]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - kernel/audit_tree.c
d59ed4c9037a35dfc020d4ef77ed4b61f905efc6
[karo-tx-linux.git] / kernel / audit_tree.c
1 #include "audit.h"
2 #include <linux/fsnotify_backend.h>
3 #include <linux/namei.h>
4 #include <linux/mount.h>
5 #include <linux/kthread.h>
6 #include <linux/slab.h>
7
8 struct audit_tree;
9 struct audit_chunk;
10
11 struct audit_tree {
12         atomic_t count;
13         int goner;
14         struct audit_chunk *root;
15         struct list_head chunks;
16         struct list_head rules;
17         struct list_head list;
18         struct list_head same_root;
19         struct rcu_head head;
20         char pathname[];
21 };
22
23 struct audit_chunk {
24         struct list_head hash;
25         struct fsnotify_mark mark;
26         struct list_head trees;         /* with root here */
27         int dead;
28         int count;
29         atomic_long_t refs;
30         struct rcu_head head;
31         struct node {
32                 struct list_head list;
33                 struct audit_tree *owner;
34                 unsigned index;         /* index; upper bit indicates 'will prune' */
35         } owners[];
36 };
37
38 static LIST_HEAD(tree_list);
39 static LIST_HEAD(prune_list);
40 static struct task_struct *prune_thread;
41
42 /*
43  * One struct chunk is attached to each inode of interest.
44  * We replace struct chunk on tagging/untagging.
45  * Rules have pointer to struct audit_tree.
46  * Rules have struct list_head rlist forming a list of rules over
47  * the same tree.
48  * References to struct chunk are collected at audit_inode{,_child}()
49  * time and used in AUDIT_TREE rule matching.
50  * These references are dropped at the same time we are calling
51  * audit_free_names(), etc.
52  *
53  * Cyclic lists galore:
54  * tree.chunks anchors chunk.owners[].list                      hash_lock
55  * tree.rules anchors rule.rlist                                audit_filter_mutex
56  * chunk.trees anchors tree.same_root                           hash_lock
57  * chunk.hash is a hash with middle bits of watch.inode as
58  * a hash function.                                             RCU, hash_lock
59  *
60  * tree is refcounted; one reference for "some rules on rules_list refer to
61  * it", one for each chunk with pointer to it.
62  *
63  * chunk is refcounted by embedded fsnotify_mark + .refs (non-zero refcount
64  * of watch contributes 1 to .refs).
65  *
66  * node.index allows to get from node.list to containing chunk.
67  * MSB of that sucker is stolen to mark taggings that we might have to
68  * revert - several operations have very unpleasant cleanup logics and
69  * that makes a difference.  Some.
70  */
71
72 static struct fsnotify_group *audit_tree_group;
73
74 static struct audit_tree *alloc_tree(const char *s)
75 {
76         struct audit_tree *tree;
77
78         tree = kmalloc(sizeof(struct audit_tree) + strlen(s) + 1, GFP_KERNEL);
79         if (tree) {
80                 atomic_set(&tree->count, 1);
81                 tree->goner = 0;
82                 INIT_LIST_HEAD(&tree->chunks);
83                 INIT_LIST_HEAD(&tree->rules);
84                 INIT_LIST_HEAD(&tree->list);
85                 INIT_LIST_HEAD(&tree->same_root);
86                 tree->root = NULL;
87                 strcpy(tree->pathname, s);
88         }
89         return tree;
90 }
91
92 static inline void get_tree(struct audit_tree *tree)
93 {
94         atomic_inc(&tree->count);
95 }
96
97 static inline void put_tree(struct audit_tree *tree)
98 {
99         if (atomic_dec_and_test(&tree->count))
100                 kfree_rcu(tree, head);
101 }
102
103 /* to avoid bringing the entire thing in audit.h */
104 const char *audit_tree_path(struct audit_tree *tree)
105 {
106         return tree->pathname;
107 }
108
109 static void free_chunk(struct audit_chunk *chunk)
110 {
111         int i;
112
113         for (i = 0; i < chunk->count; i++) {
114                 if (chunk->owners[i].owner)
115                         put_tree(chunk->owners[i].owner);
116         }
117         kfree(chunk);
118 }
119
120 void audit_put_chunk(struct audit_chunk *chunk)
121 {
122         if (atomic_long_dec_and_test(&chunk->refs))
123                 free_chunk(chunk);
124 }
125
126 static void __put_chunk(struct rcu_head *rcu)
127 {
128         struct audit_chunk *chunk = container_of(rcu, struct audit_chunk, head);
129         audit_put_chunk(chunk);
130 }
131
132 static void audit_tree_destroy_watch(struct fsnotify_mark *entry)
133 {
134         struct audit_chunk *chunk = container_of(entry, struct audit_chunk, mark);
135         call_rcu(&chunk->head, __put_chunk);
136 }
137
138 static struct audit_chunk *alloc_chunk(int count)
139 {
140         struct audit_chunk *chunk;
141         size_t size;
142         int i;
143
144         size = offsetof(struct audit_chunk, owners) + count * sizeof(struct node);
145         chunk = kzalloc(size, GFP_KERNEL);
146         if (!chunk)
147                 return NULL;
148
149         INIT_LIST_HEAD(&chunk->hash);
150         INIT_LIST_HEAD(&chunk->trees);
151         chunk->count = count;
152         atomic_long_set(&chunk->refs, 1);
153         for (i = 0; i < count; i++) {
154                 INIT_LIST_HEAD(&chunk->owners[i].list);
155                 chunk->owners[i].index = i;
156         }
157         fsnotify_init_mark(&chunk->mark, audit_tree_destroy_watch);
158         chunk->mark.mask = FS_IN_IGNORED;
159         return chunk;
160 }
161
162 enum {HASH_SIZE = 128};
163 static struct list_head chunk_hash_heads[HASH_SIZE];
164 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(hash_lock);
165
166 /* Function to return search key in our hash from inode. */
167 static unsigned long inode_to_key(const struct inode *inode)
168 {
169         return (unsigned long)inode;
170 }
171
172 /*
173  * Function to return search key in our hash from chunk. Key 0 is special and
174  * should never be present in the hash.
175  */
176 static unsigned long chunk_to_key(struct audit_chunk *chunk)
177 {
178         /*
179          * We have a reference to the mark so it should be attached to a
180          * connector.
181          */
182         if (WARN_ON_ONCE(!chunk->mark.connector))
183                 return 0;
184         return (unsigned long)chunk->mark.connector->inode;
185 }
186
187 static inline struct list_head *chunk_hash(unsigned long key)
188 {
189         unsigned long n = key / L1_CACHE_BYTES;
190         return chunk_hash_heads + n % HASH_SIZE;
191 }
192
193 /* hash_lock & entry->lock is held by caller */
194 static void insert_hash(struct audit_chunk *chunk)
195 {
196         unsigned long key = chunk_to_key(chunk);
197         struct list_head *list;
198
199         if (!(chunk->mark.flags & FSNOTIFY_MARK_FLAG_ATTACHED))
200                 return;
201         list = chunk_hash(key);
202         list_add_rcu(&chunk->hash, list);
203 }
204
205 /* called under rcu_read_lock */
206 struct audit_chunk *audit_tree_lookup(const struct inode *inode)
207 {
208         unsigned long key = inode_to_key(inode);
209         struct list_head *list = chunk_hash(key);
210         struct audit_chunk *p;
211
212         list_for_each_entry_rcu(p, list, hash) {
213                 if (chunk_to_key(p) == key) {
214                         atomic_long_inc(&p->refs);
215                         return p;
216                 }
217         }
218         return NULL;
219 }
220
221 bool audit_tree_match(struct audit_chunk *chunk, struct audit_tree *tree)
222 {
223         int n;
224         for (n = 0; n < chunk->count; n++)
225                 if (chunk->owners[n].owner == tree)
226                         return true;
227         return false;
228 }
229
230 /* tagging and untagging inodes with trees */
231
232 static struct audit_chunk *find_chunk(struct node *p)
233 {
234         int index = p->index & ~(1U<<31);
235         p -= index;
236         return container_of(p, struct audit_chunk, owners[0]);
237 }
238
239 static void untag_chunk(struct node *p)
240 {
241         struct audit_chunk *chunk = find_chunk(p);
242         struct fsnotify_mark *entry = &chunk->mark;
243         struct audit_chunk *new = NULL;
244         struct audit_tree *owner;
245         int size = chunk->count - 1;
246         int i, j;
247
248         fsnotify_get_mark(entry);
249
250         spin_unlock(&hash_lock);
251
252         if (size)
253                 new = alloc_chunk(size);
254
255         mutex_lock(&entry->group->mark_mutex);
256         spin_lock(&entry->lock);
257         /*
258          * mark_mutex protects mark from getting detached and thus also from
259          * mark->connector->inode getting NULL.
260          */
261         if (chunk->dead || !(entry->flags & FSNOTIFY_MARK_FLAG_ATTACHED)) {
262                 spin_unlock(&entry->lock);
263                 mutex_unlock(&entry->group->mark_mutex);
264                 if (new)
265                         free_chunk(new);
266                 goto out;
267         }
268
269         owner = p->owner;
270
271         if (!size) {
272                 chunk->dead = 1;
273                 spin_lock(&hash_lock);
274                 list_del_init(&chunk->trees);
275                 if (owner->root == chunk)
276                         owner->root = NULL;
277                 list_del_init(&p->list);
278                 list_del_rcu(&chunk->hash);
279                 spin_unlock(&hash_lock);
280                 spin_unlock(&entry->lock);
281                 mutex_unlock(&entry->group->mark_mutex);
282                 fsnotify_destroy_mark(entry, audit_tree_group);
283                 goto out;
284         }
285
286         if (!new)
287                 goto Fallback;
288
289         if (fsnotify_add_mark_locked(&new->mark, entry->group,
290                                      entry->connector->inode, NULL, 1)) {
291                 fsnotify_put_mark(&new->mark);
292                 goto Fallback;
293         }
294
295         chunk->dead = 1;
296         spin_lock(&hash_lock);
297         list_replace_init(&chunk->trees, &new->trees);
298         if (owner->root == chunk) {
299                 list_del_init(&owner->same_root);
300                 owner->root = NULL;
301         }
302
303         for (i = j = 0; j <= size; i++, j++) {
304                 struct audit_tree *s;
305                 if (&chunk->owners[j] == p) {
306                         list_del_init(&p->list);
307                         i--;
308                         continue;
309                 }
310                 s = chunk->owners[j].owner;
311                 new->owners[i].owner = s;
312                 new->owners[i].index = chunk->owners[j].index - j + i;
313                 if (!s) /* result of earlier fallback */
314                         continue;
315                 get_tree(s);
316                 list_replace_init(&chunk->owners[j].list, &new->owners[i].list);
317         }
318
319         list_replace_rcu(&chunk->hash, &new->hash);
320         list_for_each_entry(owner, &new->trees, same_root)
321                 owner->root = new;
322         spin_unlock(&hash_lock);
323         spin_unlock(&entry->lock);
324         mutex_unlock(&entry->group->mark_mutex);
325         fsnotify_destroy_mark(entry, audit_tree_group);
326         fsnotify_put_mark(&new->mark);  /* drop initial reference */
327         goto out;
328
329 Fallback:
330         // do the best we can
331         spin_lock(&hash_lock);
332         if (owner->root == chunk) {
333                 list_del_init(&owner->same_root);
334                 owner->root = NULL;
335         }
336         list_del_init(&p->list);
337         p->owner = NULL;
338         put_tree(owner);
339         spin_unlock(&hash_lock);
340         spin_unlock(&entry->lock);
341         mutex_unlock(&entry->group->mark_mutex);
342 out:
343         fsnotify_put_mark(entry);
344         spin_lock(&hash_lock);
345 }
346
347 static int create_chunk(struct inode *inode, struct audit_tree *tree)
348 {
349         struct fsnotify_mark *entry;
350         struct audit_chunk *chunk = alloc_chunk(1);
351         if (!chunk)
352                 return -ENOMEM;
353
354         entry = &chunk->mark;
355         if (fsnotify_add_mark(entry, audit_tree_group, inode, NULL, 0)) {
356                 fsnotify_put_mark(entry);
357                 return -ENOSPC;
358         }
359
360         spin_lock(&entry->lock);
361         spin_lock(&hash_lock);
362         if (tree->goner) {
363                 spin_unlock(&hash_lock);
364                 chunk->dead = 1;
365                 spin_unlock(&entry->lock);
366                 fsnotify_destroy_mark(entry, audit_tree_group);
367                 fsnotify_put_mark(entry);
368                 return 0;
369         }
370         chunk->owners[0].index = (1U << 31);
371         chunk->owners[0].owner = tree;
372         get_tree(tree);
373         list_add(&chunk->owners[0].list, &tree->chunks);
374         if (!tree->root) {
375                 tree->root = chunk;
376                 list_add(&tree->same_root, &chunk->trees);
377         }
378         insert_hash(chunk);
379         spin_unlock(&hash_lock);
380         spin_unlock(&entry->lock);
381         fsnotify_put_mark(entry);       /* drop initial reference */
382         return 0;
383 }
384
385 /* the first tagged inode becomes root of tree */
386 static int tag_chunk(struct inode *inode, struct audit_tree *tree)
387 {
388         struct fsnotify_mark *old_entry, *chunk_entry;
389         struct audit_tree *owner;
390         struct audit_chunk *chunk, *old;
391         struct node *p;
392         int n;
393
394         old_entry = fsnotify_find_inode_mark(audit_tree_group, inode);
395         if (!old_entry)
396                 return create_chunk(inode, tree);
397
398         old = container_of(old_entry, struct audit_chunk, mark);
399
400         /* are we already there? */
401         spin_lock(&hash_lock);
402         for (n = 0; n < old->count; n++) {
403                 if (old->owners[n].owner == tree) {
404                         spin_unlock(&hash_lock);
405                         fsnotify_put_mark(old_entry);
406                         return 0;
407                 }
408         }
409         spin_unlock(&hash_lock);
410
411         chunk = alloc_chunk(old->count + 1);
412         if (!chunk) {
413                 fsnotify_put_mark(old_entry);
414                 return -ENOMEM;
415         }
416
417         chunk_entry = &chunk->mark;
418
419         mutex_lock(&old_entry->group->mark_mutex);
420         spin_lock(&old_entry->lock);
421         /*
422          * mark_mutex protects mark from getting detached and thus also from
423          * mark->connector->inode getting NULL.
424          */
425         if (!(old_entry->flags & FSNOTIFY_MARK_FLAG_ATTACHED)) {
426                 /* old_entry is being shot, lets just lie */
427                 spin_unlock(&old_entry->lock);
428                 mutex_unlock(&old_entry->group->mark_mutex);
429                 fsnotify_put_mark(old_entry);
430                 free_chunk(chunk);
431                 return -ENOENT;
432         }
433
434         if (fsnotify_add_mark_locked(chunk_entry, old_entry->group,
435                              old_entry->connector->inode, NULL, 1)) {
436                 spin_unlock(&old_entry->lock);
437                 mutex_unlock(&old_entry->group->mark_mutex);
438                 fsnotify_put_mark(chunk_entry);
439                 fsnotify_put_mark(old_entry);
440                 return -ENOSPC;
441         }
442
443         /* even though we hold old_entry->lock, this is safe since chunk_entry->lock could NEVER have been grabbed before */
444         spin_lock(&chunk_entry->lock);
445         spin_lock(&hash_lock);
446
447         /* we now hold old_entry->lock, chunk_entry->lock, and hash_lock */
448         if (tree->goner) {
449                 spin_unlock(&hash_lock);
450                 chunk->dead = 1;
451                 spin_unlock(&chunk_entry->lock);
452                 spin_unlock(&old_entry->lock);
453                 mutex_unlock(&old_entry->group->mark_mutex);
454
455                 fsnotify_destroy_mark(chunk_entry, audit_tree_group);
456
457                 fsnotify_put_mark(chunk_entry);
458                 fsnotify_put_mark(old_entry);
459                 return 0;
460         }
461         list_replace_init(&old->trees, &chunk->trees);
462         for (n = 0, p = chunk->owners; n < old->count; n++, p++) {
463                 struct audit_tree *s = old->owners[n].owner;
464                 p->owner = s;
465                 p->index = old->owners[n].index;
466                 if (!s) /* result of fallback in untag */
467                         continue;
468                 get_tree(s);
469                 list_replace_init(&old->owners[n].list, &p->list);
470         }
471         p->index = (chunk->count - 1) | (1U<<31);
472         p->owner = tree;
473         get_tree(tree);
474         list_add(&p->list, &tree->chunks);
475         list_replace_rcu(&old->hash, &chunk->hash);
476         list_for_each_entry(owner, &chunk->trees, same_root)
477                 owner->root = chunk;
478         old->dead = 1;
479         if (!tree->root) {
480                 tree->root = chunk;
481                 list_add(&tree->same_root, &chunk->trees);
482         }
483         spin_unlock(&hash_lock);
484         spin_unlock(&chunk_entry->lock);
485         spin_unlock(&old_entry->lock);
486         mutex_unlock(&old_entry->group->mark_mutex);
487         fsnotify_destroy_mark(old_entry, audit_tree_group);
488         fsnotify_put_mark(chunk_entry); /* drop initial reference */
489         fsnotify_put_mark(old_entry); /* pair to fsnotify_find mark_entry */
490         return 0;
491 }
492
493 static void audit_tree_log_remove_rule(struct audit_krule *rule)
494 {
495         struct audit_buffer *ab;
496
497         ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
498         if (unlikely(!ab))
499                 return;
500         audit_log_format(ab, "op=remove_rule");
501         audit_log_format(ab, " dir=");
502         audit_log_untrustedstring(ab, rule->tree->pathname);
503         audit_log_key(ab, rule->filterkey);
504         audit_log_format(ab, " list=%d res=1", rule->listnr);
505         audit_log_end(ab);
506 }
507
508 static void kill_rules(struct audit_tree *tree)
509 {
510         struct audit_krule *rule, *next;
511         struct audit_entry *entry;
512
513         list_for_each_entry_safe(rule, next, &tree->rules, rlist) {
514                 entry = container_of(rule, struct audit_entry, rule);
515
516                 list_del_init(&rule->rlist);
517                 if (rule->tree) {
518                         /* not a half-baked one */
519                         audit_tree_log_remove_rule(rule);
520                         if (entry->rule.exe)
521                                 audit_remove_mark(entry->rule.exe);
522                         rule->tree = NULL;
523                         list_del_rcu(&entry->list);
524                         list_del(&entry->rule.list);
525                         call_rcu(&entry->rcu, audit_free_rule_rcu);
526                 }
527         }
528 }
529
530 /*
531  * finish killing struct audit_tree
532  */
533 static void prune_one(struct audit_tree *victim)
534 {
535         spin_lock(&hash_lock);
536         while (!list_empty(&victim->chunks)) {
537                 struct node *p;
538
539                 p = list_entry(victim->chunks.next, struct node, list);
540
541                 untag_chunk(p);
542         }
543         spin_unlock(&hash_lock);
544         put_tree(victim);
545 }
546
547 /* trim the uncommitted chunks from tree */
548
549 static void trim_marked(struct audit_tree *tree)
550 {
551         struct list_head *p, *q;
552         spin_lock(&hash_lock);
553         if (tree->goner) {
554                 spin_unlock(&hash_lock);
555                 return;
556         }
557         /* reorder */
558         for (p = tree->chunks.next; p != &tree->chunks; p = q) {
559                 struct node *node = list_entry(p, struct node, list);
560                 q = p->next;
561                 if (node->index & (1U<<31)) {
562                         list_del_init(p);
563                         list_add(p, &tree->chunks);
564                 }
565         }
566
567         while (!list_empty(&tree->chunks)) {
568                 struct node *node;
569
570                 node = list_entry(tree->chunks.next, struct node, list);
571
572                 /* have we run out of marked? */
573                 if (!(node->index & (1U<<31)))
574                         break;
575
576                 untag_chunk(node);
577         }
578         if (!tree->root && !tree->goner) {
579                 tree->goner = 1;
580                 spin_unlock(&hash_lock);
581                 mutex_lock(&audit_filter_mutex);
582                 kill_rules(tree);
583                 list_del_init(&tree->list);
584                 mutex_unlock(&audit_filter_mutex);
585                 prune_one(tree);
586         } else {
587                 spin_unlock(&hash_lock);
588         }
589 }
590
591 static void audit_schedule_prune(void);
592
593 /* called with audit_filter_mutex */
594 int audit_remove_tree_rule(struct audit_krule *rule)
595 {
596         struct audit_tree *tree;
597         tree = rule->tree;
598         if (tree) {
599                 spin_lock(&hash_lock);
600                 list_del_init(&rule->rlist);
601                 if (list_empty(&tree->rules) && !tree->goner) {
602                         tree->root = NULL;
603                         list_del_init(&tree->same_root);
604                         tree->goner = 1;
605                         list_move(&tree->list, &prune_list);
606                         rule->tree = NULL;
607                         spin_unlock(&hash_lock);
608                         audit_schedule_prune();
609                         return 1;
610                 }
611                 rule->tree = NULL;
612                 spin_unlock(&hash_lock);
613                 return 1;
614         }
615         return 0;
616 }
617
618 static int compare_root(struct vfsmount *mnt, void *arg)
619 {
620         return inode_to_key(d_backing_inode(mnt->mnt_root)) ==
621                (unsigned long)arg;
622 }
623
624 void audit_trim_trees(void)
625 {
626         struct list_head cursor;
627
628         mutex_lock(&audit_filter_mutex);
629         list_add(&cursor, &tree_list);
630         while (cursor.next != &tree_list) {
631                 struct audit_tree *tree;
632                 struct path path;
633                 struct vfsmount *root_mnt;
634                 struct node *node;
635                 int err;
636
637                 tree = container_of(cursor.next, struct audit_tree, list);
638                 get_tree(tree);
639                 list_del(&cursor);
640                 list_add(&cursor, &tree->list);
641                 mutex_unlock(&audit_filter_mutex);
642
643                 err = kern_path(tree->pathname, 0, &path);
644                 if (err)
645                         goto skip_it;
646
647                 root_mnt = collect_mounts(&path);
648                 path_put(&path);
649                 if (IS_ERR(root_mnt))
650                         goto skip_it;
651
652                 spin_lock(&hash_lock);
653                 list_for_each_entry(node, &tree->chunks, list) {
654                         struct audit_chunk *chunk = find_chunk(node);
655                         /* this could be NULL if the watch is dying else where... */
656                         node->index |= 1U<<31;
657                         if (iterate_mounts(compare_root,
658                                            (void *)chunk_to_key(chunk),
659                                            root_mnt))
660                                 node->index &= ~(1U<<31);
661                 }
662                 spin_unlock(&hash_lock);
663                 trim_marked(tree);
664                 drop_collected_mounts(root_mnt);
665 skip_it:
666                 put_tree(tree);
667                 mutex_lock(&audit_filter_mutex);
668         }
669         list_del(&cursor);
670         mutex_unlock(&audit_filter_mutex);
671 }
672
673 int audit_make_tree(struct audit_krule *rule, char *pathname, u32 op)
674 {
675
676         if (pathname[0] != '/' ||
677             rule->listnr != AUDIT_FILTER_EXIT ||
678             op != Audit_equal ||
679             rule->inode_f || rule->watch || rule->tree)
680                 return -EINVAL;
681         rule->tree = alloc_tree(pathname);
682         if (!rule->tree)
683                 return -ENOMEM;
684         return 0;
685 }
686
687 void audit_put_tree(struct audit_tree *tree)
688 {
689         put_tree(tree);
690 }
691
692 static int tag_mount(struct vfsmount *mnt, void *arg)
693 {
694         return tag_chunk(d_backing_inode(mnt->mnt_root), arg);
695 }
696
697 /*
698  * That gets run when evict_chunk() ends up needing to kill audit_tree.
699  * Runs from a separate thread.
700  */
701 static int prune_tree_thread(void *unused)
702 {
703         for (;;) {
704                 if (list_empty(&prune_list)) {
705                         set_current_state(TASK_INTERRUPTIBLE);
706                         schedule();
707                 }
708
709                 mutex_lock(&audit_cmd_mutex);
710                 mutex_lock(&audit_filter_mutex);
711
712                 while (!list_empty(&prune_list)) {
713                         struct audit_tree *victim;
714
715                         victim = list_entry(prune_list.next,
716                                         struct audit_tree, list);
717                         list_del_init(&victim->list);
718
719                         mutex_unlock(&audit_filter_mutex);
720
721                         prune_one(victim);
722
723                         mutex_lock(&audit_filter_mutex);
724                 }
725
726                 mutex_unlock(&audit_filter_mutex);
727                 mutex_unlock(&audit_cmd_mutex);
728         }
729         return 0;
730 }
731
732 static int audit_launch_prune(void)
733 {
734         if (prune_thread)
735                 return 0;
736         prune_thread = kthread_run(prune_tree_thread, NULL,
737                                 "audit_prune_tree");
738         if (IS_ERR(prune_thread)) {
739                 pr_err("cannot start thread audit_prune_tree");
740                 prune_thread = NULL;
741                 return -ENOMEM;
742         }
743         return 0;
744 }
745
746 /* called with audit_filter_mutex */
747 int audit_add_tree_rule(struct audit_krule *rule)
748 {
749         struct audit_tree *seed = rule->tree, *tree;
750         struct path path;
751         struct vfsmount *mnt;
752         int err;
753
754         rule->tree = NULL;
755         list_for_each_entry(tree, &tree_list, list) {
756                 if (!strcmp(seed->pathname, tree->pathname)) {
757                         put_tree(seed);
758                         rule->tree = tree;
759                         list_add(&rule->rlist, &tree->rules);
760                         return 0;
761                 }
762         }
763         tree = seed;
764         list_add(&tree->list, &tree_list);
765         list_add(&rule->rlist, &tree->rules);
766         /* do not set rule->tree yet */
767         mutex_unlock(&audit_filter_mutex);
768
769         if (unlikely(!prune_thread)) {
770                 err = audit_launch_prune();
771                 if (err)
772                         goto Err;
773         }
774
775         err = kern_path(tree->pathname, 0, &path);
776         if (err)
777                 goto Err;
778         mnt = collect_mounts(&path);
779         path_put(&path);
780         if (IS_ERR(mnt)) {
781                 err = PTR_ERR(mnt);
782                 goto Err;
783         }
784
785         get_tree(tree);
786         err = iterate_mounts(tag_mount, tree, mnt);
787         drop_collected_mounts(mnt);
788
789         if (!err) {
790                 struct node *node;
791                 spin_lock(&hash_lock);
792                 list_for_each_entry(node, &tree->chunks, list)
793                         node->index &= ~(1U<<31);
794                 spin_unlock(&hash_lock);
795         } else {
796                 trim_marked(tree);
797                 goto Err;
798         }
799
800         mutex_lock(&audit_filter_mutex);
801         if (list_empty(&rule->rlist)) {
802                 put_tree(tree);
803                 return -ENOENT;
804         }
805         rule->tree = tree;
806         put_tree(tree);
807
808         return 0;
809 Err:
810         mutex_lock(&audit_filter_mutex);
811         list_del_init(&tree->list);
812         list_del_init(&tree->rules);
813         put_tree(tree);
814         return err;
815 }
816
817 int audit_tag_tree(char *old, char *new)
818 {
819         struct list_head cursor, barrier;
820         int failed = 0;
821         struct path path1, path2;
822         struct vfsmount *tagged;
823         int err;
824
825         err = kern_path(new, 0, &path2);
826         if (err)
827                 return err;
828         tagged = collect_mounts(&path2);
829         path_put(&path2);
830         if (IS_ERR(tagged))
831                 return PTR_ERR(tagged);
832
833         err = kern_path(old, 0, &path1);
834         if (err) {
835                 drop_collected_mounts(tagged);
836                 return err;
837         }
838
839         mutex_lock(&audit_filter_mutex);
840         list_add(&barrier, &tree_list);
841         list_add(&cursor, &barrier);
842
843         while (cursor.next != &tree_list) {
844                 struct audit_tree *tree;
845                 int good_one = 0;
846
847                 tree = container_of(cursor.next, struct audit_tree, list);
848                 get_tree(tree);
849                 list_del(&cursor);
850                 list_add(&cursor, &tree->list);
851                 mutex_unlock(&audit_filter_mutex);
852
853                 err = kern_path(tree->pathname, 0, &path2);
854                 if (!err) {
855                         good_one = path_is_under(&path1, &path2);
856                         path_put(&path2);
857                 }
858
859                 if (!good_one) {
860                         put_tree(tree);
861                         mutex_lock(&audit_filter_mutex);
862                         continue;
863                 }
864
865                 failed = iterate_mounts(tag_mount, tree, tagged);
866                 if (failed) {
867                         put_tree(tree);
868                         mutex_lock(&audit_filter_mutex);
869                         break;
870                 }
871
872                 mutex_lock(&audit_filter_mutex);
873                 spin_lock(&hash_lock);
874                 if (!tree->goner) {
875                         list_del(&tree->list);
876                         list_add(&tree->list, &tree_list);
877                 }
878                 spin_unlock(&hash_lock);
879                 put_tree(tree);
880         }
881
882         while (barrier.prev != &tree_list) {
883                 struct audit_tree *tree;
884
885                 tree = container_of(barrier.prev, struct audit_tree, list);
886                 get_tree(tree);
887                 list_del(&tree->list);
888                 list_add(&tree->list, &barrier);
889                 mutex_unlock(&audit_filter_mutex);
890
891                 if (!failed) {
892                         struct node *node;
893                         spin_lock(&hash_lock);
894                         list_for_each_entry(node, &tree->chunks, list)
895                                 node->index &= ~(1U<<31);
896                         spin_unlock(&hash_lock);
897                 } else {
898                         trim_marked(tree);
899                 }
900
901                 put_tree(tree);
902                 mutex_lock(&audit_filter_mutex);
903         }
904         list_del(&barrier);
905         list_del(&cursor);
906         mutex_unlock(&audit_filter_mutex);
907         path_put(&path1);
908         drop_collected_mounts(tagged);
909         return failed;
910 }
911
912
913 static void audit_schedule_prune(void)
914 {
915         wake_up_process(prune_thread);
916 }
917
918 /*
919  * ... and that one is done if evict_chunk() decides to delay until the end
920  * of syscall.  Runs synchronously.
921  */
922 void audit_kill_trees(struct list_head *list)
923 {
924         mutex_lock(&audit_cmd_mutex);
925         mutex_lock(&audit_filter_mutex);
926
927         while (!list_empty(list)) {
928                 struct audit_tree *victim;
929
930                 victim = list_entry(list->next, struct audit_tree, list);
931                 kill_rules(victim);
932                 list_del_init(&victim->list);
933
934                 mutex_unlock(&audit_filter_mutex);
935
936                 prune_one(victim);
937
938                 mutex_lock(&audit_filter_mutex);
939         }
940
941         mutex_unlock(&audit_filter_mutex);
942         mutex_unlock(&audit_cmd_mutex);
943 }
944
945 /*
946  *  Here comes the stuff asynchronous to auditctl operations
947  */
948
949 static void evict_chunk(struct audit_chunk *chunk)
950 {
951         struct audit_tree *owner;
952         struct list_head *postponed = audit_killed_trees();
953         int need_prune = 0;
954         int n;
955
956         if (chunk->dead)
957                 return;
958
959         chunk->dead = 1;
960         mutex_lock(&audit_filter_mutex);
961         spin_lock(&hash_lock);
962         while (!list_empty(&chunk->trees)) {
963                 owner = list_entry(chunk->trees.next,
964                                    struct audit_tree, same_root);
965                 owner->goner = 1;
966                 owner->root = NULL;
967                 list_del_init(&owner->same_root);
968                 spin_unlock(&hash_lock);
969                 if (!postponed) {
970                         kill_rules(owner);
971                         list_move(&owner->list, &prune_list);
972                         need_prune = 1;
973                 } else {
974                         list_move(&owner->list, postponed);
975                 }
976                 spin_lock(&hash_lock);
977         }
978         list_del_rcu(&chunk->hash);
979         for (n = 0; n < chunk->count; n++)
980                 list_del_init(&chunk->owners[n].list);
981         spin_unlock(&hash_lock);
982         mutex_unlock(&audit_filter_mutex);
983         if (need_prune)
984                 audit_schedule_prune();
985 }
986
987 static int audit_tree_handle_event(struct fsnotify_group *group,
988                                    struct inode *to_tell,
989                                    struct fsnotify_mark *inode_mark,
990                                    struct fsnotify_mark *vfsmount_mark,
991                                    u32 mask, const void *data, int data_type,
992                                    const unsigned char *file_name, u32 cookie,
993                                    struct fsnotify_iter_info *iter_info)
994 {
995         return 0;
996 }
997
998 static void audit_tree_freeing_mark(struct fsnotify_mark *entry, struct fsnotify_group *group)
999 {
1000         struct audit_chunk *chunk = container_of(entry, struct audit_chunk, mark);
1001
1002         evict_chunk(chunk);
1003
1004         /*
1005          * We are guaranteed to have at least one reference to the mark from
1006          * either the inode or the caller of fsnotify_destroy_mark().
1007          */
1008         BUG_ON(atomic_read(&entry->refcnt) < 1);
1009 }
1010
1011 static const struct fsnotify_ops audit_tree_ops = {
1012         .handle_event = audit_tree_handle_event,
1013         .freeing_mark = audit_tree_freeing_mark,
1014 };
1015
1016 static int __init audit_tree_init(void)
1017 {
1018         int i;
1019
1020         audit_tree_group = fsnotify_alloc_group(&audit_tree_ops);
1021         if (IS_ERR(audit_tree_group))
1022                 audit_panic("cannot initialize fsnotify group for rectree watches");
1023
1024         for (i = 0; i < HASH_SIZE; i++)
1025                 INIT_LIST_HEAD(&chunk_hash_heads[i]);
1026
1027         return 0;
1028 }
1029 __initcall(audit_tree_init);