]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - kernel/fork.c
mm: fix page-faults detection in swap-token logic
[karo-tx-linux.git] / kernel / fork.c
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/futex.h>
41 #include <linux/compat.h>
42 #include <linux/kthread.h>
43 #include <linux/task_io_accounting_ops.h>
44 #include <linux/rcupdate.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/audit.h>
48 #include <linux/memcontrol.h>
49 #include <linux/ftrace.h>
50 #include <linux/profile.h>
51 #include <linux/rmap.h>
52 #include <linux/ksm.h>
53 #include <linux/acct.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/freezer.h>
57 #include <linux/delayacct.h>
58 #include <linux/taskstats_kern.h>
59 #include <linux/random.h>
60 #include <linux/tty.h>
61 #include <linux/blkdev.h>
62 #include <linux/fs_struct.h>
63 #include <linux/magic.h>
64 #include <linux/perf_event.h>
65 #include <linux/posix-timers.h>
66 #include <linux/user-return-notifier.h>
67 #include <linux/oom.h>
68 #include <linux/khugepaged.h>
69 #include <linux/uprobes.h>
70
71 #include <asm/pgtable.h>
72 #include <asm/pgalloc.h>
73 #include <asm/uaccess.h>
74 #include <asm/mmu_context.h>
75 #include <asm/cacheflush.h>
76 #include <asm/tlbflush.h>
77
78 #include <trace/events/sched.h>
79
80 /*
81  * Protected counters by write_lock_irq(&tasklist_lock)
82  */
83 unsigned long total_forks;      /* Handle normal Linux uptimes. */
84 int nr_threads;                 /* The idle threads do not count.. */
85
86 int max_threads;                /* tunable limit on nr_threads */
87
88 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
89
90 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
91
92 #ifdef CONFIG_PROVE_RCU
93 int lockdep_tasklist_lock_is_held(void)
94 {
95         return lockdep_is_held(&tasklist_lock);
96 }
97 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
98 #endif /* #ifdef CONFIG_PROVE_RCU */
99
100 int nr_processes(void)
101 {
102         int cpu;
103         int total = 0;
104
105         for_each_possible_cpu(cpu)
106                 total += per_cpu(process_counts, cpu);
107
108         return total;
109 }
110
111 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
112 # define alloc_task_struct_node(node)           \
113                 kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node)
114 # define free_task_struct(tsk)                  \
115                 kmem_cache_free(task_struct_cachep, (tsk))
116 static struct kmem_cache *task_struct_cachep;
117 #endif
118
119 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
120 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
121                                                   int node)
122 {
123 #ifdef CONFIG_DEBUG_STACK_USAGE
124         gfp_t mask = GFP_KERNEL | __GFP_ZERO;
125 #else
126         gfp_t mask = GFP_KERNEL;
127 #endif
128         struct page *page = alloc_pages_node(node, mask, THREAD_SIZE_ORDER);
129
130         return page ? page_address(page) : NULL;
131 }
132
133 static inline void free_thread_info(struct thread_info *ti)
134 {
135         free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
136 }
137 #endif
138
139 /* SLAB cache for signal_struct structures (tsk->signal) */
140 static struct kmem_cache *signal_cachep;
141
142 /* SLAB cache for sighand_struct structures (tsk->sighand) */
143 struct kmem_cache *sighand_cachep;
144
145 /* SLAB cache for files_struct structures (tsk->files) */
146 struct kmem_cache *files_cachep;
147
148 /* SLAB cache for fs_struct structures (tsk->fs) */
149 struct kmem_cache *fs_cachep;
150
151 /* SLAB cache for vm_area_struct structures */
152 struct kmem_cache *vm_area_cachep;
153
154 /* SLAB cache for mm_struct structures (tsk->mm) */
155 static struct kmem_cache *mm_cachep;
156
157 static void account_kernel_stack(struct thread_info *ti, int account)
158 {
159         struct zone *zone = page_zone(virt_to_page(ti));
160
161         mod_zone_page_state(zone, NR_KERNEL_STACK, account);
162 }
163
164 void free_task(struct task_struct *tsk)
165 {
166         account_kernel_stack(tsk->stack, -1);
167         free_thread_info(tsk->stack);
168         rt_mutex_debug_task_free(tsk);
169         ftrace_graph_exit_task(tsk);
170         free_task_struct(tsk);
171 }
172 EXPORT_SYMBOL(free_task);
173
174 static inline void free_signal_struct(struct signal_struct *sig)
175 {
176         taskstats_tgid_free(sig);
177         sched_autogroup_exit(sig);
178         kmem_cache_free(signal_cachep, sig);
179 }
180
181 static inline void put_signal_struct(struct signal_struct *sig)
182 {
183         if (atomic_dec_and_test(&sig->sigcnt))
184                 free_signal_struct(sig);
185 }
186
187 void __put_task_struct(struct task_struct *tsk)
188 {
189         WARN_ON(!tsk->exit_state);
190         WARN_ON(atomic_read(&tsk->usage));
191         WARN_ON(tsk == current);
192
193         exit_creds(tsk);
194         delayacct_tsk_free(tsk);
195         put_signal_struct(tsk->signal);
196
197         if (!profile_handoff_task(tsk))
198                 free_task(tsk);
199 }
200 EXPORT_SYMBOL_GPL(__put_task_struct);
201
202 /*
203  * macro override instead of weak attribute alias, to workaround
204  * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
205  */
206 #ifndef arch_task_cache_init
207 #define arch_task_cache_init()
208 #endif
209
210 void __init fork_init(unsigned long mempages)
211 {
212 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
213 #ifndef ARCH_MIN_TASKALIGN
214 #define ARCH_MIN_TASKALIGN      L1_CACHE_BYTES
215 #endif
216         /* create a slab on which task_structs can be allocated */
217         task_struct_cachep =
218                 kmem_cache_create("task_struct", sizeof(struct task_struct),
219                         ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
220 #endif
221
222         /* do the arch specific task caches init */
223         arch_task_cache_init();
224
225         /*
226          * The default maximum number of threads is set to a safe
227          * value: the thread structures can take up at most half
228          * of memory.
229          */
230         max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
231
232         /*
233          * we need to allow at least 20 threads to boot a system
234          */
235         if (max_threads < 20)
236                 max_threads = 20;
237
238         init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
239         init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
240         init_task.signal->rlim[RLIMIT_SIGPENDING] =
241                 init_task.signal->rlim[RLIMIT_NPROC];
242 }
243
244 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
245                                                struct task_struct *src)
246 {
247         *dst = *src;
248         return 0;
249 }
250
251 static struct task_struct *dup_task_struct(struct task_struct *orig)
252 {
253         struct task_struct *tsk;
254         struct thread_info *ti;
255         unsigned long *stackend;
256         int node = tsk_fork_get_node(orig);
257         int err;
258
259         prepare_to_copy(orig);
260
261         tsk = alloc_task_struct_node(node);
262         if (!tsk)
263                 return NULL;
264
265         ti = alloc_thread_info_node(tsk, node);
266         if (!ti) {
267                 free_task_struct(tsk);
268                 return NULL;
269         }
270
271         err = arch_dup_task_struct(tsk, orig);
272         if (err)
273                 goto out;
274
275         tsk->stack = ti;
276
277         setup_thread_stack(tsk, orig);
278         clear_user_return_notifier(tsk);
279         clear_tsk_need_resched(tsk);
280         stackend = end_of_stack(tsk);
281         *stackend = STACK_END_MAGIC;    /* for overflow detection */
282
283 #ifdef CONFIG_CC_STACKPROTECTOR
284         tsk->stack_canary = get_random_int();
285 #endif
286
287         /*
288          * One for us, one for whoever does the "release_task()" (usually
289          * parent)
290          */
291         atomic_set(&tsk->usage, 2);
292 #ifdef CONFIG_BLK_DEV_IO_TRACE
293         tsk->btrace_seq = 0;
294 #endif
295         tsk->splice_pipe = NULL;
296
297         account_kernel_stack(ti, 1);
298
299         return tsk;
300
301 out:
302         free_thread_info(ti);
303         free_task_struct(tsk);
304         return NULL;
305 }
306
307 #ifdef CONFIG_MMU
308 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
309 {
310         struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
311         struct rb_node **rb_link, *rb_parent;
312         int retval;
313         unsigned long charge;
314         struct mempolicy *pol;
315
316         down_write(&oldmm->mmap_sem);
317         flush_cache_dup_mm(oldmm);
318         /*
319          * Not linked in yet - no deadlock potential:
320          */
321         down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
322
323         mm->locked_vm = 0;
324         mm->mmap = NULL;
325         mm->mmap_cache = NULL;
326         mm->free_area_cache = oldmm->mmap_base;
327         mm->cached_hole_size = ~0UL;
328         mm->map_count = 0;
329         cpumask_clear(mm_cpumask(mm));
330         mm->mm_rb = RB_ROOT;
331         rb_link = &mm->mm_rb.rb_node;
332         rb_parent = NULL;
333         pprev = &mm->mmap;
334         retval = ksm_fork(mm, oldmm);
335         if (retval)
336                 goto out;
337         retval = khugepaged_fork(mm, oldmm);
338         if (retval)
339                 goto out;
340
341         prev = NULL;
342         for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
343                 struct file *file;
344
345                 if (mpnt->vm_flags & VM_DONTCOPY) {
346                         long pages = vma_pages(mpnt);
347                         mm->total_vm -= pages;
348                         vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
349                                                                 -pages);
350                         continue;
351                 }
352                 charge = 0;
353                 if (mpnt->vm_flags & VM_ACCOUNT) {
354                         unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
355                         if (security_vm_enough_memory(len))
356                                 goto fail_nomem;
357                         charge = len;
358                 }
359                 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
360                 if (!tmp)
361                         goto fail_nomem;
362                 *tmp = *mpnt;
363                 INIT_LIST_HEAD(&tmp->anon_vma_chain);
364                 pol = mpol_dup(vma_policy(mpnt));
365                 retval = PTR_ERR(pol);
366                 if (IS_ERR(pol))
367                         goto fail_nomem_policy;
368                 vma_set_policy(tmp, pol);
369                 tmp->vm_mm = mm;
370                 if (anon_vma_fork(tmp, mpnt))
371                         goto fail_nomem_anon_vma_fork;
372                 tmp->vm_flags &= ~VM_LOCKED;
373                 tmp->vm_next = tmp->vm_prev = NULL;
374                 file = tmp->vm_file;
375                 if (file) {
376                         struct inode *inode = file->f_path.dentry->d_inode;
377                         struct address_space *mapping = file->f_mapping;
378
379                         get_file(file);
380                         if (tmp->vm_flags & VM_DENYWRITE)
381                                 atomic_dec(&inode->i_writecount);
382                         mutex_lock(&mapping->i_mmap_mutex);
383                         if (tmp->vm_flags & VM_SHARED)
384                                 mapping->i_mmap_writable++;
385                         flush_dcache_mmap_lock(mapping);
386                         /* insert tmp into the share list, just after mpnt */
387                         vma_prio_tree_add(tmp, mpnt);
388                         flush_dcache_mmap_unlock(mapping);
389                         mutex_unlock(&mapping->i_mmap_mutex);
390                 }
391
392                 /*
393                  * Clear hugetlb-related page reserves for children. This only
394                  * affects MAP_PRIVATE mappings. Faults generated by the child
395                  * are not guaranteed to succeed, even if read-only
396                  */
397                 if (is_vm_hugetlb_page(tmp))
398                         reset_vma_resv_huge_pages(tmp);
399
400                 /*
401                  * Link in the new vma and copy the page table entries.
402                  */
403                 *pprev = tmp;
404                 pprev = &tmp->vm_next;
405                 tmp->vm_prev = prev;
406                 prev = tmp;
407
408                 __vma_link_rb(mm, tmp, rb_link, rb_parent);
409                 rb_link = &tmp->vm_rb.rb_right;
410                 rb_parent = &tmp->vm_rb;
411
412                 mm->map_count++;
413                 retval = copy_page_range(mm, oldmm, mpnt);
414
415                 if (tmp->vm_ops && tmp->vm_ops->open)
416                         tmp->vm_ops->open(tmp);
417
418                 if (retval)
419                         goto out;
420
421                 if (file && mmap_uprobe(tmp))
422                         goto out;
423         }
424         /* a new mm has just been created */
425         arch_dup_mmap(oldmm, mm);
426         retval = 0;
427 out:
428         up_write(&mm->mmap_sem);
429         flush_tlb_mm(oldmm);
430         up_write(&oldmm->mmap_sem);
431         return retval;
432 fail_nomem_anon_vma_fork:
433         mpol_put(pol);
434 fail_nomem_policy:
435         kmem_cache_free(vm_area_cachep, tmp);
436 fail_nomem:
437         retval = -ENOMEM;
438         vm_unacct_memory(charge);
439         goto out;
440 }
441
442 static inline int mm_alloc_pgd(struct mm_struct *mm)
443 {
444         mm->pgd = pgd_alloc(mm);
445         if (unlikely(!mm->pgd))
446                 return -ENOMEM;
447         return 0;
448 }
449
450 static inline void mm_free_pgd(struct mm_struct *mm)
451 {
452         pgd_free(mm, mm->pgd);
453 }
454 #else
455 #define dup_mmap(mm, oldmm)     (0)
456 #define mm_alloc_pgd(mm)        (0)
457 #define mm_free_pgd(mm)
458 #endif /* CONFIG_MMU */
459
460 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
461
462 #define allocate_mm()   (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
463 #define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
464
465 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
466
467 static int __init coredump_filter_setup(char *s)
468 {
469         default_dump_filter =
470                 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
471                 MMF_DUMP_FILTER_MASK;
472         return 1;
473 }
474
475 __setup("coredump_filter=", coredump_filter_setup);
476
477 #include <linux/init_task.h>
478
479 static void mm_init_aio(struct mm_struct *mm)
480 {
481 #ifdef CONFIG_AIO
482         spin_lock_init(&mm->ioctx_lock);
483         INIT_HLIST_HEAD(&mm->ioctx_list);
484 #endif
485 }
486
487 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
488 {
489         atomic_set(&mm->mm_users, 1);
490         atomic_set(&mm->mm_count, 1);
491         init_rwsem(&mm->mmap_sem);
492         INIT_LIST_HEAD(&mm->mmlist);
493         mm->flags = (current->mm) ?
494                 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
495         mm->core_state = NULL;
496         mm->nr_ptes = 0;
497         memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
498         spin_lock_init(&mm->page_table_lock);
499         mm->free_area_cache = TASK_UNMAPPED_BASE;
500         mm->cached_hole_size = ~0UL;
501         mm_init_aio(mm);
502         mm_init_owner(mm, p);
503
504         if (likely(!mm_alloc_pgd(mm))) {
505                 mm->def_flags = 0;
506                 mmu_notifier_mm_init(mm);
507                 return mm;
508         }
509
510         free_mm(mm);
511         return NULL;
512 }
513
514 /*
515  * Allocate and initialize an mm_struct.
516  */
517 struct mm_struct *mm_alloc(void)
518 {
519         struct mm_struct *mm;
520
521         mm = allocate_mm();
522         if (!mm)
523                 return NULL;
524
525         memset(mm, 0, sizeof(*mm));
526         mm_init_cpumask(mm);
527         return mm_init(mm, current);
528 }
529
530 /*
531  * Called when the last reference to the mm
532  * is dropped: either by a lazy thread or by
533  * mmput. Free the page directory and the mm.
534  */
535 void __mmdrop(struct mm_struct *mm)
536 {
537         BUG_ON(mm == &init_mm);
538         mm_free_pgd(mm);
539         destroy_context(mm);
540         mmu_notifier_mm_destroy(mm);
541 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
542         VM_BUG_ON(mm->pmd_huge_pte);
543 #endif
544         free_mm(mm);
545 }
546 EXPORT_SYMBOL_GPL(__mmdrop);
547
548 /*
549  * Decrement the use count and release all resources for an mm.
550  */
551 void mmput(struct mm_struct *mm)
552 {
553         might_sleep();
554
555         if (atomic_dec_and_test(&mm->mm_users)) {
556                 free_uprobes_xol_area(mm);
557                 exit_aio(mm);
558                 ksm_exit(mm);
559                 khugepaged_exit(mm); /* must run before exit_mmap */
560                 exit_mmap(mm);
561                 set_mm_exe_file(mm, NULL);
562                 if (!list_empty(&mm->mmlist)) {
563                         spin_lock(&mmlist_lock);
564                         list_del(&mm->mmlist);
565                         spin_unlock(&mmlist_lock);
566                 }
567                 put_swap_token(mm);
568                 if (mm->binfmt)
569                         module_put(mm->binfmt->module);
570                 mmdrop(mm);
571         }
572 }
573 EXPORT_SYMBOL_GPL(mmput);
574
575 /*
576  * We added or removed a vma mapping the executable. The vmas are only mapped
577  * during exec and are not mapped with the mmap system call.
578  * Callers must hold down_write() on the mm's mmap_sem for these
579  */
580 void added_exe_file_vma(struct mm_struct *mm)
581 {
582         mm->num_exe_file_vmas++;
583 }
584
585 void removed_exe_file_vma(struct mm_struct *mm)
586 {
587         mm->num_exe_file_vmas--;
588         if ((mm->num_exe_file_vmas == 0) && mm->exe_file) {
589                 fput(mm->exe_file);
590                 mm->exe_file = NULL;
591         }
592
593 }
594
595 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
596 {
597         if (new_exe_file)
598                 get_file(new_exe_file);
599         if (mm->exe_file)
600                 fput(mm->exe_file);
601         mm->exe_file = new_exe_file;
602         mm->num_exe_file_vmas = 0;
603 }
604
605 struct file *get_mm_exe_file(struct mm_struct *mm)
606 {
607         struct file *exe_file;
608
609         /* We need mmap_sem to protect against races with removal of
610          * VM_EXECUTABLE vmas */
611         down_read(&mm->mmap_sem);
612         exe_file = mm->exe_file;
613         if (exe_file)
614                 get_file(exe_file);
615         up_read(&mm->mmap_sem);
616         return exe_file;
617 }
618
619 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
620 {
621         /* It's safe to write the exe_file pointer without exe_file_lock because
622          * this is called during fork when the task is not yet in /proc */
623         newmm->exe_file = get_mm_exe_file(oldmm);
624 }
625
626 /**
627  * get_task_mm - acquire a reference to the task's mm
628  *
629  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
630  * this kernel workthread has transiently adopted a user mm with use_mm,
631  * to do its AIO) is not set and if so returns a reference to it, after
632  * bumping up the use count.  User must release the mm via mmput()
633  * after use.  Typically used by /proc and ptrace.
634  */
635 struct mm_struct *get_task_mm(struct task_struct *task)
636 {
637         struct mm_struct *mm;
638
639         task_lock(task);
640         mm = task->mm;
641         if (mm) {
642                 if (task->flags & PF_KTHREAD)
643                         mm = NULL;
644                 else
645                         atomic_inc(&mm->mm_users);
646         }
647         task_unlock(task);
648         return mm;
649 }
650 EXPORT_SYMBOL_GPL(get_task_mm);
651
652 /* Please note the differences between mmput and mm_release.
653  * mmput is called whenever we stop holding onto a mm_struct,
654  * error success whatever.
655  *
656  * mm_release is called after a mm_struct has been removed
657  * from the current process.
658  *
659  * This difference is important for error handling, when we
660  * only half set up a mm_struct for a new process and need to restore
661  * the old one.  Because we mmput the new mm_struct before
662  * restoring the old one. . .
663  * Eric Biederman 10 January 1998
664  */
665 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
666 {
667         struct completion *vfork_done = tsk->vfork_done;
668
669         /* Get rid of any futexes when releasing the mm */
670 #ifdef CONFIG_FUTEX
671         if (unlikely(tsk->robust_list)) {
672                 exit_robust_list(tsk);
673                 tsk->robust_list = NULL;
674         }
675 #ifdef CONFIG_COMPAT
676         if (unlikely(tsk->compat_robust_list)) {
677                 compat_exit_robust_list(tsk);
678                 tsk->compat_robust_list = NULL;
679         }
680 #endif
681         if (unlikely(!list_empty(&tsk->pi_state_list)))
682                 exit_pi_state_list(tsk);
683 #endif
684
685         free_uprobe_utask(tsk);
686
687         /* Get rid of any cached register state */
688         deactivate_mm(tsk, mm);
689
690         /* notify parent sleeping on vfork() */
691         if (vfork_done) {
692                 tsk->vfork_done = NULL;
693                 complete(vfork_done);
694         }
695
696         /*
697          * If we're exiting normally, clear a user-space tid field if
698          * requested.  We leave this alone when dying by signal, to leave
699          * the value intact in a core dump, and to save the unnecessary
700          * trouble otherwise.  Userland only wants this done for a sys_exit.
701          */
702         if (tsk->clear_child_tid) {
703                 if (!(tsk->flags & PF_SIGNALED) &&
704                     atomic_read(&mm->mm_users) > 1) {
705                         /*
706                          * We don't check the error code - if userspace has
707                          * not set up a proper pointer then tough luck.
708                          */
709                         put_user(0, tsk->clear_child_tid);
710                         sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
711                                         1, NULL, NULL, 0);
712                 }
713                 tsk->clear_child_tid = NULL;
714         }
715 }
716
717 /*
718  * Allocate a new mm structure and copy contents from the
719  * mm structure of the passed in task structure.
720  */
721 struct mm_struct *dup_mm(struct task_struct *tsk)
722 {
723         struct mm_struct *mm, *oldmm = current->mm;
724         int err;
725
726         if (!oldmm)
727                 return NULL;
728
729         mm = allocate_mm();
730         if (!mm)
731                 goto fail_nomem;
732
733         memcpy(mm, oldmm, sizeof(*mm));
734         mm_init_cpumask(mm);
735
736         /* Initializing for Swap token stuff */
737         mm->token_priority = 0;
738         mm->last_interval = 0;
739         atomic_set(&mm->active_swap_token, 0);
740
741 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
742         mm->pmd_huge_pte = NULL;
743 #endif
744 #ifdef CONFIG_UPROBES
745         atomic_set(&mm->mm_uprobes_count, 0);
746         mm->uprobes_xol_area = NULL;
747 #endif
748
749         if (!mm_init(mm, tsk))
750                 goto fail_nomem;
751
752         if (init_new_context(tsk, mm))
753                 goto fail_nocontext;
754
755         dup_mm_exe_file(oldmm, mm);
756
757         err = dup_mmap(mm, oldmm);
758         if (err)
759                 goto free_pt;
760
761         mm->hiwater_rss = get_mm_rss(mm);
762         mm->hiwater_vm = mm->total_vm;
763
764         if (mm->binfmt && !try_module_get(mm->binfmt->module))
765                 goto free_pt;
766
767         return mm;
768
769 free_pt:
770         /* don't put binfmt in mmput, we haven't got module yet */
771         mm->binfmt = NULL;
772         mmput(mm);
773
774 fail_nomem:
775         return NULL;
776
777 fail_nocontext:
778         /*
779          * If init_new_context() failed, we cannot use mmput() to free the mm
780          * because it calls destroy_context()
781          */
782         mm_free_pgd(mm);
783         free_mm(mm);
784         return NULL;
785 }
786
787 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
788 {
789         struct mm_struct *mm, *oldmm;
790         int retval;
791
792         tsk->min_flt = tsk->maj_flt = 0;
793         tsk->nvcsw = tsk->nivcsw = 0;
794 #ifdef CONFIG_DETECT_HUNG_TASK
795         tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
796 #endif
797
798         tsk->mm = NULL;
799         tsk->active_mm = NULL;
800
801         /*
802          * Are we cloning a kernel thread?
803          *
804          * We need to steal a active VM for that..
805          */
806         oldmm = current->mm;
807         if (!oldmm)
808                 return 0;
809
810         if (clone_flags & CLONE_VM) {
811                 atomic_inc(&oldmm->mm_users);
812                 mm = oldmm;
813                 goto good_mm;
814         }
815
816         retval = -ENOMEM;
817         mm = dup_mm(tsk);
818         if (!mm)
819                 goto fail_nomem;
820
821 good_mm:
822         /* Initializing for Swap token stuff */
823         mm->token_priority = 0;
824         mm->last_interval = 0;
825
826         tsk->mm = mm;
827         tsk->active_mm = mm;
828         return 0;
829
830 fail_nomem:
831         return retval;
832 }
833
834 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
835 {
836         struct fs_struct *fs = current->fs;
837         if (clone_flags & CLONE_FS) {
838                 /* tsk->fs is already what we want */
839                 spin_lock(&fs->lock);
840                 if (fs->in_exec) {
841                         spin_unlock(&fs->lock);
842                         return -EAGAIN;
843                 }
844                 fs->users++;
845                 spin_unlock(&fs->lock);
846                 return 0;
847         }
848         tsk->fs = copy_fs_struct(fs);
849         if (!tsk->fs)
850                 return -ENOMEM;
851         return 0;
852 }
853
854 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
855 {
856         struct files_struct *oldf, *newf;
857         int error = 0;
858
859         /*
860          * A background process may not have any files ...
861          */
862         oldf = current->files;
863         if (!oldf)
864                 goto out;
865
866         if (clone_flags & CLONE_FILES) {
867                 atomic_inc(&oldf->count);
868                 goto out;
869         }
870
871         newf = dup_fd(oldf, &error);
872         if (!newf)
873                 goto out;
874
875         tsk->files = newf;
876         error = 0;
877 out:
878         return error;
879 }
880
881 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
882 {
883 #ifdef CONFIG_BLOCK
884         struct io_context *ioc = current->io_context;
885
886         if (!ioc)
887                 return 0;
888         /*
889          * Share io context with parent, if CLONE_IO is set
890          */
891         if (clone_flags & CLONE_IO) {
892                 tsk->io_context = ioc_task_link(ioc);
893                 if (unlikely(!tsk->io_context))
894                         return -ENOMEM;
895         } else if (ioprio_valid(ioc->ioprio)) {
896                 tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
897                 if (unlikely(!tsk->io_context))
898                         return -ENOMEM;
899
900                 tsk->io_context->ioprio = ioc->ioprio;
901         }
902 #endif
903         return 0;
904 }
905
906 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
907 {
908         struct sighand_struct *sig;
909
910         if (clone_flags & CLONE_SIGHAND) {
911                 atomic_inc(&current->sighand->count);
912                 return 0;
913         }
914         sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
915         rcu_assign_pointer(tsk->sighand, sig);
916         if (!sig)
917                 return -ENOMEM;
918         atomic_set(&sig->count, 1);
919         memcpy(sig->action, current->sighand->action, sizeof(sig->action));
920         return 0;
921 }
922
923 void __cleanup_sighand(struct sighand_struct *sighand)
924 {
925         if (atomic_dec_and_test(&sighand->count))
926                 kmem_cache_free(sighand_cachep, sighand);
927 }
928
929
930 /*
931  * Initialize POSIX timer handling for a thread group.
932  */
933 static void posix_cpu_timers_init_group(struct signal_struct *sig)
934 {
935         unsigned long cpu_limit;
936
937         /* Thread group counters. */
938         thread_group_cputime_init(sig);
939
940         cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
941         if (cpu_limit != RLIM_INFINITY) {
942                 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
943                 sig->cputimer.running = 1;
944         }
945
946         /* The timer lists. */
947         INIT_LIST_HEAD(&sig->cpu_timers[0]);
948         INIT_LIST_HEAD(&sig->cpu_timers[1]);
949         INIT_LIST_HEAD(&sig->cpu_timers[2]);
950 }
951
952 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
953 {
954         struct signal_struct *sig;
955
956         if (clone_flags & CLONE_THREAD)
957                 return 0;
958
959         sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
960         tsk->signal = sig;
961         if (!sig)
962                 return -ENOMEM;
963
964         sig->nr_threads = 1;
965         atomic_set(&sig->live, 1);
966         atomic_set(&sig->sigcnt, 1);
967         init_waitqueue_head(&sig->wait_chldexit);
968         if (clone_flags & CLONE_NEWPID)
969                 sig->flags |= SIGNAL_UNKILLABLE;
970         sig->curr_target = tsk;
971         init_sigpending(&sig->shared_pending);
972         INIT_LIST_HEAD(&sig->posix_timers);
973
974         hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
975         sig->real_timer.function = it_real_fn;
976
977         task_lock(current->group_leader);
978         memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
979         task_unlock(current->group_leader);
980
981         posix_cpu_timers_init_group(sig);
982
983         tty_audit_fork(sig);
984         sched_autogroup_fork(sig);
985
986 #ifdef CONFIG_CGROUPS
987         init_rwsem(&sig->threadgroup_fork_lock);
988 #endif
989
990         sig->oom_adj = current->signal->oom_adj;
991         sig->oom_score_adj = current->signal->oom_score_adj;
992         sig->oom_score_adj_min = current->signal->oom_score_adj_min;
993
994         mutex_init(&sig->cred_guard_mutex);
995
996         return 0;
997 }
998
999 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
1000 {
1001         unsigned long new_flags = p->flags;
1002
1003         new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1004         new_flags |= PF_FORKNOEXEC;
1005         new_flags |= PF_STARTING;
1006         p->flags = new_flags;
1007 }
1008
1009 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1010 {
1011         current->clear_child_tid = tidptr;
1012
1013         return task_pid_vnr(current);
1014 }
1015
1016 static void rt_mutex_init_task(struct task_struct *p)
1017 {
1018         raw_spin_lock_init(&p->pi_lock);
1019 #ifdef CONFIG_RT_MUTEXES
1020         plist_head_init(&p->pi_waiters);
1021         p->pi_blocked_on = NULL;
1022 #endif
1023 }
1024
1025 #ifdef CONFIG_MM_OWNER
1026 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1027 {
1028         mm->owner = p;
1029 }
1030 #endif /* CONFIG_MM_OWNER */
1031
1032 /*
1033  * Initialize POSIX timer handling for a single task.
1034  */
1035 static void posix_cpu_timers_init(struct task_struct *tsk)
1036 {
1037         tsk->cputime_expires.prof_exp = 0;
1038         tsk->cputime_expires.virt_exp = 0;
1039         tsk->cputime_expires.sched_exp = 0;
1040         INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1041         INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1042         INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1043 }
1044
1045 /*
1046  * This creates a new process as a copy of the old one,
1047  * but does not actually start it yet.
1048  *
1049  * It copies the registers, and all the appropriate
1050  * parts of the process environment (as per the clone
1051  * flags). The actual kick-off is left to the caller.
1052  */
1053 static struct task_struct *copy_process(unsigned long clone_flags,
1054                                         unsigned long stack_start,
1055                                         struct pt_regs *regs,
1056                                         unsigned long stack_size,
1057                                         int __user *child_tidptr,
1058                                         struct pid *pid,
1059                                         int trace)
1060 {
1061         int retval;
1062         struct task_struct *p;
1063         int cgroup_callbacks_done = 0;
1064
1065         if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1066                 return ERR_PTR(-EINVAL);
1067
1068         /*
1069          * Thread groups must share signals as well, and detached threads
1070          * can only be started up within the thread group.
1071          */
1072         if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1073                 return ERR_PTR(-EINVAL);
1074
1075         /*
1076          * Shared signal handlers imply shared VM. By way of the above,
1077          * thread groups also imply shared VM. Blocking this case allows
1078          * for various simplifications in other code.
1079          */
1080         if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1081                 return ERR_PTR(-EINVAL);
1082
1083         /*
1084          * Siblings of global init remain as zombies on exit since they are
1085          * not reaped by their parent (swapper). To solve this and to avoid
1086          * multi-rooted process trees, prevent global and container-inits
1087          * from creating siblings.
1088          */
1089         if ((clone_flags & CLONE_PARENT) &&
1090                                 current->signal->flags & SIGNAL_UNKILLABLE)
1091                 return ERR_PTR(-EINVAL);
1092
1093         retval = security_task_create(clone_flags);
1094         if (retval)
1095                 goto fork_out;
1096
1097         retval = -ENOMEM;
1098         p = dup_task_struct(current);
1099         if (!p)
1100                 goto fork_out;
1101
1102         ftrace_graph_init_task(p);
1103
1104         rt_mutex_init_task(p);
1105
1106 #ifdef CONFIG_PROVE_LOCKING
1107         DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1108         DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1109 #endif
1110         retval = -EAGAIN;
1111         if (atomic_read(&p->real_cred->user->processes) >=
1112                         task_rlimit(p, RLIMIT_NPROC)) {
1113                 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1114                     p->real_cred->user != INIT_USER)
1115                         goto bad_fork_free;
1116         }
1117         current->flags &= ~PF_NPROC_EXCEEDED;
1118
1119         retval = copy_creds(p, clone_flags);
1120         if (retval < 0)
1121                 goto bad_fork_free;
1122
1123         /*
1124          * If multiple threads are within copy_process(), then this check
1125          * triggers too late. This doesn't hurt, the check is only there
1126          * to stop root fork bombs.
1127          */
1128         retval = -EAGAIN;
1129         if (nr_threads >= max_threads)
1130                 goto bad_fork_cleanup_count;
1131
1132         if (!try_module_get(task_thread_info(p)->exec_domain->module))
1133                 goto bad_fork_cleanup_count;
1134
1135         p->did_exec = 0;
1136         delayacct_tsk_init(p);  /* Must remain after dup_task_struct() */
1137         copy_flags(clone_flags, p);
1138         INIT_LIST_HEAD(&p->children);
1139         INIT_LIST_HEAD(&p->sibling);
1140         rcu_copy_process(p);
1141         p->vfork_done = NULL;
1142         spin_lock_init(&p->alloc_lock);
1143
1144         init_sigpending(&p->pending);
1145
1146         p->utime = p->stime = p->gtime = 0;
1147         p->utimescaled = p->stimescaled = 0;
1148 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1149         p->prev_utime = p->prev_stime = 0;
1150 #endif
1151 #if defined(SPLIT_RSS_COUNTING)
1152         memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1153 #endif
1154
1155         p->default_timer_slack_ns = current->timer_slack_ns;
1156
1157         task_io_accounting_init(&p->ioac);
1158         acct_clear_integrals(p);
1159
1160         posix_cpu_timers_init(p);
1161
1162         do_posix_clock_monotonic_gettime(&p->start_time);
1163         p->real_start_time = p->start_time;
1164         monotonic_to_bootbased(&p->real_start_time);
1165         p->io_context = NULL;
1166         p->audit_context = NULL;
1167         if (clone_flags & CLONE_THREAD)
1168                 threadgroup_fork_read_lock(current);
1169         cgroup_fork(p);
1170 #ifdef CONFIG_NUMA
1171         p->mempolicy = mpol_dup(p->mempolicy);
1172         if (IS_ERR(p->mempolicy)) {
1173                 retval = PTR_ERR(p->mempolicy);
1174                 p->mempolicy = NULL;
1175                 goto bad_fork_cleanup_cgroup;
1176         }
1177         mpol_fix_fork_child_flag(p);
1178 #endif
1179 #ifdef CONFIG_CPUSETS
1180         p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1181         p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1182 #endif
1183 #ifdef CONFIG_TRACE_IRQFLAGS
1184         p->irq_events = 0;
1185 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1186         p->hardirqs_enabled = 1;
1187 #else
1188         p->hardirqs_enabled = 0;
1189 #endif
1190         p->hardirq_enable_ip = 0;
1191         p->hardirq_enable_event = 0;
1192         p->hardirq_disable_ip = _THIS_IP_;
1193         p->hardirq_disable_event = 0;
1194         p->softirqs_enabled = 1;
1195         p->softirq_enable_ip = _THIS_IP_;
1196         p->softirq_enable_event = 0;
1197         p->softirq_disable_ip = 0;
1198         p->softirq_disable_event = 0;
1199         p->hardirq_context = 0;
1200         p->softirq_context = 0;
1201 #endif
1202 #ifdef CONFIG_LOCKDEP
1203         p->lockdep_depth = 0; /* no locks held yet */
1204         p->curr_chain_key = 0;
1205         p->lockdep_recursion = 0;
1206 #endif
1207
1208 #ifdef CONFIG_DEBUG_MUTEXES
1209         p->blocked_on = NULL; /* not blocked yet */
1210 #endif
1211 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1212         p->memcg_batch.do_batch = 0;
1213         p->memcg_batch.memcg = NULL;
1214 #endif
1215
1216         /* Perform scheduler related setup. Assign this task to a CPU. */
1217         sched_fork(p);
1218
1219         retval = perf_event_init_task(p);
1220         if (retval)
1221                 goto bad_fork_cleanup_policy;
1222         retval = audit_alloc(p);
1223         if (retval)
1224                 goto bad_fork_cleanup_policy;
1225         /* copy all the process information */
1226         retval = copy_semundo(clone_flags, p);
1227         if (retval)
1228                 goto bad_fork_cleanup_audit;
1229         retval = copy_files(clone_flags, p);
1230         if (retval)
1231                 goto bad_fork_cleanup_semundo;
1232         retval = copy_fs(clone_flags, p);
1233         if (retval)
1234                 goto bad_fork_cleanup_files;
1235         retval = copy_sighand(clone_flags, p);
1236         if (retval)
1237                 goto bad_fork_cleanup_fs;
1238         retval = copy_signal(clone_flags, p);
1239         if (retval)
1240                 goto bad_fork_cleanup_sighand;
1241         retval = copy_mm(clone_flags, p);
1242         if (retval)
1243                 goto bad_fork_cleanup_signal;
1244         retval = copy_namespaces(clone_flags, p);
1245         if (retval)
1246                 goto bad_fork_cleanup_mm;
1247         retval = copy_io(clone_flags, p);
1248         if (retval)
1249                 goto bad_fork_cleanup_namespaces;
1250         retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1251         if (retval)
1252                 goto bad_fork_cleanup_io;
1253
1254         if (pid != &init_struct_pid) {
1255                 retval = -ENOMEM;
1256                 pid = alloc_pid(p->nsproxy->pid_ns);
1257                 if (!pid)
1258                         goto bad_fork_cleanup_io;
1259         }
1260
1261         p->pid = pid_nr(pid);
1262         p->tgid = p->pid;
1263         if (clone_flags & CLONE_THREAD)
1264                 p->tgid = current->tgid;
1265
1266         p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1267         /*
1268          * Clear TID on mm_release()?
1269          */
1270         p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1271 #ifdef CONFIG_BLOCK
1272         p->plug = NULL;
1273 #endif
1274 #ifdef CONFIG_FUTEX
1275         p->robust_list = NULL;
1276 #ifdef CONFIG_COMPAT
1277         p->compat_robust_list = NULL;
1278 #endif
1279         INIT_LIST_HEAD(&p->pi_state_list);
1280         p->pi_state_cache = NULL;
1281 #endif
1282 #ifdef CONFIG_UPROBES
1283         p->utask = NULL;
1284         p->uprobes_bulkref_id = -1;
1285 #endif
1286         /*
1287          * sigaltstack should be cleared when sharing the same VM
1288          */
1289         if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1290                 p->sas_ss_sp = p->sas_ss_size = 0;
1291
1292         /*
1293          * Syscall tracing and stepping should be turned off in the
1294          * child regardless of CLONE_PTRACE.
1295          */
1296         user_disable_single_step(p);
1297         clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1298 #ifdef TIF_SYSCALL_EMU
1299         clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1300 #endif
1301         clear_all_latency_tracing(p);
1302
1303         /* ok, now we should be set up.. */
1304         p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1305         p->pdeath_signal = 0;
1306         p->exit_state = 0;
1307
1308         p->nr_dirtied = 0;
1309         p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1310         p->dirty_paused_when = 0;
1311
1312         /*
1313          * Ok, make it visible to the rest of the system.
1314          * We dont wake it up yet.
1315          */
1316         p->group_leader = p;
1317         INIT_LIST_HEAD(&p->thread_group);
1318
1319         /* Now that the task is set up, run cgroup callbacks if
1320          * necessary. We need to run them before the task is visible
1321          * on the tasklist. */
1322         cgroup_fork_callbacks(p);
1323         cgroup_callbacks_done = 1;
1324
1325         /* Need tasklist lock for parent etc handling! */
1326         write_lock_irq(&tasklist_lock);
1327
1328         /* CLONE_PARENT re-uses the old parent */
1329         if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1330                 p->real_parent = current->real_parent;
1331                 p->parent_exec_id = current->parent_exec_id;
1332         } else {
1333                 p->real_parent = current;
1334                 p->parent_exec_id = current->self_exec_id;
1335         }
1336
1337         spin_lock(&current->sighand->siglock);
1338
1339         /*
1340          * Process group and session signals need to be delivered to just the
1341          * parent before the fork or both the parent and the child after the
1342          * fork. Restart if a signal comes in before we add the new process to
1343          * it's process group.
1344          * A fatal signal pending means that current will exit, so the new
1345          * thread can't slip out of an OOM kill (or normal SIGKILL).
1346         */
1347         recalc_sigpending();
1348         if (signal_pending(current)) {
1349                 spin_unlock(&current->sighand->siglock);
1350                 write_unlock_irq(&tasklist_lock);
1351                 retval = -ERESTARTNOINTR;
1352                 goto bad_fork_free_pid;
1353         }
1354
1355         if (clone_flags & CLONE_THREAD) {
1356                 current->signal->nr_threads++;
1357                 atomic_inc(&current->signal->live);
1358                 atomic_inc(&current->signal->sigcnt);
1359                 p->group_leader = current->group_leader;
1360                 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1361         }
1362
1363         if (likely(p->pid)) {
1364                 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1365
1366                 if (thread_group_leader(p)) {
1367                         if (is_child_reaper(pid))
1368                                 p->nsproxy->pid_ns->child_reaper = p;
1369
1370                         p->signal->leader_pid = pid;
1371                         p->signal->tty = tty_kref_get(current->signal->tty);
1372                         attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1373                         attach_pid(p, PIDTYPE_SID, task_session(current));
1374                         list_add_tail(&p->sibling, &p->real_parent->children);
1375                         list_add_tail_rcu(&p->tasks, &init_task.tasks);
1376                         __this_cpu_inc(process_counts);
1377                 }
1378                 attach_pid(p, PIDTYPE_PID, pid);
1379                 nr_threads++;
1380         }
1381
1382         total_forks++;
1383         spin_unlock(&current->sighand->siglock);
1384         write_unlock_irq(&tasklist_lock);
1385         proc_fork_connector(p);
1386         cgroup_post_fork(p);
1387         if (clone_flags & CLONE_THREAD)
1388                 threadgroup_fork_read_unlock(current);
1389         perf_event_fork(p);
1390         return p;
1391
1392 bad_fork_free_pid:
1393         if (pid != &init_struct_pid)
1394                 free_pid(pid);
1395 bad_fork_cleanup_io:
1396         if (p->io_context)
1397                 exit_io_context(p);
1398 bad_fork_cleanup_namespaces:
1399         exit_task_namespaces(p);
1400 bad_fork_cleanup_mm:
1401         if (p->mm)
1402                 mmput(p->mm);
1403 bad_fork_cleanup_signal:
1404         if (!(clone_flags & CLONE_THREAD))
1405                 free_signal_struct(p->signal);
1406 bad_fork_cleanup_sighand:
1407         __cleanup_sighand(p->sighand);
1408 bad_fork_cleanup_fs:
1409         exit_fs(p); /* blocking */
1410 bad_fork_cleanup_files:
1411         exit_files(p); /* blocking */
1412 bad_fork_cleanup_semundo:
1413         exit_sem(p);
1414 bad_fork_cleanup_audit:
1415         audit_free(p);
1416 bad_fork_cleanup_policy:
1417         perf_event_free_task(p);
1418 #ifdef CONFIG_NUMA
1419         mpol_put(p->mempolicy);
1420 bad_fork_cleanup_cgroup:
1421 #endif
1422         if (clone_flags & CLONE_THREAD)
1423                 threadgroup_fork_read_unlock(current);
1424         cgroup_exit(p, cgroup_callbacks_done);
1425         delayacct_tsk_free(p);
1426         module_put(task_thread_info(p)->exec_domain->module);
1427 bad_fork_cleanup_count:
1428         atomic_dec(&p->cred->user->processes);
1429         exit_creds(p);
1430 bad_fork_free:
1431         free_task(p);
1432 fork_out:
1433         return ERR_PTR(retval);
1434 }
1435
1436 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1437 {
1438         memset(regs, 0, sizeof(struct pt_regs));
1439         return regs;
1440 }
1441
1442 static inline void init_idle_pids(struct pid_link *links)
1443 {
1444         enum pid_type type;
1445
1446         for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1447                 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1448                 links[type].pid = &init_struct_pid;
1449         }
1450 }
1451
1452 struct task_struct * __cpuinit fork_idle(int cpu)
1453 {
1454         struct task_struct *task;
1455         struct pt_regs regs;
1456
1457         task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1458                             &init_struct_pid, 0);
1459         if (!IS_ERR(task)) {
1460                 init_idle_pids(task->pids);
1461                 init_idle(task, cpu);
1462         }
1463
1464         return task;
1465 }
1466
1467 /*
1468  *  Ok, this is the main fork-routine.
1469  *
1470  * It copies the process, and if successful kick-starts
1471  * it and waits for it to finish using the VM if required.
1472  */
1473 long do_fork(unsigned long clone_flags,
1474               unsigned long stack_start,
1475               struct pt_regs *regs,
1476               unsigned long stack_size,
1477               int __user *parent_tidptr,
1478               int __user *child_tidptr)
1479 {
1480         struct task_struct *p;
1481         int trace = 0;
1482         long nr;
1483
1484         /*
1485          * Do some preliminary argument and permissions checking before we
1486          * actually start allocating stuff
1487          */
1488         if (clone_flags & CLONE_NEWUSER) {
1489                 if (clone_flags & CLONE_THREAD)
1490                         return -EINVAL;
1491                 /* hopefully this check will go away when userns support is
1492                  * complete
1493                  */
1494                 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1495                                 !capable(CAP_SETGID))
1496                         return -EPERM;
1497         }
1498
1499         /*
1500          * Determine whether and which event to report to ptracer.  When
1501          * called from kernel_thread or CLONE_UNTRACED is explicitly
1502          * requested, no event is reported; otherwise, report if the event
1503          * for the type of forking is enabled.
1504          */
1505         if (likely(user_mode(regs)) && !(clone_flags & CLONE_UNTRACED)) {
1506                 if (clone_flags & CLONE_VFORK)
1507                         trace = PTRACE_EVENT_VFORK;
1508                 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1509                         trace = PTRACE_EVENT_CLONE;
1510                 else
1511                         trace = PTRACE_EVENT_FORK;
1512
1513                 if (likely(!ptrace_event_enabled(current, trace)))
1514                         trace = 0;
1515         }
1516
1517         p = copy_process(clone_flags, stack_start, regs, stack_size,
1518                          child_tidptr, NULL, trace);
1519         /*
1520          * Do this prior waking up the new thread - the thread pointer
1521          * might get invalid after that point, if the thread exits quickly.
1522          */
1523         if (!IS_ERR(p)) {
1524                 struct completion vfork;
1525
1526                 trace_sched_process_fork(current, p);
1527
1528                 nr = task_pid_vnr(p);
1529
1530                 if (clone_flags & CLONE_PARENT_SETTID)
1531                         put_user(nr, parent_tidptr);
1532
1533                 if (clone_flags & CLONE_VFORK) {
1534                         p->vfork_done = &vfork;
1535                         init_completion(&vfork);
1536                 }
1537
1538                 audit_finish_fork(p);
1539
1540                 /*
1541                  * We set PF_STARTING at creation in case tracing wants to
1542                  * use this to distinguish a fully live task from one that
1543                  * hasn't finished SIGSTOP raising yet.  Now we clear it
1544                  * and set the child going.
1545                  */
1546                 p->flags &= ~PF_STARTING;
1547
1548                 wake_up_new_task(p);
1549
1550                 /* forking complete and child started to run, tell ptracer */
1551                 if (unlikely(trace))
1552                         ptrace_event(trace, nr);
1553
1554                 if (clone_flags & CLONE_VFORK) {
1555                         freezer_do_not_count();
1556                         wait_for_completion(&vfork);
1557                         freezer_count();
1558                         ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
1559                 }
1560         } else {
1561                 nr = PTR_ERR(p);
1562         }
1563         return nr;
1564 }
1565
1566 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1567 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1568 #endif
1569
1570 static void sighand_ctor(void *data)
1571 {
1572         struct sighand_struct *sighand = data;
1573
1574         spin_lock_init(&sighand->siglock);
1575         init_waitqueue_head(&sighand->signalfd_wqh);
1576 }
1577
1578 void __init proc_caches_init(void)
1579 {
1580         sighand_cachep = kmem_cache_create("sighand_cache",
1581                         sizeof(struct sighand_struct), 0,
1582                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1583                         SLAB_NOTRACK, sighand_ctor);
1584         signal_cachep = kmem_cache_create("signal_cache",
1585                         sizeof(struct signal_struct), 0,
1586                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1587         files_cachep = kmem_cache_create("files_cache",
1588                         sizeof(struct files_struct), 0,
1589                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1590         fs_cachep = kmem_cache_create("fs_cache",
1591                         sizeof(struct fs_struct), 0,
1592                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1593         /*
1594          * FIXME! The "sizeof(struct mm_struct)" currently includes the
1595          * whole struct cpumask for the OFFSTACK case. We could change
1596          * this to *only* allocate as much of it as required by the
1597          * maximum number of CPU's we can ever have.  The cpumask_allocation
1598          * is at the end of the structure, exactly for that reason.
1599          */
1600         mm_cachep = kmem_cache_create("mm_struct",
1601                         sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1602                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1603         vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1604         mmap_init();
1605         nsproxy_cache_init();
1606 }
1607
1608 /*
1609  * Check constraints on flags passed to the unshare system call.
1610  */
1611 static int check_unshare_flags(unsigned long unshare_flags)
1612 {
1613         if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1614                                 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1615                                 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1616                 return -EINVAL;
1617         /*
1618          * Not implemented, but pretend it works if there is nothing to
1619          * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1620          * needs to unshare vm.
1621          */
1622         if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1623                 /* FIXME: get_task_mm() increments ->mm_users */
1624                 if (atomic_read(&current->mm->mm_users) > 1)
1625                         return -EINVAL;
1626         }
1627
1628         return 0;
1629 }
1630
1631 /*
1632  * Unshare the filesystem structure if it is being shared
1633  */
1634 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1635 {
1636         struct fs_struct *fs = current->fs;
1637
1638         if (!(unshare_flags & CLONE_FS) || !fs)
1639                 return 0;
1640
1641         /* don't need lock here; in the worst case we'll do useless copy */
1642         if (fs->users == 1)
1643                 return 0;
1644
1645         *new_fsp = copy_fs_struct(fs);
1646         if (!*new_fsp)
1647                 return -ENOMEM;
1648
1649         return 0;
1650 }
1651
1652 /*
1653  * Unshare file descriptor table if it is being shared
1654  */
1655 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1656 {
1657         struct files_struct *fd = current->files;
1658         int error = 0;
1659
1660         if ((unshare_flags & CLONE_FILES) &&
1661             (fd && atomic_read(&fd->count) > 1)) {
1662                 *new_fdp = dup_fd(fd, &error);
1663                 if (!*new_fdp)
1664                         return error;
1665         }
1666
1667         return 0;
1668 }
1669
1670 /*
1671  * unshare allows a process to 'unshare' part of the process
1672  * context which was originally shared using clone.  copy_*
1673  * functions used by do_fork() cannot be used here directly
1674  * because they modify an inactive task_struct that is being
1675  * constructed. Here we are modifying the current, active,
1676  * task_struct.
1677  */
1678 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1679 {
1680         struct fs_struct *fs, *new_fs = NULL;
1681         struct files_struct *fd, *new_fd = NULL;
1682         struct nsproxy *new_nsproxy = NULL;
1683         int do_sysvsem = 0;
1684         int err;
1685
1686         err = check_unshare_flags(unshare_flags);
1687         if (err)
1688                 goto bad_unshare_out;
1689
1690         /*
1691          * If unsharing namespace, must also unshare filesystem information.
1692          */
1693         if (unshare_flags & CLONE_NEWNS)
1694                 unshare_flags |= CLONE_FS;
1695         /*
1696          * CLONE_NEWIPC must also detach from the undolist: after switching
1697          * to a new ipc namespace, the semaphore arrays from the old
1698          * namespace are unreachable.
1699          */
1700         if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1701                 do_sysvsem = 1;
1702         err = unshare_fs(unshare_flags, &new_fs);
1703         if (err)
1704                 goto bad_unshare_out;
1705         err = unshare_fd(unshare_flags, &new_fd);
1706         if (err)
1707                 goto bad_unshare_cleanup_fs;
1708         err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, new_fs);
1709         if (err)
1710                 goto bad_unshare_cleanup_fd;
1711
1712         if (new_fs || new_fd || do_sysvsem || new_nsproxy) {
1713                 if (do_sysvsem) {
1714                         /*
1715                          * CLONE_SYSVSEM is equivalent to sys_exit().
1716                          */
1717                         exit_sem(current);
1718                 }
1719
1720                 if (new_nsproxy) {
1721                         switch_task_namespaces(current, new_nsproxy);
1722                         new_nsproxy = NULL;
1723                 }
1724
1725                 task_lock(current);
1726
1727                 if (new_fs) {
1728                         fs = current->fs;
1729                         spin_lock(&fs->lock);
1730                         current->fs = new_fs;
1731                         if (--fs->users)
1732                                 new_fs = NULL;
1733                         else
1734                                 new_fs = fs;
1735                         spin_unlock(&fs->lock);
1736                 }
1737
1738                 if (new_fd) {
1739                         fd = current->files;
1740                         current->files = new_fd;
1741                         new_fd = fd;
1742                 }
1743
1744                 task_unlock(current);
1745         }
1746
1747         if (new_nsproxy)
1748                 put_nsproxy(new_nsproxy);
1749
1750 bad_unshare_cleanup_fd:
1751         if (new_fd)
1752                 put_files_struct(new_fd);
1753
1754 bad_unshare_cleanup_fs:
1755         if (new_fs)
1756                 free_fs_struct(new_fs);
1757
1758 bad_unshare_out:
1759         return err;
1760 }
1761
1762 /*
1763  *      Helper to unshare the files of the current task.
1764  *      We don't want to expose copy_files internals to
1765  *      the exec layer of the kernel.
1766  */
1767
1768 int unshare_files(struct files_struct **displaced)
1769 {
1770         struct task_struct *task = current;
1771         struct files_struct *copy = NULL;
1772         int error;
1773
1774         error = unshare_fd(CLONE_FILES, &copy);
1775         if (error || !copy) {
1776                 *displaced = NULL;
1777                 return error;
1778         }
1779         *displaced = task->files;
1780         task_lock(task);
1781         task->files = copy;
1782         task_unlock(task);
1783         return 0;
1784 }