]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/nilfs2/super.c
nilfs2: accept 64-bit checkpoint numbers in cp mount option
[karo-tx-linux.git] / fs / nilfs2 / super.c
1 /*
2  * super.c - NILFS module and super block management.
3  *
4  * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
19  *
20  * Written by Ryusuke Konishi <ryusuke@osrg.net>
21  */
22 /*
23  *  linux/fs/ext2/super.c
24  *
25  * Copyright (C) 1992, 1993, 1994, 1995
26  * Remy Card (card@masi.ibp.fr)
27  * Laboratoire MASI - Institut Blaise Pascal
28  * Universite Pierre et Marie Curie (Paris VI)
29  *
30  *  from
31  *
32  *  linux/fs/minix/inode.c
33  *
34  *  Copyright (C) 1991, 1992  Linus Torvalds
35  *
36  *  Big-endian to little-endian byte-swapping/bitmaps by
37  *        David S. Miller (davem@caip.rutgers.edu), 1995
38  */
39
40 #include <linux/module.h>
41 #include <linux/string.h>
42 #include <linux/slab.h>
43 #include <linux/init.h>
44 #include <linux/blkdev.h>
45 #include <linux/parser.h>
46 #include <linux/random.h>
47 #include <linux/crc32.h>
48 #include <linux/vfs.h>
49 #include <linux/writeback.h>
50 #include <linux/kobject.h>
51 #include <linux/seq_file.h>
52 #include <linux/mount.h>
53 #include "nilfs.h"
54 #include "export.h"
55 #include "mdt.h"
56 #include "alloc.h"
57 #include "btree.h"
58 #include "btnode.h"
59 #include "page.h"
60 #include "cpfile.h"
61 #include "ifile.h"
62 #include "dat.h"
63 #include "segment.h"
64 #include "segbuf.h"
65
66 MODULE_AUTHOR("NTT Corp.");
67 MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
68                    "(NILFS)");
69 MODULE_LICENSE("GPL");
70
71 struct kmem_cache *nilfs_inode_cachep;
72 struct kmem_cache *nilfs_transaction_cachep;
73 struct kmem_cache *nilfs_segbuf_cachep;
74 struct kmem_cache *nilfs_btree_path_cache;
75
76 static int nilfs_remount(struct super_block *sb, int *flags, char *data);
77
78 static void nilfs_set_error(struct nilfs_sb_info *sbi)
79 {
80         struct the_nilfs *nilfs = sbi->s_nilfs;
81         struct nilfs_super_block **sbp;
82
83         down_write(&nilfs->ns_sem);
84         if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
85                 nilfs->ns_mount_state |= NILFS_ERROR_FS;
86                 sbp = nilfs_prepare_super(sbi, 0);
87                 if (likely(sbp)) {
88                         sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
89                         if (sbp[1])
90                                 sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
91                         nilfs_commit_super(sbi, NILFS_SB_COMMIT_ALL);
92                 }
93         }
94         up_write(&nilfs->ns_sem);
95 }
96
97 /**
98  * nilfs_error() - report failure condition on a filesystem
99  *
100  * nilfs_error() sets an ERROR_FS flag on the superblock as well as
101  * reporting an error message.  It should be called when NILFS detects
102  * incoherences or defects of meta data on disk.  As for sustainable
103  * errors such as a single-shot I/O error, nilfs_warning() or the printk()
104  * function should be used instead.
105  *
106  * The segment constructor must not call this function because it can
107  * kill itself.
108  */
109 void nilfs_error(struct super_block *sb, const char *function,
110                  const char *fmt, ...)
111 {
112         struct nilfs_sb_info *sbi = NILFS_SB(sb);
113         va_list args;
114
115         va_start(args, fmt);
116         printk(KERN_CRIT "NILFS error (device %s): %s: ", sb->s_id, function);
117         vprintk(fmt, args);
118         printk("\n");
119         va_end(args);
120
121         if (!(sb->s_flags & MS_RDONLY)) {
122                 nilfs_set_error(sbi);
123
124                 if (nilfs_test_opt(sbi, ERRORS_RO)) {
125                         printk(KERN_CRIT "Remounting filesystem read-only\n");
126                         sb->s_flags |= MS_RDONLY;
127                 }
128         }
129
130         if (nilfs_test_opt(sbi, ERRORS_PANIC))
131                 panic("NILFS (device %s): panic forced after error\n",
132                       sb->s_id);
133 }
134
135 void nilfs_warning(struct super_block *sb, const char *function,
136                    const char *fmt, ...)
137 {
138         va_list args;
139
140         va_start(args, fmt);
141         printk(KERN_WARNING "NILFS warning (device %s): %s: ",
142                sb->s_id, function);
143         vprintk(fmt, args);
144         printk("\n");
145         va_end(args);
146 }
147
148
149 struct inode *nilfs_alloc_inode(struct super_block *sb)
150 {
151         struct nilfs_inode_info *ii;
152
153         ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS);
154         if (!ii)
155                 return NULL;
156         ii->i_bh = NULL;
157         ii->i_state = 0;
158         ii->i_cno = 0;
159         ii->vfs_inode.i_version = 1;
160         nilfs_btnode_cache_init(&ii->i_btnode_cache, sb->s_bdi);
161         return &ii->vfs_inode;
162 }
163
164 void nilfs_destroy_inode(struct inode *inode)
165 {
166         struct nilfs_mdt_info *mdi = NILFS_MDT(inode);
167
168         if (mdi) {
169                 kfree(mdi->mi_bgl); /* kfree(NULL) is safe */
170                 kfree(mdi);
171         }
172         kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
173 }
174
175 static int nilfs_sync_super(struct nilfs_sb_info *sbi, int flag)
176 {
177         struct the_nilfs *nilfs = sbi->s_nilfs;
178         int err;
179
180  retry:
181         set_buffer_dirty(nilfs->ns_sbh[0]);
182
183         if (nilfs_test_opt(sbi, BARRIER)) {
184                 err = __sync_dirty_buffer(nilfs->ns_sbh[0],
185                                           WRITE_SYNC | WRITE_BARRIER);
186                 if (err == -EOPNOTSUPP) {
187                         nilfs_warning(sbi->s_super, __func__,
188                                       "barrier-based sync failed. "
189                                       "disabling barriers\n");
190                         nilfs_clear_opt(sbi, BARRIER);
191                         goto retry;
192                 }
193         } else {
194                 err = sync_dirty_buffer(nilfs->ns_sbh[0]);
195         }
196
197         if (unlikely(err)) {
198                 printk(KERN_ERR
199                        "NILFS: unable to write superblock (err=%d)\n", err);
200                 if (err == -EIO && nilfs->ns_sbh[1]) {
201                         /*
202                          * sbp[0] points to newer log than sbp[1],
203                          * so copy sbp[0] to sbp[1] to take over sbp[0].
204                          */
205                         memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
206                                nilfs->ns_sbsize);
207                         nilfs_fall_back_super_block(nilfs);
208                         goto retry;
209                 }
210         } else {
211                 struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
212
213                 nilfs->ns_sbwcount++;
214
215                 /*
216                  * The latest segment becomes trailable from the position
217                  * written in superblock.
218                  */
219                 clear_nilfs_discontinued(nilfs);
220
221                 /* update GC protection for recent segments */
222                 if (nilfs->ns_sbh[1]) {
223                         if (flag == NILFS_SB_COMMIT_ALL) {
224                                 set_buffer_dirty(nilfs->ns_sbh[1]);
225                                 if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
226                                         goto out;
227                         }
228                         if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
229                             le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
230                                 sbp = nilfs->ns_sbp[1];
231                 }
232
233                 spin_lock(&nilfs->ns_last_segment_lock);
234                 nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
235                 spin_unlock(&nilfs->ns_last_segment_lock);
236         }
237  out:
238         return err;
239 }
240
241 void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
242                           struct the_nilfs *nilfs)
243 {
244         sector_t nfreeblocks;
245
246         /* nilfs->ns_sem must be locked by the caller. */
247         nilfs_count_free_blocks(nilfs, &nfreeblocks);
248         sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
249
250         spin_lock(&nilfs->ns_last_segment_lock);
251         sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
252         sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
253         sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
254         spin_unlock(&nilfs->ns_last_segment_lock);
255 }
256
257 struct nilfs_super_block **nilfs_prepare_super(struct nilfs_sb_info *sbi,
258                                                int flip)
259 {
260         struct the_nilfs *nilfs = sbi->s_nilfs;
261         struct nilfs_super_block **sbp = nilfs->ns_sbp;
262
263         /* nilfs->ns_sem must be locked by the caller. */
264         if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
265                 if (sbp[1] &&
266                     sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
267                         memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
268                 } else {
269                         printk(KERN_CRIT "NILFS: superblock broke on dev %s\n",
270                                sbi->s_super->s_id);
271                         return NULL;
272                 }
273         } else if (sbp[1] &&
274                    sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
275                         memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
276         }
277
278         if (flip && sbp[1])
279                 nilfs_swap_super_block(nilfs);
280
281         return sbp;
282 }
283
284 int nilfs_commit_super(struct nilfs_sb_info *sbi, int flag)
285 {
286         struct the_nilfs *nilfs = sbi->s_nilfs;
287         struct nilfs_super_block **sbp = nilfs->ns_sbp;
288         time_t t;
289
290         /* nilfs->ns_sem must be locked by the caller. */
291         t = get_seconds();
292         nilfs->ns_sbwtime = t;
293         sbp[0]->s_wtime = cpu_to_le64(t);
294         sbp[0]->s_sum = 0;
295         sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
296                                              (unsigned char *)sbp[0],
297                                              nilfs->ns_sbsize));
298         if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
299                 sbp[1]->s_wtime = sbp[0]->s_wtime;
300                 sbp[1]->s_sum = 0;
301                 sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
302                                             (unsigned char *)sbp[1],
303                                             nilfs->ns_sbsize));
304         }
305         clear_nilfs_sb_dirty(nilfs);
306         return nilfs_sync_super(sbi, flag);
307 }
308
309 /**
310  * nilfs_cleanup_super() - write filesystem state for cleanup
311  * @sbi: nilfs_sb_info to be unmounted or degraded to read-only
312  *
313  * This function restores state flags in the on-disk super block.
314  * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
315  * filesystem was not clean previously.
316  */
317 int nilfs_cleanup_super(struct nilfs_sb_info *sbi)
318 {
319         struct nilfs_super_block **sbp;
320         int flag = NILFS_SB_COMMIT;
321         int ret = -EIO;
322
323         sbp = nilfs_prepare_super(sbi, 0);
324         if (sbp) {
325                 sbp[0]->s_state = cpu_to_le16(sbi->s_nilfs->ns_mount_state);
326                 nilfs_set_log_cursor(sbp[0], sbi->s_nilfs);
327                 if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
328                         /*
329                          * make the "clean" flag also to the opposite
330                          * super block if both super blocks point to
331                          * the same checkpoint.
332                          */
333                         sbp[1]->s_state = sbp[0]->s_state;
334                         flag = NILFS_SB_COMMIT_ALL;
335                 }
336                 ret = nilfs_commit_super(sbi, flag);
337         }
338         return ret;
339 }
340
341 static void nilfs_put_super(struct super_block *sb)
342 {
343         struct nilfs_sb_info *sbi = NILFS_SB(sb);
344         struct the_nilfs *nilfs = sbi->s_nilfs;
345
346         nilfs_detach_segment_constructor(sbi);
347
348         if (!(sb->s_flags & MS_RDONLY)) {
349                 down_write(&nilfs->ns_sem);
350                 nilfs_cleanup_super(sbi);
351                 up_write(&nilfs->ns_sem);
352         }
353
354         iput(nilfs->ns_sufile);
355         iput(nilfs->ns_cpfile);
356         iput(nilfs->ns_dat);
357
358         destroy_nilfs(nilfs);
359         sbi->s_super = NULL;
360         sb->s_fs_info = NULL;
361         kfree(sbi);
362 }
363
364 static int nilfs_sync_fs(struct super_block *sb, int wait)
365 {
366         struct nilfs_sb_info *sbi = NILFS_SB(sb);
367         struct the_nilfs *nilfs = sbi->s_nilfs;
368         struct nilfs_super_block **sbp;
369         int err = 0;
370
371         /* This function is called when super block should be written back */
372         if (wait)
373                 err = nilfs_construct_segment(sb);
374
375         down_write(&nilfs->ns_sem);
376         if (nilfs_sb_dirty(nilfs)) {
377                 sbp = nilfs_prepare_super(sbi, nilfs_sb_will_flip(nilfs));
378                 if (likely(sbp)) {
379                         nilfs_set_log_cursor(sbp[0], nilfs);
380                         nilfs_commit_super(sbi, NILFS_SB_COMMIT);
381                 }
382         }
383         up_write(&nilfs->ns_sem);
384
385         return err;
386 }
387
388 int nilfs_attach_checkpoint(struct nilfs_sb_info *sbi, __u64 cno, int curr_mnt,
389                             struct nilfs_root **rootp)
390 {
391         struct the_nilfs *nilfs = sbi->s_nilfs;
392         struct nilfs_root *root;
393         struct nilfs_checkpoint *raw_cp;
394         struct buffer_head *bh_cp;
395         int err = -ENOMEM;
396
397         root = nilfs_find_or_create_root(
398                 nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno);
399         if (!root)
400                 return err;
401
402         if (root->ifile)
403                 goto reuse; /* already attached checkpoint */
404
405         down_read(&nilfs->ns_segctor_sem);
406         err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
407                                           &bh_cp);
408         up_read(&nilfs->ns_segctor_sem);
409         if (unlikely(err)) {
410                 if (err == -ENOENT || err == -EINVAL) {
411                         printk(KERN_ERR
412                                "NILFS: Invalid checkpoint "
413                                "(checkpoint number=%llu)\n",
414                                (unsigned long long)cno);
415                         err = -EINVAL;
416                 }
417                 goto failed;
418         }
419
420         err = nilfs_ifile_read(sbi->s_super, root, nilfs->ns_inode_size,
421                                &raw_cp->cp_ifile_inode, &root->ifile);
422         if (err)
423                 goto failed_bh;
424
425         atomic_set(&root->inodes_count, le64_to_cpu(raw_cp->cp_inodes_count));
426         atomic_set(&root->blocks_count, le64_to_cpu(raw_cp->cp_blocks_count));
427
428         nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
429
430  reuse:
431         *rootp = root;
432         return 0;
433
434  failed_bh:
435         nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
436  failed:
437         nilfs_put_root(root);
438
439         return err;
440 }
441
442 static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
443 {
444         struct super_block *sb = dentry->d_sb;
445         struct nilfs_root *root = NILFS_I(dentry->d_inode)->i_root;
446         struct the_nilfs *nilfs = root->nilfs;
447         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
448         unsigned long long blocks;
449         unsigned long overhead;
450         unsigned long nrsvblocks;
451         sector_t nfreeblocks;
452         int err;
453
454         /*
455          * Compute all of the segment blocks
456          *
457          * The blocks before first segment and after last segment
458          * are excluded.
459          */
460         blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
461                 - nilfs->ns_first_data_block;
462         nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
463
464         /*
465          * Compute the overhead
466          *
467          * When distributing meta data blocks outside segment structure,
468          * We must count them as the overhead.
469          */
470         overhead = 0;
471
472         err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
473         if (unlikely(err))
474                 return err;
475
476         buf->f_type = NILFS_SUPER_MAGIC;
477         buf->f_bsize = sb->s_blocksize;
478         buf->f_blocks = blocks - overhead;
479         buf->f_bfree = nfreeblocks;
480         buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
481                 (buf->f_bfree - nrsvblocks) : 0;
482         buf->f_files = atomic_read(&root->inodes_count);
483         buf->f_ffree = 0; /* nilfs_count_free_inodes(sb); */
484         buf->f_namelen = NILFS_NAME_LEN;
485         buf->f_fsid.val[0] = (u32)id;
486         buf->f_fsid.val[1] = (u32)(id >> 32);
487
488         return 0;
489 }
490
491 static int nilfs_show_options(struct seq_file *seq, struct vfsmount *vfs)
492 {
493         struct super_block *sb = vfs->mnt_sb;
494         struct nilfs_sb_info *sbi = NILFS_SB(sb);
495         struct nilfs_root *root = NILFS_I(vfs->mnt_root->d_inode)->i_root;
496
497         if (!nilfs_test_opt(sbi, BARRIER))
498                 seq_puts(seq, ",nobarrier");
499         if (root->cno != NILFS_CPTREE_CURRENT_CNO)
500                 seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno);
501         if (nilfs_test_opt(sbi, ERRORS_PANIC))
502                 seq_puts(seq, ",errors=panic");
503         if (nilfs_test_opt(sbi, ERRORS_CONT))
504                 seq_puts(seq, ",errors=continue");
505         if (nilfs_test_opt(sbi, STRICT_ORDER))
506                 seq_puts(seq, ",order=strict");
507         if (nilfs_test_opt(sbi, NORECOVERY))
508                 seq_puts(seq, ",norecovery");
509         if (nilfs_test_opt(sbi, DISCARD))
510                 seq_puts(seq, ",discard");
511
512         return 0;
513 }
514
515 static const struct super_operations nilfs_sops = {
516         .alloc_inode    = nilfs_alloc_inode,
517         .destroy_inode  = nilfs_destroy_inode,
518         .dirty_inode    = nilfs_dirty_inode,
519         /* .write_inode    = nilfs_write_inode, */
520         /* .put_inode      = nilfs_put_inode, */
521         /* .drop_inode    = nilfs_drop_inode, */
522         .evict_inode    = nilfs_evict_inode,
523         .put_super      = nilfs_put_super,
524         /* .write_super    = nilfs_write_super, */
525         .sync_fs        = nilfs_sync_fs,
526         /* .write_super_lockfs */
527         /* .unlockfs */
528         .statfs         = nilfs_statfs,
529         .remount_fs     = nilfs_remount,
530         /* .umount_begin */
531         .show_options = nilfs_show_options
532 };
533
534 enum {
535         Opt_err_cont, Opt_err_panic, Opt_err_ro,
536         Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery,
537         Opt_discard, Opt_nodiscard, Opt_err,
538 };
539
540 static match_table_t tokens = {
541         {Opt_err_cont, "errors=continue"},
542         {Opt_err_panic, "errors=panic"},
543         {Opt_err_ro, "errors=remount-ro"},
544         {Opt_barrier, "barrier"},
545         {Opt_nobarrier, "nobarrier"},
546         {Opt_snapshot, "cp=%u"},
547         {Opt_order, "order=%s"},
548         {Opt_norecovery, "norecovery"},
549         {Opt_discard, "discard"},
550         {Opt_nodiscard, "nodiscard"},
551         {Opt_err, NULL}
552 };
553
554 static int parse_options(char *options, struct super_block *sb, int is_remount)
555 {
556         struct nilfs_sb_info *sbi = NILFS_SB(sb);
557         char *p;
558         substring_t args[MAX_OPT_ARGS];
559
560         if (!options)
561                 return 1;
562
563         while ((p = strsep(&options, ",")) != NULL) {
564                 int token;
565                 if (!*p)
566                         continue;
567
568                 token = match_token(p, tokens, args);
569                 switch (token) {
570                 case Opt_barrier:
571                         nilfs_set_opt(sbi, BARRIER);
572                         break;
573                 case Opt_nobarrier:
574                         nilfs_clear_opt(sbi, BARRIER);
575                         break;
576                 case Opt_order:
577                         if (strcmp(args[0].from, "relaxed") == 0)
578                                 /* Ordered data semantics */
579                                 nilfs_clear_opt(sbi, STRICT_ORDER);
580                         else if (strcmp(args[0].from, "strict") == 0)
581                                 /* Strict in-order semantics */
582                                 nilfs_set_opt(sbi, STRICT_ORDER);
583                         else
584                                 return 0;
585                         break;
586                 case Opt_err_panic:
587                         nilfs_write_opt(sbi, ERROR_MODE, ERRORS_PANIC);
588                         break;
589                 case Opt_err_ro:
590                         nilfs_write_opt(sbi, ERROR_MODE, ERRORS_RO);
591                         break;
592                 case Opt_err_cont:
593                         nilfs_write_opt(sbi, ERROR_MODE, ERRORS_CONT);
594                         break;
595                 case Opt_snapshot:
596                         if (is_remount) {
597                                 printk(KERN_ERR
598                                        "NILFS: \"%s\" option is invalid "
599                                        "for remount.\n", p);
600                                 return 0;
601                         }
602                         break;
603                 case Opt_norecovery:
604                         nilfs_set_opt(sbi, NORECOVERY);
605                         break;
606                 case Opt_discard:
607                         nilfs_set_opt(sbi, DISCARD);
608                         break;
609                 case Opt_nodiscard:
610                         nilfs_clear_opt(sbi, DISCARD);
611                         break;
612                 default:
613                         printk(KERN_ERR
614                                "NILFS: Unrecognized mount option \"%s\"\n", p);
615                         return 0;
616                 }
617         }
618         return 1;
619 }
620
621 static inline void
622 nilfs_set_default_options(struct nilfs_sb_info *sbi,
623                           struct nilfs_super_block *sbp)
624 {
625         sbi->s_mount_opt =
626                 NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
627 }
628
629 static int nilfs_setup_super(struct nilfs_sb_info *sbi)
630 {
631         struct the_nilfs *nilfs = sbi->s_nilfs;
632         struct nilfs_super_block **sbp;
633         int max_mnt_count;
634         int mnt_count;
635
636         /* nilfs->ns_sem must be locked by the caller. */
637         sbp = nilfs_prepare_super(sbi, 0);
638         if (!sbp)
639                 return -EIO;
640
641         max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
642         mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
643
644         if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
645                 printk(KERN_WARNING
646                        "NILFS warning: mounting fs with errors\n");
647 #if 0
648         } else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
649                 printk(KERN_WARNING
650                        "NILFS warning: maximal mount count reached\n");
651 #endif
652         }
653         if (!max_mnt_count)
654                 sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
655
656         sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
657         sbp[0]->s_state =
658                 cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
659         sbp[0]->s_mtime = cpu_to_le64(get_seconds());
660         /* synchronize sbp[1] with sbp[0] */
661         memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
662         return nilfs_commit_super(sbi, NILFS_SB_COMMIT_ALL);
663 }
664
665 struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
666                                                  u64 pos, int blocksize,
667                                                  struct buffer_head **pbh)
668 {
669         unsigned long long sb_index = pos;
670         unsigned long offset;
671
672         offset = do_div(sb_index, blocksize);
673         *pbh = sb_bread(sb, sb_index);
674         if (!*pbh)
675                 return NULL;
676         return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
677 }
678
679 int nilfs_store_magic_and_option(struct super_block *sb,
680                                  struct nilfs_super_block *sbp,
681                                  char *data)
682 {
683         struct nilfs_sb_info *sbi = NILFS_SB(sb);
684
685         sb->s_magic = le16_to_cpu(sbp->s_magic);
686
687         /* FS independent flags */
688 #ifdef NILFS_ATIME_DISABLE
689         sb->s_flags |= MS_NOATIME;
690 #endif
691
692         nilfs_set_default_options(sbi, sbp);
693
694         sbi->s_resuid = le16_to_cpu(sbp->s_def_resuid);
695         sbi->s_resgid = le16_to_cpu(sbp->s_def_resgid);
696         sbi->s_interval = le32_to_cpu(sbp->s_c_interval);
697         sbi->s_watermark = le32_to_cpu(sbp->s_c_block_max);
698
699         return !parse_options(data, sb, 0) ? -EINVAL : 0 ;
700 }
701
702 int nilfs_check_feature_compatibility(struct super_block *sb,
703                                       struct nilfs_super_block *sbp)
704 {
705         __u64 features;
706
707         features = le64_to_cpu(sbp->s_feature_incompat) &
708                 ~NILFS_FEATURE_INCOMPAT_SUPP;
709         if (features) {
710                 printk(KERN_ERR "NILFS: couldn't mount because of unsupported "
711                        "optional features (%llx)\n",
712                        (unsigned long long)features);
713                 return -EINVAL;
714         }
715         features = le64_to_cpu(sbp->s_feature_compat_ro) &
716                 ~NILFS_FEATURE_COMPAT_RO_SUPP;
717         if (!(sb->s_flags & MS_RDONLY) && features) {
718                 printk(KERN_ERR "NILFS: couldn't mount RDWR because of "
719                        "unsupported optional features (%llx)\n",
720                        (unsigned long long)features);
721                 return -EINVAL;
722         }
723         return 0;
724 }
725
726 static int nilfs_get_root_dentry(struct super_block *sb,
727                                  struct nilfs_root *root,
728                                  struct dentry **root_dentry)
729 {
730         struct inode *inode;
731         struct dentry *dentry;
732         int ret = 0;
733
734         inode = nilfs_iget(sb, root, NILFS_ROOT_INO);
735         if (IS_ERR(inode)) {
736                 printk(KERN_ERR "NILFS: get root inode failed\n");
737                 ret = PTR_ERR(inode);
738                 goto out;
739         }
740         if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) {
741                 iput(inode);
742                 printk(KERN_ERR "NILFS: corrupt root inode.\n");
743                 ret = -EINVAL;
744                 goto out;
745         }
746
747         if (root->cno == NILFS_CPTREE_CURRENT_CNO) {
748                 dentry = d_find_alias(inode);
749                 if (!dentry) {
750                         dentry = d_alloc_root(inode);
751                         if (!dentry) {
752                                 iput(inode);
753                                 ret = -ENOMEM;
754                                 goto failed_dentry;
755                         }
756                 } else {
757                         iput(inode);
758                 }
759         } else {
760                 dentry = d_obtain_alias(inode);
761                 if (IS_ERR(dentry)) {
762                         ret = PTR_ERR(dentry);
763                         goto failed_dentry;
764                 }
765         }
766         *root_dentry = dentry;
767  out:
768         return ret;
769
770  failed_dentry:
771         printk(KERN_ERR "NILFS: get root dentry failed\n");
772         goto out;
773 }
774
775 static int nilfs_attach_snapshot(struct super_block *s, __u64 cno,
776                                  struct dentry **root_dentry)
777 {
778         struct the_nilfs *nilfs = NILFS_SB(s)->s_nilfs;
779         struct nilfs_root *root;
780         int ret;
781
782         down_read(&nilfs->ns_segctor_sem);
783         ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno);
784         up_read(&nilfs->ns_segctor_sem);
785         if (ret < 0) {
786                 ret = (ret == -ENOENT) ? -EINVAL : ret;
787                 goto out;
788         } else if (!ret) {
789                 printk(KERN_ERR "NILFS: The specified checkpoint is "
790                        "not a snapshot (checkpoint number=%llu).\n",
791                        (unsigned long long)cno);
792                 ret = -EINVAL;
793                 goto out;
794         }
795
796         ret = nilfs_attach_checkpoint(NILFS_SB(s), cno, false, &root);
797         if (ret) {
798                 printk(KERN_ERR "NILFS: error loading snapshot "
799                        "(checkpoint number=%llu).\n",
800                (unsigned long long)cno);
801                 goto out;
802         }
803         ret = nilfs_get_root_dentry(s, root, root_dentry);
804         nilfs_put_root(root);
805  out:
806         return ret;
807 }
808
809 static int nilfs_tree_was_touched(struct dentry *root_dentry)
810 {
811         return atomic_read(&root_dentry->d_count) > 1;
812 }
813
814 /**
815  * nilfs_try_to_shrink_tree() - try to shrink dentries of a checkpoint
816  * @root_dentry: root dentry of the tree to be shrunk
817  *
818  * This function returns true if the tree was in-use.
819  */
820 static int nilfs_try_to_shrink_tree(struct dentry *root_dentry)
821 {
822         if (have_submounts(root_dentry))
823                 return true;
824         shrink_dcache_parent(root_dentry);
825         return nilfs_tree_was_touched(root_dentry);
826 }
827
828 int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno)
829 {
830         struct the_nilfs *nilfs = NILFS_SB(sb)->s_nilfs;
831         struct nilfs_root *root;
832         struct inode *inode;
833         struct dentry *dentry;
834         int ret;
835
836         if (cno < 0 || cno > nilfs->ns_cno)
837                 return false;
838
839         if (cno >= nilfs_last_cno(nilfs))
840                 return true;    /* protect recent checkpoints */
841
842         ret = false;
843         root = nilfs_lookup_root(NILFS_SB(sb)->s_nilfs, cno);
844         if (root) {
845                 inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO);
846                 if (inode) {
847                         dentry = d_find_alias(inode);
848                         if (dentry) {
849                                 if (nilfs_tree_was_touched(dentry))
850                                         ret = nilfs_try_to_shrink_tree(dentry);
851                                 dput(dentry);
852                         }
853                         iput(inode);
854                 }
855                 nilfs_put_root(root);
856         }
857         return ret;
858 }
859
860 /**
861  * nilfs_fill_super() - initialize a super block instance
862  * @sb: super_block
863  * @data: mount options
864  * @silent: silent mode flag
865  *
866  * This function is called exclusively by nilfs->ns_mount_mutex.
867  * So, the recovery process is protected from other simultaneous mounts.
868  */
869 static int
870 nilfs_fill_super(struct super_block *sb, void *data, int silent)
871 {
872         struct the_nilfs *nilfs;
873         struct nilfs_sb_info *sbi;
874         struct nilfs_root *fsroot;
875         __u64 cno;
876         int err;
877
878         sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
879         if (!sbi)
880                 return -ENOMEM;
881
882         sb->s_fs_info = sbi;
883         sbi->s_super = sb;
884
885         nilfs = alloc_nilfs(sb->s_bdev);
886         if (!nilfs) {
887                 err = -ENOMEM;
888                 goto failed_sbi;
889         }
890         sbi->s_nilfs = nilfs;
891
892         err = init_nilfs(nilfs, sbi, (char *)data);
893         if (err)
894                 goto failed_nilfs;
895
896         spin_lock_init(&sbi->s_inode_lock);
897         INIT_LIST_HEAD(&sbi->s_dirty_files);
898
899         /*
900          * Following initialization is overlapped because
901          * nilfs_sb_info structure has been cleared at the beginning.
902          * But we reserve them to keep our interest and make ready
903          * for the future change.
904          */
905         get_random_bytes(&sbi->s_next_generation,
906                          sizeof(sbi->s_next_generation));
907         spin_lock_init(&sbi->s_next_gen_lock);
908
909         sb->s_op = &nilfs_sops;
910         sb->s_export_op = &nilfs_export_ops;
911         sb->s_root = NULL;
912         sb->s_time_gran = 1;
913         sb->s_bdi = nilfs->ns_bdi;
914
915         err = load_nilfs(nilfs, sbi);
916         if (err)
917                 goto failed_nilfs;
918
919         cno = nilfs_last_cno(nilfs);
920         err = nilfs_attach_checkpoint(sbi, cno, true, &fsroot);
921         if (err) {
922                 printk(KERN_ERR "NILFS: error loading last checkpoint "
923                        "(checkpoint number=%llu).\n", (unsigned long long)cno);
924                 goto failed_unload;
925         }
926
927         if (!(sb->s_flags & MS_RDONLY)) {
928                 err = nilfs_attach_segment_constructor(sbi, fsroot);
929                 if (err)
930                         goto failed_checkpoint;
931         }
932
933         err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root);
934         if (err)
935                 goto failed_segctor;
936
937         nilfs_put_root(fsroot);
938
939         if (!(sb->s_flags & MS_RDONLY)) {
940                 down_write(&nilfs->ns_sem);
941                 nilfs_setup_super(sbi);
942                 up_write(&nilfs->ns_sem);
943         }
944
945         return 0;
946
947  failed_segctor:
948         nilfs_detach_segment_constructor(sbi);
949
950  failed_checkpoint:
951         nilfs_put_root(fsroot);
952
953  failed_unload:
954         iput(nilfs->ns_sufile);
955         iput(nilfs->ns_cpfile);
956         iput(nilfs->ns_dat);
957
958  failed_nilfs:
959         destroy_nilfs(nilfs);
960
961  failed_sbi:
962         sb->s_fs_info = NULL;
963         kfree(sbi);
964         return err;
965 }
966
967 static int nilfs_remount(struct super_block *sb, int *flags, char *data)
968 {
969         struct nilfs_sb_info *sbi = NILFS_SB(sb);
970         struct the_nilfs *nilfs = sbi->s_nilfs;
971         unsigned long old_sb_flags;
972         struct nilfs_mount_options old_opts;
973         int err;
974
975         old_sb_flags = sb->s_flags;
976         old_opts.mount_opt = sbi->s_mount_opt;
977
978         if (!parse_options(data, sb, 1)) {
979                 err = -EINVAL;
980                 goto restore_opts;
981         }
982         sb->s_flags = (sb->s_flags & ~MS_POSIXACL);
983
984         err = -EINVAL;
985
986         if (!nilfs_valid_fs(nilfs)) {
987                 printk(KERN_WARNING "NILFS (device %s): couldn't "
988                        "remount because the filesystem is in an "
989                        "incomplete recovery state.\n", sb->s_id);
990                 goto restore_opts;
991         }
992
993         if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
994                 goto out;
995         if (*flags & MS_RDONLY) {
996                 /* Shutting down the segment constructor */
997                 nilfs_detach_segment_constructor(sbi);
998                 sb->s_flags |= MS_RDONLY;
999
1000                 /*
1001                  * Remounting a valid RW partition RDONLY, so set
1002                  * the RDONLY flag and then mark the partition as valid again.
1003                  */
1004                 down_write(&nilfs->ns_sem);
1005                 nilfs_cleanup_super(sbi);
1006                 up_write(&nilfs->ns_sem);
1007         } else {
1008                 __u64 features;
1009                 struct nilfs_root *root;
1010
1011                 /*
1012                  * Mounting a RDONLY partition read-write, so reread and
1013                  * store the current valid flag.  (It may have been changed
1014                  * by fsck since we originally mounted the partition.)
1015                  */
1016                 down_read(&nilfs->ns_sem);
1017                 features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
1018                         ~NILFS_FEATURE_COMPAT_RO_SUPP;
1019                 up_read(&nilfs->ns_sem);
1020                 if (features) {
1021                         printk(KERN_WARNING "NILFS (device %s): couldn't "
1022                                "remount RDWR because of unsupported optional "
1023                                "features (%llx)\n",
1024                                sb->s_id, (unsigned long long)features);
1025                         err = -EROFS;
1026                         goto restore_opts;
1027                 }
1028
1029                 sb->s_flags &= ~MS_RDONLY;
1030
1031                 root = NILFS_I(sb->s_root->d_inode)->i_root;
1032                 err = nilfs_attach_segment_constructor(sbi, root);
1033                 if (err)
1034                         goto restore_opts;
1035
1036                 down_write(&nilfs->ns_sem);
1037                 nilfs_setup_super(sbi);
1038                 up_write(&nilfs->ns_sem);
1039         }
1040  out:
1041         return 0;
1042
1043  restore_opts:
1044         sb->s_flags = old_sb_flags;
1045         sbi->s_mount_opt = old_opts.mount_opt;
1046         return err;
1047 }
1048
1049 struct nilfs_super_data {
1050         struct block_device *bdev;
1051         struct nilfs_sb_info *sbi;
1052         __u64 cno;
1053         int flags;
1054 };
1055
1056 /**
1057  * nilfs_identify - pre-read mount options needed to identify mount instance
1058  * @data: mount options
1059  * @sd: nilfs_super_data
1060  */
1061 static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1062 {
1063         char *p, *options = data;
1064         substring_t args[MAX_OPT_ARGS];
1065         int token;
1066         int ret = 0;
1067
1068         do {
1069                 p = strsep(&options, ",");
1070                 if (p != NULL && *p) {
1071                         token = match_token(p, tokens, args);
1072                         if (token == Opt_snapshot) {
1073                                 if (!(sd->flags & MS_RDONLY)) {
1074                                         ret++;
1075                                 } else {
1076                                         sd->cno = simple_strtoull(args[0].from,
1077                                                                   NULL, 0);
1078                                         /*
1079                                          * No need to see the end pointer;
1080                                          * match_token() has done syntax
1081                                          * checking.
1082                                          */
1083                                         if (sd->cno == 0)
1084                                                 ret++;
1085                                 }
1086                         }
1087                         if (ret)
1088                                 printk(KERN_ERR
1089                                        "NILFS: invalid mount option: %s\n", p);
1090                 }
1091                 if (!options)
1092                         break;
1093                 BUG_ON(options == data);
1094                 *(options - 1) = ',';
1095         } while (!ret);
1096         return ret;
1097 }
1098
1099 static int nilfs_set_bdev_super(struct super_block *s, void *data)
1100 {
1101         s->s_bdev = data;
1102         s->s_dev = s->s_bdev->bd_dev;
1103         return 0;
1104 }
1105
1106 static int nilfs_test_bdev_super(struct super_block *s, void *data)
1107 {
1108         return (void *)s->s_bdev == data;
1109 }
1110
1111 static int
1112 nilfs_get_sb(struct file_system_type *fs_type, int flags,
1113              const char *dev_name, void *data, struct vfsmount *mnt)
1114 {
1115         struct nilfs_super_data sd;
1116         struct super_block *s;
1117         fmode_t mode = FMODE_READ;
1118         struct dentry *root_dentry;
1119         int err, s_new = false;
1120
1121         if (!(flags & MS_RDONLY))
1122                 mode |= FMODE_WRITE;
1123
1124         sd.bdev = open_bdev_exclusive(dev_name, mode, fs_type);
1125         if (IS_ERR(sd.bdev))
1126                 return PTR_ERR(sd.bdev);
1127
1128         sd.cno = 0;
1129         sd.flags = flags;
1130         if (nilfs_identify((char *)data, &sd)) {
1131                 err = -EINVAL;
1132                 goto failed;
1133         }
1134
1135         s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, sd.bdev);
1136         if (IS_ERR(s)) {
1137                 err = PTR_ERR(s);
1138                 goto failed;
1139         }
1140
1141         if (!s->s_root) {
1142                 char b[BDEVNAME_SIZE];
1143
1144                 s_new = true;
1145
1146                 /* New superblock instance created */
1147                 s->s_flags = flags;
1148                 s->s_mode = mode;
1149                 strlcpy(s->s_id, bdevname(sd.bdev, b), sizeof(s->s_id));
1150                 sb_set_blocksize(s, block_size(sd.bdev));
1151
1152                 err = nilfs_fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1153                 if (err)
1154                         goto failed_super;
1155
1156                 s->s_flags |= MS_ACTIVE;
1157         } else if (!sd.cno) {
1158                 int busy = false;
1159
1160                 if (nilfs_tree_was_touched(s->s_root)) {
1161                         busy = nilfs_try_to_shrink_tree(s->s_root);
1162                         if (busy && (flags ^ s->s_flags) & MS_RDONLY) {
1163                                 printk(KERN_ERR "NILFS: the device already "
1164                                        "has a %s mount.\n",
1165                                        (s->s_flags & MS_RDONLY) ?
1166                                        "read-only" : "read/write");
1167                                 err = -EBUSY;
1168                                 goto failed_super;
1169                         }
1170                 }
1171                 if (!busy) {
1172                         /*
1173                          * Try remount to setup mount states if the current
1174                          * tree is not mounted and only snapshots use this sb.
1175                          */
1176                         err = nilfs_remount(s, &flags, data);
1177                         if (err)
1178                                 goto failed_super;
1179                 }
1180         }
1181
1182         if (sd.cno) {
1183                 err = nilfs_attach_snapshot(s, sd.cno, &root_dentry);
1184                 if (err)
1185                         goto failed_super;
1186         } else {
1187                 root_dentry = dget(s->s_root);
1188         }
1189
1190         if (!s_new)
1191                 close_bdev_exclusive(sd.bdev, mode);
1192
1193         mnt->mnt_sb = s;
1194         mnt->mnt_root = root_dentry;
1195         return 0;
1196
1197  failed_super:
1198         deactivate_locked_super(s);
1199
1200  failed:
1201         if (!s_new)
1202                 close_bdev_exclusive(sd.bdev, mode);
1203         return err;
1204 }
1205
1206 struct file_system_type nilfs_fs_type = {
1207         .owner    = THIS_MODULE,
1208         .name     = "nilfs2",
1209         .get_sb   = nilfs_get_sb,
1210         .kill_sb  = kill_block_super,
1211         .fs_flags = FS_REQUIRES_DEV,
1212 };
1213
1214 static void nilfs_inode_init_once(void *obj)
1215 {
1216         struct nilfs_inode_info *ii = obj;
1217
1218         INIT_LIST_HEAD(&ii->i_dirty);
1219 #ifdef CONFIG_NILFS_XATTR
1220         init_rwsem(&ii->xattr_sem);
1221 #endif
1222         nilfs_btnode_cache_init_once(&ii->i_btnode_cache);
1223         ii->i_bmap = &ii->i_bmap_data;
1224         inode_init_once(&ii->vfs_inode);
1225 }
1226
1227 static void nilfs_segbuf_init_once(void *obj)
1228 {
1229         memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1230 }
1231
1232 static void nilfs_destroy_cachep(void)
1233 {
1234         if (nilfs_inode_cachep)
1235                 kmem_cache_destroy(nilfs_inode_cachep);
1236         if (nilfs_transaction_cachep)
1237                 kmem_cache_destroy(nilfs_transaction_cachep);
1238         if (nilfs_segbuf_cachep)
1239                 kmem_cache_destroy(nilfs_segbuf_cachep);
1240         if (nilfs_btree_path_cache)
1241                 kmem_cache_destroy(nilfs_btree_path_cache);
1242 }
1243
1244 static int __init nilfs_init_cachep(void)
1245 {
1246         nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1247                         sizeof(struct nilfs_inode_info), 0,
1248                         SLAB_RECLAIM_ACCOUNT, nilfs_inode_init_once);
1249         if (!nilfs_inode_cachep)
1250                 goto fail;
1251
1252         nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1253                         sizeof(struct nilfs_transaction_info), 0,
1254                         SLAB_RECLAIM_ACCOUNT, NULL);
1255         if (!nilfs_transaction_cachep)
1256                 goto fail;
1257
1258         nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1259                         sizeof(struct nilfs_segment_buffer), 0,
1260                         SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1261         if (!nilfs_segbuf_cachep)
1262                 goto fail;
1263
1264         nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1265                         sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1266                         0, 0, NULL);
1267         if (!nilfs_btree_path_cache)
1268                 goto fail;
1269
1270         return 0;
1271
1272 fail:
1273         nilfs_destroy_cachep();
1274         return -ENOMEM;
1275 }
1276
1277 static int __init init_nilfs_fs(void)
1278 {
1279         int err;
1280
1281         err = nilfs_init_cachep();
1282         if (err)
1283                 goto fail;
1284
1285         err = register_filesystem(&nilfs_fs_type);
1286         if (err)
1287                 goto free_cachep;
1288
1289         printk(KERN_INFO "NILFS version 2 loaded\n");
1290         return 0;
1291
1292 free_cachep:
1293         nilfs_destroy_cachep();
1294 fail:
1295         return err;
1296 }
1297
1298 static void __exit exit_nilfs_fs(void)
1299 {
1300         nilfs_destroy_cachep();
1301         unregister_filesystem(&nilfs_fs_type);
1302 }
1303
1304 module_init(init_nilfs_fs)
1305 module_exit(exit_nilfs_fs)