]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/nilfs2/super.c
nilfs2: move cleanup code of metadata file from inode routines
[karo-tx-linux.git] / fs / nilfs2 / super.c
1 /*
2  * super.c - NILFS module and super block management.
3  *
4  * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * Written by Ryusuke Konishi.
17  */
18 /*
19  *  linux/fs/ext2/super.c
20  *
21  * Copyright (C) 1992, 1993, 1994, 1995
22  * Remy Card (card@masi.ibp.fr)
23  * Laboratoire MASI - Institut Blaise Pascal
24  * Universite Pierre et Marie Curie (Paris VI)
25  *
26  *  from
27  *
28  *  linux/fs/minix/inode.c
29  *
30  *  Copyright (C) 1991, 1992  Linus Torvalds
31  *
32  *  Big-endian to little-endian byte-swapping/bitmaps by
33  *        David S. Miller (davem@caip.rutgers.edu), 1995
34  */
35
36 #include <linux/module.h>
37 #include <linux/string.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/blkdev.h>
41 #include <linux/parser.h>
42 #include <linux/crc32.h>
43 #include <linux/vfs.h>
44 #include <linux/writeback.h>
45 #include <linux/seq_file.h>
46 #include <linux/mount.h>
47 #include "nilfs.h"
48 #include "export.h"
49 #include "mdt.h"
50 #include "alloc.h"
51 #include "btree.h"
52 #include "btnode.h"
53 #include "page.h"
54 #include "cpfile.h"
55 #include "sufile.h" /* nilfs_sufile_resize(), nilfs_sufile_set_alloc_range() */
56 #include "ifile.h"
57 #include "dat.h"
58 #include "segment.h"
59 #include "segbuf.h"
60
61 MODULE_AUTHOR("NTT Corp.");
62 MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
63                    "(NILFS)");
64 MODULE_LICENSE("GPL");
65
66 static struct kmem_cache *nilfs_inode_cachep;
67 struct kmem_cache *nilfs_transaction_cachep;
68 struct kmem_cache *nilfs_segbuf_cachep;
69 struct kmem_cache *nilfs_btree_path_cache;
70
71 static int nilfs_setup_super(struct super_block *sb, int is_mount);
72 static int nilfs_remount(struct super_block *sb, int *flags, char *data);
73
74 static void nilfs_set_error(struct super_block *sb)
75 {
76         struct the_nilfs *nilfs = sb->s_fs_info;
77         struct nilfs_super_block **sbp;
78
79         down_write(&nilfs->ns_sem);
80         if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
81                 nilfs->ns_mount_state |= NILFS_ERROR_FS;
82                 sbp = nilfs_prepare_super(sb, 0);
83                 if (likely(sbp)) {
84                         sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
85                         if (sbp[1])
86                                 sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
87                         nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
88                 }
89         }
90         up_write(&nilfs->ns_sem);
91 }
92
93 /**
94  * nilfs_error() - report failure condition on a filesystem
95  *
96  * nilfs_error() sets an ERROR_FS flag on the superblock as well as
97  * reporting an error message.  It should be called when NILFS detects
98  * incoherences or defects of meta data on disk.  As for sustainable
99  * errors such as a single-shot I/O error, nilfs_warning() or the printk()
100  * function should be used instead.
101  *
102  * The segment constructor must not call this function because it can
103  * kill itself.
104  */
105 void nilfs_error(struct super_block *sb, const char *function,
106                  const char *fmt, ...)
107 {
108         struct the_nilfs *nilfs = sb->s_fs_info;
109         struct va_format vaf;
110         va_list args;
111
112         va_start(args, fmt);
113
114         vaf.fmt = fmt;
115         vaf.va = &args;
116
117         printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n",
118                sb->s_id, function, &vaf);
119
120         va_end(args);
121
122         if (!(sb->s_flags & MS_RDONLY)) {
123                 nilfs_set_error(sb);
124
125                 if (nilfs_test_opt(nilfs, ERRORS_RO)) {
126                         printk(KERN_CRIT "Remounting filesystem read-only\n");
127                         sb->s_flags |= MS_RDONLY;
128                 }
129         }
130
131         if (nilfs_test_opt(nilfs, ERRORS_PANIC))
132                 panic("NILFS (device %s): panic forced after error\n",
133                       sb->s_id);
134 }
135
136 void nilfs_warning(struct super_block *sb, const char *function,
137                    const char *fmt, ...)
138 {
139         struct va_format vaf;
140         va_list args;
141
142         va_start(args, fmt);
143
144         vaf.fmt = fmt;
145         vaf.va = &args;
146
147         printk(KERN_WARNING "NILFS warning (device %s): %s: %pV\n",
148                sb->s_id, function, &vaf);
149
150         va_end(args);
151 }
152
153
154 struct inode *nilfs_alloc_inode(struct super_block *sb)
155 {
156         struct nilfs_inode_info *ii;
157
158         ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS);
159         if (!ii)
160                 return NULL;
161         ii->i_bh = NULL;
162         ii->i_state = 0;
163         ii->i_cno = 0;
164         ii->vfs_inode.i_version = 1;
165         nilfs_mapping_init(&ii->i_btnode_cache, &ii->vfs_inode);
166         return &ii->vfs_inode;
167 }
168
169 static void nilfs_i_callback(struct rcu_head *head)
170 {
171         struct inode *inode = container_of(head, struct inode, i_rcu);
172
173         if (nilfs_is_metadata_file_inode(inode))
174                 nilfs_mdt_destroy(inode);
175
176         kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
177 }
178
179 void nilfs_destroy_inode(struct inode *inode)
180 {
181         call_rcu(&inode->i_rcu, nilfs_i_callback);
182 }
183
184 static int nilfs_sync_super(struct super_block *sb, int flag)
185 {
186         struct the_nilfs *nilfs = sb->s_fs_info;
187         int err;
188
189  retry:
190         set_buffer_dirty(nilfs->ns_sbh[0]);
191         if (nilfs_test_opt(nilfs, BARRIER)) {
192                 err = __sync_dirty_buffer(nilfs->ns_sbh[0],
193                                           WRITE_SYNC | WRITE_FLUSH_FUA);
194         } else {
195                 err = sync_dirty_buffer(nilfs->ns_sbh[0]);
196         }
197
198         if (unlikely(err)) {
199                 printk(KERN_ERR
200                        "NILFS: unable to write superblock (err=%d)\n", err);
201                 if (err == -EIO && nilfs->ns_sbh[1]) {
202                         /*
203                          * sbp[0] points to newer log than sbp[1],
204                          * so copy sbp[0] to sbp[1] to take over sbp[0].
205                          */
206                         memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
207                                nilfs->ns_sbsize);
208                         nilfs_fall_back_super_block(nilfs);
209                         goto retry;
210                 }
211         } else {
212                 struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
213
214                 nilfs->ns_sbwcount++;
215
216                 /*
217                  * The latest segment becomes trailable from the position
218                  * written in superblock.
219                  */
220                 clear_nilfs_discontinued(nilfs);
221
222                 /* update GC protection for recent segments */
223                 if (nilfs->ns_sbh[1]) {
224                         if (flag == NILFS_SB_COMMIT_ALL) {
225                                 set_buffer_dirty(nilfs->ns_sbh[1]);
226                                 if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
227                                         goto out;
228                         }
229                         if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
230                             le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
231                                 sbp = nilfs->ns_sbp[1];
232                 }
233
234                 spin_lock(&nilfs->ns_last_segment_lock);
235                 nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
236                 spin_unlock(&nilfs->ns_last_segment_lock);
237         }
238  out:
239         return err;
240 }
241
242 void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
243                           struct the_nilfs *nilfs)
244 {
245         sector_t nfreeblocks;
246
247         /* nilfs->ns_sem must be locked by the caller. */
248         nilfs_count_free_blocks(nilfs, &nfreeblocks);
249         sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
250
251         spin_lock(&nilfs->ns_last_segment_lock);
252         sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
253         sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
254         sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
255         spin_unlock(&nilfs->ns_last_segment_lock);
256 }
257
258 struct nilfs_super_block **nilfs_prepare_super(struct super_block *sb,
259                                                int flip)
260 {
261         struct the_nilfs *nilfs = sb->s_fs_info;
262         struct nilfs_super_block **sbp = nilfs->ns_sbp;
263
264         /* nilfs->ns_sem must be locked by the caller. */
265         if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
266                 if (sbp[1] &&
267                     sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
268                         memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
269                 } else {
270                         printk(KERN_CRIT "NILFS: superblock broke on dev %s\n",
271                                sb->s_id);
272                         return NULL;
273                 }
274         } else if (sbp[1] &&
275                    sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
276                         memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
277         }
278
279         if (flip && sbp[1])
280                 nilfs_swap_super_block(nilfs);
281
282         return sbp;
283 }
284
285 int nilfs_commit_super(struct super_block *sb, int flag)
286 {
287         struct the_nilfs *nilfs = sb->s_fs_info;
288         struct nilfs_super_block **sbp = nilfs->ns_sbp;
289         time_t t;
290
291         /* nilfs->ns_sem must be locked by the caller. */
292         t = get_seconds();
293         nilfs->ns_sbwtime = t;
294         sbp[0]->s_wtime = cpu_to_le64(t);
295         sbp[0]->s_sum = 0;
296         sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
297                                              (unsigned char *)sbp[0],
298                                              nilfs->ns_sbsize));
299         if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
300                 sbp[1]->s_wtime = sbp[0]->s_wtime;
301                 sbp[1]->s_sum = 0;
302                 sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
303                                             (unsigned char *)sbp[1],
304                                             nilfs->ns_sbsize));
305         }
306         clear_nilfs_sb_dirty(nilfs);
307         nilfs->ns_flushed_device = 1;
308         /* make sure store to ns_flushed_device cannot be reordered */
309         smp_wmb();
310         return nilfs_sync_super(sb, flag);
311 }
312
313 /**
314  * nilfs_cleanup_super() - write filesystem state for cleanup
315  * @sb: super block instance to be unmounted or degraded to read-only
316  *
317  * This function restores state flags in the on-disk super block.
318  * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
319  * filesystem was not clean previously.
320  */
321 int nilfs_cleanup_super(struct super_block *sb)
322 {
323         struct the_nilfs *nilfs = sb->s_fs_info;
324         struct nilfs_super_block **sbp;
325         int flag = NILFS_SB_COMMIT;
326         int ret = -EIO;
327
328         sbp = nilfs_prepare_super(sb, 0);
329         if (sbp) {
330                 sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
331                 nilfs_set_log_cursor(sbp[0], nilfs);
332                 if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
333                         /*
334                          * make the "clean" flag also to the opposite
335                          * super block if both super blocks point to
336                          * the same checkpoint.
337                          */
338                         sbp[1]->s_state = sbp[0]->s_state;
339                         flag = NILFS_SB_COMMIT_ALL;
340                 }
341                 ret = nilfs_commit_super(sb, flag);
342         }
343         return ret;
344 }
345
346 /**
347  * nilfs_move_2nd_super - relocate secondary super block
348  * @sb: super block instance
349  * @sb2off: new offset of the secondary super block (in bytes)
350  */
351 static int nilfs_move_2nd_super(struct super_block *sb, loff_t sb2off)
352 {
353         struct the_nilfs *nilfs = sb->s_fs_info;
354         struct buffer_head *nsbh;
355         struct nilfs_super_block *nsbp;
356         sector_t blocknr, newblocknr;
357         unsigned long offset;
358         int sb2i;  /* array index of the secondary superblock */
359         int ret = 0;
360
361         /* nilfs->ns_sem must be locked by the caller. */
362         if (nilfs->ns_sbh[1] &&
363             nilfs->ns_sbh[1]->b_blocknr > nilfs->ns_first_data_block) {
364                 sb2i = 1;
365                 blocknr = nilfs->ns_sbh[1]->b_blocknr;
366         } else if (nilfs->ns_sbh[0]->b_blocknr > nilfs->ns_first_data_block) {
367                 sb2i = 0;
368                 blocknr = nilfs->ns_sbh[0]->b_blocknr;
369         } else {
370                 sb2i = -1;
371                 blocknr = 0;
372         }
373         if (sb2i >= 0 && (u64)blocknr << nilfs->ns_blocksize_bits == sb2off)
374                 goto out;  /* super block location is unchanged */
375
376         /* Get new super block buffer */
377         newblocknr = sb2off >> nilfs->ns_blocksize_bits;
378         offset = sb2off & (nilfs->ns_blocksize - 1);
379         nsbh = sb_getblk(sb, newblocknr);
380         if (!nsbh) {
381                 printk(KERN_WARNING
382                        "NILFS warning: unable to move secondary superblock "
383                        "to block %llu\n", (unsigned long long)newblocknr);
384                 ret = -EIO;
385                 goto out;
386         }
387         nsbp = (void *)nsbh->b_data + offset;
388         memset(nsbp, 0, nilfs->ns_blocksize);
389
390         if (sb2i >= 0) {
391                 memcpy(nsbp, nilfs->ns_sbp[sb2i], nilfs->ns_sbsize);
392                 brelse(nilfs->ns_sbh[sb2i]);
393                 nilfs->ns_sbh[sb2i] = nsbh;
394                 nilfs->ns_sbp[sb2i] = nsbp;
395         } else if (nilfs->ns_sbh[0]->b_blocknr < nilfs->ns_first_data_block) {
396                 /* secondary super block will be restored to index 1 */
397                 nilfs->ns_sbh[1] = nsbh;
398                 nilfs->ns_sbp[1] = nsbp;
399         } else {
400                 brelse(nsbh);
401         }
402 out:
403         return ret;
404 }
405
406 /**
407  * nilfs_resize_fs - resize the filesystem
408  * @sb: super block instance
409  * @newsize: new size of the filesystem (in bytes)
410  */
411 int nilfs_resize_fs(struct super_block *sb, __u64 newsize)
412 {
413         struct the_nilfs *nilfs = sb->s_fs_info;
414         struct nilfs_super_block **sbp;
415         __u64 devsize, newnsegs;
416         loff_t sb2off;
417         int ret;
418
419         ret = -ERANGE;
420         devsize = i_size_read(sb->s_bdev->bd_inode);
421         if (newsize > devsize)
422                 goto out;
423
424         /*
425          * Write lock is required to protect some functions depending
426          * on the number of segments, the number of reserved segments,
427          * and so forth.
428          */
429         down_write(&nilfs->ns_segctor_sem);
430
431         sb2off = NILFS_SB2_OFFSET_BYTES(newsize);
432         newnsegs = sb2off >> nilfs->ns_blocksize_bits;
433         do_div(newnsegs, nilfs->ns_blocks_per_segment);
434
435         ret = nilfs_sufile_resize(nilfs->ns_sufile, newnsegs);
436         up_write(&nilfs->ns_segctor_sem);
437         if (ret < 0)
438                 goto out;
439
440         ret = nilfs_construct_segment(sb);
441         if (ret < 0)
442                 goto out;
443
444         down_write(&nilfs->ns_sem);
445         nilfs_move_2nd_super(sb, sb2off);
446         ret = -EIO;
447         sbp = nilfs_prepare_super(sb, 0);
448         if (likely(sbp)) {
449                 nilfs_set_log_cursor(sbp[0], nilfs);
450                 /*
451                  * Drop NILFS_RESIZE_FS flag for compatibility with
452                  * mount-time resize which may be implemented in a
453                  * future release.
454                  */
455                 sbp[0]->s_state = cpu_to_le16(le16_to_cpu(sbp[0]->s_state) &
456                                               ~NILFS_RESIZE_FS);
457                 sbp[0]->s_dev_size = cpu_to_le64(newsize);
458                 sbp[0]->s_nsegments = cpu_to_le64(nilfs->ns_nsegments);
459                 if (sbp[1])
460                         memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
461                 ret = nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
462         }
463         up_write(&nilfs->ns_sem);
464
465         /*
466          * Reset the range of allocatable segments last.  This order
467          * is important in the case of expansion because the secondary
468          * superblock must be protected from log write until migration
469          * completes.
470          */
471         if (!ret)
472                 nilfs_sufile_set_alloc_range(nilfs->ns_sufile, 0, newnsegs - 1);
473 out:
474         return ret;
475 }
476
477 static void nilfs_put_super(struct super_block *sb)
478 {
479         struct the_nilfs *nilfs = sb->s_fs_info;
480
481         nilfs_detach_log_writer(sb);
482
483         if (!(sb->s_flags & MS_RDONLY)) {
484                 down_write(&nilfs->ns_sem);
485                 nilfs_cleanup_super(sb);
486                 up_write(&nilfs->ns_sem);
487         }
488
489         iput(nilfs->ns_sufile);
490         iput(nilfs->ns_cpfile);
491         iput(nilfs->ns_dat);
492
493         destroy_nilfs(nilfs);
494         sb->s_fs_info = NULL;
495 }
496
497 static int nilfs_sync_fs(struct super_block *sb, int wait)
498 {
499         struct the_nilfs *nilfs = sb->s_fs_info;
500         struct nilfs_super_block **sbp;
501         int err = 0;
502
503         /* This function is called when super block should be written back */
504         if (wait)
505                 err = nilfs_construct_segment(sb);
506
507         down_write(&nilfs->ns_sem);
508         if (nilfs_sb_dirty(nilfs)) {
509                 sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs));
510                 if (likely(sbp)) {
511                         nilfs_set_log_cursor(sbp[0], nilfs);
512                         nilfs_commit_super(sb, NILFS_SB_COMMIT);
513                 }
514         }
515         up_write(&nilfs->ns_sem);
516
517         if (!err)
518                 err = nilfs_flush_device(nilfs);
519
520         return err;
521 }
522
523 int nilfs_attach_checkpoint(struct super_block *sb, __u64 cno, int curr_mnt,
524                             struct nilfs_root **rootp)
525 {
526         struct the_nilfs *nilfs = sb->s_fs_info;
527         struct nilfs_root *root;
528         struct nilfs_checkpoint *raw_cp;
529         struct buffer_head *bh_cp;
530         int err = -ENOMEM;
531
532         root = nilfs_find_or_create_root(
533                 nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno);
534         if (!root)
535                 return err;
536
537         if (root->ifile)
538                 goto reuse; /* already attached checkpoint */
539
540         down_read(&nilfs->ns_segctor_sem);
541         err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
542                                           &bh_cp);
543         up_read(&nilfs->ns_segctor_sem);
544         if (unlikely(err)) {
545                 if (err == -ENOENT || err == -EINVAL) {
546                         printk(KERN_ERR
547                                "NILFS: Invalid checkpoint "
548                                "(checkpoint number=%llu)\n",
549                                (unsigned long long)cno);
550                         err = -EINVAL;
551                 }
552                 goto failed;
553         }
554
555         err = nilfs_ifile_read(sb, root, nilfs->ns_inode_size,
556                                &raw_cp->cp_ifile_inode, &root->ifile);
557         if (err)
558                 goto failed_bh;
559
560         atomic64_set(&root->inodes_count,
561                         le64_to_cpu(raw_cp->cp_inodes_count));
562         atomic64_set(&root->blocks_count,
563                         le64_to_cpu(raw_cp->cp_blocks_count));
564
565         nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
566
567  reuse:
568         *rootp = root;
569         return 0;
570
571  failed_bh:
572         nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
573  failed:
574         nilfs_put_root(root);
575
576         return err;
577 }
578
579 static int nilfs_freeze(struct super_block *sb)
580 {
581         struct the_nilfs *nilfs = sb->s_fs_info;
582         int err;
583
584         if (sb->s_flags & MS_RDONLY)
585                 return 0;
586
587         /* Mark super block clean */
588         down_write(&nilfs->ns_sem);
589         err = nilfs_cleanup_super(sb);
590         up_write(&nilfs->ns_sem);
591         return err;
592 }
593
594 static int nilfs_unfreeze(struct super_block *sb)
595 {
596         struct the_nilfs *nilfs = sb->s_fs_info;
597
598         if (sb->s_flags & MS_RDONLY)
599                 return 0;
600
601         down_write(&nilfs->ns_sem);
602         nilfs_setup_super(sb, false);
603         up_write(&nilfs->ns_sem);
604         return 0;
605 }
606
607 static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
608 {
609         struct super_block *sb = dentry->d_sb;
610         struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
611         struct the_nilfs *nilfs = root->nilfs;
612         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
613         unsigned long long blocks;
614         unsigned long overhead;
615         unsigned long nrsvblocks;
616         sector_t nfreeblocks;
617         u64 nmaxinodes, nfreeinodes;
618         int err;
619
620         /*
621          * Compute all of the segment blocks
622          *
623          * The blocks before first segment and after last segment
624          * are excluded.
625          */
626         blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
627                 - nilfs->ns_first_data_block;
628         nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
629
630         /*
631          * Compute the overhead
632          *
633          * When distributing meta data blocks outside segment structure,
634          * We must count them as the overhead.
635          */
636         overhead = 0;
637
638         err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
639         if (unlikely(err))
640                 return err;
641
642         err = nilfs_ifile_count_free_inodes(root->ifile,
643                                             &nmaxinodes, &nfreeinodes);
644         if (unlikely(err)) {
645                 printk(KERN_WARNING
646                         "NILFS warning: fail to count free inodes: err %d.\n",
647                         err);
648                 if (err == -ERANGE) {
649                         /*
650                          * If nilfs_palloc_count_max_entries() returns
651                          * -ERANGE error code then we simply treat
652                          * curent inodes count as maximum possible and
653                          * zero as free inodes value.
654                          */
655                         nmaxinodes = atomic64_read(&root->inodes_count);
656                         nfreeinodes = 0;
657                         err = 0;
658                 } else
659                         return err;
660         }
661
662         buf->f_type = NILFS_SUPER_MAGIC;
663         buf->f_bsize = sb->s_blocksize;
664         buf->f_blocks = blocks - overhead;
665         buf->f_bfree = nfreeblocks;
666         buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
667                 (buf->f_bfree - nrsvblocks) : 0;
668         buf->f_files = nmaxinodes;
669         buf->f_ffree = nfreeinodes;
670         buf->f_namelen = NILFS_NAME_LEN;
671         buf->f_fsid.val[0] = (u32)id;
672         buf->f_fsid.val[1] = (u32)(id >> 32);
673
674         return 0;
675 }
676
677 static int nilfs_show_options(struct seq_file *seq, struct dentry *dentry)
678 {
679         struct super_block *sb = dentry->d_sb;
680         struct the_nilfs *nilfs = sb->s_fs_info;
681         struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
682
683         if (!nilfs_test_opt(nilfs, BARRIER))
684                 seq_puts(seq, ",nobarrier");
685         if (root->cno != NILFS_CPTREE_CURRENT_CNO)
686                 seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno);
687         if (nilfs_test_opt(nilfs, ERRORS_PANIC))
688                 seq_puts(seq, ",errors=panic");
689         if (nilfs_test_opt(nilfs, ERRORS_CONT))
690                 seq_puts(seq, ",errors=continue");
691         if (nilfs_test_opt(nilfs, STRICT_ORDER))
692                 seq_puts(seq, ",order=strict");
693         if (nilfs_test_opt(nilfs, NORECOVERY))
694                 seq_puts(seq, ",norecovery");
695         if (nilfs_test_opt(nilfs, DISCARD))
696                 seq_puts(seq, ",discard");
697
698         return 0;
699 }
700
701 static const struct super_operations nilfs_sops = {
702         .alloc_inode    = nilfs_alloc_inode,
703         .destroy_inode  = nilfs_destroy_inode,
704         .dirty_inode    = nilfs_dirty_inode,
705         .evict_inode    = nilfs_evict_inode,
706         .put_super      = nilfs_put_super,
707         .sync_fs        = nilfs_sync_fs,
708         .freeze_fs      = nilfs_freeze,
709         .unfreeze_fs    = nilfs_unfreeze,
710         .statfs         = nilfs_statfs,
711         .remount_fs     = nilfs_remount,
712         .show_options = nilfs_show_options
713 };
714
715 enum {
716         Opt_err_cont, Opt_err_panic, Opt_err_ro,
717         Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery,
718         Opt_discard, Opt_nodiscard, Opt_err,
719 };
720
721 static match_table_t tokens = {
722         {Opt_err_cont, "errors=continue"},
723         {Opt_err_panic, "errors=panic"},
724         {Opt_err_ro, "errors=remount-ro"},
725         {Opt_barrier, "barrier"},
726         {Opt_nobarrier, "nobarrier"},
727         {Opt_snapshot, "cp=%u"},
728         {Opt_order, "order=%s"},
729         {Opt_norecovery, "norecovery"},
730         {Opt_discard, "discard"},
731         {Opt_nodiscard, "nodiscard"},
732         {Opt_err, NULL}
733 };
734
735 static int parse_options(char *options, struct super_block *sb, int is_remount)
736 {
737         struct the_nilfs *nilfs = sb->s_fs_info;
738         char *p;
739         substring_t args[MAX_OPT_ARGS];
740
741         if (!options)
742                 return 1;
743
744         while ((p = strsep(&options, ",")) != NULL) {
745                 int token;
746                 if (!*p)
747                         continue;
748
749                 token = match_token(p, tokens, args);
750                 switch (token) {
751                 case Opt_barrier:
752                         nilfs_set_opt(nilfs, BARRIER);
753                         break;
754                 case Opt_nobarrier:
755                         nilfs_clear_opt(nilfs, BARRIER);
756                         break;
757                 case Opt_order:
758                         if (strcmp(args[0].from, "relaxed") == 0)
759                                 /* Ordered data semantics */
760                                 nilfs_clear_opt(nilfs, STRICT_ORDER);
761                         else if (strcmp(args[0].from, "strict") == 0)
762                                 /* Strict in-order semantics */
763                                 nilfs_set_opt(nilfs, STRICT_ORDER);
764                         else
765                                 return 0;
766                         break;
767                 case Opt_err_panic:
768                         nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_PANIC);
769                         break;
770                 case Opt_err_ro:
771                         nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_RO);
772                         break;
773                 case Opt_err_cont:
774                         nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_CONT);
775                         break;
776                 case Opt_snapshot:
777                         if (is_remount) {
778                                 printk(KERN_ERR
779                                        "NILFS: \"%s\" option is invalid "
780                                        "for remount.\n", p);
781                                 return 0;
782                         }
783                         break;
784                 case Opt_norecovery:
785                         nilfs_set_opt(nilfs, NORECOVERY);
786                         break;
787                 case Opt_discard:
788                         nilfs_set_opt(nilfs, DISCARD);
789                         break;
790                 case Opt_nodiscard:
791                         nilfs_clear_opt(nilfs, DISCARD);
792                         break;
793                 default:
794                         printk(KERN_ERR
795                                "NILFS: Unrecognized mount option \"%s\"\n", p);
796                         return 0;
797                 }
798         }
799         return 1;
800 }
801
802 static inline void
803 nilfs_set_default_options(struct super_block *sb,
804                           struct nilfs_super_block *sbp)
805 {
806         struct the_nilfs *nilfs = sb->s_fs_info;
807
808         nilfs->ns_mount_opt =
809                 NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
810 }
811
812 static int nilfs_setup_super(struct super_block *sb, int is_mount)
813 {
814         struct the_nilfs *nilfs = sb->s_fs_info;
815         struct nilfs_super_block **sbp;
816         int max_mnt_count;
817         int mnt_count;
818
819         /* nilfs->ns_sem must be locked by the caller. */
820         sbp = nilfs_prepare_super(sb, 0);
821         if (!sbp)
822                 return -EIO;
823
824         if (!is_mount)
825                 goto skip_mount_setup;
826
827         max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
828         mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
829
830         if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
831                 printk(KERN_WARNING
832                        "NILFS warning: mounting fs with errors\n");
833 #if 0
834         } else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
835                 printk(KERN_WARNING
836                        "NILFS warning: maximal mount count reached\n");
837 #endif
838         }
839         if (!max_mnt_count)
840                 sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
841
842         sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
843         sbp[0]->s_mtime = cpu_to_le64(get_seconds());
844
845 skip_mount_setup:
846         sbp[0]->s_state =
847                 cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
848         /* synchronize sbp[1] with sbp[0] */
849         if (sbp[1])
850                 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
851         return nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
852 }
853
854 struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
855                                                  u64 pos, int blocksize,
856                                                  struct buffer_head **pbh)
857 {
858         unsigned long long sb_index = pos;
859         unsigned long offset;
860
861         offset = do_div(sb_index, blocksize);
862         *pbh = sb_bread(sb, sb_index);
863         if (!*pbh)
864                 return NULL;
865         return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
866 }
867
868 int nilfs_store_magic_and_option(struct super_block *sb,
869                                  struct nilfs_super_block *sbp,
870                                  char *data)
871 {
872         struct the_nilfs *nilfs = sb->s_fs_info;
873
874         sb->s_magic = le16_to_cpu(sbp->s_magic);
875
876         /* FS independent flags */
877 #ifdef NILFS_ATIME_DISABLE
878         sb->s_flags |= MS_NOATIME;
879 #endif
880
881         nilfs_set_default_options(sb, sbp);
882
883         nilfs->ns_resuid = le16_to_cpu(sbp->s_def_resuid);
884         nilfs->ns_resgid = le16_to_cpu(sbp->s_def_resgid);
885         nilfs->ns_interval = le32_to_cpu(sbp->s_c_interval);
886         nilfs->ns_watermark = le32_to_cpu(sbp->s_c_block_max);
887
888         return !parse_options(data, sb, 0) ? -EINVAL : 0 ;
889 }
890
891 int nilfs_check_feature_compatibility(struct super_block *sb,
892                                       struct nilfs_super_block *sbp)
893 {
894         __u64 features;
895
896         features = le64_to_cpu(sbp->s_feature_incompat) &
897                 ~NILFS_FEATURE_INCOMPAT_SUPP;
898         if (features) {
899                 printk(KERN_ERR "NILFS: couldn't mount because of unsupported "
900                        "optional features (%llx)\n",
901                        (unsigned long long)features);
902                 return -EINVAL;
903         }
904         features = le64_to_cpu(sbp->s_feature_compat_ro) &
905                 ~NILFS_FEATURE_COMPAT_RO_SUPP;
906         if (!(sb->s_flags & MS_RDONLY) && features) {
907                 printk(KERN_ERR "NILFS: couldn't mount RDWR because of "
908                        "unsupported optional features (%llx)\n",
909                        (unsigned long long)features);
910                 return -EINVAL;
911         }
912         return 0;
913 }
914
915 static int nilfs_get_root_dentry(struct super_block *sb,
916                                  struct nilfs_root *root,
917                                  struct dentry **root_dentry)
918 {
919         struct inode *inode;
920         struct dentry *dentry;
921         int ret = 0;
922
923         inode = nilfs_iget(sb, root, NILFS_ROOT_INO);
924         if (IS_ERR(inode)) {
925                 printk(KERN_ERR "NILFS: get root inode failed\n");
926                 ret = PTR_ERR(inode);
927                 goto out;
928         }
929         if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) {
930                 iput(inode);
931                 printk(KERN_ERR "NILFS: corrupt root inode.\n");
932                 ret = -EINVAL;
933                 goto out;
934         }
935
936         if (root->cno == NILFS_CPTREE_CURRENT_CNO) {
937                 dentry = d_find_alias(inode);
938                 if (!dentry) {
939                         dentry = d_make_root(inode);
940                         if (!dentry) {
941                                 ret = -ENOMEM;
942                                 goto failed_dentry;
943                         }
944                 } else {
945                         iput(inode);
946                 }
947         } else {
948                 dentry = d_obtain_root(inode);
949                 if (IS_ERR(dentry)) {
950                         ret = PTR_ERR(dentry);
951                         goto failed_dentry;
952                 }
953         }
954         *root_dentry = dentry;
955  out:
956         return ret;
957
958  failed_dentry:
959         printk(KERN_ERR "NILFS: get root dentry failed\n");
960         goto out;
961 }
962
963 static int nilfs_attach_snapshot(struct super_block *s, __u64 cno,
964                                  struct dentry **root_dentry)
965 {
966         struct the_nilfs *nilfs = s->s_fs_info;
967         struct nilfs_root *root;
968         int ret;
969
970         mutex_lock(&nilfs->ns_snapshot_mount_mutex);
971
972         down_read(&nilfs->ns_segctor_sem);
973         ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno);
974         up_read(&nilfs->ns_segctor_sem);
975         if (ret < 0) {
976                 ret = (ret == -ENOENT) ? -EINVAL : ret;
977                 goto out;
978         } else if (!ret) {
979                 printk(KERN_ERR "NILFS: The specified checkpoint is "
980                        "not a snapshot (checkpoint number=%llu).\n",
981                        (unsigned long long)cno);
982                 ret = -EINVAL;
983                 goto out;
984         }
985
986         ret = nilfs_attach_checkpoint(s, cno, false, &root);
987         if (ret) {
988                 printk(KERN_ERR "NILFS: error loading snapshot "
989                        "(checkpoint number=%llu).\n",
990                (unsigned long long)cno);
991                 goto out;
992         }
993         ret = nilfs_get_root_dentry(s, root, root_dentry);
994         nilfs_put_root(root);
995  out:
996         mutex_unlock(&nilfs->ns_snapshot_mount_mutex);
997         return ret;
998 }
999
1000 /**
1001  * nilfs_tree_is_busy() - try to shrink dentries of a checkpoint
1002  * @root_dentry: root dentry of the tree to be shrunk
1003  *
1004  * This function returns true if the tree was in-use.
1005  */
1006 static bool nilfs_tree_is_busy(struct dentry *root_dentry)
1007 {
1008         shrink_dcache_parent(root_dentry);
1009         return d_count(root_dentry) > 1;
1010 }
1011
1012 int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno)
1013 {
1014         struct the_nilfs *nilfs = sb->s_fs_info;
1015         struct nilfs_root *root;
1016         struct inode *inode;
1017         struct dentry *dentry;
1018         int ret;
1019
1020         if (cno > nilfs->ns_cno)
1021                 return false;
1022
1023         if (cno >= nilfs_last_cno(nilfs))
1024                 return true;    /* protect recent checkpoints */
1025
1026         ret = false;
1027         root = nilfs_lookup_root(nilfs, cno);
1028         if (root) {
1029                 inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO);
1030                 if (inode) {
1031                         dentry = d_find_alias(inode);
1032                         if (dentry) {
1033                                 ret = nilfs_tree_is_busy(dentry);
1034                                 dput(dentry);
1035                         }
1036                         iput(inode);
1037                 }
1038                 nilfs_put_root(root);
1039         }
1040         return ret;
1041 }
1042
1043 /**
1044  * nilfs_fill_super() - initialize a super block instance
1045  * @sb: super_block
1046  * @data: mount options
1047  * @silent: silent mode flag
1048  *
1049  * This function is called exclusively by nilfs->ns_mount_mutex.
1050  * So, the recovery process is protected from other simultaneous mounts.
1051  */
1052 static int
1053 nilfs_fill_super(struct super_block *sb, void *data, int silent)
1054 {
1055         struct the_nilfs *nilfs;
1056         struct nilfs_root *fsroot;
1057         __u64 cno;
1058         int err;
1059
1060         nilfs = alloc_nilfs(sb->s_bdev);
1061         if (!nilfs)
1062                 return -ENOMEM;
1063
1064         sb->s_fs_info = nilfs;
1065
1066         err = init_nilfs(nilfs, sb, (char *)data);
1067         if (err)
1068                 goto failed_nilfs;
1069
1070         sb->s_op = &nilfs_sops;
1071         sb->s_export_op = &nilfs_export_ops;
1072         sb->s_root = NULL;
1073         sb->s_time_gran = 1;
1074         sb->s_max_links = NILFS_LINK_MAX;
1075
1076         sb->s_bdi = &bdev_get_queue(sb->s_bdev)->backing_dev_info;
1077
1078         err = load_nilfs(nilfs, sb);
1079         if (err)
1080                 goto failed_nilfs;
1081
1082         cno = nilfs_last_cno(nilfs);
1083         err = nilfs_attach_checkpoint(sb, cno, true, &fsroot);
1084         if (err) {
1085                 printk(KERN_ERR "NILFS: error loading last checkpoint "
1086                        "(checkpoint number=%llu).\n", (unsigned long long)cno);
1087                 goto failed_unload;
1088         }
1089
1090         if (!(sb->s_flags & MS_RDONLY)) {
1091                 err = nilfs_attach_log_writer(sb, fsroot);
1092                 if (err)
1093                         goto failed_checkpoint;
1094         }
1095
1096         err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root);
1097         if (err)
1098                 goto failed_segctor;
1099
1100         nilfs_put_root(fsroot);
1101
1102         if (!(sb->s_flags & MS_RDONLY)) {
1103                 down_write(&nilfs->ns_sem);
1104                 nilfs_setup_super(sb, true);
1105                 up_write(&nilfs->ns_sem);
1106         }
1107
1108         return 0;
1109
1110  failed_segctor:
1111         nilfs_detach_log_writer(sb);
1112
1113  failed_checkpoint:
1114         nilfs_put_root(fsroot);
1115
1116  failed_unload:
1117         iput(nilfs->ns_sufile);
1118         iput(nilfs->ns_cpfile);
1119         iput(nilfs->ns_dat);
1120
1121  failed_nilfs:
1122         destroy_nilfs(nilfs);
1123         return err;
1124 }
1125
1126 static int nilfs_remount(struct super_block *sb, int *flags, char *data)
1127 {
1128         struct the_nilfs *nilfs = sb->s_fs_info;
1129         unsigned long old_sb_flags;
1130         unsigned long old_mount_opt;
1131         int err;
1132
1133         sync_filesystem(sb);
1134         old_sb_flags = sb->s_flags;
1135         old_mount_opt = nilfs->ns_mount_opt;
1136
1137         if (!parse_options(data, sb, 1)) {
1138                 err = -EINVAL;
1139                 goto restore_opts;
1140         }
1141         sb->s_flags = (sb->s_flags & ~MS_POSIXACL);
1142
1143         err = -EINVAL;
1144
1145         if (!nilfs_valid_fs(nilfs)) {
1146                 printk(KERN_WARNING "NILFS (device %s): couldn't "
1147                        "remount because the filesystem is in an "
1148                        "incomplete recovery state.\n", sb->s_id);
1149                 goto restore_opts;
1150         }
1151
1152         if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1153                 goto out;
1154         if (*flags & MS_RDONLY) {
1155                 /* Shutting down log writer */
1156                 nilfs_detach_log_writer(sb);
1157                 sb->s_flags |= MS_RDONLY;
1158
1159                 /*
1160                  * Remounting a valid RW partition RDONLY, so set
1161                  * the RDONLY flag and then mark the partition as valid again.
1162                  */
1163                 down_write(&nilfs->ns_sem);
1164                 nilfs_cleanup_super(sb);
1165                 up_write(&nilfs->ns_sem);
1166         } else {
1167                 __u64 features;
1168                 struct nilfs_root *root;
1169
1170                 /*
1171                  * Mounting a RDONLY partition read-write, so reread and
1172                  * store the current valid flag.  (It may have been changed
1173                  * by fsck since we originally mounted the partition.)
1174                  */
1175                 down_read(&nilfs->ns_sem);
1176                 features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
1177                         ~NILFS_FEATURE_COMPAT_RO_SUPP;
1178                 up_read(&nilfs->ns_sem);
1179                 if (features) {
1180                         printk(KERN_WARNING "NILFS (device %s): couldn't "
1181                                "remount RDWR because of unsupported optional "
1182                                "features (%llx)\n",
1183                                sb->s_id, (unsigned long long)features);
1184                         err = -EROFS;
1185                         goto restore_opts;
1186                 }
1187
1188                 sb->s_flags &= ~MS_RDONLY;
1189
1190                 root = NILFS_I(d_inode(sb->s_root))->i_root;
1191                 err = nilfs_attach_log_writer(sb, root);
1192                 if (err)
1193                         goto restore_opts;
1194
1195                 down_write(&nilfs->ns_sem);
1196                 nilfs_setup_super(sb, true);
1197                 up_write(&nilfs->ns_sem);
1198         }
1199  out:
1200         return 0;
1201
1202  restore_opts:
1203         sb->s_flags = old_sb_flags;
1204         nilfs->ns_mount_opt = old_mount_opt;
1205         return err;
1206 }
1207
1208 struct nilfs_super_data {
1209         struct block_device *bdev;
1210         __u64 cno;
1211         int flags;
1212 };
1213
1214 /**
1215  * nilfs_identify - pre-read mount options needed to identify mount instance
1216  * @data: mount options
1217  * @sd: nilfs_super_data
1218  */
1219 static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1220 {
1221         char *p, *options = data;
1222         substring_t args[MAX_OPT_ARGS];
1223         int token;
1224         int ret = 0;
1225
1226         do {
1227                 p = strsep(&options, ",");
1228                 if (p != NULL && *p) {
1229                         token = match_token(p, tokens, args);
1230                         if (token == Opt_snapshot) {
1231                                 if (!(sd->flags & MS_RDONLY)) {
1232                                         ret++;
1233                                 } else {
1234                                         sd->cno = simple_strtoull(args[0].from,
1235                                                                   NULL, 0);
1236                                         /*
1237                                          * No need to see the end pointer;
1238                                          * match_token() has done syntax
1239                                          * checking.
1240                                          */
1241                                         if (sd->cno == 0)
1242                                                 ret++;
1243                                 }
1244                         }
1245                         if (ret)
1246                                 printk(KERN_ERR
1247                                        "NILFS: invalid mount option: %s\n", p);
1248                 }
1249                 if (!options)
1250                         break;
1251                 BUG_ON(options == data);
1252                 *(options - 1) = ',';
1253         } while (!ret);
1254         return ret;
1255 }
1256
1257 static int nilfs_set_bdev_super(struct super_block *s, void *data)
1258 {
1259         s->s_bdev = data;
1260         s->s_dev = s->s_bdev->bd_dev;
1261         return 0;
1262 }
1263
1264 static int nilfs_test_bdev_super(struct super_block *s, void *data)
1265 {
1266         return (void *)s->s_bdev == data;
1267 }
1268
1269 static struct dentry *
1270 nilfs_mount(struct file_system_type *fs_type, int flags,
1271              const char *dev_name, void *data)
1272 {
1273         struct nilfs_super_data sd;
1274         struct super_block *s;
1275         fmode_t mode = FMODE_READ | FMODE_EXCL;
1276         struct dentry *root_dentry;
1277         int err, s_new = false;
1278
1279         if (!(flags & MS_RDONLY))
1280                 mode |= FMODE_WRITE;
1281
1282         sd.bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1283         if (IS_ERR(sd.bdev))
1284                 return ERR_CAST(sd.bdev);
1285
1286         sd.cno = 0;
1287         sd.flags = flags;
1288         if (nilfs_identify((char *)data, &sd)) {
1289                 err = -EINVAL;
1290                 goto failed;
1291         }
1292
1293         /*
1294          * once the super is inserted into the list by sget, s_umount
1295          * will protect the lockfs code from trying to start a snapshot
1296          * while we are mounting
1297          */
1298         mutex_lock(&sd.bdev->bd_fsfreeze_mutex);
1299         if (sd.bdev->bd_fsfreeze_count > 0) {
1300                 mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1301                 err = -EBUSY;
1302                 goto failed;
1303         }
1304         s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, flags,
1305                  sd.bdev);
1306         mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1307         if (IS_ERR(s)) {
1308                 err = PTR_ERR(s);
1309                 goto failed;
1310         }
1311
1312         if (!s->s_root) {
1313                 s_new = true;
1314
1315                 /* New superblock instance created */
1316                 s->s_mode = mode;
1317                 snprintf(s->s_id, sizeof(s->s_id), "%pg", sd.bdev);
1318                 sb_set_blocksize(s, block_size(sd.bdev));
1319
1320                 err = nilfs_fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1321                 if (err)
1322                         goto failed_super;
1323
1324                 s->s_flags |= MS_ACTIVE;
1325         } else if (!sd.cno) {
1326                 if (nilfs_tree_is_busy(s->s_root)) {
1327                         if ((flags ^ s->s_flags) & MS_RDONLY) {
1328                                 printk(KERN_ERR "NILFS: the device already "
1329                                        "has a %s mount.\n",
1330                                        (s->s_flags & MS_RDONLY) ?
1331                                        "read-only" : "read/write");
1332                                 err = -EBUSY;
1333                                 goto failed_super;
1334                         }
1335                 } else {
1336                         /*
1337                          * Try remount to setup mount states if the current
1338                          * tree is not mounted and only snapshots use this sb.
1339                          */
1340                         err = nilfs_remount(s, &flags, data);
1341                         if (err)
1342                                 goto failed_super;
1343                 }
1344         }
1345
1346         if (sd.cno) {
1347                 err = nilfs_attach_snapshot(s, sd.cno, &root_dentry);
1348                 if (err)
1349                         goto failed_super;
1350         } else {
1351                 root_dentry = dget(s->s_root);
1352         }
1353
1354         if (!s_new)
1355                 blkdev_put(sd.bdev, mode);
1356
1357         return root_dentry;
1358
1359  failed_super:
1360         deactivate_locked_super(s);
1361
1362  failed:
1363         if (!s_new)
1364                 blkdev_put(sd.bdev, mode);
1365         return ERR_PTR(err);
1366 }
1367
1368 struct file_system_type nilfs_fs_type = {
1369         .owner    = THIS_MODULE,
1370         .name     = "nilfs2",
1371         .mount    = nilfs_mount,
1372         .kill_sb  = kill_block_super,
1373         .fs_flags = FS_REQUIRES_DEV,
1374 };
1375 MODULE_ALIAS_FS("nilfs2");
1376
1377 static void nilfs_inode_init_once(void *obj)
1378 {
1379         struct nilfs_inode_info *ii = obj;
1380
1381         INIT_LIST_HEAD(&ii->i_dirty);
1382 #ifdef CONFIG_NILFS_XATTR
1383         init_rwsem(&ii->xattr_sem);
1384 #endif
1385         address_space_init_once(&ii->i_btnode_cache);
1386         ii->i_bmap = &ii->i_bmap_data;
1387         inode_init_once(&ii->vfs_inode);
1388 }
1389
1390 static void nilfs_segbuf_init_once(void *obj)
1391 {
1392         memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1393 }
1394
1395 static void nilfs_destroy_cachep(void)
1396 {
1397         /*
1398          * Make sure all delayed rcu free inodes are flushed before we
1399          * destroy cache.
1400          */
1401         rcu_barrier();
1402
1403         kmem_cache_destroy(nilfs_inode_cachep);
1404         kmem_cache_destroy(nilfs_transaction_cachep);
1405         kmem_cache_destroy(nilfs_segbuf_cachep);
1406         kmem_cache_destroy(nilfs_btree_path_cache);
1407 }
1408
1409 static int __init nilfs_init_cachep(void)
1410 {
1411         nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1412                         sizeof(struct nilfs_inode_info), 0,
1413                         SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT,
1414                         nilfs_inode_init_once);
1415         if (!nilfs_inode_cachep)
1416                 goto fail;
1417
1418         nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1419                         sizeof(struct nilfs_transaction_info), 0,
1420                         SLAB_RECLAIM_ACCOUNT, NULL);
1421         if (!nilfs_transaction_cachep)
1422                 goto fail;
1423
1424         nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1425                         sizeof(struct nilfs_segment_buffer), 0,
1426                         SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1427         if (!nilfs_segbuf_cachep)
1428                 goto fail;
1429
1430         nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1431                         sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1432                         0, 0, NULL);
1433         if (!nilfs_btree_path_cache)
1434                 goto fail;
1435
1436         return 0;
1437
1438 fail:
1439         nilfs_destroy_cachep();
1440         return -ENOMEM;
1441 }
1442
1443 static int __init init_nilfs_fs(void)
1444 {
1445         int err;
1446
1447         err = nilfs_init_cachep();
1448         if (err)
1449                 goto fail;
1450
1451         err = nilfs_sysfs_init();
1452         if (err)
1453                 goto free_cachep;
1454
1455         err = register_filesystem(&nilfs_fs_type);
1456         if (err)
1457                 goto deinit_sysfs_entry;
1458
1459         printk(KERN_INFO "NILFS version 2 loaded\n");
1460         return 0;
1461
1462 deinit_sysfs_entry:
1463         nilfs_sysfs_exit();
1464 free_cachep:
1465         nilfs_destroy_cachep();
1466 fail:
1467         return err;
1468 }
1469
1470 static void __exit exit_nilfs_fs(void)
1471 {
1472         nilfs_destroy_cachep();
1473         nilfs_sysfs_exit();
1474         unregister_filesystem(&nilfs_fs_type);
1475 }
1476
1477 module_init(init_nilfs_fs)
1478 module_exit(exit_nilfs_fs)