]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/xfs/xfs_buf.c
xfs: Don't allocate new buffers on every call to _xfs_buf_find
[karo-tx-linux.git] / fs / xfs / xfs_buf.c
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36
37 #include "xfs_sb.h"
38 #include "xfs_inum.h"
39 #include "xfs_log.h"
40 #include "xfs_ag.h"
41 #include "xfs_mount.h"
42 #include "xfs_trace.h"
43
44 static kmem_zone_t *xfs_buf_zone;
45 STATIC int xfsbufd(void *);
46
47 static struct workqueue_struct *xfslogd_workqueue;
48 struct workqueue_struct *xfsdatad_workqueue;
49 struct workqueue_struct *xfsconvertd_workqueue;
50
51 #ifdef XFS_BUF_LOCK_TRACKING
52 # define XB_SET_OWNER(bp)       ((bp)->b_last_holder = current->pid)
53 # define XB_CLEAR_OWNER(bp)     ((bp)->b_last_holder = -1)
54 # define XB_GET_OWNER(bp)       ((bp)->b_last_holder)
55 #else
56 # define XB_SET_OWNER(bp)       do { } while (0)
57 # define XB_CLEAR_OWNER(bp)     do { } while (0)
58 # define XB_GET_OWNER(bp)       do { } while (0)
59 #endif
60
61 #define xb_to_gfp(flags) \
62         ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
63           ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
64
65 #define xb_to_km(flags) \
66          (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
67
68 #define xfs_buf_allocate(flags) \
69         kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
70 #define xfs_buf_deallocate(bp) \
71         kmem_zone_free(xfs_buf_zone, (bp));
72
73 static inline int
74 xfs_buf_is_vmapped(
75         struct xfs_buf  *bp)
76 {
77         /*
78          * Return true if the buffer is vmapped.
79          *
80          * The XBF_MAPPED flag is set if the buffer should be mapped, but the
81          * code is clever enough to know it doesn't have to map a single page,
82          * so the check has to be both for XBF_MAPPED and bp->b_page_count > 1.
83          */
84         return (bp->b_flags & XBF_MAPPED) && bp->b_page_count > 1;
85 }
86
87 static inline int
88 xfs_buf_vmap_len(
89         struct xfs_buf  *bp)
90 {
91         return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
92 }
93
94 /*
95  * xfs_buf_lru_add - add a buffer to the LRU.
96  *
97  * The LRU takes a new reference to the buffer so that it will only be freed
98  * once the shrinker takes the buffer off the LRU.
99  */
100 STATIC void
101 xfs_buf_lru_add(
102         struct xfs_buf  *bp)
103 {
104         struct xfs_buftarg *btp = bp->b_target;
105
106         spin_lock(&btp->bt_lru_lock);
107         if (list_empty(&bp->b_lru)) {
108                 atomic_inc(&bp->b_hold);
109                 list_add_tail(&bp->b_lru, &btp->bt_lru);
110                 btp->bt_lru_nr++;
111         }
112         spin_unlock(&btp->bt_lru_lock);
113 }
114
115 /*
116  * xfs_buf_lru_del - remove a buffer from the LRU
117  *
118  * The unlocked check is safe here because it only occurs when there are not
119  * b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there
120  * to optimise the shrinker removing the buffer from the LRU and calling
121  * xfs_buf_free(). i.e. it removes an unnecessary round trip on the
122  * bt_lru_lock.
123  */
124 STATIC void
125 xfs_buf_lru_del(
126         struct xfs_buf  *bp)
127 {
128         struct xfs_buftarg *btp = bp->b_target;
129
130         if (list_empty(&bp->b_lru))
131                 return;
132
133         spin_lock(&btp->bt_lru_lock);
134         if (!list_empty(&bp->b_lru)) {
135                 list_del_init(&bp->b_lru);
136                 btp->bt_lru_nr--;
137         }
138         spin_unlock(&btp->bt_lru_lock);
139 }
140
141 /*
142  * When we mark a buffer stale, we remove the buffer from the LRU and clear the
143  * b_lru_ref count so that the buffer is freed immediately when the buffer
144  * reference count falls to zero. If the buffer is already on the LRU, we need
145  * to remove the reference that LRU holds on the buffer.
146  *
147  * This prevents build-up of stale buffers on the LRU.
148  */
149 void
150 xfs_buf_stale(
151         struct xfs_buf  *bp)
152 {
153         bp->b_flags |= XBF_STALE;
154         atomic_set(&(bp)->b_lru_ref, 0);
155         if (!list_empty(&bp->b_lru)) {
156                 struct xfs_buftarg *btp = bp->b_target;
157
158                 spin_lock(&btp->bt_lru_lock);
159                 if (!list_empty(&bp->b_lru)) {
160                         list_del_init(&bp->b_lru);
161                         btp->bt_lru_nr--;
162                         atomic_dec(&bp->b_hold);
163                 }
164                 spin_unlock(&btp->bt_lru_lock);
165         }
166         ASSERT(atomic_read(&bp->b_hold) >= 1);
167 }
168
169 STATIC void
170 _xfs_buf_initialize(
171         xfs_buf_t               *bp,
172         xfs_buftarg_t           *target,
173         xfs_off_t               range_base,
174         size_t                  range_length,
175         xfs_buf_flags_t         flags)
176 {
177         /*
178          * We don't want certain flags to appear in b_flags.
179          */
180         flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
181
182         memset(bp, 0, sizeof(xfs_buf_t));
183         atomic_set(&bp->b_hold, 1);
184         atomic_set(&bp->b_lru_ref, 1);
185         init_completion(&bp->b_iowait);
186         INIT_LIST_HEAD(&bp->b_lru);
187         INIT_LIST_HEAD(&bp->b_list);
188         RB_CLEAR_NODE(&bp->b_rbnode);
189         sema_init(&bp->b_sema, 0); /* held, no waiters */
190         XB_SET_OWNER(bp);
191         bp->b_target = target;
192         bp->b_file_offset = range_base;
193         /*
194          * Set buffer_length and count_desired to the same value initially.
195          * I/O routines should use count_desired, which will be the same in
196          * most cases but may be reset (e.g. XFS recovery).
197          */
198         bp->b_buffer_length = bp->b_count_desired = range_length;
199         bp->b_flags = flags;
200         bp->b_bn = XFS_BUF_DADDR_NULL;
201         atomic_set(&bp->b_pin_count, 0);
202         init_waitqueue_head(&bp->b_waiters);
203
204         XFS_STATS_INC(xb_create);
205
206         trace_xfs_buf_init(bp, _RET_IP_);
207 }
208
209 /*
210  *      Allocate a page array capable of holding a specified number
211  *      of pages, and point the page buf at it.
212  */
213 STATIC int
214 _xfs_buf_get_pages(
215         xfs_buf_t               *bp,
216         int                     page_count,
217         xfs_buf_flags_t         flags)
218 {
219         /* Make sure that we have a page list */
220         if (bp->b_pages == NULL) {
221                 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
222                 bp->b_page_count = page_count;
223                 if (page_count <= XB_PAGES) {
224                         bp->b_pages = bp->b_page_array;
225                 } else {
226                         bp->b_pages = kmem_alloc(sizeof(struct page *) *
227                                         page_count, xb_to_km(flags));
228                         if (bp->b_pages == NULL)
229                                 return -ENOMEM;
230                 }
231                 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
232         }
233         return 0;
234 }
235
236 /*
237  *      Frees b_pages if it was allocated.
238  */
239 STATIC void
240 _xfs_buf_free_pages(
241         xfs_buf_t       *bp)
242 {
243         if (bp->b_pages != bp->b_page_array) {
244                 kmem_free(bp->b_pages);
245                 bp->b_pages = NULL;
246         }
247 }
248
249 /*
250  *      Releases the specified buffer.
251  *
252  *      The modification state of any associated pages is left unchanged.
253  *      The buffer most not be on any hash - use xfs_buf_rele instead for
254  *      hashed and refcounted buffers
255  */
256 void
257 xfs_buf_free(
258         xfs_buf_t               *bp)
259 {
260         trace_xfs_buf_free(bp, _RET_IP_);
261
262         ASSERT(list_empty(&bp->b_lru));
263
264         if (bp->b_flags & _XBF_PAGES) {
265                 uint            i;
266
267                 if (xfs_buf_is_vmapped(bp))
268                         vm_unmap_ram(bp->b_addr - bp->b_offset,
269                                         bp->b_page_count);
270
271                 for (i = 0; i < bp->b_page_count; i++) {
272                         struct page     *page = bp->b_pages[i];
273
274                         __free_page(page);
275                 }
276         } else if (bp->b_flags & _XBF_KMEM)
277                 kmem_free(bp->b_addr);
278         _xfs_buf_free_pages(bp);
279         xfs_buf_deallocate(bp);
280 }
281
282 /*
283  * Allocates all the pages for buffer in question and builds it's page list.
284  */
285 STATIC int
286 xfs_buf_allocate_memory(
287         xfs_buf_t               *bp,
288         uint                    flags)
289 {
290         size_t                  size = bp->b_count_desired;
291         size_t                  nbytes, offset;
292         gfp_t                   gfp_mask = xb_to_gfp(flags);
293         unsigned short          page_count, i;
294         xfs_off_t               end;
295         int                     error;
296
297         /*
298          * for buffers that are contained within a single page, just allocate
299          * the memory from the heap - there's no need for the complexity of
300          * page arrays to keep allocation down to order 0.
301          */
302         if (bp->b_buffer_length < PAGE_SIZE) {
303                 bp->b_addr = kmem_alloc(bp->b_buffer_length, xb_to_km(flags));
304                 if (!bp->b_addr) {
305                         /* low memory - use alloc_page loop instead */
306                         goto use_alloc_page;
307                 }
308
309                 if (((unsigned long)(bp->b_addr + bp->b_buffer_length - 1) &
310                                                                 PAGE_MASK) !=
311                     ((unsigned long)bp->b_addr & PAGE_MASK)) {
312                         /* b_addr spans two pages - use alloc_page instead */
313                         kmem_free(bp->b_addr);
314                         bp->b_addr = NULL;
315                         goto use_alloc_page;
316                 }
317                 bp->b_offset = offset_in_page(bp->b_addr);
318                 bp->b_pages = bp->b_page_array;
319                 bp->b_pages[0] = virt_to_page(bp->b_addr);
320                 bp->b_page_count = 1;
321                 bp->b_flags |= XBF_MAPPED | _XBF_KMEM;
322                 return 0;
323         }
324
325 use_alloc_page:
326         end = bp->b_file_offset + bp->b_buffer_length;
327         page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
328         error = _xfs_buf_get_pages(bp, page_count, flags);
329         if (unlikely(error))
330                 return error;
331
332         offset = bp->b_offset;
333         bp->b_flags |= _XBF_PAGES;
334
335         for (i = 0; i < bp->b_page_count; i++) {
336                 struct page     *page;
337                 uint            retries = 0;
338 retry:
339                 page = alloc_page(gfp_mask);
340                 if (unlikely(page == NULL)) {
341                         if (flags & XBF_READ_AHEAD) {
342                                 bp->b_page_count = i;
343                                 error = ENOMEM;
344                                 goto out_free_pages;
345                         }
346
347                         /*
348                          * This could deadlock.
349                          *
350                          * But until all the XFS lowlevel code is revamped to
351                          * handle buffer allocation failures we can't do much.
352                          */
353                         if (!(++retries % 100))
354                                 xfs_err(NULL,
355                 "possible memory allocation deadlock in %s (mode:0x%x)",
356                                         __func__, gfp_mask);
357
358                         XFS_STATS_INC(xb_page_retries);
359                         congestion_wait(BLK_RW_ASYNC, HZ/50);
360                         goto retry;
361                 }
362
363                 XFS_STATS_INC(xb_page_found);
364
365                 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
366                 size -= nbytes;
367                 bp->b_pages[i] = page;
368                 offset = 0;
369         }
370         return 0;
371
372 out_free_pages:
373         for (i = 0; i < bp->b_page_count; i++)
374                 __free_page(bp->b_pages[i]);
375         return error;
376 }
377
378 /*
379  *      Map buffer into kernel address-space if necessary.
380  */
381 STATIC int
382 _xfs_buf_map_pages(
383         xfs_buf_t               *bp,
384         uint                    flags)
385 {
386         ASSERT(bp->b_flags & _XBF_PAGES);
387         if (bp->b_page_count == 1) {
388                 /* A single page buffer is always mappable */
389                 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
390                 bp->b_flags |= XBF_MAPPED;
391         } else if (flags & XBF_MAPPED) {
392                 int retried = 0;
393
394                 do {
395                         bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
396                                                 -1, PAGE_KERNEL);
397                         if (bp->b_addr)
398                                 break;
399                         vm_unmap_aliases();
400                 } while (retried++ <= 1);
401
402                 if (!bp->b_addr)
403                         return -ENOMEM;
404                 bp->b_addr += bp->b_offset;
405                 bp->b_flags |= XBF_MAPPED;
406         }
407
408         return 0;
409 }
410
411 /*
412  *      Finding and Reading Buffers
413  */
414
415 /*
416  *      Look up, and creates if absent, a lockable buffer for
417  *      a given range of an inode.  The buffer is returned
418  *      locked. No I/O is implied by this call.
419  */
420 xfs_buf_t *
421 _xfs_buf_find(
422         xfs_buftarg_t           *btp,   /* block device target          */
423         xfs_off_t               ioff,   /* starting offset of range     */
424         size_t                  isize,  /* length of range              */
425         xfs_buf_flags_t         flags,
426         xfs_buf_t               *new_bp)
427 {
428         xfs_off_t               range_base;
429         size_t                  range_length;
430         struct xfs_perag        *pag;
431         struct rb_node          **rbp;
432         struct rb_node          *parent;
433         xfs_buf_t               *bp;
434
435         range_base = (ioff << BBSHIFT);
436         range_length = (isize << BBSHIFT);
437
438         /* Check for IOs smaller than the sector size / not sector aligned */
439         ASSERT(!(range_length < (1 << btp->bt_sshift)));
440         ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
441
442         /* get tree root */
443         pag = xfs_perag_get(btp->bt_mount,
444                                 xfs_daddr_to_agno(btp->bt_mount, ioff));
445
446         /* walk tree */
447         spin_lock(&pag->pag_buf_lock);
448         rbp = &pag->pag_buf_tree.rb_node;
449         parent = NULL;
450         bp = NULL;
451         while (*rbp) {
452                 parent = *rbp;
453                 bp = rb_entry(parent, struct xfs_buf, b_rbnode);
454
455                 if (range_base < bp->b_file_offset)
456                         rbp = &(*rbp)->rb_left;
457                 else if (range_base > bp->b_file_offset)
458                         rbp = &(*rbp)->rb_right;
459                 else {
460                         /*
461                          * found a block offset match. If the range doesn't
462                          * match, the only way this is allowed is if the buffer
463                          * in the cache is stale and the transaction that made
464                          * it stale has not yet committed. i.e. we are
465                          * reallocating a busy extent. Skip this buffer and
466                          * continue searching to the right for an exact match.
467                          */
468                         if (bp->b_buffer_length != range_length) {
469                                 ASSERT(bp->b_flags & XBF_STALE);
470                                 rbp = &(*rbp)->rb_right;
471                                 continue;
472                         }
473                         atomic_inc(&bp->b_hold);
474                         goto found;
475                 }
476         }
477
478         /* No match found */
479         if (new_bp) {
480                 rb_link_node(&new_bp->b_rbnode, parent, rbp);
481                 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
482                 /* the buffer keeps the perag reference until it is freed */
483                 new_bp->b_pag = pag;
484                 spin_unlock(&pag->pag_buf_lock);
485         } else {
486                 XFS_STATS_INC(xb_miss_locked);
487                 spin_unlock(&pag->pag_buf_lock);
488                 xfs_perag_put(pag);
489         }
490         return new_bp;
491
492 found:
493         spin_unlock(&pag->pag_buf_lock);
494         xfs_perag_put(pag);
495
496         if (!xfs_buf_trylock(bp)) {
497                 if (flags & XBF_TRYLOCK) {
498                         xfs_buf_rele(bp);
499                         XFS_STATS_INC(xb_busy_locked);
500                         return NULL;
501                 }
502                 xfs_buf_lock(bp);
503                 XFS_STATS_INC(xb_get_locked_waited);
504         }
505
506         /*
507          * if the buffer is stale, clear all the external state associated with
508          * it. We need to keep flags such as how we allocated the buffer memory
509          * intact here.
510          */
511         if (bp->b_flags & XBF_STALE) {
512                 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
513                 bp->b_flags &= XBF_MAPPED | _XBF_KMEM | _XBF_PAGES;
514         }
515
516         trace_xfs_buf_find(bp, flags, _RET_IP_);
517         XFS_STATS_INC(xb_get_locked);
518         return bp;
519 }
520
521 /*
522  * Assembles a buffer covering the specified range. The code is optimised for
523  * cache hits, as metadata intensive workloads will see 3 orders of magnitude
524  * more hits than misses.
525  */
526 struct xfs_buf *
527 xfs_buf_get(
528         xfs_buftarg_t           *target,/* target for buffer            */
529         xfs_off_t               ioff,   /* starting offset of range     */
530         size_t                  isize,  /* length of range              */
531         xfs_buf_flags_t         flags)
532 {
533         struct xfs_buf          *bp;
534         struct xfs_buf          *new_bp;
535         int                     error = 0;
536
537         bp = _xfs_buf_find(target, ioff, isize, flags, NULL);
538         if (likely(bp))
539                 goto found;
540
541         new_bp = xfs_buf_allocate(flags);
542         if (unlikely(!new_bp))
543                 return NULL;
544
545         _xfs_buf_initialize(new_bp, target,
546                             ioff << BBSHIFT, isize << BBSHIFT, flags);
547
548         bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
549         if (!bp) {
550                 xfs_buf_deallocate(new_bp);
551                 return NULL;
552         }
553
554         if (bp == new_bp) {
555                 error = xfs_buf_allocate_memory(bp, flags);
556                 if (error)
557                         goto no_buffer;
558         } else
559                 xfs_buf_deallocate(new_bp);
560
561         /*
562          * Now we have a workable buffer, fill in the block number so
563          * that we can do IO on it.
564          */
565         bp->b_bn = ioff;
566         bp->b_count_desired = bp->b_buffer_length;
567
568 found:
569         if (!(bp->b_flags & XBF_MAPPED)) {
570                 error = _xfs_buf_map_pages(bp, flags);
571                 if (unlikely(error)) {
572                         xfs_warn(target->bt_mount,
573                                 "%s: failed to map pages\n", __func__);
574                         goto no_buffer;
575                 }
576         }
577
578         XFS_STATS_INC(xb_get);
579         trace_xfs_buf_get(bp, flags, _RET_IP_);
580         return bp;
581
582 no_buffer:
583         if (flags & (XBF_LOCK | XBF_TRYLOCK))
584                 xfs_buf_unlock(bp);
585         xfs_buf_rele(bp);
586         return NULL;
587 }
588
589 STATIC int
590 _xfs_buf_read(
591         xfs_buf_t               *bp,
592         xfs_buf_flags_t         flags)
593 {
594         int                     status;
595
596         ASSERT(!(flags & (XBF_DELWRI|XBF_WRITE)));
597         ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
598
599         bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_DELWRI | XBF_READ_AHEAD);
600         bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
601
602         status = xfs_buf_iorequest(bp);
603         if (status || bp->b_error || (flags & XBF_ASYNC))
604                 return status;
605         return xfs_buf_iowait(bp);
606 }
607
608 xfs_buf_t *
609 xfs_buf_read(
610         xfs_buftarg_t           *target,
611         xfs_off_t               ioff,
612         size_t                  isize,
613         xfs_buf_flags_t         flags)
614 {
615         xfs_buf_t               *bp;
616
617         flags |= XBF_READ;
618
619         bp = xfs_buf_get(target, ioff, isize, flags);
620         if (bp) {
621                 trace_xfs_buf_read(bp, flags, _RET_IP_);
622
623                 if (!XFS_BUF_ISDONE(bp)) {
624                         XFS_STATS_INC(xb_get_read);
625                         _xfs_buf_read(bp, flags);
626                 } else if (flags & XBF_ASYNC) {
627                         /*
628                          * Read ahead call which is already satisfied,
629                          * drop the buffer
630                          */
631                         goto no_buffer;
632                 } else {
633                         /* We do not want read in the flags */
634                         bp->b_flags &= ~XBF_READ;
635                 }
636         }
637
638         return bp;
639
640  no_buffer:
641         if (flags & (XBF_LOCK | XBF_TRYLOCK))
642                 xfs_buf_unlock(bp);
643         xfs_buf_rele(bp);
644         return NULL;
645 }
646
647 /*
648  *      If we are not low on memory then do the readahead in a deadlock
649  *      safe manner.
650  */
651 void
652 xfs_buf_readahead(
653         xfs_buftarg_t           *target,
654         xfs_off_t               ioff,
655         size_t                  isize)
656 {
657         if (bdi_read_congested(target->bt_bdi))
658                 return;
659
660         xfs_buf_read(target, ioff, isize,
661                      XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD|XBF_DONT_BLOCK);
662 }
663
664 /*
665  * Read an uncached buffer from disk. Allocates and returns a locked
666  * buffer containing the disk contents or nothing.
667  */
668 struct xfs_buf *
669 xfs_buf_read_uncached(
670         struct xfs_mount        *mp,
671         struct xfs_buftarg      *target,
672         xfs_daddr_t             daddr,
673         size_t                  length,
674         int                     flags)
675 {
676         xfs_buf_t               *bp;
677         int                     error;
678
679         bp = xfs_buf_get_uncached(target, length, flags);
680         if (!bp)
681                 return NULL;
682
683         /* set up the buffer for a read IO */
684         XFS_BUF_SET_ADDR(bp, daddr);
685         XFS_BUF_READ(bp);
686
687         xfsbdstrat(mp, bp);
688         error = xfs_buf_iowait(bp);
689         if (error || bp->b_error) {
690                 xfs_buf_relse(bp);
691                 return NULL;
692         }
693         return bp;
694 }
695
696 xfs_buf_t *
697 xfs_buf_get_empty(
698         size_t                  len,
699         xfs_buftarg_t           *target)
700 {
701         xfs_buf_t               *bp;
702
703         bp = xfs_buf_allocate(0);
704         if (bp)
705                 _xfs_buf_initialize(bp, target, 0, len, 0);
706         return bp;
707 }
708
709 /*
710  * Return a buffer allocated as an empty buffer and associated to external
711  * memory via xfs_buf_associate_memory() back to it's empty state.
712  */
713 void
714 xfs_buf_set_empty(
715         struct xfs_buf          *bp,
716         size_t                  len)
717 {
718         if (bp->b_pages)
719                 _xfs_buf_free_pages(bp);
720
721         bp->b_pages = NULL;
722         bp->b_page_count = 0;
723         bp->b_addr = NULL;
724         bp->b_file_offset = 0;
725         bp->b_buffer_length = bp->b_count_desired = len;
726         bp->b_bn = XFS_BUF_DADDR_NULL;
727         bp->b_flags &= ~XBF_MAPPED;
728 }
729
730 static inline struct page *
731 mem_to_page(
732         void                    *addr)
733 {
734         if ((!is_vmalloc_addr(addr))) {
735                 return virt_to_page(addr);
736         } else {
737                 return vmalloc_to_page(addr);
738         }
739 }
740
741 int
742 xfs_buf_associate_memory(
743         xfs_buf_t               *bp,
744         void                    *mem,
745         size_t                  len)
746 {
747         int                     rval;
748         int                     i = 0;
749         unsigned long           pageaddr;
750         unsigned long           offset;
751         size_t                  buflen;
752         int                     page_count;
753
754         pageaddr = (unsigned long)mem & PAGE_MASK;
755         offset = (unsigned long)mem - pageaddr;
756         buflen = PAGE_ALIGN(len + offset);
757         page_count = buflen >> PAGE_SHIFT;
758
759         /* Free any previous set of page pointers */
760         if (bp->b_pages)
761                 _xfs_buf_free_pages(bp);
762
763         bp->b_pages = NULL;
764         bp->b_addr = mem;
765
766         rval = _xfs_buf_get_pages(bp, page_count, XBF_DONT_BLOCK);
767         if (rval)
768                 return rval;
769
770         bp->b_offset = offset;
771
772         for (i = 0; i < bp->b_page_count; i++) {
773                 bp->b_pages[i] = mem_to_page((void *)pageaddr);
774                 pageaddr += PAGE_SIZE;
775         }
776
777         bp->b_count_desired = len;
778         bp->b_buffer_length = buflen;
779         bp->b_flags |= XBF_MAPPED;
780
781         return 0;
782 }
783
784 xfs_buf_t *
785 xfs_buf_get_uncached(
786         struct xfs_buftarg      *target,
787         size_t                  len,
788         int                     flags)
789 {
790         unsigned long           page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
791         int                     error, i;
792         xfs_buf_t               *bp;
793
794         bp = xfs_buf_allocate(0);
795         if (unlikely(bp == NULL))
796                 goto fail;
797         _xfs_buf_initialize(bp, target, 0, len, 0);
798
799         error = _xfs_buf_get_pages(bp, page_count, 0);
800         if (error)
801                 goto fail_free_buf;
802
803         for (i = 0; i < page_count; i++) {
804                 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
805                 if (!bp->b_pages[i])
806                         goto fail_free_mem;
807         }
808         bp->b_flags |= _XBF_PAGES;
809
810         error = _xfs_buf_map_pages(bp, XBF_MAPPED);
811         if (unlikely(error)) {
812                 xfs_warn(target->bt_mount,
813                         "%s: failed to map pages\n", __func__);
814                 goto fail_free_mem;
815         }
816
817         trace_xfs_buf_get_uncached(bp, _RET_IP_);
818         return bp;
819
820  fail_free_mem:
821         while (--i >= 0)
822                 __free_page(bp->b_pages[i]);
823         _xfs_buf_free_pages(bp);
824  fail_free_buf:
825         xfs_buf_deallocate(bp);
826  fail:
827         return NULL;
828 }
829
830 /*
831  *      Increment reference count on buffer, to hold the buffer concurrently
832  *      with another thread which may release (free) the buffer asynchronously.
833  *      Must hold the buffer already to call this function.
834  */
835 void
836 xfs_buf_hold(
837         xfs_buf_t               *bp)
838 {
839         trace_xfs_buf_hold(bp, _RET_IP_);
840         atomic_inc(&bp->b_hold);
841 }
842
843 /*
844  *      Releases a hold on the specified buffer.  If the
845  *      the hold count is 1, calls xfs_buf_free.
846  */
847 void
848 xfs_buf_rele(
849         xfs_buf_t               *bp)
850 {
851         struct xfs_perag        *pag = bp->b_pag;
852
853         trace_xfs_buf_rele(bp, _RET_IP_);
854
855         if (!pag) {
856                 ASSERT(list_empty(&bp->b_lru));
857                 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
858                 if (atomic_dec_and_test(&bp->b_hold))
859                         xfs_buf_free(bp);
860                 return;
861         }
862
863         ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
864
865         ASSERT(atomic_read(&bp->b_hold) > 0);
866         if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
867                 if (!(bp->b_flags & XBF_STALE) &&
868                            atomic_read(&bp->b_lru_ref)) {
869                         xfs_buf_lru_add(bp);
870                         spin_unlock(&pag->pag_buf_lock);
871                 } else {
872                         xfs_buf_lru_del(bp);
873                         ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
874                         rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
875                         spin_unlock(&pag->pag_buf_lock);
876                         xfs_perag_put(pag);
877                         xfs_buf_free(bp);
878                 }
879         }
880 }
881
882
883 /*
884  *      Lock a buffer object, if it is not already locked.
885  *
886  *      If we come across a stale, pinned, locked buffer, we know that we are
887  *      being asked to lock a buffer that has been reallocated. Because it is
888  *      pinned, we know that the log has not been pushed to disk and hence it
889  *      will still be locked.  Rather than continuing to have trylock attempts
890  *      fail until someone else pushes the log, push it ourselves before
891  *      returning.  This means that the xfsaild will not get stuck trying
892  *      to push on stale inode buffers.
893  */
894 int
895 xfs_buf_trylock(
896         struct xfs_buf          *bp)
897 {
898         int                     locked;
899
900         locked = down_trylock(&bp->b_sema) == 0;
901         if (locked)
902                 XB_SET_OWNER(bp);
903         else if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
904                 xfs_log_force(bp->b_target->bt_mount, 0);
905
906         trace_xfs_buf_trylock(bp, _RET_IP_);
907         return locked;
908 }
909
910 /*
911  *      Lock a buffer object.
912  *
913  *      If we come across a stale, pinned, locked buffer, we know that we
914  *      are being asked to lock a buffer that has been reallocated. Because
915  *      it is pinned, we know that the log has not been pushed to disk and
916  *      hence it will still be locked. Rather than sleeping until someone
917  *      else pushes the log, push it ourselves before trying to get the lock.
918  */
919 void
920 xfs_buf_lock(
921         struct xfs_buf          *bp)
922 {
923         trace_xfs_buf_lock(bp, _RET_IP_);
924
925         if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
926                 xfs_log_force(bp->b_target->bt_mount, 0);
927         down(&bp->b_sema);
928         XB_SET_OWNER(bp);
929
930         trace_xfs_buf_lock_done(bp, _RET_IP_);
931 }
932
933 /*
934  *      Releases the lock on the buffer object.
935  *      If the buffer is marked delwri but is not queued, do so before we
936  *      unlock the buffer as we need to set flags correctly.  We also need to
937  *      take a reference for the delwri queue because the unlocker is going to
938  *      drop their's and they don't know we just queued it.
939  */
940 void
941 xfs_buf_unlock(
942         struct xfs_buf          *bp)
943 {
944         XB_CLEAR_OWNER(bp);
945         up(&bp->b_sema);
946
947         trace_xfs_buf_unlock(bp, _RET_IP_);
948 }
949
950 STATIC void
951 xfs_buf_wait_unpin(
952         xfs_buf_t               *bp)
953 {
954         DECLARE_WAITQUEUE       (wait, current);
955
956         if (atomic_read(&bp->b_pin_count) == 0)
957                 return;
958
959         add_wait_queue(&bp->b_waiters, &wait);
960         for (;;) {
961                 set_current_state(TASK_UNINTERRUPTIBLE);
962                 if (atomic_read(&bp->b_pin_count) == 0)
963                         break;
964                 io_schedule();
965         }
966         remove_wait_queue(&bp->b_waiters, &wait);
967         set_current_state(TASK_RUNNING);
968 }
969
970 /*
971  *      Buffer Utility Routines
972  */
973
974 STATIC void
975 xfs_buf_iodone_work(
976         struct work_struct      *work)
977 {
978         xfs_buf_t               *bp =
979                 container_of(work, xfs_buf_t, b_iodone_work);
980
981         if (bp->b_iodone)
982                 (*(bp->b_iodone))(bp);
983         else if (bp->b_flags & XBF_ASYNC)
984                 xfs_buf_relse(bp);
985 }
986
987 void
988 xfs_buf_ioend(
989         xfs_buf_t               *bp,
990         int                     schedule)
991 {
992         trace_xfs_buf_iodone(bp, _RET_IP_);
993
994         bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
995         if (bp->b_error == 0)
996                 bp->b_flags |= XBF_DONE;
997
998         if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
999                 if (schedule) {
1000                         INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
1001                         queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1002                 } else {
1003                         xfs_buf_iodone_work(&bp->b_iodone_work);
1004                 }
1005         } else {
1006                 complete(&bp->b_iowait);
1007         }
1008 }
1009
1010 void
1011 xfs_buf_ioerror(
1012         xfs_buf_t               *bp,
1013         int                     error)
1014 {
1015         ASSERT(error >= 0 && error <= 0xffff);
1016         bp->b_error = (unsigned short)error;
1017         trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1018 }
1019
1020 int
1021 xfs_bwrite(
1022         struct xfs_buf          *bp)
1023 {
1024         int                     error;
1025
1026         bp->b_flags |= XBF_WRITE;
1027         bp->b_flags &= ~(XBF_ASYNC | XBF_READ);
1028
1029         xfs_buf_delwri_dequeue(bp);
1030         xfs_bdstrat_cb(bp);
1031
1032         error = xfs_buf_iowait(bp);
1033         if (error) {
1034                 xfs_force_shutdown(bp->b_target->bt_mount,
1035                                    SHUTDOWN_META_IO_ERROR);
1036         }
1037         return error;
1038 }
1039
1040 /*
1041  * Called when we want to stop a buffer from getting written or read.
1042  * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
1043  * so that the proper iodone callbacks get called.
1044  */
1045 STATIC int
1046 xfs_bioerror(
1047         xfs_buf_t *bp)
1048 {
1049 #ifdef XFSERRORDEBUG
1050         ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1051 #endif
1052
1053         /*
1054          * No need to wait until the buffer is unpinned, we aren't flushing it.
1055          */
1056         xfs_buf_ioerror(bp, EIO);
1057
1058         /*
1059          * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
1060          */
1061         XFS_BUF_UNREAD(bp);
1062         xfs_buf_delwri_dequeue(bp);
1063         XFS_BUF_UNDONE(bp);
1064         XFS_BUF_STALE(bp);
1065
1066         xfs_buf_ioend(bp, 0);
1067
1068         return EIO;
1069 }
1070
1071 /*
1072  * Same as xfs_bioerror, except that we are releasing the buffer
1073  * here ourselves, and avoiding the xfs_buf_ioend call.
1074  * This is meant for userdata errors; metadata bufs come with
1075  * iodone functions attached, so that we can track down errors.
1076  */
1077 STATIC int
1078 xfs_bioerror_relse(
1079         struct xfs_buf  *bp)
1080 {
1081         int64_t         fl = bp->b_flags;
1082         /*
1083          * No need to wait until the buffer is unpinned.
1084          * We aren't flushing it.
1085          *
1086          * chunkhold expects B_DONE to be set, whether
1087          * we actually finish the I/O or not. We don't want to
1088          * change that interface.
1089          */
1090         XFS_BUF_UNREAD(bp);
1091         xfs_buf_delwri_dequeue(bp);
1092         XFS_BUF_DONE(bp);
1093         XFS_BUF_STALE(bp);
1094         bp->b_iodone = NULL;
1095         if (!(fl & XBF_ASYNC)) {
1096                 /*
1097                  * Mark b_error and B_ERROR _both_.
1098                  * Lot's of chunkcache code assumes that.
1099                  * There's no reason to mark error for
1100                  * ASYNC buffers.
1101                  */
1102                 xfs_buf_ioerror(bp, EIO);
1103                 XFS_BUF_FINISH_IOWAIT(bp);
1104         } else {
1105                 xfs_buf_relse(bp);
1106         }
1107
1108         return EIO;
1109 }
1110
1111
1112 /*
1113  * All xfs metadata buffers except log state machine buffers
1114  * get this attached as their b_bdstrat callback function.
1115  * This is so that we can catch a buffer
1116  * after prematurely unpinning it to forcibly shutdown the filesystem.
1117  */
1118 int
1119 xfs_bdstrat_cb(
1120         struct xfs_buf  *bp)
1121 {
1122         if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1123                 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1124                 /*
1125                  * Metadata write that didn't get logged but
1126                  * written delayed anyway. These aren't associated
1127                  * with a transaction, and can be ignored.
1128                  */
1129                 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1130                         return xfs_bioerror_relse(bp);
1131                 else
1132                         return xfs_bioerror(bp);
1133         }
1134
1135         xfs_buf_iorequest(bp);
1136         return 0;
1137 }
1138
1139 /*
1140  * Wrapper around bdstrat so that we can stop data from going to disk in case
1141  * we are shutting down the filesystem.  Typically user data goes thru this
1142  * path; one of the exceptions is the superblock.
1143  */
1144 void
1145 xfsbdstrat(
1146         struct xfs_mount        *mp,
1147         struct xfs_buf          *bp)
1148 {
1149         if (XFS_FORCED_SHUTDOWN(mp)) {
1150                 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1151                 xfs_bioerror_relse(bp);
1152                 return;
1153         }
1154
1155         xfs_buf_iorequest(bp);
1156 }
1157
1158 STATIC void
1159 _xfs_buf_ioend(
1160         xfs_buf_t               *bp,
1161         int                     schedule)
1162 {
1163         if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1164                 xfs_buf_ioend(bp, schedule);
1165 }
1166
1167 STATIC void
1168 xfs_buf_bio_end_io(
1169         struct bio              *bio,
1170         int                     error)
1171 {
1172         xfs_buf_t               *bp = (xfs_buf_t *)bio->bi_private;
1173
1174         xfs_buf_ioerror(bp, -error);
1175
1176         if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1177                 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1178
1179         _xfs_buf_ioend(bp, 1);
1180         bio_put(bio);
1181 }
1182
1183 STATIC void
1184 _xfs_buf_ioapply(
1185         xfs_buf_t               *bp)
1186 {
1187         int                     rw, map_i, total_nr_pages, nr_pages;
1188         struct bio              *bio;
1189         int                     offset = bp->b_offset;
1190         int                     size = bp->b_count_desired;
1191         sector_t                sector = bp->b_bn;
1192
1193         total_nr_pages = bp->b_page_count;
1194         map_i = 0;
1195
1196         if (bp->b_flags & XBF_WRITE) {
1197                 if (bp->b_flags & XBF_SYNCIO)
1198                         rw = WRITE_SYNC;
1199                 else
1200                         rw = WRITE;
1201                 if (bp->b_flags & XBF_FUA)
1202                         rw |= REQ_FUA;
1203                 if (bp->b_flags & XBF_FLUSH)
1204                         rw |= REQ_FLUSH;
1205         } else if (bp->b_flags & XBF_READ_AHEAD) {
1206                 rw = READA;
1207         } else {
1208                 rw = READ;
1209         }
1210
1211         /* we only use the buffer cache for meta-data */
1212         rw |= REQ_META;
1213
1214 next_chunk:
1215         atomic_inc(&bp->b_io_remaining);
1216         nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1217         if (nr_pages > total_nr_pages)
1218                 nr_pages = total_nr_pages;
1219
1220         bio = bio_alloc(GFP_NOIO, nr_pages);
1221         bio->bi_bdev = bp->b_target->bt_bdev;
1222         bio->bi_sector = sector;
1223         bio->bi_end_io = xfs_buf_bio_end_io;
1224         bio->bi_private = bp;
1225
1226
1227         for (; size && nr_pages; nr_pages--, map_i++) {
1228                 int     rbytes, nbytes = PAGE_SIZE - offset;
1229
1230                 if (nbytes > size)
1231                         nbytes = size;
1232
1233                 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1234                 if (rbytes < nbytes)
1235                         break;
1236
1237                 offset = 0;
1238                 sector += nbytes >> BBSHIFT;
1239                 size -= nbytes;
1240                 total_nr_pages--;
1241         }
1242
1243         if (likely(bio->bi_size)) {
1244                 if (xfs_buf_is_vmapped(bp)) {
1245                         flush_kernel_vmap_range(bp->b_addr,
1246                                                 xfs_buf_vmap_len(bp));
1247                 }
1248                 submit_bio(rw, bio);
1249                 if (size)
1250                         goto next_chunk;
1251         } else {
1252                 xfs_buf_ioerror(bp, EIO);
1253                 bio_put(bio);
1254         }
1255 }
1256
1257 int
1258 xfs_buf_iorequest(
1259         xfs_buf_t               *bp)
1260 {
1261         trace_xfs_buf_iorequest(bp, _RET_IP_);
1262
1263         ASSERT(!(bp->b_flags & XBF_DELWRI));
1264
1265         if (bp->b_flags & XBF_WRITE)
1266                 xfs_buf_wait_unpin(bp);
1267         xfs_buf_hold(bp);
1268
1269         /* Set the count to 1 initially, this will stop an I/O
1270          * completion callout which happens before we have started
1271          * all the I/O from calling xfs_buf_ioend too early.
1272          */
1273         atomic_set(&bp->b_io_remaining, 1);
1274         _xfs_buf_ioapply(bp);
1275         _xfs_buf_ioend(bp, 0);
1276
1277         xfs_buf_rele(bp);
1278         return 0;
1279 }
1280
1281 /*
1282  *      Waits for I/O to complete on the buffer supplied.
1283  *      It returns immediately if no I/O is pending.
1284  *      It returns the I/O error code, if any, or 0 if there was no error.
1285  */
1286 int
1287 xfs_buf_iowait(
1288         xfs_buf_t               *bp)
1289 {
1290         trace_xfs_buf_iowait(bp, _RET_IP_);
1291
1292         wait_for_completion(&bp->b_iowait);
1293
1294         trace_xfs_buf_iowait_done(bp, _RET_IP_);
1295         return bp->b_error;
1296 }
1297
1298 xfs_caddr_t
1299 xfs_buf_offset(
1300         xfs_buf_t               *bp,
1301         size_t                  offset)
1302 {
1303         struct page             *page;
1304
1305         if (bp->b_flags & XBF_MAPPED)
1306                 return bp->b_addr + offset;
1307
1308         offset += bp->b_offset;
1309         page = bp->b_pages[offset >> PAGE_SHIFT];
1310         return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1));
1311 }
1312
1313 /*
1314  *      Move data into or out of a buffer.
1315  */
1316 void
1317 xfs_buf_iomove(
1318         xfs_buf_t               *bp,    /* buffer to process            */
1319         size_t                  boff,   /* starting buffer offset       */
1320         size_t                  bsize,  /* length to copy               */
1321         void                    *data,  /* data address                 */
1322         xfs_buf_rw_t            mode)   /* read/write/zero flag         */
1323 {
1324         size_t                  bend, cpoff, csize;
1325         struct page             *page;
1326
1327         bend = boff + bsize;
1328         while (boff < bend) {
1329                 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1330                 cpoff = xfs_buf_poff(boff + bp->b_offset);
1331                 csize = min_t(size_t,
1332                               PAGE_SIZE-cpoff, bp->b_count_desired-boff);
1333
1334                 ASSERT(((csize + cpoff) <= PAGE_SIZE));
1335
1336                 switch (mode) {
1337                 case XBRW_ZERO:
1338                         memset(page_address(page) + cpoff, 0, csize);
1339                         break;
1340                 case XBRW_READ:
1341                         memcpy(data, page_address(page) + cpoff, csize);
1342                         break;
1343                 case XBRW_WRITE:
1344                         memcpy(page_address(page) + cpoff, data, csize);
1345                 }
1346
1347                 boff += csize;
1348                 data += csize;
1349         }
1350 }
1351
1352 /*
1353  *      Handling of buffer targets (buftargs).
1354  */
1355
1356 /*
1357  * Wait for any bufs with callbacks that have been submitted but have not yet
1358  * returned. These buffers will have an elevated hold count, so wait on those
1359  * while freeing all the buffers only held by the LRU.
1360  */
1361 void
1362 xfs_wait_buftarg(
1363         struct xfs_buftarg      *btp)
1364 {
1365         struct xfs_buf          *bp;
1366
1367 restart:
1368         spin_lock(&btp->bt_lru_lock);
1369         while (!list_empty(&btp->bt_lru)) {
1370                 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1371                 if (atomic_read(&bp->b_hold) > 1) {
1372                         spin_unlock(&btp->bt_lru_lock);
1373                         delay(100);
1374                         goto restart;
1375                 }
1376                 /*
1377                  * clear the LRU reference count so the bufer doesn't get
1378                  * ignored in xfs_buf_rele().
1379                  */
1380                 atomic_set(&bp->b_lru_ref, 0);
1381                 spin_unlock(&btp->bt_lru_lock);
1382                 xfs_buf_rele(bp);
1383                 spin_lock(&btp->bt_lru_lock);
1384         }
1385         spin_unlock(&btp->bt_lru_lock);
1386 }
1387
1388 int
1389 xfs_buftarg_shrink(
1390         struct shrinker         *shrink,
1391         struct shrink_control   *sc)
1392 {
1393         struct xfs_buftarg      *btp = container_of(shrink,
1394                                         struct xfs_buftarg, bt_shrinker);
1395         struct xfs_buf          *bp;
1396         int nr_to_scan = sc->nr_to_scan;
1397         LIST_HEAD(dispose);
1398
1399         if (!nr_to_scan)
1400                 return btp->bt_lru_nr;
1401
1402         spin_lock(&btp->bt_lru_lock);
1403         while (!list_empty(&btp->bt_lru)) {
1404                 if (nr_to_scan-- <= 0)
1405                         break;
1406
1407                 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1408
1409                 /*
1410                  * Decrement the b_lru_ref count unless the value is already
1411                  * zero. If the value is already zero, we need to reclaim the
1412                  * buffer, otherwise it gets another trip through the LRU.
1413                  */
1414                 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1415                         list_move_tail(&bp->b_lru, &btp->bt_lru);
1416                         continue;
1417                 }
1418
1419                 /*
1420                  * remove the buffer from the LRU now to avoid needing another
1421                  * lock round trip inside xfs_buf_rele().
1422                  */
1423                 list_move(&bp->b_lru, &dispose);
1424                 btp->bt_lru_nr--;
1425         }
1426         spin_unlock(&btp->bt_lru_lock);
1427
1428         while (!list_empty(&dispose)) {
1429                 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1430                 list_del_init(&bp->b_lru);
1431                 xfs_buf_rele(bp);
1432         }
1433
1434         return btp->bt_lru_nr;
1435 }
1436
1437 void
1438 xfs_free_buftarg(
1439         struct xfs_mount        *mp,
1440         struct xfs_buftarg      *btp)
1441 {
1442         unregister_shrinker(&btp->bt_shrinker);
1443
1444         xfs_flush_buftarg(btp, 1);
1445         if (mp->m_flags & XFS_MOUNT_BARRIER)
1446                 xfs_blkdev_issue_flush(btp);
1447
1448         kthread_stop(btp->bt_task);
1449         kmem_free(btp);
1450 }
1451
1452 STATIC int
1453 xfs_setsize_buftarg_flags(
1454         xfs_buftarg_t           *btp,
1455         unsigned int            blocksize,
1456         unsigned int            sectorsize,
1457         int                     verbose)
1458 {
1459         btp->bt_bsize = blocksize;
1460         btp->bt_sshift = ffs(sectorsize) - 1;
1461         btp->bt_smask = sectorsize - 1;
1462
1463         if (set_blocksize(btp->bt_bdev, sectorsize)) {
1464                 xfs_warn(btp->bt_mount,
1465                         "Cannot set_blocksize to %u on device %s\n",
1466                         sectorsize, xfs_buf_target_name(btp));
1467                 return EINVAL;
1468         }
1469
1470         return 0;
1471 }
1472
1473 /*
1474  *      When allocating the initial buffer target we have not yet
1475  *      read in the superblock, so don't know what sized sectors
1476  *      are being used is at this early stage.  Play safe.
1477  */
1478 STATIC int
1479 xfs_setsize_buftarg_early(
1480         xfs_buftarg_t           *btp,
1481         struct block_device     *bdev)
1482 {
1483         return xfs_setsize_buftarg_flags(btp,
1484                         PAGE_SIZE, bdev_logical_block_size(bdev), 0);
1485 }
1486
1487 int
1488 xfs_setsize_buftarg(
1489         xfs_buftarg_t           *btp,
1490         unsigned int            blocksize,
1491         unsigned int            sectorsize)
1492 {
1493         return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1494 }
1495
1496 STATIC int
1497 xfs_alloc_delwri_queue(
1498         xfs_buftarg_t           *btp,
1499         const char              *fsname)
1500 {
1501         INIT_LIST_HEAD(&btp->bt_delwri_queue);
1502         spin_lock_init(&btp->bt_delwri_lock);
1503         btp->bt_flags = 0;
1504         btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd/%s", fsname);
1505         if (IS_ERR(btp->bt_task))
1506                 return PTR_ERR(btp->bt_task);
1507         return 0;
1508 }
1509
1510 xfs_buftarg_t *
1511 xfs_alloc_buftarg(
1512         struct xfs_mount        *mp,
1513         struct block_device     *bdev,
1514         int                     external,
1515         const char              *fsname)
1516 {
1517         xfs_buftarg_t           *btp;
1518
1519         btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1520
1521         btp->bt_mount = mp;
1522         btp->bt_dev =  bdev->bd_dev;
1523         btp->bt_bdev = bdev;
1524         btp->bt_bdi = blk_get_backing_dev_info(bdev);
1525         if (!btp->bt_bdi)
1526                 goto error;
1527
1528         INIT_LIST_HEAD(&btp->bt_lru);
1529         spin_lock_init(&btp->bt_lru_lock);
1530         if (xfs_setsize_buftarg_early(btp, bdev))
1531                 goto error;
1532         if (xfs_alloc_delwri_queue(btp, fsname))
1533                 goto error;
1534         btp->bt_shrinker.shrink = xfs_buftarg_shrink;
1535         btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1536         register_shrinker(&btp->bt_shrinker);
1537         return btp;
1538
1539 error:
1540         kmem_free(btp);
1541         return NULL;
1542 }
1543
1544
1545 /*
1546  *      Delayed write buffer handling
1547  */
1548 void
1549 xfs_buf_delwri_queue(
1550         xfs_buf_t               *bp)
1551 {
1552         struct xfs_buftarg      *btp = bp->b_target;
1553
1554         trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1555
1556         ASSERT(!(bp->b_flags & XBF_READ));
1557
1558         spin_lock(&btp->bt_delwri_lock);
1559         if (!list_empty(&bp->b_list)) {
1560                 /* if already in the queue, move it to the tail */
1561                 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1562                 list_move_tail(&bp->b_list, &btp->bt_delwri_queue);
1563         } else {
1564                 /* start xfsbufd as it is about to have something to do */
1565                 if (list_empty(&btp->bt_delwri_queue))
1566                         wake_up_process(bp->b_target->bt_task);
1567
1568                 atomic_inc(&bp->b_hold);
1569                 bp->b_flags |= XBF_DELWRI | _XBF_DELWRI_Q | XBF_ASYNC;
1570                 list_add_tail(&bp->b_list, &btp->bt_delwri_queue);
1571         }
1572         bp->b_queuetime = jiffies;
1573         spin_unlock(&btp->bt_delwri_lock);
1574 }
1575
1576 void
1577 xfs_buf_delwri_dequeue(
1578         xfs_buf_t               *bp)
1579 {
1580         int                     dequeued = 0;
1581
1582         spin_lock(&bp->b_target->bt_delwri_lock);
1583         if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1584                 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1585                 list_del_init(&bp->b_list);
1586                 dequeued = 1;
1587         }
1588         bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
1589         spin_unlock(&bp->b_target->bt_delwri_lock);
1590
1591         if (dequeued)
1592                 xfs_buf_rele(bp);
1593
1594         trace_xfs_buf_delwri_dequeue(bp, _RET_IP_);
1595 }
1596
1597 /*
1598  * If a delwri buffer needs to be pushed before it has aged out, then promote
1599  * it to the head of the delwri queue so that it will be flushed on the next
1600  * xfsbufd run. We do this by resetting the queuetime of the buffer to be older
1601  * than the age currently needed to flush the buffer. Hence the next time the
1602  * xfsbufd sees it is guaranteed to be considered old enough to flush.
1603  */
1604 void
1605 xfs_buf_delwri_promote(
1606         struct xfs_buf  *bp)
1607 {
1608         struct xfs_buftarg *btp = bp->b_target;
1609         long            age = xfs_buf_age_centisecs * msecs_to_jiffies(10) + 1;
1610
1611         ASSERT(bp->b_flags & XBF_DELWRI);
1612         ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1613
1614         /*
1615          * Check the buffer age before locking the delayed write queue as we
1616          * don't need to promote buffers that are already past the flush age.
1617          */
1618         if (bp->b_queuetime < jiffies - age)
1619                 return;
1620         bp->b_queuetime = jiffies - age;
1621         spin_lock(&btp->bt_delwri_lock);
1622         list_move(&bp->b_list, &btp->bt_delwri_queue);
1623         spin_unlock(&btp->bt_delwri_lock);
1624 }
1625
1626 STATIC void
1627 xfs_buf_runall_queues(
1628         struct workqueue_struct *queue)
1629 {
1630         flush_workqueue(queue);
1631 }
1632
1633 /*
1634  * Move as many buffers as specified to the supplied list
1635  * idicating if we skipped any buffers to prevent deadlocks.
1636  */
1637 STATIC int
1638 xfs_buf_delwri_split(
1639         xfs_buftarg_t   *target,
1640         struct list_head *list,
1641         unsigned long   age)
1642 {
1643         xfs_buf_t       *bp, *n;
1644         int             skipped = 0;
1645         int             force;
1646
1647         force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1648         INIT_LIST_HEAD(list);
1649         spin_lock(&target->bt_delwri_lock);
1650         list_for_each_entry_safe(bp, n, &target->bt_delwri_queue, b_list) {
1651                 ASSERT(bp->b_flags & XBF_DELWRI);
1652
1653                 if (!xfs_buf_ispinned(bp) && xfs_buf_trylock(bp)) {
1654                         if (!force &&
1655                             time_before(jiffies, bp->b_queuetime + age)) {
1656                                 xfs_buf_unlock(bp);
1657                                 break;
1658                         }
1659
1660                         bp->b_flags &= ~(XBF_DELWRI | _XBF_DELWRI_Q);
1661                         bp->b_flags |= XBF_WRITE;
1662                         list_move_tail(&bp->b_list, list);
1663                         trace_xfs_buf_delwri_split(bp, _RET_IP_);
1664                 } else
1665                         skipped++;
1666         }
1667
1668         spin_unlock(&target->bt_delwri_lock);
1669         return skipped;
1670 }
1671
1672 /*
1673  * Compare function is more complex than it needs to be because
1674  * the return value is only 32 bits and we are doing comparisons
1675  * on 64 bit values
1676  */
1677 static int
1678 xfs_buf_cmp(
1679         void            *priv,
1680         struct list_head *a,
1681         struct list_head *b)
1682 {
1683         struct xfs_buf  *ap = container_of(a, struct xfs_buf, b_list);
1684         struct xfs_buf  *bp = container_of(b, struct xfs_buf, b_list);
1685         xfs_daddr_t             diff;
1686
1687         diff = ap->b_bn - bp->b_bn;
1688         if (diff < 0)
1689                 return -1;
1690         if (diff > 0)
1691                 return 1;
1692         return 0;
1693 }
1694
1695 STATIC int
1696 xfsbufd(
1697         void            *data)
1698 {
1699         xfs_buftarg_t   *target = (xfs_buftarg_t *)data;
1700
1701         current->flags |= PF_MEMALLOC;
1702
1703         set_freezable();
1704
1705         do {
1706                 long    age = xfs_buf_age_centisecs * msecs_to_jiffies(10);
1707                 long    tout = xfs_buf_timer_centisecs * msecs_to_jiffies(10);
1708                 struct list_head tmp;
1709                 struct blk_plug plug;
1710
1711                 if (unlikely(freezing(current))) {
1712                         set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1713                         refrigerator();
1714                 } else {
1715                         clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1716                 }
1717
1718                 /* sleep for a long time if there is nothing to do. */
1719                 if (list_empty(&target->bt_delwri_queue))
1720                         tout = MAX_SCHEDULE_TIMEOUT;
1721                 schedule_timeout_interruptible(tout);
1722
1723                 xfs_buf_delwri_split(target, &tmp, age);
1724                 list_sort(NULL, &tmp, xfs_buf_cmp);
1725
1726                 blk_start_plug(&plug);
1727                 while (!list_empty(&tmp)) {
1728                         struct xfs_buf *bp;
1729                         bp = list_first_entry(&tmp, struct xfs_buf, b_list);
1730                         list_del_init(&bp->b_list);
1731                         xfs_bdstrat_cb(bp);
1732                 }
1733                 blk_finish_plug(&plug);
1734         } while (!kthread_should_stop());
1735
1736         return 0;
1737 }
1738
1739 /*
1740  *      Go through all incore buffers, and release buffers if they belong to
1741  *      the given device. This is used in filesystem error handling to
1742  *      preserve the consistency of its metadata.
1743  */
1744 int
1745 xfs_flush_buftarg(
1746         xfs_buftarg_t   *target,
1747         int             wait)
1748 {
1749         xfs_buf_t       *bp;
1750         int             pincount = 0;
1751         LIST_HEAD(tmp_list);
1752         LIST_HEAD(wait_list);
1753         struct blk_plug plug;
1754
1755         xfs_buf_runall_queues(xfsconvertd_workqueue);
1756         xfs_buf_runall_queues(xfsdatad_workqueue);
1757         xfs_buf_runall_queues(xfslogd_workqueue);
1758
1759         set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1760         pincount = xfs_buf_delwri_split(target, &tmp_list, 0);
1761
1762         /*
1763          * Dropped the delayed write list lock, now walk the temporary list.
1764          * All I/O is issued async and then if we need to wait for completion
1765          * we do that after issuing all the IO.
1766          */
1767         list_sort(NULL, &tmp_list, xfs_buf_cmp);
1768
1769         blk_start_plug(&plug);
1770         while (!list_empty(&tmp_list)) {
1771                 bp = list_first_entry(&tmp_list, struct xfs_buf, b_list);
1772                 ASSERT(target == bp->b_target);
1773                 list_del_init(&bp->b_list);
1774                 if (wait) {
1775                         bp->b_flags &= ~XBF_ASYNC;
1776                         list_add(&bp->b_list, &wait_list);
1777                 }
1778                 xfs_bdstrat_cb(bp);
1779         }
1780         blk_finish_plug(&plug);
1781
1782         if (wait) {
1783                 /* Wait for IO to complete. */
1784                 while (!list_empty(&wait_list)) {
1785                         bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
1786
1787                         list_del_init(&bp->b_list);
1788                         xfs_buf_iowait(bp);
1789                         xfs_buf_relse(bp);
1790                 }
1791         }
1792
1793         return pincount;
1794 }
1795
1796 int __init
1797 xfs_buf_init(void)
1798 {
1799         xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1800                                                 KM_ZONE_HWALIGN, NULL);
1801         if (!xfs_buf_zone)
1802                 goto out;
1803
1804         xfslogd_workqueue = alloc_workqueue("xfslogd",
1805                                         WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
1806         if (!xfslogd_workqueue)
1807                 goto out_free_buf_zone;
1808
1809         xfsdatad_workqueue = alloc_workqueue("xfsdatad", WQ_MEM_RECLAIM, 1);
1810         if (!xfsdatad_workqueue)
1811                 goto out_destroy_xfslogd_workqueue;
1812
1813         xfsconvertd_workqueue = alloc_workqueue("xfsconvertd",
1814                                                 WQ_MEM_RECLAIM, 1);
1815         if (!xfsconvertd_workqueue)
1816                 goto out_destroy_xfsdatad_workqueue;
1817
1818         return 0;
1819
1820  out_destroy_xfsdatad_workqueue:
1821         destroy_workqueue(xfsdatad_workqueue);
1822  out_destroy_xfslogd_workqueue:
1823         destroy_workqueue(xfslogd_workqueue);
1824  out_free_buf_zone:
1825         kmem_zone_destroy(xfs_buf_zone);
1826  out:
1827         return -ENOMEM;
1828 }
1829
1830 void
1831 xfs_buf_terminate(void)
1832 {
1833         destroy_workqueue(xfsconvertd_workqueue);
1834         destroy_workqueue(xfsdatad_workqueue);
1835         destroy_workqueue(xfslogd_workqueue);
1836         kmem_zone_destroy(xfs_buf_zone);
1837 }
1838
1839 #ifdef CONFIG_KDB_MODULES
1840 struct list_head *
1841 xfs_get_buftarg_list(void)
1842 {
1843         return &xfs_buftarg_list;
1844 }
1845 #endif