]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - kernel/fork.c
Merge branch 'drm-fixes-4.13' of git://people.freedesktop.org/~agd5f/linux into drm...
[karo-tx-linux.git] / kernel / fork.c
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13
14 #include <linux/slab.h>
15 #include <linux/sched/autogroup.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/coredump.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/numa_balancing.h>
20 #include <linux/sched/stat.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/sched/cputime.h>
24 #include <linux/rtmutex.h>
25 #include <linux/init.h>
26 #include <linux/unistd.h>
27 #include <linux/module.h>
28 #include <linux/vmalloc.h>
29 #include <linux/completion.h>
30 #include <linux/personality.h>
31 #include <linux/mempolicy.h>
32 #include <linux/sem.h>
33 #include <linux/file.h>
34 #include <linux/fdtable.h>
35 #include <linux/iocontext.h>
36 #include <linux/key.h>
37 #include <linux/binfmts.h>
38 #include <linux/mman.h>
39 #include <linux/mmu_notifier.h>
40 #include <linux/fs.h>
41 #include <linux/mm.h>
42 #include <linux/vmacache.h>
43 #include <linux/nsproxy.h>
44 #include <linux/capability.h>
45 #include <linux/cpu.h>
46 #include <linux/cgroup.h>
47 #include <linux/security.h>
48 #include <linux/hugetlb.h>
49 #include <linux/seccomp.h>
50 #include <linux/swap.h>
51 #include <linux/syscalls.h>
52 #include <linux/jiffies.h>
53 #include <linux/futex.h>
54 #include <linux/compat.h>
55 #include <linux/kthread.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/rcupdate.h>
58 #include <linux/ptrace.h>
59 #include <linux/mount.h>
60 #include <linux/audit.h>
61 #include <linux/memcontrol.h>
62 #include <linux/ftrace.h>
63 #include <linux/proc_fs.h>
64 #include <linux/profile.h>
65 #include <linux/rmap.h>
66 #include <linux/ksm.h>
67 #include <linux/acct.h>
68 #include <linux/userfaultfd_k.h>
69 #include <linux/tsacct_kern.h>
70 #include <linux/cn_proc.h>
71 #include <linux/freezer.h>
72 #include <linux/delayacct.h>
73 #include <linux/taskstats_kern.h>
74 #include <linux/random.h>
75 #include <linux/tty.h>
76 #include <linux/blkdev.h>
77 #include <linux/fs_struct.h>
78 #include <linux/magic.h>
79 #include <linux/perf_event.h>
80 #include <linux/posix-timers.h>
81 #include <linux/user-return-notifier.h>
82 #include <linux/oom.h>
83 #include <linux/khugepaged.h>
84 #include <linux/signalfd.h>
85 #include <linux/uprobes.h>
86 #include <linux/aio.h>
87 #include <linux/compiler.h>
88 #include <linux/sysctl.h>
89 #include <linux/kcov.h>
90 #include <linux/livepatch.h>
91
92 #include <asm/pgtable.h>
93 #include <asm/pgalloc.h>
94 #include <linux/uaccess.h>
95 #include <asm/mmu_context.h>
96 #include <asm/cacheflush.h>
97 #include <asm/tlbflush.h>
98
99 #include <trace/events/sched.h>
100
101 #define CREATE_TRACE_POINTS
102 #include <trace/events/task.h>
103
104 /*
105  * Minimum number of threads to boot the kernel
106  */
107 #define MIN_THREADS 20
108
109 /*
110  * Maximum number of threads
111  */
112 #define MAX_THREADS FUTEX_TID_MASK
113
114 /*
115  * Protected counters by write_lock_irq(&tasklist_lock)
116  */
117 unsigned long total_forks;      /* Handle normal Linux uptimes. */
118 int nr_threads;                 /* The idle threads do not count.. */
119
120 int max_threads;                /* tunable limit on nr_threads */
121
122 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
123
124 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
125
126 #ifdef CONFIG_PROVE_RCU
127 int lockdep_tasklist_lock_is_held(void)
128 {
129         return lockdep_is_held(&tasklist_lock);
130 }
131 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
132 #endif /* #ifdef CONFIG_PROVE_RCU */
133
134 int nr_processes(void)
135 {
136         int cpu;
137         int total = 0;
138
139         for_each_possible_cpu(cpu)
140                 total += per_cpu(process_counts, cpu);
141
142         return total;
143 }
144
145 void __weak arch_release_task_struct(struct task_struct *tsk)
146 {
147 }
148
149 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
150 static struct kmem_cache *task_struct_cachep;
151
152 static inline struct task_struct *alloc_task_struct_node(int node)
153 {
154         return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
155 }
156
157 static inline void free_task_struct(struct task_struct *tsk)
158 {
159         kmem_cache_free(task_struct_cachep, tsk);
160 }
161 #endif
162
163 void __weak arch_release_thread_stack(unsigned long *stack)
164 {
165 }
166
167 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
168
169 /*
170  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
171  * kmemcache based allocator.
172  */
173 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
174
175 #ifdef CONFIG_VMAP_STACK
176 /*
177  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
178  * flush.  Try to minimize the number of calls by caching stacks.
179  */
180 #define NR_CACHED_STACKS 2
181 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
182
183 static int free_vm_stack_cache(unsigned int cpu)
184 {
185         struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
186         int i;
187
188         for (i = 0; i < NR_CACHED_STACKS; i++) {
189                 struct vm_struct *vm_stack = cached_vm_stacks[i];
190
191                 if (!vm_stack)
192                         continue;
193
194                 vfree(vm_stack->addr);
195                 cached_vm_stacks[i] = NULL;
196         }
197
198         return 0;
199 }
200 #endif
201
202 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
203 {
204 #ifdef CONFIG_VMAP_STACK
205         void *stack;
206         int i;
207
208         for (i = 0; i < NR_CACHED_STACKS; i++) {
209                 struct vm_struct *s;
210
211                 s = this_cpu_xchg(cached_stacks[i], NULL);
212
213                 if (!s)
214                         continue;
215
216                 tsk->stack_vm_area = s;
217                 return s->addr;
218         }
219
220         stack = __vmalloc_node_range(THREAD_SIZE, THREAD_SIZE,
221                                      VMALLOC_START, VMALLOC_END,
222                                      THREADINFO_GFP,
223                                      PAGE_KERNEL,
224                                      0, node, __builtin_return_address(0));
225
226         /*
227          * We can't call find_vm_area() in interrupt context, and
228          * free_thread_stack() can be called in interrupt context,
229          * so cache the vm_struct.
230          */
231         if (stack)
232                 tsk->stack_vm_area = find_vm_area(stack);
233         return stack;
234 #else
235         struct page *page = alloc_pages_node(node, THREADINFO_GFP,
236                                              THREAD_SIZE_ORDER);
237
238         return page ? page_address(page) : NULL;
239 #endif
240 }
241
242 static inline void free_thread_stack(struct task_struct *tsk)
243 {
244 #ifdef CONFIG_VMAP_STACK
245         if (task_stack_vm_area(tsk)) {
246                 int i;
247
248                 for (i = 0; i < NR_CACHED_STACKS; i++) {
249                         if (this_cpu_cmpxchg(cached_stacks[i],
250                                         NULL, tsk->stack_vm_area) != NULL)
251                                 continue;
252
253                         return;
254                 }
255
256                 vfree_atomic(tsk->stack);
257                 return;
258         }
259 #endif
260
261         __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
262 }
263 # else
264 static struct kmem_cache *thread_stack_cache;
265
266 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
267                                                   int node)
268 {
269         return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
270 }
271
272 static void free_thread_stack(struct task_struct *tsk)
273 {
274         kmem_cache_free(thread_stack_cache, tsk->stack);
275 }
276
277 void thread_stack_cache_init(void)
278 {
279         thread_stack_cache = kmem_cache_create("thread_stack", THREAD_SIZE,
280                                               THREAD_SIZE, 0, NULL);
281         BUG_ON(thread_stack_cache == NULL);
282 }
283 # endif
284 #endif
285
286 /* SLAB cache for signal_struct structures (tsk->signal) */
287 static struct kmem_cache *signal_cachep;
288
289 /* SLAB cache for sighand_struct structures (tsk->sighand) */
290 struct kmem_cache *sighand_cachep;
291
292 /* SLAB cache for files_struct structures (tsk->files) */
293 struct kmem_cache *files_cachep;
294
295 /* SLAB cache for fs_struct structures (tsk->fs) */
296 struct kmem_cache *fs_cachep;
297
298 /* SLAB cache for vm_area_struct structures */
299 struct kmem_cache *vm_area_cachep;
300
301 /* SLAB cache for mm_struct structures (tsk->mm) */
302 static struct kmem_cache *mm_cachep;
303
304 static void account_kernel_stack(struct task_struct *tsk, int account)
305 {
306         void *stack = task_stack_page(tsk);
307         struct vm_struct *vm = task_stack_vm_area(tsk);
308
309         BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
310
311         if (vm) {
312                 int i;
313
314                 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
315
316                 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
317                         mod_zone_page_state(page_zone(vm->pages[i]),
318                                             NR_KERNEL_STACK_KB,
319                                             PAGE_SIZE / 1024 * account);
320                 }
321
322                 /* All stack pages belong to the same memcg. */
323                 mod_memcg_page_state(vm->pages[0], MEMCG_KERNEL_STACK_KB,
324                                      account * (THREAD_SIZE / 1024));
325         } else {
326                 /*
327                  * All stack pages are in the same zone and belong to the
328                  * same memcg.
329                  */
330                 struct page *first_page = virt_to_page(stack);
331
332                 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
333                                     THREAD_SIZE / 1024 * account);
334
335                 mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
336                                      account * (THREAD_SIZE / 1024));
337         }
338 }
339
340 static void release_task_stack(struct task_struct *tsk)
341 {
342         if (WARN_ON(tsk->state != TASK_DEAD))
343                 return;  /* Better to leak the stack than to free prematurely */
344
345         account_kernel_stack(tsk, -1);
346         arch_release_thread_stack(tsk->stack);
347         free_thread_stack(tsk);
348         tsk->stack = NULL;
349 #ifdef CONFIG_VMAP_STACK
350         tsk->stack_vm_area = NULL;
351 #endif
352 }
353
354 #ifdef CONFIG_THREAD_INFO_IN_TASK
355 void put_task_stack(struct task_struct *tsk)
356 {
357         if (atomic_dec_and_test(&tsk->stack_refcount))
358                 release_task_stack(tsk);
359 }
360 #endif
361
362 void free_task(struct task_struct *tsk)
363 {
364 #ifndef CONFIG_THREAD_INFO_IN_TASK
365         /*
366          * The task is finally done with both the stack and thread_info,
367          * so free both.
368          */
369         release_task_stack(tsk);
370 #else
371         /*
372          * If the task had a separate stack allocation, it should be gone
373          * by now.
374          */
375         WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
376 #endif
377         rt_mutex_debug_task_free(tsk);
378         ftrace_graph_exit_task(tsk);
379         put_seccomp_filter(tsk);
380         arch_release_task_struct(tsk);
381         if (tsk->flags & PF_KTHREAD)
382                 free_kthread_struct(tsk);
383         free_task_struct(tsk);
384 }
385 EXPORT_SYMBOL(free_task);
386
387 static inline void free_signal_struct(struct signal_struct *sig)
388 {
389         taskstats_tgid_free(sig);
390         sched_autogroup_exit(sig);
391         /*
392          * __mmdrop is not safe to call from softirq context on x86 due to
393          * pgd_dtor so postpone it to the async context
394          */
395         if (sig->oom_mm)
396                 mmdrop_async(sig->oom_mm);
397         kmem_cache_free(signal_cachep, sig);
398 }
399
400 static inline void put_signal_struct(struct signal_struct *sig)
401 {
402         if (atomic_dec_and_test(&sig->sigcnt))
403                 free_signal_struct(sig);
404 }
405
406 void __put_task_struct(struct task_struct *tsk)
407 {
408         WARN_ON(!tsk->exit_state);
409         WARN_ON(atomic_read(&tsk->usage));
410         WARN_ON(tsk == current);
411
412         cgroup_free(tsk);
413         task_numa_free(tsk);
414         security_task_free(tsk);
415         exit_creds(tsk);
416         delayacct_tsk_free(tsk);
417         put_signal_struct(tsk->signal);
418
419         if (!profile_handoff_task(tsk))
420                 free_task(tsk);
421 }
422 EXPORT_SYMBOL_GPL(__put_task_struct);
423
424 void __init __weak arch_task_cache_init(void) { }
425
426 /*
427  * set_max_threads
428  */
429 static void set_max_threads(unsigned int max_threads_suggested)
430 {
431         u64 threads;
432
433         /*
434          * The number of threads shall be limited such that the thread
435          * structures may only consume a small part of the available memory.
436          */
437         if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
438                 threads = MAX_THREADS;
439         else
440                 threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
441                                     (u64) THREAD_SIZE * 8UL);
442
443         if (threads > max_threads_suggested)
444                 threads = max_threads_suggested;
445
446         max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
447 }
448
449 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
450 /* Initialized by the architecture: */
451 int arch_task_struct_size __read_mostly;
452 #endif
453
454 void __init fork_init(void)
455 {
456         int i;
457 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
458 #ifndef ARCH_MIN_TASKALIGN
459 #define ARCH_MIN_TASKALIGN      0
460 #endif
461         int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
462
463         /* create a slab on which task_structs can be allocated */
464         task_struct_cachep = kmem_cache_create("task_struct",
465                         arch_task_struct_size, align,
466                         SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT, NULL);
467 #endif
468
469         /* do the arch specific task caches init */
470         arch_task_cache_init();
471
472         set_max_threads(MAX_THREADS);
473
474         init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
475         init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
476         init_task.signal->rlim[RLIMIT_SIGPENDING] =
477                 init_task.signal->rlim[RLIMIT_NPROC];
478
479         for (i = 0; i < UCOUNT_COUNTS; i++) {
480                 init_user_ns.ucount_max[i] = max_threads/2;
481         }
482
483 #ifdef CONFIG_VMAP_STACK
484         cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
485                           NULL, free_vm_stack_cache);
486 #endif
487 }
488
489 int __weak arch_dup_task_struct(struct task_struct *dst,
490                                                struct task_struct *src)
491 {
492         *dst = *src;
493         return 0;
494 }
495
496 void set_task_stack_end_magic(struct task_struct *tsk)
497 {
498         unsigned long *stackend;
499
500         stackend = end_of_stack(tsk);
501         *stackend = STACK_END_MAGIC;    /* for overflow detection */
502 }
503
504 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
505 {
506         struct task_struct *tsk;
507         unsigned long *stack;
508         struct vm_struct *stack_vm_area;
509         int err;
510
511         if (node == NUMA_NO_NODE)
512                 node = tsk_fork_get_node(orig);
513         tsk = alloc_task_struct_node(node);
514         if (!tsk)
515                 return NULL;
516
517         stack = alloc_thread_stack_node(tsk, node);
518         if (!stack)
519                 goto free_tsk;
520
521         stack_vm_area = task_stack_vm_area(tsk);
522
523         err = arch_dup_task_struct(tsk, orig);
524
525         /*
526          * arch_dup_task_struct() clobbers the stack-related fields.  Make
527          * sure they're properly initialized before using any stack-related
528          * functions again.
529          */
530         tsk->stack = stack;
531 #ifdef CONFIG_VMAP_STACK
532         tsk->stack_vm_area = stack_vm_area;
533 #endif
534 #ifdef CONFIG_THREAD_INFO_IN_TASK
535         atomic_set(&tsk->stack_refcount, 1);
536 #endif
537
538         if (err)
539                 goto free_stack;
540
541 #ifdef CONFIG_SECCOMP
542         /*
543          * We must handle setting up seccomp filters once we're under
544          * the sighand lock in case orig has changed between now and
545          * then. Until then, filter must be NULL to avoid messing up
546          * the usage counts on the error path calling free_task.
547          */
548         tsk->seccomp.filter = NULL;
549 #endif
550
551         setup_thread_stack(tsk, orig);
552         clear_user_return_notifier(tsk);
553         clear_tsk_need_resched(tsk);
554         set_task_stack_end_magic(tsk);
555
556 #ifdef CONFIG_CC_STACKPROTECTOR
557         tsk->stack_canary = get_random_canary();
558 #endif
559
560         /*
561          * One for us, one for whoever does the "release_task()" (usually
562          * parent)
563          */
564         atomic_set(&tsk->usage, 2);
565 #ifdef CONFIG_BLK_DEV_IO_TRACE
566         tsk->btrace_seq = 0;
567 #endif
568         tsk->splice_pipe = NULL;
569         tsk->task_frag.page = NULL;
570         tsk->wake_q.next = NULL;
571
572         account_kernel_stack(tsk, 1);
573
574         kcov_task_init(tsk);
575
576 #ifdef CONFIG_FAULT_INJECTION
577         tsk->fail_nth = 0;
578 #endif
579
580         return tsk;
581
582 free_stack:
583         free_thread_stack(tsk);
584 free_tsk:
585         free_task_struct(tsk);
586         return NULL;
587 }
588
589 #ifdef CONFIG_MMU
590 static __latent_entropy int dup_mmap(struct mm_struct *mm,
591                                         struct mm_struct *oldmm)
592 {
593         struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
594         struct rb_node **rb_link, *rb_parent;
595         int retval;
596         unsigned long charge;
597         LIST_HEAD(uf);
598
599         uprobe_start_dup_mmap();
600         if (down_write_killable(&oldmm->mmap_sem)) {
601                 retval = -EINTR;
602                 goto fail_uprobe_end;
603         }
604         flush_cache_dup_mm(oldmm);
605         uprobe_dup_mmap(oldmm, mm);
606         /*
607          * Not linked in yet - no deadlock potential:
608          */
609         down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
610
611         /* No ordering required: file already has been exposed. */
612         RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
613
614         mm->total_vm = oldmm->total_vm;
615         mm->data_vm = oldmm->data_vm;
616         mm->exec_vm = oldmm->exec_vm;
617         mm->stack_vm = oldmm->stack_vm;
618
619         rb_link = &mm->mm_rb.rb_node;
620         rb_parent = NULL;
621         pprev = &mm->mmap;
622         retval = ksm_fork(mm, oldmm);
623         if (retval)
624                 goto out;
625         retval = khugepaged_fork(mm, oldmm);
626         if (retval)
627                 goto out;
628
629         prev = NULL;
630         for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
631                 struct file *file;
632
633                 if (mpnt->vm_flags & VM_DONTCOPY) {
634                         vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
635                         continue;
636                 }
637                 charge = 0;
638                 if (mpnt->vm_flags & VM_ACCOUNT) {
639                         unsigned long len = vma_pages(mpnt);
640
641                         if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
642                                 goto fail_nomem;
643                         charge = len;
644                 }
645                 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
646                 if (!tmp)
647                         goto fail_nomem;
648                 *tmp = *mpnt;
649                 INIT_LIST_HEAD(&tmp->anon_vma_chain);
650                 retval = vma_dup_policy(mpnt, tmp);
651                 if (retval)
652                         goto fail_nomem_policy;
653                 tmp->vm_mm = mm;
654                 retval = dup_userfaultfd(tmp, &uf);
655                 if (retval)
656                         goto fail_nomem_anon_vma_fork;
657                 if (anon_vma_fork(tmp, mpnt))
658                         goto fail_nomem_anon_vma_fork;
659                 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
660                 tmp->vm_next = tmp->vm_prev = NULL;
661                 file = tmp->vm_file;
662                 if (file) {
663                         struct inode *inode = file_inode(file);
664                         struct address_space *mapping = file->f_mapping;
665
666                         get_file(file);
667                         if (tmp->vm_flags & VM_DENYWRITE)
668                                 atomic_dec(&inode->i_writecount);
669                         i_mmap_lock_write(mapping);
670                         if (tmp->vm_flags & VM_SHARED)
671                                 atomic_inc(&mapping->i_mmap_writable);
672                         flush_dcache_mmap_lock(mapping);
673                         /* insert tmp into the share list, just after mpnt */
674                         vma_interval_tree_insert_after(tmp, mpnt,
675                                         &mapping->i_mmap);
676                         flush_dcache_mmap_unlock(mapping);
677                         i_mmap_unlock_write(mapping);
678                 }
679
680                 /*
681                  * Clear hugetlb-related page reserves for children. This only
682                  * affects MAP_PRIVATE mappings. Faults generated by the child
683                  * are not guaranteed to succeed, even if read-only
684                  */
685                 if (is_vm_hugetlb_page(tmp))
686                         reset_vma_resv_huge_pages(tmp);
687
688                 /*
689                  * Link in the new vma and copy the page table entries.
690                  */
691                 *pprev = tmp;
692                 pprev = &tmp->vm_next;
693                 tmp->vm_prev = prev;
694                 prev = tmp;
695
696                 __vma_link_rb(mm, tmp, rb_link, rb_parent);
697                 rb_link = &tmp->vm_rb.rb_right;
698                 rb_parent = &tmp->vm_rb;
699
700                 mm->map_count++;
701                 retval = copy_page_range(mm, oldmm, mpnt);
702
703                 if (tmp->vm_ops && tmp->vm_ops->open)
704                         tmp->vm_ops->open(tmp);
705
706                 if (retval)
707                         goto out;
708         }
709         /* a new mm has just been created */
710         arch_dup_mmap(oldmm, mm);
711         retval = 0;
712 out:
713         up_write(&mm->mmap_sem);
714         flush_tlb_mm(oldmm);
715         up_write(&oldmm->mmap_sem);
716         dup_userfaultfd_complete(&uf);
717 fail_uprobe_end:
718         uprobe_end_dup_mmap();
719         return retval;
720 fail_nomem_anon_vma_fork:
721         mpol_put(vma_policy(tmp));
722 fail_nomem_policy:
723         kmem_cache_free(vm_area_cachep, tmp);
724 fail_nomem:
725         retval = -ENOMEM;
726         vm_unacct_memory(charge);
727         goto out;
728 }
729
730 static inline int mm_alloc_pgd(struct mm_struct *mm)
731 {
732         mm->pgd = pgd_alloc(mm);
733         if (unlikely(!mm->pgd))
734                 return -ENOMEM;
735         return 0;
736 }
737
738 static inline void mm_free_pgd(struct mm_struct *mm)
739 {
740         pgd_free(mm, mm->pgd);
741 }
742 #else
743 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
744 {
745         down_write(&oldmm->mmap_sem);
746         RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
747         up_write(&oldmm->mmap_sem);
748         return 0;
749 }
750 #define mm_alloc_pgd(mm)        (0)
751 #define mm_free_pgd(mm)
752 #endif /* CONFIG_MMU */
753
754 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
755
756 #define allocate_mm()   (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
757 #define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
758
759 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
760
761 static int __init coredump_filter_setup(char *s)
762 {
763         default_dump_filter =
764                 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
765                 MMF_DUMP_FILTER_MASK;
766         return 1;
767 }
768
769 __setup("coredump_filter=", coredump_filter_setup);
770
771 #include <linux/init_task.h>
772
773 static void mm_init_aio(struct mm_struct *mm)
774 {
775 #ifdef CONFIG_AIO
776         spin_lock_init(&mm->ioctx_lock);
777         mm->ioctx_table = NULL;
778 #endif
779 }
780
781 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
782 {
783 #ifdef CONFIG_MEMCG
784         mm->owner = p;
785 #endif
786 }
787
788 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
789         struct user_namespace *user_ns)
790 {
791         mm->mmap = NULL;
792         mm->mm_rb = RB_ROOT;
793         mm->vmacache_seqnum = 0;
794         atomic_set(&mm->mm_users, 1);
795         atomic_set(&mm->mm_count, 1);
796         init_rwsem(&mm->mmap_sem);
797         INIT_LIST_HEAD(&mm->mmlist);
798         mm->core_state = NULL;
799         atomic_long_set(&mm->nr_ptes, 0);
800         mm_nr_pmds_init(mm);
801         mm->map_count = 0;
802         mm->locked_vm = 0;
803         mm->pinned_vm = 0;
804         memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
805         spin_lock_init(&mm->page_table_lock);
806         mm_init_cpumask(mm);
807         mm_init_aio(mm);
808         mm_init_owner(mm, p);
809         mmu_notifier_mm_init(mm);
810         init_tlb_flush_pending(mm);
811 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
812         mm->pmd_huge_pte = NULL;
813 #endif
814
815         if (current->mm) {
816                 mm->flags = current->mm->flags & MMF_INIT_MASK;
817                 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
818         } else {
819                 mm->flags = default_dump_filter;
820                 mm->def_flags = 0;
821         }
822
823         if (mm_alloc_pgd(mm))
824                 goto fail_nopgd;
825
826         if (init_new_context(p, mm))
827                 goto fail_nocontext;
828
829         mm->user_ns = get_user_ns(user_ns);
830         return mm;
831
832 fail_nocontext:
833         mm_free_pgd(mm);
834 fail_nopgd:
835         free_mm(mm);
836         return NULL;
837 }
838
839 static void check_mm(struct mm_struct *mm)
840 {
841         int i;
842
843         for (i = 0; i < NR_MM_COUNTERS; i++) {
844                 long x = atomic_long_read(&mm->rss_stat.count[i]);
845
846                 if (unlikely(x))
847                         printk(KERN_ALERT "BUG: Bad rss-counter state "
848                                           "mm:%p idx:%d val:%ld\n", mm, i, x);
849         }
850
851         if (atomic_long_read(&mm->nr_ptes))
852                 pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
853                                 atomic_long_read(&mm->nr_ptes));
854         if (mm_nr_pmds(mm))
855                 pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
856                                 mm_nr_pmds(mm));
857
858 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
859         VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
860 #endif
861 }
862
863 /*
864  * Allocate and initialize an mm_struct.
865  */
866 struct mm_struct *mm_alloc(void)
867 {
868         struct mm_struct *mm;
869
870         mm = allocate_mm();
871         if (!mm)
872                 return NULL;
873
874         memset(mm, 0, sizeof(*mm));
875         return mm_init(mm, current, current_user_ns());
876 }
877
878 /*
879  * Called when the last reference to the mm
880  * is dropped: either by a lazy thread or by
881  * mmput. Free the page directory and the mm.
882  */
883 void __mmdrop(struct mm_struct *mm)
884 {
885         BUG_ON(mm == &init_mm);
886         mm_free_pgd(mm);
887         destroy_context(mm);
888         mmu_notifier_mm_destroy(mm);
889         check_mm(mm);
890         put_user_ns(mm->user_ns);
891         free_mm(mm);
892 }
893 EXPORT_SYMBOL_GPL(__mmdrop);
894
895 static inline void __mmput(struct mm_struct *mm)
896 {
897         VM_BUG_ON(atomic_read(&mm->mm_users));
898
899         uprobe_clear_state(mm);
900         exit_aio(mm);
901         ksm_exit(mm);
902         khugepaged_exit(mm); /* must run before exit_mmap */
903         exit_mmap(mm);
904         mm_put_huge_zero_page(mm);
905         set_mm_exe_file(mm, NULL);
906         if (!list_empty(&mm->mmlist)) {
907                 spin_lock(&mmlist_lock);
908                 list_del(&mm->mmlist);
909                 spin_unlock(&mmlist_lock);
910         }
911         if (mm->binfmt)
912                 module_put(mm->binfmt->module);
913         set_bit(MMF_OOM_SKIP, &mm->flags);
914         mmdrop(mm);
915 }
916
917 /*
918  * Decrement the use count and release all resources for an mm.
919  */
920 void mmput(struct mm_struct *mm)
921 {
922         might_sleep();
923
924         if (atomic_dec_and_test(&mm->mm_users))
925                 __mmput(mm);
926 }
927 EXPORT_SYMBOL_GPL(mmput);
928
929 #ifdef CONFIG_MMU
930 static void mmput_async_fn(struct work_struct *work)
931 {
932         struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work);
933         __mmput(mm);
934 }
935
936 void mmput_async(struct mm_struct *mm)
937 {
938         if (atomic_dec_and_test(&mm->mm_users)) {
939                 INIT_WORK(&mm->async_put_work, mmput_async_fn);
940                 schedule_work(&mm->async_put_work);
941         }
942 }
943 #endif
944
945 /**
946  * set_mm_exe_file - change a reference to the mm's executable file
947  *
948  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
949  *
950  * Main users are mmput() and sys_execve(). Callers prevent concurrent
951  * invocations: in mmput() nobody alive left, in execve task is single
952  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
953  * mm->exe_file, but does so without using set_mm_exe_file() in order
954  * to do avoid the need for any locks.
955  */
956 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
957 {
958         struct file *old_exe_file;
959
960         /*
961          * It is safe to dereference the exe_file without RCU as
962          * this function is only called if nobody else can access
963          * this mm -- see comment above for justification.
964          */
965         old_exe_file = rcu_dereference_raw(mm->exe_file);
966
967         if (new_exe_file)
968                 get_file(new_exe_file);
969         rcu_assign_pointer(mm->exe_file, new_exe_file);
970         if (old_exe_file)
971                 fput(old_exe_file);
972 }
973
974 /**
975  * get_mm_exe_file - acquire a reference to the mm's executable file
976  *
977  * Returns %NULL if mm has no associated executable file.
978  * User must release file via fput().
979  */
980 struct file *get_mm_exe_file(struct mm_struct *mm)
981 {
982         struct file *exe_file;
983
984         rcu_read_lock();
985         exe_file = rcu_dereference(mm->exe_file);
986         if (exe_file && !get_file_rcu(exe_file))
987                 exe_file = NULL;
988         rcu_read_unlock();
989         return exe_file;
990 }
991 EXPORT_SYMBOL(get_mm_exe_file);
992
993 /**
994  * get_task_exe_file - acquire a reference to the task's executable file
995  *
996  * Returns %NULL if task's mm (if any) has no associated executable file or
997  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
998  * User must release file via fput().
999  */
1000 struct file *get_task_exe_file(struct task_struct *task)
1001 {
1002         struct file *exe_file = NULL;
1003         struct mm_struct *mm;
1004
1005         task_lock(task);
1006         mm = task->mm;
1007         if (mm) {
1008                 if (!(task->flags & PF_KTHREAD))
1009                         exe_file = get_mm_exe_file(mm);
1010         }
1011         task_unlock(task);
1012         return exe_file;
1013 }
1014 EXPORT_SYMBOL(get_task_exe_file);
1015
1016 /**
1017  * get_task_mm - acquire a reference to the task's mm
1018  *
1019  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1020  * this kernel workthread has transiently adopted a user mm with use_mm,
1021  * to do its AIO) is not set and if so returns a reference to it, after
1022  * bumping up the use count.  User must release the mm via mmput()
1023  * after use.  Typically used by /proc and ptrace.
1024  */
1025 struct mm_struct *get_task_mm(struct task_struct *task)
1026 {
1027         struct mm_struct *mm;
1028
1029         task_lock(task);
1030         mm = task->mm;
1031         if (mm) {
1032                 if (task->flags & PF_KTHREAD)
1033                         mm = NULL;
1034                 else
1035                         mmget(mm);
1036         }
1037         task_unlock(task);
1038         return mm;
1039 }
1040 EXPORT_SYMBOL_GPL(get_task_mm);
1041
1042 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1043 {
1044         struct mm_struct *mm;
1045         int err;
1046
1047         err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
1048         if (err)
1049                 return ERR_PTR(err);
1050
1051         mm = get_task_mm(task);
1052         if (mm && mm != current->mm &&
1053                         !ptrace_may_access(task, mode)) {
1054                 mmput(mm);
1055                 mm = ERR_PTR(-EACCES);
1056         }
1057         mutex_unlock(&task->signal->cred_guard_mutex);
1058
1059         return mm;
1060 }
1061
1062 static void complete_vfork_done(struct task_struct *tsk)
1063 {
1064         struct completion *vfork;
1065
1066         task_lock(tsk);
1067         vfork = tsk->vfork_done;
1068         if (likely(vfork)) {
1069                 tsk->vfork_done = NULL;
1070                 complete(vfork);
1071         }
1072         task_unlock(tsk);
1073 }
1074
1075 static int wait_for_vfork_done(struct task_struct *child,
1076                                 struct completion *vfork)
1077 {
1078         int killed;
1079
1080         freezer_do_not_count();
1081         killed = wait_for_completion_killable(vfork);
1082         freezer_count();
1083
1084         if (killed) {
1085                 task_lock(child);
1086                 child->vfork_done = NULL;
1087                 task_unlock(child);
1088         }
1089
1090         put_task_struct(child);
1091         return killed;
1092 }
1093
1094 /* Please note the differences between mmput and mm_release.
1095  * mmput is called whenever we stop holding onto a mm_struct,
1096  * error success whatever.
1097  *
1098  * mm_release is called after a mm_struct has been removed
1099  * from the current process.
1100  *
1101  * This difference is important for error handling, when we
1102  * only half set up a mm_struct for a new process and need to restore
1103  * the old one.  Because we mmput the new mm_struct before
1104  * restoring the old one. . .
1105  * Eric Biederman 10 January 1998
1106  */
1107 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1108 {
1109         /* Get rid of any futexes when releasing the mm */
1110 #ifdef CONFIG_FUTEX
1111         if (unlikely(tsk->robust_list)) {
1112                 exit_robust_list(tsk);
1113                 tsk->robust_list = NULL;
1114         }
1115 #ifdef CONFIG_COMPAT
1116         if (unlikely(tsk->compat_robust_list)) {
1117                 compat_exit_robust_list(tsk);
1118                 tsk->compat_robust_list = NULL;
1119         }
1120 #endif
1121         if (unlikely(!list_empty(&tsk->pi_state_list)))
1122                 exit_pi_state_list(tsk);
1123 #endif
1124
1125         uprobe_free_utask(tsk);
1126
1127         /* Get rid of any cached register state */
1128         deactivate_mm(tsk, mm);
1129
1130         /*
1131          * Signal userspace if we're not exiting with a core dump
1132          * because we want to leave the value intact for debugging
1133          * purposes.
1134          */
1135         if (tsk->clear_child_tid) {
1136                 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1137                     atomic_read(&mm->mm_users) > 1) {
1138                         /*
1139                          * We don't check the error code - if userspace has
1140                          * not set up a proper pointer then tough luck.
1141                          */
1142                         put_user(0, tsk->clear_child_tid);
1143                         sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
1144                                         1, NULL, NULL, 0);
1145                 }
1146                 tsk->clear_child_tid = NULL;
1147         }
1148
1149         /*
1150          * All done, finally we can wake up parent and return this mm to him.
1151          * Also kthread_stop() uses this completion for synchronization.
1152          */
1153         if (tsk->vfork_done)
1154                 complete_vfork_done(tsk);
1155 }
1156
1157 /*
1158  * Allocate a new mm structure and copy contents from the
1159  * mm structure of the passed in task structure.
1160  */
1161 static struct mm_struct *dup_mm(struct task_struct *tsk)
1162 {
1163         struct mm_struct *mm, *oldmm = current->mm;
1164         int err;
1165
1166         mm = allocate_mm();
1167         if (!mm)
1168                 goto fail_nomem;
1169
1170         memcpy(mm, oldmm, sizeof(*mm));
1171
1172         if (!mm_init(mm, tsk, mm->user_ns))
1173                 goto fail_nomem;
1174
1175         err = dup_mmap(mm, oldmm);
1176         if (err)
1177                 goto free_pt;
1178
1179         mm->hiwater_rss = get_mm_rss(mm);
1180         mm->hiwater_vm = mm->total_vm;
1181
1182         if (mm->binfmt && !try_module_get(mm->binfmt->module))
1183                 goto free_pt;
1184
1185         return mm;
1186
1187 free_pt:
1188         /* don't put binfmt in mmput, we haven't got module yet */
1189         mm->binfmt = NULL;
1190         mmput(mm);
1191
1192 fail_nomem:
1193         return NULL;
1194 }
1195
1196 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1197 {
1198         struct mm_struct *mm, *oldmm;
1199         int retval;
1200
1201         tsk->min_flt = tsk->maj_flt = 0;
1202         tsk->nvcsw = tsk->nivcsw = 0;
1203 #ifdef CONFIG_DETECT_HUNG_TASK
1204         tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1205 #endif
1206
1207         tsk->mm = NULL;
1208         tsk->active_mm = NULL;
1209
1210         /*
1211          * Are we cloning a kernel thread?
1212          *
1213          * We need to steal a active VM for that..
1214          */
1215         oldmm = current->mm;
1216         if (!oldmm)
1217                 return 0;
1218
1219         /* initialize the new vmacache entries */
1220         vmacache_flush(tsk);
1221
1222         if (clone_flags & CLONE_VM) {
1223                 mmget(oldmm);
1224                 mm = oldmm;
1225                 goto good_mm;
1226         }
1227
1228         retval = -ENOMEM;
1229         mm = dup_mm(tsk);
1230         if (!mm)
1231                 goto fail_nomem;
1232
1233 good_mm:
1234         tsk->mm = mm;
1235         tsk->active_mm = mm;
1236         return 0;
1237
1238 fail_nomem:
1239         return retval;
1240 }
1241
1242 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1243 {
1244         struct fs_struct *fs = current->fs;
1245         if (clone_flags & CLONE_FS) {
1246                 /* tsk->fs is already what we want */
1247                 spin_lock(&fs->lock);
1248                 if (fs->in_exec) {
1249                         spin_unlock(&fs->lock);
1250                         return -EAGAIN;
1251                 }
1252                 fs->users++;
1253                 spin_unlock(&fs->lock);
1254                 return 0;
1255         }
1256         tsk->fs = copy_fs_struct(fs);
1257         if (!tsk->fs)
1258                 return -ENOMEM;
1259         return 0;
1260 }
1261
1262 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1263 {
1264         struct files_struct *oldf, *newf;
1265         int error = 0;
1266
1267         /*
1268          * A background process may not have any files ...
1269          */
1270         oldf = current->files;
1271         if (!oldf)
1272                 goto out;
1273
1274         if (clone_flags & CLONE_FILES) {
1275                 atomic_inc(&oldf->count);
1276                 goto out;
1277         }
1278
1279         newf = dup_fd(oldf, &error);
1280         if (!newf)
1281                 goto out;
1282
1283         tsk->files = newf;
1284         error = 0;
1285 out:
1286         return error;
1287 }
1288
1289 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1290 {
1291 #ifdef CONFIG_BLOCK
1292         struct io_context *ioc = current->io_context;
1293         struct io_context *new_ioc;
1294
1295         if (!ioc)
1296                 return 0;
1297         /*
1298          * Share io context with parent, if CLONE_IO is set
1299          */
1300         if (clone_flags & CLONE_IO) {
1301                 ioc_task_link(ioc);
1302                 tsk->io_context = ioc;
1303         } else if (ioprio_valid(ioc->ioprio)) {
1304                 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1305                 if (unlikely(!new_ioc))
1306                         return -ENOMEM;
1307
1308                 new_ioc->ioprio = ioc->ioprio;
1309                 put_io_context(new_ioc);
1310         }
1311 #endif
1312         return 0;
1313 }
1314
1315 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1316 {
1317         struct sighand_struct *sig;
1318
1319         if (clone_flags & CLONE_SIGHAND) {
1320                 atomic_inc(&current->sighand->count);
1321                 return 0;
1322         }
1323         sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1324         rcu_assign_pointer(tsk->sighand, sig);
1325         if (!sig)
1326                 return -ENOMEM;
1327
1328         atomic_set(&sig->count, 1);
1329         memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1330         return 0;
1331 }
1332
1333 void __cleanup_sighand(struct sighand_struct *sighand)
1334 {
1335         if (atomic_dec_and_test(&sighand->count)) {
1336                 signalfd_cleanup(sighand);
1337                 /*
1338                  * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1339                  * without an RCU grace period, see __lock_task_sighand().
1340                  */
1341                 kmem_cache_free(sighand_cachep, sighand);
1342         }
1343 }
1344
1345 #ifdef CONFIG_POSIX_TIMERS
1346 /*
1347  * Initialize POSIX timer handling for a thread group.
1348  */
1349 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1350 {
1351         unsigned long cpu_limit;
1352
1353         cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1354         if (cpu_limit != RLIM_INFINITY) {
1355                 sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
1356                 sig->cputimer.running = true;
1357         }
1358
1359         /* The timer lists. */
1360         INIT_LIST_HEAD(&sig->cpu_timers[0]);
1361         INIT_LIST_HEAD(&sig->cpu_timers[1]);
1362         INIT_LIST_HEAD(&sig->cpu_timers[2]);
1363 }
1364 #else
1365 static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
1366 #endif
1367
1368 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1369 {
1370         struct signal_struct *sig;
1371
1372         if (clone_flags & CLONE_THREAD)
1373                 return 0;
1374
1375         sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1376         tsk->signal = sig;
1377         if (!sig)
1378                 return -ENOMEM;
1379
1380         sig->nr_threads = 1;
1381         atomic_set(&sig->live, 1);
1382         atomic_set(&sig->sigcnt, 1);
1383
1384         /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1385         sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1386         tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1387
1388         init_waitqueue_head(&sig->wait_chldexit);
1389         sig->curr_target = tsk;
1390         init_sigpending(&sig->shared_pending);
1391         seqlock_init(&sig->stats_lock);
1392         prev_cputime_init(&sig->prev_cputime);
1393
1394 #ifdef CONFIG_POSIX_TIMERS
1395         INIT_LIST_HEAD(&sig->posix_timers);
1396         hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1397         sig->real_timer.function = it_real_fn;
1398 #endif
1399
1400         task_lock(current->group_leader);
1401         memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1402         task_unlock(current->group_leader);
1403
1404         posix_cpu_timers_init_group(sig);
1405
1406         tty_audit_fork(sig);
1407         sched_autogroup_fork(sig);
1408
1409         sig->oom_score_adj = current->signal->oom_score_adj;
1410         sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1411
1412         mutex_init(&sig->cred_guard_mutex);
1413
1414         return 0;
1415 }
1416
1417 static void copy_seccomp(struct task_struct *p)
1418 {
1419 #ifdef CONFIG_SECCOMP
1420         /*
1421          * Must be called with sighand->lock held, which is common to
1422          * all threads in the group. Holding cred_guard_mutex is not
1423          * needed because this new task is not yet running and cannot
1424          * be racing exec.
1425          */
1426         assert_spin_locked(&current->sighand->siglock);
1427
1428         /* Ref-count the new filter user, and assign it. */
1429         get_seccomp_filter(current);
1430         p->seccomp = current->seccomp;
1431
1432         /*
1433          * Explicitly enable no_new_privs here in case it got set
1434          * between the task_struct being duplicated and holding the
1435          * sighand lock. The seccomp state and nnp must be in sync.
1436          */
1437         if (task_no_new_privs(current))
1438                 task_set_no_new_privs(p);
1439
1440         /*
1441          * If the parent gained a seccomp mode after copying thread
1442          * flags and between before we held the sighand lock, we have
1443          * to manually enable the seccomp thread flag here.
1444          */
1445         if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1446                 set_tsk_thread_flag(p, TIF_SECCOMP);
1447 #endif
1448 }
1449
1450 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1451 {
1452         current->clear_child_tid = tidptr;
1453
1454         return task_pid_vnr(current);
1455 }
1456
1457 static void rt_mutex_init_task(struct task_struct *p)
1458 {
1459         raw_spin_lock_init(&p->pi_lock);
1460 #ifdef CONFIG_RT_MUTEXES
1461         p->pi_waiters = RB_ROOT;
1462         p->pi_waiters_leftmost = NULL;
1463         p->pi_top_task = NULL;
1464         p->pi_blocked_on = NULL;
1465 #endif
1466 }
1467
1468 #ifdef CONFIG_POSIX_TIMERS
1469 /*
1470  * Initialize POSIX timer handling for a single task.
1471  */
1472 static void posix_cpu_timers_init(struct task_struct *tsk)
1473 {
1474         tsk->cputime_expires.prof_exp = 0;
1475         tsk->cputime_expires.virt_exp = 0;
1476         tsk->cputime_expires.sched_exp = 0;
1477         INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1478         INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1479         INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1480 }
1481 #else
1482 static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
1483 #endif
1484
1485 static inline void
1486 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1487 {
1488          task->pids[type].pid = pid;
1489 }
1490
1491 static inline void rcu_copy_process(struct task_struct *p)
1492 {
1493 #ifdef CONFIG_PREEMPT_RCU
1494         p->rcu_read_lock_nesting = 0;
1495         p->rcu_read_unlock_special.s = 0;
1496         p->rcu_blocked_node = NULL;
1497         INIT_LIST_HEAD(&p->rcu_node_entry);
1498 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1499 #ifdef CONFIG_TASKS_RCU
1500         p->rcu_tasks_holdout = false;
1501         INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1502         p->rcu_tasks_idle_cpu = -1;
1503 #endif /* #ifdef CONFIG_TASKS_RCU */
1504 }
1505
1506 /*
1507  * This creates a new process as a copy of the old one,
1508  * but does not actually start it yet.
1509  *
1510  * It copies the registers, and all the appropriate
1511  * parts of the process environment (as per the clone
1512  * flags). The actual kick-off is left to the caller.
1513  */
1514 static __latent_entropy struct task_struct *copy_process(
1515                                         unsigned long clone_flags,
1516                                         unsigned long stack_start,
1517                                         unsigned long stack_size,
1518                                         int __user *child_tidptr,
1519                                         struct pid *pid,
1520                                         int trace,
1521                                         unsigned long tls,
1522                                         int node)
1523 {
1524         int retval;
1525         struct task_struct *p;
1526
1527         if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1528                 return ERR_PTR(-EINVAL);
1529
1530         if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1531                 return ERR_PTR(-EINVAL);
1532
1533         /*
1534          * Thread groups must share signals as well, and detached threads
1535          * can only be started up within the thread group.
1536          */
1537         if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1538                 return ERR_PTR(-EINVAL);
1539
1540         /*
1541          * Shared signal handlers imply shared VM. By way of the above,
1542          * thread groups also imply shared VM. Blocking this case allows
1543          * for various simplifications in other code.
1544          */
1545         if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1546                 return ERR_PTR(-EINVAL);
1547
1548         /*
1549          * Siblings of global init remain as zombies on exit since they are
1550          * not reaped by their parent (swapper). To solve this and to avoid
1551          * multi-rooted process trees, prevent global and container-inits
1552          * from creating siblings.
1553          */
1554         if ((clone_flags & CLONE_PARENT) &&
1555                                 current->signal->flags & SIGNAL_UNKILLABLE)
1556                 return ERR_PTR(-EINVAL);
1557
1558         /*
1559          * If the new process will be in a different pid or user namespace
1560          * do not allow it to share a thread group with the forking task.
1561          */
1562         if (clone_flags & CLONE_THREAD) {
1563                 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1564                     (task_active_pid_ns(current) !=
1565                                 current->nsproxy->pid_ns_for_children))
1566                         return ERR_PTR(-EINVAL);
1567         }
1568
1569         retval = security_task_create(clone_flags);
1570         if (retval)
1571                 goto fork_out;
1572
1573         retval = -ENOMEM;
1574         p = dup_task_struct(current, node);
1575         if (!p)
1576                 goto fork_out;
1577
1578         /*
1579          * This _must_ happen before we call free_task(), i.e. before we jump
1580          * to any of the bad_fork_* labels. This is to avoid freeing
1581          * p->set_child_tid which is (ab)used as a kthread's data pointer for
1582          * kernel threads (PF_KTHREAD).
1583          */
1584         p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1585         /*
1586          * Clear TID on mm_release()?
1587          */
1588         p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1589
1590         ftrace_graph_init_task(p);
1591
1592         rt_mutex_init_task(p);
1593
1594 #ifdef CONFIG_PROVE_LOCKING
1595         DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1596         DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1597 #endif
1598         retval = -EAGAIN;
1599         if (atomic_read(&p->real_cred->user->processes) >=
1600                         task_rlimit(p, RLIMIT_NPROC)) {
1601                 if (p->real_cred->user != INIT_USER &&
1602                     !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1603                         goto bad_fork_free;
1604         }
1605         current->flags &= ~PF_NPROC_EXCEEDED;
1606
1607         retval = copy_creds(p, clone_flags);
1608         if (retval < 0)
1609                 goto bad_fork_free;
1610
1611         /*
1612          * If multiple threads are within copy_process(), then this check
1613          * triggers too late. This doesn't hurt, the check is only there
1614          * to stop root fork bombs.
1615          */
1616         retval = -EAGAIN;
1617         if (nr_threads >= max_threads)
1618                 goto bad_fork_cleanup_count;
1619
1620         delayacct_tsk_init(p);  /* Must remain after dup_task_struct() */
1621         p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1622         p->flags |= PF_FORKNOEXEC;
1623         INIT_LIST_HEAD(&p->children);
1624         INIT_LIST_HEAD(&p->sibling);
1625         rcu_copy_process(p);
1626         p->vfork_done = NULL;
1627         spin_lock_init(&p->alloc_lock);
1628
1629         init_sigpending(&p->pending);
1630
1631         p->utime = p->stime = p->gtime = 0;
1632 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1633         p->utimescaled = p->stimescaled = 0;
1634 #endif
1635         prev_cputime_init(&p->prev_cputime);
1636
1637 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1638         seqcount_init(&p->vtime.seqcount);
1639         p->vtime.starttime = 0;
1640         p->vtime.state = VTIME_INACTIVE;
1641 #endif
1642
1643 #if defined(SPLIT_RSS_COUNTING)
1644         memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1645 #endif
1646
1647         p->default_timer_slack_ns = current->timer_slack_ns;
1648
1649         task_io_accounting_init(&p->ioac);
1650         acct_clear_integrals(p);
1651
1652         posix_cpu_timers_init(p);
1653
1654         p->start_time = ktime_get_ns();
1655         p->real_start_time = ktime_get_boot_ns();
1656         p->io_context = NULL;
1657         p->audit_context = NULL;
1658         cgroup_fork(p);
1659 #ifdef CONFIG_NUMA
1660         p->mempolicy = mpol_dup(p->mempolicy);
1661         if (IS_ERR(p->mempolicy)) {
1662                 retval = PTR_ERR(p->mempolicy);
1663                 p->mempolicy = NULL;
1664                 goto bad_fork_cleanup_threadgroup_lock;
1665         }
1666 #endif
1667 #ifdef CONFIG_CPUSETS
1668         p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1669         p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1670         seqcount_init(&p->mems_allowed_seq);
1671 #endif
1672 #ifdef CONFIG_TRACE_IRQFLAGS
1673         p->irq_events = 0;
1674         p->hardirqs_enabled = 0;
1675         p->hardirq_enable_ip = 0;
1676         p->hardirq_enable_event = 0;
1677         p->hardirq_disable_ip = _THIS_IP_;
1678         p->hardirq_disable_event = 0;
1679         p->softirqs_enabled = 1;
1680         p->softirq_enable_ip = _THIS_IP_;
1681         p->softirq_enable_event = 0;
1682         p->softirq_disable_ip = 0;
1683         p->softirq_disable_event = 0;
1684         p->hardirq_context = 0;
1685         p->softirq_context = 0;
1686 #endif
1687
1688         p->pagefault_disabled = 0;
1689
1690 #ifdef CONFIG_LOCKDEP
1691         p->lockdep_depth = 0; /* no locks held yet */
1692         p->curr_chain_key = 0;
1693         p->lockdep_recursion = 0;
1694 #endif
1695
1696 #ifdef CONFIG_DEBUG_MUTEXES
1697         p->blocked_on = NULL; /* not blocked yet */
1698 #endif
1699 #ifdef CONFIG_BCACHE
1700         p->sequential_io        = 0;
1701         p->sequential_io_avg    = 0;
1702 #endif
1703
1704         /* Perform scheduler related setup. Assign this task to a CPU. */
1705         retval = sched_fork(clone_flags, p);
1706         if (retval)
1707                 goto bad_fork_cleanup_policy;
1708
1709         retval = perf_event_init_task(p);
1710         if (retval)
1711                 goto bad_fork_cleanup_policy;
1712         retval = audit_alloc(p);
1713         if (retval)
1714                 goto bad_fork_cleanup_perf;
1715         /* copy all the process information */
1716         shm_init_task(p);
1717         retval = security_task_alloc(p, clone_flags);
1718         if (retval)
1719                 goto bad_fork_cleanup_audit;
1720         retval = copy_semundo(clone_flags, p);
1721         if (retval)
1722                 goto bad_fork_cleanup_security;
1723         retval = copy_files(clone_flags, p);
1724         if (retval)
1725                 goto bad_fork_cleanup_semundo;
1726         retval = copy_fs(clone_flags, p);
1727         if (retval)
1728                 goto bad_fork_cleanup_files;
1729         retval = copy_sighand(clone_flags, p);
1730         if (retval)
1731                 goto bad_fork_cleanup_fs;
1732         retval = copy_signal(clone_flags, p);
1733         if (retval)
1734                 goto bad_fork_cleanup_sighand;
1735         retval = copy_mm(clone_flags, p);
1736         if (retval)
1737                 goto bad_fork_cleanup_signal;
1738         retval = copy_namespaces(clone_flags, p);
1739         if (retval)
1740                 goto bad_fork_cleanup_mm;
1741         retval = copy_io(clone_flags, p);
1742         if (retval)
1743                 goto bad_fork_cleanup_namespaces;
1744         retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1745         if (retval)
1746                 goto bad_fork_cleanup_io;
1747
1748         if (pid != &init_struct_pid) {
1749                 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1750                 if (IS_ERR(pid)) {
1751                         retval = PTR_ERR(pid);
1752                         goto bad_fork_cleanup_thread;
1753                 }
1754         }
1755
1756 #ifdef CONFIG_BLOCK
1757         p->plug = NULL;
1758 #endif
1759 #ifdef CONFIG_FUTEX
1760         p->robust_list = NULL;
1761 #ifdef CONFIG_COMPAT
1762         p->compat_robust_list = NULL;
1763 #endif
1764         INIT_LIST_HEAD(&p->pi_state_list);
1765         p->pi_state_cache = NULL;
1766 #endif
1767         /*
1768          * sigaltstack should be cleared when sharing the same VM
1769          */
1770         if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1771                 sas_ss_reset(p);
1772
1773         /*
1774          * Syscall tracing and stepping should be turned off in the
1775          * child regardless of CLONE_PTRACE.
1776          */
1777         user_disable_single_step(p);
1778         clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1779 #ifdef TIF_SYSCALL_EMU
1780         clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1781 #endif
1782         clear_all_latency_tracing(p);
1783
1784         /* ok, now we should be set up.. */
1785         p->pid = pid_nr(pid);
1786         if (clone_flags & CLONE_THREAD) {
1787                 p->exit_signal = -1;
1788                 p->group_leader = current->group_leader;
1789                 p->tgid = current->tgid;
1790         } else {
1791                 if (clone_flags & CLONE_PARENT)
1792                         p->exit_signal = current->group_leader->exit_signal;
1793                 else
1794                         p->exit_signal = (clone_flags & CSIGNAL);
1795                 p->group_leader = p;
1796                 p->tgid = p->pid;
1797         }
1798
1799         p->nr_dirtied = 0;
1800         p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1801         p->dirty_paused_when = 0;
1802
1803         p->pdeath_signal = 0;
1804         INIT_LIST_HEAD(&p->thread_group);
1805         p->task_works = NULL;
1806
1807         cgroup_threadgroup_change_begin(current);
1808         /*
1809          * Ensure that the cgroup subsystem policies allow the new process to be
1810          * forked. It should be noted the the new process's css_set can be changed
1811          * between here and cgroup_post_fork() if an organisation operation is in
1812          * progress.
1813          */
1814         retval = cgroup_can_fork(p);
1815         if (retval)
1816                 goto bad_fork_free_pid;
1817
1818         /*
1819          * Make it visible to the rest of the system, but dont wake it up yet.
1820          * Need tasklist lock for parent etc handling!
1821          */
1822         write_lock_irq(&tasklist_lock);
1823
1824         /* CLONE_PARENT re-uses the old parent */
1825         if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1826                 p->real_parent = current->real_parent;
1827                 p->parent_exec_id = current->parent_exec_id;
1828         } else {
1829                 p->real_parent = current;
1830                 p->parent_exec_id = current->self_exec_id;
1831         }
1832
1833         klp_copy_process(p);
1834
1835         spin_lock(&current->sighand->siglock);
1836
1837         /*
1838          * Copy seccomp details explicitly here, in case they were changed
1839          * before holding sighand lock.
1840          */
1841         copy_seccomp(p);
1842
1843         /*
1844          * Process group and session signals need to be delivered to just the
1845          * parent before the fork or both the parent and the child after the
1846          * fork. Restart if a signal comes in before we add the new process to
1847          * it's process group.
1848          * A fatal signal pending means that current will exit, so the new
1849          * thread can't slip out of an OOM kill (or normal SIGKILL).
1850         */
1851         recalc_sigpending();
1852         if (signal_pending(current)) {
1853                 retval = -ERESTARTNOINTR;
1854                 goto bad_fork_cancel_cgroup;
1855         }
1856         if (unlikely(!(ns_of_pid(pid)->nr_hashed & PIDNS_HASH_ADDING))) {
1857                 retval = -ENOMEM;
1858                 goto bad_fork_cancel_cgroup;
1859         }
1860
1861         if (likely(p->pid)) {
1862                 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1863
1864                 init_task_pid(p, PIDTYPE_PID, pid);
1865                 if (thread_group_leader(p)) {
1866                         init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1867                         init_task_pid(p, PIDTYPE_SID, task_session(current));
1868
1869                         if (is_child_reaper(pid)) {
1870                                 ns_of_pid(pid)->child_reaper = p;
1871                                 p->signal->flags |= SIGNAL_UNKILLABLE;
1872                         }
1873
1874                         p->signal->leader_pid = pid;
1875                         p->signal->tty = tty_kref_get(current->signal->tty);
1876                         /*
1877                          * Inherit has_child_subreaper flag under the same
1878                          * tasklist_lock with adding child to the process tree
1879                          * for propagate_has_child_subreaper optimization.
1880                          */
1881                         p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
1882                                                          p->real_parent->signal->is_child_subreaper;
1883                         list_add_tail(&p->sibling, &p->real_parent->children);
1884                         list_add_tail_rcu(&p->tasks, &init_task.tasks);
1885                         attach_pid(p, PIDTYPE_PGID);
1886                         attach_pid(p, PIDTYPE_SID);
1887                         __this_cpu_inc(process_counts);
1888                 } else {
1889                         current->signal->nr_threads++;
1890                         atomic_inc(&current->signal->live);
1891                         atomic_inc(&current->signal->sigcnt);
1892                         list_add_tail_rcu(&p->thread_group,
1893                                           &p->group_leader->thread_group);
1894                         list_add_tail_rcu(&p->thread_node,
1895                                           &p->signal->thread_head);
1896                 }
1897                 attach_pid(p, PIDTYPE_PID);
1898                 nr_threads++;
1899         }
1900
1901         total_forks++;
1902         spin_unlock(&current->sighand->siglock);
1903         syscall_tracepoint_update(p);
1904         write_unlock_irq(&tasklist_lock);
1905
1906         proc_fork_connector(p);
1907         cgroup_post_fork(p);
1908         cgroup_threadgroup_change_end(current);
1909         perf_event_fork(p);
1910
1911         trace_task_newtask(p, clone_flags);
1912         uprobe_copy_process(p, clone_flags);
1913
1914         return p;
1915
1916 bad_fork_cancel_cgroup:
1917         spin_unlock(&current->sighand->siglock);
1918         write_unlock_irq(&tasklist_lock);
1919         cgroup_cancel_fork(p);
1920 bad_fork_free_pid:
1921         cgroup_threadgroup_change_end(current);
1922         if (pid != &init_struct_pid)
1923                 free_pid(pid);
1924 bad_fork_cleanup_thread:
1925         exit_thread(p);
1926 bad_fork_cleanup_io:
1927         if (p->io_context)
1928                 exit_io_context(p);
1929 bad_fork_cleanup_namespaces:
1930         exit_task_namespaces(p);
1931 bad_fork_cleanup_mm:
1932         if (p->mm)
1933                 mmput(p->mm);
1934 bad_fork_cleanup_signal:
1935         if (!(clone_flags & CLONE_THREAD))
1936                 free_signal_struct(p->signal);
1937 bad_fork_cleanup_sighand:
1938         __cleanup_sighand(p->sighand);
1939 bad_fork_cleanup_fs:
1940         exit_fs(p); /* blocking */
1941 bad_fork_cleanup_files:
1942         exit_files(p); /* blocking */
1943 bad_fork_cleanup_semundo:
1944         exit_sem(p);
1945 bad_fork_cleanup_security:
1946         security_task_free(p);
1947 bad_fork_cleanup_audit:
1948         audit_free(p);
1949 bad_fork_cleanup_perf:
1950         perf_event_free_task(p);
1951 bad_fork_cleanup_policy:
1952 #ifdef CONFIG_NUMA
1953         mpol_put(p->mempolicy);
1954 bad_fork_cleanup_threadgroup_lock:
1955 #endif
1956         delayacct_tsk_free(p);
1957 bad_fork_cleanup_count:
1958         atomic_dec(&p->cred->user->processes);
1959         exit_creds(p);
1960 bad_fork_free:
1961         p->state = TASK_DEAD;
1962         put_task_stack(p);
1963         free_task(p);
1964 fork_out:
1965         return ERR_PTR(retval);
1966 }
1967
1968 static inline void init_idle_pids(struct pid_link *links)
1969 {
1970         enum pid_type type;
1971
1972         for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1973                 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1974                 links[type].pid = &init_struct_pid;
1975         }
1976 }
1977
1978 struct task_struct *fork_idle(int cpu)
1979 {
1980         struct task_struct *task;
1981         task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
1982                             cpu_to_node(cpu));
1983         if (!IS_ERR(task)) {
1984                 init_idle_pids(task->pids);
1985                 init_idle(task, cpu);
1986         }
1987
1988         return task;
1989 }
1990
1991 /*
1992  *  Ok, this is the main fork-routine.
1993  *
1994  * It copies the process, and if successful kick-starts
1995  * it and waits for it to finish using the VM if required.
1996  */
1997 long _do_fork(unsigned long clone_flags,
1998               unsigned long stack_start,
1999               unsigned long stack_size,
2000               int __user *parent_tidptr,
2001               int __user *child_tidptr,
2002               unsigned long tls)
2003 {
2004         struct task_struct *p;
2005         int trace = 0;
2006         long nr;
2007
2008         /*
2009          * Determine whether and which event to report to ptracer.  When
2010          * called from kernel_thread or CLONE_UNTRACED is explicitly
2011          * requested, no event is reported; otherwise, report if the event
2012          * for the type of forking is enabled.
2013          */
2014         if (!(clone_flags & CLONE_UNTRACED)) {
2015                 if (clone_flags & CLONE_VFORK)
2016                         trace = PTRACE_EVENT_VFORK;
2017                 else if ((clone_flags & CSIGNAL) != SIGCHLD)
2018                         trace = PTRACE_EVENT_CLONE;
2019                 else
2020                         trace = PTRACE_EVENT_FORK;
2021
2022                 if (likely(!ptrace_event_enabled(current, trace)))
2023                         trace = 0;
2024         }
2025
2026         p = copy_process(clone_flags, stack_start, stack_size,
2027                          child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
2028         add_latent_entropy();
2029         /*
2030          * Do this prior waking up the new thread - the thread pointer
2031          * might get invalid after that point, if the thread exits quickly.
2032          */
2033         if (!IS_ERR(p)) {
2034                 struct completion vfork;
2035                 struct pid *pid;
2036
2037                 trace_sched_process_fork(current, p);
2038
2039                 pid = get_task_pid(p, PIDTYPE_PID);
2040                 nr = pid_vnr(pid);
2041
2042                 if (clone_flags & CLONE_PARENT_SETTID)
2043                         put_user(nr, parent_tidptr);
2044
2045                 if (clone_flags & CLONE_VFORK) {
2046                         p->vfork_done = &vfork;
2047                         init_completion(&vfork);
2048                         get_task_struct(p);
2049                 }
2050
2051                 wake_up_new_task(p);
2052
2053                 /* forking complete and child started to run, tell ptracer */
2054                 if (unlikely(trace))
2055                         ptrace_event_pid(trace, pid);
2056
2057                 if (clone_flags & CLONE_VFORK) {
2058                         if (!wait_for_vfork_done(p, &vfork))
2059                                 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2060                 }
2061
2062                 put_pid(pid);
2063         } else {
2064                 nr = PTR_ERR(p);
2065         }
2066         return nr;
2067 }
2068
2069 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2070 /* For compatibility with architectures that call do_fork directly rather than
2071  * using the syscall entry points below. */
2072 long do_fork(unsigned long clone_flags,
2073               unsigned long stack_start,
2074               unsigned long stack_size,
2075               int __user *parent_tidptr,
2076               int __user *child_tidptr)
2077 {
2078         return _do_fork(clone_flags, stack_start, stack_size,
2079                         parent_tidptr, child_tidptr, 0);
2080 }
2081 #endif
2082
2083 /*
2084  * Create a kernel thread.
2085  */
2086 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2087 {
2088         return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
2089                 (unsigned long)arg, NULL, NULL, 0);
2090 }
2091
2092 #ifdef __ARCH_WANT_SYS_FORK
2093 SYSCALL_DEFINE0(fork)
2094 {
2095 #ifdef CONFIG_MMU
2096         return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
2097 #else
2098         /* can not support in nommu mode */
2099         return -EINVAL;
2100 #endif
2101 }
2102 #endif
2103
2104 #ifdef __ARCH_WANT_SYS_VFORK
2105 SYSCALL_DEFINE0(vfork)
2106 {
2107         return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2108                         0, NULL, NULL, 0);
2109 }
2110 #endif
2111
2112 #ifdef __ARCH_WANT_SYS_CLONE
2113 #ifdef CONFIG_CLONE_BACKWARDS
2114 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2115                  int __user *, parent_tidptr,
2116                  unsigned long, tls,
2117                  int __user *, child_tidptr)
2118 #elif defined(CONFIG_CLONE_BACKWARDS2)
2119 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2120                  int __user *, parent_tidptr,
2121                  int __user *, child_tidptr,
2122                  unsigned long, tls)
2123 #elif defined(CONFIG_CLONE_BACKWARDS3)
2124 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2125                 int, stack_size,
2126                 int __user *, parent_tidptr,
2127                 int __user *, child_tidptr,
2128                 unsigned long, tls)
2129 #else
2130 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2131                  int __user *, parent_tidptr,
2132                  int __user *, child_tidptr,
2133                  unsigned long, tls)
2134 #endif
2135 {
2136         return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
2137 }
2138 #endif
2139
2140 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2141 {
2142         struct task_struct *leader, *parent, *child;
2143         int res;
2144
2145         read_lock(&tasklist_lock);
2146         leader = top = top->group_leader;
2147 down:
2148         for_each_thread(leader, parent) {
2149                 list_for_each_entry(child, &parent->children, sibling) {
2150                         res = visitor(child, data);
2151                         if (res) {
2152                                 if (res < 0)
2153                                         goto out;
2154                                 leader = child;
2155                                 goto down;
2156                         }
2157 up:
2158                         ;
2159                 }
2160         }
2161
2162         if (leader != top) {
2163                 child = leader;
2164                 parent = child->real_parent;
2165                 leader = parent->group_leader;
2166                 goto up;
2167         }
2168 out:
2169         read_unlock(&tasklist_lock);
2170 }
2171
2172 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2173 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2174 #endif
2175
2176 static void sighand_ctor(void *data)
2177 {
2178         struct sighand_struct *sighand = data;
2179
2180         spin_lock_init(&sighand->siglock);
2181         init_waitqueue_head(&sighand->signalfd_wqh);
2182 }
2183
2184 void __init proc_caches_init(void)
2185 {
2186         sighand_cachep = kmem_cache_create("sighand_cache",
2187                         sizeof(struct sighand_struct), 0,
2188                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2189                         SLAB_NOTRACK|SLAB_ACCOUNT, sighand_ctor);
2190         signal_cachep = kmem_cache_create("signal_cache",
2191                         sizeof(struct signal_struct), 0,
2192                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2193                         NULL);
2194         files_cachep = kmem_cache_create("files_cache",
2195                         sizeof(struct files_struct), 0,
2196                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2197                         NULL);
2198         fs_cachep = kmem_cache_create("fs_cache",
2199                         sizeof(struct fs_struct), 0,
2200                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2201                         NULL);
2202         /*
2203          * FIXME! The "sizeof(struct mm_struct)" currently includes the
2204          * whole struct cpumask for the OFFSTACK case. We could change
2205          * this to *only* allocate as much of it as required by the
2206          * maximum number of CPU's we can ever have.  The cpumask_allocation
2207          * is at the end of the structure, exactly for that reason.
2208          */
2209         mm_cachep = kmem_cache_create("mm_struct",
2210                         sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
2211                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2212                         NULL);
2213         vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2214         mmap_init();
2215         nsproxy_cache_init();
2216 }
2217
2218 /*
2219  * Check constraints on flags passed to the unshare system call.
2220  */
2221 static int check_unshare_flags(unsigned long unshare_flags)
2222 {
2223         if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2224                                 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2225                                 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2226                                 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2227                 return -EINVAL;
2228         /*
2229          * Not implemented, but pretend it works if there is nothing
2230          * to unshare.  Note that unsharing the address space or the
2231          * signal handlers also need to unshare the signal queues (aka
2232          * CLONE_THREAD).
2233          */
2234         if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2235                 if (!thread_group_empty(current))
2236                         return -EINVAL;
2237         }
2238         if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2239                 if (atomic_read(&current->sighand->count) > 1)
2240                         return -EINVAL;
2241         }
2242         if (unshare_flags & CLONE_VM) {
2243                 if (!current_is_single_threaded())
2244                         return -EINVAL;
2245         }
2246
2247         return 0;
2248 }
2249
2250 /*
2251  * Unshare the filesystem structure if it is being shared
2252  */
2253 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2254 {
2255         struct fs_struct *fs = current->fs;
2256
2257         if (!(unshare_flags & CLONE_FS) || !fs)
2258                 return 0;
2259
2260         /* don't need lock here; in the worst case we'll do useless copy */
2261         if (fs->users == 1)
2262                 return 0;
2263
2264         *new_fsp = copy_fs_struct(fs);
2265         if (!*new_fsp)
2266                 return -ENOMEM;
2267
2268         return 0;
2269 }
2270
2271 /*
2272  * Unshare file descriptor table if it is being shared
2273  */
2274 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2275 {
2276         struct files_struct *fd = current->files;
2277         int error = 0;
2278
2279         if ((unshare_flags & CLONE_FILES) &&
2280             (fd && atomic_read(&fd->count) > 1)) {
2281                 *new_fdp = dup_fd(fd, &error);
2282                 if (!*new_fdp)
2283                         return error;
2284         }
2285
2286         return 0;
2287 }
2288
2289 /*
2290  * unshare allows a process to 'unshare' part of the process
2291  * context which was originally shared using clone.  copy_*
2292  * functions used by do_fork() cannot be used here directly
2293  * because they modify an inactive task_struct that is being
2294  * constructed. Here we are modifying the current, active,
2295  * task_struct.
2296  */
2297 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2298 {
2299         struct fs_struct *fs, *new_fs = NULL;
2300         struct files_struct *fd, *new_fd = NULL;
2301         struct cred *new_cred = NULL;
2302         struct nsproxy *new_nsproxy = NULL;
2303         int do_sysvsem = 0;
2304         int err;
2305
2306         /*
2307          * If unsharing a user namespace must also unshare the thread group
2308          * and unshare the filesystem root and working directories.
2309          */
2310         if (unshare_flags & CLONE_NEWUSER)
2311                 unshare_flags |= CLONE_THREAD | CLONE_FS;
2312         /*
2313          * If unsharing vm, must also unshare signal handlers.
2314          */
2315         if (unshare_flags & CLONE_VM)
2316                 unshare_flags |= CLONE_SIGHAND;
2317         /*
2318          * If unsharing a signal handlers, must also unshare the signal queues.
2319          */
2320         if (unshare_flags & CLONE_SIGHAND)
2321                 unshare_flags |= CLONE_THREAD;
2322         /*
2323          * If unsharing namespace, must also unshare filesystem information.
2324          */
2325         if (unshare_flags & CLONE_NEWNS)
2326                 unshare_flags |= CLONE_FS;
2327
2328         err = check_unshare_flags(unshare_flags);
2329         if (err)
2330                 goto bad_unshare_out;
2331         /*
2332          * CLONE_NEWIPC must also detach from the undolist: after switching
2333          * to a new ipc namespace, the semaphore arrays from the old
2334          * namespace are unreachable.
2335          */
2336         if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2337                 do_sysvsem = 1;
2338         err = unshare_fs(unshare_flags, &new_fs);
2339         if (err)
2340                 goto bad_unshare_out;
2341         err = unshare_fd(unshare_flags, &new_fd);
2342         if (err)
2343                 goto bad_unshare_cleanup_fs;
2344         err = unshare_userns(unshare_flags, &new_cred);
2345         if (err)
2346                 goto bad_unshare_cleanup_fd;
2347         err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2348                                          new_cred, new_fs);
2349         if (err)
2350                 goto bad_unshare_cleanup_cred;
2351
2352         if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2353                 if (do_sysvsem) {
2354                         /*
2355                          * CLONE_SYSVSEM is equivalent to sys_exit().
2356                          */
2357                         exit_sem(current);
2358                 }
2359                 if (unshare_flags & CLONE_NEWIPC) {
2360                         /* Orphan segments in old ns (see sem above). */
2361                         exit_shm(current);
2362                         shm_init_task(current);
2363                 }
2364
2365                 if (new_nsproxy)
2366                         switch_task_namespaces(current, new_nsproxy);
2367
2368                 task_lock(current);
2369
2370                 if (new_fs) {
2371                         fs = current->fs;
2372                         spin_lock(&fs->lock);
2373                         current->fs = new_fs;
2374                         if (--fs->users)
2375                                 new_fs = NULL;
2376                         else
2377                                 new_fs = fs;
2378                         spin_unlock(&fs->lock);
2379                 }
2380
2381                 if (new_fd) {
2382                         fd = current->files;
2383                         current->files = new_fd;
2384                         new_fd = fd;
2385                 }
2386
2387                 task_unlock(current);
2388
2389                 if (new_cred) {
2390                         /* Install the new user namespace */
2391                         commit_creds(new_cred);
2392                         new_cred = NULL;
2393                 }
2394         }
2395
2396         perf_event_namespaces(current);
2397
2398 bad_unshare_cleanup_cred:
2399         if (new_cred)
2400                 put_cred(new_cred);
2401 bad_unshare_cleanup_fd:
2402         if (new_fd)
2403                 put_files_struct(new_fd);
2404
2405 bad_unshare_cleanup_fs:
2406         if (new_fs)
2407                 free_fs_struct(new_fs);
2408
2409 bad_unshare_out:
2410         return err;
2411 }
2412
2413 /*
2414  *      Helper to unshare the files of the current task.
2415  *      We don't want to expose copy_files internals to
2416  *      the exec layer of the kernel.
2417  */
2418
2419 int unshare_files(struct files_struct **displaced)
2420 {
2421         struct task_struct *task = current;
2422         struct files_struct *copy = NULL;
2423         int error;
2424
2425         error = unshare_fd(CLONE_FILES, &copy);
2426         if (error || !copy) {
2427                 *displaced = NULL;
2428                 return error;
2429         }
2430         *displaced = task->files;
2431         task_lock(task);
2432         task->files = copy;
2433         task_unlock(task);
2434         return 0;
2435 }
2436
2437 int sysctl_max_threads(struct ctl_table *table, int write,
2438                        void __user *buffer, size_t *lenp, loff_t *ppos)
2439 {
2440         struct ctl_table t;
2441         int ret;
2442         int threads = max_threads;
2443         int min = MIN_THREADS;
2444         int max = MAX_THREADS;
2445
2446         t = *table;
2447         t.data = &threads;
2448         t.extra1 = &min;
2449         t.extra2 = &max;
2450
2451         ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2452         if (ret || !write)
2453                 return ret;
2454
2455         set_max_threads(threads);
2456
2457         return 0;
2458 }