]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - fs/xfs/xfs_log.c
Merge remote-tracking branch 'v9fs/for-next'
[karo-tx-linux.git] / fs / xfs / xfs_log.c
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_error.h"
26 #include "xfs_trans.h"
27 #include "xfs_trans_priv.h"
28 #include "xfs_log.h"
29 #include "xfs_log_priv.h"
30 #include "xfs_log_recover.h"
31 #include "xfs_inode.h"
32 #include "xfs_trace.h"
33 #include "xfs_fsops.h"
34 #include "xfs_cksum.h"
35 #include "xfs_sysfs.h"
36 #include "xfs_sb.h"
37
38 kmem_zone_t     *xfs_log_ticket_zone;
39
40 /* Local miscellaneous function prototypes */
41 STATIC int
42 xlog_commit_record(
43         struct xlog             *log,
44         struct xlog_ticket      *ticket,
45         struct xlog_in_core     **iclog,
46         xfs_lsn_t               *commitlsnp);
47
48 STATIC struct xlog *
49 xlog_alloc_log(
50         struct xfs_mount        *mp,
51         struct xfs_buftarg      *log_target,
52         xfs_daddr_t             blk_offset,
53         int                     num_bblks);
54 STATIC int
55 xlog_space_left(
56         struct xlog             *log,
57         atomic64_t              *head);
58 STATIC int
59 xlog_sync(
60         struct xlog             *log,
61         struct xlog_in_core     *iclog);
62 STATIC void
63 xlog_dealloc_log(
64         struct xlog             *log);
65
66 /* local state machine functions */
67 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
68 STATIC void
69 xlog_state_do_callback(
70         struct xlog             *log,
71         int                     aborted,
72         struct xlog_in_core     *iclog);
73 STATIC int
74 xlog_state_get_iclog_space(
75         struct xlog             *log,
76         int                     len,
77         struct xlog_in_core     **iclog,
78         struct xlog_ticket      *ticket,
79         int                     *continued_write,
80         int                     *logoffsetp);
81 STATIC int
82 xlog_state_release_iclog(
83         struct xlog             *log,
84         struct xlog_in_core     *iclog);
85 STATIC void
86 xlog_state_switch_iclogs(
87         struct xlog             *log,
88         struct xlog_in_core     *iclog,
89         int                     eventual_size);
90 STATIC void
91 xlog_state_want_sync(
92         struct xlog             *log,
93         struct xlog_in_core     *iclog);
94
95 STATIC void
96 xlog_grant_push_ail(
97         struct xlog             *log,
98         int                     need_bytes);
99 STATIC void
100 xlog_regrant_reserve_log_space(
101         struct xlog             *log,
102         struct xlog_ticket      *ticket);
103 STATIC void
104 xlog_ungrant_log_space(
105         struct xlog             *log,
106         struct xlog_ticket      *ticket);
107
108 #if defined(DEBUG)
109 STATIC void
110 xlog_verify_dest_ptr(
111         struct xlog             *log,
112         void                    *ptr);
113 STATIC void
114 xlog_verify_grant_tail(
115         struct xlog *log);
116 STATIC void
117 xlog_verify_iclog(
118         struct xlog             *log,
119         struct xlog_in_core     *iclog,
120         int                     count,
121         bool                    syncing);
122 STATIC void
123 xlog_verify_tail_lsn(
124         struct xlog             *log,
125         struct xlog_in_core     *iclog,
126         xfs_lsn_t               tail_lsn);
127 #else
128 #define xlog_verify_dest_ptr(a,b)
129 #define xlog_verify_grant_tail(a)
130 #define xlog_verify_iclog(a,b,c,d)
131 #define xlog_verify_tail_lsn(a,b,c)
132 #endif
133
134 STATIC int
135 xlog_iclogs_empty(
136         struct xlog             *log);
137
138 static void
139 xlog_grant_sub_space(
140         struct xlog             *log,
141         atomic64_t              *head,
142         int                     bytes)
143 {
144         int64_t head_val = atomic64_read(head);
145         int64_t new, old;
146
147         do {
148                 int     cycle, space;
149
150                 xlog_crack_grant_head_val(head_val, &cycle, &space);
151
152                 space -= bytes;
153                 if (space < 0) {
154                         space += log->l_logsize;
155                         cycle--;
156                 }
157
158                 old = head_val;
159                 new = xlog_assign_grant_head_val(cycle, space);
160                 head_val = atomic64_cmpxchg(head, old, new);
161         } while (head_val != old);
162 }
163
164 static void
165 xlog_grant_add_space(
166         struct xlog             *log,
167         atomic64_t              *head,
168         int                     bytes)
169 {
170         int64_t head_val = atomic64_read(head);
171         int64_t new, old;
172
173         do {
174                 int             tmp;
175                 int             cycle, space;
176
177                 xlog_crack_grant_head_val(head_val, &cycle, &space);
178
179                 tmp = log->l_logsize - space;
180                 if (tmp > bytes)
181                         space += bytes;
182                 else {
183                         space = bytes - tmp;
184                         cycle++;
185                 }
186
187                 old = head_val;
188                 new = xlog_assign_grant_head_val(cycle, space);
189                 head_val = atomic64_cmpxchg(head, old, new);
190         } while (head_val != old);
191 }
192
193 STATIC void
194 xlog_grant_head_init(
195         struct xlog_grant_head  *head)
196 {
197         xlog_assign_grant_head(&head->grant, 1, 0);
198         INIT_LIST_HEAD(&head->waiters);
199         spin_lock_init(&head->lock);
200 }
201
202 STATIC void
203 xlog_grant_head_wake_all(
204         struct xlog_grant_head  *head)
205 {
206         struct xlog_ticket      *tic;
207
208         spin_lock(&head->lock);
209         list_for_each_entry(tic, &head->waiters, t_queue)
210                 wake_up_process(tic->t_task);
211         spin_unlock(&head->lock);
212 }
213
214 static inline int
215 xlog_ticket_reservation(
216         struct xlog             *log,
217         struct xlog_grant_head  *head,
218         struct xlog_ticket      *tic)
219 {
220         if (head == &log->l_write_head) {
221                 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
222                 return tic->t_unit_res;
223         } else {
224                 if (tic->t_flags & XLOG_TIC_PERM_RESERV)
225                         return tic->t_unit_res * tic->t_cnt;
226                 else
227                         return tic->t_unit_res;
228         }
229 }
230
231 STATIC bool
232 xlog_grant_head_wake(
233         struct xlog             *log,
234         struct xlog_grant_head  *head,
235         int                     *free_bytes)
236 {
237         struct xlog_ticket      *tic;
238         int                     need_bytes;
239
240         list_for_each_entry(tic, &head->waiters, t_queue) {
241                 need_bytes = xlog_ticket_reservation(log, head, tic);
242                 if (*free_bytes < need_bytes)
243                         return false;
244
245                 *free_bytes -= need_bytes;
246                 trace_xfs_log_grant_wake_up(log, tic);
247                 wake_up_process(tic->t_task);
248         }
249
250         return true;
251 }
252
253 STATIC int
254 xlog_grant_head_wait(
255         struct xlog             *log,
256         struct xlog_grant_head  *head,
257         struct xlog_ticket      *tic,
258         int                     need_bytes) __releases(&head->lock)
259                                             __acquires(&head->lock)
260 {
261         list_add_tail(&tic->t_queue, &head->waiters);
262
263         do {
264                 if (XLOG_FORCED_SHUTDOWN(log))
265                         goto shutdown;
266                 xlog_grant_push_ail(log, need_bytes);
267
268                 __set_current_state(TASK_UNINTERRUPTIBLE);
269                 spin_unlock(&head->lock);
270
271                 XFS_STATS_INC(xs_sleep_logspace);
272
273                 trace_xfs_log_grant_sleep(log, tic);
274                 schedule();
275                 trace_xfs_log_grant_wake(log, tic);
276
277                 spin_lock(&head->lock);
278                 if (XLOG_FORCED_SHUTDOWN(log))
279                         goto shutdown;
280         } while (xlog_space_left(log, &head->grant) < need_bytes);
281
282         list_del_init(&tic->t_queue);
283         return 0;
284 shutdown:
285         list_del_init(&tic->t_queue);
286         return -EIO;
287 }
288
289 /*
290  * Atomically get the log space required for a log ticket.
291  *
292  * Once a ticket gets put onto head->waiters, it will only return after the
293  * needed reservation is satisfied.
294  *
295  * This function is structured so that it has a lock free fast path. This is
296  * necessary because every new transaction reservation will come through this
297  * path. Hence any lock will be globally hot if we take it unconditionally on
298  * every pass.
299  *
300  * As tickets are only ever moved on and off head->waiters under head->lock, we
301  * only need to take that lock if we are going to add the ticket to the queue
302  * and sleep. We can avoid taking the lock if the ticket was never added to
303  * head->waiters because the t_queue list head will be empty and we hold the
304  * only reference to it so it can safely be checked unlocked.
305  */
306 STATIC int
307 xlog_grant_head_check(
308         struct xlog             *log,
309         struct xlog_grant_head  *head,
310         struct xlog_ticket      *tic,
311         int                     *need_bytes)
312 {
313         int                     free_bytes;
314         int                     error = 0;
315
316         ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
317
318         /*
319          * If there are other waiters on the queue then give them a chance at
320          * logspace before us.  Wake up the first waiters, if we do not wake
321          * up all the waiters then go to sleep waiting for more free space,
322          * otherwise try to get some space for this transaction.
323          */
324         *need_bytes = xlog_ticket_reservation(log, head, tic);
325         free_bytes = xlog_space_left(log, &head->grant);
326         if (!list_empty_careful(&head->waiters)) {
327                 spin_lock(&head->lock);
328                 if (!xlog_grant_head_wake(log, head, &free_bytes) ||
329                     free_bytes < *need_bytes) {
330                         error = xlog_grant_head_wait(log, head, tic,
331                                                      *need_bytes);
332                 }
333                 spin_unlock(&head->lock);
334         } else if (free_bytes < *need_bytes) {
335                 spin_lock(&head->lock);
336                 error = xlog_grant_head_wait(log, head, tic, *need_bytes);
337                 spin_unlock(&head->lock);
338         }
339
340         return error;
341 }
342
343 static void
344 xlog_tic_reset_res(xlog_ticket_t *tic)
345 {
346         tic->t_res_num = 0;
347         tic->t_res_arr_sum = 0;
348         tic->t_res_num_ophdrs = 0;
349 }
350
351 static void
352 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
353 {
354         if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
355                 /* add to overflow and start again */
356                 tic->t_res_o_flow += tic->t_res_arr_sum;
357                 tic->t_res_num = 0;
358                 tic->t_res_arr_sum = 0;
359         }
360
361         tic->t_res_arr[tic->t_res_num].r_len = len;
362         tic->t_res_arr[tic->t_res_num].r_type = type;
363         tic->t_res_arr_sum += len;
364         tic->t_res_num++;
365 }
366
367 /*
368  * Replenish the byte reservation required by moving the grant write head.
369  */
370 int
371 xfs_log_regrant(
372         struct xfs_mount        *mp,
373         struct xlog_ticket      *tic)
374 {
375         struct xlog             *log = mp->m_log;
376         int                     need_bytes;
377         int                     error = 0;
378
379         if (XLOG_FORCED_SHUTDOWN(log))
380                 return -EIO;
381
382         XFS_STATS_INC(xs_try_logspace);
383
384         /*
385          * This is a new transaction on the ticket, so we need to change the
386          * transaction ID so that the next transaction has a different TID in
387          * the log. Just add one to the existing tid so that we can see chains
388          * of rolling transactions in the log easily.
389          */
390         tic->t_tid++;
391
392         xlog_grant_push_ail(log, tic->t_unit_res);
393
394         tic->t_curr_res = tic->t_unit_res;
395         xlog_tic_reset_res(tic);
396
397         if (tic->t_cnt > 0)
398                 return 0;
399
400         trace_xfs_log_regrant(log, tic);
401
402         error = xlog_grant_head_check(log, &log->l_write_head, tic,
403                                       &need_bytes);
404         if (error)
405                 goto out_error;
406
407         xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
408         trace_xfs_log_regrant_exit(log, tic);
409         xlog_verify_grant_tail(log);
410         return 0;
411
412 out_error:
413         /*
414          * If we are failing, make sure the ticket doesn't have any current
415          * reservations.  We don't want to add this back when the ticket/
416          * transaction gets cancelled.
417          */
418         tic->t_curr_res = 0;
419         tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
420         return error;
421 }
422
423 /*
424  * Reserve log space and return a ticket corresponding the reservation.
425  *
426  * Each reservation is going to reserve extra space for a log record header.
427  * When writes happen to the on-disk log, we don't subtract the length of the
428  * log record header from any reservation.  By wasting space in each
429  * reservation, we prevent over allocation problems.
430  */
431 int
432 xfs_log_reserve(
433         struct xfs_mount        *mp,
434         int                     unit_bytes,
435         int                     cnt,
436         struct xlog_ticket      **ticp,
437         __uint8_t               client,
438         bool                    permanent,
439         uint                    t_type)
440 {
441         struct xlog             *log = mp->m_log;
442         struct xlog_ticket      *tic;
443         int                     need_bytes;
444         int                     error = 0;
445
446         ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
447
448         if (XLOG_FORCED_SHUTDOWN(log))
449                 return -EIO;
450
451         XFS_STATS_INC(xs_try_logspace);
452
453         ASSERT(*ticp == NULL);
454         tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
455                                 KM_SLEEP | KM_MAYFAIL);
456         if (!tic)
457                 return -ENOMEM;
458
459         tic->t_trans_type = t_type;
460         *ticp = tic;
461
462         xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
463                                             : tic->t_unit_res);
464
465         trace_xfs_log_reserve(log, tic);
466
467         error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
468                                       &need_bytes);
469         if (error)
470                 goto out_error;
471
472         xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
473         xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
474         trace_xfs_log_reserve_exit(log, tic);
475         xlog_verify_grant_tail(log);
476         return 0;
477
478 out_error:
479         /*
480          * If we are failing, make sure the ticket doesn't have any current
481          * reservations.  We don't want to add this back when the ticket/
482          * transaction gets cancelled.
483          */
484         tic->t_curr_res = 0;
485         tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
486         return error;
487 }
488
489
490 /*
491  * NOTES:
492  *
493  *      1. currblock field gets updated at startup and after in-core logs
494  *              marked as with WANT_SYNC.
495  */
496
497 /*
498  * This routine is called when a user of a log manager ticket is done with
499  * the reservation.  If the ticket was ever used, then a commit record for
500  * the associated transaction is written out as a log operation header with
501  * no data.  The flag XLOG_TIC_INITED is set when the first write occurs with
502  * a given ticket.  If the ticket was one with a permanent reservation, then
503  * a few operations are done differently.  Permanent reservation tickets by
504  * default don't release the reservation.  They just commit the current
505  * transaction with the belief that the reservation is still needed.  A flag
506  * must be passed in before permanent reservations are actually released.
507  * When these type of tickets are not released, they need to be set into
508  * the inited state again.  By doing this, a start record will be written
509  * out when the next write occurs.
510  */
511 xfs_lsn_t
512 xfs_log_done(
513         struct xfs_mount        *mp,
514         struct xlog_ticket      *ticket,
515         struct xlog_in_core     **iclog,
516         bool                    regrant)
517 {
518         struct xlog             *log = mp->m_log;
519         xfs_lsn_t               lsn = 0;
520
521         if (XLOG_FORCED_SHUTDOWN(log) ||
522             /*
523              * If nothing was ever written, don't write out commit record.
524              * If we get an error, just continue and give back the log ticket.
525              */
526             (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
527              (xlog_commit_record(log, ticket, iclog, &lsn)))) {
528                 lsn = (xfs_lsn_t) -1;
529                 regrant = false;
530         }
531
532
533         if (!regrant) {
534                 trace_xfs_log_done_nonperm(log, ticket);
535
536                 /*
537                  * Release ticket if not permanent reservation or a specific
538                  * request has been made to release a permanent reservation.
539                  */
540                 xlog_ungrant_log_space(log, ticket);
541         } else {
542                 trace_xfs_log_done_perm(log, ticket);
543
544                 xlog_regrant_reserve_log_space(log, ticket);
545                 /* If this ticket was a permanent reservation and we aren't
546                  * trying to release it, reset the inited flags; so next time
547                  * we write, a start record will be written out.
548                  */
549                 ticket->t_flags |= XLOG_TIC_INITED;
550         }
551
552         xfs_log_ticket_put(ticket);
553         return lsn;
554 }
555
556 /*
557  * Attaches a new iclog I/O completion callback routine during
558  * transaction commit.  If the log is in error state, a non-zero
559  * return code is handed back and the caller is responsible for
560  * executing the callback at an appropriate time.
561  */
562 int
563 xfs_log_notify(
564         struct xfs_mount        *mp,
565         struct xlog_in_core     *iclog,
566         xfs_log_callback_t      *cb)
567 {
568         int     abortflg;
569
570         spin_lock(&iclog->ic_callback_lock);
571         abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
572         if (!abortflg) {
573                 ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
574                               (iclog->ic_state == XLOG_STATE_WANT_SYNC));
575                 cb->cb_next = NULL;
576                 *(iclog->ic_callback_tail) = cb;
577                 iclog->ic_callback_tail = &(cb->cb_next);
578         }
579         spin_unlock(&iclog->ic_callback_lock);
580         return abortflg;
581 }
582
583 int
584 xfs_log_release_iclog(
585         struct xfs_mount        *mp,
586         struct xlog_in_core     *iclog)
587 {
588         if (xlog_state_release_iclog(mp->m_log, iclog)) {
589                 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
590                 return -EIO;
591         }
592
593         return 0;
594 }
595
596 /*
597  * Mount a log filesystem
598  *
599  * mp           - ubiquitous xfs mount point structure
600  * log_target   - buftarg of on-disk log device
601  * blk_offset   - Start block # where block size is 512 bytes (BBSIZE)
602  * num_bblocks  - Number of BBSIZE blocks in on-disk log
603  *
604  * Return error or zero.
605  */
606 int
607 xfs_log_mount(
608         xfs_mount_t     *mp,
609         xfs_buftarg_t   *log_target,
610         xfs_daddr_t     blk_offset,
611         int             num_bblks)
612 {
613         int             error = 0;
614         int             min_logfsbs;
615
616         if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
617                 xfs_notice(mp, "Mounting V%d Filesystem",
618                            XFS_SB_VERSION_NUM(&mp->m_sb));
619         } else {
620                 xfs_notice(mp,
621 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
622                            XFS_SB_VERSION_NUM(&mp->m_sb));
623                 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
624         }
625
626         mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
627         if (IS_ERR(mp->m_log)) {
628                 error = PTR_ERR(mp->m_log);
629                 goto out;
630         }
631
632         /*
633          * Validate the given log space and drop a critical message via syslog
634          * if the log size is too small that would lead to some unexpected
635          * situations in transaction log space reservation stage.
636          *
637          * Note: we can't just reject the mount if the validation fails.  This
638          * would mean that people would have to downgrade their kernel just to
639          * remedy the situation as there is no way to grow the log (short of
640          * black magic surgery with xfs_db).
641          *
642          * We can, however, reject mounts for CRC format filesystems, as the
643          * mkfs binary being used to make the filesystem should never create a
644          * filesystem with a log that is too small.
645          */
646         min_logfsbs = xfs_log_calc_minimum_size(mp);
647
648         if (mp->m_sb.sb_logblocks < min_logfsbs) {
649                 xfs_warn(mp,
650                 "Log size %d blocks too small, minimum size is %d blocks",
651                          mp->m_sb.sb_logblocks, min_logfsbs);
652                 error = -EINVAL;
653         } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
654                 xfs_warn(mp,
655                 "Log size %d blocks too large, maximum size is %lld blocks",
656                          mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
657                 error = -EINVAL;
658         } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
659                 xfs_warn(mp,
660                 "log size %lld bytes too large, maximum size is %lld bytes",
661                          XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
662                          XFS_MAX_LOG_BYTES);
663                 error = -EINVAL;
664         }
665         if (error) {
666                 if (xfs_sb_version_hascrc(&mp->m_sb)) {
667                         xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
668                         ASSERT(0);
669                         goto out_free_log;
670                 }
671                 xfs_crit(mp, "Log size out of supported range.");
672                 xfs_crit(mp,
673 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
674         }
675
676         /*
677          * Initialize the AIL now we have a log.
678          */
679         error = xfs_trans_ail_init(mp);
680         if (error) {
681                 xfs_warn(mp, "AIL initialisation failed: error %d", error);
682                 goto out_free_log;
683         }
684         mp->m_log->l_ailp = mp->m_ail;
685
686         /*
687          * skip log recovery on a norecovery mount.  pretend it all
688          * just worked.
689          */
690         if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
691                 int     readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
692
693                 if (readonly)
694                         mp->m_flags &= ~XFS_MOUNT_RDONLY;
695
696                 error = xlog_recover(mp->m_log);
697
698                 if (readonly)
699                         mp->m_flags |= XFS_MOUNT_RDONLY;
700                 if (error) {
701                         xfs_warn(mp, "log mount/recovery failed: error %d",
702                                 error);
703                         xlog_recover_cancel(mp->m_log);
704                         goto out_destroy_ail;
705                 }
706         }
707
708         error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
709                                "log");
710         if (error)
711                 goto out_destroy_ail;
712
713         /* Normal transactions can now occur */
714         mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
715
716         /*
717          * Now the log has been fully initialised and we know were our
718          * space grant counters are, we can initialise the permanent ticket
719          * needed for delayed logging to work.
720          */
721         xlog_cil_init_post_recovery(mp->m_log);
722
723         return 0;
724
725 out_destroy_ail:
726         xfs_trans_ail_destroy(mp);
727 out_free_log:
728         xlog_dealloc_log(mp->m_log);
729 out:
730         return error;
731 }
732
733 /*
734  * Finish the recovery of the file system.  This is separate from the
735  * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
736  * in the root and real-time bitmap inodes between calling xfs_log_mount() and
737  * here.
738  *
739  * If we finish recovery successfully, start the background log work. If we are
740  * not doing recovery, then we have a RO filesystem and we don't need to start
741  * it.
742  */
743 int
744 xfs_log_mount_finish(
745         struct xfs_mount        *mp)
746 {
747         int     error = 0;
748
749         if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
750                 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
751                 return 0;
752         }
753
754         error = xlog_recover_finish(mp->m_log);
755         if (!error)
756                 xfs_log_work_queue(mp);
757
758         return error;
759 }
760
761 /*
762  * The mount has failed. Cancel the recovery if it hasn't completed and destroy
763  * the log.
764  */
765 int
766 xfs_log_mount_cancel(
767         struct xfs_mount        *mp)
768 {
769         int                     error;
770
771         error = xlog_recover_cancel(mp->m_log);
772         xfs_log_unmount(mp);
773
774         return error;
775 }
776
777 /*
778  * Final log writes as part of unmount.
779  *
780  * Mark the filesystem clean as unmount happens.  Note that during relocation
781  * this routine needs to be executed as part of source-bag while the
782  * deallocation must not be done until source-end.
783  */
784
785 /*
786  * Unmount record used to have a string "Unmount filesystem--" in the
787  * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
788  * We just write the magic number now since that particular field isn't
789  * currently architecture converted and "Unmount" is a bit foo.
790  * As far as I know, there weren't any dependencies on the old behaviour.
791  */
792
793 int
794 xfs_log_unmount_write(xfs_mount_t *mp)
795 {
796         struct xlog      *log = mp->m_log;
797         xlog_in_core_t   *iclog;
798 #ifdef DEBUG
799         xlog_in_core_t   *first_iclog;
800 #endif
801         xlog_ticket_t   *tic = NULL;
802         xfs_lsn_t        lsn;
803         int              error;
804
805         /*
806          * Don't write out unmount record on read-only mounts.
807          * Or, if we are doing a forced umount (typically because of IO errors).
808          */
809         if (mp->m_flags & XFS_MOUNT_RDONLY)
810                 return 0;
811
812         error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
813         ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
814
815 #ifdef DEBUG
816         first_iclog = iclog = log->l_iclog;
817         do {
818                 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
819                         ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
820                         ASSERT(iclog->ic_offset == 0);
821                 }
822                 iclog = iclog->ic_next;
823         } while (iclog != first_iclog);
824 #endif
825         if (! (XLOG_FORCED_SHUTDOWN(log))) {
826                 error = xfs_log_reserve(mp, 600, 1, &tic,
827                                         XFS_LOG, 0, XLOG_UNMOUNT_REC_TYPE);
828                 if (!error) {
829                         /* the data section must be 32 bit size aligned */
830                         struct {
831                             __uint16_t magic;
832                             __uint16_t pad1;
833                             __uint32_t pad2; /* may as well make it 64 bits */
834                         } magic = {
835                                 .magic = XLOG_UNMOUNT_TYPE,
836                         };
837                         struct xfs_log_iovec reg = {
838                                 .i_addr = &magic,
839                                 .i_len = sizeof(magic),
840                                 .i_type = XLOG_REG_TYPE_UNMOUNT,
841                         };
842                         struct xfs_log_vec vec = {
843                                 .lv_niovecs = 1,
844                                 .lv_iovecp = &reg,
845                         };
846
847                         /* remove inited flag, and account for space used */
848                         tic->t_flags = 0;
849                         tic->t_curr_res -= sizeof(magic);
850                         error = xlog_write(log, &vec, tic, &lsn,
851                                            NULL, XLOG_UNMOUNT_TRANS);
852                         /*
853                          * At this point, we're umounting anyway,
854                          * so there's no point in transitioning log state
855                          * to IOERROR. Just continue...
856                          */
857                 }
858
859                 if (error)
860                         xfs_alert(mp, "%s: unmount record failed", __func__);
861
862
863                 spin_lock(&log->l_icloglock);
864                 iclog = log->l_iclog;
865                 atomic_inc(&iclog->ic_refcnt);
866                 xlog_state_want_sync(log, iclog);
867                 spin_unlock(&log->l_icloglock);
868                 error = xlog_state_release_iclog(log, iclog);
869
870                 spin_lock(&log->l_icloglock);
871                 if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
872                       iclog->ic_state == XLOG_STATE_DIRTY)) {
873                         if (!XLOG_FORCED_SHUTDOWN(log)) {
874                                 xlog_wait(&iclog->ic_force_wait,
875                                                         &log->l_icloglock);
876                         } else {
877                                 spin_unlock(&log->l_icloglock);
878                         }
879                 } else {
880                         spin_unlock(&log->l_icloglock);
881                 }
882                 if (tic) {
883                         trace_xfs_log_umount_write(log, tic);
884                         xlog_ungrant_log_space(log, tic);
885                         xfs_log_ticket_put(tic);
886                 }
887         } else {
888                 /*
889                  * We're already in forced_shutdown mode, couldn't
890                  * even attempt to write out the unmount transaction.
891                  *
892                  * Go through the motions of sync'ing and releasing
893                  * the iclog, even though no I/O will actually happen,
894                  * we need to wait for other log I/Os that may already
895                  * be in progress.  Do this as a separate section of
896                  * code so we'll know if we ever get stuck here that
897                  * we're in this odd situation of trying to unmount
898                  * a file system that went into forced_shutdown as
899                  * the result of an unmount..
900                  */
901                 spin_lock(&log->l_icloglock);
902                 iclog = log->l_iclog;
903                 atomic_inc(&iclog->ic_refcnt);
904
905                 xlog_state_want_sync(log, iclog);
906                 spin_unlock(&log->l_icloglock);
907                 error =  xlog_state_release_iclog(log, iclog);
908
909                 spin_lock(&log->l_icloglock);
910
911                 if ( ! (   iclog->ic_state == XLOG_STATE_ACTIVE
912                         || iclog->ic_state == XLOG_STATE_DIRTY
913                         || iclog->ic_state == XLOG_STATE_IOERROR) ) {
914
915                                 xlog_wait(&iclog->ic_force_wait,
916                                                         &log->l_icloglock);
917                 } else {
918                         spin_unlock(&log->l_icloglock);
919                 }
920         }
921
922         return error;
923 }       /* xfs_log_unmount_write */
924
925 /*
926  * Empty the log for unmount/freeze.
927  *
928  * To do this, we first need to shut down the background log work so it is not
929  * trying to cover the log as we clean up. We then need to unpin all objects in
930  * the log so we can then flush them out. Once they have completed their IO and
931  * run the callbacks removing themselves from the AIL, we can write the unmount
932  * record.
933  */
934 void
935 xfs_log_quiesce(
936         struct xfs_mount        *mp)
937 {
938         cancel_delayed_work_sync(&mp->m_log->l_work);
939         xfs_log_force(mp, XFS_LOG_SYNC);
940
941         /*
942          * The superblock buffer is uncached and while xfs_ail_push_all_sync()
943          * will push it, xfs_wait_buftarg() will not wait for it. Further,
944          * xfs_buf_iowait() cannot be used because it was pushed with the
945          * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
946          * the IO to complete.
947          */
948         xfs_ail_push_all_sync(mp->m_ail);
949         xfs_wait_buftarg(mp->m_ddev_targp);
950         xfs_buf_lock(mp->m_sb_bp);
951         xfs_buf_unlock(mp->m_sb_bp);
952
953         xfs_log_unmount_write(mp);
954 }
955
956 /*
957  * Shut down and release the AIL and Log.
958  *
959  * During unmount, we need to ensure we flush all the dirty metadata objects
960  * from the AIL so that the log is empty before we write the unmount record to
961  * the log. Once this is done, we can tear down the AIL and the log.
962  */
963 void
964 xfs_log_unmount(
965         struct xfs_mount        *mp)
966 {
967         xfs_log_quiesce(mp);
968
969         xfs_trans_ail_destroy(mp);
970
971         xfs_sysfs_del(&mp->m_log->l_kobj);
972
973         xlog_dealloc_log(mp->m_log);
974 }
975
976 void
977 xfs_log_item_init(
978         struct xfs_mount        *mp,
979         struct xfs_log_item     *item,
980         int                     type,
981         const struct xfs_item_ops *ops)
982 {
983         item->li_mountp = mp;
984         item->li_ailp = mp->m_ail;
985         item->li_type = type;
986         item->li_ops = ops;
987         item->li_lv = NULL;
988
989         INIT_LIST_HEAD(&item->li_ail);
990         INIT_LIST_HEAD(&item->li_cil);
991 }
992
993 /*
994  * Wake up processes waiting for log space after we have moved the log tail.
995  */
996 void
997 xfs_log_space_wake(
998         struct xfs_mount        *mp)
999 {
1000         struct xlog             *log = mp->m_log;
1001         int                     free_bytes;
1002
1003         if (XLOG_FORCED_SHUTDOWN(log))
1004                 return;
1005
1006         if (!list_empty_careful(&log->l_write_head.waiters)) {
1007                 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1008
1009                 spin_lock(&log->l_write_head.lock);
1010                 free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1011                 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1012                 spin_unlock(&log->l_write_head.lock);
1013         }
1014
1015         if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1016                 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1017
1018                 spin_lock(&log->l_reserve_head.lock);
1019                 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1020                 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1021                 spin_unlock(&log->l_reserve_head.lock);
1022         }
1023 }
1024
1025 /*
1026  * Determine if we have a transaction that has gone to disk that needs to be
1027  * covered. To begin the transition to the idle state firstly the log needs to
1028  * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1029  * we start attempting to cover the log.
1030  *
1031  * Only if we are then in a state where covering is needed, the caller is
1032  * informed that dummy transactions are required to move the log into the idle
1033  * state.
1034  *
1035  * If there are any items in the AIl or CIL, then we do not want to attempt to
1036  * cover the log as we may be in a situation where there isn't log space
1037  * available to run a dummy transaction and this can lead to deadlocks when the
1038  * tail of the log is pinned by an item that is modified in the CIL.  Hence
1039  * there's no point in running a dummy transaction at this point because we
1040  * can't start trying to idle the log until both the CIL and AIL are empty.
1041  */
1042 int
1043 xfs_log_need_covered(xfs_mount_t *mp)
1044 {
1045         struct xlog     *log = mp->m_log;
1046         int             needed = 0;
1047
1048         if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
1049                 return 0;
1050
1051         if (!xlog_cil_empty(log))
1052                 return 0;
1053
1054         spin_lock(&log->l_icloglock);
1055         switch (log->l_covered_state) {
1056         case XLOG_STATE_COVER_DONE:
1057         case XLOG_STATE_COVER_DONE2:
1058         case XLOG_STATE_COVER_IDLE:
1059                 break;
1060         case XLOG_STATE_COVER_NEED:
1061         case XLOG_STATE_COVER_NEED2:
1062                 if (xfs_ail_min_lsn(log->l_ailp))
1063                         break;
1064                 if (!xlog_iclogs_empty(log))
1065                         break;
1066
1067                 needed = 1;
1068                 if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1069                         log->l_covered_state = XLOG_STATE_COVER_DONE;
1070                 else
1071                         log->l_covered_state = XLOG_STATE_COVER_DONE2;
1072                 break;
1073         default:
1074                 needed = 1;
1075                 break;
1076         }
1077         spin_unlock(&log->l_icloglock);
1078         return needed;
1079 }
1080
1081 /*
1082  * We may be holding the log iclog lock upon entering this routine.
1083  */
1084 xfs_lsn_t
1085 xlog_assign_tail_lsn_locked(
1086         struct xfs_mount        *mp)
1087 {
1088         struct xlog             *log = mp->m_log;
1089         struct xfs_log_item     *lip;
1090         xfs_lsn_t               tail_lsn;
1091
1092         assert_spin_locked(&mp->m_ail->xa_lock);
1093
1094         /*
1095          * To make sure we always have a valid LSN for the log tail we keep
1096          * track of the last LSN which was committed in log->l_last_sync_lsn,
1097          * and use that when the AIL was empty.
1098          */
1099         lip = xfs_ail_min(mp->m_ail);
1100         if (lip)
1101                 tail_lsn = lip->li_lsn;
1102         else
1103                 tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1104         trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1105         atomic64_set(&log->l_tail_lsn, tail_lsn);
1106         return tail_lsn;
1107 }
1108
1109 xfs_lsn_t
1110 xlog_assign_tail_lsn(
1111         struct xfs_mount        *mp)
1112 {
1113         xfs_lsn_t               tail_lsn;
1114
1115         spin_lock(&mp->m_ail->xa_lock);
1116         tail_lsn = xlog_assign_tail_lsn_locked(mp);
1117         spin_unlock(&mp->m_ail->xa_lock);
1118
1119         return tail_lsn;
1120 }
1121
1122 /*
1123  * Return the space in the log between the tail and the head.  The head
1124  * is passed in the cycle/bytes formal parms.  In the special case where
1125  * the reserve head has wrapped passed the tail, this calculation is no
1126  * longer valid.  In this case, just return 0 which means there is no space
1127  * in the log.  This works for all places where this function is called
1128  * with the reserve head.  Of course, if the write head were to ever
1129  * wrap the tail, we should blow up.  Rather than catch this case here,
1130  * we depend on other ASSERTions in other parts of the code.   XXXmiken
1131  *
1132  * This code also handles the case where the reservation head is behind
1133  * the tail.  The details of this case are described below, but the end
1134  * result is that we return the size of the log as the amount of space left.
1135  */
1136 STATIC int
1137 xlog_space_left(
1138         struct xlog     *log,
1139         atomic64_t      *head)
1140 {
1141         int             free_bytes;
1142         int             tail_bytes;
1143         int             tail_cycle;
1144         int             head_cycle;
1145         int             head_bytes;
1146
1147         xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1148         xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1149         tail_bytes = BBTOB(tail_bytes);
1150         if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1151                 free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1152         else if (tail_cycle + 1 < head_cycle)
1153                 return 0;
1154         else if (tail_cycle < head_cycle) {
1155                 ASSERT(tail_cycle == (head_cycle - 1));
1156                 free_bytes = tail_bytes - head_bytes;
1157         } else {
1158                 /*
1159                  * The reservation head is behind the tail.
1160                  * In this case we just want to return the size of the
1161                  * log as the amount of space left.
1162                  */
1163                 xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1164                 xfs_alert(log->l_mp,
1165                           "  tail_cycle = %d, tail_bytes = %d",
1166                           tail_cycle, tail_bytes);
1167                 xfs_alert(log->l_mp,
1168                           "  GH   cycle = %d, GH   bytes = %d",
1169                           head_cycle, head_bytes);
1170                 ASSERT(0);
1171                 free_bytes = log->l_logsize;
1172         }
1173         return free_bytes;
1174 }
1175
1176
1177 /*
1178  * Log function which is called when an io completes.
1179  *
1180  * The log manager needs its own routine, in order to control what
1181  * happens with the buffer after the write completes.
1182  */
1183 void
1184 xlog_iodone(xfs_buf_t *bp)
1185 {
1186         struct xlog_in_core     *iclog = bp->b_fspriv;
1187         struct xlog             *l = iclog->ic_log;
1188         int                     aborted = 0;
1189
1190         /*
1191          * Race to shutdown the filesystem if we see an error.
1192          */
1193         if (XFS_TEST_ERROR(bp->b_error, l->l_mp,
1194                         XFS_ERRTAG_IODONE_IOERR, XFS_RANDOM_IODONE_IOERR)) {
1195                 xfs_buf_ioerror_alert(bp, __func__);
1196                 xfs_buf_stale(bp);
1197                 xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1198                 /*
1199                  * This flag will be propagated to the trans-committed
1200                  * callback routines to let them know that the log-commit
1201                  * didn't succeed.
1202                  */
1203                 aborted = XFS_LI_ABORTED;
1204         } else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1205                 aborted = XFS_LI_ABORTED;
1206         }
1207
1208         /* log I/O is always issued ASYNC */
1209         ASSERT(XFS_BUF_ISASYNC(bp));
1210         xlog_state_done_syncing(iclog, aborted);
1211
1212         /*
1213          * drop the buffer lock now that we are done. Nothing references
1214          * the buffer after this, so an unmount waiting on this lock can now
1215          * tear it down safely. As such, it is unsafe to reference the buffer
1216          * (bp) after the unlock as we could race with it being freed.
1217          */
1218         xfs_buf_unlock(bp);
1219 }
1220
1221 /*
1222  * Return size of each in-core log record buffer.
1223  *
1224  * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1225  *
1226  * If the filesystem blocksize is too large, we may need to choose a
1227  * larger size since the directory code currently logs entire blocks.
1228  */
1229
1230 STATIC void
1231 xlog_get_iclog_buffer_size(
1232         struct xfs_mount        *mp,
1233         struct xlog             *log)
1234 {
1235         int size;
1236         int xhdrs;
1237
1238         if (mp->m_logbufs <= 0)
1239                 log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1240         else
1241                 log->l_iclog_bufs = mp->m_logbufs;
1242
1243         /*
1244          * Buffer size passed in from mount system call.
1245          */
1246         if (mp->m_logbsize > 0) {
1247                 size = log->l_iclog_size = mp->m_logbsize;
1248                 log->l_iclog_size_log = 0;
1249                 while (size != 1) {
1250                         log->l_iclog_size_log++;
1251                         size >>= 1;
1252                 }
1253
1254                 if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1255                         /* # headers = size / 32k
1256                          * one header holds cycles from 32k of data
1257                          */
1258
1259                         xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1260                         if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1261                                 xhdrs++;
1262                         log->l_iclog_hsize = xhdrs << BBSHIFT;
1263                         log->l_iclog_heads = xhdrs;
1264                 } else {
1265                         ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1266                         log->l_iclog_hsize = BBSIZE;
1267                         log->l_iclog_heads = 1;
1268                 }
1269                 goto done;
1270         }
1271
1272         /* All machines use 32kB buffers by default. */
1273         log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1274         log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1275
1276         /* the default log size is 16k or 32k which is one header sector */
1277         log->l_iclog_hsize = BBSIZE;
1278         log->l_iclog_heads = 1;
1279
1280 done:
1281         /* are we being asked to make the sizes selected above visible? */
1282         if (mp->m_logbufs == 0)
1283                 mp->m_logbufs = log->l_iclog_bufs;
1284         if (mp->m_logbsize == 0)
1285                 mp->m_logbsize = log->l_iclog_size;
1286 }       /* xlog_get_iclog_buffer_size */
1287
1288
1289 void
1290 xfs_log_work_queue(
1291         struct xfs_mount        *mp)
1292 {
1293         queue_delayed_work(mp->m_log_workqueue, &mp->m_log->l_work,
1294                                 msecs_to_jiffies(xfs_syncd_centisecs * 10));
1295 }
1296
1297 /*
1298  * Every sync period we need to unpin all items in the AIL and push them to
1299  * disk. If there is nothing dirty, then we might need to cover the log to
1300  * indicate that the filesystem is idle.
1301  */
1302 void
1303 xfs_log_worker(
1304         struct work_struct      *work)
1305 {
1306         struct xlog             *log = container_of(to_delayed_work(work),
1307                                                 struct xlog, l_work);
1308         struct xfs_mount        *mp = log->l_mp;
1309
1310         /* dgc: errors ignored - not fatal and nowhere to report them */
1311         if (xfs_log_need_covered(mp)) {
1312                 /*
1313                  * Dump a transaction into the log that contains no real change.
1314                  * This is needed to stamp the current tail LSN into the log
1315                  * during the covering operation.
1316                  *
1317                  * We cannot use an inode here for this - that will push dirty
1318                  * state back up into the VFS and then periodic inode flushing
1319                  * will prevent log covering from making progress. Hence we
1320                  * synchronously log the superblock instead to ensure the
1321                  * superblock is immediately unpinned and can be written back.
1322                  */
1323                 xfs_sync_sb(mp, true);
1324         } else
1325                 xfs_log_force(mp, 0);
1326
1327         /* start pushing all the metadata that is currently dirty */
1328         xfs_ail_push_all(mp->m_ail);
1329
1330         /* queue us up again */
1331         xfs_log_work_queue(mp);
1332 }
1333
1334 /*
1335  * This routine initializes some of the log structure for a given mount point.
1336  * Its primary purpose is to fill in enough, so recovery can occur.  However,
1337  * some other stuff may be filled in too.
1338  */
1339 STATIC struct xlog *
1340 xlog_alloc_log(
1341         struct xfs_mount        *mp,
1342         struct xfs_buftarg      *log_target,
1343         xfs_daddr_t             blk_offset,
1344         int                     num_bblks)
1345 {
1346         struct xlog             *log;
1347         xlog_rec_header_t       *head;
1348         xlog_in_core_t          **iclogp;
1349         xlog_in_core_t          *iclog, *prev_iclog=NULL;
1350         xfs_buf_t               *bp;
1351         int                     i;
1352         int                     error = -ENOMEM;
1353         uint                    log2_size = 0;
1354
1355         log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1356         if (!log) {
1357                 xfs_warn(mp, "Log allocation failed: No memory!");
1358                 goto out;
1359         }
1360
1361         log->l_mp          = mp;
1362         log->l_targ        = log_target;
1363         log->l_logsize     = BBTOB(num_bblks);
1364         log->l_logBBstart  = blk_offset;
1365         log->l_logBBsize   = num_bblks;
1366         log->l_covered_state = XLOG_STATE_COVER_IDLE;
1367         log->l_flags       |= XLOG_ACTIVE_RECOVERY;
1368         INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1369
1370         log->l_prev_block  = -1;
1371         /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1372         xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1373         xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1374         log->l_curr_cycle  = 1;     /* 0 is bad since this is initial value */
1375
1376         xlog_grant_head_init(&log->l_reserve_head);
1377         xlog_grant_head_init(&log->l_write_head);
1378
1379         error = -EFSCORRUPTED;
1380         if (xfs_sb_version_hassector(&mp->m_sb)) {
1381                 log2_size = mp->m_sb.sb_logsectlog;
1382                 if (log2_size < BBSHIFT) {
1383                         xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1384                                 log2_size, BBSHIFT);
1385                         goto out_free_log;
1386                 }
1387
1388                 log2_size -= BBSHIFT;
1389                 if (log2_size > mp->m_sectbb_log) {
1390                         xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1391                                 log2_size, mp->m_sectbb_log);
1392                         goto out_free_log;
1393                 }
1394
1395                 /* for larger sector sizes, must have v2 or external log */
1396                 if (log2_size && log->l_logBBstart > 0 &&
1397                             !xfs_sb_version_haslogv2(&mp->m_sb)) {
1398                         xfs_warn(mp,
1399                 "log sector size (0x%x) invalid for configuration.",
1400                                 log2_size);
1401                         goto out_free_log;
1402                 }
1403         }
1404         log->l_sectBBsize = 1 << log2_size;
1405
1406         xlog_get_iclog_buffer_size(mp, log);
1407
1408         /*
1409          * Use a NULL block for the extra log buffer used during splits so that
1410          * it will trigger errors if we ever try to do IO on it without first
1411          * having set it up properly.
1412          */
1413         error = -ENOMEM;
1414         bp = xfs_buf_alloc(mp->m_logdev_targp, XFS_BUF_DADDR_NULL,
1415                            BTOBB(log->l_iclog_size), 0);
1416         if (!bp)
1417                 goto out_free_log;
1418
1419         /*
1420          * The iclogbuf buffer locks are held over IO but we are not going to do
1421          * IO yet.  Hence unlock the buffer so that the log IO path can grab it
1422          * when appropriately.
1423          */
1424         ASSERT(xfs_buf_islocked(bp));
1425         xfs_buf_unlock(bp);
1426
1427         /* use high priority wq for log I/O completion */
1428         bp->b_ioend_wq = mp->m_log_workqueue;
1429         bp->b_iodone = xlog_iodone;
1430         log->l_xbuf = bp;
1431
1432         spin_lock_init(&log->l_icloglock);
1433         init_waitqueue_head(&log->l_flush_wait);
1434
1435         iclogp = &log->l_iclog;
1436         /*
1437          * The amount of memory to allocate for the iclog structure is
1438          * rather funky due to the way the structure is defined.  It is
1439          * done this way so that we can use different sizes for machines
1440          * with different amounts of memory.  See the definition of
1441          * xlog_in_core_t in xfs_log_priv.h for details.
1442          */
1443         ASSERT(log->l_iclog_size >= 4096);
1444         for (i=0; i < log->l_iclog_bufs; i++) {
1445                 *iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1446                 if (!*iclogp)
1447                         goto out_free_iclog;
1448
1449                 iclog = *iclogp;
1450                 iclog->ic_prev = prev_iclog;
1451                 prev_iclog = iclog;
1452
1453                 bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1454                                                 BTOBB(log->l_iclog_size), 0);
1455                 if (!bp)
1456                         goto out_free_iclog;
1457
1458                 ASSERT(xfs_buf_islocked(bp));
1459                 xfs_buf_unlock(bp);
1460
1461                 /* use high priority wq for log I/O completion */
1462                 bp->b_ioend_wq = mp->m_log_workqueue;
1463                 bp->b_iodone = xlog_iodone;
1464                 iclog->ic_bp = bp;
1465                 iclog->ic_data = bp->b_addr;
1466 #ifdef DEBUG
1467                 log->l_iclog_bak[i] = &iclog->ic_header;
1468 #endif
1469                 head = &iclog->ic_header;
1470                 memset(head, 0, sizeof(xlog_rec_header_t));
1471                 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1472                 head->h_version = cpu_to_be32(
1473                         xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1474                 head->h_size = cpu_to_be32(log->l_iclog_size);
1475                 /* new fields */
1476                 head->h_fmt = cpu_to_be32(XLOG_FMT);
1477                 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1478
1479                 iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize;
1480                 iclog->ic_state = XLOG_STATE_ACTIVE;
1481                 iclog->ic_log = log;
1482                 atomic_set(&iclog->ic_refcnt, 0);
1483                 spin_lock_init(&iclog->ic_callback_lock);
1484                 iclog->ic_callback_tail = &(iclog->ic_callback);
1485                 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1486
1487                 init_waitqueue_head(&iclog->ic_force_wait);
1488                 init_waitqueue_head(&iclog->ic_write_wait);
1489
1490                 iclogp = &iclog->ic_next;
1491         }
1492         *iclogp = log->l_iclog;                 /* complete ring */
1493         log->l_iclog->ic_prev = prev_iclog;     /* re-write 1st prev ptr */
1494
1495         error = xlog_cil_init(log);
1496         if (error)
1497                 goto out_free_iclog;
1498         return log;
1499
1500 out_free_iclog:
1501         for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1502                 prev_iclog = iclog->ic_next;
1503                 if (iclog->ic_bp)
1504                         xfs_buf_free(iclog->ic_bp);
1505                 kmem_free(iclog);
1506         }
1507         spinlock_destroy(&log->l_icloglock);
1508         xfs_buf_free(log->l_xbuf);
1509 out_free_log:
1510         kmem_free(log);
1511 out:
1512         return ERR_PTR(error);
1513 }       /* xlog_alloc_log */
1514
1515
1516 /*
1517  * Write out the commit record of a transaction associated with the given
1518  * ticket.  Return the lsn of the commit record.
1519  */
1520 STATIC int
1521 xlog_commit_record(
1522         struct xlog             *log,
1523         struct xlog_ticket      *ticket,
1524         struct xlog_in_core     **iclog,
1525         xfs_lsn_t               *commitlsnp)
1526 {
1527         struct xfs_mount *mp = log->l_mp;
1528         int     error;
1529         struct xfs_log_iovec reg = {
1530                 .i_addr = NULL,
1531                 .i_len = 0,
1532                 .i_type = XLOG_REG_TYPE_COMMIT,
1533         };
1534         struct xfs_log_vec vec = {
1535                 .lv_niovecs = 1,
1536                 .lv_iovecp = &reg,
1537         };
1538
1539         ASSERT_ALWAYS(iclog);
1540         error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1541                                         XLOG_COMMIT_TRANS);
1542         if (error)
1543                 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1544         return error;
1545 }
1546
1547 /*
1548  * Push on the buffer cache code if we ever use more than 75% of the on-disk
1549  * log space.  This code pushes on the lsn which would supposedly free up
1550  * the 25% which we want to leave free.  We may need to adopt a policy which
1551  * pushes on an lsn which is further along in the log once we reach the high
1552  * water mark.  In this manner, we would be creating a low water mark.
1553  */
1554 STATIC void
1555 xlog_grant_push_ail(
1556         struct xlog     *log,
1557         int             need_bytes)
1558 {
1559         xfs_lsn_t       threshold_lsn = 0;
1560         xfs_lsn_t       last_sync_lsn;
1561         int             free_blocks;
1562         int             free_bytes;
1563         int             threshold_block;
1564         int             threshold_cycle;
1565         int             free_threshold;
1566
1567         ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1568
1569         free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1570         free_blocks = BTOBBT(free_bytes);
1571
1572         /*
1573          * Set the threshold for the minimum number of free blocks in the
1574          * log to the maximum of what the caller needs, one quarter of the
1575          * log, and 256 blocks.
1576          */
1577         free_threshold = BTOBB(need_bytes);
1578         free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1579         free_threshold = MAX(free_threshold, 256);
1580         if (free_blocks >= free_threshold)
1581                 return;
1582
1583         xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1584                                                 &threshold_block);
1585         threshold_block += free_threshold;
1586         if (threshold_block >= log->l_logBBsize) {
1587                 threshold_block -= log->l_logBBsize;
1588                 threshold_cycle += 1;
1589         }
1590         threshold_lsn = xlog_assign_lsn(threshold_cycle,
1591                                         threshold_block);
1592         /*
1593          * Don't pass in an lsn greater than the lsn of the last
1594          * log record known to be on disk. Use a snapshot of the last sync lsn
1595          * so that it doesn't change between the compare and the set.
1596          */
1597         last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1598         if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1599                 threshold_lsn = last_sync_lsn;
1600
1601         /*
1602          * Get the transaction layer to kick the dirty buffers out to
1603          * disk asynchronously. No point in trying to do this if
1604          * the filesystem is shutting down.
1605          */
1606         if (!XLOG_FORCED_SHUTDOWN(log))
1607                 xfs_ail_push(log->l_ailp, threshold_lsn);
1608 }
1609
1610 /*
1611  * Stamp cycle number in every block
1612  */
1613 STATIC void
1614 xlog_pack_data(
1615         struct xlog             *log,
1616         struct xlog_in_core     *iclog,
1617         int                     roundoff)
1618 {
1619         int                     i, j, k;
1620         int                     size = iclog->ic_offset + roundoff;
1621         __be32                  cycle_lsn;
1622         char                    *dp;
1623
1624         cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1625
1626         dp = iclog->ic_datap;
1627         for (i = 0; i < BTOBB(size); i++) {
1628                 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1629                         break;
1630                 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1631                 *(__be32 *)dp = cycle_lsn;
1632                 dp += BBSIZE;
1633         }
1634
1635         if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1636                 xlog_in_core_2_t *xhdr = iclog->ic_data;
1637
1638                 for ( ; i < BTOBB(size); i++) {
1639                         j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1640                         k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1641                         xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1642                         *(__be32 *)dp = cycle_lsn;
1643                         dp += BBSIZE;
1644                 }
1645
1646                 for (i = 1; i < log->l_iclog_heads; i++)
1647                         xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1648         }
1649 }
1650
1651 /*
1652  * Calculate the checksum for a log buffer.
1653  *
1654  * This is a little more complicated than it should be because the various
1655  * headers and the actual data are non-contiguous.
1656  */
1657 __le32
1658 xlog_cksum(
1659         struct xlog             *log,
1660         struct xlog_rec_header  *rhead,
1661         char                    *dp,
1662         int                     size)
1663 {
1664         __uint32_t              crc;
1665
1666         /* first generate the crc for the record header ... */
1667         crc = xfs_start_cksum((char *)rhead,
1668                               sizeof(struct xlog_rec_header),
1669                               offsetof(struct xlog_rec_header, h_crc));
1670
1671         /* ... then for additional cycle data for v2 logs ... */
1672         if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1673                 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1674                 int             i;
1675                 int             xheads;
1676
1677                 xheads = size / XLOG_HEADER_CYCLE_SIZE;
1678                 if (size % XLOG_HEADER_CYCLE_SIZE)
1679                         xheads++;
1680
1681                 for (i = 1; i < xheads; i++) {
1682                         crc = crc32c(crc, &xhdr[i].hic_xheader,
1683                                      sizeof(struct xlog_rec_ext_header));
1684                 }
1685         }
1686
1687         /* ... and finally for the payload */
1688         crc = crc32c(crc, dp, size);
1689
1690         return xfs_end_cksum(crc);
1691 }
1692
1693 /*
1694  * The bdstrat callback function for log bufs. This gives us a central
1695  * place to trap bufs in case we get hit by a log I/O error and need to
1696  * shutdown. Actually, in practice, even when we didn't get a log error,
1697  * we transition the iclogs to IOERROR state *after* flushing all existing
1698  * iclogs to disk. This is because we don't want anymore new transactions to be
1699  * started or completed afterwards.
1700  *
1701  * We lock the iclogbufs here so that we can serialise against IO completion
1702  * during unmount. We might be processing a shutdown triggered during unmount,
1703  * and that can occur asynchronously to the unmount thread, and hence we need to
1704  * ensure that completes before tearing down the iclogbufs. Hence we need to
1705  * hold the buffer lock across the log IO to acheive that.
1706  */
1707 STATIC int
1708 xlog_bdstrat(
1709         struct xfs_buf          *bp)
1710 {
1711         struct xlog_in_core     *iclog = bp->b_fspriv;
1712
1713         xfs_buf_lock(bp);
1714         if (iclog->ic_state & XLOG_STATE_IOERROR) {
1715                 xfs_buf_ioerror(bp, -EIO);
1716                 xfs_buf_stale(bp);
1717                 xfs_buf_ioend(bp);
1718                 /*
1719                  * It would seem logical to return EIO here, but we rely on
1720                  * the log state machine to propagate I/O errors instead of
1721                  * doing it here. Similarly, IO completion will unlock the
1722                  * buffer, so we don't do it here.
1723                  */
1724                 return 0;
1725         }
1726
1727         xfs_buf_submit(bp);
1728         return 0;
1729 }
1730
1731 /*
1732  * Flush out the in-core log (iclog) to the on-disk log in an asynchronous 
1733  * fashion.  Previously, we should have moved the current iclog
1734  * ptr in the log to point to the next available iclog.  This allows further
1735  * write to continue while this code syncs out an iclog ready to go.
1736  * Before an in-core log can be written out, the data section must be scanned
1737  * to save away the 1st word of each BBSIZE block into the header.  We replace
1738  * it with the current cycle count.  Each BBSIZE block is tagged with the
1739  * cycle count because there in an implicit assumption that drives will
1740  * guarantee that entire 512 byte blocks get written at once.  In other words,
1741  * we can't have part of a 512 byte block written and part not written.  By
1742  * tagging each block, we will know which blocks are valid when recovering
1743  * after an unclean shutdown.
1744  *
1745  * This routine is single threaded on the iclog.  No other thread can be in
1746  * this routine with the same iclog.  Changing contents of iclog can there-
1747  * fore be done without grabbing the state machine lock.  Updating the global
1748  * log will require grabbing the lock though.
1749  *
1750  * The entire log manager uses a logical block numbering scheme.  Only
1751  * log_sync (and then only bwrite()) know about the fact that the log may
1752  * not start with block zero on a given device.  The log block start offset
1753  * is added immediately before calling bwrite().
1754  */
1755
1756 STATIC int
1757 xlog_sync(
1758         struct xlog             *log,
1759         struct xlog_in_core     *iclog)
1760 {
1761         xfs_buf_t       *bp;
1762         int             i;
1763         uint            count;          /* byte count of bwrite */
1764         uint            count_init;     /* initial count before roundup */
1765         int             roundoff;       /* roundoff to BB or stripe */
1766         int             split = 0;      /* split write into two regions */
1767         int             error;
1768         int             v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1769         int             size;
1770
1771         XFS_STATS_INC(xs_log_writes);
1772         ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1773
1774         /* Add for LR header */
1775         count_init = log->l_iclog_hsize + iclog->ic_offset;
1776
1777         /* Round out the log write size */
1778         if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1779                 /* we have a v2 stripe unit to use */
1780                 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1781         } else {
1782                 count = BBTOB(BTOBB(count_init));
1783         }
1784         roundoff = count - count_init;
1785         ASSERT(roundoff >= 0);
1786         ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 && 
1787                 roundoff < log->l_mp->m_sb.sb_logsunit)
1788                 || 
1789                 (log->l_mp->m_sb.sb_logsunit <= 1 && 
1790                  roundoff < BBTOB(1)));
1791
1792         /* move grant heads by roundoff in sync */
1793         xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1794         xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1795
1796         /* put cycle number in every block */
1797         xlog_pack_data(log, iclog, roundoff); 
1798
1799         /* real byte length */
1800         size = iclog->ic_offset;
1801         if (v2)
1802                 size += roundoff;
1803         iclog->ic_header.h_len = cpu_to_be32(size);
1804
1805         bp = iclog->ic_bp;
1806         XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1807
1808         XFS_STATS_ADD(xs_log_blocks, BTOBB(count));
1809
1810         /* Do we need to split this write into 2 parts? */
1811         if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1812                 char            *dptr;
1813
1814                 split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1815                 count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1816                 iclog->ic_bwritecnt = 2;
1817
1818                 /*
1819                  * Bump the cycle numbers at the start of each block in the
1820                  * part of the iclog that ends up in the buffer that gets
1821                  * written to the start of the log.
1822                  *
1823                  * Watch out for the header magic number case, though.
1824                  */
1825                 dptr = (char *)&iclog->ic_header + count;
1826                 for (i = 0; i < split; i += BBSIZE) {
1827                         __uint32_t cycle = be32_to_cpu(*(__be32 *)dptr);
1828                         if (++cycle == XLOG_HEADER_MAGIC_NUM)
1829                                 cycle++;
1830                         *(__be32 *)dptr = cpu_to_be32(cycle);
1831
1832                         dptr += BBSIZE;
1833                 }
1834         } else {
1835                 iclog->ic_bwritecnt = 1;
1836         }
1837
1838         /* calculcate the checksum */
1839         iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1840                                             iclog->ic_datap, size);
1841
1842         bp->b_io_length = BTOBB(count);
1843         bp->b_fspriv = iclog;
1844         XFS_BUF_ZEROFLAGS(bp);
1845         XFS_BUF_ASYNC(bp);
1846         bp->b_flags |= XBF_SYNCIO;
1847
1848         if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) {
1849                 bp->b_flags |= XBF_FUA;
1850
1851                 /*
1852                  * Flush the data device before flushing the log to make
1853                  * sure all meta data written back from the AIL actually made
1854                  * it to disk before stamping the new log tail LSN into the
1855                  * log buffer.  For an external log we need to issue the
1856                  * flush explicitly, and unfortunately synchronously here;
1857                  * for an internal log we can simply use the block layer
1858                  * state machine for preflushes.
1859                  */
1860                 if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1861                         xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1862                 else
1863                         bp->b_flags |= XBF_FLUSH;
1864         }
1865
1866         ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1867         ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1868
1869         xlog_verify_iclog(log, iclog, count, true);
1870
1871         /* account for log which doesn't start at block #0 */
1872         XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1873         /*
1874          * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1875          * is shutting down.
1876          */
1877         XFS_BUF_WRITE(bp);
1878
1879         error = xlog_bdstrat(bp);
1880         if (error) {
1881                 xfs_buf_ioerror_alert(bp, "xlog_sync");
1882                 return error;
1883         }
1884         if (split) {
1885                 bp = iclog->ic_log->l_xbuf;
1886                 XFS_BUF_SET_ADDR(bp, 0);             /* logical 0 */
1887                 xfs_buf_associate_memory(bp,
1888                                 (char *)&iclog->ic_header + count, split);
1889                 bp->b_fspriv = iclog;
1890                 XFS_BUF_ZEROFLAGS(bp);
1891                 XFS_BUF_ASYNC(bp);
1892                 bp->b_flags |= XBF_SYNCIO;
1893                 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER)
1894                         bp->b_flags |= XBF_FUA;
1895
1896                 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1897                 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1898
1899                 /* account for internal log which doesn't start at block #0 */
1900                 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1901                 XFS_BUF_WRITE(bp);
1902                 error = xlog_bdstrat(bp);
1903                 if (error) {
1904                         xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
1905                         return error;
1906                 }
1907         }
1908         return 0;
1909 }       /* xlog_sync */
1910
1911 /*
1912  * Deallocate a log structure
1913  */
1914 STATIC void
1915 xlog_dealloc_log(
1916         struct xlog     *log)
1917 {
1918         xlog_in_core_t  *iclog, *next_iclog;
1919         int             i;
1920
1921         xlog_cil_destroy(log);
1922
1923         /*
1924          * Cycle all the iclogbuf locks to make sure all log IO completion
1925          * is done before we tear down these buffers.
1926          */
1927         iclog = log->l_iclog;
1928         for (i = 0; i < log->l_iclog_bufs; i++) {
1929                 xfs_buf_lock(iclog->ic_bp);
1930                 xfs_buf_unlock(iclog->ic_bp);
1931                 iclog = iclog->ic_next;
1932         }
1933
1934         /*
1935          * Always need to ensure that the extra buffer does not point to memory
1936          * owned by another log buffer before we free it. Also, cycle the lock
1937          * first to ensure we've completed IO on it.
1938          */
1939         xfs_buf_lock(log->l_xbuf);
1940         xfs_buf_unlock(log->l_xbuf);
1941         xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size));
1942         xfs_buf_free(log->l_xbuf);
1943
1944         iclog = log->l_iclog;
1945         for (i = 0; i < log->l_iclog_bufs; i++) {
1946                 xfs_buf_free(iclog->ic_bp);
1947                 next_iclog = iclog->ic_next;
1948                 kmem_free(iclog);
1949                 iclog = next_iclog;
1950         }
1951         spinlock_destroy(&log->l_icloglock);
1952
1953         log->l_mp->m_log = NULL;
1954         kmem_free(log);
1955 }       /* xlog_dealloc_log */
1956
1957 /*
1958  * Update counters atomically now that memcpy is done.
1959  */
1960 /* ARGSUSED */
1961 static inline void
1962 xlog_state_finish_copy(
1963         struct xlog             *log,
1964         struct xlog_in_core     *iclog,
1965         int                     record_cnt,
1966         int                     copy_bytes)
1967 {
1968         spin_lock(&log->l_icloglock);
1969
1970         be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1971         iclog->ic_offset += copy_bytes;
1972
1973         spin_unlock(&log->l_icloglock);
1974 }       /* xlog_state_finish_copy */
1975
1976
1977
1978
1979 /*
1980  * print out info relating to regions written which consume
1981  * the reservation
1982  */
1983 void
1984 xlog_print_tic_res(
1985         struct xfs_mount        *mp,
1986         struct xlog_ticket      *ticket)
1987 {
1988         uint i;
1989         uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
1990
1991         /* match with XLOG_REG_TYPE_* in xfs_log.h */
1992         static char *res_type_str[XLOG_REG_TYPE_MAX] = {
1993             "bformat",
1994             "bchunk",
1995             "efi_format",
1996             "efd_format",
1997             "iformat",
1998             "icore",
1999             "iext",
2000             "ibroot",
2001             "ilocal",
2002             "iattr_ext",
2003             "iattr_broot",
2004             "iattr_local",
2005             "qformat",
2006             "dquot",
2007             "quotaoff",
2008             "LR header",
2009             "unmount",
2010             "commit",
2011             "trans header"
2012         };
2013         static char *trans_type_str[XFS_TRANS_TYPE_MAX] = {
2014             "SETATTR_NOT_SIZE",
2015             "SETATTR_SIZE",
2016             "INACTIVE",
2017             "CREATE",
2018             "CREATE_TRUNC",
2019             "TRUNCATE_FILE",
2020             "REMOVE",
2021             "LINK",
2022             "RENAME",
2023             "MKDIR",
2024             "RMDIR",
2025             "SYMLINK",
2026             "SET_DMATTRS",
2027             "GROWFS",
2028             "STRAT_WRITE",
2029             "DIOSTRAT",
2030             "WRITE_SYNC",
2031             "WRITEID",
2032             "ADDAFORK",
2033             "ATTRINVAL",
2034             "ATRUNCATE",
2035             "ATTR_SET",
2036             "ATTR_RM",
2037             "ATTR_FLAG",
2038             "CLEAR_AGI_BUCKET",
2039             "QM_SBCHANGE",
2040             "DUMMY1",
2041             "DUMMY2",
2042             "QM_QUOTAOFF",
2043             "QM_DQALLOC",
2044             "QM_SETQLIM",
2045             "QM_DQCLUSTER",
2046             "QM_QINOCREATE",
2047             "QM_QUOTAOFF_END",
2048             "SB_UNIT",
2049             "FSYNC_TS",
2050             "GROWFSRT_ALLOC",
2051             "GROWFSRT_ZERO",
2052             "GROWFSRT_FREE",
2053             "SWAPEXT"
2054         };
2055
2056         xfs_warn(mp, "xlog_write: reservation summary:");
2057         xfs_warn(mp, "  trans type  = %s (%u)",
2058                  ((ticket->t_trans_type <= 0 ||
2059                    ticket->t_trans_type > XFS_TRANS_TYPE_MAX) ?
2060                   "bad-trans-type" : trans_type_str[ticket->t_trans_type-1]),
2061                  ticket->t_trans_type);
2062         xfs_warn(mp, "  unit res    = %d bytes",
2063                  ticket->t_unit_res);
2064         xfs_warn(mp, "  current res = %d bytes",
2065                  ticket->t_curr_res);
2066         xfs_warn(mp, "  total reg   = %u bytes (o/flow = %u bytes)",
2067                  ticket->t_res_arr_sum, ticket->t_res_o_flow);
2068         xfs_warn(mp, "  ophdrs      = %u (ophdr space = %u bytes)",
2069                  ticket->t_res_num_ophdrs, ophdr_spc);
2070         xfs_warn(mp, "  ophdr + reg = %u bytes",
2071                  ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2072         xfs_warn(mp, "  num regions = %u",
2073                  ticket->t_res_num);
2074
2075         for (i = 0; i < ticket->t_res_num; i++) {
2076                 uint r_type = ticket->t_res_arr[i].r_type;
2077                 xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2078                             ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2079                             "bad-rtype" : res_type_str[r_type-1]),
2080                             ticket->t_res_arr[i].r_len);
2081         }
2082
2083         xfs_alert_tag(mp, XFS_PTAG_LOGRES,
2084                 "xlog_write: reservation ran out. Need to up reservation");
2085         xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
2086 }
2087
2088 /*
2089  * Calculate the potential space needed by the log vector.  Each region gets
2090  * its own xlog_op_header_t and may need to be double word aligned.
2091  */
2092 static int
2093 xlog_write_calc_vec_length(
2094         struct xlog_ticket      *ticket,
2095         struct xfs_log_vec      *log_vector)
2096 {
2097         struct xfs_log_vec      *lv;
2098         int                     headers = 0;
2099         int                     len = 0;
2100         int                     i;
2101
2102         /* acct for start rec of xact */
2103         if (ticket->t_flags & XLOG_TIC_INITED)
2104                 headers++;
2105
2106         for (lv = log_vector; lv; lv = lv->lv_next) {
2107                 /* we don't write ordered log vectors */
2108                 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2109                         continue;
2110
2111                 headers += lv->lv_niovecs;
2112
2113                 for (i = 0; i < lv->lv_niovecs; i++) {
2114                         struct xfs_log_iovec    *vecp = &lv->lv_iovecp[i];
2115
2116                         len += vecp->i_len;
2117                         xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2118                 }
2119         }
2120
2121         ticket->t_res_num_ophdrs += headers;
2122         len += headers * sizeof(struct xlog_op_header);
2123
2124         return len;
2125 }
2126
2127 /*
2128  * If first write for transaction, insert start record  We can't be trying to
2129  * commit if we are inited.  We can't have any "partial_copy" if we are inited.
2130  */
2131 static int
2132 xlog_write_start_rec(
2133         struct xlog_op_header   *ophdr,
2134         struct xlog_ticket      *ticket)
2135 {
2136         if (!(ticket->t_flags & XLOG_TIC_INITED))
2137                 return 0;
2138
2139         ophdr->oh_tid   = cpu_to_be32(ticket->t_tid);
2140         ophdr->oh_clientid = ticket->t_clientid;
2141         ophdr->oh_len = 0;
2142         ophdr->oh_flags = XLOG_START_TRANS;
2143         ophdr->oh_res2 = 0;
2144
2145         ticket->t_flags &= ~XLOG_TIC_INITED;
2146
2147         return sizeof(struct xlog_op_header);
2148 }
2149
2150 static xlog_op_header_t *
2151 xlog_write_setup_ophdr(
2152         struct xlog             *log,
2153         struct xlog_op_header   *ophdr,
2154         struct xlog_ticket      *ticket,
2155         uint                    flags)
2156 {
2157         ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2158         ophdr->oh_clientid = ticket->t_clientid;
2159         ophdr->oh_res2 = 0;
2160
2161         /* are we copying a commit or unmount record? */
2162         ophdr->oh_flags = flags;
2163
2164         /*
2165          * We've seen logs corrupted with bad transaction client ids.  This
2166          * makes sure that XFS doesn't generate them on.  Turn this into an EIO
2167          * and shut down the filesystem.
2168          */
2169         switch (ophdr->oh_clientid)  {
2170         case XFS_TRANSACTION:
2171         case XFS_VOLUME:
2172         case XFS_LOG:
2173                 break;
2174         default:
2175                 xfs_warn(log->l_mp,
2176                         "Bad XFS transaction clientid 0x%x in ticket 0x%p",
2177                         ophdr->oh_clientid, ticket);
2178                 return NULL;
2179         }
2180
2181         return ophdr;
2182 }
2183
2184 /*
2185  * Set up the parameters of the region copy into the log. This has
2186  * to handle region write split across multiple log buffers - this
2187  * state is kept external to this function so that this code can
2188  * be written in an obvious, self documenting manner.
2189  */
2190 static int
2191 xlog_write_setup_copy(
2192         struct xlog_ticket      *ticket,
2193         struct xlog_op_header   *ophdr,
2194         int                     space_available,
2195         int                     space_required,
2196         int                     *copy_off,
2197         int                     *copy_len,
2198         int                     *last_was_partial_copy,
2199         int                     *bytes_consumed)
2200 {
2201         int                     still_to_copy;
2202
2203         still_to_copy = space_required - *bytes_consumed;
2204         *copy_off = *bytes_consumed;
2205
2206         if (still_to_copy <= space_available) {
2207                 /* write of region completes here */
2208                 *copy_len = still_to_copy;
2209                 ophdr->oh_len = cpu_to_be32(*copy_len);
2210                 if (*last_was_partial_copy)
2211                         ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2212                 *last_was_partial_copy = 0;
2213                 *bytes_consumed = 0;
2214                 return 0;
2215         }
2216
2217         /* partial write of region, needs extra log op header reservation */
2218         *copy_len = space_available;
2219         ophdr->oh_len = cpu_to_be32(*copy_len);
2220         ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2221         if (*last_was_partial_copy)
2222                 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2223         *bytes_consumed += *copy_len;
2224         (*last_was_partial_copy)++;
2225
2226         /* account for new log op header */
2227         ticket->t_curr_res -= sizeof(struct xlog_op_header);
2228         ticket->t_res_num_ophdrs++;
2229
2230         return sizeof(struct xlog_op_header);
2231 }
2232
2233 static int
2234 xlog_write_copy_finish(
2235         struct xlog             *log,
2236         struct xlog_in_core     *iclog,
2237         uint                    flags,
2238         int                     *record_cnt,
2239         int                     *data_cnt,
2240         int                     *partial_copy,
2241         int                     *partial_copy_len,
2242         int                     log_offset,
2243         struct xlog_in_core     **commit_iclog)
2244 {
2245         if (*partial_copy) {
2246                 /*
2247                  * This iclog has already been marked WANT_SYNC by
2248                  * xlog_state_get_iclog_space.
2249                  */
2250                 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2251                 *record_cnt = 0;
2252                 *data_cnt = 0;
2253                 return xlog_state_release_iclog(log, iclog);
2254         }
2255
2256         *partial_copy = 0;
2257         *partial_copy_len = 0;
2258
2259         if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2260                 /* no more space in this iclog - push it. */
2261                 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2262                 *record_cnt = 0;
2263                 *data_cnt = 0;
2264
2265                 spin_lock(&log->l_icloglock);
2266                 xlog_state_want_sync(log, iclog);
2267                 spin_unlock(&log->l_icloglock);
2268
2269                 if (!commit_iclog)
2270                         return xlog_state_release_iclog(log, iclog);
2271                 ASSERT(flags & XLOG_COMMIT_TRANS);
2272                 *commit_iclog = iclog;
2273         }
2274
2275         return 0;
2276 }
2277
2278 /*
2279  * Write some region out to in-core log
2280  *
2281  * This will be called when writing externally provided regions or when
2282  * writing out a commit record for a given transaction.
2283  *
2284  * General algorithm:
2285  *      1. Find total length of this write.  This may include adding to the
2286  *              lengths passed in.
2287  *      2. Check whether we violate the tickets reservation.
2288  *      3. While writing to this iclog
2289  *          A. Reserve as much space in this iclog as can get
2290  *          B. If this is first write, save away start lsn
2291  *          C. While writing this region:
2292  *              1. If first write of transaction, write start record
2293  *              2. Write log operation header (header per region)
2294  *              3. Find out if we can fit entire region into this iclog
2295  *              4. Potentially, verify destination memcpy ptr
2296  *              5. Memcpy (partial) region
2297  *              6. If partial copy, release iclog; otherwise, continue
2298  *                      copying more regions into current iclog
2299  *      4. Mark want sync bit (in simulation mode)
2300  *      5. Release iclog for potential flush to on-disk log.
2301  *
2302  * ERRORS:
2303  * 1.   Panic if reservation is overrun.  This should never happen since
2304  *      reservation amounts are generated internal to the filesystem.
2305  * NOTES:
2306  * 1. Tickets are single threaded data structures.
2307  * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2308  *      syncing routine.  When a single log_write region needs to span
2309  *      multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2310  *      on all log operation writes which don't contain the end of the
2311  *      region.  The XLOG_END_TRANS bit is used for the in-core log
2312  *      operation which contains the end of the continued log_write region.
2313  * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2314  *      we don't really know exactly how much space will be used.  As a result,
2315  *      we don't update ic_offset until the end when we know exactly how many
2316  *      bytes have been written out.
2317  */
2318 int
2319 xlog_write(
2320         struct xlog             *log,
2321         struct xfs_log_vec      *log_vector,
2322         struct xlog_ticket      *ticket,
2323         xfs_lsn_t               *start_lsn,
2324         struct xlog_in_core     **commit_iclog,
2325         uint                    flags)
2326 {
2327         struct xlog_in_core     *iclog = NULL;
2328         struct xfs_log_iovec    *vecp;
2329         struct xfs_log_vec      *lv;
2330         int                     len;
2331         int                     index;
2332         int                     partial_copy = 0;
2333         int                     partial_copy_len = 0;
2334         int                     contwr = 0;
2335         int                     record_cnt = 0;
2336         int                     data_cnt = 0;
2337         int                     error;
2338
2339         *start_lsn = 0;
2340
2341         len = xlog_write_calc_vec_length(ticket, log_vector);
2342
2343         /*
2344          * Region headers and bytes are already accounted for.
2345          * We only need to take into account start records and
2346          * split regions in this function.
2347          */
2348         if (ticket->t_flags & XLOG_TIC_INITED)
2349                 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2350
2351         /*
2352          * Commit record headers need to be accounted for. These
2353          * come in as separate writes so are easy to detect.
2354          */
2355         if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2356                 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2357
2358         if (ticket->t_curr_res < 0)
2359                 xlog_print_tic_res(log->l_mp, ticket);
2360
2361         index = 0;
2362         lv = log_vector;
2363         vecp = lv->lv_iovecp;
2364         while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2365                 void            *ptr;
2366                 int             log_offset;
2367
2368                 error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2369                                                    &contwr, &log_offset);
2370                 if (error)
2371                         return error;
2372
2373                 ASSERT(log_offset <= iclog->ic_size - 1);
2374                 ptr = iclog->ic_datap + log_offset;
2375
2376                 /* start_lsn is the first lsn written to. That's all we need. */
2377                 if (!*start_lsn)
2378                         *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2379
2380                 /*
2381                  * This loop writes out as many regions as can fit in the amount
2382                  * of space which was allocated by xlog_state_get_iclog_space().
2383                  */
2384                 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2385                         struct xfs_log_iovec    *reg;
2386                         struct xlog_op_header   *ophdr;
2387                         int                     start_rec_copy;
2388                         int                     copy_len;
2389                         int                     copy_off;
2390                         bool                    ordered = false;
2391
2392                         /* ordered log vectors have no regions to write */
2393                         if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2394                                 ASSERT(lv->lv_niovecs == 0);
2395                                 ordered = true;
2396                                 goto next_lv;
2397                         }
2398
2399                         reg = &vecp[index];
2400                         ASSERT(reg->i_len % sizeof(__int32_t) == 0);
2401                         ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0);
2402
2403                         start_rec_copy = xlog_write_start_rec(ptr, ticket);
2404                         if (start_rec_copy) {
2405                                 record_cnt++;
2406                                 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2407                                                    start_rec_copy);
2408                         }
2409
2410                         ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2411                         if (!ophdr)
2412                                 return -EIO;
2413
2414                         xlog_write_adv_cnt(&ptr, &len, &log_offset,
2415                                            sizeof(struct xlog_op_header));
2416
2417                         len += xlog_write_setup_copy(ticket, ophdr,
2418                                                      iclog->ic_size-log_offset,
2419                                                      reg->i_len,
2420                                                      &copy_off, &copy_len,
2421                                                      &partial_copy,
2422                                                      &partial_copy_len);
2423                         xlog_verify_dest_ptr(log, ptr);
2424
2425                         /* copy region */
2426                         ASSERT(copy_len >= 0);
2427                         memcpy(ptr, reg->i_addr + copy_off, copy_len);
2428                         xlog_write_adv_cnt(&ptr, &len, &log_offset, copy_len);
2429
2430                         copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2431                         record_cnt++;
2432                         data_cnt += contwr ? copy_len : 0;
2433
2434                         error = xlog_write_copy_finish(log, iclog, flags,
2435                                                        &record_cnt, &data_cnt,
2436                                                        &partial_copy,
2437                                                        &partial_copy_len,
2438                                                        log_offset,
2439                                                        commit_iclog);
2440                         if (error)
2441                                 return error;
2442
2443                         /*
2444                          * if we had a partial copy, we need to get more iclog
2445                          * space but we don't want to increment the region
2446                          * index because there is still more is this region to
2447                          * write.
2448                          *
2449                          * If we completed writing this region, and we flushed
2450                          * the iclog (indicated by resetting of the record
2451                          * count), then we also need to get more log space. If
2452                          * this was the last record, though, we are done and
2453                          * can just return.
2454                          */
2455                         if (partial_copy)
2456                                 break;
2457
2458                         if (++index == lv->lv_niovecs) {
2459 next_lv:
2460                                 lv = lv->lv_next;
2461                                 index = 0;
2462                                 if (lv)
2463                                         vecp = lv->lv_iovecp;
2464                         }
2465                         if (record_cnt == 0 && ordered == false) {
2466                                 if (!lv)
2467                                         return 0;
2468                                 break;
2469                         }
2470                 }
2471         }
2472
2473         ASSERT(len == 0);
2474
2475         xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2476         if (!commit_iclog)
2477                 return xlog_state_release_iclog(log, iclog);
2478
2479         ASSERT(flags & XLOG_COMMIT_TRANS);
2480         *commit_iclog = iclog;
2481         return 0;
2482 }
2483
2484
2485 /*****************************************************************************
2486  *
2487  *              State Machine functions
2488  *
2489  *****************************************************************************
2490  */
2491
2492 /* Clean iclogs starting from the head.  This ordering must be
2493  * maintained, so an iclog doesn't become ACTIVE beyond one that
2494  * is SYNCING.  This is also required to maintain the notion that we use
2495  * a ordered wait queue to hold off would be writers to the log when every
2496  * iclog is trying to sync to disk.
2497  *
2498  * State Change: DIRTY -> ACTIVE
2499  */
2500 STATIC void
2501 xlog_state_clean_log(
2502         struct xlog *log)
2503 {
2504         xlog_in_core_t  *iclog;
2505         int changed = 0;
2506
2507         iclog = log->l_iclog;
2508         do {
2509                 if (iclog->ic_state == XLOG_STATE_DIRTY) {
2510                         iclog->ic_state = XLOG_STATE_ACTIVE;
2511                         iclog->ic_offset       = 0;
2512                         ASSERT(iclog->ic_callback == NULL);
2513                         /*
2514                          * If the number of ops in this iclog indicate it just
2515                          * contains the dummy transaction, we can
2516                          * change state into IDLE (the second time around).
2517                          * Otherwise we should change the state into
2518                          * NEED a dummy.
2519                          * We don't need to cover the dummy.
2520                          */
2521                         if (!changed &&
2522                            (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2523                                         XLOG_COVER_OPS)) {
2524                                 changed = 1;
2525                         } else {
2526                                 /*
2527                                  * We have two dirty iclogs so start over
2528                                  * This could also be num of ops indicates
2529                                  * this is not the dummy going out.
2530                                  */
2531                                 changed = 2;
2532                         }
2533                         iclog->ic_header.h_num_logops = 0;
2534                         memset(iclog->ic_header.h_cycle_data, 0,
2535                               sizeof(iclog->ic_header.h_cycle_data));
2536                         iclog->ic_header.h_lsn = 0;
2537                 } else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2538                         /* do nothing */;
2539                 else
2540                         break;  /* stop cleaning */
2541                 iclog = iclog->ic_next;
2542         } while (iclog != log->l_iclog);
2543
2544         /* log is locked when we are called */
2545         /*
2546          * Change state for the dummy log recording.
2547          * We usually go to NEED. But we go to NEED2 if the changed indicates
2548          * we are done writing the dummy record.
2549          * If we are done with the second dummy recored (DONE2), then
2550          * we go to IDLE.
2551          */
2552         if (changed) {
2553                 switch (log->l_covered_state) {
2554                 case XLOG_STATE_COVER_IDLE:
2555                 case XLOG_STATE_COVER_NEED:
2556                 case XLOG_STATE_COVER_NEED2:
2557                         log->l_covered_state = XLOG_STATE_COVER_NEED;
2558                         break;
2559
2560                 case XLOG_STATE_COVER_DONE:
2561                         if (changed == 1)
2562                                 log->l_covered_state = XLOG_STATE_COVER_NEED2;
2563                         else
2564                                 log->l_covered_state = XLOG_STATE_COVER_NEED;
2565                         break;
2566
2567                 case XLOG_STATE_COVER_DONE2:
2568                         if (changed == 1)
2569                                 log->l_covered_state = XLOG_STATE_COVER_IDLE;
2570                         else
2571                                 log->l_covered_state = XLOG_STATE_COVER_NEED;
2572                         break;
2573
2574                 default:
2575                         ASSERT(0);
2576                 }
2577         }
2578 }       /* xlog_state_clean_log */
2579
2580 STATIC xfs_lsn_t
2581 xlog_get_lowest_lsn(
2582         struct xlog     *log)
2583 {
2584         xlog_in_core_t  *lsn_log;
2585         xfs_lsn_t       lowest_lsn, lsn;
2586
2587         lsn_log = log->l_iclog;
2588         lowest_lsn = 0;
2589         do {
2590             if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2591                 lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2592                 if ((lsn && !lowest_lsn) ||
2593                     (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2594                         lowest_lsn = lsn;
2595                 }
2596             }
2597             lsn_log = lsn_log->ic_next;
2598         } while (lsn_log != log->l_iclog);
2599         return lowest_lsn;
2600 }
2601
2602
2603 STATIC void
2604 xlog_state_do_callback(
2605         struct xlog             *log,
2606         int                     aborted,
2607         struct xlog_in_core     *ciclog)
2608 {
2609         xlog_in_core_t     *iclog;
2610         xlog_in_core_t     *first_iclog;        /* used to know when we've
2611                                                  * processed all iclogs once */
2612         xfs_log_callback_t *cb, *cb_next;
2613         int                flushcnt = 0;
2614         xfs_lsn_t          lowest_lsn;
2615         int                ioerrors;    /* counter: iclogs with errors */
2616         int                loopdidcallbacks; /* flag: inner loop did callbacks*/
2617         int                funcdidcallbacks; /* flag: function did callbacks */
2618         int                repeats;     /* for issuing console warnings if
2619                                          * looping too many times */
2620         int                wake = 0;
2621
2622         spin_lock(&log->l_icloglock);
2623         first_iclog = iclog = log->l_iclog;
2624         ioerrors = 0;
2625         funcdidcallbacks = 0;
2626         repeats = 0;
2627
2628         do {
2629                 /*
2630                  * Scan all iclogs starting with the one pointed to by the
2631                  * log.  Reset this starting point each time the log is
2632                  * unlocked (during callbacks).
2633                  *
2634                  * Keep looping through iclogs until one full pass is made
2635                  * without running any callbacks.
2636                  */
2637                 first_iclog = log->l_iclog;
2638                 iclog = log->l_iclog;
2639                 loopdidcallbacks = 0;
2640                 repeats++;
2641
2642                 do {
2643
2644                         /* skip all iclogs in the ACTIVE & DIRTY states */
2645                         if (iclog->ic_state &
2646                             (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2647                                 iclog = iclog->ic_next;
2648                                 continue;
2649                         }
2650
2651                         /*
2652                          * Between marking a filesystem SHUTDOWN and stopping
2653                          * the log, we do flush all iclogs to disk (if there
2654                          * wasn't a log I/O error). So, we do want things to
2655                          * go smoothly in case of just a SHUTDOWN  w/o a
2656                          * LOG_IO_ERROR.
2657                          */
2658                         if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2659                                 /*
2660                                  * Can only perform callbacks in order.  Since
2661                                  * this iclog is not in the DONE_SYNC/
2662                                  * DO_CALLBACK state, we skip the rest and
2663                                  * just try to clean up.  If we set our iclog
2664                                  * to DO_CALLBACK, we will not process it when
2665                                  * we retry since a previous iclog is in the
2666                                  * CALLBACK and the state cannot change since
2667                                  * we are holding the l_icloglock.
2668                                  */
2669                                 if (!(iclog->ic_state &
2670                                         (XLOG_STATE_DONE_SYNC |
2671                                                  XLOG_STATE_DO_CALLBACK))) {
2672                                         if (ciclog && (ciclog->ic_state ==
2673                                                         XLOG_STATE_DONE_SYNC)) {
2674                                                 ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2675                                         }
2676                                         break;
2677                                 }
2678                                 /*
2679                                  * We now have an iclog that is in either the
2680                                  * DO_CALLBACK or DONE_SYNC states. The other
2681                                  * states (WANT_SYNC, SYNCING, or CALLBACK were
2682                                  * caught by the above if and are going to
2683                                  * clean (i.e. we aren't doing their callbacks)
2684                                  * see the above if.
2685                                  */
2686
2687                                 /*
2688                                  * We will do one more check here to see if we
2689                                  * have chased our tail around.
2690                                  */
2691
2692                                 lowest_lsn = xlog_get_lowest_lsn(log);
2693                                 if (lowest_lsn &&
2694                                     XFS_LSN_CMP(lowest_lsn,
2695                                                 be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2696                                         iclog = iclog->ic_next;
2697                                         continue; /* Leave this iclog for
2698                                                    * another thread */
2699                                 }
2700
2701                                 iclog->ic_state = XLOG_STATE_CALLBACK;
2702
2703
2704                                 /*
2705                                  * Completion of a iclog IO does not imply that
2706                                  * a transaction has completed, as transactions
2707                                  * can be large enough to span many iclogs. We
2708                                  * cannot change the tail of the log half way
2709                                  * through a transaction as this may be the only
2710                                  * transaction in the log and moving th etail to
2711                                  * point to the middle of it will prevent
2712                                  * recovery from finding the start of the
2713                                  * transaction. Hence we should only update the
2714                                  * last_sync_lsn if this iclog contains
2715                                  * transaction completion callbacks on it.
2716                                  *
2717                                  * We have to do this before we drop the
2718                                  * icloglock to ensure we are the only one that
2719                                  * can update it.
2720                                  */
2721                                 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2722                                         be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2723                                 if (iclog->ic_callback)
2724                                         atomic64_set(&log->l_last_sync_lsn,
2725                                                 be64_to_cpu(iclog->ic_header.h_lsn));
2726
2727                         } else
2728                                 ioerrors++;
2729
2730                         spin_unlock(&log->l_icloglock);
2731
2732                         /*
2733                          * Keep processing entries in the callback list until
2734                          * we come around and it is empty.  We need to
2735                          * atomically see that the list is empty and change the
2736                          * state to DIRTY so that we don't miss any more
2737                          * callbacks being added.
2738                          */
2739                         spin_lock(&iclog->ic_callback_lock);
2740                         cb = iclog->ic_callback;
2741                         while (cb) {
2742                                 iclog->ic_callback_tail = &(iclog->ic_callback);
2743                                 iclog->ic_callback = NULL;
2744                                 spin_unlock(&iclog->ic_callback_lock);
2745
2746                                 /* perform callbacks in the order given */
2747                                 for (; cb; cb = cb_next) {
2748                                         cb_next = cb->cb_next;
2749                                         cb->cb_func(cb->cb_arg, aborted);
2750                                 }
2751                                 spin_lock(&iclog->ic_callback_lock);
2752                                 cb = iclog->ic_callback;
2753                         }
2754
2755                         loopdidcallbacks++;
2756                         funcdidcallbacks++;
2757
2758                         spin_lock(&log->l_icloglock);
2759                         ASSERT(iclog->ic_callback == NULL);
2760                         spin_unlock(&iclog->ic_callback_lock);
2761                         if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2762                                 iclog->ic_state = XLOG_STATE_DIRTY;
2763
2764                         /*
2765                          * Transition from DIRTY to ACTIVE if applicable.
2766                          * NOP if STATE_IOERROR.
2767                          */
2768                         xlog_state_clean_log(log);
2769
2770                         /* wake up threads waiting in xfs_log_force() */
2771                         wake_up_all(&iclog->ic_force_wait);
2772
2773                         iclog = iclog->ic_next;
2774                 } while (first_iclog != iclog);
2775
2776                 if (repeats > 5000) {
2777                         flushcnt += repeats;
2778                         repeats = 0;
2779                         xfs_warn(log->l_mp,
2780                                 "%s: possible infinite loop (%d iterations)",
2781                                 __func__, flushcnt);
2782                 }
2783         } while (!ioerrors && loopdidcallbacks);
2784
2785         /*
2786          * make one last gasp attempt to see if iclogs are being left in
2787          * limbo..
2788          */
2789 #ifdef DEBUG
2790         if (funcdidcallbacks) {
2791                 first_iclog = iclog = log->l_iclog;
2792                 do {
2793                         ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2794                         /*
2795                          * Terminate the loop if iclogs are found in states
2796                          * which will cause other threads to clean up iclogs.
2797                          *
2798                          * SYNCING - i/o completion will go through logs
2799                          * DONE_SYNC - interrupt thread should be waiting for
2800                          *              l_icloglock
2801                          * IOERROR - give up hope all ye who enter here
2802                          */
2803                         if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2804                             iclog->ic_state == XLOG_STATE_SYNCING ||
2805                             iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2806                             iclog->ic_state == XLOG_STATE_IOERROR )
2807                                 break;
2808                         iclog = iclog->ic_next;
2809                 } while (first_iclog != iclog);
2810         }
2811 #endif
2812
2813         if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2814                 wake = 1;
2815         spin_unlock(&log->l_icloglock);
2816
2817         if (wake)
2818                 wake_up_all(&log->l_flush_wait);
2819 }
2820
2821
2822 /*
2823  * Finish transitioning this iclog to the dirty state.
2824  *
2825  * Make sure that we completely execute this routine only when this is
2826  * the last call to the iclog.  There is a good chance that iclog flushes,
2827  * when we reach the end of the physical log, get turned into 2 separate
2828  * calls to bwrite.  Hence, one iclog flush could generate two calls to this
2829  * routine.  By using the reference count bwritecnt, we guarantee that only
2830  * the second completion goes through.
2831  *
2832  * Callbacks could take time, so they are done outside the scope of the
2833  * global state machine log lock.
2834  */
2835 STATIC void
2836 xlog_state_done_syncing(
2837         xlog_in_core_t  *iclog,
2838         int             aborted)
2839 {
2840         struct xlog        *log = iclog->ic_log;
2841
2842         spin_lock(&log->l_icloglock);
2843
2844         ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2845                iclog->ic_state == XLOG_STATE_IOERROR);
2846         ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2847         ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2848
2849
2850         /*
2851          * If we got an error, either on the first buffer, or in the case of
2852          * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2853          * and none should ever be attempted to be written to disk
2854          * again.
2855          */
2856         if (iclog->ic_state != XLOG_STATE_IOERROR) {
2857                 if (--iclog->ic_bwritecnt == 1) {
2858                         spin_unlock(&log->l_icloglock);
2859                         return;
2860                 }
2861                 iclog->ic_state = XLOG_STATE_DONE_SYNC;
2862         }
2863
2864         /*
2865          * Someone could be sleeping prior to writing out the next
2866          * iclog buffer, we wake them all, one will get to do the
2867          * I/O, the others get to wait for the result.
2868          */
2869         wake_up_all(&iclog->ic_write_wait);
2870         spin_unlock(&log->l_icloglock);
2871         xlog_state_do_callback(log, aborted, iclog);    /* also cleans log */
2872 }       /* xlog_state_done_syncing */
2873
2874
2875 /*
2876  * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2877  * sleep.  We wait on the flush queue on the head iclog as that should be
2878  * the first iclog to complete flushing. Hence if all iclogs are syncing,
2879  * we will wait here and all new writes will sleep until a sync completes.
2880  *
2881  * The in-core logs are used in a circular fashion. They are not used
2882  * out-of-order even when an iclog past the head is free.
2883  *
2884  * return:
2885  *      * log_offset where xlog_write() can start writing into the in-core
2886  *              log's data space.
2887  *      * in-core log pointer to which xlog_write() should write.
2888  *      * boolean indicating this is a continued write to an in-core log.
2889  *              If this is the last write, then the in-core log's offset field
2890  *              needs to be incremented, depending on the amount of data which
2891  *              is copied.
2892  */
2893 STATIC int
2894 xlog_state_get_iclog_space(
2895         struct xlog             *log,
2896         int                     len,
2897         struct xlog_in_core     **iclogp,
2898         struct xlog_ticket      *ticket,
2899         int                     *continued_write,
2900         int                     *logoffsetp)
2901 {
2902         int               log_offset;
2903         xlog_rec_header_t *head;
2904         xlog_in_core_t    *iclog;
2905         int               error;
2906
2907 restart:
2908         spin_lock(&log->l_icloglock);
2909         if (XLOG_FORCED_SHUTDOWN(log)) {
2910                 spin_unlock(&log->l_icloglock);
2911                 return -EIO;
2912         }
2913
2914         iclog = log->l_iclog;
2915         if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2916                 XFS_STATS_INC(xs_log_noiclogs);
2917
2918                 /* Wait for log writes to have flushed */
2919                 xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2920                 goto restart;
2921         }
2922
2923         head = &iclog->ic_header;
2924
2925         atomic_inc(&iclog->ic_refcnt);  /* prevents sync */
2926         log_offset = iclog->ic_offset;
2927
2928         /* On the 1st write to an iclog, figure out lsn.  This works
2929          * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2930          * committing to.  If the offset is set, that's how many blocks
2931          * must be written.
2932          */
2933         if (log_offset == 0) {
2934                 ticket->t_curr_res -= log->l_iclog_hsize;
2935                 xlog_tic_add_region(ticket,
2936                                     log->l_iclog_hsize,
2937                                     XLOG_REG_TYPE_LRHEADER);
2938                 head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2939                 head->h_lsn = cpu_to_be64(
2940                         xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2941                 ASSERT(log->l_curr_block >= 0);
2942         }
2943
2944         /* If there is enough room to write everything, then do it.  Otherwise,
2945          * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2946          * bit is on, so this will get flushed out.  Don't update ic_offset
2947          * until you know exactly how many bytes get copied.  Therefore, wait
2948          * until later to update ic_offset.
2949          *
2950          * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2951          * can fit into remaining data section.
2952          */
2953         if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2954                 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2955
2956                 /*
2957                  * If I'm the only one writing to this iclog, sync it to disk.
2958                  * We need to do an atomic compare and decrement here to avoid
2959                  * racing with concurrent atomic_dec_and_lock() calls in
2960                  * xlog_state_release_iclog() when there is more than one
2961                  * reference to the iclog.
2962                  */
2963                 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
2964                         /* we are the only one */
2965                         spin_unlock(&log->l_icloglock);
2966                         error = xlog_state_release_iclog(log, iclog);
2967                         if (error)
2968                                 return error;
2969                 } else {
2970                         spin_unlock(&log->l_icloglock);
2971                 }
2972                 goto restart;
2973         }
2974
2975         /* Do we have enough room to write the full amount in the remainder
2976          * of this iclog?  Or must we continue a write on the next iclog and
2977          * mark this iclog as completely taken?  In the case where we switch
2978          * iclogs (to mark it taken), this particular iclog will release/sync
2979          * to disk in xlog_write().
2980          */
2981         if (len <= iclog->ic_size - iclog->ic_offset) {
2982                 *continued_write = 0;
2983                 iclog->ic_offset += len;
2984         } else {
2985                 *continued_write = 1;
2986                 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2987         }
2988         *iclogp = iclog;
2989
2990         ASSERT(iclog->ic_offset <= iclog->ic_size);
2991         spin_unlock(&log->l_icloglock);
2992
2993         *logoffsetp = log_offset;
2994         return 0;
2995 }       /* xlog_state_get_iclog_space */
2996
2997 /* The first cnt-1 times through here we don't need to
2998  * move the grant write head because the permanent
2999  * reservation has reserved cnt times the unit amount.
3000  * Release part of current permanent unit reservation and
3001  * reset current reservation to be one units worth.  Also
3002  * move grant reservation head forward.
3003  */
3004 STATIC void
3005 xlog_regrant_reserve_log_space(
3006         struct xlog             *log,
3007         struct xlog_ticket      *ticket)
3008 {
3009         trace_xfs_log_regrant_reserve_enter(log, ticket);
3010
3011         if (ticket->t_cnt > 0)
3012                 ticket->t_cnt--;
3013
3014         xlog_grant_sub_space(log, &log->l_reserve_head.grant,
3015                                         ticket->t_curr_res);
3016         xlog_grant_sub_space(log, &log->l_write_head.grant,
3017                                         ticket->t_curr_res);
3018         ticket->t_curr_res = ticket->t_unit_res;
3019         xlog_tic_reset_res(ticket);
3020
3021         trace_xfs_log_regrant_reserve_sub(log, ticket);
3022
3023         /* just return if we still have some of the pre-reserved space */
3024         if (ticket->t_cnt > 0)
3025                 return;
3026
3027         xlog_grant_add_space(log, &log->l_reserve_head.grant,
3028                                         ticket->t_unit_res);
3029
3030         trace_xfs_log_regrant_reserve_exit(log, ticket);
3031
3032         ticket->t_curr_res = ticket->t_unit_res;
3033         xlog_tic_reset_res(ticket);
3034 }       /* xlog_regrant_reserve_log_space */
3035
3036
3037 /*
3038  * Give back the space left from a reservation.
3039  *
3040  * All the information we need to make a correct determination of space left
3041  * is present.  For non-permanent reservations, things are quite easy.  The
3042  * count should have been decremented to zero.  We only need to deal with the
3043  * space remaining in the current reservation part of the ticket.  If the
3044  * ticket contains a permanent reservation, there may be left over space which
3045  * needs to be released.  A count of N means that N-1 refills of the current
3046  * reservation can be done before we need to ask for more space.  The first
3047  * one goes to fill up the first current reservation.  Once we run out of
3048  * space, the count will stay at zero and the only space remaining will be
3049  * in the current reservation field.
3050  */
3051 STATIC void
3052 xlog_ungrant_log_space(
3053         struct xlog             *log,
3054         struct xlog_ticket      *ticket)
3055 {
3056         int     bytes;
3057
3058         if (ticket->t_cnt > 0)
3059                 ticket->t_cnt--;
3060
3061         trace_xfs_log_ungrant_enter(log, ticket);
3062         trace_xfs_log_ungrant_sub(log, ticket);
3063
3064         /*
3065          * If this is a permanent reservation ticket, we may be able to free
3066          * up more space based on the remaining count.
3067          */
3068         bytes = ticket->t_curr_res;
3069         if (ticket->t_cnt > 0) {
3070                 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3071                 bytes += ticket->t_unit_res*ticket->t_cnt;
3072         }
3073
3074         xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3075         xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3076
3077         trace_xfs_log_ungrant_exit(log, ticket);
3078
3079         xfs_log_space_wake(log->l_mp);
3080 }
3081
3082 /*
3083  * Flush iclog to disk if this is the last reference to the given iclog and
3084  * the WANT_SYNC bit is set.
3085  *
3086  * When this function is entered, the iclog is not necessarily in the
3087  * WANT_SYNC state.  It may be sitting around waiting to get filled.
3088  *
3089  *
3090  */
3091 STATIC int
3092 xlog_state_release_iclog(
3093         struct xlog             *log,
3094         struct xlog_in_core     *iclog)
3095 {
3096         int             sync = 0;       /* do we sync? */
3097
3098         if (iclog->ic_state & XLOG_STATE_IOERROR)
3099                 return -EIO;
3100
3101         ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
3102         if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
3103                 return 0;
3104
3105         if (iclog->ic_state & XLOG_STATE_IOERROR) {
3106                 spin_unlock(&log->l_icloglock);
3107                 return -EIO;
3108         }
3109         ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
3110                iclog->ic_state == XLOG_STATE_WANT_SYNC);
3111
3112         if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
3113                 /* update tail before writing to iclog */
3114                 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
3115                 sync++;
3116                 iclog->ic_state = XLOG_STATE_SYNCING;
3117                 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
3118                 xlog_verify_tail_lsn(log, iclog, tail_lsn);
3119                 /* cycle incremented when incrementing curr_block */
3120         }
3121         spin_unlock(&log->l_icloglock);
3122
3123         /*
3124          * We let the log lock go, so it's possible that we hit a log I/O
3125          * error or some other SHUTDOWN condition that marks the iclog
3126          * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3127          * this iclog has consistent data, so we ignore IOERROR
3128          * flags after this point.
3129          */
3130         if (sync)
3131                 return xlog_sync(log, iclog);
3132         return 0;
3133 }       /* xlog_state_release_iclog */
3134
3135
3136 /*
3137  * This routine will mark the current iclog in the ring as WANT_SYNC
3138  * and move the current iclog pointer to the next iclog in the ring.
3139  * When this routine is called from xlog_state_get_iclog_space(), the
3140  * exact size of the iclog has not yet been determined.  All we know is
3141  * that every data block.  We have run out of space in this log record.
3142  */
3143 STATIC void
3144 xlog_state_switch_iclogs(
3145         struct xlog             *log,
3146         struct xlog_in_core     *iclog,
3147         int                     eventual_size)
3148 {
3149         ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3150         if (!eventual_size)
3151                 eventual_size = iclog->ic_offset;
3152         iclog->ic_state = XLOG_STATE_WANT_SYNC;
3153         iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3154         log->l_prev_block = log->l_curr_block;
3155         log->l_prev_cycle = log->l_curr_cycle;
3156
3157         /* roll log?: ic_offset changed later */
3158         log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3159
3160         /* Round up to next log-sunit */
3161         if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3162             log->l_mp->m_sb.sb_logsunit > 1) {
3163                 __uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3164                 log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3165         }
3166
3167         if (log->l_curr_block >= log->l_logBBsize) {
3168                 log->l_curr_cycle++;
3169                 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3170                         log->l_curr_cycle++;
3171                 log->l_curr_block -= log->l_logBBsize;
3172                 ASSERT(log->l_curr_block >= 0);
3173         }
3174         ASSERT(iclog == log->l_iclog);
3175         log->l_iclog = iclog->ic_next;
3176 }       /* xlog_state_switch_iclogs */
3177
3178 /*
3179  * Write out all data in the in-core log as of this exact moment in time.
3180  *
3181  * Data may be written to the in-core log during this call.  However,
3182  * we don't guarantee this data will be written out.  A change from past
3183  * implementation means this routine will *not* write out zero length LRs.
3184  *
3185  * Basically, we try and perform an intelligent scan of the in-core logs.
3186  * If we determine there is no flushable data, we just return.  There is no
3187  * flushable data if:
3188  *
3189  *      1. the current iclog is active and has no data; the previous iclog
3190  *              is in the active or dirty state.
3191  *      2. the current iclog is drity, and the previous iclog is in the
3192  *              active or dirty state.
3193  *
3194  * We may sleep if:
3195  *
3196  *      1. the current iclog is not in the active nor dirty state.
3197  *      2. the current iclog dirty, and the previous iclog is not in the
3198  *              active nor dirty state.
3199  *      3. the current iclog is active, and there is another thread writing
3200  *              to this particular iclog.
3201  *      4. a) the current iclog is active and has no other writers
3202  *         b) when we return from flushing out this iclog, it is still
3203  *              not in the active nor dirty state.
3204  */
3205 int
3206 _xfs_log_force(
3207         struct xfs_mount        *mp,
3208         uint                    flags,
3209         int                     *log_flushed)
3210 {
3211         struct xlog             *log = mp->m_log;
3212         struct xlog_in_core     *iclog;
3213         xfs_lsn_t               lsn;
3214
3215         XFS_STATS_INC(xs_log_force);
3216
3217         xlog_cil_force(log);
3218
3219         spin_lock(&log->l_icloglock);
3220
3221         iclog = log->l_iclog;
3222         if (iclog->ic_state & XLOG_STATE_IOERROR) {
3223                 spin_unlock(&log->l_icloglock);
3224                 return -EIO;
3225         }
3226
3227         /* If the head iclog is not active nor dirty, we just attach
3228          * ourselves to the head and go to sleep.
3229          */
3230         if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3231             iclog->ic_state == XLOG_STATE_DIRTY) {
3232                 /*
3233                  * If the head is dirty or (active and empty), then
3234                  * we need to look at the previous iclog.  If the previous
3235                  * iclog is active or dirty we are done.  There is nothing
3236                  * to sync out.  Otherwise, we attach ourselves to the
3237                  * previous iclog and go to sleep.
3238                  */
3239                 if (iclog->ic_state == XLOG_STATE_DIRTY ||
3240                     (atomic_read(&iclog->ic_refcnt) == 0
3241                      && iclog->ic_offset == 0)) {
3242                         iclog = iclog->ic_prev;
3243                         if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3244                             iclog->ic_state == XLOG_STATE_DIRTY)
3245                                 goto no_sleep;
3246                         else
3247                                 goto maybe_sleep;
3248                 } else {
3249                         if (atomic_read(&iclog->ic_refcnt) == 0) {
3250                                 /* We are the only one with access to this
3251                                  * iclog.  Flush it out now.  There should
3252                                  * be a roundoff of zero to show that someone
3253                                  * has already taken care of the roundoff from
3254                                  * the previous sync.
3255                                  */
3256                                 atomic_inc(&iclog->ic_refcnt);
3257                                 lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3258                                 xlog_state_switch_iclogs(log, iclog, 0);
3259                                 spin_unlock(&log->l_icloglock);
3260
3261                                 if (xlog_state_release_iclog(log, iclog))
3262                                         return -EIO;
3263
3264                                 if (log_flushed)
3265                                         *log_flushed = 1;
3266                                 spin_lock(&log->l_icloglock);
3267                                 if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
3268                                     iclog->ic_state != XLOG_STATE_DIRTY)
3269                                         goto maybe_sleep;
3270                                 else
3271                                         goto no_sleep;
3272                         } else {
3273                                 /* Someone else is writing to this iclog.
3274                                  * Use its call to flush out the data.  However,
3275                                  * the other thread may not force out this LR,
3276                                  * so we mark it WANT_SYNC.
3277                                  */
3278                                 xlog_state_switch_iclogs(log, iclog, 0);
3279                                 goto maybe_sleep;
3280                         }
3281                 }
3282         }
3283
3284         /* By the time we come around again, the iclog could've been filled
3285          * which would give it another lsn.  If we have a new lsn, just
3286          * return because the relevant data has been flushed.
3287          */
3288 maybe_sleep:
3289         if (flags & XFS_LOG_SYNC) {
3290                 /*
3291                  * We must check if we're shutting down here, before
3292                  * we wait, while we're holding the l_icloglock.
3293                  * Then we check again after waking up, in case our
3294                  * sleep was disturbed by a bad news.
3295                  */
3296                 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3297                         spin_unlock(&log->l_icloglock);
3298                         return -EIO;
3299                 }
3300                 XFS_STATS_INC(xs_log_force_sleep);
3301                 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3302                 /*
3303                  * No need to grab the log lock here since we're
3304                  * only deciding whether or not to return EIO
3305                  * and the memory read should be atomic.
3306                  */
3307                 if (iclog->ic_state & XLOG_STATE_IOERROR)
3308                         return -EIO;
3309                 if (log_flushed)
3310                         *log_flushed = 1;
3311         } else {
3312
3313 no_sleep:
3314                 spin_unlock(&log->l_icloglock);
3315         }
3316         return 0;
3317 }
3318
3319 /*
3320  * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3321  * about errors or whether the log was flushed or not. This is the normal
3322  * interface to use when trying to unpin items or move the log forward.
3323  */
3324 void
3325 xfs_log_force(
3326         xfs_mount_t     *mp,
3327         uint            flags)
3328 {
3329         int     error;
3330
3331         trace_xfs_log_force(mp, 0);
3332         error = _xfs_log_force(mp, flags, NULL);
3333         if (error)
3334                 xfs_warn(mp, "%s: error %d returned.", __func__, error);
3335 }
3336
3337 /*
3338  * Force the in-core log to disk for a specific LSN.
3339  *
3340  * Find in-core log with lsn.
3341  *      If it is in the DIRTY state, just return.
3342  *      If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3343  *              state and go to sleep or return.
3344  *      If it is in any other state, go to sleep or return.
3345  *
3346  * Synchronous forces are implemented with a signal variable. All callers
3347  * to force a given lsn to disk will wait on a the sv attached to the
3348  * specific in-core log.  When given in-core log finally completes its
3349  * write to disk, that thread will wake up all threads waiting on the
3350  * sv.
3351  */
3352 int
3353 _xfs_log_force_lsn(
3354         struct xfs_mount        *mp,
3355         xfs_lsn_t               lsn,
3356         uint                    flags,
3357         int                     *log_flushed)
3358 {
3359         struct xlog             *log = mp->m_log;
3360         struct xlog_in_core     *iclog;
3361         int                     already_slept = 0;
3362
3363         ASSERT(lsn != 0);
3364
3365         XFS_STATS_INC(xs_log_force);
3366
3367         lsn = xlog_cil_force_lsn(log, lsn);
3368         if (lsn == NULLCOMMITLSN)
3369                 return 0;
3370
3371 try_again:
3372         spin_lock(&log->l_icloglock);
3373         iclog = log->l_iclog;
3374         if (iclog->ic_state & XLOG_STATE_IOERROR) {
3375                 spin_unlock(&log->l_icloglock);
3376                 return -EIO;
3377         }
3378
3379         do {
3380                 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3381                         iclog = iclog->ic_next;
3382                         continue;
3383                 }
3384
3385                 if (iclog->ic_state == XLOG_STATE_DIRTY) {
3386                         spin_unlock(&log->l_icloglock);
3387                         return 0;
3388                 }
3389
3390                 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3391                         /*
3392                          * We sleep here if we haven't already slept (e.g.
3393                          * this is the first time we've looked at the correct
3394                          * iclog buf) and the buffer before us is going to
3395                          * be sync'ed. The reason for this is that if we
3396                          * are doing sync transactions here, by waiting for
3397                          * the previous I/O to complete, we can allow a few
3398                          * more transactions into this iclog before we close
3399                          * it down.
3400                          *
3401                          * Otherwise, we mark the buffer WANT_SYNC, and bump
3402                          * up the refcnt so we can release the log (which
3403                          * drops the ref count).  The state switch keeps new
3404                          * transaction commits from using this buffer.  When
3405                          * the current commits finish writing into the buffer,
3406                          * the refcount will drop to zero and the buffer will
3407                          * go out then.
3408                          */
3409                         if (!already_slept &&
3410                             (iclog->ic_prev->ic_state &
3411                              (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3412                                 ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3413
3414                                 XFS_STATS_INC(xs_log_force_sleep);
3415
3416                                 xlog_wait(&iclog->ic_prev->ic_write_wait,
3417                                                         &log->l_icloglock);
3418                                 if (log_flushed)
3419                                         *log_flushed = 1;
3420                                 already_slept = 1;
3421                                 goto try_again;
3422                         }
3423                         atomic_inc(&iclog->ic_refcnt);
3424                         xlog_state_switch_iclogs(log, iclog, 0);
3425                         spin_unlock(&log->l_icloglock);
3426                         if (xlog_state_release_iclog(log, iclog))
3427                                 return -EIO;
3428                         if (log_flushed)
3429                                 *log_flushed = 1;
3430                         spin_lock(&log->l_icloglock);
3431                 }
3432
3433                 if ((flags & XFS_LOG_SYNC) && /* sleep */
3434                     !(iclog->ic_state &
3435                       (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3436                         /*
3437                          * Don't wait on completion if we know that we've
3438                          * gotten a log write error.
3439                          */
3440                         if (iclog->ic_state & XLOG_STATE_IOERROR) {
3441                                 spin_unlock(&log->l_icloglock);
3442                                 return -EIO;
3443                         }
3444                         XFS_STATS_INC(xs_log_force_sleep);
3445                         xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3446                         /*
3447                          * No need to grab the log lock here since we're
3448                          * only deciding whether or not to return EIO
3449                          * and the memory read should be atomic.
3450                          */
3451                         if (iclog->ic_state & XLOG_STATE_IOERROR)
3452                                 return -EIO;
3453
3454                         if (log_flushed)
3455                                 *log_flushed = 1;
3456                 } else {                /* just return */
3457                         spin_unlock(&log->l_icloglock);
3458                 }
3459
3460                 return 0;
3461         } while (iclog != log->l_iclog);
3462
3463         spin_unlock(&log->l_icloglock);
3464         return 0;
3465 }
3466
3467 /*
3468  * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3469  * about errors or whether the log was flushed or not. This is the normal
3470  * interface to use when trying to unpin items or move the log forward.
3471  */
3472 void
3473 xfs_log_force_lsn(
3474         xfs_mount_t     *mp,
3475         xfs_lsn_t       lsn,
3476         uint            flags)
3477 {
3478         int     error;
3479
3480         trace_xfs_log_force(mp, lsn);
3481         error = _xfs_log_force_lsn(mp, lsn, flags, NULL);
3482         if (error)
3483                 xfs_warn(mp, "%s: error %d returned.", __func__, error);
3484 }
3485
3486 /*
3487  * Called when we want to mark the current iclog as being ready to sync to
3488  * disk.
3489  */
3490 STATIC void
3491 xlog_state_want_sync(
3492         struct xlog             *log,
3493         struct xlog_in_core     *iclog)
3494 {
3495         assert_spin_locked(&log->l_icloglock);
3496
3497         if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3498                 xlog_state_switch_iclogs(log, iclog, 0);
3499         } else {
3500                 ASSERT(iclog->ic_state &
3501                         (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3502         }
3503 }
3504
3505
3506 /*****************************************************************************
3507  *
3508  *              TICKET functions
3509  *
3510  *****************************************************************************
3511  */
3512
3513 /*
3514  * Free a used ticket when its refcount falls to zero.
3515  */
3516 void
3517 xfs_log_ticket_put(
3518         xlog_ticket_t   *ticket)
3519 {
3520         ASSERT(atomic_read(&ticket->t_ref) > 0);
3521         if (atomic_dec_and_test(&ticket->t_ref))
3522                 kmem_zone_free(xfs_log_ticket_zone, ticket);
3523 }
3524
3525 xlog_ticket_t *
3526 xfs_log_ticket_get(
3527         xlog_ticket_t   *ticket)
3528 {
3529         ASSERT(atomic_read(&ticket->t_ref) > 0);
3530         atomic_inc(&ticket->t_ref);
3531         return ticket;
3532 }
3533
3534 /*
3535  * Figure out the total log space unit (in bytes) that would be
3536  * required for a log ticket.
3537  */
3538 int
3539 xfs_log_calc_unit_res(
3540         struct xfs_mount        *mp,
3541         int                     unit_bytes)
3542 {
3543         struct xlog             *log = mp->m_log;
3544         int                     iclog_space;
3545         uint                    num_headers;
3546
3547         /*
3548          * Permanent reservations have up to 'cnt'-1 active log operations
3549          * in the log.  A unit in this case is the amount of space for one
3550          * of these log operations.  Normal reservations have a cnt of 1
3551          * and their unit amount is the total amount of space required.
3552          *
3553          * The following lines of code account for non-transaction data
3554          * which occupy space in the on-disk log.
3555          *
3556          * Normal form of a transaction is:
3557          * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3558          * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3559          *
3560          * We need to account for all the leadup data and trailer data
3561          * around the transaction data.
3562          * And then we need to account for the worst case in terms of using
3563          * more space.
3564          * The worst case will happen if:
3565          * - the placement of the transaction happens to be such that the
3566          *   roundoff is at its maximum
3567          * - the transaction data is synced before the commit record is synced
3568          *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3569          *   Therefore the commit record is in its own Log Record.
3570          *   This can happen as the commit record is called with its
3571          *   own region to xlog_write().
3572          *   This then means that in the worst case, roundoff can happen for
3573          *   the commit-rec as well.
3574          *   The commit-rec is smaller than padding in this scenario and so it is
3575          *   not added separately.
3576          */
3577
3578         /* for trans header */
3579         unit_bytes += sizeof(xlog_op_header_t);
3580         unit_bytes += sizeof(xfs_trans_header_t);
3581
3582         /* for start-rec */
3583         unit_bytes += sizeof(xlog_op_header_t);
3584
3585         /*
3586          * for LR headers - the space for data in an iclog is the size minus
3587          * the space used for the headers. If we use the iclog size, then we
3588          * undercalculate the number of headers required.
3589          *
3590          * Furthermore - the addition of op headers for split-recs might
3591          * increase the space required enough to require more log and op
3592          * headers, so take that into account too.
3593          *
3594          * IMPORTANT: This reservation makes the assumption that if this
3595          * transaction is the first in an iclog and hence has the LR headers
3596          * accounted to it, then the remaining space in the iclog is
3597          * exclusively for this transaction.  i.e. if the transaction is larger
3598          * than the iclog, it will be the only thing in that iclog.
3599          * Fundamentally, this means we must pass the entire log vector to
3600          * xlog_write to guarantee this.
3601          */
3602         iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3603         num_headers = howmany(unit_bytes, iclog_space);
3604
3605         /* for split-recs - ophdrs added when data split over LRs */
3606         unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3607
3608         /* add extra header reservations if we overrun */
3609         while (!num_headers ||
3610                howmany(unit_bytes, iclog_space) > num_headers) {
3611                 unit_bytes += sizeof(xlog_op_header_t);
3612                 num_headers++;
3613         }
3614         unit_bytes += log->l_iclog_hsize * num_headers;
3615
3616         /* for commit-rec LR header - note: padding will subsume the ophdr */
3617         unit_bytes += log->l_iclog_hsize;
3618
3619         /* for roundoff padding for transaction data and one for commit record */
3620         if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3621                 /* log su roundoff */
3622                 unit_bytes += 2 * mp->m_sb.sb_logsunit;
3623         } else {
3624                 /* BB roundoff */
3625                 unit_bytes += 2 * BBSIZE;
3626         }
3627
3628         return unit_bytes;
3629 }
3630
3631 /*
3632  * Allocate and initialise a new log ticket.
3633  */
3634 struct xlog_ticket *
3635 xlog_ticket_alloc(
3636         struct xlog             *log,
3637         int                     unit_bytes,
3638         int                     cnt,
3639         char                    client,
3640         bool                    permanent,
3641         xfs_km_flags_t          alloc_flags)
3642 {
3643         struct xlog_ticket      *tic;
3644         int                     unit_res;
3645
3646         tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3647         if (!tic)
3648                 return NULL;
3649
3650         unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3651
3652         atomic_set(&tic->t_ref, 1);
3653         tic->t_task             = current;
3654         INIT_LIST_HEAD(&tic->t_queue);
3655         tic->t_unit_res         = unit_res;
3656         tic->t_curr_res         = unit_res;
3657         tic->t_cnt              = cnt;
3658         tic->t_ocnt             = cnt;
3659         tic->t_tid              = prandom_u32();
3660         tic->t_clientid         = client;
3661         tic->t_flags            = XLOG_TIC_INITED;
3662         tic->t_trans_type       = 0;
3663         if (permanent)
3664                 tic->t_flags |= XLOG_TIC_PERM_RESERV;
3665
3666         xlog_tic_reset_res(tic);
3667
3668         return tic;
3669 }
3670
3671
3672 /******************************************************************************
3673  *
3674  *              Log debug routines
3675  *
3676  ******************************************************************************
3677  */
3678 #if defined(DEBUG)
3679 /*
3680  * Make sure that the destination ptr is within the valid data region of
3681  * one of the iclogs.  This uses backup pointers stored in a different
3682  * part of the log in case we trash the log structure.
3683  */
3684 void
3685 xlog_verify_dest_ptr(
3686         struct xlog     *log,
3687         void            *ptr)
3688 {
3689         int i;
3690         int good_ptr = 0;
3691
3692         for (i = 0; i < log->l_iclog_bufs; i++) {
3693                 if (ptr >= log->l_iclog_bak[i] &&
3694                     ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3695                         good_ptr++;
3696         }
3697
3698         if (!good_ptr)
3699                 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3700 }
3701
3702 /*
3703  * Check to make sure the grant write head didn't just over lap the tail.  If
3704  * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3705  * the cycles differ by exactly one and check the byte count.
3706  *
3707  * This check is run unlocked, so can give false positives. Rather than assert
3708  * on failures, use a warn-once flag and a panic tag to allow the admin to
3709  * determine if they want to panic the machine when such an error occurs. For
3710  * debug kernels this will have the same effect as using an assert but, unlinke
3711  * an assert, it can be turned off at runtime.
3712  */
3713 STATIC void
3714 xlog_verify_grant_tail(
3715         struct xlog     *log)
3716 {
3717         int             tail_cycle, tail_blocks;
3718         int             cycle, space;
3719
3720         xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3721         xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3722         if (tail_cycle != cycle) {
3723                 if (cycle - 1 != tail_cycle &&
3724                     !(log->l_flags & XLOG_TAIL_WARN)) {
3725                         xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3726                                 "%s: cycle - 1 != tail_cycle", __func__);
3727                         log->l_flags |= XLOG_TAIL_WARN;
3728                 }
3729
3730                 if (space > BBTOB(tail_blocks) &&
3731                     !(log->l_flags & XLOG_TAIL_WARN)) {
3732                         xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3733                                 "%s: space > BBTOB(tail_blocks)", __func__);
3734                         log->l_flags |= XLOG_TAIL_WARN;
3735                 }
3736         }
3737 }
3738
3739 /* check if it will fit */
3740 STATIC void
3741 xlog_verify_tail_lsn(
3742         struct xlog             *log,
3743         struct xlog_in_core     *iclog,
3744         xfs_lsn_t               tail_lsn)
3745 {
3746     int blocks;
3747
3748     if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3749         blocks =
3750             log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3751         if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3752                 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3753     } else {
3754         ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3755
3756         if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3757                 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3758
3759         blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3760         if (blocks < BTOBB(iclog->ic_offset) + 1)
3761                 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3762     }
3763 }       /* xlog_verify_tail_lsn */
3764
3765 /*
3766  * Perform a number of checks on the iclog before writing to disk.
3767  *
3768  * 1. Make sure the iclogs are still circular
3769  * 2. Make sure we have a good magic number
3770  * 3. Make sure we don't have magic numbers in the data
3771  * 4. Check fields of each log operation header for:
3772  *      A. Valid client identifier
3773  *      B. tid ptr value falls in valid ptr space (user space code)
3774  *      C. Length in log record header is correct according to the
3775  *              individual operation headers within record.
3776  * 5. When a bwrite will occur within 5 blocks of the front of the physical
3777  *      log, check the preceding blocks of the physical log to make sure all
3778  *      the cycle numbers agree with the current cycle number.
3779  */
3780 STATIC void
3781 xlog_verify_iclog(
3782         struct xlog             *log,
3783         struct xlog_in_core     *iclog,
3784         int                     count,
3785         bool                    syncing)
3786 {
3787         xlog_op_header_t        *ophead;
3788         xlog_in_core_t          *icptr;
3789         xlog_in_core_2_t        *xhdr;
3790         void                    *base_ptr, *ptr, *p;
3791         ptrdiff_t               field_offset;
3792         __uint8_t               clientid;
3793         int                     len, i, j, k, op_len;
3794         int                     idx;
3795
3796         /* check validity of iclog pointers */
3797         spin_lock(&log->l_icloglock);
3798         icptr = log->l_iclog;
3799         for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3800                 ASSERT(icptr);
3801
3802         if (icptr != log->l_iclog)
3803                 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3804         spin_unlock(&log->l_icloglock);
3805
3806         /* check log magic numbers */
3807         if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3808                 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3809
3810         base_ptr = ptr = &iclog->ic_header;
3811         p = &iclog->ic_header;
3812         for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3813                 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3814                         xfs_emerg(log->l_mp, "%s: unexpected magic num",
3815                                 __func__);
3816         }
3817
3818         /* check fields */
3819         len = be32_to_cpu(iclog->ic_header.h_num_logops);
3820         base_ptr = ptr = iclog->ic_datap;
3821         ophead = ptr;
3822         xhdr = iclog->ic_data;
3823         for (i = 0; i < len; i++) {
3824                 ophead = ptr;
3825
3826                 /* clientid is only 1 byte */
3827                 p = &ophead->oh_clientid;
3828                 field_offset = p - base_ptr;
3829                 if (!syncing || (field_offset & 0x1ff)) {
3830                         clientid = ophead->oh_clientid;
3831                 } else {
3832                         idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
3833                         if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3834                                 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3835                                 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3836                                 clientid = xlog_get_client_id(
3837                                         xhdr[j].hic_xheader.xh_cycle_data[k]);
3838                         } else {
3839                                 clientid = xlog_get_client_id(
3840                                         iclog->ic_header.h_cycle_data[idx]);
3841                         }
3842                 }
3843                 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3844                         xfs_warn(log->l_mp,
3845                                 "%s: invalid clientid %d op 0x%p offset 0x%lx",
3846                                 __func__, clientid, ophead,
3847                                 (unsigned long)field_offset);
3848
3849                 /* check length */
3850                 p = &ophead->oh_len;
3851                 field_offset = p - base_ptr;
3852                 if (!syncing || (field_offset & 0x1ff)) {
3853                         op_len = be32_to_cpu(ophead->oh_len);
3854                 } else {
3855                         idx = BTOBBT((uintptr_t)&ophead->oh_len -
3856                                     (uintptr_t)iclog->ic_datap);
3857                         if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3858                                 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3859                                 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3860                                 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3861                         } else {
3862                                 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3863                         }
3864                 }
3865                 ptr += sizeof(xlog_op_header_t) + op_len;
3866         }
3867 }       /* xlog_verify_iclog */
3868 #endif
3869
3870 /*
3871  * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3872  */
3873 STATIC int
3874 xlog_state_ioerror(
3875         struct xlog     *log)
3876 {
3877         xlog_in_core_t  *iclog, *ic;
3878
3879         iclog = log->l_iclog;
3880         if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3881                 /*
3882                  * Mark all the incore logs IOERROR.
3883                  * From now on, no log flushes will result.
3884                  */
3885                 ic = iclog;
3886                 do {
3887                         ic->ic_state = XLOG_STATE_IOERROR;
3888                         ic = ic->ic_next;
3889                 } while (ic != iclog);
3890                 return 0;
3891         }
3892         /*
3893          * Return non-zero, if state transition has already happened.
3894          */
3895         return 1;
3896 }
3897
3898 /*
3899  * This is called from xfs_force_shutdown, when we're forcibly
3900  * shutting down the filesystem, typically because of an IO error.
3901  * Our main objectives here are to make sure that:
3902  *      a. if !logerror, flush the logs to disk. Anything modified
3903  *         after this is ignored.
3904  *      b. the filesystem gets marked 'SHUTDOWN' for all interested
3905  *         parties to find out, 'atomically'.
3906  *      c. those who're sleeping on log reservations, pinned objects and
3907  *          other resources get woken up, and be told the bad news.
3908  *      d. nothing new gets queued up after (b) and (c) are done.
3909  *
3910  * Note: for the !logerror case we need to flush the regions held in memory out
3911  * to disk first. This needs to be done before the log is marked as shutdown,
3912  * otherwise the iclog writes will fail.
3913  */
3914 int
3915 xfs_log_force_umount(
3916         struct xfs_mount        *mp,
3917         int                     logerror)
3918 {
3919         struct xlog     *log;
3920         int             retval;
3921
3922         log = mp->m_log;
3923
3924         /*
3925          * If this happens during log recovery, don't worry about
3926          * locking; the log isn't open for business yet.
3927          */
3928         if (!log ||
3929             log->l_flags & XLOG_ACTIVE_RECOVERY) {
3930                 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3931                 if (mp->m_sb_bp)
3932                         XFS_BUF_DONE(mp->m_sb_bp);
3933                 return 0;
3934         }
3935
3936         /*
3937          * Somebody could've already done the hard work for us.
3938          * No need to get locks for this.
3939          */
3940         if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3941                 ASSERT(XLOG_FORCED_SHUTDOWN(log));
3942                 return 1;
3943         }
3944
3945         /*
3946          * Flush all the completed transactions to disk before marking the log
3947          * being shut down. We need to do it in this order to ensure that
3948          * completed operations are safely on disk before we shut down, and that
3949          * we don't have to issue any buffer IO after the shutdown flags are set
3950          * to guarantee this.
3951          */
3952         if (!logerror)
3953                 _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
3954
3955         /*
3956          * mark the filesystem and the as in a shutdown state and wake
3957          * everybody up to tell them the bad news.
3958          */
3959         spin_lock(&log->l_icloglock);
3960         mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3961         if (mp->m_sb_bp)
3962                 XFS_BUF_DONE(mp->m_sb_bp);
3963
3964         /*
3965          * Mark the log and the iclogs with IO error flags to prevent any
3966          * further log IO from being issued or completed.
3967          */
3968         log->l_flags |= XLOG_IO_ERROR;
3969         retval = xlog_state_ioerror(log);
3970         spin_unlock(&log->l_icloglock);
3971
3972         /*
3973          * We don't want anybody waiting for log reservations after this. That
3974          * means we have to wake up everybody queued up on reserveq as well as
3975          * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3976          * we don't enqueue anything once the SHUTDOWN flag is set, and this
3977          * action is protected by the grant locks.
3978          */
3979         xlog_grant_head_wake_all(&log->l_reserve_head);
3980         xlog_grant_head_wake_all(&log->l_write_head);
3981
3982         /*
3983          * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3984          * as if the log writes were completed. The abort handling in the log
3985          * item committed callback functions will do this again under lock to
3986          * avoid races.
3987          */
3988         wake_up_all(&log->l_cilp->xc_commit_wait);
3989         xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
3990
3991 #ifdef XFSERRORDEBUG
3992         {
3993                 xlog_in_core_t  *iclog;
3994
3995                 spin_lock(&log->l_icloglock);
3996                 iclog = log->l_iclog;
3997                 do {
3998                         ASSERT(iclog->ic_callback == 0);
3999                         iclog = iclog->ic_next;
4000                 } while (iclog != log->l_iclog);
4001                 spin_unlock(&log->l_icloglock);
4002         }
4003 #endif
4004         /* return non-zero if log IOERROR transition had already happened */
4005         return retval;
4006 }
4007
4008 STATIC int
4009 xlog_iclogs_empty(
4010         struct xlog     *log)
4011 {
4012         xlog_in_core_t  *iclog;
4013
4014         iclog = log->l_iclog;
4015         do {
4016                 /* endianness does not matter here, zero is zero in
4017                  * any language.
4018                  */
4019                 if (iclog->ic_header.h_num_logops)
4020                         return 0;
4021                 iclog = iclog->ic_next;
4022         } while (iclog != log->l_iclog);
4023         return 1;
4024 }
4025