transaction)
1554                 transaction = journal->j_committing_transaction;
1555
1556         /* Wait for the log commit to complete... */
1557         if (transaction) {
1558                 tid_t tid = transaction->t_tid;
1559
1560                 spin_unlock(&journal->j_state_lock);
1561                 jbd2_log_wait_commit(journal, tid);
1562         } else {
1563                 spin_unlock(&journal->j_state_lock);
1564         }
1565
1566         /* ...and flush everything in the log out to disk. */
1567         spin_lock(&journal->j_list_lock);
1568         while (!err && journal->j_checkpoint_transactions != NULL) {
1569                 spin_unlock(&journal->j_list_lock);
1570                 mutex_lock(&journal->j_checkpoint_mutex);
1571                 err = jbd2_log_do_checkpoint(journal);
1572                 mutex_unlock(&journal->j_checkpoint_mutex);
1573                 spin_lock(&journal->j_list_lock);
1574         }
1575         spin_unlock(&journal->j_list_lock);
1576
1577         if (is_journal_aborted(journal))
1578                 return -EIO;
1579
1580         jbd2_cleanup_journal_tail(journal);
1581
1582         /* Finally, mark the journal as really needing no recovery.
1583          * This sets s_start==0 in the underlying superblock, which is
1584          * the magic code for a fully-recovered superblock.  Any future
1585          * commits of data to the journal will restore the current
1586          * s_start value. */
1587         spin_lock(&journal->j_state_lock);
1588         old_tail = journal->j_tail;
1589         journal->j_tail = 0;
1590         spin_unlock(&journal->j_state_lock);
1591         jbd2_journal_update_superblock(journal, 1);
1592         spin_lock(&journal->j_state_lock);
1593         journal->j_tail = old_tail;
1594
1595         J_ASSERT(!journal->j_running_transaction);
1596         J_ASSERT(!journal->j_committing_transaction);
1597         J_ASSERT(!journal->j_checkpoint_transactions);
1598         J_ASSERT(journal->j_head == journal->j_tail);
1599         J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1600         spin_unlock(&journal->j_state_lock);
1601         return 0;
1602 }
1603
1604 /**
1605  * int jbd2_journal_wipe() - Wipe journal contents
1606  * @journal: Journal to act on.
1607  * @write: flag (see below)
1608  *
1609  * Wipe out all of the contents of a journal, safely.  This will produce
1610  * a warning if the journal contains any valid recovery information.
1611  * Must be called between journal_init_*() and jbd2_journal_load().
1612  *
1613  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1614  * we merely suppress recovery.
1615  */
1616
1617 int jbd2_journal_wipe(journal_t *journal, int write)
1618 {
1619         journal_superblock_t *sb;
1620         int err = 0;
1621
1622         J_ASSERT (!(journal->j_flags & JBD2_LOADED));
1623
1624         err = load_superblock(journal);
1625         if (err)
1626                 return err;
1627
1628         sb = journal->j_superblock;
1629
1630         if (!journal->j_tail)
1631                 goto no_recovery;
1632
1633         printk (KERN_WARNING "JBD: %s recovery information on journal\n",
1634                 write ? "Clearing" : "Ignoring");
1635
1636         err = jbd2_journal_skip_recovery(journal);
1637         if (write)
1638                 jbd2_journal_update_superblock(journal, 1);
1639
1640  no_recovery:
1641         return err;
1642 }
1643
1644 /*
1645  * Journal abort has very specific semantics, which we describe
1646  * for journal abort.
1647  *
1648  * Two internal functions, which provide abort to the jbd layer
1649  * itself are here.
1650  */
1651
1652 /*
1653  * Quick version for internal journal use (doesn't lock the journal).
1654  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1655  * and don't attempt to make any other journal updates.
1656  */
1657 void __jbd2_journal_abort_hard(journal_t *journal)
1658 {
1659         transaction_t *transaction;
1660
1661         if (journal->j_flags & JBD2_ABORT)
1662                 return;
1663
1664         printk(KERN_ERR "Aborting journal on device %s.\n",
1665                journal->j_devname);
1666
1667         spin_lock(&journal->j_state_lock);
1668         journal->j_flags |= JBD2_ABORT;
1669         transaction = journal->j_running_transaction;
1670         if (transaction)
1671                 __jbd2_log_start_commit(journal, transaction->t_tid);
1672         spin_unlock(&journal->j_state_lock);
1673 }
1674
1675 /* Soft abort: record the abort error status in the journal superblock,
1676  * but don't do any other IO. */
1677 static void __journal_abort_soft (journal_t *journal, int errno)
1678 {
1679         if (journal->j_flags & JBD2_ABORT)
1680                 return;
1681
1682         if (!journal->j_errno)
1683                 journal->j_errno = errno;
1684
1685         __jbd2_journal_abort_hard(journal);
1686
1687         if (errno)
1688                 jbd2_journal_update_superblock(journal, 1);
1689 }
1690
1691 /**
1692  * void jbd2_journal_abort () - Shutdown the journal immediately.
1693  * @journal: the journal to shutdown.
1694  * @errno:   an error number to record in the journal indicating
1695  *           the reason for the shutdown.
1696  *
1697  * Perform a complete, immediate shutdown of the ENTIRE
1698  * journal (not of a single transaction).  This operation cannot be
1699  * undone without closing and reopening the journal.
1700  *
1701  * The jbd2_journal_abort function is intended to support higher level error
1702  * recovery mechanisms such as the ext2/ext3 remount-readonly error
1703  * mode.
1704  *
1705  * Journal abort has very specific semantics.  Any existing dirty,
1706  * unjournaled buffers in the main filesystem will still be written to
1707  * disk by bdflush, but the journaling mechanism will be suspended
1708  * immediately and no further transaction commits will be honoured.
1709  *
1710  * Any dirty, journaled buffers will be written back to disk without
1711  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
1712  * filesystem, but we _do_ attempt to leave as much data as possible
1713  * behind for fsck to use for cleanup.
1714  *
1715  * Any attempt to get a new transaction handle on a journal which is in
1716  * ABORT state will just result in an -EROFS error return.  A
1717  * jbd2_journal_stop on an existing handle will return -EIO if we have
1718  * entered abort state during the update.
1719  *
1720  * Recursive transactions are not disturbed by journal abort until the
1721  * final jbd2_journal_stop, which will receive the -EIO error.
1722  *
1723  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
1724  * which will be recorded (if possible) in the journal superblock.  This
1725  * allows a client to record failure conditions in the middle of a
1726  * transaction without having to complete the transaction to record the
1727  * failure to disk.  ext3_error, for example, now uses this
1728  * functionality.
1729  *
1730  * Errors which originate from within the journaling layer will NOT
1731  * supply an errno; a null errno implies that absolutely no further
1732  * writes are done to the journal (unless there are any already in
1733  * progress).
1734  *
1735  */
1736
1737 void jbd2_journal_abort(journal_t *journal, int errno)
1738 {
1739         __journal_abort_soft(journal, errno);
1740 }
1741
1742 /**
1743  * int jbd2_journal_errno () - returns the journal's error state.
1744  * @journal: journal to examine.
1745  *
1746  * This is the errno number set with jbd2_journal_abort(), the last
1747  * time the journal was mounted - if the journal was stopped
1748  * without calling abort this will be 0.
1749  *
1750  * If the journal has been aborted on this mount time -EROFS will
1751  * be returned.
1752  */
1753 int jbd2_journal_errno(journal_t *journal)
1754 {
1755         int err;
1756
1757         spin_lock(&journal->j_state_lock);
1758         if (journal->j_flags & JBD2_ABORT)
1759                 err = -EROFS;
1760         else
1761                 err = journal->j_errno;
1762         spin_unlock(&journal->j_state_lock);
1763         return err;
1764 }
1765
1766 /**
1767  * int jbd2_journal_clear_err () - clears the journal's error state
1768  * @journal: journal to act on.
1769  *
1770  * An error must be cleared or acked to take a FS out of readonly
1771  * mode.
1772  */
1773 int jbd2_journal_clear_err(journal_t *journal)
1774 {
1775         int err = 0;
1776
1777         spin_lock(&journal->j_state_lock);
1778         if (journal->j_flags & JBD2_ABORT)
1779                 err = -EROFS;
1780         else
1781                 journal->j_errno = 0;
1782         spin_unlock(&journal->j_state_lock);
1783         return err;
1784 }
1785
1786 /**
1787  * void jbd2_journal_ack_err() - Ack journal err.
1788  * @journal: journal to act on.
1789  *
1790  * An error must be cleared or acked to take a FS out of readonly
1791  * mode.
1792  */
1793 void jbd2_journal_ack_err(journal_t *journal)
1794 {
1795         spin_lock(&journal->j_state_lock);
1796         if (journal->j_errno)
1797                 journal->j_flags |= JBD2_ACK_ERR;
1798         spin_unlock(&journal->j_state_lock);
1799 }
1800
1801 int jbd2_journal_blocks_per_page(struct inode *inode)
1802 {
1803         return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1804 }
1805
1806 /*
1807  * helper functions to deal with 32 or 64bit block numbers.
1808  */
1809 size_t journal_tag_bytes(journal_t *journal)
1810 {
1811         if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
1812                 return JBD2_TAG_SIZE64;
1813         else
1814                 return JBD2_TAG_SIZE32;
1815 }
1816
1817 /*
1818  * Journal_head storage management
1819  */
1820 static struct kmem_cache *jbd2_journal_head_cache;
1821 #ifdef CONFIG_JBD2_DEBUG
1822 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
1823 #endif
1824
1825 static int journal_init_jbd2_journal_head_cache(void)
1826 {
1827         int retval;
1828
1829         J_ASSERT(jbd2_journal_head_cache == NULL);
1830         jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
1831                                 sizeof(struct journal_head),
1832                                 0,              /* offset */
1833                                 SLAB_TEMPORARY, /* flags */
1834                                 NULL);          /* ctor */
1835         retval = 0;
1836         if (!jbd2_journal_head_cache) {
1837                 retval = -ENOMEM;
1838                 printk(KERN_EMERG "JBD: no memory for journal_head cache\n");
1839         }
1840         return retval;
1841 }
1842
1843 static void jbd2_journal_destroy_jbd2_journal_head_cache(void)
1844 {
1845         if (jbd2_journal_head_cache) {
1846                 kmem_cache_destroy(jbd2_journal_head_cache);
1847                 jbd2_journal_head_cache = NULL;
1848         }
1849 }
1850
1851 /*
1852  * journal_head splicing and dicing
1853  */
1854 static struct journal_head *journal_alloc_journal_head(void)
1855 {
1856         struct journal_head *ret;
1857         static unsigned long last_warning;
1858
1859 #ifdef CONFIG_JBD2_DEBUG
1860         atomic_inc(&nr_journal_heads);
1861 #endif
1862         ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
1863         if (!ret) {
1864                 jbd_debug(1, "out of memory for journal_head\n");
1865                 if (time_after(jiffies, last_warning + 5*HZ)) {
1866                         printk(KERN_NOTICE "ENOMEM in %s, retrying.\n",
1867                                __func__);
1868                         last_warning = jiffies;
1869                 }
1870                 while (!ret) {
1871                         yield();
1872                         ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
1873                 }
1874         }
1875         return ret;
1876 }
1877
1878 static void journal_free_journal_head(struct journal_head *jh)
1879 {
1880 #ifdef CONFIG_JBD2_DEBUG
1881         atomic_dec(&nr_journal_heads);
1882         memset(jh, JBD2_POISON_FREE, sizeof(*jh));
1883 #endif
1884         kmem_cache_free(jbd2_journal_head_cache, jh);
1885 }
1886
1887 /*
1888  * A journal_head is attached to a buffer_head whenever JBD has an
1889  * interest in the buffer.
1890  *
1891  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
1892  * is set.  This bit is tested in core kernel code where we need to take
1893  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
1894  * there.
1895  *
1896  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
1897  *
1898  * When a buffer has its BH_JBD bit set it is immune from being released by
1899  * core kernel code, mainly via ->b_count.
1900  *
1901  * A journal_head may be detached from its buffer_head when the journal_head's
1902  * b_transaction, b_cp_transaction and b_next_transaction pointers are NULL.
1903  * Various places in JBD call jbd2_journal_remove_journal_head() to indicate that the
1904  * journal_head can be dropped if needed.
1905  *
1906  * Various places in the kernel want to attach a journal_head to a buffer_head
1907  * _before_ attaching the journal_head to a transaction.  To protect the
1908  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
1909  * journal_head's b_jcount refcount by one.  The caller must call
1910  * jbd2_journal_put_journal_head() to undo this.
1911  *
1912  * So the typical usage would be:
1913  *
1914  *      (Attach a journal_head if needed.  Increments b_jcount)
1915  *      struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1916  *      ...
1917  *      jh->b_transaction = xxx;
1918  *      jbd2_journal_put_journal_head(jh);
1919  *
1920  * Now, the journal_head's b_jcount is zero, but it is safe from being released
1921  * because it has a non-zero b_transaction.
1922  */
1923
1924 /*
1925  * Give a buffer_head a journal_head.
1926  *
1927  * Doesn't need the journal lock.
1928  * May sleep.
1929  */
1930 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
1931 {
1932         struct journal_head *jh;
1933         struct journal_head *new_jh = NULL;
1934
1935 repeat:
1936         if (!buffer_jbd(bh)) {
1937                 new_jh = journal_alloc_journal_head();
1938                 memset(new_jh, 0, sizeof(*new_jh));
1939         }
1940
1941         jbd_lock_bh_journal_head(bh);
1942         if (buffer_jbd(bh)) {
1943                 jh = bh2jh(bh);
1944         } else {
1945                 J_ASSERT_BH(bh,
1946                         (atomic_read(&bh->b_count) > 0) ||
1947                         (bh->b_page && bh->b_page->mapping));
1948
1949                 if (!new_jh) {
1950                         jbd_unlock_bh_journal_head(bh);
1951                         goto repeat;
1952                 }
1953
1954                 jh = new_jh;
1955                 new_jh = NULL;          /* We consumed it */
1956                 set_buffer_jbd(bh);
1957                 bh->b_private = jh;
1958                 jh->b_bh = bh;
1959                 get_bh(bh);
1960                 BUFFER_TRACE(bh, "added journal_head");
1961         }
1962         jh->b_jcount++;
1963         jbd_unlock_bh_journal_head(bh);
1964         if (new_jh)
1965                 journal_free_journal_head(new_jh);
1966         return bh->b_private;
1967 }
1968
1969 /*
1970  * Grab a ref against this buffer_head's journal_head.  If it ended up not
1971  * having a journal_head, return NULL
1972  */
1973 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
1974 {
1975         struct journal_head *jh = NULL;
1976
1977         jbd_lock_bh_journal_head(bh);
1978         if (buffer_jbd(bh)) {
1979                 jh = bh2jh(bh);
1980                 jh->b_jcount++;
1981         }
1982         jbd_unlock_bh_journal_head(bh);
1983         return jh;
1984 }
1985
1986 static void __journal_remove_journal_head(struct buffer_head *bh)
1987 {
1988         struct journal_head *jh = bh2jh(bh);
1989
1990         J_ASSERT_JH(jh, jh->b_jcount >= 0);
1991
1992         get_bh(bh);
1993         if (jh->b_jcount == 0) {
1994                 if (jh->b_transaction == NULL &&
1995                                 jh->b_next_transaction == NULL &&
1996                                 jh->b_cp_transaction == NULL) {
1997                         J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
1998                         J_ASSERT_BH(bh, buffer_jbd(bh));
1999                         J_ASSERT_BH(bh, jh2bh(jh) == bh);
2000                         BUFFER_TRACE(bh, "remove journal_head");
2001                         if (jh->b_frozen_data) {
2002                                 printk(KERN_WARNING "%s: freeing "
2003                                                 "b_frozen_data\n",
2004                                                 __func__);
2005                                 jbd2_free(jh->b_frozen_data, bh->b_size);
2006                         }
2007                         if (jh->b_committed_data) {
2008                                 printk(KERN_WARNING "%s: freeing "
2009                                                 "b_committed_data\n",
2010                                                 __func__);
2011                                 jbd2_free(jh->b_committed_data, bh->b_size);
2012                         }
2013                         bh->b_private = NULL;
2014                         jh->b_bh = NULL;        /* debug, really */
2015                         clear_buffer_jbd(bh);
2016                         __brelse(bh);
2017                         journal_free_journal_head(jh);
2018                 } else {
2019                         BUFFER_TRACE(bh, "journal_head was locked");
2020                 }
2021         }
2022 }
2023
2024 /*
2025  * jbd2_journal_remove_journal_head(): if the buffer isn't attached to a transaction
2026  * and has a zero b_jcount then remove and release its journal_head.   If we did
2027  * see that the buffer is not used by any transaction we also "logically"
2028  * decrement ->b_count.
2029  *
2030  * We in fact take an additional increment on ->b_count as a convenience,
2031  * because the caller usually wants to do additional things with the bh
2032  * after calling here.
2033  * The caller of jbd2_journal_remove_journal_head() *must* run __brelse(bh) at some
2034  * time.  Once the caller has run __brelse(), the buffer is eligible for
2035  * reaping by try_to_free_buffers().
2036  */
2037 void jbd2_journal_remove_journal_head(struct buffer_head *bh)
2038 {
2039         jbd_lock_bh_journal_head(bh);
2040         __journal_remove_journal_head(bh);
2041         jbd_unlock_bh_journal_head(bh);
2042 }
2043
2044 /*
2045  * Drop a reference on the passed journal_head.  If it fell to zero then try to
2046  * release the journal_head from the buffer_head.
2047  */
2048 void jbd2_journal_put_journal_head(struct journal_head *jh)
2049 {
2050         struct buffer_head *bh = jh2bh(jh);
2051
2052         jbd_lock_bh_journal_head(bh);
2053         J_ASSERT_JH(jh, jh->b_jcount > 0);
2054         --jh->b_jcount;
2055         if (!jh->b_jcount && !jh->b_transaction) {
2056                 __journal_remove_journal_head(bh);
2057                 __brelse(bh);
2058         }
2059         jbd_unlock_bh_journal_head(bh);
2060 }
2061
2062 /*
2063  * Initialize jbd inode head
2064  */
2065 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2066 {
2067         jinode->i_transaction = NULL;
2068         jinode->i_next_transaction = NULL;
2069         jinode->i_vfs_inode = inode;
2070         jinode->i_flags = 0;
2071         INIT_LIST_HEAD(&jinode->i_list);
2072 }
2073
2074 /*
2075  * Function to be called before we start removing inode from memory (i.e.,
2076  * clear_inode() is a fine place to be called from). It removes inode from
2077  * transaction's lists.
2078  */
2079 void jbd2_journal_release_jbd_inode(journal_t *journal,
2080                                     struct jbd2_inode *jinode)
2081 {
2082         int writeout = 0;
2083
2084         if (!journal)
2085                 return;
2086 restart:
2087         spin_lock(&journal->j_list_lock);
2088         /* Is commit writing out inode - we have to wait */
2089         if (jinode->i_flags & JI_COMMIT_RUNNING) {
2090                 wait_queue_head_t *wq;
2091                 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2092                 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2093                 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2094                 spin_unlock(&journal->j_list_lock);
2095                 schedule();
2096                 finish_wait(wq, &wait.wait);
2097                 goto restart;
2098         }
2099
2100         /* Do we need to wait for data writeback? */
2101         if (journal->j_committing_transaction == jinode->i_transaction)
2102                 writeout = 1;
2103         if (jinode->i_transaction) {
2104                 list_del(&jinode->i_list);
2105                 jinode->i_transaction = NULL;
2106         }
2107         spin_unlock(&journal->j_list_lock);
2108 }
2109
2110 /*
2111  * debugfs tunables
2112  */
2113 #ifdef CONFIG_JBD2_DEBUG
2114 u8 jbd2_journal_enable_debug __read_mostly;
2115 EXPORT_SYMBOL(jbd2_journal_enable_debug);
2116
2117 #define JBD2_DEBUG_NAME "jbd2-debug"
2118
2119 static struct dentry *jbd2_debugfs_dir;
2120 static struct dentry *jbd2_debug;
2121
2122 static void __init jbd2_create_debugfs_entry(void)
2123 {
2124         jbd2_debugfs_dir = debugfs_create_dir("jbd2", NULL);
2125         if (jbd2_debugfs_dir)
2126                 jbd2_debug = debugfs_create_u8(JBD2_DEBUG_NAME,
2127                                                S_IRUGO | S_IWUSR,
2128                                                jbd2_debugfs_dir,
2129                                                &jbd2_journal_enable_debug);
2130 }
2131
2132 static void __exit jbd2_remove_debugfs_entry(void)
2133 {
2134         debugfs_remove(jbd2_debug);
2135         debugfs_remove(jbd2_debugfs_dir);
2136 }
2137
2138 #else
2139
2140 static void __init jbd2_create_debugfs_entry(void)
2141 {
2142 }
2143
2144 static void __exit jbd2_remove_debugfs_entry(void)
2145 {
2146 }
2147
2148 #endif
2149
2150 #ifdef CONFIG_PROC_FS
2151
2152 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2153
2154 static void __init jbd2_create_jbd_stats_proc_entry(void)
2155 {
2156         proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2157 }
2158
2159 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2160 {
2161         if (proc_jbd2_stats)
2162                 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2163 }
2164
2165 #else
2166
2167 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2168 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2169
2170 #endif
2171
2172 struct kmem_cache *jbd2_handle_cache;
2173
2174 static int __init journal_init_handle_cache(void)
2175 {
2176         jbd2_handle_cache = kmem_cache_create("jbd2_journal_handle",
2177                                 sizeof(handle_t),
2178                                 0,              /* offset */
2179                                 SLAB_TEMPORARY, /* flags */
2180                                 NULL);          /* ctor */
2181         if (jbd2_handle_cache == NULL) {
2182                 printk(KERN_EMERG "JBD: failed to create handle cache\n");
2183                 return -ENOMEM;
2184         }
2185         return 0;
2186 }
2187
2188 static void jbd2_journal_destroy_handle_cache(void)
2189 {
2190         if (jbd2_handle_cache)
2191                 kmem_cache_destroy(jbd2_handle_cache);
2192 }
2193
2194 /*
2195  * Module startup and shutdown
2196  */
2197
2198 static int __init journal_init_caches(void)
2199 {
2200         int ret;
2201
2202         ret = jbd2_journal_init_revoke_caches();
2203         if (ret == 0)
2204                 ret = journal_init_jbd2_journal_head_cache();
2205         if (ret == 0)
2206                 ret = journal_init_handle_cache();
2207         return ret;
2208 }
2209
2210 static void jbd2_journal_destroy_caches(void)
2211 {
2212         jbd2_journal_destroy_revoke_caches();
2213         jbd2_journal_destroy_jbd2_journal_head_cache();
2214         jbd2_journal_destroy_handle_cache();
2215 }
2216
2217 static int __init journal_init(void)
2218 {
2219         int ret;
2220
2221         BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2222
2223         ret = journal_init_caches();
2224         if (ret == 0) {
2225                 jbd2_create_debugfs_entry();
2226                 jbd2_create_jbd_stats_proc_entry();
2227         } else {
2228                 jbd2_journal_destroy_caches();
2229         }
2230         return ret;
2231 }
2232
2233 static void __exit journal_exit(void)
2234 {
2235 #ifdef CONFIG_JBD2_DEBUG
2236         int n = atomic_read(&nr_journal_heads);
2237         if (n)
2238                 printk(KERN_EMERG "JBD: leaked %d journal_heads!\n", n);
2239 #endif
2240         jbd2_remove_debugfs_entry();
2241         jbd2_remove_jbd_stats_proc_entry();
2242         jbd2_journal_destroy_caches();
2243 }
2244
2245 /* 
2246  * jbd2_dev_to_name is a utility function used by the jbd2 and ext4 
2247  * tracing infrastructure to map a dev_t to a device name.
2248  *
2249  * The caller should use rcu_read_lock() in order to make sure the
2250  * device name stays valid until its done with it.  We use
2251  * rcu_read_lock() as well to make sure we're safe in case the caller
2252  * gets sloppy, and because rcu_read_lock() is cheap and can be safely
2253  * nested.
2254  */
2255 struct devname_cache {
2256         struct rcu_head rcu;
2257         dev_t           device;
2258         char            devname[BDEVNAME_SIZE];
2259 };
2260 #define CACHE_SIZE_BITS 6
2261 static struct devname_cache *devcache[1 << CACHE_SIZE_BITS];
2262 static DEFINE_SPINLOCK(devname_cache_lock);
2263
2264 static void free_devcache(struct rcu_head *rcu)
2265 {
2266         kfree(rcu);
2267 }
2268
2269 const char *jbd2_dev_to_name(dev_t device)
2270 {
2271         int     i = hash_32(device, CACHE_SIZE_BITS);
2272         char    *ret;
2273         struct block_device *bd;
2274         static struct devname_cache *new_dev;
2275
2276         rcu_read_lock();
2277         if (devcache[i] && devcache[i]->device == device) {
2278                 ret = devcache[i]->devname;
2279                 rcu_read_unlock();
2280                 return ret;
2281         }
2282         rcu_read_unlock();
2283
2284         new_dev = kmalloc(sizeof(struct devname_cache), GFP_KERNEL);
2285         if (!new_dev)
2286                 return "NODEV-ALLOCFAILURE"; /* Something non-NULL */
2287         spin_lock(&devname_cache_lock);
2288         if (devcache[i]) {
2289                 if (devcache[i]->device == device) {
2290                         kfree(new_dev);
2291                         ret = devcache[i]->devname;
2292                         spin_unlock(&devname_cache_lock);
2293                         return ret;
2294                 }
2295                 call_rcu(&devcache[i]->rcu, free_devcache);
2296         }
2297         devcache[i] = new_dev;
2298         devcache[i]->device = device;
2299         bd = bdget(device);
2300         if (bd) {
2301                 bdevname(bd, devcache[i]->devname);
2302                 bdput(bd);
2303         } else
2304                 __bdevname(device, devcache[i]->devname);
2305         ret = devcache[i]->devname;
2306         spin_unlock(&devname_cache_lock);
2307         return ret;
2308 }
2309 EXPORT_SYMBOL(jbd2_dev_to_name);
2310
2311 MODULE_LICENSE("GPL");
2312 module_init(journal_init);
2313 module_exit(journal_exit);
2314