]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/ocfs2/aops.c
e1bf18c5d25e1cc907abf53e4ac984870dc0584e
[karo-tx-linux.git] / fs / ocfs2 / aops.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public
17  * License along with this program; if not, write to the
18  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19  * Boston, MA 021110-1307, USA.
20  */
21
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
31 #include <linux/blkdev.h>
32 #include <linux/uio.h>
33
34 #include <cluster/masklog.h>
35
36 #include "ocfs2.h"
37
38 #include "alloc.h"
39 #include "aops.h"
40 #include "dlmglue.h"
41 #include "extent_map.h"
42 #include "file.h"
43 #include "inode.h"
44 #include "journal.h"
45 #include "suballoc.h"
46 #include "super.h"
47 #include "symlink.h"
48 #include "refcounttree.h"
49 #include "ocfs2_trace.h"
50
51 #include "buffer_head_io.h"
52 #include "dir.h"
53 #include "namei.h"
54 #include "sysfile.h"
55
56 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
57                                    struct buffer_head *bh_result, int create)
58 {
59         int err = -EIO;
60         int status;
61         struct ocfs2_dinode *fe = NULL;
62         struct buffer_head *bh = NULL;
63         struct buffer_head *buffer_cache_bh = NULL;
64         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
65         void *kaddr;
66
67         trace_ocfs2_symlink_get_block(
68                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
69                         (unsigned long long)iblock, bh_result, create);
70
71         BUG_ON(ocfs2_inode_is_fast_symlink(inode));
72
73         if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
74                 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
75                      (unsigned long long)iblock);
76                 goto bail;
77         }
78
79         status = ocfs2_read_inode_block(inode, &bh);
80         if (status < 0) {
81                 mlog_errno(status);
82                 goto bail;
83         }
84         fe = (struct ocfs2_dinode *) bh->b_data;
85
86         if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
87                                                     le32_to_cpu(fe->i_clusters))) {
88                 err = -ENOMEM;
89                 mlog(ML_ERROR, "block offset is outside the allocated size: "
90                      "%llu\n", (unsigned long long)iblock);
91                 goto bail;
92         }
93
94         /* We don't use the page cache to create symlink data, so if
95          * need be, copy it over from the buffer cache. */
96         if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
97                 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
98                             iblock;
99                 buffer_cache_bh = sb_getblk(osb->sb, blkno);
100                 if (!buffer_cache_bh) {
101                         err = -ENOMEM;
102                         mlog(ML_ERROR, "couldn't getblock for symlink!\n");
103                         goto bail;
104                 }
105
106                 /* we haven't locked out transactions, so a commit
107                  * could've happened. Since we've got a reference on
108                  * the bh, even if it commits while we're doing the
109                  * copy, the data is still good. */
110                 if (buffer_jbd(buffer_cache_bh)
111                     && ocfs2_inode_is_new(inode)) {
112                         kaddr = kmap_atomic(bh_result->b_page);
113                         if (!kaddr) {
114                                 mlog(ML_ERROR, "couldn't kmap!\n");
115                                 goto bail;
116                         }
117                         memcpy(kaddr + (bh_result->b_size * iblock),
118                                buffer_cache_bh->b_data,
119                                bh_result->b_size);
120                         kunmap_atomic(kaddr);
121                         set_buffer_uptodate(bh_result);
122                 }
123                 brelse(buffer_cache_bh);
124         }
125
126         map_bh(bh_result, inode->i_sb,
127                le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
128
129         err = 0;
130
131 bail:
132         brelse(bh);
133
134         return err;
135 }
136
137 int ocfs2_get_block(struct inode *inode, sector_t iblock,
138                     struct buffer_head *bh_result, int create)
139 {
140         int err = 0;
141         unsigned int ext_flags;
142         u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
143         u64 p_blkno, count, past_eof;
144         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
145
146         trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
147                               (unsigned long long)iblock, bh_result, create);
148
149         if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
150                 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
151                      inode, inode->i_ino);
152
153         if (S_ISLNK(inode->i_mode)) {
154                 /* this always does I/O for some reason. */
155                 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
156                 goto bail;
157         }
158
159         err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
160                                           &ext_flags);
161         if (err) {
162                 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
163                      "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
164                      (unsigned long long)p_blkno);
165                 goto bail;
166         }
167
168         if (max_blocks < count)
169                 count = max_blocks;
170
171         /*
172          * ocfs2 never allocates in this function - the only time we
173          * need to use BH_New is when we're extending i_size on a file
174          * system which doesn't support holes, in which case BH_New
175          * allows __block_write_begin() to zero.
176          *
177          * If we see this on a sparse file system, then a truncate has
178          * raced us and removed the cluster. In this case, we clear
179          * the buffers dirty and uptodate bits and let the buffer code
180          * ignore it as a hole.
181          */
182         if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
183                 clear_buffer_dirty(bh_result);
184                 clear_buffer_uptodate(bh_result);
185                 goto bail;
186         }
187
188         /* Treat the unwritten extent as a hole for zeroing purposes. */
189         if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
190                 map_bh(bh_result, inode->i_sb, p_blkno);
191
192         bh_result->b_size = count << inode->i_blkbits;
193
194         if (!ocfs2_sparse_alloc(osb)) {
195                 if (p_blkno == 0) {
196                         err = -EIO;
197                         mlog(ML_ERROR,
198                              "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
199                              (unsigned long long)iblock,
200                              (unsigned long long)p_blkno,
201                              (unsigned long long)OCFS2_I(inode)->ip_blkno);
202                         mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
203                         dump_stack();
204                         goto bail;
205                 }
206         }
207
208         past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
209
210         trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
211                                   (unsigned long long)past_eof);
212         if (create && (iblock >= past_eof))
213                 set_buffer_new(bh_result);
214
215 bail:
216         if (err < 0)
217                 err = -EIO;
218
219         return err;
220 }
221
222 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
223                            struct buffer_head *di_bh)
224 {
225         void *kaddr;
226         loff_t size;
227         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
228
229         if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
230                 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
231                             (unsigned long long)OCFS2_I(inode)->ip_blkno);
232                 return -EROFS;
233         }
234
235         size = i_size_read(inode);
236
237         if (size > PAGE_CACHE_SIZE ||
238             size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
239                 ocfs2_error(inode->i_sb,
240                             "Inode %llu has with inline data has bad size: %Lu",
241                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
242                             (unsigned long long)size);
243                 return -EROFS;
244         }
245
246         kaddr = kmap_atomic(page);
247         if (size)
248                 memcpy(kaddr, di->id2.i_data.id_data, size);
249         /* Clear the remaining part of the page */
250         memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
251         flush_dcache_page(page);
252         kunmap_atomic(kaddr);
253
254         SetPageUptodate(page);
255
256         return 0;
257 }
258
259 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
260 {
261         int ret;
262         struct buffer_head *di_bh = NULL;
263
264         BUG_ON(!PageLocked(page));
265         BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
266
267         ret = ocfs2_read_inode_block(inode, &di_bh);
268         if (ret) {
269                 mlog_errno(ret);
270                 goto out;
271         }
272
273         ret = ocfs2_read_inline_data(inode, page, di_bh);
274 out:
275         unlock_page(page);
276
277         brelse(di_bh);
278         return ret;
279 }
280
281 static int ocfs2_readpage(struct file *file, struct page *page)
282 {
283         struct inode *inode = page->mapping->host;
284         struct ocfs2_inode_info *oi = OCFS2_I(inode);
285         loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
286         int ret, unlock = 1;
287
288         trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
289                              (page ? page->index : 0));
290
291         ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
292         if (ret != 0) {
293                 if (ret == AOP_TRUNCATED_PAGE)
294                         unlock = 0;
295                 mlog_errno(ret);
296                 goto out;
297         }
298
299         if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
300                 /*
301                  * Unlock the page and cycle ip_alloc_sem so that we don't
302                  * busyloop waiting for ip_alloc_sem to unlock
303                  */
304                 ret = AOP_TRUNCATED_PAGE;
305                 unlock_page(page);
306                 unlock = 0;
307                 down_read(&oi->ip_alloc_sem);
308                 up_read(&oi->ip_alloc_sem);
309                 goto out_inode_unlock;
310         }
311
312         /*
313          * i_size might have just been updated as we grabed the meta lock.  We
314          * might now be discovering a truncate that hit on another node.
315          * block_read_full_page->get_block freaks out if it is asked to read
316          * beyond the end of a file, so we check here.  Callers
317          * (generic_file_read, vm_ops->fault) are clever enough to check i_size
318          * and notice that the page they just read isn't needed.
319          *
320          * XXX sys_readahead() seems to get that wrong?
321          */
322         if (start >= i_size_read(inode)) {
323                 zero_user(page, 0, PAGE_SIZE);
324                 SetPageUptodate(page);
325                 ret = 0;
326                 goto out_alloc;
327         }
328
329         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
330                 ret = ocfs2_readpage_inline(inode, page);
331         else
332                 ret = block_read_full_page(page, ocfs2_get_block);
333         unlock = 0;
334
335 out_alloc:
336         up_read(&OCFS2_I(inode)->ip_alloc_sem);
337 out_inode_unlock:
338         ocfs2_inode_unlock(inode, 0);
339 out:
340         if (unlock)
341                 unlock_page(page);
342         return ret;
343 }
344
345 /*
346  * This is used only for read-ahead. Failures or difficult to handle
347  * situations are safe to ignore.
348  *
349  * Right now, we don't bother with BH_Boundary - in-inode extent lists
350  * are quite large (243 extents on 4k blocks), so most inodes don't
351  * grow out to a tree. If need be, detecting boundary extents could
352  * trivially be added in a future version of ocfs2_get_block().
353  */
354 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
355                            struct list_head *pages, unsigned nr_pages)
356 {
357         int ret, err = -EIO;
358         struct inode *inode = mapping->host;
359         struct ocfs2_inode_info *oi = OCFS2_I(inode);
360         loff_t start;
361         struct page *last;
362
363         /*
364          * Use the nonblocking flag for the dlm code to avoid page
365          * lock inversion, but don't bother with retrying.
366          */
367         ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
368         if (ret)
369                 return err;
370
371         if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
372                 ocfs2_inode_unlock(inode, 0);
373                 return err;
374         }
375
376         /*
377          * Don't bother with inline-data. There isn't anything
378          * to read-ahead in that case anyway...
379          */
380         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
381                 goto out_unlock;
382
383         /*
384          * Check whether a remote node truncated this file - we just
385          * drop out in that case as it's not worth handling here.
386          */
387         last = list_entry(pages->prev, struct page, lru);
388         start = (loff_t)last->index << PAGE_CACHE_SHIFT;
389         if (start >= i_size_read(inode))
390                 goto out_unlock;
391
392         err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
393
394 out_unlock:
395         up_read(&oi->ip_alloc_sem);
396         ocfs2_inode_unlock(inode, 0);
397
398         return err;
399 }
400
401 /* Note: Because we don't support holes, our allocation has
402  * already happened (allocation writes zeros to the file data)
403  * so we don't have to worry about ordered writes in
404  * ocfs2_writepage.
405  *
406  * ->writepage is called during the process of invalidating the page cache
407  * during blocked lock processing.  It can't block on any cluster locks
408  * to during block mapping.  It's relying on the fact that the block
409  * mapping can't have disappeared under the dirty pages that it is
410  * being asked to write back.
411  */
412 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
413 {
414         trace_ocfs2_writepage(
415                 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
416                 page->index);
417
418         return block_write_full_page(page, ocfs2_get_block, wbc);
419 }
420
421 /* Taken from ext3. We don't necessarily need the full blown
422  * functionality yet, but IMHO it's better to cut and paste the whole
423  * thing so we can avoid introducing our own bugs (and easily pick up
424  * their fixes when they happen) --Mark */
425 int walk_page_buffers(  handle_t *handle,
426                         struct buffer_head *head,
427                         unsigned from,
428                         unsigned to,
429                         int *partial,
430                         int (*fn)(      handle_t *handle,
431                                         struct buffer_head *bh))
432 {
433         struct buffer_head *bh;
434         unsigned block_start, block_end;
435         unsigned blocksize = head->b_size;
436         int err, ret = 0;
437         struct buffer_head *next;
438
439         for (   bh = head, block_start = 0;
440                 ret == 0 && (bh != head || !block_start);
441                 block_start = block_end, bh = next)
442         {
443                 next = bh->b_this_page;
444                 block_end = block_start + blocksize;
445                 if (block_end <= from || block_start >= to) {
446                         if (partial && !buffer_uptodate(bh))
447                                 *partial = 1;
448                         continue;
449                 }
450                 err = (*fn)(handle, bh);
451                 if (!ret)
452                         ret = err;
453         }
454         return ret;
455 }
456
457 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
458 {
459         sector_t status;
460         u64 p_blkno = 0;
461         int err = 0;
462         struct inode *inode = mapping->host;
463
464         trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
465                          (unsigned long long)block);
466
467         /* We don't need to lock journal system files, since they aren't
468          * accessed concurrently from multiple nodes.
469          */
470         if (!INODE_JOURNAL(inode)) {
471                 err = ocfs2_inode_lock(inode, NULL, 0);
472                 if (err) {
473                         if (err != -ENOENT)
474                                 mlog_errno(err);
475                         goto bail;
476                 }
477                 down_read(&OCFS2_I(inode)->ip_alloc_sem);
478         }
479
480         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
481                 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
482                                                   NULL);
483
484         if (!INODE_JOURNAL(inode)) {
485                 up_read(&OCFS2_I(inode)->ip_alloc_sem);
486                 ocfs2_inode_unlock(inode, 0);
487         }
488
489         if (err) {
490                 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
491                      (unsigned long long)block);
492                 mlog_errno(err);
493                 goto bail;
494         }
495
496 bail:
497         status = err ? 0 : p_blkno;
498
499         return status;
500 }
501
502 /*
503  * TODO: Make this into a generic get_blocks function.
504  *
505  * From do_direct_io in direct-io.c:
506  *  "So what we do is to permit the ->get_blocks function to populate
507  *   bh.b_size with the size of IO which is permitted at this offset and
508  *   this i_blkbits."
509  *
510  * This function is called directly from get_more_blocks in direct-io.c.
511  *
512  * called like this: dio->get_blocks(dio->inode, fs_startblk,
513  *                                      fs_count, map_bh, dio->rw == WRITE);
514  */
515 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
516                                      struct buffer_head *bh_result, int create)
517 {
518         int ret;
519         u32 cpos = 0;
520         int alloc_locked = 0;
521         u64 p_blkno, inode_blocks, contig_blocks;
522         unsigned int ext_flags;
523         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
524         unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
525         unsigned long len = bh_result->b_size;
526         unsigned int clusters_to_alloc = 0;
527
528         cpos = ocfs2_blocks_to_clusters(inode->i_sb, iblock);
529
530         /* This function won't even be called if the request isn't all
531          * nicely aligned and of the right size, so there's no need
532          * for us to check any of that. */
533
534         inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
535
536         /* This figures out the size of the next contiguous block, and
537          * our logical offset */
538         ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
539                                           &contig_blocks, &ext_flags);
540         if (ret) {
541                 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
542                      (unsigned long long)iblock);
543                 ret = -EIO;
544                 goto bail;
545         }
546
547         /* We should already CoW the refcounted extent in case of create. */
548         BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
549
550         /* allocate blocks if no p_blkno is found, and create == 1 */
551         if (!p_blkno && create) {
552                 ret = ocfs2_inode_lock(inode, NULL, 1);
553                 if (ret < 0) {
554                         mlog_errno(ret);
555                         goto bail;
556                 }
557
558                 alloc_locked = 1;
559
560                 /* fill hole, allocate blocks can't be larger than the size
561                  * of the hole */
562                 clusters_to_alloc = ocfs2_clusters_for_bytes(inode->i_sb, len);
563                 if (clusters_to_alloc > contig_blocks)
564                         clusters_to_alloc = contig_blocks;
565
566                 /* allocate extent and insert them into the extent tree */
567                 ret = ocfs2_extend_allocation(inode, cpos,
568                                 clusters_to_alloc, 0);
569                 if (ret < 0) {
570                         mlog_errno(ret);
571                         goto bail;
572                 }
573
574                 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
575                                 &contig_blocks, &ext_flags);
576                 if (ret < 0) {
577                         mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
578                                         (unsigned long long)iblock);
579                         ret = -EIO;
580                         goto bail;
581                 }
582         }
583
584         /*
585          * get_more_blocks() expects us to describe a hole by clearing
586          * the mapped bit on bh_result().
587          *
588          * Consider an unwritten extent as a hole.
589          */
590         if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
591                 map_bh(bh_result, inode->i_sb, p_blkno);
592         else
593                 clear_buffer_mapped(bh_result);
594
595         /* make sure we don't map more than max_blocks blocks here as
596            that's all the kernel will handle at this point. */
597         if (max_blocks < contig_blocks)
598                 contig_blocks = max_blocks;
599         bh_result->b_size = contig_blocks << blocksize_bits;
600 bail:
601         if (alloc_locked)
602                 ocfs2_inode_unlock(inode, 1);
603         return ret;
604 }
605
606 /*
607  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
608  * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
609  * to protect io on one node from truncation on another.
610  */
611 static void ocfs2_dio_end_io(struct kiocb *iocb,
612                              loff_t offset,
613                              ssize_t bytes,
614                              void *private)
615 {
616         struct inode *inode = file_inode(iocb->ki_filp);
617         int level;
618
619         /* this io's submitter should not have unlocked this before we could */
620         BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
621
622         if (ocfs2_iocb_is_sem_locked(iocb))
623                 ocfs2_iocb_clear_sem_locked(iocb);
624
625         if (ocfs2_iocb_is_unaligned_aio(iocb)) {
626                 ocfs2_iocb_clear_unaligned_aio(iocb);
627
628                 mutex_unlock(&OCFS2_I(inode)->ip_unaligned_aio);
629         }
630
631         ocfs2_iocb_clear_rw_locked(iocb);
632
633         level = ocfs2_iocb_rw_locked_level(iocb);
634         ocfs2_rw_unlock(inode, level);
635 }
636
637 static int ocfs2_releasepage(struct page *page, gfp_t wait)
638 {
639         if (!page_has_buffers(page))
640                 return 0;
641         return try_to_free_buffers(page);
642 }
643
644 static int ocfs2_is_overwrite(struct ocfs2_super *osb,
645                 struct inode *inode, loff_t offset)
646 {
647         int ret = 0;
648         u32 v_cpos = 0;
649         u32 p_cpos = 0;
650         unsigned int num_clusters = 0;
651         unsigned int ext_flags = 0;
652
653         v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
654         ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
655                         &num_clusters, &ext_flags);
656         if (ret < 0) {
657                 mlog_errno(ret);
658                 return ret;
659         }
660
661         if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN))
662                 return 1;
663
664         return 0;
665 }
666
667 static ssize_t ocfs2_direct_IO_write(struct kiocb *iocb,
668                 struct iov_iter *iter,
669                 loff_t offset)
670 {
671         ssize_t ret = 0;
672         ssize_t written = 0;
673         bool orphaned = false;
674         int is_overwrite = 0;
675         struct file *file = iocb->ki_filp;
676         struct inode *inode = file_inode(file)->i_mapping->host;
677         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
678         struct buffer_head *di_bh = NULL;
679         size_t count = iter->count;
680         journal_t *journal = osb->journal->j_journal;
681         u32 zero_len;
682         int cluster_align;
683         loff_t final_size = offset + count;
684         int append_write = offset >= i_size_read(inode) ? 1 : 0;
685         unsigned int num_clusters = 0;
686         unsigned int ext_flags = 0;
687
688         {
689                 u64 o = offset;
690
691                 zero_len = do_div(o, 1 << osb->s_clustersize_bits);
692                 cluster_align = !zero_len;
693         }
694
695         /*
696          * when final_size > inode->i_size, inode->i_size will be
697          * updated after direct write, so add the inode to orphan
698          * dir first.
699          */
700         if (final_size > i_size_read(inode)) {
701                 ret = ocfs2_add_inode_to_orphan(osb, inode);
702                 if (ret < 0) {
703                         mlog_errno(ret);
704                         goto out;
705                 }
706                 orphaned = true;
707         }
708
709         if (append_write) {
710                 ret = ocfs2_inode_lock(inode, &di_bh, 1);
711                 if (ret < 0) {
712                         mlog_errno(ret);
713                         goto clean_orphan;
714                 }
715
716                 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
717                         ret = ocfs2_zero_extend(inode, di_bh, offset);
718                 else
719                         ret = ocfs2_extend_no_holes(inode, di_bh, offset,
720                                         offset);
721                 if (ret < 0) {
722                         mlog_errno(ret);
723                         ocfs2_inode_unlock(inode, 1);
724                         brelse(di_bh);
725                         goto clean_orphan;
726                 }
727
728                 is_overwrite = ocfs2_is_overwrite(osb, inode, offset);
729                 if (is_overwrite < 0) {
730                         mlog_errno(is_overwrite);
731                         ocfs2_inode_unlock(inode, 1);
732                         brelse(di_bh);
733                         goto clean_orphan;
734                 }
735
736                 ocfs2_inode_unlock(inode, 1);
737                 brelse(di_bh);
738                 di_bh = NULL;
739         }
740
741         written = __blockdev_direct_IO(WRITE, iocb, inode, inode->i_sb->s_bdev,
742                         iter, offset,
743                         ocfs2_direct_IO_get_blocks,
744                         ocfs2_dio_end_io, NULL, 0);
745         if (unlikely(written < 0)) {
746                 loff_t i_size = i_size_read(inode);
747
748                 if (offset + count > i_size) {
749                         ret = ocfs2_inode_lock(inode, &di_bh, 1);
750                         if (ret < 0) {
751                                 mlog_errno(ret);
752                                 goto clean_orphan;
753                         }
754
755                         if (i_size == i_size_read(inode)) {
756                                 ret = ocfs2_truncate_file(inode, di_bh,
757                                                 i_size);
758                                 if (ret < 0) {
759                                         if (ret != -ENOSPC)
760                                                 mlog_errno(ret);
761
762                                         ocfs2_inode_unlock(inode, 1);
763                                         brelse(di_bh);
764                                         goto clean_orphan;
765                                 }
766                         }
767
768                         ocfs2_inode_unlock(inode, 1);
769                         brelse(di_bh);
770
771                         ret = jbd2_journal_force_commit(journal);
772                         if (ret < 0)
773                                 mlog_errno(ret);
774                 }
775         } else if (written < 0 && append_write && !is_overwrite &&
776                         !cluster_align) {
777                 u32 p_cpos = 0;
778                 u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
779
780                 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
781                                 &num_clusters, &ext_flags);
782                 if (ret < 0) {
783                         mlog_errno(ret);
784                         goto clean_orphan;
785                 }
786
787                 BUG_ON(!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN));
788
789                 ret = blkdev_issue_zeroout(osb->sb->s_bdev,
790                                 p_cpos << (osb->s_clustersize_bits - 9),
791                                 zero_len >> 9, GFP_KERNEL, false);
792                 if (ret < 0)
793                         mlog_errno(ret);
794         }
795
796 clean_orphan:
797         if (orphaned) {
798                 int tmp_ret;
799                 int update_isize = written > 0 ? 1 : 0;
800                 loff_t end = update_isize ? offset + written : 0;
801
802                 tmp_ret = ocfs2_del_inode_from_orphan(osb, inode,
803                                 update_isize, end);
804                 if (tmp_ret < 0) {
805                         ret = tmp_ret;
806                         goto out;
807                 }
808
809                 tmp_ret = jbd2_journal_force_commit(journal);
810                 if (tmp_ret < 0) {
811                         ret = tmp_ret;
812                         mlog_errno(tmp_ret);
813                 }
814         }
815
816 out:
817         if (ret >= 0)
818                 ret = written;
819         return ret;
820 }
821
822 static ssize_t ocfs2_direct_IO(int rw,
823                                struct kiocb *iocb,
824                                struct iov_iter *iter,
825                                loff_t offset)
826 {
827         struct file *file = iocb->ki_filp;
828         struct inode *inode = file_inode(file)->i_mapping->host;
829         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
830         int full_coherency = !(osb->s_mount_opt &
831                         OCFS2_MOUNT_COHERENCY_BUFFERED);
832
833         /*
834          * Fallback to buffered I/O if we see an inode without
835          * extents.
836          */
837         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
838                 return 0;
839
840         /* Fallback to buffered I/O if we are appending and
841          * concurrent O_DIRECT writes are allowed.
842          */
843         if (i_size_read(inode) <= offset && !full_coherency)
844                 return 0;
845
846         if (rw == READ)
847                 return __blockdev_direct_IO(rw, iocb, inode,
848                                     inode->i_sb->s_bdev,
849                                     iter, offset,
850                                     ocfs2_direct_IO_get_blocks,
851                                     ocfs2_dio_end_io, NULL, 0);
852         else
853                 return ocfs2_direct_IO_write(iocb, iter, offset);
854 }
855
856 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
857                                             u32 cpos,
858                                             unsigned int *start,
859                                             unsigned int *end)
860 {
861         unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
862
863         if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
864                 unsigned int cpp;
865
866                 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
867
868                 cluster_start = cpos % cpp;
869                 cluster_start = cluster_start << osb->s_clustersize_bits;
870
871                 cluster_end = cluster_start + osb->s_clustersize;
872         }
873
874         BUG_ON(cluster_start > PAGE_SIZE);
875         BUG_ON(cluster_end > PAGE_SIZE);
876
877         if (start)
878                 *start = cluster_start;
879         if (end)
880                 *end = cluster_end;
881 }
882
883 /*
884  * 'from' and 'to' are the region in the page to avoid zeroing.
885  *
886  * If pagesize > clustersize, this function will avoid zeroing outside
887  * of the cluster boundary.
888  *
889  * from == to == 0 is code for "zero the entire cluster region"
890  */
891 static void ocfs2_clear_page_regions(struct page *page,
892                                      struct ocfs2_super *osb, u32 cpos,
893                                      unsigned from, unsigned to)
894 {
895         void *kaddr;
896         unsigned int cluster_start, cluster_end;
897
898         ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
899
900         kaddr = kmap_atomic(page);
901
902         if (from || to) {
903                 if (from > cluster_start)
904                         memset(kaddr + cluster_start, 0, from - cluster_start);
905                 if (to < cluster_end)
906                         memset(kaddr + to, 0, cluster_end - to);
907         } else {
908                 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
909         }
910
911         kunmap_atomic(kaddr);
912 }
913
914 /*
915  * Nonsparse file systems fully allocate before we get to the write
916  * code. This prevents ocfs2_write() from tagging the write as an
917  * allocating one, which means ocfs2_map_page_blocks() might try to
918  * read-in the blocks at the tail of our file. Avoid reading them by
919  * testing i_size against each block offset.
920  */
921 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
922                                  unsigned int block_start)
923 {
924         u64 offset = page_offset(page) + block_start;
925
926         if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
927                 return 1;
928
929         if (i_size_read(inode) > offset)
930                 return 1;
931
932         return 0;
933 }
934
935 /*
936  * Some of this taken from __block_write_begin(). We already have our
937  * mapping by now though, and the entire write will be allocating or
938  * it won't, so not much need to use BH_New.
939  *
940  * This will also skip zeroing, which is handled externally.
941  */
942 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
943                           struct inode *inode, unsigned int from,
944                           unsigned int to, int new)
945 {
946         int ret = 0;
947         struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
948         unsigned int block_end, block_start;
949         unsigned int bsize = 1 << inode->i_blkbits;
950
951         if (!page_has_buffers(page))
952                 create_empty_buffers(page, bsize, 0);
953
954         head = page_buffers(page);
955         for (bh = head, block_start = 0; bh != head || !block_start;
956              bh = bh->b_this_page, block_start += bsize) {
957                 block_end = block_start + bsize;
958
959                 clear_buffer_new(bh);
960
961                 /*
962                  * Ignore blocks outside of our i/o range -
963                  * they may belong to unallocated clusters.
964                  */
965                 if (block_start >= to || block_end <= from) {
966                         if (PageUptodate(page))
967                                 set_buffer_uptodate(bh);
968                         continue;
969                 }
970
971                 /*
972                  * For an allocating write with cluster size >= page
973                  * size, we always write the entire page.
974                  */
975                 if (new)
976                         set_buffer_new(bh);
977
978                 if (!buffer_mapped(bh)) {
979                         map_bh(bh, inode->i_sb, *p_blkno);
980                         unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
981                 }
982
983                 if (PageUptodate(page)) {
984                         if (!buffer_uptodate(bh))
985                                 set_buffer_uptodate(bh);
986                 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
987                            !buffer_new(bh) &&
988                            ocfs2_should_read_blk(inode, page, block_start) &&
989                            (block_start < from || block_end > to)) {
990                         ll_rw_block(READ, 1, &bh);
991                         *wait_bh++=bh;
992                 }
993
994                 *p_blkno = *p_blkno + 1;
995         }
996
997         /*
998          * If we issued read requests - let them complete.
999          */
1000         while(wait_bh > wait) {
1001                 wait_on_buffer(*--wait_bh);
1002                 if (!buffer_uptodate(*wait_bh))
1003                         ret = -EIO;
1004         }
1005
1006         if (ret == 0 || !new)
1007                 return ret;
1008
1009         /*
1010          * If we get -EIO above, zero out any newly allocated blocks
1011          * to avoid exposing stale data.
1012          */
1013         bh = head;
1014         block_start = 0;
1015         do {
1016                 block_end = block_start + bsize;
1017                 if (block_end <= from)
1018                         goto next_bh;
1019                 if (block_start >= to)
1020                         break;
1021
1022                 zero_user(page, block_start, bh->b_size);
1023                 set_buffer_uptodate(bh);
1024                 mark_buffer_dirty(bh);
1025
1026 next_bh:
1027                 block_start = block_end;
1028                 bh = bh->b_this_page;
1029         } while (bh != head);
1030
1031         return ret;
1032 }
1033
1034 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
1035 #define OCFS2_MAX_CTXT_PAGES    1
1036 #else
1037 #define OCFS2_MAX_CTXT_PAGES    (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
1038 #endif
1039
1040 #define OCFS2_MAX_CLUSTERS_PER_PAGE     (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
1041
1042 /*
1043  * Describe the state of a single cluster to be written to.
1044  */
1045 struct ocfs2_write_cluster_desc {
1046         u32             c_cpos;
1047         u32             c_phys;
1048         /*
1049          * Give this a unique field because c_phys eventually gets
1050          * filled.
1051          */
1052         unsigned        c_new;
1053         unsigned        c_unwritten;
1054         unsigned        c_needs_zero;
1055 };
1056
1057 struct ocfs2_write_ctxt {
1058         /* Logical cluster position / len of write */
1059         u32                             w_cpos;
1060         u32                             w_clen;
1061
1062         /* First cluster allocated in a nonsparse extend */
1063         u32                             w_first_new_cpos;
1064
1065         struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
1066
1067         /*
1068          * This is true if page_size > cluster_size.
1069          *
1070          * It triggers a set of special cases during write which might
1071          * have to deal with allocating writes to partial pages.
1072          */
1073         unsigned int                    w_large_pages;
1074
1075         /*
1076          * Pages involved in this write.
1077          *
1078          * w_target_page is the page being written to by the user.
1079          *
1080          * w_pages is an array of pages which always contains
1081          * w_target_page, and in the case of an allocating write with
1082          * page_size < cluster size, it will contain zero'd and mapped
1083          * pages adjacent to w_target_page which need to be written
1084          * out in so that future reads from that region will get
1085          * zero's.
1086          */
1087         unsigned int                    w_num_pages;
1088         struct page                     *w_pages[OCFS2_MAX_CTXT_PAGES];
1089         struct page                     *w_target_page;
1090
1091         /*
1092          * w_target_locked is used for page_mkwrite path indicating no unlocking
1093          * against w_target_page in ocfs2_write_end_nolock.
1094          */
1095         unsigned int                    w_target_locked:1;
1096
1097         /*
1098          * ocfs2_write_end() uses this to know what the real range to
1099          * write in the target should be.
1100          */
1101         unsigned int                    w_target_from;
1102         unsigned int                    w_target_to;
1103
1104         /*
1105          * We could use journal_current_handle() but this is cleaner,
1106          * IMHO -Mark
1107          */
1108         handle_t                        *w_handle;
1109
1110         struct buffer_head              *w_di_bh;
1111
1112         struct ocfs2_cached_dealloc_ctxt w_dealloc;
1113 };
1114
1115 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
1116 {
1117         int i;
1118
1119         for(i = 0; i < num_pages; i++) {
1120                 if (pages[i]) {
1121                         unlock_page(pages[i]);
1122                         mark_page_accessed(pages[i]);
1123                         page_cache_release(pages[i]);
1124                 }
1125         }
1126 }
1127
1128 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
1129 {
1130         int i;
1131
1132         /*
1133          * w_target_locked is only set to true in the page_mkwrite() case.
1134          * The intent is to allow us to lock the target page from write_begin()
1135          * to write_end(). The caller must hold a ref on w_target_page.
1136          */
1137         if (wc->w_target_locked) {
1138                 BUG_ON(!wc->w_target_page);
1139                 for (i = 0; i < wc->w_num_pages; i++) {
1140                         if (wc->w_target_page == wc->w_pages[i]) {
1141                                 wc->w_pages[i] = NULL;
1142                                 break;
1143                         }
1144                 }
1145                 mark_page_accessed(wc->w_target_page);
1146                 page_cache_release(wc->w_target_page);
1147         }
1148         ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
1149 }
1150
1151 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
1152 {
1153         ocfs2_unlock_pages(wc);
1154         brelse(wc->w_di_bh);
1155         kfree(wc);
1156 }
1157
1158 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
1159                                   struct ocfs2_super *osb, loff_t pos,
1160                                   unsigned len, struct buffer_head *di_bh)
1161 {
1162         u32 cend;
1163         struct ocfs2_write_ctxt *wc;
1164
1165         wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
1166         if (!wc)
1167                 return -ENOMEM;
1168
1169         wc->w_cpos = pos >> osb->s_clustersize_bits;
1170         wc->w_first_new_cpos = UINT_MAX;
1171         cend = (pos + len - 1) >> osb->s_clustersize_bits;
1172         wc->w_clen = cend - wc->w_cpos + 1;
1173         get_bh(di_bh);
1174         wc->w_di_bh = di_bh;
1175
1176         if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
1177                 wc->w_large_pages = 1;
1178         else
1179                 wc->w_large_pages = 0;
1180
1181         ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
1182
1183         *wcp = wc;
1184
1185         return 0;
1186 }
1187
1188 /*
1189  * If a page has any new buffers, zero them out here, and mark them uptodate
1190  * and dirty so they'll be written out (in order to prevent uninitialised
1191  * block data from leaking). And clear the new bit.
1192  */
1193 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1194 {
1195         unsigned int block_start, block_end;
1196         struct buffer_head *head, *bh;
1197
1198         BUG_ON(!PageLocked(page));
1199         if (!page_has_buffers(page))
1200                 return;
1201
1202         bh = head = page_buffers(page);
1203         block_start = 0;
1204         do {
1205                 block_end = block_start + bh->b_size;
1206
1207                 if (buffer_new(bh)) {
1208                         if (block_end > from && block_start < to) {
1209                                 if (!PageUptodate(page)) {
1210                                         unsigned start, end;
1211
1212                                         start = max(from, block_start);
1213                                         end = min(to, block_end);
1214
1215                                         zero_user_segment(page, start, end);
1216                                         set_buffer_uptodate(bh);
1217                                 }
1218
1219                                 clear_buffer_new(bh);
1220                                 mark_buffer_dirty(bh);
1221                         }
1222                 }
1223
1224                 block_start = block_end;
1225                 bh = bh->b_this_page;
1226         } while (bh != head);
1227 }
1228
1229 /*
1230  * Only called when we have a failure during allocating write to write
1231  * zero's to the newly allocated region.
1232  */
1233 static void ocfs2_write_failure(struct inode *inode,
1234                                 struct ocfs2_write_ctxt *wc,
1235                                 loff_t user_pos, unsigned user_len)
1236 {
1237         int i;
1238         unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1239                 to = user_pos + user_len;
1240         struct page *tmppage;
1241
1242         ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1243
1244         for(i = 0; i < wc->w_num_pages; i++) {
1245                 tmppage = wc->w_pages[i];
1246
1247                 if (page_has_buffers(tmppage)) {
1248                         if (ocfs2_should_order_data(inode))
1249                                 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1250
1251                         block_commit_write(tmppage, from, to);
1252                 }
1253         }
1254 }
1255
1256 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1257                                         struct ocfs2_write_ctxt *wc,
1258                                         struct page *page, u32 cpos,
1259                                         loff_t user_pos, unsigned user_len,
1260                                         int new)
1261 {
1262         int ret;
1263         unsigned int map_from = 0, map_to = 0;
1264         unsigned int cluster_start, cluster_end;
1265         unsigned int user_data_from = 0, user_data_to = 0;
1266
1267         ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1268                                         &cluster_start, &cluster_end);
1269
1270         /* treat the write as new if the a hole/lseek spanned across
1271          * the page boundary.
1272          */
1273         new = new | ((i_size_read(inode) <= page_offset(page)) &&
1274                         (page_offset(page) <= user_pos));
1275
1276         if (page == wc->w_target_page) {
1277                 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1278                 map_to = map_from + user_len;
1279
1280                 if (new)
1281                         ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1282                                                     cluster_start, cluster_end,
1283                                                     new);
1284                 else
1285                         ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1286                                                     map_from, map_to, new);
1287                 if (ret) {
1288                         mlog_errno(ret);
1289                         goto out;
1290                 }
1291
1292                 user_data_from = map_from;
1293                 user_data_to = map_to;
1294                 if (new) {
1295                         map_from = cluster_start;
1296                         map_to = cluster_end;
1297                 }
1298         } else {
1299                 /*
1300                  * If we haven't allocated the new page yet, we
1301                  * shouldn't be writing it out without copying user
1302                  * data. This is likely a math error from the caller.
1303                  */
1304                 BUG_ON(!new);
1305
1306                 map_from = cluster_start;
1307                 map_to = cluster_end;
1308
1309                 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1310                                             cluster_start, cluster_end, new);
1311                 if (ret) {
1312                         mlog_errno(ret);
1313                         goto out;
1314                 }
1315         }
1316
1317         /*
1318          * Parts of newly allocated pages need to be zero'd.
1319          *
1320          * Above, we have also rewritten 'to' and 'from' - as far as
1321          * the rest of the function is concerned, the entire cluster
1322          * range inside of a page needs to be written.
1323          *
1324          * We can skip this if the page is up to date - it's already
1325          * been zero'd from being read in as a hole.
1326          */
1327         if (new && !PageUptodate(page))
1328                 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1329                                          cpos, user_data_from, user_data_to);
1330
1331         flush_dcache_page(page);
1332
1333 out:
1334         return ret;
1335 }
1336
1337 /*
1338  * This function will only grab one clusters worth of pages.
1339  */
1340 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1341                                       struct ocfs2_write_ctxt *wc,
1342                                       u32 cpos, loff_t user_pos,
1343                                       unsigned user_len, int new,
1344                                       struct page *mmap_page)
1345 {
1346         int ret = 0, i;
1347         unsigned long start, target_index, end_index, index;
1348         struct inode *inode = mapping->host;
1349         loff_t last_byte;
1350
1351         target_index = user_pos >> PAGE_CACHE_SHIFT;
1352
1353         /*
1354          * Figure out how many pages we'll be manipulating here. For
1355          * non allocating write, we just change the one
1356          * page. Otherwise, we'll need a whole clusters worth.  If we're
1357          * writing past i_size, we only need enough pages to cover the
1358          * last page of the write.
1359          */
1360         if (new) {
1361                 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1362                 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1363                 /*
1364                  * We need the index *past* the last page we could possibly
1365                  * touch.  This is the page past the end of the write or
1366                  * i_size, whichever is greater.
1367                  */
1368                 last_byte = max(user_pos + user_len, i_size_read(inode));
1369                 BUG_ON(last_byte < 1);
1370                 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1371                 if ((start + wc->w_num_pages) > end_index)
1372                         wc->w_num_pages = end_index - start;
1373         } else {
1374                 wc->w_num_pages = 1;
1375                 start = target_index;
1376         }
1377
1378         for(i = 0; i < wc->w_num_pages; i++) {
1379                 index = start + i;
1380
1381                 if (index == target_index && mmap_page) {
1382                         /*
1383                          * ocfs2_pagemkwrite() is a little different
1384                          * and wants us to directly use the page
1385                          * passed in.
1386                          */
1387                         lock_page(mmap_page);
1388
1389                         /* Exit and let the caller retry */
1390                         if (mmap_page->mapping != mapping) {
1391                                 WARN_ON(mmap_page->mapping);
1392                                 unlock_page(mmap_page);
1393                                 ret = -EAGAIN;
1394                                 goto out;
1395                         }
1396
1397                         page_cache_get(mmap_page);
1398                         wc->w_pages[i] = mmap_page;
1399                         wc->w_target_locked = true;
1400                 } else {
1401                         wc->w_pages[i] = find_or_create_page(mapping, index,
1402                                                              GFP_NOFS);
1403                         if (!wc->w_pages[i]) {
1404                                 ret = -ENOMEM;
1405                                 mlog_errno(ret);
1406                                 goto out;
1407                         }
1408                 }
1409                 wait_for_stable_page(wc->w_pages[i]);
1410
1411                 if (index == target_index)
1412                         wc->w_target_page = wc->w_pages[i];
1413         }
1414 out:
1415         if (ret)
1416                 wc->w_target_locked = false;
1417         return ret;
1418 }
1419
1420 /*
1421  * Prepare a single cluster for write one cluster into the file.
1422  */
1423 static int ocfs2_write_cluster(struct address_space *mapping,
1424                                u32 phys, unsigned int unwritten,
1425                                unsigned int should_zero,
1426                                struct ocfs2_alloc_context *data_ac,
1427                                struct ocfs2_alloc_context *meta_ac,
1428                                struct ocfs2_write_ctxt *wc, u32 cpos,
1429                                loff_t user_pos, unsigned user_len)
1430 {
1431         int ret, i, new;
1432         u64 v_blkno, p_blkno;
1433         struct inode *inode = mapping->host;
1434         struct ocfs2_extent_tree et;
1435
1436         new = phys == 0 ? 1 : 0;
1437         if (new) {
1438                 u32 tmp_pos;
1439
1440                 /*
1441                  * This is safe to call with the page locks - it won't take
1442                  * any additional semaphores or cluster locks.
1443                  */
1444                 tmp_pos = cpos;
1445                 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1446                                            &tmp_pos, 1, 0, wc->w_di_bh,
1447                                            wc->w_handle, data_ac,
1448                                            meta_ac, NULL);
1449                 /*
1450                  * This shouldn't happen because we must have already
1451                  * calculated the correct meta data allocation required. The
1452                  * internal tree allocation code should know how to increase
1453                  * transaction credits itself.
1454                  *
1455                  * If need be, we could handle -EAGAIN for a
1456                  * RESTART_TRANS here.
1457                  */
1458                 mlog_bug_on_msg(ret == -EAGAIN,
1459                                 "Inode %llu: EAGAIN return during allocation.\n",
1460                                 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1461                 if (ret < 0) {
1462                         mlog_errno(ret);
1463                         goto out;
1464                 }
1465         } else if (unwritten) {
1466                 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1467                                               wc->w_di_bh);
1468                 ret = ocfs2_mark_extent_written(inode, &et,
1469                                                 wc->w_handle, cpos, 1, phys,
1470                                                 meta_ac, &wc->w_dealloc);
1471                 if (ret < 0) {
1472                         mlog_errno(ret);
1473                         goto out;
1474                 }
1475         }
1476
1477         if (should_zero)
1478                 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1479         else
1480                 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1481
1482         /*
1483          * The only reason this should fail is due to an inability to
1484          * find the extent added.
1485          */
1486         ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1487                                           NULL);
1488         if (ret < 0) {
1489                 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1490                             "at logical block %llu",
1491                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
1492                             (unsigned long long)v_blkno);
1493                 goto out;
1494         }
1495
1496         BUG_ON(p_blkno == 0);
1497
1498         for(i = 0; i < wc->w_num_pages; i++) {
1499                 int tmpret;
1500
1501                 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1502                                                       wc->w_pages[i], cpos,
1503                                                       user_pos, user_len,
1504                                                       should_zero);
1505                 if (tmpret) {
1506                         mlog_errno(tmpret);
1507                         if (ret == 0)
1508                                 ret = tmpret;
1509                 }
1510         }
1511
1512         /*
1513          * We only have cleanup to do in case of allocating write.
1514          */
1515         if (ret && new)
1516                 ocfs2_write_failure(inode, wc, user_pos, user_len);
1517
1518 out:
1519
1520         return ret;
1521 }
1522
1523 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1524                                        struct ocfs2_alloc_context *data_ac,
1525                                        struct ocfs2_alloc_context *meta_ac,
1526                                        struct ocfs2_write_ctxt *wc,
1527                                        loff_t pos, unsigned len)
1528 {
1529         int ret, i;
1530         loff_t cluster_off;
1531         unsigned int local_len = len;
1532         struct ocfs2_write_cluster_desc *desc;
1533         struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1534
1535         for (i = 0; i < wc->w_clen; i++) {
1536                 desc = &wc->w_desc[i];
1537
1538                 /*
1539                  * We have to make sure that the total write passed in
1540                  * doesn't extend past a single cluster.
1541                  */
1542                 local_len = len;
1543                 cluster_off = pos & (osb->s_clustersize - 1);
1544                 if ((cluster_off + local_len) > osb->s_clustersize)
1545                         local_len = osb->s_clustersize - cluster_off;
1546
1547                 ret = ocfs2_write_cluster(mapping, desc->c_phys,
1548                                           desc->c_unwritten,
1549                                           desc->c_needs_zero,
1550                                           data_ac, meta_ac,
1551                                           wc, desc->c_cpos, pos, local_len);
1552                 if (ret) {
1553                         mlog_errno(ret);
1554                         goto out;
1555                 }
1556
1557                 len -= local_len;
1558                 pos += local_len;
1559         }
1560
1561         ret = 0;
1562 out:
1563         return ret;
1564 }
1565
1566 /*
1567  * ocfs2_write_end() wants to know which parts of the target page it
1568  * should complete the write on. It's easiest to compute them ahead of
1569  * time when a more complete view of the write is available.
1570  */
1571 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1572                                         struct ocfs2_write_ctxt *wc,
1573                                         loff_t pos, unsigned len, int alloc)
1574 {
1575         struct ocfs2_write_cluster_desc *desc;
1576
1577         wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1578         wc->w_target_to = wc->w_target_from + len;
1579
1580         if (alloc == 0)
1581                 return;
1582
1583         /*
1584          * Allocating write - we may have different boundaries based
1585          * on page size and cluster size.
1586          *
1587          * NOTE: We can no longer compute one value from the other as
1588          * the actual write length and user provided length may be
1589          * different.
1590          */
1591
1592         if (wc->w_large_pages) {
1593                 /*
1594                  * We only care about the 1st and last cluster within
1595                  * our range and whether they should be zero'd or not. Either
1596                  * value may be extended out to the start/end of a
1597                  * newly allocated cluster.
1598                  */
1599                 desc = &wc->w_desc[0];
1600                 if (desc->c_needs_zero)
1601                         ocfs2_figure_cluster_boundaries(osb,
1602                                                         desc->c_cpos,
1603                                                         &wc->w_target_from,
1604                                                         NULL);
1605
1606                 desc = &wc->w_desc[wc->w_clen - 1];
1607                 if (desc->c_needs_zero)
1608                         ocfs2_figure_cluster_boundaries(osb,
1609                                                         desc->c_cpos,
1610                                                         NULL,
1611                                                         &wc->w_target_to);
1612         } else {
1613                 wc->w_target_from = 0;
1614                 wc->w_target_to = PAGE_CACHE_SIZE;
1615         }
1616 }
1617
1618 /*
1619  * Populate each single-cluster write descriptor in the write context
1620  * with information about the i/o to be done.
1621  *
1622  * Returns the number of clusters that will have to be allocated, as
1623  * well as a worst case estimate of the number of extent records that
1624  * would have to be created during a write to an unwritten region.
1625  */
1626 static int ocfs2_populate_write_desc(struct inode *inode,
1627                                      struct ocfs2_write_ctxt *wc,
1628                                      unsigned int *clusters_to_alloc,
1629                                      unsigned int *extents_to_split)
1630 {
1631         int ret;
1632         struct ocfs2_write_cluster_desc *desc;
1633         unsigned int num_clusters = 0;
1634         unsigned int ext_flags = 0;
1635         u32 phys = 0;
1636         int i;
1637
1638         *clusters_to_alloc = 0;
1639         *extents_to_split = 0;
1640
1641         for (i = 0; i < wc->w_clen; i++) {
1642                 desc = &wc->w_desc[i];
1643                 desc->c_cpos = wc->w_cpos + i;
1644
1645                 if (num_clusters == 0) {
1646                         /*
1647                          * Need to look up the next extent record.
1648                          */
1649                         ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1650                                                  &num_clusters, &ext_flags);
1651                         if (ret) {
1652                                 mlog_errno(ret);
1653                                 goto out;
1654                         }
1655
1656                         /* We should already CoW the refcountd extent. */
1657                         BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1658
1659                         /*
1660                          * Assume worst case - that we're writing in
1661                          * the middle of the extent.
1662                          *
1663                          * We can assume that the write proceeds from
1664                          * left to right, in which case the extent
1665                          * insert code is smart enough to coalesce the
1666                          * next splits into the previous records created.
1667                          */
1668                         if (ext_flags & OCFS2_EXT_UNWRITTEN)
1669                                 *extents_to_split = *extents_to_split + 2;
1670                 } else if (phys) {
1671                         /*
1672                          * Only increment phys if it doesn't describe
1673                          * a hole.
1674                          */
1675                         phys++;
1676                 }
1677
1678                 /*
1679                  * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1680                  * file that got extended.  w_first_new_cpos tells us
1681                  * where the newly allocated clusters are so we can
1682                  * zero them.
1683                  */
1684                 if (desc->c_cpos >= wc->w_first_new_cpos) {
1685                         BUG_ON(phys == 0);
1686                         desc->c_needs_zero = 1;
1687                 }
1688
1689                 desc->c_phys = phys;
1690                 if (phys == 0) {
1691                         desc->c_new = 1;
1692                         desc->c_needs_zero = 1;
1693                         *clusters_to_alloc = *clusters_to_alloc + 1;
1694                 }
1695
1696                 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1697                         desc->c_unwritten = 1;
1698                         desc->c_needs_zero = 1;
1699                 }
1700
1701                 num_clusters--;
1702         }
1703
1704         ret = 0;
1705 out:
1706         return ret;
1707 }
1708
1709 static int ocfs2_write_begin_inline(struct address_space *mapping,
1710                                     struct inode *inode,
1711                                     struct ocfs2_write_ctxt *wc)
1712 {
1713         int ret;
1714         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1715         struct page *page;
1716         handle_t *handle;
1717         struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1718
1719         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1720         if (IS_ERR(handle)) {
1721                 ret = PTR_ERR(handle);
1722                 mlog_errno(ret);
1723                 goto out;
1724         }
1725
1726         page = find_or_create_page(mapping, 0, GFP_NOFS);
1727         if (!page) {
1728                 ocfs2_commit_trans(osb, handle);
1729                 ret = -ENOMEM;
1730                 mlog_errno(ret);
1731                 goto out;
1732         }
1733         /*
1734          * If we don't set w_num_pages then this page won't get unlocked
1735          * and freed on cleanup of the write context.
1736          */
1737         wc->w_pages[0] = wc->w_target_page = page;
1738         wc->w_num_pages = 1;
1739
1740         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1741                                       OCFS2_JOURNAL_ACCESS_WRITE);
1742         if (ret) {
1743                 ocfs2_commit_trans(osb, handle);
1744
1745                 mlog_errno(ret);
1746                 goto out;
1747         }
1748
1749         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1750                 ocfs2_set_inode_data_inline(inode, di);
1751
1752         if (!PageUptodate(page)) {
1753                 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1754                 if (ret) {
1755                         ocfs2_commit_trans(osb, handle);
1756
1757                         goto out;
1758                 }
1759         }
1760
1761         wc->w_handle = handle;
1762 out:
1763         return ret;
1764 }
1765
1766 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1767 {
1768         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1769
1770         if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1771                 return 1;
1772         return 0;
1773 }
1774
1775 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1776                                           struct inode *inode, loff_t pos,
1777                                           unsigned len, struct page *mmap_page,
1778                                           struct ocfs2_write_ctxt *wc)
1779 {
1780         int ret, written = 0;
1781         loff_t end = pos + len;
1782         struct ocfs2_inode_info *oi = OCFS2_I(inode);
1783         struct ocfs2_dinode *di = NULL;
1784
1785         trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1786                                              len, (unsigned long long)pos,
1787                                              oi->ip_dyn_features);
1788
1789         /*
1790          * Handle inodes which already have inline data 1st.
1791          */
1792         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1793                 if (mmap_page == NULL &&
1794                     ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1795                         goto do_inline_write;
1796
1797                 /*
1798                  * The write won't fit - we have to give this inode an
1799                  * inline extent list now.
1800                  */
1801                 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1802                 if (ret)
1803                         mlog_errno(ret);
1804                 goto out;
1805         }
1806
1807         /*
1808          * Check whether the inode can accept inline data.
1809          */
1810         if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1811                 return 0;
1812
1813         /*
1814          * Check whether the write can fit.
1815          */
1816         di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1817         if (mmap_page ||
1818             end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1819                 return 0;
1820
1821 do_inline_write:
1822         ret = ocfs2_write_begin_inline(mapping, inode, wc);
1823         if (ret) {
1824                 mlog_errno(ret);
1825                 goto out;
1826         }
1827
1828         /*
1829          * This signals to the caller that the data can be written
1830          * inline.
1831          */
1832         written = 1;
1833 out:
1834         return written ? written : ret;
1835 }
1836
1837 /*
1838  * This function only does anything for file systems which can't
1839  * handle sparse files.
1840  *
1841  * What we want to do here is fill in any hole between the current end
1842  * of allocation and the end of our write. That way the rest of the
1843  * write path can treat it as an non-allocating write, which has no
1844  * special case code for sparse/nonsparse files.
1845  */
1846 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1847                                         struct buffer_head *di_bh,
1848                                         loff_t pos, unsigned len,
1849                                         struct ocfs2_write_ctxt *wc)
1850 {
1851         int ret;
1852         loff_t newsize = pos + len;
1853
1854         BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1855
1856         if (newsize <= i_size_read(inode))
1857                 return 0;
1858
1859         ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1860         if (ret)
1861                 mlog_errno(ret);
1862
1863         wc->w_first_new_cpos =
1864                 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1865
1866         return ret;
1867 }
1868
1869 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1870                            loff_t pos)
1871 {
1872         int ret = 0;
1873
1874         BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1875         if (pos > i_size_read(inode))
1876                 ret = ocfs2_zero_extend(inode, di_bh, pos);
1877
1878         return ret;
1879 }
1880
1881 /*
1882  * Try to flush truncate logs if we can free enough clusters from it.
1883  * As for return value, "< 0" means error, "0" no space and "1" means
1884  * we have freed enough spaces and let the caller try to allocate again.
1885  */
1886 static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
1887                                           unsigned int needed)
1888 {
1889         tid_t target;
1890         int ret = 0;
1891         unsigned int truncated_clusters;
1892
1893         mutex_lock(&osb->osb_tl_inode->i_mutex);
1894         truncated_clusters = osb->truncated_clusters;
1895         mutex_unlock(&osb->osb_tl_inode->i_mutex);
1896
1897         /*
1898          * Check whether we can succeed in allocating if we free
1899          * the truncate log.
1900          */
1901         if (truncated_clusters < needed)
1902                 goto out;
1903
1904         ret = ocfs2_flush_truncate_log(osb);
1905         if (ret) {
1906                 mlog_errno(ret);
1907                 goto out;
1908         }
1909
1910         if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
1911                 jbd2_log_wait_commit(osb->journal->j_journal, target);
1912                 ret = 1;
1913         }
1914 out:
1915         return ret;
1916 }
1917
1918 int ocfs2_write_begin_nolock(struct file *filp,
1919                              struct address_space *mapping,
1920                              loff_t pos, unsigned len, unsigned flags,
1921                              struct page **pagep, void **fsdata,
1922                              struct buffer_head *di_bh, struct page *mmap_page)
1923 {
1924         int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1925         unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1926         struct ocfs2_write_ctxt *wc;
1927         struct inode *inode = mapping->host;
1928         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1929         struct ocfs2_dinode *di;
1930         struct ocfs2_alloc_context *data_ac = NULL;
1931         struct ocfs2_alloc_context *meta_ac = NULL;
1932         handle_t *handle;
1933         struct ocfs2_extent_tree et;
1934         int try_free = 1, ret1;
1935
1936 try_again:
1937         ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1938         if (ret) {
1939                 mlog_errno(ret);
1940                 return ret;
1941         }
1942
1943         if (ocfs2_supports_inline_data(osb)) {
1944                 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1945                                                      mmap_page, wc);
1946                 if (ret == 1) {
1947                         ret = 0;
1948                         goto success;
1949                 }
1950                 if (ret < 0) {
1951                         mlog_errno(ret);
1952                         goto out;
1953                 }
1954         }
1955
1956         if (ocfs2_sparse_alloc(osb))
1957                 ret = ocfs2_zero_tail(inode, di_bh, pos);
1958         else
1959                 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
1960                                                    wc);
1961         if (ret) {
1962                 mlog_errno(ret);
1963                 goto out;
1964         }
1965
1966         ret = ocfs2_check_range_for_refcount(inode, pos, len);
1967         if (ret < 0) {
1968                 mlog_errno(ret);
1969                 goto out;
1970         } else if (ret == 1) {
1971                 clusters_need = wc->w_clen;
1972                 ret = ocfs2_refcount_cow(inode, di_bh,
1973                                          wc->w_cpos, wc->w_clen, UINT_MAX);
1974                 if (ret) {
1975                         mlog_errno(ret);
1976                         goto out;
1977                 }
1978         }
1979
1980         ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1981                                         &extents_to_split);
1982         if (ret) {
1983                 mlog_errno(ret);
1984                 goto out;
1985         }
1986         clusters_need += clusters_to_alloc;
1987
1988         di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1989
1990         trace_ocfs2_write_begin_nolock(
1991                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
1992                         (long long)i_size_read(inode),
1993                         le32_to_cpu(di->i_clusters),
1994                         pos, len, flags, mmap_page,
1995                         clusters_to_alloc, extents_to_split);
1996
1997         /*
1998          * We set w_target_from, w_target_to here so that
1999          * ocfs2_write_end() knows which range in the target page to
2000          * write out. An allocation requires that we write the entire
2001          * cluster range.
2002          */
2003         if (clusters_to_alloc || extents_to_split) {
2004                 /*
2005                  * XXX: We are stretching the limits of
2006                  * ocfs2_lock_allocators(). It greatly over-estimates
2007                  * the work to be done.
2008                  */
2009                 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
2010                                               wc->w_di_bh);
2011                 ret = ocfs2_lock_allocators(inode, &et,
2012                                             clusters_to_alloc, extents_to_split,
2013                                             &data_ac, &meta_ac);
2014                 if (ret) {
2015                         mlog_errno(ret);
2016                         goto out;
2017                 }
2018
2019                 if (data_ac)
2020                         data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
2021
2022                 credits = ocfs2_calc_extend_credits(inode->i_sb,
2023                                                     &di->id2.i_list);
2024
2025         }
2026
2027         /*
2028          * We have to zero sparse allocated clusters, unwritten extent clusters,
2029          * and non-sparse clusters we just extended.  For non-sparse writes,
2030          * we know zeros will only be needed in the first and/or last cluster.
2031          */
2032         if (clusters_to_alloc || extents_to_split ||
2033             (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
2034                             wc->w_desc[wc->w_clen - 1].c_needs_zero)))
2035                 cluster_of_pages = 1;
2036         else
2037                 cluster_of_pages = 0;
2038
2039         ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
2040
2041         handle = ocfs2_start_trans(osb, credits);
2042         if (IS_ERR(handle)) {
2043                 ret = PTR_ERR(handle);
2044                 mlog_errno(ret);
2045                 goto out;
2046         }
2047
2048         wc->w_handle = handle;
2049
2050         if (clusters_to_alloc) {
2051                 ret = dquot_alloc_space_nodirty(inode,
2052                         ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
2053                 if (ret)
2054                         goto out_commit;
2055         }
2056         /*
2057          * We don't want this to fail in ocfs2_write_end(), so do it
2058          * here.
2059          */
2060         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
2061                                       OCFS2_JOURNAL_ACCESS_WRITE);
2062         if (ret) {
2063                 mlog_errno(ret);
2064                 goto out_quota;
2065         }
2066
2067         /*
2068          * Fill our page array first. That way we've grabbed enough so
2069          * that we can zero and flush if we error after adding the
2070          * extent.
2071          */
2072         ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
2073                                          cluster_of_pages, mmap_page);
2074         if (ret && ret != -EAGAIN) {
2075                 mlog_errno(ret);
2076                 goto out_quota;
2077         }
2078
2079         /*
2080          * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
2081          * the target page. In this case, we exit with no error and no target
2082          * page. This will trigger the caller, page_mkwrite(), to re-try
2083          * the operation.
2084          */
2085         if (ret == -EAGAIN) {
2086                 BUG_ON(wc->w_target_page);
2087                 ret = 0;
2088                 goto out_quota;
2089         }
2090
2091         ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
2092                                           len);
2093         if (ret) {
2094                 mlog_errno(ret);
2095                 goto out_quota;
2096         }
2097
2098         if (data_ac)
2099                 ocfs2_free_alloc_context(data_ac);
2100         if (meta_ac)
2101                 ocfs2_free_alloc_context(meta_ac);
2102
2103 success:
2104         *pagep = wc->w_target_page;
2105         *fsdata = wc;
2106         return 0;
2107 out_quota:
2108         if (clusters_to_alloc)
2109                 dquot_free_space(inode,
2110                           ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
2111 out_commit:
2112         ocfs2_commit_trans(osb, handle);
2113
2114 out:
2115         ocfs2_free_write_ctxt(wc);
2116
2117         if (data_ac) {
2118                 ocfs2_free_alloc_context(data_ac);
2119                 data_ac = NULL;
2120         }
2121         if (meta_ac) {
2122                 ocfs2_free_alloc_context(meta_ac);
2123                 meta_ac = NULL;
2124         }
2125
2126         if (ret == -ENOSPC && try_free) {
2127                 /*
2128                  * Try to free some truncate log so that we can have enough
2129                  * clusters to allocate.
2130                  */
2131                 try_free = 0;
2132
2133                 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
2134                 if (ret1 == 1)
2135                         goto try_again;
2136
2137                 if (ret1 < 0)
2138                         mlog_errno(ret1);
2139         }
2140
2141         return ret;
2142 }
2143
2144 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
2145                              loff_t pos, unsigned len, unsigned flags,
2146                              struct page **pagep, void **fsdata)
2147 {
2148         int ret;
2149         struct buffer_head *di_bh = NULL;
2150         struct inode *inode = mapping->host;
2151
2152         ret = ocfs2_inode_lock(inode, &di_bh, 1);
2153         if (ret) {
2154                 mlog_errno(ret);
2155                 return ret;
2156         }
2157
2158         /*
2159          * Take alloc sem here to prevent concurrent lookups. That way
2160          * the mapping, zeroing and tree manipulation within
2161          * ocfs2_write() will be safe against ->readpage(). This
2162          * should also serve to lock out allocation from a shared
2163          * writeable region.
2164          */
2165         down_write(&OCFS2_I(inode)->ip_alloc_sem);
2166
2167         ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
2168                                        fsdata, di_bh, NULL);
2169         if (ret) {
2170                 mlog_errno(ret);
2171                 goto out_fail;
2172         }
2173
2174         brelse(di_bh);
2175
2176         return 0;
2177
2178 out_fail:
2179         up_write(&OCFS2_I(inode)->ip_alloc_sem);
2180
2181         brelse(di_bh);
2182         ocfs2_inode_unlock(inode, 1);
2183
2184         return ret;
2185 }
2186
2187 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
2188                                    unsigned len, unsigned *copied,
2189                                    struct ocfs2_dinode *di,
2190                                    struct ocfs2_write_ctxt *wc)
2191 {
2192         void *kaddr;
2193
2194         if (unlikely(*copied < len)) {
2195                 if (!PageUptodate(wc->w_target_page)) {
2196                         *copied = 0;
2197                         return;
2198                 }
2199         }
2200
2201         kaddr = kmap_atomic(wc->w_target_page);
2202         memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
2203         kunmap_atomic(kaddr);
2204
2205         trace_ocfs2_write_end_inline(
2206              (unsigned long long)OCFS2_I(inode)->ip_blkno,
2207              (unsigned long long)pos, *copied,
2208              le16_to_cpu(di->id2.i_data.id_count),
2209              le16_to_cpu(di->i_dyn_features));
2210 }
2211
2212 int ocfs2_write_end_nolock(struct address_space *mapping,
2213                            loff_t pos, unsigned len, unsigned copied,
2214                            struct page *page, void *fsdata)
2215 {
2216         int i;
2217         unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
2218         struct inode *inode = mapping->host;
2219         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2220         struct ocfs2_write_ctxt *wc = fsdata;
2221         struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2222         handle_t *handle = wc->w_handle;
2223         struct page *tmppage;
2224
2225         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2226                 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
2227                 goto out_write_size;
2228         }
2229
2230         if (unlikely(copied < len)) {
2231                 if (!PageUptodate(wc->w_target_page))
2232                         copied = 0;
2233
2234                 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2235                                        start+len);
2236         }
2237         flush_dcache_page(wc->w_target_page);
2238
2239         for(i = 0; i < wc->w_num_pages; i++) {
2240                 tmppage = wc->w_pages[i];
2241
2242                 if (tmppage == wc->w_target_page) {
2243                         from = wc->w_target_from;
2244                         to = wc->w_target_to;
2245
2246                         BUG_ON(from > PAGE_CACHE_SIZE ||
2247                                to > PAGE_CACHE_SIZE ||
2248                                to < from);
2249                 } else {
2250                         /*
2251                          * Pages adjacent to the target (if any) imply
2252                          * a hole-filling write in which case we want
2253                          * to flush their entire range.
2254                          */
2255                         from = 0;
2256                         to = PAGE_CACHE_SIZE;
2257                 }
2258
2259                 if (page_has_buffers(tmppage)) {
2260                         if (ocfs2_should_order_data(inode))
2261                                 ocfs2_jbd2_file_inode(wc->w_handle, inode);
2262                         block_commit_write(tmppage, from, to);
2263                 }
2264         }
2265
2266 out_write_size:
2267         pos += copied;
2268         if (pos > i_size_read(inode)) {
2269                 i_size_write(inode, pos);
2270                 mark_inode_dirty(inode);
2271         }
2272         inode->i_blocks = ocfs2_inode_sector_count(inode);
2273         di->i_size = cpu_to_le64((u64)i_size_read(inode));
2274         inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2275         di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2276         di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2277         ocfs2_update_inode_fsync_trans(handle, inode, 1);
2278         ocfs2_journal_dirty(handle, wc->w_di_bh);
2279
2280         /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2281          * lock, or it will cause a deadlock since journal commit threads holds
2282          * this lock and will ask for the page lock when flushing the data.
2283          * put it here to preserve the unlock order.
2284          */
2285         ocfs2_unlock_pages(wc);
2286
2287         ocfs2_commit_trans(osb, handle);
2288
2289         ocfs2_run_deallocs(osb, &wc->w_dealloc);
2290
2291         brelse(wc->w_di_bh);
2292         kfree(wc);
2293
2294         return copied;
2295 }
2296
2297 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2298                            loff_t pos, unsigned len, unsigned copied,
2299                            struct page *page, void *fsdata)
2300 {
2301         int ret;
2302         struct inode *inode = mapping->host;
2303
2304         ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2305
2306         up_write(&OCFS2_I(inode)->ip_alloc_sem);
2307         ocfs2_inode_unlock(inode, 1);
2308
2309         return ret;
2310 }
2311
2312 const struct address_space_operations ocfs2_aops = {
2313         .readpage               = ocfs2_readpage,
2314         .readpages              = ocfs2_readpages,
2315         .writepage              = ocfs2_writepage,
2316         .write_begin            = ocfs2_write_begin,
2317         .write_end              = ocfs2_write_end,
2318         .bmap                   = ocfs2_bmap,
2319         .direct_IO              = ocfs2_direct_IO,
2320         .invalidatepage         = block_invalidatepage,
2321         .releasepage            = ocfs2_releasepage,
2322         .migratepage            = buffer_migrate_page,
2323         .is_partially_uptodate  = block_is_partially_uptodate,
2324         .error_remove_page      = generic_error_remove_page,
2325 };