]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - kernel/fork.c
bc0e96b78dfd4a518740cfadb569e80257848051
[karo-tx-linux.git] / kernel / fork.c
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/mm.h>
32 #include <linux/vmacache.h>
33 #include <linux/nsproxy.h>
34 #include <linux/capability.h>
35 #include <linux/cpu.h>
36 #include <linux/cgroup.h>
37 #include <linux/security.h>
38 #include <linux/hugetlb.h>
39 #include <linux/seccomp.h>
40 #include <linux/swap.h>
41 #include <linux/syscalls.h>
42 #include <linux/jiffies.h>
43 #include <linux/futex.h>
44 #include <linux/compat.h>
45 #include <linux/kthread.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/rcupdate.h>
48 #include <linux/ptrace.h>
49 #include <linux/mount.h>
50 #include <linux/audit.h>
51 #include <linux/memcontrol.h>
52 #include <linux/ftrace.h>
53 #include <linux/proc_fs.h>
54 #include <linux/profile.h>
55 #include <linux/rmap.h>
56 #include <linux/ksm.h>
57 #include <linux/acct.h>
58 #include <linux/tsacct_kern.h>
59 #include <linux/cn_proc.h>
60 #include <linux/freezer.h>
61 #include <linux/delayacct.h>
62 #include <linux/taskstats_kern.h>
63 #include <linux/random.h>
64 #include <linux/tty.h>
65 #include <linux/blkdev.h>
66 #include <linux/fs_struct.h>
67 #include <linux/magic.h>
68 #include <linux/perf_event.h>
69 #include <linux/posix-timers.h>
70 #include <linux/user-return-notifier.h>
71 #include <linux/oom.h>
72 #include <linux/khugepaged.h>
73 #include <linux/signalfd.h>
74 #include <linux/uprobes.h>
75 #include <linux/aio.h>
76
77 #include <asm/pgtable.h>
78 #include <asm/pgalloc.h>
79 #include <asm/uaccess.h>
80 #include <asm/mmu_context.h>
81 #include <asm/cacheflush.h>
82 #include <asm/tlbflush.h>
83
84 #include <trace/events/sched.h>
85
86 #define CREATE_TRACE_POINTS
87 #include <trace/events/task.h>
88
89 /*
90  * Protected counters by write_lock_irq(&tasklist_lock)
91  */
92 unsigned long total_forks;      /* Handle normal Linux uptimes. */
93 int nr_threads;                 /* The idle threads do not count.. */
94
95 int max_threads;                /* tunable limit on nr_threads */
96
97 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
98
99 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
100
101 #ifdef CONFIG_PROVE_RCU
102 int lockdep_tasklist_lock_is_held(void)
103 {
104         return lockdep_is_held(&tasklist_lock);
105 }
106 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
107 #endif /* #ifdef CONFIG_PROVE_RCU */
108
109 int nr_processes(void)
110 {
111         int cpu;
112         int total = 0;
113
114         for_each_possible_cpu(cpu)
115                 total += per_cpu(process_counts, cpu);
116
117         return total;
118 }
119
120 void __weak arch_release_task_struct(struct task_struct *tsk)
121 {
122 }
123
124 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
125 static struct kmem_cache *task_struct_cachep;
126
127 static inline struct task_struct *alloc_task_struct_node(int node)
128 {
129         return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
130 }
131
132 static inline void free_task_struct(struct task_struct *tsk)
133 {
134         kmem_cache_free(task_struct_cachep, tsk);
135 }
136 #endif
137
138 void __weak arch_release_thread_info(struct thread_info *ti)
139 {
140 }
141
142 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
143
144 /*
145  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
146  * kmemcache based allocator.
147  */
148 # if THREAD_SIZE >= PAGE_SIZE
149 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
150                                                   int node)
151 {
152         struct page *page = alloc_pages_node(node, THREADINFO_GFP_ACCOUNTED,
153                                              THREAD_SIZE_ORDER);
154
155         return page ? page_address(page) : NULL;
156 }
157
158 static inline void free_thread_info(struct thread_info *ti)
159 {
160         free_memcg_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
161 }
162 # else
163 static struct kmem_cache *thread_info_cache;
164
165 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
166                                                   int node)
167 {
168         return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
169 }
170
171 static void free_thread_info(struct thread_info *ti)
172 {
173         kmem_cache_free(thread_info_cache, ti);
174 }
175
176 void thread_info_cache_init(void)
177 {
178         thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
179                                               THREAD_SIZE, 0, NULL);
180         BUG_ON(thread_info_cache == NULL);
181 }
182 # endif
183 #endif
184
185 /* SLAB cache for signal_struct structures (tsk->signal) */
186 static struct kmem_cache *signal_cachep;
187
188 /* SLAB cache for sighand_struct structures (tsk->sighand) */
189 struct kmem_cache *sighand_cachep;
190
191 /* SLAB cache for files_struct structures (tsk->files) */
192 struct kmem_cache *files_cachep;
193
194 /* SLAB cache for fs_struct structures (tsk->fs) */
195 struct kmem_cache *fs_cachep;
196
197 /* SLAB cache for vm_area_struct structures */
198 struct kmem_cache *vm_area_cachep;
199
200 /* SLAB cache for mm_struct structures (tsk->mm) */
201 static struct kmem_cache *mm_cachep;
202
203 static void account_kernel_stack(struct thread_info *ti, int account)
204 {
205         struct zone *zone = page_zone(virt_to_page(ti));
206
207         mod_zone_page_state(zone, NR_KERNEL_STACK, account);
208 }
209
210 void free_task(struct task_struct *tsk)
211 {
212         account_kernel_stack(tsk->stack, -1);
213         arch_release_thread_info(tsk->stack);
214         free_thread_info(tsk->stack);
215         rt_mutex_debug_task_free(tsk);
216         ftrace_graph_exit_task(tsk);
217         put_seccomp_filter(tsk);
218         arch_release_task_struct(tsk);
219         free_task_struct(tsk);
220 }
221 EXPORT_SYMBOL(free_task);
222
223 static inline void free_signal_struct(struct signal_struct *sig)
224 {
225         taskstats_tgid_free(sig);
226         sched_autogroup_exit(sig);
227         kmem_cache_free(signal_cachep, sig);
228 }
229
230 static inline void put_signal_struct(struct signal_struct *sig)
231 {
232         if (atomic_dec_and_test(&sig->sigcnt))
233                 free_signal_struct(sig);
234 }
235
236 void __put_task_struct(struct task_struct *tsk)
237 {
238         WARN_ON(!tsk->exit_state);
239         WARN_ON(atomic_read(&tsk->usage));
240         WARN_ON(tsk == current);
241
242         task_numa_free(tsk);
243         security_task_free(tsk);
244         exit_creds(tsk);
245         delayacct_tsk_free(tsk);
246         put_signal_struct(tsk->signal);
247
248         if (!profile_handoff_task(tsk))
249                 free_task(tsk);
250 }
251 EXPORT_SYMBOL_GPL(__put_task_struct);
252
253 void __init __weak arch_task_cache_init(void) { }
254
255 void __init fork_init(unsigned long mempages)
256 {
257 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
258 #ifndef ARCH_MIN_TASKALIGN
259 #define ARCH_MIN_TASKALIGN      L1_CACHE_BYTES
260 #endif
261         /* create a slab on which task_structs can be allocated */
262         task_struct_cachep =
263                 kmem_cache_create("task_struct", sizeof(struct task_struct),
264                         ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
265 #endif
266
267         /* do the arch specific task caches init */
268         arch_task_cache_init();
269
270         /*
271          * The default maximum number of threads is set to a safe
272          * value: the thread structures can take up at most half
273          * of memory.
274          */
275         max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
276
277         /*
278          * we need to allow at least 20 threads to boot a system
279          */
280         if (max_threads < 20)
281                 max_threads = 20;
282
283         init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
284         init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
285         init_task.signal->rlim[RLIMIT_SIGPENDING] =
286                 init_task.signal->rlim[RLIMIT_NPROC];
287 }
288
289 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
290                                                struct task_struct *src)
291 {
292         *dst = *src;
293         return 0;
294 }
295
296 static struct task_struct *dup_task_struct(struct task_struct *orig)
297 {
298         struct task_struct *tsk;
299         struct thread_info *ti;
300         unsigned long *stackend;
301         int node = tsk_fork_get_node(orig);
302         int err;
303
304         tsk = alloc_task_struct_node(node);
305         if (!tsk)
306                 return NULL;
307
308         ti = alloc_thread_info_node(tsk, node);
309         if (!ti)
310                 goto free_tsk;
311
312         err = arch_dup_task_struct(tsk, orig);
313         if (err)
314                 goto free_ti;
315
316         tsk->stack = ti;
317
318         setup_thread_stack(tsk, orig);
319         clear_user_return_notifier(tsk);
320         clear_tsk_need_resched(tsk);
321         stackend = end_of_stack(tsk);
322         *stackend = STACK_END_MAGIC;    /* for overflow detection */
323
324 #ifdef CONFIG_CC_STACKPROTECTOR
325         tsk->stack_canary = get_random_int();
326 #endif
327
328         /*
329          * One for us, one for whoever does the "release_task()" (usually
330          * parent)
331          */
332         atomic_set(&tsk->usage, 2);
333 #ifdef CONFIG_BLK_DEV_IO_TRACE
334         tsk->btrace_seq = 0;
335 #endif
336         tsk->splice_pipe = NULL;
337         tsk->task_frag.page = NULL;
338
339         account_kernel_stack(ti, 1);
340
341         return tsk;
342
343 free_ti:
344         free_thread_info(ti);
345 free_tsk:
346         free_task_struct(tsk);
347         return NULL;
348 }
349
350 #ifdef CONFIG_MMU
351 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
352 {
353         struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
354         struct rb_node **rb_link, *rb_parent;
355         int retval;
356         unsigned long charge;
357
358         uprobe_start_dup_mmap();
359         down_write(&oldmm->mmap_sem);
360         flush_cache_dup_mm(oldmm);
361         uprobe_dup_mmap(oldmm, mm);
362         /*
363          * Not linked in yet - no deadlock potential:
364          */
365         down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
366
367         mm->locked_vm = 0;
368         mm->mmap = NULL;
369         mm->vmacache_seqnum = 0;
370         mm->map_count = 0;
371         cpumask_clear(mm_cpumask(mm));
372         mm->mm_rb = RB_ROOT;
373         rb_link = &mm->mm_rb.rb_node;
374         rb_parent = NULL;
375         pprev = &mm->mmap;
376         retval = ksm_fork(mm, oldmm);
377         if (retval)
378                 goto out;
379         retval = khugepaged_fork(mm, oldmm);
380         if (retval)
381                 goto out;
382
383         prev = NULL;
384         for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
385                 struct file *file;
386
387                 if (mpnt->vm_flags & VM_DONTCOPY) {
388                         vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
389                                                         -vma_pages(mpnt));
390                         continue;
391                 }
392                 charge = 0;
393                 if (mpnt->vm_flags & VM_ACCOUNT) {
394                         unsigned long len = vma_pages(mpnt);
395
396                         if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
397                                 goto fail_nomem;
398                         charge = len;
399                 }
400                 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
401                 if (!tmp)
402                         goto fail_nomem;
403                 *tmp = *mpnt;
404                 INIT_LIST_HEAD(&tmp->anon_vma_chain);
405                 retval = vma_dup_policy(mpnt, tmp);
406                 if (retval)
407                         goto fail_nomem_policy;
408                 tmp->vm_mm = mm;
409                 if (anon_vma_fork(tmp, mpnt))
410                         goto fail_nomem_anon_vma_fork;
411                 tmp->vm_flags &= ~VM_LOCKED;
412                 tmp->vm_next = tmp->vm_prev = NULL;
413                 file = tmp->vm_file;
414                 if (file) {
415                         struct inode *inode = file_inode(file);
416                         struct address_space *mapping = file->f_mapping;
417
418                         get_file(file);
419                         if (tmp->vm_flags & VM_DENYWRITE)
420                                 atomic_dec(&inode->i_writecount);
421                         mutex_lock(&mapping->i_mmap_mutex);
422                         if (tmp->vm_flags & VM_SHARED)
423                                 mapping->i_mmap_writable++;
424                         flush_dcache_mmap_lock(mapping);
425                         /* insert tmp into the share list, just after mpnt */
426                         if (unlikely(tmp->vm_flags & VM_NONLINEAR))
427                                 vma_nonlinear_insert(tmp,
428                                                 &mapping->i_mmap_nonlinear);
429                         else
430                                 vma_interval_tree_insert_after(tmp, mpnt,
431                                                         &mapping->i_mmap);
432                         flush_dcache_mmap_unlock(mapping);
433                         mutex_unlock(&mapping->i_mmap_mutex);
434                 }
435
436                 /*
437                  * Clear hugetlb-related page reserves for children. This only
438                  * affects MAP_PRIVATE mappings. Faults generated by the child
439                  * are not guaranteed to succeed, even if read-only
440                  */
441                 if (is_vm_hugetlb_page(tmp))
442                         reset_vma_resv_huge_pages(tmp);
443
444                 /*
445                  * Link in the new vma and copy the page table entries.
446                  */
447                 *pprev = tmp;
448                 pprev = &tmp->vm_next;
449                 tmp->vm_prev = prev;
450                 prev = tmp;
451
452                 __vma_link_rb(mm, tmp, rb_link, rb_parent);
453                 rb_link = &tmp->vm_rb.rb_right;
454                 rb_parent = &tmp->vm_rb;
455
456                 mm->map_count++;
457                 retval = copy_page_range(mm, oldmm, mpnt);
458
459                 if (tmp->vm_ops && tmp->vm_ops->open)
460                         tmp->vm_ops->open(tmp);
461
462                 if (retval)
463                         goto out;
464         }
465         /* a new mm has just been created */
466         arch_dup_mmap(oldmm, mm);
467         retval = 0;
468 out:
469         up_write(&mm->mmap_sem);
470         flush_tlb_mm(oldmm);
471         up_write(&oldmm->mmap_sem);
472         uprobe_end_dup_mmap();
473         return retval;
474 fail_nomem_anon_vma_fork:
475         mpol_put(vma_policy(tmp));
476 fail_nomem_policy:
477         kmem_cache_free(vm_area_cachep, tmp);
478 fail_nomem:
479         retval = -ENOMEM;
480         vm_unacct_memory(charge);
481         goto out;
482 }
483
484 static inline int mm_alloc_pgd(struct mm_struct *mm)
485 {
486         mm->pgd = pgd_alloc(mm);
487         if (unlikely(!mm->pgd))
488                 return -ENOMEM;
489         return 0;
490 }
491
492 static inline void mm_free_pgd(struct mm_struct *mm)
493 {
494         pgd_free(mm, mm->pgd);
495 }
496 #else
497 #define dup_mmap(mm, oldmm)     (0)
498 #define mm_alloc_pgd(mm)        (0)
499 #define mm_free_pgd(mm)
500 #endif /* CONFIG_MMU */
501
502 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
503
504 #define allocate_mm()   (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
505 #define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
506
507 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
508
509 static int __init coredump_filter_setup(char *s)
510 {
511         default_dump_filter =
512                 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
513                 MMF_DUMP_FILTER_MASK;
514         return 1;
515 }
516
517 __setup("coredump_filter=", coredump_filter_setup);
518
519 #include <linux/init_task.h>
520
521 static void mm_init_aio(struct mm_struct *mm)
522 {
523 #ifdef CONFIG_AIO
524         spin_lock_init(&mm->ioctx_lock);
525         mm->ioctx_table = NULL;
526 #endif
527 }
528
529 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
530 {
531         atomic_set(&mm->mm_users, 1);
532         atomic_set(&mm->mm_count, 1);
533         init_rwsem(&mm->mmap_sem);
534         INIT_LIST_HEAD(&mm->mmlist);
535         mm->core_state = NULL;
536         atomic_long_set(&mm->nr_ptes, 0);
537         memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
538         spin_lock_init(&mm->page_table_lock);
539         mm_init_aio(mm);
540         mm_init_owner(mm, p);
541         clear_tlb_flush_pending(mm);
542
543         if (current->mm) {
544                 mm->flags = current->mm->flags & MMF_INIT_MASK;
545                 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
546         } else {
547                 mm->flags = default_dump_filter;
548                 mm->def_flags = 0;
549         }
550
551         if (likely(!mm_alloc_pgd(mm))) {
552                 mmu_notifier_mm_init(mm);
553                 return mm;
554         }
555
556         free_mm(mm);
557         return NULL;
558 }
559
560 static void check_mm(struct mm_struct *mm)
561 {
562         int i;
563
564         for (i = 0; i < NR_MM_COUNTERS; i++) {
565                 long x = atomic_long_read(&mm->rss_stat.count[i]);
566
567                 if (unlikely(x))
568                         printk(KERN_ALERT "BUG: Bad rss-counter state "
569                                           "mm:%p idx:%d val:%ld\n", mm, i, x);
570         }
571
572 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
573         VM_BUG_ON(mm->pmd_huge_pte);
574 #endif
575 }
576
577 /*
578  * Allocate and initialize an mm_struct.
579  */
580 struct mm_struct *mm_alloc(void)
581 {
582         struct mm_struct *mm;
583
584         mm = allocate_mm();
585         if (!mm)
586                 return NULL;
587
588         memset(mm, 0, sizeof(*mm));
589         mm_init_cpumask(mm);
590         return mm_init(mm, current);
591 }
592
593 /*
594  * Called when the last reference to the mm
595  * is dropped: either by a lazy thread or by
596  * mmput. Free the page directory and the mm.
597  */
598 void __mmdrop(struct mm_struct *mm)
599 {
600         BUG_ON(mm == &init_mm);
601         mm_free_pgd(mm);
602         destroy_context(mm);
603         mmu_notifier_mm_destroy(mm);
604         check_mm(mm);
605         free_mm(mm);
606 }
607 EXPORT_SYMBOL_GPL(__mmdrop);
608
609 /*
610  * Decrement the use count and release all resources for an mm.
611  */
612 void mmput(struct mm_struct *mm)
613 {
614         might_sleep();
615
616         if (atomic_dec_and_test(&mm->mm_users)) {
617                 uprobe_clear_state(mm);
618                 exit_aio(mm);
619                 ksm_exit(mm);
620                 khugepaged_exit(mm); /* must run before exit_mmap */
621                 exit_mmap(mm);
622                 set_mm_exe_file(mm, NULL);
623                 if (!list_empty(&mm->mmlist)) {
624                         spin_lock(&mmlist_lock);
625                         list_del(&mm->mmlist);
626                         spin_unlock(&mmlist_lock);
627                 }
628                 if (mm->binfmt)
629                         module_put(mm->binfmt->module);
630                 mmdrop(mm);
631         }
632 }
633 EXPORT_SYMBOL_GPL(mmput);
634
635 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
636 {
637         if (new_exe_file)
638                 get_file(new_exe_file);
639         if (mm->exe_file)
640                 fput(mm->exe_file);
641         mm->exe_file = new_exe_file;
642 }
643
644 struct file *get_mm_exe_file(struct mm_struct *mm)
645 {
646         struct file *exe_file;
647
648         /* We need mmap_sem to protect against races with removal of exe_file */
649         down_read(&mm->mmap_sem);
650         exe_file = mm->exe_file;
651         if (exe_file)
652                 get_file(exe_file);
653         up_read(&mm->mmap_sem);
654         return exe_file;
655 }
656
657 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
658 {
659         /* It's safe to write the exe_file pointer without exe_file_lock because
660          * this is called during fork when the task is not yet in /proc */
661         newmm->exe_file = get_mm_exe_file(oldmm);
662 }
663
664 /**
665  * get_task_mm - acquire a reference to the task's mm
666  *
667  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
668  * this kernel workthread has transiently adopted a user mm with use_mm,
669  * to do its AIO) is not set and if so returns a reference to it, after
670  * bumping up the use count.  User must release the mm via mmput()
671  * after use.  Typically used by /proc and ptrace.
672  */
673 struct mm_struct *get_task_mm(struct task_struct *task)
674 {
675         struct mm_struct *mm;
676
677         task_lock(task);
678         mm = task->mm;
679         if (mm) {
680                 if (task->flags & PF_KTHREAD)
681                         mm = NULL;
682                 else
683                         atomic_inc(&mm->mm_users);
684         }
685         task_unlock(task);
686         return mm;
687 }
688 EXPORT_SYMBOL_GPL(get_task_mm);
689
690 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
691 {
692         struct mm_struct *mm;
693         int err;
694
695         err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
696         if (err)
697                 return ERR_PTR(err);
698
699         mm = get_task_mm(task);
700         if (mm && mm != current->mm &&
701                         !ptrace_may_access(task, mode)) {
702                 mmput(mm);
703                 mm = ERR_PTR(-EACCES);
704         }
705         mutex_unlock(&task->signal->cred_guard_mutex);
706
707         return mm;
708 }
709
710 static void complete_vfork_done(struct task_struct *tsk)
711 {
712         struct completion *vfork;
713
714         task_lock(tsk);
715         vfork = tsk->vfork_done;
716         if (likely(vfork)) {
717                 tsk->vfork_done = NULL;
718                 complete(vfork);
719         }
720         task_unlock(tsk);
721 }
722
723 static int wait_for_vfork_done(struct task_struct *child,
724                                 struct completion *vfork)
725 {
726         int killed;
727
728         freezer_do_not_count();
729         killed = wait_for_completion_killable(vfork);
730         freezer_count();
731
732         if (killed) {
733                 task_lock(child);
734                 child->vfork_done = NULL;
735                 task_unlock(child);
736         }
737
738         put_task_struct(child);
739         return killed;
740 }
741
742 /* Please note the differences between mmput and mm_release.
743  * mmput is called whenever we stop holding onto a mm_struct,
744  * error success whatever.
745  *
746  * mm_release is called after a mm_struct has been removed
747  * from the current process.
748  *
749  * This difference is important for error handling, when we
750  * only half set up a mm_struct for a new process and need to restore
751  * the old one.  Because we mmput the new mm_struct before
752  * restoring the old one. . .
753  * Eric Biederman 10 January 1998
754  */
755 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
756 {
757         /* Get rid of any futexes when releasing the mm */
758 #ifdef CONFIG_FUTEX
759         if (unlikely(tsk->robust_list)) {
760                 exit_robust_list(tsk);
761                 tsk->robust_list = NULL;
762         }
763 #ifdef CONFIG_COMPAT
764         if (unlikely(tsk->compat_robust_list)) {
765                 compat_exit_robust_list(tsk);
766                 tsk->compat_robust_list = NULL;
767         }
768 #endif
769         if (unlikely(!list_empty(&tsk->pi_state_list)))
770                 exit_pi_state_list(tsk);
771 #endif
772
773         uprobe_free_utask(tsk);
774
775         /* Get rid of any cached register state */
776         deactivate_mm(tsk, mm);
777
778         /*
779          * If we're exiting normally, clear a user-space tid field if
780          * requested.  We leave this alone when dying by signal, to leave
781          * the value intact in a core dump, and to save the unnecessary
782          * trouble, say, a killed vfork parent shouldn't touch this mm.
783          * Userland only wants this done for a sys_exit.
784          */
785         if (tsk->clear_child_tid) {
786                 if (!(tsk->flags & PF_SIGNALED) &&
787                     atomic_read(&mm->mm_users) > 1) {
788                         /*
789                          * We don't check the error code - if userspace has
790                          * not set up a proper pointer then tough luck.
791                          */
792                         put_user(0, tsk->clear_child_tid);
793                         sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
794                                         1, NULL, NULL, 0);
795                 }
796                 tsk->clear_child_tid = NULL;
797         }
798
799         /*
800          * All done, finally we can wake up parent and return this mm to him.
801          * Also kthread_stop() uses this completion for synchronization.
802          */
803         if (tsk->vfork_done)
804                 complete_vfork_done(tsk);
805 }
806
807 /*
808  * Allocate a new mm structure and copy contents from the
809  * mm structure of the passed in task structure.
810  */
811 static struct mm_struct *dup_mm(struct task_struct *tsk)
812 {
813         struct mm_struct *mm, *oldmm = current->mm;
814         int err;
815
816         mm = allocate_mm();
817         if (!mm)
818                 goto fail_nomem;
819
820         memcpy(mm, oldmm, sizeof(*mm));
821         mm_init_cpumask(mm);
822
823 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
824         mm->pmd_huge_pte = NULL;
825 #endif
826         if (!mm_init(mm, tsk))
827                 goto fail_nomem;
828
829         if (init_new_context(tsk, mm))
830                 goto fail_nocontext;
831
832         dup_mm_exe_file(oldmm, mm);
833
834         err = dup_mmap(mm, oldmm);
835         if (err)
836                 goto free_pt;
837
838         mm->hiwater_rss = get_mm_rss(mm);
839         mm->hiwater_vm = mm->total_vm;
840
841         if (mm->binfmt && !try_module_get(mm->binfmt->module))
842                 goto free_pt;
843
844         return mm;
845
846 free_pt:
847         /* don't put binfmt in mmput, we haven't got module yet */
848         mm->binfmt = NULL;
849         mmput(mm);
850
851 fail_nomem:
852         return NULL;
853
854 fail_nocontext:
855         /*
856          * If init_new_context() failed, we cannot use mmput() to free the mm
857          * because it calls destroy_context()
858          */
859         mm_free_pgd(mm);
860         free_mm(mm);
861         return NULL;
862 }
863
864 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
865 {
866         struct mm_struct *mm, *oldmm;
867         int retval;
868
869         tsk->min_flt = tsk->maj_flt = 0;
870         tsk->nvcsw = tsk->nivcsw = 0;
871 #ifdef CONFIG_DETECT_HUNG_TASK
872         tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
873 #endif
874
875         tsk->mm = NULL;
876         tsk->active_mm = NULL;
877
878         /*
879          * Are we cloning a kernel thread?
880          *
881          * We need to steal a active VM for that..
882          */
883         oldmm = current->mm;
884         if (!oldmm)
885                 return 0;
886
887         /* initialize the new vmacache entries */
888         vmacache_flush(tsk);
889
890         if (clone_flags & CLONE_VM) {
891                 atomic_inc(&oldmm->mm_users);
892                 mm = oldmm;
893                 goto good_mm;
894         }
895
896         retval = -ENOMEM;
897         mm = dup_mm(tsk);
898         if (!mm)
899                 goto fail_nomem;
900
901 good_mm:
902         tsk->mm = mm;
903         tsk->active_mm = mm;
904         return 0;
905
906 fail_nomem:
907         return retval;
908 }
909
910 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
911 {
912         struct fs_struct *fs = current->fs;
913         if (clone_flags & CLONE_FS) {
914                 /* tsk->fs is already what we want */
915                 spin_lock(&fs->lock);
916                 if (fs->in_exec) {
917                         spin_unlock(&fs->lock);
918                         return -EAGAIN;
919                 }
920                 fs->users++;
921                 spin_unlock(&fs->lock);
922                 return 0;
923         }
924         tsk->fs = copy_fs_struct(fs);
925         if (!tsk->fs)
926                 return -ENOMEM;
927         return 0;
928 }
929
930 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
931 {
932         struct files_struct *oldf, *newf;
933         int error = 0;
934
935         /*
936          * A background process may not have any files ...
937          */
938         oldf = current->files;
939         if (!oldf)
940                 goto out;
941
942         if (clone_flags & CLONE_FILES) {
943                 atomic_inc(&oldf->count);
944                 goto out;
945         }
946
947         newf = dup_fd(oldf, &error);
948         if (!newf)
949                 goto out;
950
951         tsk->files = newf;
952         error = 0;
953 out:
954         return error;
955 }
956
957 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
958 {
959 #ifdef CONFIG_BLOCK
960         struct io_context *ioc = current->io_context;
961         struct io_context *new_ioc;
962
963         if (!ioc)
964                 return 0;
965         /*
966          * Share io context with parent, if CLONE_IO is set
967          */
968         if (clone_flags & CLONE_IO) {
969                 ioc_task_link(ioc);
970                 tsk->io_context = ioc;
971         } else if (ioprio_valid(ioc->ioprio)) {
972                 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
973                 if (unlikely(!new_ioc))
974                         return -ENOMEM;
975
976                 new_ioc->ioprio = ioc->ioprio;
977                 put_io_context(new_ioc);
978         }
979 #endif
980         return 0;
981 }
982
983 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
984 {
985         struct sighand_struct *sig;
986
987         if (clone_flags & CLONE_SIGHAND) {
988                 atomic_inc(&current->sighand->count);
989                 return 0;
990         }
991         sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
992         rcu_assign_pointer(tsk->sighand, sig);
993         if (!sig)
994                 return -ENOMEM;
995         atomic_set(&sig->count, 1);
996         memcpy(sig->action, current->sighand->action, sizeof(sig->action));
997         return 0;
998 }
999
1000 void __cleanup_sighand(struct sighand_struct *sighand)
1001 {
1002         if (atomic_dec_and_test(&sighand->count)) {
1003                 signalfd_cleanup(sighand);
1004                 kmem_cache_free(sighand_cachep, sighand);
1005         }
1006 }
1007
1008
1009 /*
1010  * Initialize POSIX timer handling for a thread group.
1011  */
1012 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1013 {
1014         unsigned long cpu_limit;
1015
1016         /* Thread group counters. */
1017         thread_group_cputime_init(sig);
1018
1019         cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1020         if (cpu_limit != RLIM_INFINITY) {
1021                 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1022                 sig->cputimer.running = 1;
1023         }
1024
1025         /* The timer lists. */
1026         INIT_LIST_HEAD(&sig->cpu_timers[0]);
1027         INIT_LIST_HEAD(&sig->cpu_timers[1]);
1028         INIT_LIST_HEAD(&sig->cpu_timers[2]);
1029 }
1030
1031 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1032 {
1033         struct signal_struct *sig;
1034
1035         if (clone_flags & CLONE_THREAD)
1036                 return 0;
1037
1038         sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1039         tsk->signal = sig;
1040         if (!sig)
1041                 return -ENOMEM;
1042
1043         sig->nr_threads = 1;
1044         atomic_set(&sig->live, 1);
1045         atomic_set(&sig->sigcnt, 1);
1046
1047         /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1048         sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1049         tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1050
1051         init_waitqueue_head(&sig->wait_chldexit);
1052         sig->curr_target = tsk;
1053         init_sigpending(&sig->shared_pending);
1054         INIT_LIST_HEAD(&sig->posix_timers);
1055
1056         hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1057         sig->real_timer.function = it_real_fn;
1058
1059         task_lock(current->group_leader);
1060         memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1061         task_unlock(current->group_leader);
1062
1063         posix_cpu_timers_init_group(sig);
1064
1065         tty_audit_fork(sig);
1066         sched_autogroup_fork(sig);
1067
1068 #ifdef CONFIG_CGROUPS
1069         init_rwsem(&sig->group_rwsem);
1070 #endif
1071
1072         sig->oom_score_adj = current->signal->oom_score_adj;
1073         sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1074
1075         sig->has_child_subreaper = current->signal->has_child_subreaper ||
1076                                    current->signal->is_child_subreaper;
1077
1078         mutex_init(&sig->cred_guard_mutex);
1079
1080         return 0;
1081 }
1082
1083 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
1084 {
1085         unsigned long new_flags = p->flags;
1086
1087         new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1088         new_flags |= PF_FORKNOEXEC;
1089         p->flags = new_flags;
1090 }
1091
1092 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1093 {
1094         current->clear_child_tid = tidptr;
1095
1096         return task_pid_vnr(current);
1097 }
1098
1099 static void rt_mutex_init_task(struct task_struct *p)
1100 {
1101         raw_spin_lock_init(&p->pi_lock);
1102 #ifdef CONFIG_RT_MUTEXES
1103         p->pi_waiters = RB_ROOT;
1104         p->pi_waiters_leftmost = NULL;
1105         p->pi_blocked_on = NULL;
1106         p->pi_top_task = NULL;
1107 #endif
1108 }
1109
1110 #ifdef CONFIG_MM_OWNER
1111 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1112 {
1113         mm->owner = p;
1114 }
1115 #endif /* CONFIG_MM_OWNER */
1116
1117 /*
1118  * Initialize POSIX timer handling for a single task.
1119  */
1120 static void posix_cpu_timers_init(struct task_struct *tsk)
1121 {
1122         tsk->cputime_expires.prof_exp = 0;
1123         tsk->cputime_expires.virt_exp = 0;
1124         tsk->cputime_expires.sched_exp = 0;
1125         INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1126         INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1127         INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1128 }
1129
1130 static inline void
1131 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1132 {
1133          task->pids[type].pid = pid;
1134 }
1135
1136 /*
1137  * This creates a new process as a copy of the old one,
1138  * but does not actually start it yet.
1139  *
1140  * It copies the registers, and all the appropriate
1141  * parts of the process environment (as per the clone
1142  * flags). The actual kick-off is left to the caller.
1143  */
1144 static struct task_struct *copy_process(unsigned long clone_flags,
1145                                         unsigned long stack_start,
1146                                         unsigned long stack_size,
1147                                         int __user *child_tidptr,
1148                                         struct pid *pid,
1149                                         int trace)
1150 {
1151         int retval;
1152         struct task_struct *p;
1153
1154         if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1155                 return ERR_PTR(-EINVAL);
1156
1157         if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1158                 return ERR_PTR(-EINVAL);
1159
1160         /*
1161          * Thread groups must share signals as well, and detached threads
1162          * can only be started up within the thread group.
1163          */
1164         if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1165                 return ERR_PTR(-EINVAL);
1166
1167         /*
1168          * Shared signal handlers imply shared VM. By way of the above,
1169          * thread groups also imply shared VM. Blocking this case allows
1170          * for various simplifications in other code.
1171          */
1172         if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1173                 return ERR_PTR(-EINVAL);
1174
1175         /*
1176          * Siblings of global init remain as zombies on exit since they are
1177          * not reaped by their parent (swapper). To solve this and to avoid
1178          * multi-rooted process trees, prevent global and container-inits
1179          * from creating siblings.
1180          */
1181         if ((clone_flags & CLONE_PARENT) &&
1182                                 current->signal->flags & SIGNAL_UNKILLABLE)
1183                 return ERR_PTR(-EINVAL);
1184
1185         /*
1186          * If the new process will be in a different pid or user namespace
1187          * do not allow it to share a thread group or signal handlers or
1188          * parent with the forking task.
1189          */
1190         if (clone_flags & CLONE_SIGHAND) {
1191                 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1192                     (task_active_pid_ns(current) !=
1193                                 current->nsproxy->pid_ns_for_children))
1194                         return ERR_PTR(-EINVAL);
1195         }
1196
1197         retval = security_task_create(clone_flags);
1198         if (retval)
1199                 goto fork_out;
1200
1201         retval = -ENOMEM;
1202         p = dup_task_struct(current);
1203         if (!p)
1204                 goto fork_out;
1205
1206         ftrace_graph_init_task(p);
1207         get_seccomp_filter(p);
1208
1209         rt_mutex_init_task(p);
1210
1211 #ifdef CONFIG_PROVE_LOCKING
1212         DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1213         DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1214 #endif
1215         retval = -EAGAIN;
1216         if (atomic_read(&p->real_cred->user->processes) >=
1217                         task_rlimit(p, RLIMIT_NPROC)) {
1218                 if (p->real_cred->user != INIT_USER &&
1219                     !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1220                         goto bad_fork_free;
1221         }
1222         current->flags &= ~PF_NPROC_EXCEEDED;
1223
1224         retval = copy_creds(p, clone_flags);
1225         if (retval < 0)
1226                 goto bad_fork_free;
1227
1228         /*
1229          * If multiple threads are within copy_process(), then this check
1230          * triggers too late. This doesn't hurt, the check is only there
1231          * to stop root fork bombs.
1232          */
1233         retval = -EAGAIN;
1234         if (nr_threads >= max_threads)
1235                 goto bad_fork_cleanup_count;
1236
1237         if (!try_module_get(task_thread_info(p)->exec_domain->module))
1238                 goto bad_fork_cleanup_count;
1239
1240         delayacct_tsk_init(p);  /* Must remain after dup_task_struct() */
1241         copy_flags(clone_flags, p);
1242         INIT_LIST_HEAD(&p->children);
1243         INIT_LIST_HEAD(&p->sibling);
1244         rcu_copy_process(p);
1245         p->vfork_done = NULL;
1246         spin_lock_init(&p->alloc_lock);
1247
1248         init_sigpending(&p->pending);
1249
1250         p->utime = p->stime = p->gtime = 0;
1251         p->utimescaled = p->stimescaled = 0;
1252 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1253         p->prev_cputime.utime = p->prev_cputime.stime = 0;
1254 #endif
1255 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1256         seqlock_init(&p->vtime_seqlock);
1257         p->vtime_snap = 0;
1258         p->vtime_snap_whence = VTIME_SLEEPING;
1259 #endif
1260
1261 #if defined(SPLIT_RSS_COUNTING)
1262         memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1263 #endif
1264
1265         p->default_timer_slack_ns = current->timer_slack_ns;
1266
1267         task_io_accounting_init(&p->ioac);
1268         acct_clear_integrals(p);
1269
1270         posix_cpu_timers_init(p);
1271
1272         do_posix_clock_monotonic_gettime(&p->start_time);
1273         p->real_start_time = p->start_time;
1274         monotonic_to_bootbased(&p->real_start_time);
1275         p->io_context = NULL;
1276         p->audit_context = NULL;
1277         if (clone_flags & CLONE_THREAD)
1278                 threadgroup_change_begin(current);
1279         cgroup_fork(p);
1280 #ifdef CONFIG_NUMA
1281         p->mempolicy = mpol_dup(p->mempolicy);
1282         if (IS_ERR(p->mempolicy)) {
1283                 retval = PTR_ERR(p->mempolicy);
1284                 p->mempolicy = NULL;
1285                 goto bad_fork_cleanup_threadgroup_lock;
1286         }
1287         mpol_fix_fork_child_flag(p);
1288 #endif
1289 #ifdef CONFIG_CPUSETS
1290         p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1291         p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1292         seqcount_init(&p->mems_allowed_seq);
1293 #endif
1294 #ifdef CONFIG_TRACE_IRQFLAGS
1295         p->irq_events = 0;
1296         p->hardirqs_enabled = 0;
1297         p->hardirq_enable_ip = 0;
1298         p->hardirq_enable_event = 0;
1299         p->hardirq_disable_ip = _THIS_IP_;
1300         p->hardirq_disable_event = 0;
1301         p->softirqs_enabled = 1;
1302         p->softirq_enable_ip = _THIS_IP_;
1303         p->softirq_enable_event = 0;
1304         p->softirq_disable_ip = 0;
1305         p->softirq_disable_event = 0;
1306         p->hardirq_context = 0;
1307         p->softirq_context = 0;
1308 #endif
1309 #ifdef CONFIG_LOCKDEP
1310         p->lockdep_depth = 0; /* no locks held yet */
1311         p->curr_chain_key = 0;
1312         p->lockdep_recursion = 0;
1313 #endif
1314
1315 #ifdef CONFIG_DEBUG_MUTEXES
1316         p->blocked_on = NULL; /* not blocked yet */
1317 #endif
1318 #ifdef CONFIG_MEMCG
1319         p->memcg_batch.do_batch = 0;
1320         p->memcg_batch.memcg = NULL;
1321 #endif
1322 #ifdef CONFIG_BCACHE
1323         p->sequential_io        = 0;
1324         p->sequential_io_avg    = 0;
1325 #endif
1326
1327         /* Perform scheduler related setup. Assign this task to a CPU. */
1328         retval = sched_fork(clone_flags, p);
1329         if (retval)
1330                 goto bad_fork_cleanup_policy;
1331
1332         retval = perf_event_init_task(p);
1333         if (retval)
1334                 goto bad_fork_cleanup_policy;
1335         retval = audit_alloc(p);
1336         if (retval)
1337                 goto bad_fork_cleanup_policy;
1338         /* copy all the process information */
1339         retval = copy_semundo(clone_flags, p);
1340         if (retval)
1341                 goto bad_fork_cleanup_audit;
1342         retval = copy_files(clone_flags, p);
1343         if (retval)
1344                 goto bad_fork_cleanup_semundo;
1345         retval = copy_fs(clone_flags, p);
1346         if (retval)
1347                 goto bad_fork_cleanup_files;
1348         retval = copy_sighand(clone_flags, p);
1349         if (retval)
1350                 goto bad_fork_cleanup_fs;
1351         retval = copy_signal(clone_flags, p);
1352         if (retval)
1353                 goto bad_fork_cleanup_sighand;
1354         retval = copy_mm(clone_flags, p);
1355         if (retval)
1356                 goto bad_fork_cleanup_signal;
1357         retval = copy_namespaces(clone_flags, p);
1358         if (retval)
1359                 goto bad_fork_cleanup_mm;
1360         retval = copy_io(clone_flags, p);
1361         if (retval)
1362                 goto bad_fork_cleanup_namespaces;
1363         retval = copy_thread(clone_flags, stack_start, stack_size, p);
1364         if (retval)
1365                 goto bad_fork_cleanup_io;
1366
1367         if (pid != &init_struct_pid) {
1368                 retval = -ENOMEM;
1369                 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1370                 if (!pid)
1371                         goto bad_fork_cleanup_io;
1372         }
1373
1374         p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1375         /*
1376          * Clear TID on mm_release()?
1377          */
1378         p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1379 #ifdef CONFIG_BLOCK
1380         p->plug = NULL;
1381 #endif
1382 #ifdef CONFIG_FUTEX
1383         p->robust_list = NULL;
1384 #ifdef CONFIG_COMPAT
1385         p->compat_robust_list = NULL;
1386 #endif
1387         INIT_LIST_HEAD(&p->pi_state_list);
1388         p->pi_state_cache = NULL;
1389 #endif
1390         /*
1391          * sigaltstack should be cleared when sharing the same VM
1392          */
1393         if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1394                 p->sas_ss_sp = p->sas_ss_size = 0;
1395
1396         /*
1397          * Syscall tracing and stepping should be turned off in the
1398          * child regardless of CLONE_PTRACE.
1399          */
1400         user_disable_single_step(p);
1401         clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1402 #ifdef TIF_SYSCALL_EMU
1403         clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1404 #endif
1405         clear_all_latency_tracing(p);
1406
1407         /* ok, now we should be set up.. */
1408         p->pid = pid_nr(pid);
1409         if (clone_flags & CLONE_THREAD) {
1410                 p->exit_signal = -1;
1411                 p->group_leader = current->group_leader;
1412                 p->tgid = current->tgid;
1413         } else {
1414                 if (clone_flags & CLONE_PARENT)
1415                         p->exit_signal = current->group_leader->exit_signal;
1416                 else
1417                         p->exit_signal = (clone_flags & CSIGNAL);
1418                 p->group_leader = p;
1419                 p->tgid = p->pid;
1420         }
1421
1422         p->nr_dirtied = 0;
1423         p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1424         p->dirty_paused_when = 0;
1425
1426         p->pdeath_signal = 0;
1427         INIT_LIST_HEAD(&p->thread_group);
1428         p->task_works = NULL;
1429
1430         /*
1431          * Make it visible to the rest of the system, but dont wake it up yet.
1432          * Need tasklist lock for parent etc handling!
1433          */
1434         write_lock_irq(&tasklist_lock);
1435
1436         /* CLONE_PARENT re-uses the old parent */
1437         if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1438                 p->real_parent = current->real_parent;
1439                 p->parent_exec_id = current->parent_exec_id;
1440         } else {
1441                 p->real_parent = current;
1442                 p->parent_exec_id = current->self_exec_id;
1443         }
1444
1445         spin_lock(&current->sighand->siglock);
1446
1447         /*
1448          * Process group and session signals need to be delivered to just the
1449          * parent before the fork or both the parent and the child after the
1450          * fork. Restart if a signal comes in before we add the new process to
1451          * it's process group.
1452          * A fatal signal pending means that current will exit, so the new
1453          * thread can't slip out of an OOM kill (or normal SIGKILL).
1454         */
1455         recalc_sigpending();
1456         if (signal_pending(current)) {
1457                 spin_unlock(&current->sighand->siglock);
1458                 write_unlock_irq(&tasklist_lock);
1459                 retval = -ERESTARTNOINTR;
1460                 goto bad_fork_free_pid;
1461         }
1462
1463         if (likely(p->pid)) {
1464                 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1465
1466                 init_task_pid(p, PIDTYPE_PID, pid);
1467                 if (thread_group_leader(p)) {
1468                         init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1469                         init_task_pid(p, PIDTYPE_SID, task_session(current));
1470
1471                         if (is_child_reaper(pid)) {
1472                                 ns_of_pid(pid)->child_reaper = p;
1473                                 p->signal->flags |= SIGNAL_UNKILLABLE;
1474                         }
1475
1476                         p->signal->leader_pid = pid;
1477                         p->signal->tty = tty_kref_get(current->signal->tty);
1478                         list_add_tail(&p->sibling, &p->real_parent->children);
1479                         list_add_tail_rcu(&p->tasks, &init_task.tasks);
1480                         attach_pid(p, PIDTYPE_PGID);
1481                         attach_pid(p, PIDTYPE_SID);
1482                         __this_cpu_inc(process_counts);
1483                 } else {
1484                         current->signal->nr_threads++;
1485                         atomic_inc(&current->signal->live);
1486                         atomic_inc(&current->signal->sigcnt);
1487                         list_add_tail_rcu(&p->thread_group,
1488                                           &p->group_leader->thread_group);
1489                         list_add_tail_rcu(&p->thread_node,
1490                                           &p->signal->thread_head);
1491                 }
1492                 attach_pid(p, PIDTYPE_PID);
1493                 nr_threads++;
1494         }
1495
1496         total_forks++;
1497         spin_unlock(&current->sighand->siglock);
1498         write_unlock_irq(&tasklist_lock);
1499         proc_fork_connector(p);
1500         cgroup_post_fork(p);
1501         if (clone_flags & CLONE_THREAD)
1502                 threadgroup_change_end(current);
1503         perf_event_fork(p);
1504
1505         trace_task_newtask(p, clone_flags);
1506         uprobe_copy_process(p, clone_flags);
1507
1508         return p;
1509
1510 bad_fork_free_pid:
1511         if (pid != &init_struct_pid)
1512                 free_pid(pid);
1513 bad_fork_cleanup_io:
1514         if (p->io_context)
1515                 exit_io_context(p);
1516 bad_fork_cleanup_namespaces:
1517         exit_task_namespaces(p);
1518 bad_fork_cleanup_mm:
1519         if (p->mm)
1520                 mmput(p->mm);
1521 bad_fork_cleanup_signal:
1522         if (!(clone_flags & CLONE_THREAD))
1523                 free_signal_struct(p->signal);
1524 bad_fork_cleanup_sighand:
1525         __cleanup_sighand(p->sighand);
1526 bad_fork_cleanup_fs:
1527         exit_fs(p); /* blocking */
1528 bad_fork_cleanup_files:
1529         exit_files(p); /* blocking */
1530 bad_fork_cleanup_semundo:
1531         exit_sem(p);
1532 bad_fork_cleanup_audit:
1533         audit_free(p);
1534 bad_fork_cleanup_policy:
1535         perf_event_free_task(p);
1536 #ifdef CONFIG_NUMA
1537         mpol_put(p->mempolicy);
1538 bad_fork_cleanup_threadgroup_lock:
1539 #endif
1540         if (clone_flags & CLONE_THREAD)
1541                 threadgroup_change_end(current);
1542         delayacct_tsk_free(p);
1543         module_put(task_thread_info(p)->exec_domain->module);
1544 bad_fork_cleanup_count:
1545         atomic_dec(&p->cred->user->processes);
1546         exit_creds(p);
1547 bad_fork_free:
1548         free_task(p);
1549 fork_out:
1550         return ERR_PTR(retval);
1551 }
1552
1553 static inline void init_idle_pids(struct pid_link *links)
1554 {
1555         enum pid_type type;
1556
1557         for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1558                 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1559                 links[type].pid = &init_struct_pid;
1560         }
1561 }
1562
1563 struct task_struct *fork_idle(int cpu)
1564 {
1565         struct task_struct *task;
1566         task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0);
1567         if (!IS_ERR(task)) {
1568                 init_idle_pids(task->pids);
1569                 init_idle(task, cpu);
1570         }
1571
1572         return task;
1573 }
1574
1575 /*
1576  *  Ok, this is the main fork-routine.
1577  *
1578  * It copies the process, and if successful kick-starts
1579  * it and waits for it to finish using the VM if required.
1580  */
1581 long do_fork(unsigned long clone_flags,
1582               unsigned long stack_start,
1583               unsigned long stack_size,
1584               int __user *parent_tidptr,
1585               int __user *child_tidptr)
1586 {
1587         struct task_struct *p;
1588         int trace = 0;
1589         long nr;
1590
1591         /*
1592          * Determine whether and which event to report to ptracer.  When
1593          * called from kernel_thread or CLONE_UNTRACED is explicitly
1594          * requested, no event is reported; otherwise, report if the event
1595          * for the type of forking is enabled.
1596          */
1597         if (!(clone_flags & CLONE_UNTRACED)) {
1598                 if (clone_flags & CLONE_VFORK)
1599                         trace = PTRACE_EVENT_VFORK;
1600                 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1601                         trace = PTRACE_EVENT_CLONE;
1602                 else
1603                         trace = PTRACE_EVENT_FORK;
1604
1605                 if (likely(!ptrace_event_enabled(current, trace)))
1606                         trace = 0;
1607         }
1608
1609         p = copy_process(clone_flags, stack_start, stack_size,
1610                          child_tidptr, NULL, trace);
1611         /*
1612          * Do this prior waking up the new thread - the thread pointer
1613          * might get invalid after that point, if the thread exits quickly.
1614          */
1615         if (!IS_ERR(p)) {
1616                 struct completion vfork;
1617
1618                 trace_sched_process_fork(current, p);
1619
1620                 nr = task_pid_vnr(p);
1621
1622                 if (clone_flags & CLONE_PARENT_SETTID)
1623                         put_user(nr, parent_tidptr);
1624
1625                 if (clone_flags & CLONE_VFORK) {
1626                         p->vfork_done = &vfork;
1627                         init_completion(&vfork);
1628                         get_task_struct(p);
1629                 }
1630
1631                 wake_up_new_task(p);
1632
1633                 /* forking complete and child started to run, tell ptracer */
1634                 if (unlikely(trace))
1635                         ptrace_event(trace, nr);
1636
1637                 if (clone_flags & CLONE_VFORK) {
1638                         if (!wait_for_vfork_done(p, &vfork))
1639                                 ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
1640                 }
1641         } else {
1642                 nr = PTR_ERR(p);
1643         }
1644         return nr;
1645 }
1646
1647 /*
1648  * Create a kernel thread.
1649  */
1650 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1651 {
1652         return do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1653                 (unsigned long)arg, NULL, NULL);
1654 }
1655
1656 #ifdef __ARCH_WANT_SYS_FORK
1657 SYSCALL_DEFINE0(fork)
1658 {
1659 #ifdef CONFIG_MMU
1660         return do_fork(SIGCHLD, 0, 0, NULL, NULL);
1661 #else
1662         /* can not support in nommu mode */
1663         return -EINVAL;
1664 #endif
1665 }
1666 #endif
1667
1668 #ifdef __ARCH_WANT_SYS_VFORK
1669 SYSCALL_DEFINE0(vfork)
1670 {
1671         return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1672                         0, NULL, NULL);
1673 }
1674 #endif
1675
1676 #ifdef __ARCH_WANT_SYS_CLONE
1677 #ifdef CONFIG_CLONE_BACKWARDS
1678 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1679                  int __user *, parent_tidptr,
1680                  int, tls_val,
1681                  int __user *, child_tidptr)
1682 #elif defined(CONFIG_CLONE_BACKWARDS2)
1683 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1684                  int __user *, parent_tidptr,
1685                  int __user *, child_tidptr,
1686                  int, tls_val)
1687 #elif defined(CONFIG_CLONE_BACKWARDS3)
1688 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
1689                 int, stack_size,
1690                 int __user *, parent_tidptr,
1691                 int __user *, child_tidptr,
1692                 int, tls_val)
1693 #else
1694 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1695                  int __user *, parent_tidptr,
1696                  int __user *, child_tidptr,
1697                  int, tls_val)
1698 #endif
1699 {
1700         return do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr);
1701 }
1702 #endif
1703
1704 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1705 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1706 #endif
1707
1708 static void sighand_ctor(void *data)
1709 {
1710         struct sighand_struct *sighand = data;
1711
1712         spin_lock_init(&sighand->siglock);
1713         init_waitqueue_head(&sighand->signalfd_wqh);
1714 }
1715
1716 void __init proc_caches_init(void)
1717 {
1718         sighand_cachep = kmem_cache_create("sighand_cache",
1719                         sizeof(struct sighand_struct), 0,
1720                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1721                         SLAB_NOTRACK, sighand_ctor);
1722         signal_cachep = kmem_cache_create("signal_cache",
1723                         sizeof(struct signal_struct), 0,
1724                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1725         files_cachep = kmem_cache_create("files_cache",
1726                         sizeof(struct files_struct), 0,
1727                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1728         fs_cachep = kmem_cache_create("fs_cache",
1729                         sizeof(struct fs_struct), 0,
1730                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1731         /*
1732          * FIXME! The "sizeof(struct mm_struct)" currently includes the
1733          * whole struct cpumask for the OFFSTACK case. We could change
1734          * this to *only* allocate as much of it as required by the
1735          * maximum number of CPU's we can ever have.  The cpumask_allocation
1736          * is at the end of the structure, exactly for that reason.
1737          */
1738         mm_cachep = kmem_cache_create("mm_struct",
1739                         sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1740                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1741         vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1742         mmap_init();
1743         nsproxy_cache_init();
1744 }
1745
1746 /*
1747  * Check constraints on flags passed to the unshare system call.
1748  */
1749 static int check_unshare_flags(unsigned long unshare_flags)
1750 {
1751         if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1752                                 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1753                                 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1754                                 CLONE_NEWUSER|CLONE_NEWPID))
1755                 return -EINVAL;
1756         /*
1757          * Not implemented, but pretend it works if there is nothing to
1758          * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1759          * needs to unshare vm.
1760          */
1761         if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1762                 /* FIXME: get_task_mm() increments ->mm_users */
1763                 if (atomic_read(&current->mm->mm_users) > 1)
1764                         return -EINVAL;
1765         }
1766
1767         return 0;
1768 }
1769
1770 /*
1771  * Unshare the filesystem structure if it is being shared
1772  */
1773 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1774 {
1775         struct fs_struct *fs = current->fs;
1776
1777         if (!(unshare_flags & CLONE_FS) || !fs)
1778                 return 0;
1779
1780         /* don't need lock here; in the worst case we'll do useless copy */
1781         if (fs->users == 1)
1782                 return 0;
1783
1784         *new_fsp = copy_fs_struct(fs);
1785         if (!*new_fsp)
1786                 return -ENOMEM;
1787
1788         return 0;
1789 }
1790
1791 /*
1792  * Unshare file descriptor table if it is being shared
1793  */
1794 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1795 {
1796         struct files_struct *fd = current->files;
1797         int error = 0;
1798
1799         if ((unshare_flags & CLONE_FILES) &&
1800             (fd && atomic_read(&fd->count) > 1)) {
1801                 *new_fdp = dup_fd(fd, &error);
1802                 if (!*new_fdp)
1803                         return error;
1804         }
1805
1806         return 0;
1807 }
1808
1809 /*
1810  * unshare allows a process to 'unshare' part of the process
1811  * context which was originally shared using clone.  copy_*
1812  * functions used by do_fork() cannot be used here directly
1813  * because they modify an inactive task_struct that is being
1814  * constructed. Here we are modifying the current, active,
1815  * task_struct.
1816  */
1817 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1818 {
1819         struct fs_struct *fs, *new_fs = NULL;
1820         struct files_struct *fd, *new_fd = NULL;
1821         struct cred *new_cred = NULL;
1822         struct nsproxy *new_nsproxy = NULL;
1823         int do_sysvsem = 0;
1824         int err;
1825
1826         /*
1827          * If unsharing a user namespace must also unshare the thread.
1828          */
1829         if (unshare_flags & CLONE_NEWUSER)
1830                 unshare_flags |= CLONE_THREAD | CLONE_FS;
1831         /*
1832          * If unsharing a thread from a thread group, must also unshare vm.
1833          */
1834         if (unshare_flags & CLONE_THREAD)
1835                 unshare_flags |= CLONE_VM;
1836         /*
1837          * If unsharing vm, must also unshare signal handlers.
1838          */
1839         if (unshare_flags & CLONE_VM)
1840                 unshare_flags |= CLONE_SIGHAND;
1841         /*
1842          * If unsharing namespace, must also unshare filesystem information.
1843          */
1844         if (unshare_flags & CLONE_NEWNS)
1845                 unshare_flags |= CLONE_FS;
1846
1847         err = check_unshare_flags(unshare_flags);
1848         if (err)
1849                 goto bad_unshare_out;
1850         /*
1851          * CLONE_NEWIPC must also detach from the undolist: after switching
1852          * to a new ipc namespace, the semaphore arrays from the old
1853          * namespace are unreachable.
1854          */
1855         if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1856                 do_sysvsem = 1;
1857         err = unshare_fs(unshare_flags, &new_fs);
1858         if (err)
1859                 goto bad_unshare_out;
1860         err = unshare_fd(unshare_flags, &new_fd);
1861         if (err)
1862                 goto bad_unshare_cleanup_fs;
1863         err = unshare_userns(unshare_flags, &new_cred);
1864         if (err)
1865                 goto bad_unshare_cleanup_fd;
1866         err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1867                                          new_cred, new_fs);
1868         if (err)
1869                 goto bad_unshare_cleanup_cred;
1870
1871         if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
1872                 if (do_sysvsem) {
1873                         /*
1874                          * CLONE_SYSVSEM is equivalent to sys_exit().
1875                          */
1876                         exit_sem(current);
1877                 }
1878
1879                 if (new_nsproxy)
1880                         switch_task_namespaces(current, new_nsproxy);
1881
1882                 task_lock(current);
1883
1884                 if (new_fs) {
1885                         fs = current->fs;
1886                         spin_lock(&fs->lock);
1887                         current->fs = new_fs;
1888                         if (--fs->users)
1889                                 new_fs = NULL;
1890                         else
1891                                 new_fs = fs;
1892                         spin_unlock(&fs->lock);
1893                 }
1894
1895                 if (new_fd) {
1896                         fd = current->files;
1897                         current->files = new_fd;
1898                         new_fd = fd;
1899                 }
1900
1901                 task_unlock(current);
1902
1903                 if (new_cred) {
1904                         /* Install the new user namespace */
1905                         commit_creds(new_cred);
1906                         new_cred = NULL;
1907                 }
1908         }
1909
1910 bad_unshare_cleanup_cred:
1911         if (new_cred)
1912                 put_cred(new_cred);
1913 bad_unshare_cleanup_fd:
1914         if (new_fd)
1915                 put_files_struct(new_fd);
1916
1917 bad_unshare_cleanup_fs:
1918         if (new_fs)
1919                 free_fs_struct(new_fs);
1920
1921 bad_unshare_out:
1922         return err;
1923 }
1924
1925 /*
1926  *      Helper to unshare the files of the current task.
1927  *      We don't want to expose copy_files internals to
1928  *      the exec layer of the kernel.
1929  */
1930
1931 int unshare_files(struct files_struct **displaced)
1932 {
1933         struct task_struct *task = current;
1934         struct files_struct *copy = NULL;
1935         int error;
1936
1937         error = unshare_fd(CLONE_FILES, &copy);
1938         if (error || !copy) {
1939                 *displaced = NULL;
1940                 return error;
1941         }
1942         *displaced = task->files;
1943         task_lock(task);
1944         task->files = copy;
1945         task_unlock(task);
1946         return 0;
1947 }