]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - kernel/fork.c
Merge tag 'please-pull-mce' of git://git.kernel.org/pub/scm/linux/kernel/git/ras/ras
[karo-tx-linux.git] / kernel / fork.c
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/seccomp.h>
38 #include <linux/swap.h>
39 #include <linux/syscalls.h>
40 #include <linux/jiffies.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/kthread.h>
44 #include <linux/task_io_accounting_ops.h>
45 #include <linux/rcupdate.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/audit.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/proc_fs.h>
52 #include <linux/profile.h>
53 #include <linux/rmap.h>
54 #include <linux/ksm.h>
55 #include <linux/acct.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/freezer.h>
59 #include <linux/delayacct.h>
60 #include <linux/taskstats_kern.h>
61 #include <linux/random.h>
62 #include <linux/tty.h>
63 #include <linux/blkdev.h>
64 #include <linux/fs_struct.h>
65 #include <linux/magic.h>
66 #include <linux/perf_event.h>
67 #include <linux/posix-timers.h>
68 #include <linux/user-return-notifier.h>
69 #include <linux/oom.h>
70 #include <linux/khugepaged.h>
71 #include <linux/signalfd.h>
72 #include <linux/uprobes.h>
73
74 #include <asm/pgtable.h>
75 #include <asm/pgalloc.h>
76 #include <asm/uaccess.h>
77 #include <asm/mmu_context.h>
78 #include <asm/cacheflush.h>
79 #include <asm/tlbflush.h>
80
81 #include <trace/events/sched.h>
82
83 #define CREATE_TRACE_POINTS
84 #include <trace/events/task.h>
85
86 /*
87  * Protected counters by write_lock_irq(&tasklist_lock)
88  */
89 unsigned long total_forks;      /* Handle normal Linux uptimes. */
90 int nr_threads;                 /* The idle threads do not count.. */
91
92 int max_threads;                /* tunable limit on nr_threads */
93
94 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
95
96 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
97
98 #ifdef CONFIG_PROVE_RCU
99 int lockdep_tasklist_lock_is_held(void)
100 {
101         return lockdep_is_held(&tasklist_lock);
102 }
103 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
104 #endif /* #ifdef CONFIG_PROVE_RCU */
105
106 int nr_processes(void)
107 {
108         int cpu;
109         int total = 0;
110
111         for_each_possible_cpu(cpu)
112                 total += per_cpu(process_counts, cpu);
113
114         return total;
115 }
116
117 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
118 static struct kmem_cache *task_struct_cachep;
119
120 static inline struct task_struct *alloc_task_struct_node(int node)
121 {
122         return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
123 }
124
125 void __weak arch_release_task_struct(struct task_struct *tsk) { }
126
127 static inline void free_task_struct(struct task_struct *tsk)
128 {
129         arch_release_task_struct(tsk);
130         kmem_cache_free(task_struct_cachep, tsk);
131 }
132 #endif
133
134 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
135 void __weak arch_release_thread_info(struct thread_info *ti) { }
136
137 /*
138  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
139  * kmemcache based allocator.
140  */
141 # if THREAD_SIZE >= PAGE_SIZE
142 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
143                                                   int node)
144 {
145         struct page *page = alloc_pages_node(node, THREADINFO_GFP,
146                                              THREAD_SIZE_ORDER);
147
148         return page ? page_address(page) : NULL;
149 }
150
151 static inline void free_thread_info(struct thread_info *ti)
152 {
153         arch_release_thread_info(ti);
154         free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
155 }
156 # else
157 static struct kmem_cache *thread_info_cache;
158
159 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
160                                                   int node)
161 {
162         return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
163 }
164
165 static void free_thread_info(struct thread_info *ti)
166 {
167         arch_release_thread_info(ti);
168         kmem_cache_free(thread_info_cache, ti);
169 }
170
171 void thread_info_cache_init(void)
172 {
173         thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
174                                               THREAD_SIZE, 0, NULL);
175         BUG_ON(thread_info_cache == NULL);
176 }
177 # endif
178 #endif
179
180 /* SLAB cache for signal_struct structures (tsk->signal) */
181 static struct kmem_cache *signal_cachep;
182
183 /* SLAB cache for sighand_struct structures (tsk->sighand) */
184 struct kmem_cache *sighand_cachep;
185
186 /* SLAB cache for files_struct structures (tsk->files) */
187 struct kmem_cache *files_cachep;
188
189 /* SLAB cache for fs_struct structures (tsk->fs) */
190 struct kmem_cache *fs_cachep;
191
192 /* SLAB cache for vm_area_struct structures */
193 struct kmem_cache *vm_area_cachep;
194
195 /* SLAB cache for mm_struct structures (tsk->mm) */
196 static struct kmem_cache *mm_cachep;
197
198 static void account_kernel_stack(struct thread_info *ti, int account)
199 {
200         struct zone *zone = page_zone(virt_to_page(ti));
201
202         mod_zone_page_state(zone, NR_KERNEL_STACK, account);
203 }
204
205 void free_task(struct task_struct *tsk)
206 {
207         account_kernel_stack(tsk->stack, -1);
208         free_thread_info(tsk->stack);
209         rt_mutex_debug_task_free(tsk);
210         ftrace_graph_exit_task(tsk);
211         put_seccomp_filter(tsk);
212         free_task_struct(tsk);
213 }
214 EXPORT_SYMBOL(free_task);
215
216 static inline void free_signal_struct(struct signal_struct *sig)
217 {
218         taskstats_tgid_free(sig);
219         sched_autogroup_exit(sig);
220         kmem_cache_free(signal_cachep, sig);
221 }
222
223 static inline void put_signal_struct(struct signal_struct *sig)
224 {
225         if (atomic_dec_and_test(&sig->sigcnt))
226                 free_signal_struct(sig);
227 }
228
229 void __put_task_struct(struct task_struct *tsk)
230 {
231         WARN_ON(!tsk->exit_state);
232         WARN_ON(atomic_read(&tsk->usage));
233         WARN_ON(tsk == current);
234
235         security_task_free(tsk);
236         exit_creds(tsk);
237         delayacct_tsk_free(tsk);
238         put_signal_struct(tsk->signal);
239
240         if (!profile_handoff_task(tsk))
241                 free_task(tsk);
242 }
243 EXPORT_SYMBOL_GPL(__put_task_struct);
244
245 void __init __weak arch_task_cache_init(void) { }
246
247 void __init fork_init(unsigned long mempages)
248 {
249 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
250 #ifndef ARCH_MIN_TASKALIGN
251 #define ARCH_MIN_TASKALIGN      L1_CACHE_BYTES
252 #endif
253         /* create a slab on which task_structs can be allocated */
254         task_struct_cachep =
255                 kmem_cache_create("task_struct", sizeof(struct task_struct),
256                         ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
257 #endif
258
259         /* do the arch specific task caches init */
260         arch_task_cache_init();
261
262         /*
263          * The default maximum number of threads is set to a safe
264          * value: the thread structures can take up at most half
265          * of memory.
266          */
267         max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
268
269         /*
270          * we need to allow at least 20 threads to boot a system
271          */
272         if (max_threads < 20)
273                 max_threads = 20;
274
275         init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
276         init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
277         init_task.signal->rlim[RLIMIT_SIGPENDING] =
278                 init_task.signal->rlim[RLIMIT_NPROC];
279 }
280
281 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
282                                                struct task_struct *src)
283 {
284         *dst = *src;
285         return 0;
286 }
287
288 static struct task_struct *dup_task_struct(struct task_struct *orig)
289 {
290         struct task_struct *tsk;
291         struct thread_info *ti;
292         unsigned long *stackend;
293         int node = tsk_fork_get_node(orig);
294         int err;
295
296         tsk = alloc_task_struct_node(node);
297         if (!tsk)
298                 return NULL;
299
300         ti = alloc_thread_info_node(tsk, node);
301         if (!ti) {
302                 free_task_struct(tsk);
303                 return NULL;
304         }
305
306         err = arch_dup_task_struct(tsk, orig);
307         if (err)
308                 goto out;
309
310         tsk->stack = ti;
311
312         setup_thread_stack(tsk, orig);
313         clear_user_return_notifier(tsk);
314         clear_tsk_need_resched(tsk);
315         stackend = end_of_stack(tsk);
316         *stackend = STACK_END_MAGIC;    /* for overflow detection */
317
318 #ifdef CONFIG_CC_STACKPROTECTOR
319         tsk->stack_canary = get_random_int();
320 #endif
321
322         /*
323          * One for us, one for whoever does the "release_task()" (usually
324          * parent)
325          */
326         atomic_set(&tsk->usage, 2);
327 #ifdef CONFIG_BLK_DEV_IO_TRACE
328         tsk->btrace_seq = 0;
329 #endif
330         tsk->splice_pipe = NULL;
331
332         account_kernel_stack(ti, 1);
333
334         return tsk;
335
336 out:
337         free_thread_info(ti);
338         free_task_struct(tsk);
339         return NULL;
340 }
341
342 #ifdef CONFIG_MMU
343 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
344 {
345         struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
346         struct rb_node **rb_link, *rb_parent;
347         int retval;
348         unsigned long charge;
349         struct mempolicy *pol;
350
351         down_write(&oldmm->mmap_sem);
352         flush_cache_dup_mm(oldmm);
353         /*
354          * Not linked in yet - no deadlock potential:
355          */
356         down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
357
358         mm->locked_vm = 0;
359         mm->mmap = NULL;
360         mm->mmap_cache = NULL;
361         mm->free_area_cache = oldmm->mmap_base;
362         mm->cached_hole_size = ~0UL;
363         mm->map_count = 0;
364         cpumask_clear(mm_cpumask(mm));
365         mm->mm_rb = RB_ROOT;
366         rb_link = &mm->mm_rb.rb_node;
367         rb_parent = NULL;
368         pprev = &mm->mmap;
369         retval = ksm_fork(mm, oldmm);
370         if (retval)
371                 goto out;
372         retval = khugepaged_fork(mm, oldmm);
373         if (retval)
374                 goto out;
375
376         prev = NULL;
377         for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
378                 struct file *file;
379
380                 if (mpnt->vm_flags & VM_DONTCOPY) {
381                         long pages = vma_pages(mpnt);
382                         mm->total_vm -= pages;
383                         vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
384                                                                 -pages);
385                         continue;
386                 }
387                 charge = 0;
388                 if (mpnt->vm_flags & VM_ACCOUNT) {
389                         unsigned long len;
390                         len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
391                         if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
392                                 goto fail_nomem;
393                         charge = len;
394                 }
395                 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
396                 if (!tmp)
397                         goto fail_nomem;
398                 *tmp = *mpnt;
399                 INIT_LIST_HEAD(&tmp->anon_vma_chain);
400                 pol = mpol_dup(vma_policy(mpnt));
401                 retval = PTR_ERR(pol);
402                 if (IS_ERR(pol))
403                         goto fail_nomem_policy;
404                 vma_set_policy(tmp, pol);
405                 tmp->vm_mm = mm;
406                 if (anon_vma_fork(tmp, mpnt))
407                         goto fail_nomem_anon_vma_fork;
408                 tmp->vm_flags &= ~VM_LOCKED;
409                 tmp->vm_next = tmp->vm_prev = NULL;
410                 file = tmp->vm_file;
411                 if (file) {
412                         struct inode *inode = file->f_path.dentry->d_inode;
413                         struct address_space *mapping = file->f_mapping;
414
415                         get_file(file);
416                         if (tmp->vm_flags & VM_DENYWRITE)
417                                 atomic_dec(&inode->i_writecount);
418                         mutex_lock(&mapping->i_mmap_mutex);
419                         if (tmp->vm_flags & VM_SHARED)
420                                 mapping->i_mmap_writable++;
421                         flush_dcache_mmap_lock(mapping);
422                         /* insert tmp into the share list, just after mpnt */
423                         vma_prio_tree_add(tmp, mpnt);
424                         flush_dcache_mmap_unlock(mapping);
425                         mutex_unlock(&mapping->i_mmap_mutex);
426                 }
427
428                 /*
429                  * Clear hugetlb-related page reserves for children. This only
430                  * affects MAP_PRIVATE mappings. Faults generated by the child
431                  * are not guaranteed to succeed, even if read-only
432                  */
433                 if (is_vm_hugetlb_page(tmp))
434                         reset_vma_resv_huge_pages(tmp);
435
436                 /*
437                  * Link in the new vma and copy the page table entries.
438                  */
439                 *pprev = tmp;
440                 pprev = &tmp->vm_next;
441                 tmp->vm_prev = prev;
442                 prev = tmp;
443
444                 __vma_link_rb(mm, tmp, rb_link, rb_parent);
445                 rb_link = &tmp->vm_rb.rb_right;
446                 rb_parent = &tmp->vm_rb;
447
448                 mm->map_count++;
449                 retval = copy_page_range(mm, oldmm, mpnt);
450
451                 if (tmp->vm_ops && tmp->vm_ops->open)
452                         tmp->vm_ops->open(tmp);
453
454                 if (retval)
455                         goto out;
456
457                 if (file && uprobe_mmap(tmp))
458                         goto out;
459         }
460         /* a new mm has just been created */
461         arch_dup_mmap(oldmm, mm);
462         retval = 0;
463 out:
464         up_write(&mm->mmap_sem);
465         flush_tlb_mm(oldmm);
466         up_write(&oldmm->mmap_sem);
467         return retval;
468 fail_nomem_anon_vma_fork:
469         mpol_put(pol);
470 fail_nomem_policy:
471         kmem_cache_free(vm_area_cachep, tmp);
472 fail_nomem:
473         retval = -ENOMEM;
474         vm_unacct_memory(charge);
475         goto out;
476 }
477
478 static inline int mm_alloc_pgd(struct mm_struct *mm)
479 {
480         mm->pgd = pgd_alloc(mm);
481         if (unlikely(!mm->pgd))
482                 return -ENOMEM;
483         return 0;
484 }
485
486 static inline void mm_free_pgd(struct mm_struct *mm)
487 {
488         pgd_free(mm, mm->pgd);
489 }
490 #else
491 #define dup_mmap(mm, oldmm)     (0)
492 #define mm_alloc_pgd(mm)        (0)
493 #define mm_free_pgd(mm)
494 #endif /* CONFIG_MMU */
495
496 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
497
498 #define allocate_mm()   (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
499 #define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
500
501 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
502
503 static int __init coredump_filter_setup(char *s)
504 {
505         default_dump_filter =
506                 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
507                 MMF_DUMP_FILTER_MASK;
508         return 1;
509 }
510
511 __setup("coredump_filter=", coredump_filter_setup);
512
513 #include <linux/init_task.h>
514
515 static void mm_init_aio(struct mm_struct *mm)
516 {
517 #ifdef CONFIG_AIO
518         spin_lock_init(&mm->ioctx_lock);
519         INIT_HLIST_HEAD(&mm->ioctx_list);
520 #endif
521 }
522
523 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
524 {
525         atomic_set(&mm->mm_users, 1);
526         atomic_set(&mm->mm_count, 1);
527         init_rwsem(&mm->mmap_sem);
528         INIT_LIST_HEAD(&mm->mmlist);
529         mm->flags = (current->mm) ?
530                 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
531         mm->core_state = NULL;
532         mm->nr_ptes = 0;
533         memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
534         spin_lock_init(&mm->page_table_lock);
535         mm->free_area_cache = TASK_UNMAPPED_BASE;
536         mm->cached_hole_size = ~0UL;
537         mm_init_aio(mm);
538         mm_init_owner(mm, p);
539
540         if (likely(!mm_alloc_pgd(mm))) {
541                 mm->def_flags = 0;
542                 mmu_notifier_mm_init(mm);
543                 return mm;
544         }
545
546         free_mm(mm);
547         return NULL;
548 }
549
550 static void check_mm(struct mm_struct *mm)
551 {
552         int i;
553
554         for (i = 0; i < NR_MM_COUNTERS; i++) {
555                 long x = atomic_long_read(&mm->rss_stat.count[i]);
556
557                 if (unlikely(x))
558                         printk(KERN_ALERT "BUG: Bad rss-counter state "
559                                           "mm:%p idx:%d val:%ld\n", mm, i, x);
560         }
561
562 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
563         VM_BUG_ON(mm->pmd_huge_pte);
564 #endif
565 }
566
567 /*
568  * Allocate and initialize an mm_struct.
569  */
570 struct mm_struct *mm_alloc(void)
571 {
572         struct mm_struct *mm;
573
574         mm = allocate_mm();
575         if (!mm)
576                 return NULL;
577
578         memset(mm, 0, sizeof(*mm));
579         mm_init_cpumask(mm);
580         return mm_init(mm, current);
581 }
582
583 /*
584  * Called when the last reference to the mm
585  * is dropped: either by a lazy thread or by
586  * mmput. Free the page directory and the mm.
587  */
588 void __mmdrop(struct mm_struct *mm)
589 {
590         BUG_ON(mm == &init_mm);
591         mm_free_pgd(mm);
592         destroy_context(mm);
593         mmu_notifier_mm_destroy(mm);
594         check_mm(mm);
595         free_mm(mm);
596 }
597 EXPORT_SYMBOL_GPL(__mmdrop);
598
599 /*
600  * Decrement the use count and release all resources for an mm.
601  */
602 void mmput(struct mm_struct *mm)
603 {
604         might_sleep();
605
606         if (atomic_dec_and_test(&mm->mm_users)) {
607                 uprobe_clear_state(mm);
608                 exit_aio(mm);
609                 ksm_exit(mm);
610                 khugepaged_exit(mm); /* must run before exit_mmap */
611                 exit_mmap(mm);
612                 set_mm_exe_file(mm, NULL);
613                 if (!list_empty(&mm->mmlist)) {
614                         spin_lock(&mmlist_lock);
615                         list_del(&mm->mmlist);
616                         spin_unlock(&mmlist_lock);
617                 }
618                 if (mm->binfmt)
619                         module_put(mm->binfmt->module);
620                 mmdrop(mm);
621         }
622 }
623 EXPORT_SYMBOL_GPL(mmput);
624
625 /*
626  * We added or removed a vma mapping the executable. The vmas are only mapped
627  * during exec and are not mapped with the mmap system call.
628  * Callers must hold down_write() on the mm's mmap_sem for these
629  */
630 void added_exe_file_vma(struct mm_struct *mm)
631 {
632         mm->num_exe_file_vmas++;
633 }
634
635 void removed_exe_file_vma(struct mm_struct *mm)
636 {
637         mm->num_exe_file_vmas--;
638         if ((mm->num_exe_file_vmas == 0) && mm->exe_file) {
639                 fput(mm->exe_file);
640                 mm->exe_file = NULL;
641         }
642
643 }
644
645 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
646 {
647         if (new_exe_file)
648                 get_file(new_exe_file);
649         if (mm->exe_file)
650                 fput(mm->exe_file);
651         mm->exe_file = new_exe_file;
652         mm->num_exe_file_vmas = 0;
653 }
654
655 struct file *get_mm_exe_file(struct mm_struct *mm)
656 {
657         struct file *exe_file;
658
659         /* We need mmap_sem to protect against races with removal of
660          * VM_EXECUTABLE vmas */
661         down_read(&mm->mmap_sem);
662         exe_file = mm->exe_file;
663         if (exe_file)
664                 get_file(exe_file);
665         up_read(&mm->mmap_sem);
666         return exe_file;
667 }
668
669 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
670 {
671         /* It's safe to write the exe_file pointer without exe_file_lock because
672          * this is called during fork when the task is not yet in /proc */
673         newmm->exe_file = get_mm_exe_file(oldmm);
674 }
675
676 /**
677  * get_task_mm - acquire a reference to the task's mm
678  *
679  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
680  * this kernel workthread has transiently adopted a user mm with use_mm,
681  * to do its AIO) is not set and if so returns a reference to it, after
682  * bumping up the use count.  User must release the mm via mmput()
683  * after use.  Typically used by /proc and ptrace.
684  */
685 struct mm_struct *get_task_mm(struct task_struct *task)
686 {
687         struct mm_struct *mm;
688
689         task_lock(task);
690         mm = task->mm;
691         if (mm) {
692                 if (task->flags & PF_KTHREAD)
693                         mm = NULL;
694                 else
695                         atomic_inc(&mm->mm_users);
696         }
697         task_unlock(task);
698         return mm;
699 }
700 EXPORT_SYMBOL_GPL(get_task_mm);
701
702 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
703 {
704         struct mm_struct *mm;
705         int err;
706
707         err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
708         if (err)
709                 return ERR_PTR(err);
710
711         mm = get_task_mm(task);
712         if (mm && mm != current->mm &&
713                         !ptrace_may_access(task, mode)) {
714                 mmput(mm);
715                 mm = ERR_PTR(-EACCES);
716         }
717         mutex_unlock(&task->signal->cred_guard_mutex);
718
719         return mm;
720 }
721
722 static void complete_vfork_done(struct task_struct *tsk)
723 {
724         struct completion *vfork;
725
726         task_lock(tsk);
727         vfork = tsk->vfork_done;
728         if (likely(vfork)) {
729                 tsk->vfork_done = NULL;
730                 complete(vfork);
731         }
732         task_unlock(tsk);
733 }
734
735 static int wait_for_vfork_done(struct task_struct *child,
736                                 struct completion *vfork)
737 {
738         int killed;
739
740         freezer_do_not_count();
741         killed = wait_for_completion_killable(vfork);
742         freezer_count();
743
744         if (killed) {
745                 task_lock(child);
746                 child->vfork_done = NULL;
747                 task_unlock(child);
748         }
749
750         put_task_struct(child);
751         return killed;
752 }
753
754 /* Please note the differences between mmput and mm_release.
755  * mmput is called whenever we stop holding onto a mm_struct,
756  * error success whatever.
757  *
758  * mm_release is called after a mm_struct has been removed
759  * from the current process.
760  *
761  * This difference is important for error handling, when we
762  * only half set up a mm_struct for a new process and need to restore
763  * the old one.  Because we mmput the new mm_struct before
764  * restoring the old one. . .
765  * Eric Biederman 10 January 1998
766  */
767 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
768 {
769         /* Get rid of any futexes when releasing the mm */
770 #ifdef CONFIG_FUTEX
771         if (unlikely(tsk->robust_list)) {
772                 exit_robust_list(tsk);
773                 tsk->robust_list = NULL;
774         }
775 #ifdef CONFIG_COMPAT
776         if (unlikely(tsk->compat_robust_list)) {
777                 compat_exit_robust_list(tsk);
778                 tsk->compat_robust_list = NULL;
779         }
780 #endif
781         if (unlikely(!list_empty(&tsk->pi_state_list)))
782                 exit_pi_state_list(tsk);
783 #endif
784
785         uprobe_free_utask(tsk);
786
787         /* Get rid of any cached register state */
788         deactivate_mm(tsk, mm);
789
790         if (tsk->vfork_done)
791                 complete_vfork_done(tsk);
792
793         /*
794          * If we're exiting normally, clear a user-space tid field if
795          * requested.  We leave this alone when dying by signal, to leave
796          * the value intact in a core dump, and to save the unnecessary
797          * trouble, say, a killed vfork parent shouldn't touch this mm.
798          * Userland only wants this done for a sys_exit.
799          */
800         if (tsk->clear_child_tid) {
801                 if (!(tsk->flags & PF_SIGNALED) &&
802                     atomic_read(&mm->mm_users) > 1) {
803                         /*
804                          * We don't check the error code - if userspace has
805                          * not set up a proper pointer then tough luck.
806                          */
807                         put_user(0, tsk->clear_child_tid);
808                         sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
809                                         1, NULL, NULL, 0);
810                 }
811                 tsk->clear_child_tid = NULL;
812         }
813 }
814
815 /*
816  * Allocate a new mm structure and copy contents from the
817  * mm structure of the passed in task structure.
818  */
819 struct mm_struct *dup_mm(struct task_struct *tsk)
820 {
821         struct mm_struct *mm, *oldmm = current->mm;
822         int err;
823
824         if (!oldmm)
825                 return NULL;
826
827         mm = allocate_mm();
828         if (!mm)
829                 goto fail_nomem;
830
831         memcpy(mm, oldmm, sizeof(*mm));
832         mm_init_cpumask(mm);
833
834 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
835         mm->pmd_huge_pte = NULL;
836 #endif
837         uprobe_reset_state(mm);
838
839         if (!mm_init(mm, tsk))
840                 goto fail_nomem;
841
842         if (init_new_context(tsk, mm))
843                 goto fail_nocontext;
844
845         dup_mm_exe_file(oldmm, mm);
846
847         err = dup_mmap(mm, oldmm);
848         if (err)
849                 goto free_pt;
850
851         mm->hiwater_rss = get_mm_rss(mm);
852         mm->hiwater_vm = mm->total_vm;
853
854         if (mm->binfmt && !try_module_get(mm->binfmt->module))
855                 goto free_pt;
856
857         return mm;
858
859 free_pt:
860         /* don't put binfmt in mmput, we haven't got module yet */
861         mm->binfmt = NULL;
862         mmput(mm);
863
864 fail_nomem:
865         return NULL;
866
867 fail_nocontext:
868         /*
869          * If init_new_context() failed, we cannot use mmput() to free the mm
870          * because it calls destroy_context()
871          */
872         mm_free_pgd(mm);
873         free_mm(mm);
874         return NULL;
875 }
876
877 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
878 {
879         struct mm_struct *mm, *oldmm;
880         int retval;
881
882         tsk->min_flt = tsk->maj_flt = 0;
883         tsk->nvcsw = tsk->nivcsw = 0;
884 #ifdef CONFIG_DETECT_HUNG_TASK
885         tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
886 #endif
887
888         tsk->mm = NULL;
889         tsk->active_mm = NULL;
890
891         /*
892          * Are we cloning a kernel thread?
893          *
894          * We need to steal a active VM for that..
895          */
896         oldmm = current->mm;
897         if (!oldmm)
898                 return 0;
899
900         if (clone_flags & CLONE_VM) {
901                 atomic_inc(&oldmm->mm_users);
902                 mm = oldmm;
903                 goto good_mm;
904         }
905
906         retval = -ENOMEM;
907         mm = dup_mm(tsk);
908         if (!mm)
909                 goto fail_nomem;
910
911 good_mm:
912         tsk->mm = mm;
913         tsk->active_mm = mm;
914         return 0;
915
916 fail_nomem:
917         return retval;
918 }
919
920 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
921 {
922         struct fs_struct *fs = current->fs;
923         if (clone_flags & CLONE_FS) {
924                 /* tsk->fs is already what we want */
925                 spin_lock(&fs->lock);
926                 if (fs->in_exec) {
927                         spin_unlock(&fs->lock);
928                         return -EAGAIN;
929                 }
930                 fs->users++;
931                 spin_unlock(&fs->lock);
932                 return 0;
933         }
934         tsk->fs = copy_fs_struct(fs);
935         if (!tsk->fs)
936                 return -ENOMEM;
937         return 0;
938 }
939
940 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
941 {
942         struct files_struct *oldf, *newf;
943         int error = 0;
944
945         /*
946          * A background process may not have any files ...
947          */
948         oldf = current->files;
949         if (!oldf)
950                 goto out;
951
952         if (clone_flags & CLONE_FILES) {
953                 atomic_inc(&oldf->count);
954                 goto out;
955         }
956
957         newf = dup_fd(oldf, &error);
958         if (!newf)
959                 goto out;
960
961         tsk->files = newf;
962         error = 0;
963 out:
964         return error;
965 }
966
967 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
968 {
969 #ifdef CONFIG_BLOCK
970         struct io_context *ioc = current->io_context;
971         struct io_context *new_ioc;
972
973         if (!ioc)
974                 return 0;
975         /*
976          * Share io context with parent, if CLONE_IO is set
977          */
978         if (clone_flags & CLONE_IO) {
979                 ioc_task_link(ioc);
980                 tsk->io_context = ioc;
981         } else if (ioprio_valid(ioc->ioprio)) {
982                 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
983                 if (unlikely(!new_ioc))
984                         return -ENOMEM;
985
986                 new_ioc->ioprio = ioc->ioprio;
987                 put_io_context(new_ioc);
988         }
989 #endif
990         return 0;
991 }
992
993 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
994 {
995         struct sighand_struct *sig;
996
997         if (clone_flags & CLONE_SIGHAND) {
998                 atomic_inc(&current->sighand->count);
999                 return 0;
1000         }
1001         sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1002         rcu_assign_pointer(tsk->sighand, sig);
1003         if (!sig)
1004                 return -ENOMEM;
1005         atomic_set(&sig->count, 1);
1006         memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1007         return 0;
1008 }
1009
1010 void __cleanup_sighand(struct sighand_struct *sighand)
1011 {
1012         if (atomic_dec_and_test(&sighand->count)) {
1013                 signalfd_cleanup(sighand);
1014                 kmem_cache_free(sighand_cachep, sighand);
1015         }
1016 }
1017
1018
1019 /*
1020  * Initialize POSIX timer handling for a thread group.
1021  */
1022 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1023 {
1024         unsigned long cpu_limit;
1025
1026         /* Thread group counters. */
1027         thread_group_cputime_init(sig);
1028
1029         cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1030         if (cpu_limit != RLIM_INFINITY) {
1031                 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1032                 sig->cputimer.running = 1;
1033         }
1034
1035         /* The timer lists. */
1036         INIT_LIST_HEAD(&sig->cpu_timers[0]);
1037         INIT_LIST_HEAD(&sig->cpu_timers[1]);
1038         INIT_LIST_HEAD(&sig->cpu_timers[2]);
1039 }
1040
1041 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1042 {
1043         struct signal_struct *sig;
1044
1045         if (clone_flags & CLONE_THREAD)
1046                 return 0;
1047
1048         sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1049         tsk->signal = sig;
1050         if (!sig)
1051                 return -ENOMEM;
1052
1053         sig->nr_threads = 1;
1054         atomic_set(&sig->live, 1);
1055         atomic_set(&sig->sigcnt, 1);
1056         init_waitqueue_head(&sig->wait_chldexit);
1057         if (clone_flags & CLONE_NEWPID)
1058                 sig->flags |= SIGNAL_UNKILLABLE;
1059         sig->curr_target = tsk;
1060         init_sigpending(&sig->shared_pending);
1061         INIT_LIST_HEAD(&sig->posix_timers);
1062
1063         hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1064         sig->real_timer.function = it_real_fn;
1065
1066         task_lock(current->group_leader);
1067         memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1068         task_unlock(current->group_leader);
1069
1070         posix_cpu_timers_init_group(sig);
1071
1072         tty_audit_fork(sig);
1073         sched_autogroup_fork(sig);
1074
1075 #ifdef CONFIG_CGROUPS
1076         init_rwsem(&sig->group_rwsem);
1077 #endif
1078
1079         sig->oom_adj = current->signal->oom_adj;
1080         sig->oom_score_adj = current->signal->oom_score_adj;
1081         sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1082
1083         sig->has_child_subreaper = current->signal->has_child_subreaper ||
1084                                    current->signal->is_child_subreaper;
1085
1086         mutex_init(&sig->cred_guard_mutex);
1087
1088         return 0;
1089 }
1090
1091 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
1092 {
1093         unsigned long new_flags = p->flags;
1094
1095         new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1096         new_flags |= PF_FORKNOEXEC;
1097         p->flags = new_flags;
1098 }
1099
1100 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1101 {
1102         current->clear_child_tid = tidptr;
1103
1104         return task_pid_vnr(current);
1105 }
1106
1107 static void rt_mutex_init_task(struct task_struct *p)
1108 {
1109         raw_spin_lock_init(&p->pi_lock);
1110 #ifdef CONFIG_RT_MUTEXES
1111         plist_head_init(&p->pi_waiters);
1112         p->pi_blocked_on = NULL;
1113 #endif
1114 }
1115
1116 #ifdef CONFIG_MM_OWNER
1117 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1118 {
1119         mm->owner = p;
1120 }
1121 #endif /* CONFIG_MM_OWNER */
1122
1123 /*
1124  * Initialize POSIX timer handling for a single task.
1125  */
1126 static void posix_cpu_timers_init(struct task_struct *tsk)
1127 {
1128         tsk->cputime_expires.prof_exp = 0;
1129         tsk->cputime_expires.virt_exp = 0;
1130         tsk->cputime_expires.sched_exp = 0;
1131         INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1132         INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1133         INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1134 }
1135
1136 /*
1137  * This creates a new process as a copy of the old one,
1138  * but does not actually start it yet.
1139  *
1140  * It copies the registers, and all the appropriate
1141  * parts of the process environment (as per the clone
1142  * flags). The actual kick-off is left to the caller.
1143  */
1144 static struct task_struct *copy_process(unsigned long clone_flags,
1145                                         unsigned long stack_start,
1146                                         struct pt_regs *regs,
1147                                         unsigned long stack_size,
1148                                         int __user *child_tidptr,
1149                                         struct pid *pid,
1150                                         int trace)
1151 {
1152         int retval;
1153         struct task_struct *p;
1154         int cgroup_callbacks_done = 0;
1155
1156         if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1157                 return ERR_PTR(-EINVAL);
1158
1159         /*
1160          * Thread groups must share signals as well, and detached threads
1161          * can only be started up within the thread group.
1162          */
1163         if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1164                 return ERR_PTR(-EINVAL);
1165
1166         /*
1167          * Shared signal handlers imply shared VM. By way of the above,
1168          * thread groups also imply shared VM. Blocking this case allows
1169          * for various simplifications in other code.
1170          */
1171         if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1172                 return ERR_PTR(-EINVAL);
1173
1174         /*
1175          * Siblings of global init remain as zombies on exit since they are
1176          * not reaped by their parent (swapper). To solve this and to avoid
1177          * multi-rooted process trees, prevent global and container-inits
1178          * from creating siblings.
1179          */
1180         if ((clone_flags & CLONE_PARENT) &&
1181                                 current->signal->flags & SIGNAL_UNKILLABLE)
1182                 return ERR_PTR(-EINVAL);
1183
1184         retval = security_task_create(clone_flags);
1185         if (retval)
1186                 goto fork_out;
1187
1188         retval = -ENOMEM;
1189         p = dup_task_struct(current);
1190         if (!p)
1191                 goto fork_out;
1192
1193         ftrace_graph_init_task(p);
1194         get_seccomp_filter(p);
1195
1196         rt_mutex_init_task(p);
1197
1198 #ifdef CONFIG_PROVE_LOCKING
1199         DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1200         DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1201 #endif
1202         retval = -EAGAIN;
1203         if (atomic_read(&p->real_cred->user->processes) >=
1204                         task_rlimit(p, RLIMIT_NPROC)) {
1205                 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1206                     p->real_cred->user != INIT_USER)
1207                         goto bad_fork_free;
1208         }
1209         current->flags &= ~PF_NPROC_EXCEEDED;
1210
1211         retval = copy_creds(p, clone_flags);
1212         if (retval < 0)
1213                 goto bad_fork_free;
1214
1215         /*
1216          * If multiple threads are within copy_process(), then this check
1217          * triggers too late. This doesn't hurt, the check is only there
1218          * to stop root fork bombs.
1219          */
1220         retval = -EAGAIN;
1221         if (nr_threads >= max_threads)
1222                 goto bad_fork_cleanup_count;
1223
1224         if (!try_module_get(task_thread_info(p)->exec_domain->module))
1225                 goto bad_fork_cleanup_count;
1226
1227         p->did_exec = 0;
1228         delayacct_tsk_init(p);  /* Must remain after dup_task_struct() */
1229         copy_flags(clone_flags, p);
1230         INIT_LIST_HEAD(&p->children);
1231         INIT_LIST_HEAD(&p->sibling);
1232         rcu_copy_process(p);
1233         p->vfork_done = NULL;
1234         spin_lock_init(&p->alloc_lock);
1235
1236         init_sigpending(&p->pending);
1237
1238         p->utime = p->stime = p->gtime = 0;
1239         p->utimescaled = p->stimescaled = 0;
1240 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1241         p->prev_utime = p->prev_stime = 0;
1242 #endif
1243 #if defined(SPLIT_RSS_COUNTING)
1244         memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1245 #endif
1246
1247         p->default_timer_slack_ns = current->timer_slack_ns;
1248
1249         task_io_accounting_init(&p->ioac);
1250         acct_clear_integrals(p);
1251
1252         posix_cpu_timers_init(p);
1253
1254         do_posix_clock_monotonic_gettime(&p->start_time);
1255         p->real_start_time = p->start_time;
1256         monotonic_to_bootbased(&p->real_start_time);
1257         p->io_context = NULL;
1258         p->audit_context = NULL;
1259         if (clone_flags & CLONE_THREAD)
1260                 threadgroup_change_begin(current);
1261         cgroup_fork(p);
1262 #ifdef CONFIG_NUMA
1263         p->mempolicy = mpol_dup(p->mempolicy);
1264         if (IS_ERR(p->mempolicy)) {
1265                 retval = PTR_ERR(p->mempolicy);
1266                 p->mempolicy = NULL;
1267                 goto bad_fork_cleanup_cgroup;
1268         }
1269         mpol_fix_fork_child_flag(p);
1270 #endif
1271 #ifdef CONFIG_CPUSETS
1272         p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1273         p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1274         seqcount_init(&p->mems_allowed_seq);
1275 #endif
1276 #ifdef CONFIG_TRACE_IRQFLAGS
1277         p->irq_events = 0;
1278 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1279         p->hardirqs_enabled = 1;
1280 #else
1281         p->hardirqs_enabled = 0;
1282 #endif
1283         p->hardirq_enable_ip = 0;
1284         p->hardirq_enable_event = 0;
1285         p->hardirq_disable_ip = _THIS_IP_;
1286         p->hardirq_disable_event = 0;
1287         p->softirqs_enabled = 1;
1288         p->softirq_enable_ip = _THIS_IP_;
1289         p->softirq_enable_event = 0;
1290         p->softirq_disable_ip = 0;
1291         p->softirq_disable_event = 0;
1292         p->hardirq_context = 0;
1293         p->softirq_context = 0;
1294 #endif
1295 #ifdef CONFIG_LOCKDEP
1296         p->lockdep_depth = 0; /* no locks held yet */
1297         p->curr_chain_key = 0;
1298         p->lockdep_recursion = 0;
1299 #endif
1300
1301 #ifdef CONFIG_DEBUG_MUTEXES
1302         p->blocked_on = NULL; /* not blocked yet */
1303 #endif
1304 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1305         p->memcg_batch.do_batch = 0;
1306         p->memcg_batch.memcg = NULL;
1307 #endif
1308
1309         /* Perform scheduler related setup. Assign this task to a CPU. */
1310         sched_fork(p);
1311
1312         retval = perf_event_init_task(p);
1313         if (retval)
1314                 goto bad_fork_cleanup_policy;
1315         retval = audit_alloc(p);
1316         if (retval)
1317                 goto bad_fork_cleanup_policy;
1318         /* copy all the process information */
1319         retval = copy_semundo(clone_flags, p);
1320         if (retval)
1321                 goto bad_fork_cleanup_audit;
1322         retval = copy_files(clone_flags, p);
1323         if (retval)
1324                 goto bad_fork_cleanup_semundo;
1325         retval = copy_fs(clone_flags, p);
1326         if (retval)
1327                 goto bad_fork_cleanup_files;
1328         retval = copy_sighand(clone_flags, p);
1329         if (retval)
1330                 goto bad_fork_cleanup_fs;
1331         retval = copy_signal(clone_flags, p);
1332         if (retval)
1333                 goto bad_fork_cleanup_sighand;
1334         retval = copy_mm(clone_flags, p);
1335         if (retval)
1336                 goto bad_fork_cleanup_signal;
1337         retval = copy_namespaces(clone_flags, p);
1338         if (retval)
1339                 goto bad_fork_cleanup_mm;
1340         retval = copy_io(clone_flags, p);
1341         if (retval)
1342                 goto bad_fork_cleanup_namespaces;
1343         retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1344         if (retval)
1345                 goto bad_fork_cleanup_io;
1346
1347         if (pid != &init_struct_pid) {
1348                 retval = -ENOMEM;
1349                 pid = alloc_pid(p->nsproxy->pid_ns);
1350                 if (!pid)
1351                         goto bad_fork_cleanup_io;
1352         }
1353
1354         p->pid = pid_nr(pid);
1355         p->tgid = p->pid;
1356         if (clone_flags & CLONE_THREAD)
1357                 p->tgid = current->tgid;
1358
1359         p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1360         /*
1361          * Clear TID on mm_release()?
1362          */
1363         p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1364 #ifdef CONFIG_BLOCK
1365         p->plug = NULL;
1366 #endif
1367 #ifdef CONFIG_FUTEX
1368         p->robust_list = NULL;
1369 #ifdef CONFIG_COMPAT
1370         p->compat_robust_list = NULL;
1371 #endif
1372         INIT_LIST_HEAD(&p->pi_state_list);
1373         p->pi_state_cache = NULL;
1374 #endif
1375         uprobe_copy_process(p);
1376         /*
1377          * sigaltstack should be cleared when sharing the same VM
1378          */
1379         if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1380                 p->sas_ss_sp = p->sas_ss_size = 0;
1381
1382         /*
1383          * Syscall tracing and stepping should be turned off in the
1384          * child regardless of CLONE_PTRACE.
1385          */
1386         user_disable_single_step(p);
1387         clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1388 #ifdef TIF_SYSCALL_EMU
1389         clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1390 #endif
1391         clear_all_latency_tracing(p);
1392
1393         /* ok, now we should be set up.. */
1394         if (clone_flags & CLONE_THREAD)
1395                 p->exit_signal = -1;
1396         else if (clone_flags & CLONE_PARENT)
1397                 p->exit_signal = current->group_leader->exit_signal;
1398         else
1399                 p->exit_signal = (clone_flags & CSIGNAL);
1400
1401         p->pdeath_signal = 0;
1402         p->exit_state = 0;
1403
1404         p->nr_dirtied = 0;
1405         p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1406         p->dirty_paused_when = 0;
1407
1408         /*
1409          * Ok, make it visible to the rest of the system.
1410          * We dont wake it up yet.
1411          */
1412         p->group_leader = p;
1413         INIT_LIST_HEAD(&p->thread_group);
1414
1415         /* Now that the task is set up, run cgroup callbacks if
1416          * necessary. We need to run them before the task is visible
1417          * on the tasklist. */
1418         cgroup_fork_callbacks(p);
1419         cgroup_callbacks_done = 1;
1420
1421         /* Need tasklist lock for parent etc handling! */
1422         write_lock_irq(&tasklist_lock);
1423
1424         /* CLONE_PARENT re-uses the old parent */
1425         if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1426                 p->real_parent = current->real_parent;
1427                 p->parent_exec_id = current->parent_exec_id;
1428         } else {
1429                 p->real_parent = current;
1430                 p->parent_exec_id = current->self_exec_id;
1431         }
1432
1433         spin_lock(&current->sighand->siglock);
1434
1435         /*
1436          * Process group and session signals need to be delivered to just the
1437          * parent before the fork or both the parent and the child after the
1438          * fork. Restart if a signal comes in before we add the new process to
1439          * it's process group.
1440          * A fatal signal pending means that current will exit, so the new
1441          * thread can't slip out of an OOM kill (or normal SIGKILL).
1442         */
1443         recalc_sigpending();
1444         if (signal_pending(current)) {
1445                 spin_unlock(&current->sighand->siglock);
1446                 write_unlock_irq(&tasklist_lock);
1447                 retval = -ERESTARTNOINTR;
1448                 goto bad_fork_free_pid;
1449         }
1450
1451         if (clone_flags & CLONE_THREAD) {
1452                 current->signal->nr_threads++;
1453                 atomic_inc(&current->signal->live);
1454                 atomic_inc(&current->signal->sigcnt);
1455                 p->group_leader = current->group_leader;
1456                 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1457         }
1458
1459         if (likely(p->pid)) {
1460                 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1461
1462                 if (thread_group_leader(p)) {
1463                         if (is_child_reaper(pid))
1464                                 p->nsproxy->pid_ns->child_reaper = p;
1465
1466                         p->signal->leader_pid = pid;
1467                         p->signal->tty = tty_kref_get(current->signal->tty);
1468                         attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1469                         attach_pid(p, PIDTYPE_SID, task_session(current));
1470                         list_add_tail(&p->sibling, &p->real_parent->children);
1471                         list_add_tail_rcu(&p->tasks, &init_task.tasks);
1472                         __this_cpu_inc(process_counts);
1473                 }
1474                 attach_pid(p, PIDTYPE_PID, pid);
1475                 nr_threads++;
1476         }
1477
1478         total_forks++;
1479         spin_unlock(&current->sighand->siglock);
1480         write_unlock_irq(&tasklist_lock);
1481         proc_fork_connector(p);
1482         cgroup_post_fork(p);
1483         if (clone_flags & CLONE_THREAD)
1484                 threadgroup_change_end(current);
1485         perf_event_fork(p);
1486
1487         trace_task_newtask(p, clone_flags);
1488
1489         return p;
1490
1491 bad_fork_free_pid:
1492         if (pid != &init_struct_pid)
1493                 free_pid(pid);
1494 bad_fork_cleanup_io:
1495         if (p->io_context)
1496                 exit_io_context(p);
1497 bad_fork_cleanup_namespaces:
1498         if (unlikely(clone_flags & CLONE_NEWPID))
1499                 pid_ns_release_proc(p->nsproxy->pid_ns);
1500         exit_task_namespaces(p);
1501 bad_fork_cleanup_mm:
1502         if (p->mm)
1503                 mmput(p->mm);
1504 bad_fork_cleanup_signal:
1505         if (!(clone_flags & CLONE_THREAD))
1506                 free_signal_struct(p->signal);
1507 bad_fork_cleanup_sighand:
1508         __cleanup_sighand(p->sighand);
1509 bad_fork_cleanup_fs:
1510         exit_fs(p); /* blocking */
1511 bad_fork_cleanup_files:
1512         exit_files(p); /* blocking */
1513 bad_fork_cleanup_semundo:
1514         exit_sem(p);
1515 bad_fork_cleanup_audit:
1516         audit_free(p);
1517 bad_fork_cleanup_policy:
1518         perf_event_free_task(p);
1519 #ifdef CONFIG_NUMA
1520         mpol_put(p->mempolicy);
1521 bad_fork_cleanup_cgroup:
1522 #endif
1523         if (clone_flags & CLONE_THREAD)
1524                 threadgroup_change_end(current);
1525         cgroup_exit(p, cgroup_callbacks_done);
1526         delayacct_tsk_free(p);
1527         module_put(task_thread_info(p)->exec_domain->module);
1528 bad_fork_cleanup_count:
1529         atomic_dec(&p->cred->user->processes);
1530         exit_creds(p);
1531 bad_fork_free:
1532         free_task(p);
1533 fork_out:
1534         return ERR_PTR(retval);
1535 }
1536
1537 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1538 {
1539         memset(regs, 0, sizeof(struct pt_regs));
1540         return regs;
1541 }
1542
1543 static inline void init_idle_pids(struct pid_link *links)
1544 {
1545         enum pid_type type;
1546
1547         for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1548                 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1549                 links[type].pid = &init_struct_pid;
1550         }
1551 }
1552
1553 struct task_struct * __cpuinit fork_idle(int cpu)
1554 {
1555         struct task_struct *task;
1556         struct pt_regs regs;
1557
1558         task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1559                             &init_struct_pid, 0);
1560         if (!IS_ERR(task)) {
1561                 init_idle_pids(task->pids);
1562                 init_idle(task, cpu);
1563         }
1564
1565         return task;
1566 }
1567
1568 /*
1569  *  Ok, this is the main fork-routine.
1570  *
1571  * It copies the process, and if successful kick-starts
1572  * it and waits for it to finish using the VM if required.
1573  */
1574 long do_fork(unsigned long clone_flags,
1575               unsigned long stack_start,
1576               struct pt_regs *regs,
1577               unsigned long stack_size,
1578               int __user *parent_tidptr,
1579               int __user *child_tidptr)
1580 {
1581         struct task_struct *p;
1582         int trace = 0;
1583         long nr;
1584
1585         /*
1586          * Do some preliminary argument and permissions checking before we
1587          * actually start allocating stuff
1588          */
1589         if (clone_flags & CLONE_NEWUSER) {
1590                 if (clone_flags & CLONE_THREAD)
1591                         return -EINVAL;
1592                 /* hopefully this check will go away when userns support is
1593                  * complete
1594                  */
1595                 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1596                                 !capable(CAP_SETGID))
1597                         return -EPERM;
1598         }
1599
1600         /*
1601          * Determine whether and which event to report to ptracer.  When
1602          * called from kernel_thread or CLONE_UNTRACED is explicitly
1603          * requested, no event is reported; otherwise, report if the event
1604          * for the type of forking is enabled.
1605          */
1606         if (likely(user_mode(regs)) && !(clone_flags & CLONE_UNTRACED)) {
1607                 if (clone_flags & CLONE_VFORK)
1608                         trace = PTRACE_EVENT_VFORK;
1609                 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1610                         trace = PTRACE_EVENT_CLONE;
1611                 else
1612                         trace = PTRACE_EVENT_FORK;
1613
1614                 if (likely(!ptrace_event_enabled(current, trace)))
1615                         trace = 0;
1616         }
1617
1618         p = copy_process(clone_flags, stack_start, regs, stack_size,
1619                          child_tidptr, NULL, trace);
1620         /*
1621          * Do this prior waking up the new thread - the thread pointer
1622          * might get invalid after that point, if the thread exits quickly.
1623          */
1624         if (!IS_ERR(p)) {
1625                 struct completion vfork;
1626
1627                 trace_sched_process_fork(current, p);
1628
1629                 nr = task_pid_vnr(p);
1630
1631                 if (clone_flags & CLONE_PARENT_SETTID)
1632                         put_user(nr, parent_tidptr);
1633
1634                 if (clone_flags & CLONE_VFORK) {
1635                         p->vfork_done = &vfork;
1636                         init_completion(&vfork);
1637                         get_task_struct(p);
1638                 }
1639
1640                 wake_up_new_task(p);
1641
1642                 /* forking complete and child started to run, tell ptracer */
1643                 if (unlikely(trace))
1644                         ptrace_event(trace, nr);
1645
1646                 if (clone_flags & CLONE_VFORK) {
1647                         if (!wait_for_vfork_done(p, &vfork))
1648                                 ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
1649                 }
1650         } else {
1651                 nr = PTR_ERR(p);
1652         }
1653         return nr;
1654 }
1655
1656 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1657 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1658 #endif
1659
1660 static void sighand_ctor(void *data)
1661 {
1662         struct sighand_struct *sighand = data;
1663
1664         spin_lock_init(&sighand->siglock);
1665         init_waitqueue_head(&sighand->signalfd_wqh);
1666 }
1667
1668 void __init proc_caches_init(void)
1669 {
1670         sighand_cachep = kmem_cache_create("sighand_cache",
1671                         sizeof(struct sighand_struct), 0,
1672                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1673                         SLAB_NOTRACK, sighand_ctor);
1674         signal_cachep = kmem_cache_create("signal_cache",
1675                         sizeof(struct signal_struct), 0,
1676                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1677         files_cachep = kmem_cache_create("files_cache",
1678                         sizeof(struct files_struct), 0,
1679                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1680         fs_cachep = kmem_cache_create("fs_cache",
1681                         sizeof(struct fs_struct), 0,
1682                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1683         /*
1684          * FIXME! The "sizeof(struct mm_struct)" currently includes the
1685          * whole struct cpumask for the OFFSTACK case. We could change
1686          * this to *only* allocate as much of it as required by the
1687          * maximum number of CPU's we can ever have.  The cpumask_allocation
1688          * is at the end of the structure, exactly for that reason.
1689          */
1690         mm_cachep = kmem_cache_create("mm_struct",
1691                         sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1692                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1693         vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1694         mmap_init();
1695         nsproxy_cache_init();
1696 }
1697
1698 /*
1699  * Check constraints on flags passed to the unshare system call.
1700  */
1701 static int check_unshare_flags(unsigned long unshare_flags)
1702 {
1703         if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1704                                 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1705                                 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1706                 return -EINVAL;
1707         /*
1708          * Not implemented, but pretend it works if there is nothing to
1709          * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1710          * needs to unshare vm.
1711          */
1712         if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1713                 /* FIXME: get_task_mm() increments ->mm_users */
1714                 if (atomic_read(&current->mm->mm_users) > 1)
1715                         return -EINVAL;
1716         }
1717
1718         return 0;
1719 }
1720
1721 /*
1722  * Unshare the filesystem structure if it is being shared
1723  */
1724 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1725 {
1726         struct fs_struct *fs = current->fs;
1727
1728         if (!(unshare_flags & CLONE_FS) || !fs)
1729                 return 0;
1730
1731         /* don't need lock here; in the worst case we'll do useless copy */
1732         if (fs->users == 1)
1733                 return 0;
1734
1735         *new_fsp = copy_fs_struct(fs);
1736         if (!*new_fsp)
1737                 return -ENOMEM;
1738
1739         return 0;
1740 }
1741
1742 /*
1743  * Unshare file descriptor table if it is being shared
1744  */
1745 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1746 {
1747         struct files_struct *fd = current->files;
1748         int error = 0;
1749
1750         if ((unshare_flags & CLONE_FILES) &&
1751             (fd && atomic_read(&fd->count) > 1)) {
1752                 *new_fdp = dup_fd(fd, &error);
1753                 if (!*new_fdp)
1754                         return error;
1755         }
1756
1757         return 0;
1758 }
1759
1760 /*
1761  * unshare allows a process to 'unshare' part of the process
1762  * context which was originally shared using clone.  copy_*
1763  * functions used by do_fork() cannot be used here directly
1764  * because they modify an inactive task_struct that is being
1765  * constructed. Here we are modifying the current, active,
1766  * task_struct.
1767  */
1768 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1769 {
1770         struct fs_struct *fs, *new_fs = NULL;
1771         struct files_struct *fd, *new_fd = NULL;
1772         struct nsproxy *new_nsproxy = NULL;
1773         int do_sysvsem = 0;
1774         int err;
1775
1776         err = check_unshare_flags(unshare_flags);
1777         if (err)
1778                 goto bad_unshare_out;
1779
1780         /*
1781          * If unsharing namespace, must also unshare filesystem information.
1782          */
1783         if (unshare_flags & CLONE_NEWNS)
1784                 unshare_flags |= CLONE_FS;
1785         /*
1786          * CLONE_NEWIPC must also detach from the undolist: after switching
1787          * to a new ipc namespace, the semaphore arrays from the old
1788          * namespace are unreachable.
1789          */
1790         if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1791                 do_sysvsem = 1;
1792         err = unshare_fs(unshare_flags, &new_fs);
1793         if (err)
1794                 goto bad_unshare_out;
1795         err = unshare_fd(unshare_flags, &new_fd);
1796         if (err)
1797                 goto bad_unshare_cleanup_fs;
1798         err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, new_fs);
1799         if (err)
1800                 goto bad_unshare_cleanup_fd;
1801
1802         if (new_fs || new_fd || do_sysvsem || new_nsproxy) {
1803                 if (do_sysvsem) {
1804                         /*
1805                          * CLONE_SYSVSEM is equivalent to sys_exit().
1806                          */
1807                         exit_sem(current);
1808                 }
1809
1810                 if (new_nsproxy) {
1811                         switch_task_namespaces(current, new_nsproxy);
1812                         new_nsproxy = NULL;
1813                 }
1814
1815                 task_lock(current);
1816
1817                 if (new_fs) {
1818                         fs = current->fs;
1819                         spin_lock(&fs->lock);
1820                         current->fs = new_fs;
1821                         if (--fs->users)
1822                                 new_fs = NULL;
1823                         else
1824                                 new_fs = fs;
1825                         spin_unlock(&fs->lock);
1826                 }
1827
1828                 if (new_fd) {
1829                         fd = current->files;
1830                         current->files = new_fd;
1831                         new_fd = fd;
1832                 }
1833
1834                 task_unlock(current);
1835         }
1836
1837         if (new_nsproxy)
1838                 put_nsproxy(new_nsproxy);
1839
1840 bad_unshare_cleanup_fd:
1841         if (new_fd)
1842                 put_files_struct(new_fd);
1843
1844 bad_unshare_cleanup_fs:
1845         if (new_fs)
1846                 free_fs_struct(new_fs);
1847
1848 bad_unshare_out:
1849         return err;
1850 }
1851
1852 /*
1853  *      Helper to unshare the files of the current task.
1854  *      We don't want to expose copy_files internals to
1855  *      the exec layer of the kernel.
1856  */
1857
1858 int unshare_files(struct files_struct **displaced)
1859 {
1860         struct task_struct *task = current;
1861         struct files_struct *copy = NULL;
1862         int error;
1863
1864         error = unshare_fd(CLONE_FILES, &copy);
1865         if (error || !copy) {
1866                 *displaced = NULL;
1867                 return error;
1868         }
1869         *displaced = task->files;
1870         task_lock(task);
1871         task->files = copy;
1872         task_unlock(task);
1873         return 0;
1874 }