]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - include/linux/usb/gadget.h
Merge remote-tracking branch 'nios2/for-next'
[karo-tx-linux.git] / include / linux / usb / gadget.h
1 /*
2  * <linux/usb/gadget.h>
3  *
4  * We call the USB code inside a Linux-based peripheral device a "gadget"
5  * driver, except for the hardware-specific bus glue.  One USB host can
6  * master many USB gadgets, but the gadgets are only slaved to one host.
7  *
8  *
9  * (C) Copyright 2002-2004 by David Brownell
10  * All Rights Reserved.
11  *
12  * This software is licensed under the GNU GPL version 2.
13  */
14
15 #ifndef __LINUX_USB_GADGET_H
16 #define __LINUX_USB_GADGET_H
17
18 #include <linux/device.h>
19 #include <linux/errno.h>
20 #include <linux/init.h>
21 #include <linux/list.h>
22 #include <linux/slab.h>
23 #include <linux/scatterlist.h>
24 #include <linux/types.h>
25 #include <linux/workqueue.h>
26 #include <linux/usb/ch9.h>
27
28 struct usb_ep;
29
30 /**
31  * struct usb_request - describes one i/o request
32  * @buf: Buffer used for data.  Always provide this; some controllers
33  *      only use PIO, or don't use DMA for some endpoints.
34  * @dma: DMA address corresponding to 'buf'.  If you don't set this
35  *      field, and the usb controller needs one, it is responsible
36  *      for mapping and unmapping the buffer.
37  * @sg: a scatterlist for SG-capable controllers.
38  * @num_sgs: number of SG entries
39  * @num_mapped_sgs: number of SG entries mapped to DMA (internal)
40  * @length: Length of that data
41  * @stream_id: The stream id, when USB3.0 bulk streams are being used
42  * @no_interrupt: If true, hints that no completion irq is needed.
43  *      Helpful sometimes with deep request queues that are handled
44  *      directly by DMA controllers.
45  * @zero: If true, when writing data, makes the last packet be "short"
46  *     by adding a zero length packet as needed;
47  * @short_not_ok: When reading data, makes short packets be
48  *     treated as errors (queue stops advancing till cleanup).
49  * @complete: Function called when request completes, so this request and
50  *      its buffer may be re-used.  The function will always be called with
51  *      interrupts disabled, and it must not sleep.
52  *      Reads terminate with a short packet, or when the buffer fills,
53  *      whichever comes first.  When writes terminate, some data bytes
54  *      will usually still be in flight (often in a hardware fifo).
55  *      Errors (for reads or writes) stop the queue from advancing
56  *      until the completion function returns, so that any transfers
57  *      invalidated by the error may first be dequeued.
58  * @context: For use by the completion callback
59  * @list: For use by the gadget driver.
60  * @status: Reports completion code, zero or a negative errno.
61  *      Normally, faults block the transfer queue from advancing until
62  *      the completion callback returns.
63  *      Code "-ESHUTDOWN" indicates completion caused by device disconnect,
64  *      or when the driver disabled the endpoint.
65  * @actual: Reports bytes transferred to/from the buffer.  For reads (OUT
66  *      transfers) this may be less than the requested length.  If the
67  *      short_not_ok flag is set, short reads are treated as errors
68  *      even when status otherwise indicates successful completion.
69  *      Note that for writes (IN transfers) some data bytes may still
70  *      reside in a device-side FIFO when the request is reported as
71  *      complete.
72  *
73  * These are allocated/freed through the endpoint they're used with.  The
74  * hardware's driver can add extra per-request data to the memory it returns,
75  * which often avoids separate memory allocations (potential failures),
76  * later when the request is queued.
77  *
78  * Request flags affect request handling, such as whether a zero length
79  * packet is written (the "zero" flag), whether a short read should be
80  * treated as an error (blocking request queue advance, the "short_not_ok"
81  * flag), or hinting that an interrupt is not required (the "no_interrupt"
82  * flag, for use with deep request queues).
83  *
84  * Bulk endpoints can use any size buffers, and can also be used for interrupt
85  * transfers. interrupt-only endpoints can be much less functional.
86  *
87  * NOTE:  this is analogous to 'struct urb' on the host side, except that
88  * it's thinner and promotes more pre-allocation.
89  */
90
91 struct usb_request {
92         void                    *buf;
93         unsigned                length;
94         dma_addr_t              dma;
95
96         struct scatterlist      *sg;
97         unsigned                num_sgs;
98         unsigned                num_mapped_sgs;
99
100         unsigned                stream_id:16;
101         unsigned                no_interrupt:1;
102         unsigned                zero:1;
103         unsigned                short_not_ok:1;
104
105         void                    (*complete)(struct usb_ep *ep,
106                                         struct usb_request *req);
107         void                    *context;
108         struct list_head        list;
109
110         int                     status;
111         unsigned                actual;
112 };
113
114 /*-------------------------------------------------------------------------*/
115
116 /* endpoint-specific parts of the api to the usb controller hardware.
117  * unlike the urb model, (de)multiplexing layers are not required.
118  * (so this api could slash overhead if used on the host side...)
119  *
120  * note that device side usb controllers commonly differ in how many
121  * endpoints they support, as well as their capabilities.
122  */
123 struct usb_ep_ops {
124         int (*enable) (struct usb_ep *ep,
125                 const struct usb_endpoint_descriptor *desc);
126         int (*disable) (struct usb_ep *ep);
127
128         struct usb_request *(*alloc_request) (struct usb_ep *ep,
129                 gfp_t gfp_flags);
130         void (*free_request) (struct usb_ep *ep, struct usb_request *req);
131
132         int (*queue) (struct usb_ep *ep, struct usb_request *req,
133                 gfp_t gfp_flags);
134         int (*dequeue) (struct usb_ep *ep, struct usb_request *req);
135
136         int (*set_halt) (struct usb_ep *ep, int value);
137         int (*set_wedge) (struct usb_ep *ep);
138
139         int (*fifo_status) (struct usb_ep *ep);
140         void (*fifo_flush) (struct usb_ep *ep);
141 };
142
143 /**
144  * struct usb_ep_caps - endpoint capabilities description
145  * @type_control:Endpoint supports control type (reserved for ep0).
146  * @type_iso:Endpoint supports isochronous transfers.
147  * @type_bulk:Endpoint supports bulk transfers.
148  * @type_int:Endpoint supports interrupt transfers.
149  * @dir_in:Endpoint supports IN direction.
150  * @dir_out:Endpoint supports OUT direction.
151  */
152 struct usb_ep_caps {
153         unsigned type_control:1;
154         unsigned type_iso:1;
155         unsigned type_bulk:1;
156         unsigned type_int:1;
157         unsigned dir_in:1;
158         unsigned dir_out:1;
159 };
160
161 #define USB_EP_CAPS_TYPE_CONTROL     0x01
162 #define USB_EP_CAPS_TYPE_ISO         0x02
163 #define USB_EP_CAPS_TYPE_BULK        0x04
164 #define USB_EP_CAPS_TYPE_INT         0x08
165 #define USB_EP_CAPS_TYPE_ALL \
166         (USB_EP_CAPS_TYPE_ISO | USB_EP_CAPS_TYPE_BULK | USB_EP_CAPS_TYPE_INT)
167 #define USB_EP_CAPS_DIR_IN           0x01
168 #define USB_EP_CAPS_DIR_OUT          0x02
169 #define USB_EP_CAPS_DIR_ALL  (USB_EP_CAPS_DIR_IN | USB_EP_CAPS_DIR_OUT)
170
171 #define USB_EP_CAPS(_type, _dir) \
172         { \
173                 .type_control = !!(_type & USB_EP_CAPS_TYPE_CONTROL), \
174                 .type_iso = !!(_type & USB_EP_CAPS_TYPE_ISO), \
175                 .type_bulk = !!(_type & USB_EP_CAPS_TYPE_BULK), \
176                 .type_int = !!(_type & USB_EP_CAPS_TYPE_INT), \
177                 .dir_in = !!(_dir & USB_EP_CAPS_DIR_IN), \
178                 .dir_out = !!(_dir & USB_EP_CAPS_DIR_OUT), \
179         }
180
181 /**
182  * struct usb_ep - device side representation of USB endpoint
183  * @name:identifier for the endpoint, such as "ep-a" or "ep9in-bulk"
184  * @ops: Function pointers used to access hardware-specific operations.
185  * @ep_list:the gadget's ep_list holds all of its endpoints
186  * @caps:The structure describing types and directions supported by endoint.
187  * @maxpacket:The maximum packet size used on this endpoint.  The initial
188  *      value can sometimes be reduced (hardware allowing), according to
189  *      the endpoint descriptor used to configure the endpoint.
190  * @maxpacket_limit:The maximum packet size value which can be handled by this
191  *      endpoint. It's set once by UDC driver when endpoint is initialized, and
192  *      should not be changed. Should not be confused with maxpacket.
193  * @max_streams: The maximum number of streams supported
194  *      by this EP (0 - 16, actual number is 2^n)
195  * @mult: multiplier, 'mult' value for SS Isoc EPs
196  * @maxburst: the maximum number of bursts supported by this EP (for usb3)
197  * @driver_data:for use by the gadget driver.
198  * @address: used to identify the endpoint when finding descriptor that
199  *      matches connection speed
200  * @desc: endpoint descriptor.  This pointer is set before the endpoint is
201  *      enabled and remains valid until the endpoint is disabled.
202  * @comp_desc: In case of SuperSpeed support, this is the endpoint companion
203  *      descriptor that is used to configure the endpoint
204  *
205  * the bus controller driver lists all the general purpose endpoints in
206  * gadget->ep_list.  the control endpoint (gadget->ep0) is not in that list,
207  * and is accessed only in response to a driver setup() callback.
208  */
209
210 struct usb_ep {
211         void                    *driver_data;
212
213         const char              *name;
214         const struct usb_ep_ops *ops;
215         struct list_head        ep_list;
216         struct usb_ep_caps      caps;
217         bool                    claimed;
218         unsigned                maxpacket:16;
219         unsigned                maxpacket_limit:16;
220         unsigned                max_streams:16;
221         unsigned                mult:2;
222         unsigned                maxburst:5;
223         u8                      address;
224         const struct usb_endpoint_descriptor    *desc;
225         const struct usb_ss_ep_comp_descriptor  *comp_desc;
226 };
227
228 /*-------------------------------------------------------------------------*/
229
230 /**
231  * usb_ep_set_maxpacket_limit - set maximum packet size limit for endpoint
232  * @ep:the endpoint being configured
233  * @maxpacket_limit:value of maximum packet size limit
234  *
235  * This function should be used only in UDC drivers to initialize endpoint
236  * (usually in probe function).
237  */
238 static inline void usb_ep_set_maxpacket_limit(struct usb_ep *ep,
239                                               unsigned maxpacket_limit)
240 {
241         ep->maxpacket_limit = maxpacket_limit;
242         ep->maxpacket = maxpacket_limit;
243 }
244
245 /**
246  * usb_ep_enable - configure endpoint, making it usable
247  * @ep:the endpoint being configured.  may not be the endpoint named "ep0".
248  *      drivers discover endpoints through the ep_list of a usb_gadget.
249  *
250  * When configurations are set, or when interface settings change, the driver
251  * will enable or disable the relevant endpoints.  while it is enabled, an
252  * endpoint may be used for i/o until the driver receives a disconnect() from
253  * the host or until the endpoint is disabled.
254  *
255  * the ep0 implementation (which calls this routine) must ensure that the
256  * hardware capabilities of each endpoint match the descriptor provided
257  * for it.  for example, an endpoint named "ep2in-bulk" would be usable
258  * for interrupt transfers as well as bulk, but it likely couldn't be used
259  * for iso transfers or for endpoint 14.  some endpoints are fully
260  * configurable, with more generic names like "ep-a".  (remember that for
261  * USB, "in" means "towards the USB master".)
262  *
263  * returns zero, or a negative error code.
264  */
265 static inline int usb_ep_enable(struct usb_ep *ep)
266 {
267         return ep->ops->enable(ep, ep->desc);
268 }
269
270 /**
271  * usb_ep_disable - endpoint is no longer usable
272  * @ep:the endpoint being unconfigured.  may not be the endpoint named "ep0".
273  *
274  * no other task may be using this endpoint when this is called.
275  * any pending and uncompleted requests will complete with status
276  * indicating disconnect (-ESHUTDOWN) before this call returns.
277  * gadget drivers must call usb_ep_enable() again before queueing
278  * requests to the endpoint.
279  *
280  * returns zero, or a negative error code.
281  */
282 static inline int usb_ep_disable(struct usb_ep *ep)
283 {
284         return ep->ops->disable(ep);
285 }
286
287 /**
288  * usb_ep_alloc_request - allocate a request object to use with this endpoint
289  * @ep:the endpoint to be used with with the request
290  * @gfp_flags:GFP_* flags to use
291  *
292  * Request objects must be allocated with this call, since they normally
293  * need controller-specific setup and may even need endpoint-specific
294  * resources such as allocation of DMA descriptors.
295  * Requests may be submitted with usb_ep_queue(), and receive a single
296  * completion callback.  Free requests with usb_ep_free_request(), when
297  * they are no longer needed.
298  *
299  * Returns the request, or null if one could not be allocated.
300  */
301 static inline struct usb_request *usb_ep_alloc_request(struct usb_ep *ep,
302                                                        gfp_t gfp_flags)
303 {
304         return ep->ops->alloc_request(ep, gfp_flags);
305 }
306
307 /**
308  * usb_ep_free_request - frees a request object
309  * @ep:the endpoint associated with the request
310  * @req:the request being freed
311  *
312  * Reverses the effect of usb_ep_alloc_request().
313  * Caller guarantees the request is not queued, and that it will
314  * no longer be requeued (or otherwise used).
315  */
316 static inline void usb_ep_free_request(struct usb_ep *ep,
317                                        struct usb_request *req)
318 {
319         ep->ops->free_request(ep, req);
320 }
321
322 /**
323  * usb_ep_queue - queues (submits) an I/O request to an endpoint.
324  * @ep:the endpoint associated with the request
325  * @req:the request being submitted
326  * @gfp_flags: GFP_* flags to use in case the lower level driver couldn't
327  *      pre-allocate all necessary memory with the request.
328  *
329  * This tells the device controller to perform the specified request through
330  * that endpoint (reading or writing a buffer).  When the request completes,
331  * including being canceled by usb_ep_dequeue(), the request's completion
332  * routine is called to return the request to the driver.  Any endpoint
333  * (except control endpoints like ep0) may have more than one transfer
334  * request queued; they complete in FIFO order.  Once a gadget driver
335  * submits a request, that request may not be examined or modified until it
336  * is given back to that driver through the completion callback.
337  *
338  * Each request is turned into one or more packets.  The controller driver
339  * never merges adjacent requests into the same packet.  OUT transfers
340  * will sometimes use data that's already buffered in the hardware.
341  * Drivers can rely on the fact that the first byte of the request's buffer
342  * always corresponds to the first byte of some USB packet, for both
343  * IN and OUT transfers.
344  *
345  * Bulk endpoints can queue any amount of data; the transfer is packetized
346  * automatically.  The last packet will be short if the request doesn't fill it
347  * out completely.  Zero length packets (ZLPs) should be avoided in portable
348  * protocols since not all usb hardware can successfully handle zero length
349  * packets.  (ZLPs may be explicitly written, and may be implicitly written if
350  * the request 'zero' flag is set.)  Bulk endpoints may also be used
351  * for interrupt transfers; but the reverse is not true, and some endpoints
352  * won't support every interrupt transfer.  (Such as 768 byte packets.)
353  *
354  * Interrupt-only endpoints are less functional than bulk endpoints, for
355  * example by not supporting queueing or not handling buffers that are
356  * larger than the endpoint's maxpacket size.  They may also treat data
357  * toggle differently.
358  *
359  * Control endpoints ... after getting a setup() callback, the driver queues
360  * one response (even if it would be zero length).  That enables the
361  * status ack, after transferring data as specified in the response.  Setup
362  * functions may return negative error codes to generate protocol stalls.
363  * (Note that some USB device controllers disallow protocol stall responses
364  * in some cases.)  When control responses are deferred (the response is
365  * written after the setup callback returns), then usb_ep_set_halt() may be
366  * used on ep0 to trigger protocol stalls.  Depending on the controller,
367  * it may not be possible to trigger a status-stage protocol stall when the
368  * data stage is over, that is, from within the response's completion
369  * routine.
370  *
371  * For periodic endpoints, like interrupt or isochronous ones, the usb host
372  * arranges to poll once per interval, and the gadget driver usually will
373  * have queued some data to transfer at that time.
374  *
375  * Returns zero, or a negative error code.  Endpoints that are not enabled
376  * report errors; errors will also be
377  * reported when the usb peripheral is disconnected.
378  */
379 static inline int usb_ep_queue(struct usb_ep *ep,
380                                struct usb_request *req, gfp_t gfp_flags)
381 {
382         return ep->ops->queue(ep, req, gfp_flags);
383 }
384
385 /**
386  * usb_ep_dequeue - dequeues (cancels, unlinks) an I/O request from an endpoint
387  * @ep:the endpoint associated with the request
388  * @req:the request being canceled
389  *
390  * If the request is still active on the endpoint, it is dequeued and its
391  * completion routine is called (with status -ECONNRESET); else a negative
392  * error code is returned. This is guaranteed to happen before the call to
393  * usb_ep_dequeue() returns.
394  *
395  * Note that some hardware can't clear out write fifos (to unlink the request
396  * at the head of the queue) except as part of disconnecting from usb. Such
397  * restrictions prevent drivers from supporting configuration changes,
398  * even to configuration zero (a "chapter 9" requirement).
399  */
400 static inline int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
401 {
402         return ep->ops->dequeue(ep, req);
403 }
404
405 /**
406  * usb_ep_set_halt - sets the endpoint halt feature.
407  * @ep: the non-isochronous endpoint being stalled
408  *
409  * Use this to stall an endpoint, perhaps as an error report.
410  * Except for control endpoints,
411  * the endpoint stays halted (will not stream any data) until the host
412  * clears this feature; drivers may need to empty the endpoint's request
413  * queue first, to make sure no inappropriate transfers happen.
414  *
415  * Note that while an endpoint CLEAR_FEATURE will be invisible to the
416  * gadget driver, a SET_INTERFACE will not be.  To reset endpoints for the
417  * current altsetting, see usb_ep_clear_halt().  When switching altsettings,
418  * it's simplest to use usb_ep_enable() or usb_ep_disable() for the endpoints.
419  *
420  * Returns zero, or a negative error code.  On success, this call sets
421  * underlying hardware state that blocks data transfers.
422  * Attempts to halt IN endpoints will fail (returning -EAGAIN) if any
423  * transfer requests are still queued, or if the controller hardware
424  * (usually a FIFO) still holds bytes that the host hasn't collected.
425  */
426 static inline int usb_ep_set_halt(struct usb_ep *ep)
427 {
428         return ep->ops->set_halt(ep, 1);
429 }
430
431 /**
432  * usb_ep_clear_halt - clears endpoint halt, and resets toggle
433  * @ep:the bulk or interrupt endpoint being reset
434  *
435  * Use this when responding to the standard usb "set interface" request,
436  * for endpoints that aren't reconfigured, after clearing any other state
437  * in the endpoint's i/o queue.
438  *
439  * Returns zero, or a negative error code.  On success, this call clears
440  * the underlying hardware state reflecting endpoint halt and data toggle.
441  * Note that some hardware can't support this request (like pxa2xx_udc),
442  * and accordingly can't correctly implement interface altsettings.
443  */
444 static inline int usb_ep_clear_halt(struct usb_ep *ep)
445 {
446         return ep->ops->set_halt(ep, 0);
447 }
448
449 /**
450  * usb_ep_set_wedge - sets the halt feature and ignores clear requests
451  * @ep: the endpoint being wedged
452  *
453  * Use this to stall an endpoint and ignore CLEAR_FEATURE(HALT_ENDPOINT)
454  * requests. If the gadget driver clears the halt status, it will
455  * automatically unwedge the endpoint.
456  *
457  * Returns zero on success, else negative errno.
458  */
459 static inline int
460 usb_ep_set_wedge(struct usb_ep *ep)
461 {
462         if (ep->ops->set_wedge)
463                 return ep->ops->set_wedge(ep);
464         else
465                 return ep->ops->set_halt(ep, 1);
466 }
467
468 /**
469  * usb_ep_fifo_status - returns number of bytes in fifo, or error
470  * @ep: the endpoint whose fifo status is being checked.
471  *
472  * FIFO endpoints may have "unclaimed data" in them in certain cases,
473  * such as after aborted transfers.  Hosts may not have collected all
474  * the IN data written by the gadget driver (and reported by a request
475  * completion).  The gadget driver may not have collected all the data
476  * written OUT to it by the host.  Drivers that need precise handling for
477  * fault reporting or recovery may need to use this call.
478  *
479  * This returns the number of such bytes in the fifo, or a negative
480  * errno if the endpoint doesn't use a FIFO or doesn't support such
481  * precise handling.
482  */
483 static inline int usb_ep_fifo_status(struct usb_ep *ep)
484 {
485         if (ep->ops->fifo_status)
486                 return ep->ops->fifo_status(ep);
487         else
488                 return -EOPNOTSUPP;
489 }
490
491 /**
492  * usb_ep_fifo_flush - flushes contents of a fifo
493  * @ep: the endpoint whose fifo is being flushed.
494  *
495  * This call may be used to flush the "unclaimed data" that may exist in
496  * an endpoint fifo after abnormal transaction terminations.  The call
497  * must never be used except when endpoint is not being used for any
498  * protocol translation.
499  */
500 static inline void usb_ep_fifo_flush(struct usb_ep *ep)
501 {
502         if (ep->ops->fifo_flush)
503                 ep->ops->fifo_flush(ep);
504 }
505
506
507 /*-------------------------------------------------------------------------*/
508
509 struct usb_dcd_config_params {
510         __u8  bU1devExitLat;    /* U1 Device exit Latency */
511 #define USB_DEFAULT_U1_DEV_EXIT_LAT     0x01    /* Less then 1 microsec */
512         __le16 bU2DevExitLat;   /* U2 Device exit Latency */
513 #define USB_DEFAULT_U2_DEV_EXIT_LAT     0x1F4   /* Less then 500 microsec */
514 };
515
516
517 struct usb_gadget;
518 struct usb_gadget_driver;
519 struct usb_udc;
520
521 /* the rest of the api to the controller hardware: device operations,
522  * which don't involve endpoints (or i/o).
523  */
524 struct usb_gadget_ops {
525         int     (*get_frame)(struct usb_gadget *);
526         int     (*wakeup)(struct usb_gadget *);
527         int     (*set_selfpowered) (struct usb_gadget *, int is_selfpowered);
528         int     (*vbus_session) (struct usb_gadget *, int is_active);
529         int     (*vbus_draw) (struct usb_gadget *, unsigned mA);
530         int     (*pullup) (struct usb_gadget *, int is_on);
531         int     (*ioctl)(struct usb_gadget *,
532                                 unsigned code, unsigned long param);
533         void    (*get_config_params)(struct usb_dcd_config_params *);
534         int     (*udc_start)(struct usb_gadget *,
535                         struct usb_gadget_driver *);
536         int     (*udc_stop)(struct usb_gadget *);
537         struct usb_ep *(*match_ep)(struct usb_gadget *,
538                         struct usb_endpoint_descriptor *,
539                         struct usb_ss_ep_comp_descriptor *);
540 };
541
542 /**
543  * struct usb_gadget - represents a usb slave device
544  * @work: (internal use) Workqueue to be used for sysfs_notify()
545  * @udc: struct usb_udc pointer for this gadget
546  * @ops: Function pointers used to access hardware-specific operations.
547  * @ep0: Endpoint zero, used when reading or writing responses to
548  *      driver setup() requests
549  * @ep_list: List of other endpoints supported by the device.
550  * @speed: Speed of current connection to USB host.
551  * @max_speed: Maximal speed the UDC can handle.  UDC must support this
552  *      and all slower speeds.
553  * @state: the state we are now (attached, suspended, configured, etc)
554  * @name: Identifies the controller hardware type.  Used in diagnostics
555  *      and sometimes configuration.
556  * @dev: Driver model state for this abstract device.
557  * @out_epnum: last used out ep number
558  * @in_epnum: last used in ep number
559  * @otg_caps: OTG capabilities of this gadget.
560  * @sg_supported: true if we can handle scatter-gather
561  * @is_otg: True if the USB device port uses a Mini-AB jack, so that the
562  *      gadget driver must provide a USB OTG descriptor.
563  * @is_a_peripheral: False unless is_otg, the "A" end of a USB cable
564  *      is in the Mini-AB jack, and HNP has been used to switch roles
565  *      so that the "A" device currently acts as A-Peripheral, not A-Host.
566  * @a_hnp_support: OTG device feature flag, indicating that the A-Host
567  *      supports HNP at this port.
568  * @a_alt_hnp_support: OTG device feature flag, indicating that the A-Host
569  *      only supports HNP on a different root port.
570  * @b_hnp_enable: OTG device feature flag, indicating that the A-Host
571  *      enabled HNP support.
572  * @quirk_ep_out_aligned_size: epout requires buffer size to be aligned to
573  *      MaxPacketSize.
574  * @is_selfpowered: if the gadget is self-powered.
575  * @deactivated: True if gadget is deactivated - in deactivated state it cannot
576  *      be connected.
577  * @connected: True if gadget is connected.
578  *
579  * Gadgets have a mostly-portable "gadget driver" implementing device
580  * functions, handling all usb configurations and interfaces.  Gadget
581  * drivers talk to hardware-specific code indirectly, through ops vectors.
582  * That insulates the gadget driver from hardware details, and packages
583  * the hardware endpoints through generic i/o queues.  The "usb_gadget"
584  * and "usb_ep" interfaces provide that insulation from the hardware.
585  *
586  * Except for the driver data, all fields in this structure are
587  * read-only to the gadget driver.  That driver data is part of the
588  * "driver model" infrastructure in 2.6 (and later) kernels, and for
589  * earlier systems is grouped in a similar structure that's not known
590  * to the rest of the kernel.
591  *
592  * Values of the three OTG device feature flags are updated before the
593  * setup() call corresponding to USB_REQ_SET_CONFIGURATION, and before
594  * driver suspend() calls.  They are valid only when is_otg, and when the
595  * device is acting as a B-Peripheral (so is_a_peripheral is false).
596  */
597 struct usb_gadget {
598         struct work_struct              work;
599         struct usb_udc                  *udc;
600         /* readonly to gadget driver */
601         const struct usb_gadget_ops     *ops;
602         struct usb_ep                   *ep0;
603         struct list_head                ep_list;        /* of usb_ep */
604         enum usb_device_speed           speed;
605         enum usb_device_speed           max_speed;
606         enum usb_device_state           state;
607         const char                      *name;
608         struct device                   dev;
609         unsigned                        out_epnum;
610         unsigned                        in_epnum;
611         struct usb_otg_caps             *otg_caps;
612
613         unsigned                        sg_supported:1;
614         unsigned                        is_otg:1;
615         unsigned                        is_a_peripheral:1;
616         unsigned                        b_hnp_enable:1;
617         unsigned                        a_hnp_support:1;
618         unsigned                        a_alt_hnp_support:1;
619         unsigned                        quirk_ep_out_aligned_size:1;
620         unsigned                        quirk_altset_not_supp:1;
621         unsigned                        quirk_stall_not_supp:1;
622         unsigned                        quirk_zlp_not_supp:1;
623         unsigned                        is_selfpowered:1;
624         unsigned                        deactivated:1;
625         unsigned                        connected:1;
626 };
627 #define work_to_gadget(w)       (container_of((w), struct usb_gadget, work))
628
629 static inline void set_gadget_data(struct usb_gadget *gadget, void *data)
630         { dev_set_drvdata(&gadget->dev, data); }
631 static inline void *get_gadget_data(struct usb_gadget *gadget)
632         { return dev_get_drvdata(&gadget->dev); }
633 static inline struct usb_gadget *dev_to_usb_gadget(struct device *dev)
634 {
635         return container_of(dev, struct usb_gadget, dev);
636 }
637
638 /* iterates the non-control endpoints; 'tmp' is a struct usb_ep pointer */
639 #define gadget_for_each_ep(tmp, gadget) \
640         list_for_each_entry(tmp, &(gadget)->ep_list, ep_list)
641
642 /**
643  * usb_ep_align_maybe - returns @len aligned to ep's maxpacketsize if gadget
644  *      requires quirk_ep_out_aligned_size, otherwise reguens len.
645  * @g: controller to check for quirk
646  * @ep: the endpoint whose maxpacketsize is used to align @len
647  * @len: buffer size's length to align to @ep's maxpacketsize
648  *
649  * This helper is used in case it's required for any reason to check and maybe
650  * align buffer's size to an ep's maxpacketsize.
651  */
652 static inline size_t
653 usb_ep_align_maybe(struct usb_gadget *g, struct usb_ep *ep, size_t len)
654 {
655         return !g->quirk_ep_out_aligned_size ? len :
656                         round_up(len, (size_t)ep->desc->wMaxPacketSize);
657 }
658
659 /**
660  * gadget_is_altset_supported - return true iff the hardware supports
661  *      altsettings
662  * @g: controller to check for quirk
663  */
664 static inline int gadget_is_altset_supported(struct usb_gadget *g)
665 {
666         return !g->quirk_altset_not_supp;
667 }
668
669 /**
670  * gadget_is_stall_supported - return true iff the hardware supports stalling
671  * @g: controller to check for quirk
672  */
673 static inline int gadget_is_stall_supported(struct usb_gadget *g)
674 {
675         return !g->quirk_stall_not_supp;
676 }
677
678 /**
679  * gadget_is_zlp_supported - return true iff the hardware supports zlp
680  * @g: controller to check for quirk
681  */
682 static inline int gadget_is_zlp_supported(struct usb_gadget *g)
683 {
684         return !g->quirk_zlp_not_supp;
685 }
686
687 /**
688  * gadget_is_dualspeed - return true iff the hardware handles high speed
689  * @g: controller that might support both high and full speeds
690  */
691 static inline int gadget_is_dualspeed(struct usb_gadget *g)
692 {
693         return g->max_speed >= USB_SPEED_HIGH;
694 }
695
696 /**
697  * gadget_is_superspeed() - return true if the hardware handles superspeed
698  * @g: controller that might support superspeed
699  */
700 static inline int gadget_is_superspeed(struct usb_gadget *g)
701 {
702         return g->max_speed >= USB_SPEED_SUPER;
703 }
704
705 /**
706  * gadget_is_otg - return true iff the hardware is OTG-ready
707  * @g: controller that might have a Mini-AB connector
708  *
709  * This is a runtime test, since kernels with a USB-OTG stack sometimes
710  * run on boards which only have a Mini-B (or Mini-A) connector.
711  */
712 static inline int gadget_is_otg(struct usb_gadget *g)
713 {
714 #ifdef CONFIG_USB_OTG
715         return g->is_otg;
716 #else
717         return 0;
718 #endif
719 }
720
721 /**
722  * usb_gadget_frame_number - returns the current frame number
723  * @gadget: controller that reports the frame number
724  *
725  * Returns the usb frame number, normally eleven bits from a SOF packet,
726  * or negative errno if this device doesn't support this capability.
727  */
728 static inline int usb_gadget_frame_number(struct usb_gadget *gadget)
729 {
730         return gadget->ops->get_frame(gadget);
731 }
732
733 /**
734  * usb_gadget_wakeup - tries to wake up the host connected to this gadget
735  * @gadget: controller used to wake up the host
736  *
737  * Returns zero on success, else negative error code if the hardware
738  * doesn't support such attempts, or its support has not been enabled
739  * by the usb host.  Drivers must return device descriptors that report
740  * their ability to support this, or hosts won't enable it.
741  *
742  * This may also try to use SRP to wake the host and start enumeration,
743  * even if OTG isn't otherwise in use.  OTG devices may also start
744  * remote wakeup even when hosts don't explicitly enable it.
745  */
746 static inline int usb_gadget_wakeup(struct usb_gadget *gadget)
747 {
748         if (!gadget->ops->wakeup)
749                 return -EOPNOTSUPP;
750         return gadget->ops->wakeup(gadget);
751 }
752
753 /**
754  * usb_gadget_set_selfpowered - sets the device selfpowered feature.
755  * @gadget:the device being declared as self-powered
756  *
757  * this affects the device status reported by the hardware driver
758  * to reflect that it now has a local power supply.
759  *
760  * returns zero on success, else negative errno.
761  */
762 static inline int usb_gadget_set_selfpowered(struct usb_gadget *gadget)
763 {
764         if (!gadget->ops->set_selfpowered)
765                 return -EOPNOTSUPP;
766         return gadget->ops->set_selfpowered(gadget, 1);
767 }
768
769 /**
770  * usb_gadget_clear_selfpowered - clear the device selfpowered feature.
771  * @gadget:the device being declared as bus-powered
772  *
773  * this affects the device status reported by the hardware driver.
774  * some hardware may not support bus-powered operation, in which
775  * case this feature's value can never change.
776  *
777  * returns zero on success, else negative errno.
778  */
779 static inline int usb_gadget_clear_selfpowered(struct usb_gadget *gadget)
780 {
781         if (!gadget->ops->set_selfpowered)
782                 return -EOPNOTSUPP;
783         return gadget->ops->set_selfpowered(gadget, 0);
784 }
785
786 /**
787  * usb_gadget_vbus_connect - Notify controller that VBUS is powered
788  * @gadget:The device which now has VBUS power.
789  * Context: can sleep
790  *
791  * This call is used by a driver for an external transceiver (or GPIO)
792  * that detects a VBUS power session starting.  Common responses include
793  * resuming the controller, activating the D+ (or D-) pullup to let the
794  * host detect that a USB device is attached, and starting to draw power
795  * (8mA or possibly more, especially after SET_CONFIGURATION).
796  *
797  * Returns zero on success, else negative errno.
798  */
799 static inline int usb_gadget_vbus_connect(struct usb_gadget *gadget)
800 {
801         if (!gadget->ops->vbus_session)
802                 return -EOPNOTSUPP;
803         return gadget->ops->vbus_session(gadget, 1);
804 }
805
806 /**
807  * usb_gadget_vbus_draw - constrain controller's VBUS power usage
808  * @gadget:The device whose VBUS usage is being described
809  * @mA:How much current to draw, in milliAmperes.  This should be twice
810  *      the value listed in the configuration descriptor bMaxPower field.
811  *
812  * This call is used by gadget drivers during SET_CONFIGURATION calls,
813  * reporting how much power the device may consume.  For example, this
814  * could affect how quickly batteries are recharged.
815  *
816  * Returns zero on success, else negative errno.
817  */
818 static inline int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA)
819 {
820         if (!gadget->ops->vbus_draw)
821                 return -EOPNOTSUPP;
822         return gadget->ops->vbus_draw(gadget, mA);
823 }
824
825 /**
826  * usb_gadget_vbus_disconnect - notify controller about VBUS session end
827  * @gadget:the device whose VBUS supply is being described
828  * Context: can sleep
829  *
830  * This call is used by a driver for an external transceiver (or GPIO)
831  * that detects a VBUS power session ending.  Common responses include
832  * reversing everything done in usb_gadget_vbus_connect().
833  *
834  * Returns zero on success, else negative errno.
835  */
836 static inline int usb_gadget_vbus_disconnect(struct usb_gadget *gadget)
837 {
838         if (!gadget->ops->vbus_session)
839                 return -EOPNOTSUPP;
840         return gadget->ops->vbus_session(gadget, 0);
841 }
842
843 /**
844  * usb_gadget_connect - software-controlled connect to USB host
845  * @gadget:the peripheral being connected
846  *
847  * Enables the D+ (or potentially D-) pullup.  The host will start
848  * enumerating this gadget when the pullup is active and a VBUS session
849  * is active (the link is powered).  This pullup is always enabled unless
850  * usb_gadget_disconnect() has been used to disable it.
851  *
852  * Returns zero on success, else negative errno.
853  */
854 static inline int usb_gadget_connect(struct usb_gadget *gadget)
855 {
856         int ret;
857
858         if (!gadget->ops->pullup)
859                 return -EOPNOTSUPP;
860
861         if (gadget->deactivated) {
862                 /*
863                  * If gadget is deactivated we only save new state.
864                  * Gadget will be connected automatically after activation.
865                  */
866                 gadget->connected = true;
867                 return 0;
868         }
869
870         ret = gadget->ops->pullup(gadget, 1);
871         if (!ret)
872                 gadget->connected = 1;
873         return ret;
874 }
875
876 /**
877  * usb_gadget_disconnect - software-controlled disconnect from USB host
878  * @gadget:the peripheral being disconnected
879  *
880  * Disables the D+ (or potentially D-) pullup, which the host may see
881  * as a disconnect (when a VBUS session is active).  Not all systems
882  * support software pullup controls.
883  *
884  * Returns zero on success, else negative errno.
885  */
886 static inline int usb_gadget_disconnect(struct usb_gadget *gadget)
887 {
888         int ret;
889
890         if (!gadget->ops->pullup)
891                 return -EOPNOTSUPP;
892
893         if (gadget->deactivated) {
894                 /*
895                  * If gadget is deactivated we only save new state.
896                  * Gadget will stay disconnected after activation.
897                  */
898                 gadget->connected = false;
899                 return 0;
900         }
901
902         ret = gadget->ops->pullup(gadget, 0);
903         if (!ret)
904                 gadget->connected = 0;
905         return ret;
906 }
907
908 /**
909  * usb_gadget_deactivate - deactivate function which is not ready to work
910  * @gadget: the peripheral being deactivated
911  *
912  * This routine may be used during the gadget driver bind() call to prevent
913  * the peripheral from ever being visible to the USB host, unless later
914  * usb_gadget_activate() is called.  For example, user mode components may
915  * need to be activated before the system can talk to hosts.
916  *
917  * Returns zero on success, else negative errno.
918  */
919 static inline int usb_gadget_deactivate(struct usb_gadget *gadget)
920 {
921         int ret;
922
923         if (gadget->deactivated)
924                 return 0;
925
926         if (gadget->connected) {
927                 ret = usb_gadget_disconnect(gadget);
928                 if (ret)
929                         return ret;
930                 /*
931                  * If gadget was being connected before deactivation, we want
932                  * to reconnect it in usb_gadget_activate().
933                  */
934                 gadget->connected = true;
935         }
936         gadget->deactivated = true;
937
938         return 0;
939 }
940
941 /**
942  * usb_gadget_activate - activate function which is not ready to work
943  * @gadget: the peripheral being activated
944  *
945  * This routine activates gadget which was previously deactivated with
946  * usb_gadget_deactivate() call. It calls usb_gadget_connect() if needed.
947  *
948  * Returns zero on success, else negative errno.
949  */
950 static inline int usb_gadget_activate(struct usb_gadget *gadget)
951 {
952         if (!gadget->deactivated)
953                 return 0;
954
955         gadget->deactivated = false;
956
957         /*
958          * If gadget has been connected before deactivation, or became connected
959          * while it was being deactivated, we call usb_gadget_connect().
960          */
961         if (gadget->connected)
962                 return usb_gadget_connect(gadget);
963
964         return 0;
965 }
966
967 /*-------------------------------------------------------------------------*/
968
969 /**
970  * struct usb_gadget_driver - driver for usb 'slave' devices
971  * @function: String describing the gadget's function
972  * @max_speed: Highest speed the driver handles.
973  * @setup: Invoked for ep0 control requests that aren't handled by
974  *      the hardware level driver. Most calls must be handled by
975  *      the gadget driver, including descriptor and configuration
976  *      management.  The 16 bit members of the setup data are in
977  *      USB byte order. Called in_interrupt; this may not sleep.  Driver
978  *      queues a response to ep0, or returns negative to stall.
979  * @disconnect: Invoked after all transfers have been stopped,
980  *      when the host is disconnected.  May be called in_interrupt; this
981  *      may not sleep.  Some devices can't detect disconnect, so this might
982  *      not be called except as part of controller shutdown.
983  * @bind: the driver's bind callback
984  * @unbind: Invoked when the driver is unbound from a gadget,
985  *      usually from rmmod (after a disconnect is reported).
986  *      Called in a context that permits sleeping.
987  * @suspend: Invoked on USB suspend.  May be called in_interrupt.
988  * @resume: Invoked on USB resume.  May be called in_interrupt.
989  * @reset: Invoked on USB bus reset. It is mandatory for all gadget drivers
990  *      and should be called in_interrupt.
991  * @driver: Driver model state for this driver.
992  *
993  * Devices are disabled till a gadget driver successfully bind()s, which
994  * means the driver will handle setup() requests needed to enumerate (and
995  * meet "chapter 9" requirements) then do some useful work.
996  *
997  * If gadget->is_otg is true, the gadget driver must provide an OTG
998  * descriptor during enumeration, or else fail the bind() call.  In such
999  * cases, no USB traffic may flow until both bind() returns without
1000  * having called usb_gadget_disconnect(), and the USB host stack has
1001  * initialized.
1002  *
1003  * Drivers use hardware-specific knowledge to configure the usb hardware.
1004  * endpoint addressing is only one of several hardware characteristics that
1005  * are in descriptors the ep0 implementation returns from setup() calls.
1006  *
1007  * Except for ep0 implementation, most driver code shouldn't need change to
1008  * run on top of different usb controllers.  It'll use endpoints set up by
1009  * that ep0 implementation.
1010  *
1011  * The usb controller driver handles a few standard usb requests.  Those
1012  * include set_address, and feature flags for devices, interfaces, and
1013  * endpoints (the get_status, set_feature, and clear_feature requests).
1014  *
1015  * Accordingly, the driver's setup() callback must always implement all
1016  * get_descriptor requests, returning at least a device descriptor and
1017  * a configuration descriptor.  Drivers must make sure the endpoint
1018  * descriptors match any hardware constraints. Some hardware also constrains
1019  * other descriptors. (The pxa250 allows only configurations 1, 2, or 3).
1020  *
1021  * The driver's setup() callback must also implement set_configuration,
1022  * and should also implement set_interface, get_configuration, and
1023  * get_interface.  Setting a configuration (or interface) is where
1024  * endpoints should be activated or (config 0) shut down.
1025  *
1026  * (Note that only the default control endpoint is supported.  Neither
1027  * hosts nor devices generally support control traffic except to ep0.)
1028  *
1029  * Most devices will ignore USB suspend/resume operations, and so will
1030  * not provide those callbacks.  However, some may need to change modes
1031  * when the host is not longer directing those activities.  For example,
1032  * local controls (buttons, dials, etc) may need to be re-enabled since
1033  * the (remote) host can't do that any longer; or an error state might
1034  * be cleared, to make the device behave identically whether or not
1035  * power is maintained.
1036  */
1037 struct usb_gadget_driver {
1038         char                    *function;
1039         enum usb_device_speed   max_speed;
1040         int                     (*bind)(struct usb_gadget *gadget,
1041                                         struct usb_gadget_driver *driver);
1042         void                    (*unbind)(struct usb_gadget *);
1043         int                     (*setup)(struct usb_gadget *,
1044                                         const struct usb_ctrlrequest *);
1045         void                    (*disconnect)(struct usb_gadget *);
1046         void                    (*suspend)(struct usb_gadget *);
1047         void                    (*resume)(struct usb_gadget *);
1048         void                    (*reset)(struct usb_gadget *);
1049
1050         /* FIXME support safe rmmod */
1051         struct device_driver    driver;
1052 };
1053
1054
1055
1056 /*-------------------------------------------------------------------------*/
1057
1058 /* driver modules register and unregister, as usual.
1059  * these calls must be made in a context that can sleep.
1060  *
1061  * these will usually be implemented directly by the hardware-dependent
1062  * usb bus interface driver, which will only support a single driver.
1063  */
1064
1065 /**
1066  * usb_gadget_probe_driver - probe a gadget driver
1067  * @driver: the driver being registered
1068  * Context: can sleep
1069  *
1070  * Call this in your gadget driver's module initialization function,
1071  * to tell the underlying usb controller driver about your driver.
1072  * The @bind() function will be called to bind it to a gadget before this
1073  * registration call returns.  It's expected that the @bind() function will
1074  * be in init sections.
1075  */
1076 int usb_gadget_probe_driver(struct usb_gadget_driver *driver);
1077
1078 /**
1079  * usb_gadget_unregister_driver - unregister a gadget driver
1080  * @driver:the driver being unregistered
1081  * Context: can sleep
1082  *
1083  * Call this in your gadget driver's module cleanup function,
1084  * to tell the underlying usb controller that your driver is
1085  * going away.  If the controller is connected to a USB host,
1086  * it will first disconnect().  The driver is also requested
1087  * to unbind() and clean up any device state, before this procedure
1088  * finally returns.  It's expected that the unbind() functions
1089  * will in in exit sections, so may not be linked in some kernels.
1090  */
1091 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver);
1092
1093 extern int usb_add_gadget_udc_release(struct device *parent,
1094                 struct usb_gadget *gadget, void (*release)(struct device *dev));
1095 extern int usb_add_gadget_udc(struct device *parent, struct usb_gadget *gadget);
1096 extern void usb_del_gadget_udc(struct usb_gadget *gadget);
1097 extern int usb_udc_attach_driver(const char *name,
1098                 struct usb_gadget_driver *driver);
1099
1100 /*-------------------------------------------------------------------------*/
1101
1102 /* utility to simplify dealing with string descriptors */
1103
1104 /**
1105  * struct usb_string - wraps a C string and its USB id
1106  * @id:the (nonzero) ID for this string
1107  * @s:the string, in UTF-8 encoding
1108  *
1109  * If you're using usb_gadget_get_string(), use this to wrap a string
1110  * together with its ID.
1111  */
1112 struct usb_string {
1113         u8                      id;
1114         const char              *s;
1115 };
1116
1117 /**
1118  * struct usb_gadget_strings - a set of USB strings in a given language
1119  * @language:identifies the strings' language (0x0409 for en-us)
1120  * @strings:array of strings with their ids
1121  *
1122  * If you're using usb_gadget_get_string(), use this to wrap all the
1123  * strings for a given language.
1124  */
1125 struct usb_gadget_strings {
1126         u16                     language;       /* 0x0409 for en-us */
1127         struct usb_string       *strings;
1128 };
1129
1130 struct usb_gadget_string_container {
1131         struct list_head        list;
1132         u8                      *stash[0];
1133 };
1134
1135 /* put descriptor for string with that id into buf (buflen >= 256) */
1136 int usb_gadget_get_string(struct usb_gadget_strings *table, int id, u8 *buf);
1137
1138 /*-------------------------------------------------------------------------*/
1139
1140 /* utility to simplify managing config descriptors */
1141
1142 /* write vector of descriptors into buffer */
1143 int usb_descriptor_fillbuf(void *, unsigned,
1144                 const struct usb_descriptor_header **);
1145
1146 /* build config descriptor from single descriptor vector */
1147 int usb_gadget_config_buf(const struct usb_config_descriptor *config,
1148         void *buf, unsigned buflen, const struct usb_descriptor_header **desc);
1149
1150 /* copy a NULL-terminated vector of descriptors */
1151 struct usb_descriptor_header **usb_copy_descriptors(
1152                 struct usb_descriptor_header **);
1153
1154 /**
1155  * usb_free_descriptors - free descriptors returned by usb_copy_descriptors()
1156  * @v: vector of descriptors
1157  */
1158 static inline void usb_free_descriptors(struct usb_descriptor_header **v)
1159 {
1160         kfree(v);
1161 }
1162
1163 struct usb_function;
1164 int usb_assign_descriptors(struct usb_function *f,
1165                 struct usb_descriptor_header **fs,
1166                 struct usb_descriptor_header **hs,
1167                 struct usb_descriptor_header **ss);
1168 void usb_free_all_descriptors(struct usb_function *f);
1169
1170 struct usb_descriptor_header *usb_otg_descriptor_alloc(
1171                                 struct usb_gadget *gadget);
1172 int usb_otg_descriptor_init(struct usb_gadget *gadget,
1173                 struct usb_descriptor_header *otg_desc);
1174 /*-------------------------------------------------------------------------*/
1175
1176 /* utility to simplify map/unmap of usb_requests to/from DMA */
1177
1178 extern int usb_gadget_map_request(struct usb_gadget *gadget,
1179                 struct usb_request *req, int is_in);
1180
1181 extern void usb_gadget_unmap_request(struct usb_gadget *gadget,
1182                 struct usb_request *req, int is_in);
1183
1184 /*-------------------------------------------------------------------------*/
1185
1186 /* utility to set gadget state properly */
1187
1188 extern void usb_gadget_set_state(struct usb_gadget *gadget,
1189                 enum usb_device_state state);
1190
1191 /*-------------------------------------------------------------------------*/
1192
1193 /* utility to tell udc core that the bus reset occurs */
1194 extern void usb_gadget_udc_reset(struct usb_gadget *gadget,
1195                 struct usb_gadget_driver *driver);
1196
1197 /*-------------------------------------------------------------------------*/
1198
1199 /* utility to give requests back to the gadget layer */
1200
1201 extern void usb_gadget_giveback_request(struct usb_ep *ep,
1202                 struct usb_request *req);
1203
1204 /*-------------------------------------------------------------------------*/
1205
1206 /* utility to find endpoint by name */
1207
1208 extern struct usb_ep *gadget_find_ep_by_name(struct usb_gadget *g,
1209                 const char *name);
1210
1211 /*-------------------------------------------------------------------------*/
1212
1213 /* utility to check if endpoint caps match descriptor needs */
1214
1215 extern int usb_gadget_ep_match_desc(struct usb_gadget *gadget,
1216                 struct usb_ep *ep, struct usb_endpoint_descriptor *desc,
1217                 struct usb_ss_ep_comp_descriptor *ep_comp);
1218
1219 /*-------------------------------------------------------------------------*/
1220
1221 /* utility to update vbus status for udc core, it may be scheduled */
1222 extern void usb_udc_vbus_handler(struct usb_gadget *gadget, bool status);
1223
1224 /*-------------------------------------------------------------------------*/
1225
1226 /* utility wrapping a simple endpoint selection policy */
1227
1228 extern struct usb_ep *usb_ep_autoconfig(struct usb_gadget *,
1229                         struct usb_endpoint_descriptor *);
1230
1231
1232 extern struct usb_ep *usb_ep_autoconfig_ss(struct usb_gadget *,
1233                         struct usb_endpoint_descriptor *,
1234                         struct usb_ss_ep_comp_descriptor *);
1235
1236 extern void usb_ep_autoconfig_reset(struct usb_gadget *);
1237
1238 #endif /* __LINUX_USB_GADGET_H */