]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - include/linux/dmaengine.h
Merge branch 'iocb' into for-davem
[karo-tx-linux.git] / include / linux / dmaengine.h
1 /*
2  * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License as published by the Free
6  * Software Foundation; either version 2 of the License, or (at your option)
7  * any later version.
8  *
9  * This program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc., 59
16  * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17  *
18  * The full GNU General Public License is included in this distribution in the
19  * file called COPYING.
20  */
21 #ifndef LINUX_DMAENGINE_H
22 #define LINUX_DMAENGINE_H
23
24 #include <linux/device.h>
25 #include <linux/err.h>
26 #include <linux/uio.h>
27 #include <linux/bug.h>
28 #include <linux/scatterlist.h>
29 #include <linux/bitmap.h>
30 #include <linux/types.h>
31 #include <asm/page.h>
32
33 /**
34  * typedef dma_cookie_t - an opaque DMA cookie
35  *
36  * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
37  */
38 typedef s32 dma_cookie_t;
39 #define DMA_MIN_COOKIE  1
40
41 static inline int dma_submit_error(dma_cookie_t cookie)
42 {
43         return cookie < 0 ? cookie : 0;
44 }
45
46 /**
47  * enum dma_status - DMA transaction status
48  * @DMA_COMPLETE: transaction completed
49  * @DMA_IN_PROGRESS: transaction not yet processed
50  * @DMA_PAUSED: transaction is paused
51  * @DMA_ERROR: transaction failed
52  */
53 enum dma_status {
54         DMA_COMPLETE,
55         DMA_IN_PROGRESS,
56         DMA_PAUSED,
57         DMA_ERROR,
58 };
59
60 /**
61  * enum dma_transaction_type - DMA transaction types/indexes
62  *
63  * Note: The DMA_ASYNC_TX capability is not to be set by drivers.  It is
64  * automatically set as dma devices are registered.
65  */
66 enum dma_transaction_type {
67         DMA_MEMCPY,
68         DMA_XOR,
69         DMA_PQ,
70         DMA_XOR_VAL,
71         DMA_PQ_VAL,
72         DMA_INTERRUPT,
73         DMA_SG,
74         DMA_PRIVATE,
75         DMA_ASYNC_TX,
76         DMA_SLAVE,
77         DMA_CYCLIC,
78         DMA_INTERLEAVE,
79 /* last transaction type for creation of the capabilities mask */
80         DMA_TX_TYPE_END,
81 };
82
83 /**
84  * enum dma_transfer_direction - dma transfer mode and direction indicator
85  * @DMA_MEM_TO_MEM: Async/Memcpy mode
86  * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
87  * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
88  * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
89  */
90 enum dma_transfer_direction {
91         DMA_MEM_TO_MEM,
92         DMA_MEM_TO_DEV,
93         DMA_DEV_TO_MEM,
94         DMA_DEV_TO_DEV,
95         DMA_TRANS_NONE,
96 };
97
98 /**
99  * Interleaved Transfer Request
100  * ----------------------------
101  * A chunk is collection of contiguous bytes to be transfered.
102  * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
103  * ICGs may or maynot change between chunks.
104  * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
105  *  that when repeated an integral number of times, specifies the transfer.
106  * A transfer template is specification of a Frame, the number of times
107  *  it is to be repeated and other per-transfer attributes.
108  *
109  * Practically, a client driver would have ready a template for each
110  *  type of transfer it is going to need during its lifetime and
111  *  set only 'src_start' and 'dst_start' before submitting the requests.
112  *
113  *
114  *  |      Frame-1        |       Frame-2       | ~ |       Frame-'numf'  |
115  *  |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
116  *
117  *    ==  Chunk size
118  *    ... ICG
119  */
120
121 /**
122  * struct data_chunk - Element of scatter-gather list that makes a frame.
123  * @size: Number of bytes to read from source.
124  *        size_dst := fn(op, size_src), so doesn't mean much for destination.
125  * @icg: Number of bytes to jump after last src/dst address of this
126  *       chunk and before first src/dst address for next chunk.
127  *       Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
128  *       Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
129  */
130 struct data_chunk {
131         size_t size;
132         size_t icg;
133 };
134
135 /**
136  * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
137  *       and attributes.
138  * @src_start: Bus address of source for the first chunk.
139  * @dst_start: Bus address of destination for the first chunk.
140  * @dir: Specifies the type of Source and Destination.
141  * @src_inc: If the source address increments after reading from it.
142  * @dst_inc: If the destination address increments after writing to it.
143  * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
144  *              Otherwise, source is read contiguously (icg ignored).
145  *              Ignored if src_inc is false.
146  * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
147  *              Otherwise, destination is filled contiguously (icg ignored).
148  *              Ignored if dst_inc is false.
149  * @numf: Number of frames in this template.
150  * @frame_size: Number of chunks in a frame i.e, size of sgl[].
151  * @sgl: Array of {chunk,icg} pairs that make up a frame.
152  */
153 struct dma_interleaved_template {
154         dma_addr_t src_start;
155         dma_addr_t dst_start;
156         enum dma_transfer_direction dir;
157         bool src_inc;
158         bool dst_inc;
159         bool src_sgl;
160         bool dst_sgl;
161         size_t numf;
162         size_t frame_size;
163         struct data_chunk sgl[0];
164 };
165
166 /**
167  * enum dma_ctrl_flags - DMA flags to augment operation preparation,
168  *  control completion, and communicate status.
169  * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
170  *  this transaction
171  * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
172  *  acknowledges receipt, i.e. has has a chance to establish any dependency
173  *  chains
174  * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
175  * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
176  * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
177  *  sources that were the result of a previous operation, in the case of a PQ
178  *  operation it continues the calculation with new sources
179  * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
180  *  on the result of this operation
181  */
182 enum dma_ctrl_flags {
183         DMA_PREP_INTERRUPT = (1 << 0),
184         DMA_CTRL_ACK = (1 << 1),
185         DMA_PREP_PQ_DISABLE_P = (1 << 2),
186         DMA_PREP_PQ_DISABLE_Q = (1 << 3),
187         DMA_PREP_CONTINUE = (1 << 4),
188         DMA_PREP_FENCE = (1 << 5),
189 };
190
191 /**
192  * enum sum_check_bits - bit position of pq_check_flags
193  */
194 enum sum_check_bits {
195         SUM_CHECK_P = 0,
196         SUM_CHECK_Q = 1,
197 };
198
199 /**
200  * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
201  * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
202  * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
203  */
204 enum sum_check_flags {
205         SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
206         SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
207 };
208
209
210 /**
211  * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
212  * See linux/cpumask.h
213  */
214 typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
215
216 /**
217  * struct dma_chan_percpu - the per-CPU part of struct dma_chan
218  * @memcpy_count: transaction counter
219  * @bytes_transferred: byte counter
220  */
221
222 struct dma_chan_percpu {
223         /* stats */
224         unsigned long memcpy_count;
225         unsigned long bytes_transferred;
226 };
227
228 /**
229  * struct dma_chan - devices supply DMA channels, clients use them
230  * @device: ptr to the dma device who supplies this channel, always !%NULL
231  * @cookie: last cookie value returned to client
232  * @completed_cookie: last completed cookie for this channel
233  * @chan_id: channel ID for sysfs
234  * @dev: class device for sysfs
235  * @device_node: used to add this to the device chan list
236  * @local: per-cpu pointer to a struct dma_chan_percpu
237  * @client_count: how many clients are using this channel
238  * @table_count: number of appearances in the mem-to-mem allocation table
239  * @private: private data for certain client-channel associations
240  */
241 struct dma_chan {
242         struct dma_device *device;
243         dma_cookie_t cookie;
244         dma_cookie_t completed_cookie;
245
246         /* sysfs */
247         int chan_id;
248         struct dma_chan_dev *dev;
249
250         struct list_head device_node;
251         struct dma_chan_percpu __percpu *local;
252         int client_count;
253         int table_count;
254         void *private;
255 };
256
257 /**
258  * struct dma_chan_dev - relate sysfs device node to backing channel device
259  * @chan: driver channel device
260  * @device: sysfs device
261  * @dev_id: parent dma_device dev_id
262  * @idr_ref: reference count to gate release of dma_device dev_id
263  */
264 struct dma_chan_dev {
265         struct dma_chan *chan;
266         struct device device;
267         int dev_id;
268         atomic_t *idr_ref;
269 };
270
271 /**
272  * enum dma_slave_buswidth - defines bus width of the DMA slave
273  * device, source or target buses
274  */
275 enum dma_slave_buswidth {
276         DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
277         DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
278         DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
279         DMA_SLAVE_BUSWIDTH_3_BYTES = 3,
280         DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
281         DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
282         DMA_SLAVE_BUSWIDTH_16_BYTES = 16,
283         DMA_SLAVE_BUSWIDTH_32_BYTES = 32,
284         DMA_SLAVE_BUSWIDTH_64_BYTES = 64,
285 };
286
287 /**
288  * struct dma_slave_config - dma slave channel runtime config
289  * @direction: whether the data shall go in or out on this slave
290  * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are
291  * legal values. DEPRECATED, drivers should use the direction argument
292  * to the device_prep_slave_sg and device_prep_dma_cyclic functions or
293  * the dir field in the dma_interleaved_template structure.
294  * @src_addr: this is the physical address where DMA slave data
295  * should be read (RX), if the source is memory this argument is
296  * ignored.
297  * @dst_addr: this is the physical address where DMA slave data
298  * should be written (TX), if the source is memory this argument
299  * is ignored.
300  * @src_addr_width: this is the width in bytes of the source (RX)
301  * register where DMA data shall be read. If the source
302  * is memory this may be ignored depending on architecture.
303  * Legal values: 1, 2, 4, 8.
304  * @dst_addr_width: same as src_addr_width but for destination
305  * target (TX) mutatis mutandis.
306  * @src_maxburst: the maximum number of words (note: words, as in
307  * units of the src_addr_width member, not bytes) that can be sent
308  * in one burst to the device. Typically something like half the
309  * FIFO depth on I/O peripherals so you don't overflow it. This
310  * may or may not be applicable on memory sources.
311  * @dst_maxburst: same as src_maxburst but for destination target
312  * mutatis mutandis.
313  * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
314  * with 'true' if peripheral should be flow controller. Direction will be
315  * selected at Runtime.
316  * @slave_id: Slave requester id. Only valid for slave channels. The dma
317  * slave peripheral will have unique id as dma requester which need to be
318  * pass as slave config.
319  *
320  * This struct is passed in as configuration data to a DMA engine
321  * in order to set up a certain channel for DMA transport at runtime.
322  * The DMA device/engine has to provide support for an additional
323  * callback in the dma_device structure, device_config and this struct
324  * will then be passed in as an argument to the function.
325  *
326  * The rationale for adding configuration information to this struct is as
327  * follows: if it is likely that more than one DMA slave controllers in
328  * the world will support the configuration option, then make it generic.
329  * If not: if it is fixed so that it be sent in static from the platform
330  * data, then prefer to do that.
331  */
332 struct dma_slave_config {
333         enum dma_transfer_direction direction;
334         dma_addr_t src_addr;
335         dma_addr_t dst_addr;
336         enum dma_slave_buswidth src_addr_width;
337         enum dma_slave_buswidth dst_addr_width;
338         u32 src_maxburst;
339         u32 dst_maxburst;
340         bool device_fc;
341         unsigned int slave_id;
342 };
343
344 /**
345  * enum dma_residue_granularity - Granularity of the reported transfer residue
346  * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The
347  *  DMA channel is only able to tell whether a descriptor has been completed or
348  *  not, which means residue reporting is not supported by this channel. The
349  *  residue field of the dma_tx_state field will always be 0.
350  * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully
351  *  completed segment of the transfer (For cyclic transfers this is after each
352  *  period). This is typically implemented by having the hardware generate an
353  *  interrupt after each transferred segment and then the drivers updates the
354  *  outstanding residue by the size of the segment. Another possibility is if
355  *  the hardware supports scatter-gather and the segment descriptor has a field
356  *  which gets set after the segment has been completed. The driver then counts
357  *  the number of segments without the flag set to compute the residue.
358  * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred
359  *  burst. This is typically only supported if the hardware has a progress
360  *  register of some sort (E.g. a register with the current read/write address
361  *  or a register with the amount of bursts/beats/bytes that have been
362  *  transferred or still need to be transferred).
363  */
364 enum dma_residue_granularity {
365         DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0,
366         DMA_RESIDUE_GRANULARITY_SEGMENT = 1,
367         DMA_RESIDUE_GRANULARITY_BURST = 2,
368 };
369
370 /* struct dma_slave_caps - expose capabilities of a slave channel only
371  *
372  * @src_addr_widths: bit mask of src addr widths the channel supports
373  * @dst_addr_widths: bit mask of dstn addr widths the channel supports
374  * @directions: bit mask of slave direction the channel supported
375  *      since the enum dma_transfer_direction is not defined as bits for each
376  *      type of direction, the dma controller should fill (1 << <TYPE>) and same
377  *      should be checked by controller as well
378  * @cmd_pause: true, if pause and thereby resume is supported
379  * @cmd_terminate: true, if terminate cmd is supported
380  * @residue_granularity: granularity of the reported transfer residue
381  */
382 struct dma_slave_caps {
383         u32 src_addr_widths;
384         u32 dst_addr_widths;
385         u32 directions;
386         bool cmd_pause;
387         bool cmd_terminate;
388         enum dma_residue_granularity residue_granularity;
389 };
390
391 static inline const char *dma_chan_name(struct dma_chan *chan)
392 {
393         return dev_name(&chan->dev->device);
394 }
395
396 void dma_chan_cleanup(struct kref *kref);
397
398 /**
399  * typedef dma_filter_fn - callback filter for dma_request_channel
400  * @chan: channel to be reviewed
401  * @filter_param: opaque parameter passed through dma_request_channel
402  *
403  * When this optional parameter is specified in a call to dma_request_channel a
404  * suitable channel is passed to this routine for further dispositioning before
405  * being returned.  Where 'suitable' indicates a non-busy channel that
406  * satisfies the given capability mask.  It returns 'true' to indicate that the
407  * channel is suitable.
408  */
409 typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
410
411 typedef void (*dma_async_tx_callback)(void *dma_async_param);
412
413 struct dmaengine_unmap_data {
414         u8 map_cnt;
415         u8 to_cnt;
416         u8 from_cnt;
417         u8 bidi_cnt;
418         struct device *dev;
419         struct kref kref;
420         size_t len;
421         dma_addr_t addr[0];
422 };
423
424 /**
425  * struct dma_async_tx_descriptor - async transaction descriptor
426  * ---dma generic offload fields---
427  * @cookie: tracking cookie for this transaction, set to -EBUSY if
428  *      this tx is sitting on a dependency list
429  * @flags: flags to augment operation preparation, control completion, and
430  *      communicate status
431  * @phys: physical address of the descriptor
432  * @chan: target channel for this operation
433  * @tx_submit: accept the descriptor, assign ordered cookie and mark the
434  * descriptor pending. To be pushed on .issue_pending() call
435  * @callback: routine to call after this operation is complete
436  * @callback_param: general parameter to pass to the callback routine
437  * ---async_tx api specific fields---
438  * @next: at completion submit this descriptor
439  * @parent: pointer to the next level up in the dependency chain
440  * @lock: protect the parent and next pointers
441  */
442 struct dma_async_tx_descriptor {
443         dma_cookie_t cookie;
444         enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
445         dma_addr_t phys;
446         struct dma_chan *chan;
447         dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
448         dma_async_tx_callback callback;
449         void *callback_param;
450         struct dmaengine_unmap_data *unmap;
451 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
452         struct dma_async_tx_descriptor *next;
453         struct dma_async_tx_descriptor *parent;
454         spinlock_t lock;
455 #endif
456 };
457
458 #ifdef CONFIG_DMA_ENGINE
459 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
460                                  struct dmaengine_unmap_data *unmap)
461 {
462         kref_get(&unmap->kref);
463         tx->unmap = unmap;
464 }
465
466 struct dmaengine_unmap_data *
467 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags);
468 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap);
469 #else
470 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
471                                  struct dmaengine_unmap_data *unmap)
472 {
473 }
474 static inline struct dmaengine_unmap_data *
475 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
476 {
477         return NULL;
478 }
479 static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
480 {
481 }
482 #endif
483
484 static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx)
485 {
486         if (tx->unmap) {
487                 dmaengine_unmap_put(tx->unmap);
488                 tx->unmap = NULL;
489         }
490 }
491
492 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
493 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
494 {
495 }
496 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
497 {
498 }
499 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
500 {
501         BUG();
502 }
503 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
504 {
505 }
506 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
507 {
508 }
509 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
510 {
511         return NULL;
512 }
513 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
514 {
515         return NULL;
516 }
517
518 #else
519 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
520 {
521         spin_lock_bh(&txd->lock);
522 }
523 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
524 {
525         spin_unlock_bh(&txd->lock);
526 }
527 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
528 {
529         txd->next = next;
530         next->parent = txd;
531 }
532 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
533 {
534         txd->parent = NULL;
535 }
536 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
537 {
538         txd->next = NULL;
539 }
540 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
541 {
542         return txd->parent;
543 }
544 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
545 {
546         return txd->next;
547 }
548 #endif
549
550 /**
551  * struct dma_tx_state - filled in to report the status of
552  * a transfer.
553  * @last: last completed DMA cookie
554  * @used: last issued DMA cookie (i.e. the one in progress)
555  * @residue: the remaining number of bytes left to transmit
556  *      on the selected transfer for states DMA_IN_PROGRESS and
557  *      DMA_PAUSED if this is implemented in the driver, else 0
558  */
559 struct dma_tx_state {
560         dma_cookie_t last;
561         dma_cookie_t used;
562         u32 residue;
563 };
564
565 /**
566  * struct dma_device - info on the entity supplying DMA services
567  * @chancnt: how many DMA channels are supported
568  * @privatecnt: how many DMA channels are requested by dma_request_channel
569  * @channels: the list of struct dma_chan
570  * @global_node: list_head for global dma_device_list
571  * @cap_mask: one or more dma_capability flags
572  * @max_xor: maximum number of xor sources, 0 if no capability
573  * @max_pq: maximum number of PQ sources and PQ-continue capability
574  * @copy_align: alignment shift for memcpy operations
575  * @xor_align: alignment shift for xor operations
576  * @pq_align: alignment shift for pq operations
577  * @fill_align: alignment shift for memset operations
578  * @dev_id: unique device ID
579  * @dev: struct device reference for dma mapping api
580  * @src_addr_widths: bit mask of src addr widths the device supports
581  * @dst_addr_widths: bit mask of dst addr widths the device supports
582  * @directions: bit mask of slave direction the device supports since
583  *      the enum dma_transfer_direction is not defined as bits for
584  *      each type of direction, the dma controller should fill (1 <<
585  *      <TYPE>) and same should be checked by controller as well
586  * @residue_granularity: granularity of the transfer residue reported
587  *      by tx_status
588  * @device_alloc_chan_resources: allocate resources and return the
589  *      number of allocated descriptors
590  * @device_free_chan_resources: release DMA channel's resources
591  * @device_prep_dma_memcpy: prepares a memcpy operation
592  * @device_prep_dma_xor: prepares a xor operation
593  * @device_prep_dma_xor_val: prepares a xor validation operation
594  * @device_prep_dma_pq: prepares a pq operation
595  * @device_prep_dma_pq_val: prepares a pqzero_sum operation
596  * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
597  * @device_prep_slave_sg: prepares a slave dma operation
598  * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
599  *      The function takes a buffer of size buf_len. The callback function will
600  *      be called after period_len bytes have been transferred.
601  * @device_prep_interleaved_dma: Transfer expression in a generic way.
602  * @device_config: Pushes a new configuration to a channel, return 0 or an error
603  *      code
604  * @device_pause: Pauses any transfer happening on a channel. Returns
605  *      0 or an error code
606  * @device_resume: Resumes any transfer on a channel previously
607  *      paused. Returns 0 or an error code
608  * @device_terminate_all: Aborts all transfers on a channel. Returns 0
609  *      or an error code
610  * @device_tx_status: poll for transaction completion, the optional
611  *      txstate parameter can be supplied with a pointer to get a
612  *      struct with auxiliary transfer status information, otherwise the call
613  *      will just return a simple status code
614  * @device_issue_pending: push pending transactions to hardware
615  */
616 struct dma_device {
617
618         unsigned int chancnt;
619         unsigned int privatecnt;
620         struct list_head channels;
621         struct list_head global_node;
622         dma_cap_mask_t  cap_mask;
623         unsigned short max_xor;
624         unsigned short max_pq;
625         u8 copy_align;
626         u8 xor_align;
627         u8 pq_align;
628         u8 fill_align;
629         #define DMA_HAS_PQ_CONTINUE (1 << 15)
630
631         int dev_id;
632         struct device *dev;
633
634         u32 src_addr_widths;
635         u32 dst_addr_widths;
636         u32 directions;
637         enum dma_residue_granularity residue_granularity;
638
639         int (*device_alloc_chan_resources)(struct dma_chan *chan);
640         void (*device_free_chan_resources)(struct dma_chan *chan);
641
642         struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
643                 struct dma_chan *chan, dma_addr_t dst, dma_addr_t src,
644                 size_t len, unsigned long flags);
645         struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
646                 struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src,
647                 unsigned int src_cnt, size_t len, unsigned long flags);
648         struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
649                 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
650                 size_t len, enum sum_check_flags *result, unsigned long flags);
651         struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
652                 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
653                 unsigned int src_cnt, const unsigned char *scf,
654                 size_t len, unsigned long flags);
655         struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
656                 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
657                 unsigned int src_cnt, const unsigned char *scf, size_t len,
658                 enum sum_check_flags *pqres, unsigned long flags);
659         struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
660                 struct dma_chan *chan, unsigned long flags);
661         struct dma_async_tx_descriptor *(*device_prep_dma_sg)(
662                 struct dma_chan *chan,
663                 struct scatterlist *dst_sg, unsigned int dst_nents,
664                 struct scatterlist *src_sg, unsigned int src_nents,
665                 unsigned long flags);
666
667         struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
668                 struct dma_chan *chan, struct scatterlist *sgl,
669                 unsigned int sg_len, enum dma_transfer_direction direction,
670                 unsigned long flags, void *context);
671         struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
672                 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
673                 size_t period_len, enum dma_transfer_direction direction,
674                 unsigned long flags);
675         struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
676                 struct dma_chan *chan, struct dma_interleaved_template *xt,
677                 unsigned long flags);
678
679         int (*device_config)(struct dma_chan *chan,
680                              struct dma_slave_config *config);
681         int (*device_pause)(struct dma_chan *chan);
682         int (*device_resume)(struct dma_chan *chan);
683         int (*device_terminate_all)(struct dma_chan *chan);
684
685         enum dma_status (*device_tx_status)(struct dma_chan *chan,
686                                             dma_cookie_t cookie,
687                                             struct dma_tx_state *txstate);
688         void (*device_issue_pending)(struct dma_chan *chan);
689 };
690
691 static inline int dmaengine_slave_config(struct dma_chan *chan,
692                                           struct dma_slave_config *config)
693 {
694         if (chan->device->device_config)
695                 return chan->device->device_config(chan, config);
696
697         return -ENOSYS;
698 }
699
700 static inline bool is_slave_direction(enum dma_transfer_direction direction)
701 {
702         return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM);
703 }
704
705 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
706         struct dma_chan *chan, dma_addr_t buf, size_t len,
707         enum dma_transfer_direction dir, unsigned long flags)
708 {
709         struct scatterlist sg;
710         sg_init_table(&sg, 1);
711         sg_dma_address(&sg) = buf;
712         sg_dma_len(&sg) = len;
713
714         return chan->device->device_prep_slave_sg(chan, &sg, 1,
715                                                   dir, flags, NULL);
716 }
717
718 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
719         struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
720         enum dma_transfer_direction dir, unsigned long flags)
721 {
722         return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
723                                                   dir, flags, NULL);
724 }
725
726 #ifdef CONFIG_RAPIDIO_DMA_ENGINE
727 struct rio_dma_ext;
728 static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
729         struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
730         enum dma_transfer_direction dir, unsigned long flags,
731         struct rio_dma_ext *rio_ext)
732 {
733         return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
734                                                   dir, flags, rio_ext);
735 }
736 #endif
737
738 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
739                 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
740                 size_t period_len, enum dma_transfer_direction dir,
741                 unsigned long flags)
742 {
743         return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
744                                                 period_len, dir, flags);
745 }
746
747 static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
748                 struct dma_chan *chan, struct dma_interleaved_template *xt,
749                 unsigned long flags)
750 {
751         return chan->device->device_prep_interleaved_dma(chan, xt, flags);
752 }
753
754 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_sg(
755                 struct dma_chan *chan,
756                 struct scatterlist *dst_sg, unsigned int dst_nents,
757                 struct scatterlist *src_sg, unsigned int src_nents,
758                 unsigned long flags)
759 {
760         return chan->device->device_prep_dma_sg(chan, dst_sg, dst_nents,
761                         src_sg, src_nents, flags);
762 }
763
764 static inline int dmaengine_terminate_all(struct dma_chan *chan)
765 {
766         if (chan->device->device_terminate_all)
767                 return chan->device->device_terminate_all(chan);
768
769         return -ENOSYS;
770 }
771
772 static inline int dmaengine_pause(struct dma_chan *chan)
773 {
774         if (chan->device->device_pause)
775                 return chan->device->device_pause(chan);
776
777         return -ENOSYS;
778 }
779
780 static inline int dmaengine_resume(struct dma_chan *chan)
781 {
782         if (chan->device->device_resume)
783                 return chan->device->device_resume(chan);
784
785         return -ENOSYS;
786 }
787
788 static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
789         dma_cookie_t cookie, struct dma_tx_state *state)
790 {
791         return chan->device->device_tx_status(chan, cookie, state);
792 }
793
794 static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
795 {
796         return desc->tx_submit(desc);
797 }
798
799 static inline bool dmaengine_check_align(u8 align, size_t off1, size_t off2, size_t len)
800 {
801         size_t mask;
802
803         if (!align)
804                 return true;
805         mask = (1 << align) - 1;
806         if (mask & (off1 | off2 | len))
807                 return false;
808         return true;
809 }
810
811 static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
812                                        size_t off2, size_t len)
813 {
814         return dmaengine_check_align(dev->copy_align, off1, off2, len);
815 }
816
817 static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
818                                       size_t off2, size_t len)
819 {
820         return dmaengine_check_align(dev->xor_align, off1, off2, len);
821 }
822
823 static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
824                                      size_t off2, size_t len)
825 {
826         return dmaengine_check_align(dev->pq_align, off1, off2, len);
827 }
828
829 static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
830                                        size_t off2, size_t len)
831 {
832         return dmaengine_check_align(dev->fill_align, off1, off2, len);
833 }
834
835 static inline void
836 dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
837 {
838         dma->max_pq = maxpq;
839         if (has_pq_continue)
840                 dma->max_pq |= DMA_HAS_PQ_CONTINUE;
841 }
842
843 static inline bool dmaf_continue(enum dma_ctrl_flags flags)
844 {
845         return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
846 }
847
848 static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
849 {
850         enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
851
852         return (flags & mask) == mask;
853 }
854
855 static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
856 {
857         return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
858 }
859
860 static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
861 {
862         return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
863 }
864
865 /* dma_maxpq - reduce maxpq in the face of continued operations
866  * @dma - dma device with PQ capability
867  * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
868  *
869  * When an engine does not support native continuation we need 3 extra
870  * source slots to reuse P and Q with the following coefficients:
871  * 1/ {00} * P : remove P from Q', but use it as a source for P'
872  * 2/ {01} * Q : use Q to continue Q' calculation
873  * 3/ {00} * Q : subtract Q from P' to cancel (2)
874  *
875  * In the case where P is disabled we only need 1 extra source:
876  * 1/ {01} * Q : use Q to continue Q' calculation
877  */
878 static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
879 {
880         if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
881                 return dma_dev_to_maxpq(dma);
882         else if (dmaf_p_disabled_continue(flags))
883                 return dma_dev_to_maxpq(dma) - 1;
884         else if (dmaf_continue(flags))
885                 return dma_dev_to_maxpq(dma) - 3;
886         BUG();
887 }
888
889 /* --- public DMA engine API --- */
890
891 #ifdef CONFIG_DMA_ENGINE
892 void dmaengine_get(void);
893 void dmaengine_put(void);
894 #else
895 static inline void dmaengine_get(void)
896 {
897 }
898 static inline void dmaengine_put(void)
899 {
900 }
901 #endif
902
903 #ifdef CONFIG_ASYNC_TX_DMA
904 #define async_dmaengine_get()   dmaengine_get()
905 #define async_dmaengine_put()   dmaengine_put()
906 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
907 #define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
908 #else
909 #define async_dma_find_channel(type) dma_find_channel(type)
910 #endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
911 #else
912 static inline void async_dmaengine_get(void)
913 {
914 }
915 static inline void async_dmaengine_put(void)
916 {
917 }
918 static inline struct dma_chan *
919 async_dma_find_channel(enum dma_transaction_type type)
920 {
921         return NULL;
922 }
923 #endif /* CONFIG_ASYNC_TX_DMA */
924 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
925                                   struct dma_chan *chan);
926
927 static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
928 {
929         tx->flags |= DMA_CTRL_ACK;
930 }
931
932 static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
933 {
934         tx->flags &= ~DMA_CTRL_ACK;
935 }
936
937 static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
938 {
939         return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
940 }
941
942 #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
943 static inline void
944 __dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
945 {
946         set_bit(tx_type, dstp->bits);
947 }
948
949 #define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
950 static inline void
951 __dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
952 {
953         clear_bit(tx_type, dstp->bits);
954 }
955
956 #define dma_cap_zero(mask) __dma_cap_zero(&(mask))
957 static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
958 {
959         bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
960 }
961
962 #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
963 static inline int
964 __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
965 {
966         return test_bit(tx_type, srcp->bits);
967 }
968
969 #define for_each_dma_cap_mask(cap, mask) \
970         for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
971
972 /**
973  * dma_async_issue_pending - flush pending transactions to HW
974  * @chan: target DMA channel
975  *
976  * This allows drivers to push copies to HW in batches,
977  * reducing MMIO writes where possible.
978  */
979 static inline void dma_async_issue_pending(struct dma_chan *chan)
980 {
981         chan->device->device_issue_pending(chan);
982 }
983
984 /**
985  * dma_async_is_tx_complete - poll for transaction completion
986  * @chan: DMA channel
987  * @cookie: transaction identifier to check status of
988  * @last: returns last completed cookie, can be NULL
989  * @used: returns last issued cookie, can be NULL
990  *
991  * If @last and @used are passed in, upon return they reflect the driver
992  * internal state and can be used with dma_async_is_complete() to check
993  * the status of multiple cookies without re-checking hardware state.
994  */
995 static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
996         dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
997 {
998         struct dma_tx_state state;
999         enum dma_status status;
1000
1001         status = chan->device->device_tx_status(chan, cookie, &state);
1002         if (last)
1003                 *last = state.last;
1004         if (used)
1005                 *used = state.used;
1006         return status;
1007 }
1008
1009 /**
1010  * dma_async_is_complete - test a cookie against chan state
1011  * @cookie: transaction identifier to test status of
1012  * @last_complete: last know completed transaction
1013  * @last_used: last cookie value handed out
1014  *
1015  * dma_async_is_complete() is used in dma_async_is_tx_complete()
1016  * the test logic is separated for lightweight testing of multiple cookies
1017  */
1018 static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
1019                         dma_cookie_t last_complete, dma_cookie_t last_used)
1020 {
1021         if (last_complete <= last_used) {
1022                 if ((cookie <= last_complete) || (cookie > last_used))
1023                         return DMA_COMPLETE;
1024         } else {
1025                 if ((cookie <= last_complete) && (cookie > last_used))
1026                         return DMA_COMPLETE;
1027         }
1028         return DMA_IN_PROGRESS;
1029 }
1030
1031 static inline void
1032 dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
1033 {
1034         if (st) {
1035                 st->last = last;
1036                 st->used = used;
1037                 st->residue = residue;
1038         }
1039 }
1040
1041 #ifdef CONFIG_DMA_ENGINE
1042 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
1043 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
1044 enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
1045 void dma_issue_pending_all(void);
1046 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1047                                         dma_filter_fn fn, void *fn_param);
1048 struct dma_chan *dma_request_slave_channel_reason(struct device *dev,
1049                                                   const char *name);
1050 struct dma_chan *dma_request_slave_channel(struct device *dev, const char *name);
1051 void dma_release_channel(struct dma_chan *chan);
1052 int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps);
1053 #else
1054 static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
1055 {
1056         return NULL;
1057 }
1058 static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
1059 {
1060         return DMA_COMPLETE;
1061 }
1062 static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1063 {
1064         return DMA_COMPLETE;
1065 }
1066 static inline void dma_issue_pending_all(void)
1067 {
1068 }
1069 static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1070                                               dma_filter_fn fn, void *fn_param)
1071 {
1072         return NULL;
1073 }
1074 static inline struct dma_chan *dma_request_slave_channel_reason(
1075                                         struct device *dev, const char *name)
1076 {
1077         return ERR_PTR(-ENODEV);
1078 }
1079 static inline struct dma_chan *dma_request_slave_channel(struct device *dev,
1080                                                          const char *name)
1081 {
1082         return NULL;
1083 }
1084 static inline void dma_release_channel(struct dma_chan *chan)
1085 {
1086 }
1087 static inline int dma_get_slave_caps(struct dma_chan *chan,
1088                                      struct dma_slave_caps *caps)
1089 {
1090         return -ENXIO;
1091 }
1092 #endif
1093
1094 /* --- DMA device --- */
1095
1096 int dma_async_device_register(struct dma_device *device);
1097 void dma_async_device_unregister(struct dma_device *device);
1098 void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
1099 struct dma_chan *dma_get_slave_channel(struct dma_chan *chan);
1100 struct dma_chan *dma_get_any_slave_channel(struct dma_device *device);
1101 struct dma_chan *net_dma_find_channel(void);
1102 #define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y)
1103 #define dma_request_slave_channel_compat(mask, x, y, dev, name) \
1104         __dma_request_slave_channel_compat(&(mask), x, y, dev, name)
1105
1106 static inline struct dma_chan
1107 *__dma_request_slave_channel_compat(const dma_cap_mask_t *mask,
1108                                   dma_filter_fn fn, void *fn_param,
1109                                   struct device *dev, char *name)
1110 {
1111         struct dma_chan *chan;
1112
1113         chan = dma_request_slave_channel(dev, name);
1114         if (chan)
1115                 return chan;
1116
1117         return __dma_request_channel(mask, fn, fn_param);
1118 }
1119
1120 /* --- Helper iov-locking functions --- */
1121
1122 struct dma_page_list {
1123         char __user *base_address;
1124         int nr_pages;
1125         struct page **pages;
1126 };
1127
1128 struct dma_pinned_list {
1129         int nr_iovecs;
1130         struct dma_page_list page_list[0];
1131 };
1132
1133 struct dma_pinned_list *dma_pin_iovec_pages(struct iovec *iov, size_t len);
1134 void dma_unpin_iovec_pages(struct dma_pinned_list* pinned_list);
1135
1136 dma_cookie_t dma_memcpy_to_iovec(struct dma_chan *chan, struct iovec *iov,
1137         struct dma_pinned_list *pinned_list, unsigned char *kdata, size_t len);
1138 dma_cookie_t dma_memcpy_pg_to_iovec(struct dma_chan *chan, struct iovec *iov,
1139         struct dma_pinned_list *pinned_list, struct page *page,
1140         unsigned int offset, size_t len);
1141
1142 #endif /* DMAENGINE_H */