]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - kernel/futex.c
genirq: Add IRQF_RESUME_EARLY and resume such IRQs earlier
[karo-tx-linux.git] / kernel / futex.c
1 /*
2  *  Fast Userspace Mutexes (which I call "Futexes!").
3  *  (C) Rusty Russell, IBM 2002
4  *
5  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7  *
8  *  Removed page pinning, fix privately mapped COW pages and other cleanups
9  *  (C) Copyright 2003, 2004 Jamie Lokier
10  *
11  *  Robust futex support started by Ingo Molnar
12  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14  *
15  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
16  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18  *
19  *  PRIVATE futexes by Eric Dumazet
20  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21  *
22  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23  *  Copyright (C) IBM Corporation, 2009
24  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
25  *
26  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27  *  enough at me, Linus for the original (flawed) idea, Matthew
28  *  Kirkwood for proof-of-concept implementation.
29  *
30  *  "The futexes are also cursed."
31  *  "But they come in a choice of three flavours!"
32  *
33  *  This program is free software; you can redistribute it and/or modify
34  *  it under the terms of the GNU General Public License as published by
35  *  the Free Software Foundation; either version 2 of the License, or
36  *  (at your option) any later version.
37  *
38  *  This program is distributed in the hope that it will be useful,
39  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
40  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
41  *  GNU General Public License for more details.
42  *
43  *  You should have received a copy of the GNU General Public License
44  *  along with this program; if not, write to the Free Software
45  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
46  */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/module.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62
63 #include <asm/futex.h>
64
65 #include "rtmutex_common.h"
66
67 int __read_mostly futex_cmpxchg_enabled;
68
69 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
70
71 /*
72  * Priority Inheritance state:
73  */
74 struct futex_pi_state {
75         /*
76          * list of 'owned' pi_state instances - these have to be
77          * cleaned up in do_exit() if the task exits prematurely:
78          */
79         struct list_head list;
80
81         /*
82          * The PI object:
83          */
84         struct rt_mutex pi_mutex;
85
86         struct task_struct *owner;
87         atomic_t refcount;
88
89         union futex_key key;
90 };
91
92 /**
93  * struct futex_q - The hashed futex queue entry, one per waiting task
94  * @task:               the task waiting on the futex
95  * @lock_ptr:           the hash bucket lock
96  * @key:                the key the futex is hashed on
97  * @pi_state:           optional priority inheritance state
98  * @rt_waiter:          rt_waiter storage for use with requeue_pi
99  * @requeue_pi_key:     the requeue_pi target futex key
100  * @bitset:             bitset for the optional bitmasked wakeup
101  *
102  * We use this hashed waitqueue, instead of a normal wait_queue_t, so
103  * we can wake only the relevant ones (hashed queues may be shared).
104  *
105  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
106  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
107  * The order of wakup is always to make the first condition true, then
108  * the second.
109  *
110  * PI futexes are typically woken before they are removed from the hash list via
111  * the rt_mutex code. See unqueue_me_pi().
112  */
113 struct futex_q {
114         struct plist_node list;
115
116         struct task_struct *task;
117         spinlock_t *lock_ptr;
118         union futex_key key;
119         struct futex_pi_state *pi_state;
120         struct rt_mutex_waiter *rt_waiter;
121         union futex_key *requeue_pi_key;
122         u32 bitset;
123 };
124
125 /*
126  * Hash buckets are shared by all the futex_keys that hash to the same
127  * location.  Each key may have multiple futex_q structures, one for each task
128  * waiting on a futex.
129  */
130 struct futex_hash_bucket {
131         spinlock_t lock;
132         struct plist_head chain;
133 };
134
135 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
136
137 /*
138  * We hash on the keys returned from get_futex_key (see below).
139  */
140 static struct futex_hash_bucket *hash_futex(union futex_key *key)
141 {
142         u32 hash = jhash2((u32*)&key->both.word,
143                           (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
144                           key->both.offset);
145         return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
146 }
147
148 /*
149  * Return 1 if two futex_keys are equal, 0 otherwise.
150  */
151 static inline int match_futex(union futex_key *key1, union futex_key *key2)
152 {
153         return (key1 && key2
154                 && key1->both.word == key2->both.word
155                 && key1->both.ptr == key2->both.ptr
156                 && key1->both.offset == key2->both.offset);
157 }
158
159 /*
160  * Take a reference to the resource addressed by a key.
161  * Can be called while holding spinlocks.
162  *
163  */
164 static void get_futex_key_refs(union futex_key *key)
165 {
166         if (!key->both.ptr)
167                 return;
168
169         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
170         case FUT_OFF_INODE:
171                 atomic_inc(&key->shared.inode->i_count);
172                 break;
173         case FUT_OFF_MMSHARED:
174                 atomic_inc(&key->private.mm->mm_count);
175                 break;
176         }
177 }
178
179 /*
180  * Drop a reference to the resource addressed by a key.
181  * The hash bucket spinlock must not be held.
182  */
183 static void drop_futex_key_refs(union futex_key *key)
184 {
185         if (!key->both.ptr) {
186                 /* If we're here then we tried to put a key we failed to get */
187                 WARN_ON_ONCE(1);
188                 return;
189         }
190
191         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
192         case FUT_OFF_INODE:
193                 iput(key->shared.inode);
194                 break;
195         case FUT_OFF_MMSHARED:
196                 mmdrop(key->private.mm);
197                 break;
198         }
199 }
200
201 /**
202  * get_futex_key() - Get parameters which are the keys for a futex
203  * @uaddr:      virtual address of the futex
204  * @fshared:    0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
205  * @key:        address where result is stored.
206  * @rw:         mapping needs to be read/write (values: VERIFY_READ,
207  *              VERIFY_WRITE)
208  *
209  * Returns a negative error code or 0
210  * The key words are stored in *key on success.
211  *
212  * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
213  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
214  * We can usually work out the index without swapping in the page.
215  *
216  * lock_page() might sleep, the caller should not hold a spinlock.
217  */
218 static int
219 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
220 {
221         unsigned long address = (unsigned long)uaddr;
222         struct mm_struct *mm = current->mm;
223         struct page *page;
224         int err, ro = 0;
225
226         /*
227          * The futex address must be "naturally" aligned.
228          */
229         key->both.offset = address % PAGE_SIZE;
230         if (unlikely((address % sizeof(u32)) != 0))
231                 return -EINVAL;
232         address -= key->both.offset;
233
234         /*
235          * PROCESS_PRIVATE futexes are fast.
236          * As the mm cannot disappear under us and the 'key' only needs
237          * virtual address, we dont even have to find the underlying vma.
238          * Note : We do have to check 'uaddr' is a valid user address,
239          *        but access_ok() should be faster than find_vma()
240          */
241         if (!fshared) {
242                 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
243                         return -EFAULT;
244                 key->private.mm = mm;
245                 key->private.address = address;
246                 get_futex_key_refs(key);
247                 return 0;
248         }
249
250 again:
251         err = get_user_pages_fast(address, 1, 1, &page);
252         /*
253          * If write access is not required (eg. FUTEX_WAIT), try
254          * and get read-only access.
255          */
256         if (err == -EFAULT && rw == VERIFY_READ) {
257                 err = get_user_pages_fast(address, 1, 0, &page);
258                 ro = 1;
259         }
260         if (err < 0)
261                 return err;
262         else
263                 err = 0;
264
265         page = compound_head(page);
266         lock_page(page);
267         if (!page->mapping) {
268                 unlock_page(page);
269                 put_page(page);
270                 /*
271                 * ZERO_PAGE pages don't have a mapping. Avoid a busy loop
272                 * trying to find one. RW mapping would have COW'd (and thus
273                 * have a mapping) so this page is RO and won't ever change.
274                 */
275                 if ((page == ZERO_PAGE(address)))
276                         return -EFAULT;
277                 goto again;
278         }
279
280         /*
281          * Private mappings are handled in a simple way.
282          *
283          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
284          * it's a read-only handle, it's expected that futexes attach to
285          * the object not the particular process.
286          */
287         if (PageAnon(page)) {
288                 /*
289                  * A RO anonymous page will never change and thus doesn't make
290                  * sense for futex operations.
291                  */
292                 if (ro) {
293                         err = -EFAULT;
294                         goto out;
295                 }
296
297                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
298                 key->private.mm = mm;
299                 key->private.address = address;
300         } else {
301                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
302                 key->shared.inode = page->mapping->host;
303                 key->shared.pgoff = page->index;
304         }
305
306         get_futex_key_refs(key);
307
308 out:
309         unlock_page(page);
310         put_page(page);
311         return err;
312 }
313
314 static inline
315 void put_futex_key(int fshared, union futex_key *key)
316 {
317         drop_futex_key_refs(key);
318 }
319
320 /**
321  * fault_in_user_writeable() - Fault in user address and verify RW access
322  * @uaddr:      pointer to faulting user space address
323  *
324  * Slow path to fixup the fault we just took in the atomic write
325  * access to @uaddr.
326  *
327  * We have no generic implementation of a non destructive write to the
328  * user address. We know that we faulted in the atomic pagefault
329  * disabled section so we can as well avoid the #PF overhead by
330  * calling get_user_pages() right away.
331  */
332 static int fault_in_user_writeable(u32 __user *uaddr)
333 {
334         struct mm_struct *mm = current->mm;
335         int ret;
336
337         down_read(&mm->mmap_sem);
338         ret = get_user_pages(current, mm, (unsigned long)uaddr,
339                              1, 1, 0, NULL, NULL);
340         up_read(&mm->mmap_sem);
341
342         return ret < 0 ? ret : 0;
343 }
344
345 /**
346  * futex_top_waiter() - Return the highest priority waiter on a futex
347  * @hb:         the hash bucket the futex_q's reside in
348  * @key:        the futex key (to distinguish it from other futex futex_q's)
349  *
350  * Must be called with the hb lock held.
351  */
352 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
353                                         union futex_key *key)
354 {
355         struct futex_q *this;
356
357         plist_for_each_entry(this, &hb->chain, list) {
358                 if (match_futex(&this->key, key))
359                         return this;
360         }
361         return NULL;
362 }
363
364 static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
365 {
366         u32 curval;
367
368         pagefault_disable();
369         curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
370         pagefault_enable();
371
372         return curval;
373 }
374
375 static int get_futex_value_locked(u32 *dest, u32 __user *from)
376 {
377         int ret;
378
379         pagefault_disable();
380         ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
381         pagefault_enable();
382
383         return ret ? -EFAULT : 0;
384 }
385
386
387 /*
388  * PI code:
389  */
390 static int refill_pi_state_cache(void)
391 {
392         struct futex_pi_state *pi_state;
393
394         if (likely(current->pi_state_cache))
395                 return 0;
396
397         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
398
399         if (!pi_state)
400                 return -ENOMEM;
401
402         INIT_LIST_HEAD(&pi_state->list);
403         /* pi_mutex gets initialized later */
404         pi_state->owner = NULL;
405         atomic_set(&pi_state->refcount, 1);
406         pi_state->key = FUTEX_KEY_INIT;
407
408         current->pi_state_cache = pi_state;
409
410         return 0;
411 }
412
413 static struct futex_pi_state * alloc_pi_state(void)
414 {
415         struct futex_pi_state *pi_state = current->pi_state_cache;
416
417         WARN_ON(!pi_state);
418         current->pi_state_cache = NULL;
419
420         return pi_state;
421 }
422
423 static void free_pi_state(struct futex_pi_state *pi_state)
424 {
425         if (!atomic_dec_and_test(&pi_state->refcount))
426                 return;
427
428         /*
429          * If pi_state->owner is NULL, the owner is most probably dying
430          * and has cleaned up the pi_state already
431          */
432         if (pi_state->owner) {
433                 spin_lock_irq(&pi_state->owner->pi_lock);
434                 list_del_init(&pi_state->list);
435                 spin_unlock_irq(&pi_state->owner->pi_lock);
436
437                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
438         }
439
440         if (current->pi_state_cache)
441                 kfree(pi_state);
442         else {
443                 /*
444                  * pi_state->list is already empty.
445                  * clear pi_state->owner.
446                  * refcount is at 0 - put it back to 1.
447                  */
448                 pi_state->owner = NULL;
449                 atomic_set(&pi_state->refcount, 1);
450                 current->pi_state_cache = pi_state;
451         }
452 }
453
454 /*
455  * Look up the task based on what TID userspace gave us.
456  * We dont trust it.
457  */
458 static struct task_struct * futex_find_get_task(pid_t pid)
459 {
460         struct task_struct *p;
461
462         rcu_read_lock();
463         p = find_task_by_vpid(pid);
464         if (p)
465                 get_task_struct(p);
466
467         rcu_read_unlock();
468
469         return p;
470 }
471
472 /*
473  * This task is holding PI mutexes at exit time => bad.
474  * Kernel cleans up PI-state, but userspace is likely hosed.
475  * (Robust-futex cleanup is separate and might save the day for userspace.)
476  */
477 void exit_pi_state_list(struct task_struct *curr)
478 {
479         struct list_head *next, *head = &curr->pi_state_list;
480         struct futex_pi_state *pi_state;
481         struct futex_hash_bucket *hb;
482         union futex_key key = FUTEX_KEY_INIT;
483
484         if (!futex_cmpxchg_enabled)
485                 return;
486         /*
487          * We are a ZOMBIE and nobody can enqueue itself on
488          * pi_state_list anymore, but we have to be careful
489          * versus waiters unqueueing themselves:
490          */
491         spin_lock_irq(&curr->pi_lock);
492         while (!list_empty(head)) {
493
494                 next = head->next;
495                 pi_state = list_entry(next, struct futex_pi_state, list);
496                 key = pi_state->key;
497                 hb = hash_futex(&key);
498                 spin_unlock_irq(&curr->pi_lock);
499
500                 spin_lock(&hb->lock);
501
502                 spin_lock_irq(&curr->pi_lock);
503                 /*
504                  * We dropped the pi-lock, so re-check whether this
505                  * task still owns the PI-state:
506                  */
507                 if (head->next != next) {
508                         spin_unlock(&hb->lock);
509                         continue;
510                 }
511
512                 WARN_ON(pi_state->owner != curr);
513                 WARN_ON(list_empty(&pi_state->list));
514                 list_del_init(&pi_state->list);
515                 pi_state->owner = NULL;
516                 spin_unlock_irq(&curr->pi_lock);
517
518                 rt_mutex_unlock(&pi_state->pi_mutex);
519
520                 spin_unlock(&hb->lock);
521
522                 spin_lock_irq(&curr->pi_lock);
523         }
524         spin_unlock_irq(&curr->pi_lock);
525 }
526
527 static int
528 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
529                 union futex_key *key, struct futex_pi_state **ps)
530 {
531         struct futex_pi_state *pi_state = NULL;
532         struct futex_q *this, *next;
533         struct plist_head *head;
534         struct task_struct *p;
535         pid_t pid = uval & FUTEX_TID_MASK;
536
537         head = &hb->chain;
538
539         plist_for_each_entry_safe(this, next, head, list) {
540                 if (match_futex(&this->key, key)) {
541                         /*
542                          * Another waiter already exists - bump up
543                          * the refcount and return its pi_state:
544                          */
545                         pi_state = this->pi_state;
546                         /*
547                          * Userspace might have messed up non PI and PI futexes
548                          */
549                         if (unlikely(!pi_state))
550                                 return -EINVAL;
551
552                         WARN_ON(!atomic_read(&pi_state->refcount));
553
554                         /*
555                          * When pi_state->owner is NULL then the owner died
556                          * and another waiter is on the fly. pi_state->owner
557                          * is fixed up by the task which acquires
558                          * pi_state->rt_mutex.
559                          *
560                          * We do not check for pid == 0 which can happen when
561                          * the owner died and robust_list_exit() cleared the
562                          * TID.
563                          */
564                         if (pid && pi_state->owner) {
565                                 /*
566                                  * Bail out if user space manipulated the
567                                  * futex value.
568                                  */
569                                 if (pid != task_pid_vnr(pi_state->owner))
570                                         return -EINVAL;
571                         }
572
573                         atomic_inc(&pi_state->refcount);
574                         *ps = pi_state;
575
576                         return 0;
577                 }
578         }
579
580         /*
581          * We are the first waiter - try to look up the real owner and attach
582          * the new pi_state to it, but bail out when TID = 0
583          */
584         if (!pid)
585                 return -ESRCH;
586         p = futex_find_get_task(pid);
587         if (!p)
588                 return -ESRCH;
589
590         /*
591          * We need to look at the task state flags to figure out,
592          * whether the task is exiting. To protect against the do_exit
593          * change of the task flags, we do this protected by
594          * p->pi_lock:
595          */
596         spin_lock_irq(&p->pi_lock);
597         if (unlikely(p->flags & PF_EXITING)) {
598                 /*
599                  * The task is on the way out. When PF_EXITPIDONE is
600                  * set, we know that the task has finished the
601                  * cleanup:
602                  */
603                 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
604
605                 spin_unlock_irq(&p->pi_lock);
606                 put_task_struct(p);
607                 return ret;
608         }
609
610         pi_state = alloc_pi_state();
611
612         /*
613          * Initialize the pi_mutex in locked state and make 'p'
614          * the owner of it:
615          */
616         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
617
618         /* Store the key for possible exit cleanups: */
619         pi_state->key = *key;
620
621         WARN_ON(!list_empty(&pi_state->list));
622         list_add(&pi_state->list, &p->pi_state_list);
623         pi_state->owner = p;
624         spin_unlock_irq(&p->pi_lock);
625
626         put_task_struct(p);
627
628         *ps = pi_state;
629
630         return 0;
631 }
632
633 /**
634  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
635  * @uaddr:              the pi futex user address
636  * @hb:                 the pi futex hash bucket
637  * @key:                the futex key associated with uaddr and hb
638  * @ps:                 the pi_state pointer where we store the result of the
639  *                      lookup
640  * @task:               the task to perform the atomic lock work for.  This will
641  *                      be "current" except in the case of requeue pi.
642  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
643  *
644  * Returns:
645  *  0 - ready to wait
646  *  1 - acquired the lock
647  * <0 - error
648  *
649  * The hb->lock and futex_key refs shall be held by the caller.
650  */
651 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
652                                 union futex_key *key,
653                                 struct futex_pi_state **ps,
654                                 struct task_struct *task, int set_waiters)
655 {
656         int lock_taken, ret, ownerdied = 0;
657         u32 uval, newval, curval;
658
659 retry:
660         ret = lock_taken = 0;
661
662         /*
663          * To avoid races, we attempt to take the lock here again
664          * (by doing a 0 -> TID atomic cmpxchg), while holding all
665          * the locks. It will most likely not succeed.
666          */
667         newval = task_pid_vnr(task);
668         if (set_waiters)
669                 newval |= FUTEX_WAITERS;
670
671         curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
672
673         if (unlikely(curval == -EFAULT))
674                 return -EFAULT;
675
676         /*
677          * Detect deadlocks.
678          */
679         if ((unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(task))))
680                 return -EDEADLK;
681
682         /*
683          * Surprise - we got the lock. Just return to userspace:
684          */
685         if (unlikely(!curval))
686                 return 1;
687
688         uval = curval;
689
690         /*
691          * Set the FUTEX_WAITERS flag, so the owner will know it has someone
692          * to wake at the next unlock.
693          */
694         newval = curval | FUTEX_WAITERS;
695
696         /*
697          * There are two cases, where a futex might have no owner (the
698          * owner TID is 0): OWNER_DIED. We take over the futex in this
699          * case. We also do an unconditional take over, when the owner
700          * of the futex died.
701          *
702          * This is safe as we are protected by the hash bucket lock !
703          */
704         if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
705                 /* Keep the OWNER_DIED bit */
706                 newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(task);
707                 ownerdied = 0;
708                 lock_taken = 1;
709         }
710
711         curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
712
713         if (unlikely(curval == -EFAULT))
714                 return -EFAULT;
715         if (unlikely(curval != uval))
716                 goto retry;
717
718         /*
719          * We took the lock due to owner died take over.
720          */
721         if (unlikely(lock_taken))
722                 return 1;
723
724         /*
725          * We dont have the lock. Look up the PI state (or create it if
726          * we are the first waiter):
727          */
728         ret = lookup_pi_state(uval, hb, key, ps);
729
730         if (unlikely(ret)) {
731                 switch (ret) {
732                 case -ESRCH:
733                         /*
734                          * No owner found for this futex. Check if the
735                          * OWNER_DIED bit is set to figure out whether
736                          * this is a robust futex or not.
737                          */
738                         if (get_futex_value_locked(&curval, uaddr))
739                                 return -EFAULT;
740
741                         /*
742                          * We simply start over in case of a robust
743                          * futex. The code above will take the futex
744                          * and return happy.
745                          */
746                         if (curval & FUTEX_OWNER_DIED) {
747                                 ownerdied = 1;
748                                 goto retry;
749                         }
750                 default:
751                         break;
752                 }
753         }
754
755         return ret;
756 }
757
758 /*
759  * The hash bucket lock must be held when this is called.
760  * Afterwards, the futex_q must not be accessed.
761  */
762 static void wake_futex(struct futex_q *q)
763 {
764         struct task_struct *p = q->task;
765
766         /*
767          * We set q->lock_ptr = NULL _before_ we wake up the task. If
768          * a non futex wake up happens on another CPU then the task
769          * might exit and p would dereference a non existing task
770          * struct. Prevent this by holding a reference on p across the
771          * wake up.
772          */
773         get_task_struct(p);
774
775         plist_del(&q->list, &q->list.plist);
776         /*
777          * The waiting task can free the futex_q as soon as
778          * q->lock_ptr = NULL is written, without taking any locks. A
779          * memory barrier is required here to prevent the following
780          * store to lock_ptr from getting ahead of the plist_del.
781          */
782         smp_wmb();
783         q->lock_ptr = NULL;
784
785         wake_up_state(p, TASK_NORMAL);
786         put_task_struct(p);
787 }
788
789 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
790 {
791         struct task_struct *new_owner;
792         struct futex_pi_state *pi_state = this->pi_state;
793         u32 curval, newval;
794
795         if (!pi_state)
796                 return -EINVAL;
797
798         /*
799          * If current does not own the pi_state then the futex is
800          * inconsistent and user space fiddled with the futex value.
801          */
802         if (pi_state->owner != current)
803                 return -EINVAL;
804
805         spin_lock(&pi_state->pi_mutex.wait_lock);
806         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
807
808         /*
809          * This happens when we have stolen the lock and the original
810          * pending owner did not enqueue itself back on the rt_mutex.
811          * Thats not a tragedy. We know that way, that a lock waiter
812          * is on the fly. We make the futex_q waiter the pending owner.
813          */
814         if (!new_owner)
815                 new_owner = this->task;
816
817         /*
818          * We pass it to the next owner. (The WAITERS bit is always
819          * kept enabled while there is PI state around. We must also
820          * preserve the owner died bit.)
821          */
822         if (!(uval & FUTEX_OWNER_DIED)) {
823                 int ret = 0;
824
825                 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
826
827                 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
828
829                 if (curval == -EFAULT)
830                         ret = -EFAULT;
831                 else if (curval != uval)
832                         ret = -EINVAL;
833                 if (ret) {
834                         spin_unlock(&pi_state->pi_mutex.wait_lock);
835                         return ret;
836                 }
837         }
838
839         spin_lock_irq(&pi_state->owner->pi_lock);
840         WARN_ON(list_empty(&pi_state->list));
841         list_del_init(&pi_state->list);
842         spin_unlock_irq(&pi_state->owner->pi_lock);
843
844         spin_lock_irq(&new_owner->pi_lock);
845         WARN_ON(!list_empty(&pi_state->list));
846         list_add(&pi_state->list, &new_owner->pi_state_list);
847         pi_state->owner = new_owner;
848         spin_unlock_irq(&new_owner->pi_lock);
849
850         spin_unlock(&pi_state->pi_mutex.wait_lock);
851         rt_mutex_unlock(&pi_state->pi_mutex);
852
853         return 0;
854 }
855
856 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
857 {
858         u32 oldval;
859
860         /*
861          * There is no waiter, so we unlock the futex. The owner died
862          * bit has not to be preserved here. We are the owner:
863          */
864         oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
865
866         if (oldval == -EFAULT)
867                 return oldval;
868         if (oldval != uval)
869                 return -EAGAIN;
870
871         return 0;
872 }
873
874 /*
875  * Express the locking dependencies for lockdep:
876  */
877 static inline void
878 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
879 {
880         if (hb1 <= hb2) {
881                 spin_lock(&hb1->lock);
882                 if (hb1 < hb2)
883                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
884         } else { /* hb1 > hb2 */
885                 spin_lock(&hb2->lock);
886                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
887         }
888 }
889
890 static inline void
891 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
892 {
893         spin_unlock(&hb1->lock);
894         if (hb1 != hb2)
895                 spin_unlock(&hb2->lock);
896 }
897
898 /*
899  * Wake up waiters matching bitset queued on this futex (uaddr).
900  */
901 static int futex_wake(u32 __user *uaddr, int fshared, int nr_wake, u32 bitset)
902 {
903         struct futex_hash_bucket *hb;
904         struct futex_q *this, *next;
905         struct plist_head *head;
906         union futex_key key = FUTEX_KEY_INIT;
907         int ret;
908
909         if (!bitset)
910                 return -EINVAL;
911
912         ret = get_futex_key(uaddr, fshared, &key, VERIFY_READ);
913         if (unlikely(ret != 0))
914                 goto out;
915
916         hb = hash_futex(&key);
917         spin_lock(&hb->lock);
918         head = &hb->chain;
919
920         plist_for_each_entry_safe(this, next, head, list) {
921                 if (match_futex (&this->key, &key)) {
922                         if (this->pi_state || this->rt_waiter) {
923                                 ret = -EINVAL;
924                                 break;
925                         }
926
927                         /* Check if one of the bits is set in both bitsets */
928                         if (!(this->bitset & bitset))
929                                 continue;
930
931                         wake_futex(this);
932                         if (++ret >= nr_wake)
933                                 break;
934                 }
935         }
936
937         spin_unlock(&hb->lock);
938         put_futex_key(fshared, &key);
939 out:
940         return ret;
941 }
942
943 /*
944  * Wake up all waiters hashed on the physical page that is mapped
945  * to this virtual address:
946  */
947 static int
948 futex_wake_op(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
949               int nr_wake, int nr_wake2, int op)
950 {
951         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
952         struct futex_hash_bucket *hb1, *hb2;
953         struct plist_head *head;
954         struct futex_q *this, *next;
955         int ret, op_ret;
956
957 retry:
958         ret = get_futex_key(uaddr1, fshared, &key1, VERIFY_READ);
959         if (unlikely(ret != 0))
960                 goto out;
961         ret = get_futex_key(uaddr2, fshared, &key2, VERIFY_WRITE);
962         if (unlikely(ret != 0))
963                 goto out_put_key1;
964
965         hb1 = hash_futex(&key1);
966         hb2 = hash_futex(&key2);
967
968 retry_private:
969         double_lock_hb(hb1, hb2);
970         op_ret = futex_atomic_op_inuser(op, uaddr2);
971         if (unlikely(op_ret < 0)) {
972
973                 double_unlock_hb(hb1, hb2);
974
975 #ifndef CONFIG_MMU
976                 /*
977                  * we don't get EFAULT from MMU faults if we don't have an MMU,
978                  * but we might get them from range checking
979                  */
980                 ret = op_ret;
981                 goto out_put_keys;
982 #endif
983
984                 if (unlikely(op_ret != -EFAULT)) {
985                         ret = op_ret;
986                         goto out_put_keys;
987                 }
988
989                 ret = fault_in_user_writeable(uaddr2);
990                 if (ret)
991                         goto out_put_keys;
992
993                 if (!fshared)
994                         goto retry_private;
995
996                 put_futex_key(fshared, &key2);
997                 put_futex_key(fshared, &key1);
998                 goto retry;
999         }
1000
1001         head = &hb1->chain;
1002
1003         plist_for_each_entry_safe(this, next, head, list) {
1004                 if (match_futex (&this->key, &key1)) {
1005                         wake_futex(this);
1006                         if (++ret >= nr_wake)
1007                                 break;
1008                 }
1009         }
1010
1011         if (op_ret > 0) {
1012                 head = &hb2->chain;
1013
1014                 op_ret = 0;
1015                 plist_for_each_entry_safe(this, next, head, list) {
1016                         if (match_futex (&this->key, &key2)) {
1017                                 wake_futex(this);
1018                                 if (++op_ret >= nr_wake2)
1019                                         break;
1020                         }
1021                 }
1022                 ret += op_ret;
1023         }
1024
1025         double_unlock_hb(hb1, hb2);
1026 out_put_keys:
1027         put_futex_key(fshared, &key2);
1028 out_put_key1:
1029         put_futex_key(fshared, &key1);
1030 out:
1031         return ret;
1032 }
1033
1034 /**
1035  * requeue_futex() - Requeue a futex_q from one hb to another
1036  * @q:          the futex_q to requeue
1037  * @hb1:        the source hash_bucket
1038  * @hb2:        the target hash_bucket
1039  * @key2:       the new key for the requeued futex_q
1040  */
1041 static inline
1042 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1043                    struct futex_hash_bucket *hb2, union futex_key *key2)
1044 {
1045
1046         /*
1047          * If key1 and key2 hash to the same bucket, no need to
1048          * requeue.
1049          */
1050         if (likely(&hb1->chain != &hb2->chain)) {
1051                 plist_del(&q->list, &hb1->chain);
1052                 plist_add(&q->list, &hb2->chain);
1053                 q->lock_ptr = &hb2->lock;
1054 #ifdef CONFIG_DEBUG_PI_LIST
1055                 q->list.plist.lock = &hb2->lock;
1056 #endif
1057         }
1058         get_futex_key_refs(key2);
1059         q->key = *key2;
1060 }
1061
1062 /**
1063  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1064  * @q:          the futex_q
1065  * @key:        the key of the requeue target futex
1066  * @hb:         the hash_bucket of the requeue target futex
1067  *
1068  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1069  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1070  * to the requeue target futex so the waiter can detect the wakeup on the right
1071  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1072  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1073  * to protect access to the pi_state to fixup the owner later.  Must be called
1074  * with both q->lock_ptr and hb->lock held.
1075  */
1076 static inline
1077 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1078                            struct futex_hash_bucket *hb)
1079 {
1080         get_futex_key_refs(key);
1081         q->key = *key;
1082
1083         WARN_ON(plist_node_empty(&q->list));
1084         plist_del(&q->list, &q->list.plist);
1085
1086         WARN_ON(!q->rt_waiter);
1087         q->rt_waiter = NULL;
1088
1089         q->lock_ptr = &hb->lock;
1090 #ifdef CONFIG_DEBUG_PI_LIST
1091         q->list.plist.lock = &hb->lock;
1092 #endif
1093
1094         wake_up_state(q->task, TASK_NORMAL);
1095 }
1096
1097 /**
1098  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1099  * @pifutex:            the user address of the to futex
1100  * @hb1:                the from futex hash bucket, must be locked by the caller
1101  * @hb2:                the to futex hash bucket, must be locked by the caller
1102  * @key1:               the from futex key
1103  * @key2:               the to futex key
1104  * @ps:                 address to store the pi_state pointer
1105  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1106  *
1107  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1108  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1109  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1110  * hb1 and hb2 must be held by the caller.
1111  *
1112  * Returns:
1113  *  0 - failed to acquire the lock atomicly
1114  *  1 - acquired the lock
1115  * <0 - error
1116  */
1117 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1118                                  struct futex_hash_bucket *hb1,
1119                                  struct futex_hash_bucket *hb2,
1120                                  union futex_key *key1, union futex_key *key2,
1121                                  struct futex_pi_state **ps, int set_waiters)
1122 {
1123         struct futex_q *top_waiter = NULL;
1124         u32 curval;
1125         int ret;
1126
1127         if (get_futex_value_locked(&curval, pifutex))
1128                 return -EFAULT;
1129
1130         /*
1131          * Find the top_waiter and determine if there are additional waiters.
1132          * If the caller intends to requeue more than 1 waiter to pifutex,
1133          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1134          * as we have means to handle the possible fault.  If not, don't set
1135          * the bit unecessarily as it will force the subsequent unlock to enter
1136          * the kernel.
1137          */
1138         top_waiter = futex_top_waiter(hb1, key1);
1139
1140         /* There are no waiters, nothing for us to do. */
1141         if (!top_waiter)
1142                 return 0;
1143
1144         /* Ensure we requeue to the expected futex. */
1145         if (!match_futex(top_waiter->requeue_pi_key, key2))
1146                 return -EINVAL;
1147
1148         /*
1149          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1150          * the contended case or if set_waiters is 1.  The pi_state is returned
1151          * in ps in contended cases.
1152          */
1153         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1154                                    set_waiters);
1155         if (ret == 1)
1156                 requeue_pi_wake_futex(top_waiter, key2, hb2);
1157
1158         return ret;
1159 }
1160
1161 /**
1162  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1163  * uaddr1:      source futex user address
1164  * uaddr2:      target futex user address
1165  * nr_wake:     number of waiters to wake (must be 1 for requeue_pi)
1166  * nr_requeue:  number of waiters to requeue (0-INT_MAX)
1167  * requeue_pi:  if we are attempting to requeue from a non-pi futex to a
1168  *              pi futex (pi to pi requeue is not supported)
1169  *
1170  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1171  * uaddr2 atomically on behalf of the top waiter.
1172  *
1173  * Returns:
1174  * >=0 - on success, the number of tasks requeued or woken
1175  *  <0 - on error
1176  */
1177 static int futex_requeue(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
1178                          int nr_wake, int nr_requeue, u32 *cmpval,
1179                          int requeue_pi)
1180 {
1181         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1182         int drop_count = 0, task_count = 0, ret;
1183         struct futex_pi_state *pi_state = NULL;
1184         struct futex_hash_bucket *hb1, *hb2;
1185         struct plist_head *head1;
1186         struct futex_q *this, *next;
1187         u32 curval2;
1188
1189         if (requeue_pi) {
1190                 /*
1191                  * requeue_pi requires a pi_state, try to allocate it now
1192                  * without any locks in case it fails.
1193                  */
1194                 if (refill_pi_state_cache())
1195                         return -ENOMEM;
1196                 /*
1197                  * requeue_pi must wake as many tasks as it can, up to nr_wake
1198                  * + nr_requeue, since it acquires the rt_mutex prior to
1199                  * returning to userspace, so as to not leave the rt_mutex with
1200                  * waiters and no owner.  However, second and third wake-ups
1201                  * cannot be predicted as they involve race conditions with the
1202                  * first wake and a fault while looking up the pi_state.  Both
1203                  * pthread_cond_signal() and pthread_cond_broadcast() should
1204                  * use nr_wake=1.
1205                  */
1206                 if (nr_wake != 1)
1207                         return -EINVAL;
1208         }
1209
1210 retry:
1211         if (pi_state != NULL) {
1212                 /*
1213                  * We will have to lookup the pi_state again, so free this one
1214                  * to keep the accounting correct.
1215                  */
1216                 free_pi_state(pi_state);
1217                 pi_state = NULL;
1218         }
1219
1220         ret = get_futex_key(uaddr1, fshared, &key1, VERIFY_READ);
1221         if (unlikely(ret != 0))
1222                 goto out;
1223         ret = get_futex_key(uaddr2, fshared, &key2,
1224                             requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1225         if (unlikely(ret != 0))
1226                 goto out_put_key1;
1227
1228         hb1 = hash_futex(&key1);
1229         hb2 = hash_futex(&key2);
1230
1231 retry_private:
1232         double_lock_hb(hb1, hb2);
1233
1234         if (likely(cmpval != NULL)) {
1235                 u32 curval;
1236
1237                 ret = get_futex_value_locked(&curval, uaddr1);
1238
1239                 if (unlikely(ret)) {
1240                         double_unlock_hb(hb1, hb2);
1241
1242                         ret = get_user(curval, uaddr1);
1243                         if (ret)
1244                                 goto out_put_keys;
1245
1246                         if (!fshared)
1247                                 goto retry_private;
1248
1249                         put_futex_key(fshared, &key2);
1250                         put_futex_key(fshared, &key1);
1251                         goto retry;
1252                 }
1253                 if (curval != *cmpval) {
1254                         ret = -EAGAIN;
1255                         goto out_unlock;
1256                 }
1257         }
1258
1259         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1260                 /*
1261                  * Attempt to acquire uaddr2 and wake the top waiter. If we
1262                  * intend to requeue waiters, force setting the FUTEX_WAITERS
1263                  * bit.  We force this here where we are able to easily handle
1264                  * faults rather in the requeue loop below.
1265                  */
1266                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1267                                                  &key2, &pi_state, nr_requeue);
1268
1269                 /*
1270                  * At this point the top_waiter has either taken uaddr2 or is
1271                  * waiting on it.  If the former, then the pi_state will not
1272                  * exist yet, look it up one more time to ensure we have a
1273                  * reference to it.
1274                  */
1275                 if (ret == 1) {
1276                         WARN_ON(pi_state);
1277                         drop_count++;
1278                         task_count++;
1279                         ret = get_futex_value_locked(&curval2, uaddr2);
1280                         if (!ret)
1281                                 ret = lookup_pi_state(curval2, hb2, &key2,
1282                                                       &pi_state);
1283                 }
1284
1285                 switch (ret) {
1286                 case 0:
1287                         break;
1288                 case -EFAULT:
1289                         double_unlock_hb(hb1, hb2);
1290                         put_futex_key(fshared, &key2);
1291                         put_futex_key(fshared, &key1);
1292                         ret = fault_in_user_writeable(uaddr2);
1293                         if (!ret)
1294                                 goto retry;
1295                         goto out;
1296                 case -EAGAIN:
1297                         /* The owner was exiting, try again. */
1298                         double_unlock_hb(hb1, hb2);
1299                         put_futex_key(fshared, &key2);
1300                         put_futex_key(fshared, &key1);
1301                         cond_resched();
1302                         goto retry;
1303                 default:
1304                         goto out_unlock;
1305                 }
1306         }
1307
1308         head1 = &hb1->chain;
1309         plist_for_each_entry_safe(this, next, head1, list) {
1310                 if (task_count - nr_wake >= nr_requeue)
1311                         break;
1312
1313                 if (!match_futex(&this->key, &key1))
1314                         continue;
1315
1316                 /*
1317                  * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1318                  * be paired with each other and no other futex ops.
1319                  */
1320                 if ((requeue_pi && !this->rt_waiter) ||
1321                     (!requeue_pi && this->rt_waiter)) {
1322                         ret = -EINVAL;
1323                         break;
1324                 }
1325
1326                 /*
1327                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
1328                  * lock, we already woke the top_waiter.  If not, it will be
1329                  * woken by futex_unlock_pi().
1330                  */
1331                 if (++task_count <= nr_wake && !requeue_pi) {
1332                         wake_futex(this);
1333                         continue;
1334                 }
1335
1336                 /* Ensure we requeue to the expected futex for requeue_pi. */
1337                 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1338                         ret = -EINVAL;
1339                         break;
1340                 }
1341
1342                 /*
1343                  * Requeue nr_requeue waiters and possibly one more in the case
1344                  * of requeue_pi if we couldn't acquire the lock atomically.
1345                  */
1346                 if (requeue_pi) {
1347                         /* Prepare the waiter to take the rt_mutex. */
1348                         atomic_inc(&pi_state->refcount);
1349                         this->pi_state = pi_state;
1350                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1351                                                         this->rt_waiter,
1352                                                         this->task, 1);
1353                         if (ret == 1) {
1354                                 /* We got the lock. */
1355                                 requeue_pi_wake_futex(this, &key2, hb2);
1356                                 drop_count++;
1357                                 continue;
1358                         } else if (ret) {
1359                                 /* -EDEADLK */
1360                                 this->pi_state = NULL;
1361                                 free_pi_state(pi_state);
1362                                 goto out_unlock;
1363                         }
1364                 }
1365                 requeue_futex(this, hb1, hb2, &key2);
1366                 drop_count++;
1367         }
1368
1369 out_unlock:
1370         double_unlock_hb(hb1, hb2);
1371
1372         /*
1373          * drop_futex_key_refs() must be called outside the spinlocks. During
1374          * the requeue we moved futex_q's from the hash bucket at key1 to the
1375          * one at key2 and updated their key pointer.  We no longer need to
1376          * hold the references to key1.
1377          */
1378         while (--drop_count >= 0)
1379                 drop_futex_key_refs(&key1);
1380
1381 out_put_keys:
1382         put_futex_key(fshared, &key2);
1383 out_put_key1:
1384         put_futex_key(fshared, &key1);
1385 out:
1386         if (pi_state != NULL)
1387                 free_pi_state(pi_state);
1388         return ret ? ret : task_count;
1389 }
1390
1391 /* The key must be already stored in q->key. */
1392 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1393 {
1394         struct futex_hash_bucket *hb;
1395
1396         hb = hash_futex(&q->key);
1397         q->lock_ptr = &hb->lock;
1398
1399         spin_lock(&hb->lock);
1400         return hb;
1401 }
1402
1403 static inline void
1404 queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1405 {
1406         spin_unlock(&hb->lock);
1407 }
1408
1409 /**
1410  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1411  * @q:  The futex_q to enqueue
1412  * @hb: The destination hash bucket
1413  *
1414  * The hb->lock must be held by the caller, and is released here. A call to
1415  * queue_me() is typically paired with exactly one call to unqueue_me().  The
1416  * exceptions involve the PI related operations, which may use unqueue_me_pi()
1417  * or nothing if the unqueue is done as part of the wake process and the unqueue
1418  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1419  * an example).
1420  */
1421 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1422 {
1423         int prio;
1424
1425         /*
1426          * The priority used to register this element is
1427          * - either the real thread-priority for the real-time threads
1428          * (i.e. threads with a priority lower than MAX_RT_PRIO)
1429          * - or MAX_RT_PRIO for non-RT threads.
1430          * Thus, all RT-threads are woken first in priority order, and
1431          * the others are woken last, in FIFO order.
1432          */
1433         prio = min(current->normal_prio, MAX_RT_PRIO);
1434
1435         plist_node_init(&q->list, prio);
1436 #ifdef CONFIG_DEBUG_PI_LIST
1437         q->list.plist.lock = &hb->lock;
1438 #endif
1439         plist_add(&q->list, &hb->chain);
1440         q->task = current;
1441         spin_unlock(&hb->lock);
1442 }
1443
1444 /**
1445  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1446  * @q:  The futex_q to unqueue
1447  *
1448  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1449  * be paired with exactly one earlier call to queue_me().
1450  *
1451  * Returns:
1452  *   1 - if the futex_q was still queued (and we removed unqueued it)
1453  *   0 - if the futex_q was already removed by the waking thread
1454  */
1455 static int unqueue_me(struct futex_q *q)
1456 {
1457         spinlock_t *lock_ptr;
1458         int ret = 0;
1459
1460         /* In the common case we don't take the spinlock, which is nice. */
1461 retry:
1462         lock_ptr = q->lock_ptr;
1463         barrier();
1464         if (lock_ptr != NULL) {
1465                 spin_lock(lock_ptr);
1466                 /*
1467                  * q->lock_ptr can change between reading it and
1468                  * spin_lock(), causing us to take the wrong lock.  This
1469                  * corrects the race condition.
1470                  *
1471                  * Reasoning goes like this: if we have the wrong lock,
1472                  * q->lock_ptr must have changed (maybe several times)
1473                  * between reading it and the spin_lock().  It can
1474                  * change again after the spin_lock() but only if it was
1475                  * already changed before the spin_lock().  It cannot,
1476                  * however, change back to the original value.  Therefore
1477                  * we can detect whether we acquired the correct lock.
1478                  */
1479                 if (unlikely(lock_ptr != q->lock_ptr)) {
1480                         spin_unlock(lock_ptr);
1481                         goto retry;
1482                 }
1483                 WARN_ON(plist_node_empty(&q->list));
1484                 plist_del(&q->list, &q->list.plist);
1485
1486                 BUG_ON(q->pi_state);
1487
1488                 spin_unlock(lock_ptr);
1489                 ret = 1;
1490         }
1491
1492         drop_futex_key_refs(&q->key);
1493         return ret;
1494 }
1495
1496 /*
1497  * PI futexes can not be requeued and must remove themself from the
1498  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1499  * and dropped here.
1500  */
1501 static void unqueue_me_pi(struct futex_q *q)
1502 {
1503         WARN_ON(plist_node_empty(&q->list));
1504         plist_del(&q->list, &q->list.plist);
1505
1506         BUG_ON(!q->pi_state);
1507         free_pi_state(q->pi_state);
1508         q->pi_state = NULL;
1509
1510         spin_unlock(q->lock_ptr);
1511 }
1512
1513 /*
1514  * Fixup the pi_state owner with the new owner.
1515  *
1516  * Must be called with hash bucket lock held and mm->sem held for non
1517  * private futexes.
1518  */
1519 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1520                                 struct task_struct *newowner, int fshared)
1521 {
1522         u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1523         struct futex_pi_state *pi_state = q->pi_state;
1524         struct task_struct *oldowner = pi_state->owner;
1525         u32 uval, curval, newval;
1526         int ret;
1527
1528         /* Owner died? */
1529         if (!pi_state->owner)
1530                 newtid |= FUTEX_OWNER_DIED;
1531
1532         /*
1533          * We are here either because we stole the rtmutex from the
1534          * pending owner or we are the pending owner which failed to
1535          * get the rtmutex. We have to replace the pending owner TID
1536          * in the user space variable. This must be atomic as we have
1537          * to preserve the owner died bit here.
1538          *
1539          * Note: We write the user space value _before_ changing the pi_state
1540          * because we can fault here. Imagine swapped out pages or a fork
1541          * that marked all the anonymous memory readonly for cow.
1542          *
1543          * Modifying pi_state _before_ the user space value would
1544          * leave the pi_state in an inconsistent state when we fault
1545          * here, because we need to drop the hash bucket lock to
1546          * handle the fault. This might be observed in the PID check
1547          * in lookup_pi_state.
1548          */
1549 retry:
1550         if (get_futex_value_locked(&uval, uaddr))
1551                 goto handle_fault;
1552
1553         while (1) {
1554                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1555
1556                 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1557
1558                 if (curval == -EFAULT)
1559                         goto handle_fault;
1560                 if (curval == uval)
1561                         break;
1562                 uval = curval;
1563         }
1564
1565         /*
1566          * We fixed up user space. Now we need to fix the pi_state
1567          * itself.
1568          */
1569         if (pi_state->owner != NULL) {
1570                 spin_lock_irq(&pi_state->owner->pi_lock);
1571                 WARN_ON(list_empty(&pi_state->list));
1572                 list_del_init(&pi_state->list);
1573                 spin_unlock_irq(&pi_state->owner->pi_lock);
1574         }
1575
1576         pi_state->owner = newowner;
1577
1578         spin_lock_irq(&newowner->pi_lock);
1579         WARN_ON(!list_empty(&pi_state->list));
1580         list_add(&pi_state->list, &newowner->pi_state_list);
1581         spin_unlock_irq(&newowner->pi_lock);
1582         return 0;
1583
1584         /*
1585          * To handle the page fault we need to drop the hash bucket
1586          * lock here. That gives the other task (either the pending
1587          * owner itself or the task which stole the rtmutex) the
1588          * chance to try the fixup of the pi_state. So once we are
1589          * back from handling the fault we need to check the pi_state
1590          * after reacquiring the hash bucket lock and before trying to
1591          * do another fixup. When the fixup has been done already we
1592          * simply return.
1593          */
1594 handle_fault:
1595         spin_unlock(q->lock_ptr);
1596
1597         ret = fault_in_user_writeable(uaddr);
1598
1599         spin_lock(q->lock_ptr);
1600
1601         /*
1602          * Check if someone else fixed it for us:
1603          */
1604         if (pi_state->owner != oldowner)
1605                 return 0;
1606
1607         if (ret)
1608                 return ret;
1609
1610         goto retry;
1611 }
1612
1613 /*
1614  * In case we must use restart_block to restart a futex_wait,
1615  * we encode in the 'flags' shared capability
1616  */
1617 #define FLAGS_SHARED            0x01
1618 #define FLAGS_CLOCKRT           0x02
1619 #define FLAGS_HAS_TIMEOUT       0x04
1620
1621 static long futex_wait_restart(struct restart_block *restart);
1622
1623 /**
1624  * fixup_owner() - Post lock pi_state and corner case management
1625  * @uaddr:      user address of the futex
1626  * @fshared:    whether the futex is shared (1) or not (0)
1627  * @q:          futex_q (contains pi_state and access to the rt_mutex)
1628  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
1629  *
1630  * After attempting to lock an rt_mutex, this function is called to cleanup
1631  * the pi_state owner as well as handle race conditions that may allow us to
1632  * acquire the lock. Must be called with the hb lock held.
1633  *
1634  * Returns:
1635  *  1 - success, lock taken
1636  *  0 - success, lock not taken
1637  * <0 - on error (-EFAULT)
1638  */
1639 static int fixup_owner(u32 __user *uaddr, int fshared, struct futex_q *q,
1640                        int locked)
1641 {
1642         struct task_struct *owner;
1643         int ret = 0;
1644
1645         if (locked) {
1646                 /*
1647                  * Got the lock. We might not be the anticipated owner if we
1648                  * did a lock-steal - fix up the PI-state in that case:
1649                  */
1650                 if (q->pi_state->owner != current)
1651                         ret = fixup_pi_state_owner(uaddr, q, current, fshared);
1652                 goto out;
1653         }
1654
1655         /*
1656          * Catch the rare case, where the lock was released when we were on the
1657          * way back before we locked the hash bucket.
1658          */
1659         if (q->pi_state->owner == current) {
1660                 /*
1661                  * Try to get the rt_mutex now. This might fail as some other
1662                  * task acquired the rt_mutex after we removed ourself from the
1663                  * rt_mutex waiters list.
1664                  */
1665                 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1666                         locked = 1;
1667                         goto out;
1668                 }
1669
1670                 /*
1671                  * pi_state is incorrect, some other task did a lock steal and
1672                  * we returned due to timeout or signal without taking the
1673                  * rt_mutex. Too late. We can access the rt_mutex_owner without
1674                  * locking, as the other task is now blocked on the hash bucket
1675                  * lock. Fix the state up.
1676                  */
1677                 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1678                 ret = fixup_pi_state_owner(uaddr, q, owner, fshared);
1679                 goto out;
1680         }
1681
1682         /*
1683          * Paranoia check. If we did not take the lock, then we should not be
1684          * the owner, nor the pending owner, of the rt_mutex.
1685          */
1686         if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1687                 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1688                                 "pi-state %p\n", ret,
1689                                 q->pi_state->pi_mutex.owner,
1690                                 q->pi_state->owner);
1691
1692 out:
1693         return ret ? ret : locked;
1694 }
1695
1696 /**
1697  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1698  * @hb:         the futex hash bucket, must be locked by the caller
1699  * @q:          the futex_q to queue up on
1700  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
1701  */
1702 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
1703                                 struct hrtimer_sleeper *timeout)
1704 {
1705         /*
1706          * The task state is guaranteed to be set before another task can
1707          * wake it. set_current_state() is implemented using set_mb() and
1708          * queue_me() calls spin_unlock() upon completion, both serializing
1709          * access to the hash list and forcing another memory barrier.
1710          */
1711         set_current_state(TASK_INTERRUPTIBLE);
1712         queue_me(q, hb);
1713
1714         /* Arm the timer */
1715         if (timeout) {
1716                 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1717                 if (!hrtimer_active(&timeout->timer))
1718                         timeout->task = NULL;
1719         }
1720
1721         /*
1722          * If we have been removed from the hash list, then another task
1723          * has tried to wake us, and we can skip the call to schedule().
1724          */
1725         if (likely(!plist_node_empty(&q->list))) {
1726                 /*
1727                  * If the timer has already expired, current will already be
1728                  * flagged for rescheduling. Only call schedule if there
1729                  * is no timeout, or if it has yet to expire.
1730                  */
1731                 if (!timeout || timeout->task)
1732                         schedule();
1733         }
1734         __set_current_state(TASK_RUNNING);
1735 }
1736
1737 /**
1738  * futex_wait_setup() - Prepare to wait on a futex
1739  * @uaddr:      the futex userspace address
1740  * @val:        the expected value
1741  * @fshared:    whether the futex is shared (1) or not (0)
1742  * @q:          the associated futex_q
1743  * @hb:         storage for hash_bucket pointer to be returned to caller
1744  *
1745  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
1746  * compare it with the expected value.  Handle atomic faults internally.
1747  * Return with the hb lock held and a q.key reference on success, and unlocked
1748  * with no q.key reference on failure.
1749  *
1750  * Returns:
1751  *  0 - uaddr contains val and hb has been locked
1752  * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlcoked
1753  */
1754 static int futex_wait_setup(u32 __user *uaddr, u32 val, int fshared,
1755                            struct futex_q *q, struct futex_hash_bucket **hb)
1756 {
1757         u32 uval;
1758         int ret;
1759
1760         /*
1761          * Access the page AFTER the hash-bucket is locked.
1762          * Order is important:
1763          *
1764          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1765          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
1766          *
1767          * The basic logical guarantee of a futex is that it blocks ONLY
1768          * if cond(var) is known to be true at the time of blocking, for
1769          * any cond.  If we queued after testing *uaddr, that would open
1770          * a race condition where we could block indefinitely with
1771          * cond(var) false, which would violate the guarantee.
1772          *
1773          * A consequence is that futex_wait() can return zero and absorb
1774          * a wakeup when *uaddr != val on entry to the syscall.  This is
1775          * rare, but normal.
1776          */
1777 retry:
1778         q->key = FUTEX_KEY_INIT;
1779         ret = get_futex_key(uaddr, fshared, &q->key, VERIFY_READ);
1780         if (unlikely(ret != 0))
1781                 return ret;
1782
1783 retry_private:
1784         *hb = queue_lock(q);
1785
1786         ret = get_futex_value_locked(&uval, uaddr);
1787
1788         if (ret) {
1789                 queue_unlock(q, *hb);
1790
1791                 ret = get_user(uval, uaddr);
1792                 if (ret)
1793                         goto out;
1794
1795                 if (!fshared)
1796                         goto retry_private;
1797
1798                 put_futex_key(fshared, &q->key);
1799                 goto retry;
1800         }
1801
1802         if (uval != val) {
1803                 queue_unlock(q, *hb);
1804                 ret = -EWOULDBLOCK;
1805         }
1806
1807 out:
1808         if (ret)
1809                 put_futex_key(fshared, &q->key);
1810         return ret;
1811 }
1812
1813 static int futex_wait(u32 __user *uaddr, int fshared,
1814                       u32 val, ktime_t *abs_time, u32 bitset, int clockrt)
1815 {
1816         struct hrtimer_sleeper timeout, *to = NULL;
1817         struct restart_block *restart;
1818         struct futex_hash_bucket *hb;
1819         struct futex_q q;
1820         int ret;
1821
1822         if (!bitset)
1823                 return -EINVAL;
1824
1825         q.pi_state = NULL;
1826         q.bitset = bitset;
1827         q.rt_waiter = NULL;
1828         q.requeue_pi_key = NULL;
1829
1830         if (abs_time) {
1831                 to = &timeout;
1832
1833                 hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
1834                                       CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1835                 hrtimer_init_sleeper(to, current);
1836                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
1837                                              current->timer_slack_ns);
1838         }
1839
1840 retry:
1841         /*
1842          * Prepare to wait on uaddr. On success, holds hb lock and increments
1843          * q.key refs.
1844          */
1845         ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
1846         if (ret)
1847                 goto out;
1848
1849         /* queue_me and wait for wakeup, timeout, or a signal. */
1850         futex_wait_queue_me(hb, &q, to);
1851
1852         /* If we were woken (and unqueued), we succeeded, whatever. */
1853         ret = 0;
1854         /* unqueue_me() drops q.key ref */
1855         if (!unqueue_me(&q))
1856                 goto out;
1857         ret = -ETIMEDOUT;
1858         if (to && !to->task)
1859                 goto out;
1860
1861         /*
1862          * We expect signal_pending(current), but we might be the
1863          * victim of a spurious wakeup as well.
1864          */
1865         if (!signal_pending(current))
1866                 goto retry;
1867
1868         ret = -ERESTARTSYS;
1869         if (!abs_time)
1870                 goto out;
1871
1872         restart = &current_thread_info()->restart_block;
1873         restart->fn = futex_wait_restart;
1874         restart->futex.uaddr = (u32 *)uaddr;
1875         restart->futex.val = val;
1876         restart->futex.time = abs_time->tv64;
1877         restart->futex.bitset = bitset;
1878         restart->futex.flags = FLAGS_HAS_TIMEOUT;
1879
1880         if (fshared)
1881                 restart->futex.flags |= FLAGS_SHARED;
1882         if (clockrt)
1883                 restart->futex.flags |= FLAGS_CLOCKRT;
1884
1885         ret = -ERESTART_RESTARTBLOCK;
1886
1887 out:
1888         if (to) {
1889                 hrtimer_cancel(&to->timer);
1890                 destroy_hrtimer_on_stack(&to->timer);
1891         }
1892         return ret;
1893 }
1894
1895
1896 static long futex_wait_restart(struct restart_block *restart)
1897 {
1898         u32 __user *uaddr = (u32 __user *)restart->futex.uaddr;
1899         int fshared = 0;
1900         ktime_t t, *tp = NULL;
1901
1902         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
1903                 t.tv64 = restart->futex.time;
1904                 tp = &t;
1905         }
1906         restart->fn = do_no_restart_syscall;
1907         if (restart->futex.flags & FLAGS_SHARED)
1908                 fshared = 1;
1909         return (long)futex_wait(uaddr, fshared, restart->futex.val, tp,
1910                                 restart->futex.bitset,
1911                                 restart->futex.flags & FLAGS_CLOCKRT);
1912 }
1913
1914
1915 /*
1916  * Userspace tried a 0 -> TID atomic transition of the futex value
1917  * and failed. The kernel side here does the whole locking operation:
1918  * if there are waiters then it will block, it does PI, etc. (Due to
1919  * races the kernel might see a 0 value of the futex too.)
1920  */
1921 static int futex_lock_pi(u32 __user *uaddr, int fshared,
1922                          int detect, ktime_t *time, int trylock)
1923 {
1924         struct hrtimer_sleeper timeout, *to = NULL;
1925         struct futex_hash_bucket *hb;
1926         struct futex_q q;
1927         int res, ret;
1928
1929         if (refill_pi_state_cache())
1930                 return -ENOMEM;
1931
1932         if (time) {
1933                 to = &timeout;
1934                 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1935                                       HRTIMER_MODE_ABS);
1936                 hrtimer_init_sleeper(to, current);
1937                 hrtimer_set_expires(&to->timer, *time);
1938         }
1939
1940         q.pi_state = NULL;
1941         q.rt_waiter = NULL;
1942         q.requeue_pi_key = NULL;
1943 retry:
1944         q.key = FUTEX_KEY_INIT;
1945         ret = get_futex_key(uaddr, fshared, &q.key, VERIFY_WRITE);
1946         if (unlikely(ret != 0))
1947                 goto out;
1948
1949 retry_private:
1950         hb = queue_lock(&q);
1951
1952         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
1953         if (unlikely(ret)) {
1954                 switch (ret) {
1955                 case 1:
1956                         /* We got the lock. */
1957                         ret = 0;
1958                         goto out_unlock_put_key;
1959                 case -EFAULT:
1960                         goto uaddr_faulted;
1961                 case -EAGAIN:
1962                         /*
1963                          * Task is exiting and we just wait for the
1964                          * exit to complete.
1965                          */
1966                         queue_unlock(&q, hb);
1967                         put_futex_key(fshared, &q.key);
1968                         cond_resched();
1969                         goto retry;
1970                 default:
1971                         goto out_unlock_put_key;
1972                 }
1973         }
1974
1975         /*
1976          * Only actually queue now that the atomic ops are done:
1977          */
1978         queue_me(&q, hb);
1979
1980         WARN_ON(!q.pi_state);
1981         /*
1982          * Block on the PI mutex:
1983          */
1984         if (!trylock)
1985                 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1986         else {
1987                 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1988                 /* Fixup the trylock return value: */
1989                 ret = ret ? 0 : -EWOULDBLOCK;
1990         }
1991
1992         spin_lock(q.lock_ptr);
1993         /*
1994          * Fixup the pi_state owner and possibly acquire the lock if we
1995          * haven't already.
1996          */
1997         res = fixup_owner(uaddr, fshared, &q, !ret);
1998         /*
1999          * If fixup_owner() returned an error, proprogate that.  If it acquired
2000          * the lock, clear our -ETIMEDOUT or -EINTR.
2001          */
2002         if (res)
2003                 ret = (res < 0) ? res : 0;
2004
2005         /*
2006          * If fixup_owner() faulted and was unable to handle the fault, unlock
2007          * it and return the fault to userspace.
2008          */
2009         if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2010                 rt_mutex_unlock(&q.pi_state->pi_mutex);
2011
2012         /* Unqueue and drop the lock */
2013         unqueue_me_pi(&q);
2014
2015         goto out_put_key;
2016
2017 out_unlock_put_key:
2018         queue_unlock(&q, hb);
2019
2020 out_put_key:
2021         put_futex_key(fshared, &q.key);
2022 out:
2023         if (to)
2024                 destroy_hrtimer_on_stack(&to->timer);
2025         return ret != -EINTR ? ret : -ERESTARTNOINTR;
2026
2027 uaddr_faulted:
2028         queue_unlock(&q, hb);
2029
2030         ret = fault_in_user_writeable(uaddr);
2031         if (ret)
2032                 goto out_put_key;
2033
2034         if (!fshared)
2035                 goto retry_private;
2036
2037         put_futex_key(fshared, &q.key);
2038         goto retry;
2039 }
2040
2041 /*
2042  * Userspace attempted a TID -> 0 atomic transition, and failed.
2043  * This is the in-kernel slowpath: we look up the PI state (if any),
2044  * and do the rt-mutex unlock.
2045  */
2046 static int futex_unlock_pi(u32 __user *uaddr, int fshared)
2047 {
2048         struct futex_hash_bucket *hb;
2049         struct futex_q *this, *next;
2050         u32 uval;
2051         struct plist_head *head;
2052         union futex_key key = FUTEX_KEY_INIT;
2053         int ret;
2054
2055 retry:
2056         if (get_user(uval, uaddr))
2057                 return -EFAULT;
2058         /*
2059          * We release only a lock we actually own:
2060          */
2061         if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
2062                 return -EPERM;
2063
2064         ret = get_futex_key(uaddr, fshared, &key, VERIFY_WRITE);
2065         if (unlikely(ret != 0))
2066                 goto out;
2067
2068         hb = hash_futex(&key);
2069         spin_lock(&hb->lock);
2070
2071         /*
2072          * To avoid races, try to do the TID -> 0 atomic transition
2073          * again. If it succeeds then we can return without waking
2074          * anyone else up:
2075          */
2076         if (!(uval & FUTEX_OWNER_DIED))
2077                 uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
2078
2079
2080         if (unlikely(uval == -EFAULT))
2081                 goto pi_faulted;
2082         /*
2083          * Rare case: we managed to release the lock atomically,
2084          * no need to wake anyone else up:
2085          */
2086         if (unlikely(uval == task_pid_vnr(current)))
2087                 goto out_unlock;
2088
2089         /*
2090          * Ok, other tasks may need to be woken up - check waiters
2091          * and do the wakeup if necessary:
2092          */
2093         head = &hb->chain;
2094
2095         plist_for_each_entry_safe(this, next, head, list) {
2096                 if (!match_futex (&this->key, &key))
2097                         continue;
2098                 ret = wake_futex_pi(uaddr, uval, this);
2099                 /*
2100                  * The atomic access to the futex value
2101                  * generated a pagefault, so retry the
2102                  * user-access and the wakeup:
2103                  */
2104                 if (ret == -EFAULT)
2105                         goto pi_faulted;
2106                 goto out_unlock;
2107         }
2108         /*
2109          * No waiters - kernel unlocks the futex:
2110          */
2111         if (!(uval & FUTEX_OWNER_DIED)) {
2112                 ret = unlock_futex_pi(uaddr, uval);
2113                 if (ret == -EFAULT)
2114                         goto pi_faulted;
2115         }
2116
2117 out_unlock:
2118         spin_unlock(&hb->lock);
2119         put_futex_key(fshared, &key);
2120
2121 out:
2122         return ret;
2123
2124 pi_faulted:
2125         spin_unlock(&hb->lock);
2126         put_futex_key(fshared, &key);
2127
2128         ret = fault_in_user_writeable(uaddr);
2129         if (!ret)
2130                 goto retry;
2131
2132         return ret;
2133 }
2134
2135 /**
2136  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2137  * @hb:         the hash_bucket futex_q was original enqueued on
2138  * @q:          the futex_q woken while waiting to be requeued
2139  * @key2:       the futex_key of the requeue target futex
2140  * @timeout:    the timeout associated with the wait (NULL if none)
2141  *
2142  * Detect if the task was woken on the initial futex as opposed to the requeue
2143  * target futex.  If so, determine if it was a timeout or a signal that caused
2144  * the wakeup and return the appropriate error code to the caller.  Must be
2145  * called with the hb lock held.
2146  *
2147  * Returns
2148  *  0 - no early wakeup detected
2149  * <0 - -ETIMEDOUT or -ERESTARTNOINTR
2150  */
2151 static inline
2152 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2153                                    struct futex_q *q, union futex_key *key2,
2154                                    struct hrtimer_sleeper *timeout)
2155 {
2156         int ret = 0;
2157
2158         /*
2159          * With the hb lock held, we avoid races while we process the wakeup.
2160          * We only need to hold hb (and not hb2) to ensure atomicity as the
2161          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2162          * It can't be requeued from uaddr2 to something else since we don't
2163          * support a PI aware source futex for requeue.
2164          */
2165         if (!match_futex(&q->key, key2)) {
2166                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2167                 /*
2168                  * We were woken prior to requeue by a timeout or a signal.
2169                  * Unqueue the futex_q and determine which it was.
2170                  */
2171                 plist_del(&q->list, &q->list.plist);
2172
2173                 /* Handle spurious wakeups gracefully */
2174                 ret = -EWOULDBLOCK;
2175                 if (timeout && !timeout->task)
2176                         ret = -ETIMEDOUT;
2177                 else if (signal_pending(current))
2178                         ret = -ERESTARTNOINTR;
2179         }
2180         return ret;
2181 }
2182
2183 /**
2184  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2185  * @uaddr:      the futex we initially wait on (non-pi)
2186  * @fshared:    whether the futexes are shared (1) or not (0).  They must be
2187  *              the same type, no requeueing from private to shared, etc.
2188  * @val:        the expected value of uaddr
2189  * @abs_time:   absolute timeout
2190  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
2191  * @clockrt:    whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0)
2192  * @uaddr2:     the pi futex we will take prior to returning to user-space
2193  *
2194  * The caller will wait on uaddr and will be requeued by futex_requeue() to
2195  * uaddr2 which must be PI aware.  Normal wakeup will wake on uaddr2 and
2196  * complete the acquisition of the rt_mutex prior to returning to userspace.
2197  * This ensures the rt_mutex maintains an owner when it has waiters; without
2198  * one, the pi logic wouldn't know which task to boost/deboost, if there was a
2199  * need to.
2200  *
2201  * We call schedule in futex_wait_queue_me() when we enqueue and return there
2202  * via the following:
2203  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2204  * 2) wakeup on uaddr2 after a requeue
2205  * 3) signal
2206  * 4) timeout
2207  *
2208  * If 3, cleanup and return -ERESTARTNOINTR.
2209  *
2210  * If 2, we may then block on trying to take the rt_mutex and return via:
2211  * 5) successful lock
2212  * 6) signal
2213  * 7) timeout
2214  * 8) other lock acquisition failure
2215  *
2216  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2217  *
2218  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2219  *
2220  * Returns:
2221  *  0 - On success
2222  * <0 - On error
2223  */
2224 static int futex_wait_requeue_pi(u32 __user *uaddr, int fshared,
2225                                  u32 val, ktime_t *abs_time, u32 bitset,
2226                                  int clockrt, u32 __user *uaddr2)
2227 {
2228         struct hrtimer_sleeper timeout, *to = NULL;
2229         struct rt_mutex_waiter rt_waiter;
2230         struct rt_mutex *pi_mutex = NULL;
2231         struct futex_hash_bucket *hb;
2232         union futex_key key2;
2233         struct futex_q q;
2234         int res, ret;
2235
2236         if (!bitset)
2237                 return -EINVAL;
2238
2239         if (abs_time) {
2240                 to = &timeout;
2241                 hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
2242                                       CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2243                 hrtimer_init_sleeper(to, current);
2244                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2245                                              current->timer_slack_ns);
2246         }
2247
2248         /*
2249          * The waiter is allocated on our stack, manipulated by the requeue
2250          * code while we sleep on uaddr.
2251          */
2252         debug_rt_mutex_init_waiter(&rt_waiter);
2253         rt_waiter.task = NULL;
2254
2255         key2 = FUTEX_KEY_INIT;
2256         ret = get_futex_key(uaddr2, fshared, &key2, VERIFY_WRITE);
2257         if (unlikely(ret != 0))
2258                 goto out;
2259
2260         q.pi_state = NULL;
2261         q.bitset = bitset;
2262         q.rt_waiter = &rt_waiter;
2263         q.requeue_pi_key = &key2;
2264
2265         /*
2266          * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2267          * count.
2268          */
2269         ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
2270         if (ret)
2271                 goto out_key2;
2272
2273         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2274         futex_wait_queue_me(hb, &q, to);
2275
2276         spin_lock(&hb->lock);
2277         ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2278         spin_unlock(&hb->lock);
2279         if (ret)
2280                 goto out_put_keys;
2281
2282         /*
2283          * In order for us to be here, we know our q.key == key2, and since
2284          * we took the hb->lock above, we also know that futex_requeue() has
2285          * completed and we no longer have to concern ourselves with a wakeup
2286          * race with the atomic proxy lock acquisition by the requeue code. The
2287          * futex_requeue dropped our key1 reference and incremented our key2
2288          * reference count.
2289          */
2290
2291         /* Check if the requeue code acquired the second futex for us. */
2292         if (!q.rt_waiter) {
2293                 /*
2294                  * Got the lock. We might not be the anticipated owner if we
2295                  * did a lock-steal - fix up the PI-state in that case.
2296                  */
2297                 if (q.pi_state && (q.pi_state->owner != current)) {
2298                         spin_lock(q.lock_ptr);
2299                         ret = fixup_pi_state_owner(uaddr2, &q, current,
2300                                                    fshared);
2301                         spin_unlock(q.lock_ptr);
2302                 }
2303         } else {
2304                 /*
2305                  * We have been woken up by futex_unlock_pi(), a timeout, or a
2306                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
2307                  * the pi_state.
2308                  */
2309                 WARN_ON(!&q.pi_state);
2310                 pi_mutex = &q.pi_state->pi_mutex;
2311                 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2312                 debug_rt_mutex_free_waiter(&rt_waiter);
2313
2314                 spin_lock(q.lock_ptr);
2315                 /*
2316                  * Fixup the pi_state owner and possibly acquire the lock if we
2317                  * haven't already.
2318                  */
2319                 res = fixup_owner(uaddr2, fshared, &q, !ret);
2320                 /*
2321                  * If fixup_owner() returned an error, proprogate that.  If it
2322                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
2323                  */
2324                 if (res)
2325                         ret = (res < 0) ? res : 0;
2326
2327                 /* Unqueue and drop the lock. */
2328                 unqueue_me_pi(&q);
2329         }
2330
2331         /*
2332          * If fixup_pi_state_owner() faulted and was unable to handle the
2333          * fault, unlock the rt_mutex and return the fault to userspace.
2334          */
2335         if (ret == -EFAULT) {
2336                 if (rt_mutex_owner(pi_mutex) == current)
2337                         rt_mutex_unlock(pi_mutex);
2338         } else if (ret == -EINTR) {
2339                 /*
2340                  * We've already been requeued, but cannot restart by calling
2341                  * futex_lock_pi() directly. We could restart this syscall, but
2342                  * it would detect that the user space "val" changed and return
2343                  * -EWOULDBLOCK.  Save the overhead of the restart and return
2344                  * -EWOULDBLOCK directly.
2345                  */
2346                 ret = -EWOULDBLOCK;
2347         }
2348
2349 out_put_keys:
2350         put_futex_key(fshared, &q.key);
2351 out_key2:
2352         put_futex_key(fshared, &key2);
2353
2354 out:
2355         if (to) {
2356                 hrtimer_cancel(&to->timer);
2357                 destroy_hrtimer_on_stack(&to->timer);
2358         }
2359         return ret;
2360 }
2361
2362 /*
2363  * Support for robust futexes: the kernel cleans up held futexes at
2364  * thread exit time.
2365  *
2366  * Implementation: user-space maintains a per-thread list of locks it
2367  * is holding. Upon do_exit(), the kernel carefully walks this list,
2368  * and marks all locks that are owned by this thread with the
2369  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2370  * always manipulated with the lock held, so the list is private and
2371  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2372  * field, to allow the kernel to clean up if the thread dies after
2373  * acquiring the lock, but just before it could have added itself to
2374  * the list. There can only be one such pending lock.
2375  */
2376
2377 /**
2378  * sys_set_robust_list() - Set the robust-futex list head of a task
2379  * @head:       pointer to the list-head
2380  * @len:        length of the list-head, as userspace expects
2381  */
2382 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2383                 size_t, len)
2384 {
2385         if (!futex_cmpxchg_enabled)
2386                 return -ENOSYS;
2387         /*
2388          * The kernel knows only one size for now:
2389          */
2390         if (unlikely(len != sizeof(*head)))
2391                 return -EINVAL;
2392
2393         current->robust_list = head;
2394
2395         return 0;
2396 }
2397
2398 /**
2399  * sys_get_robust_list() - Get the robust-futex list head of a task
2400  * @pid:        pid of the process [zero for current task]
2401  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
2402  * @len_ptr:    pointer to a length field, the kernel fills in the header size
2403  */
2404 SYSCALL_DEFINE3(get_robust_list, int, pid,
2405                 struct robust_list_head __user * __user *, head_ptr,
2406                 size_t __user *, len_ptr)
2407 {
2408         struct robust_list_head __user *head;
2409         unsigned long ret;
2410         const struct cred *cred = current_cred(), *pcred;
2411
2412         if (!futex_cmpxchg_enabled)
2413                 return -ENOSYS;
2414
2415         if (!pid)
2416                 head = current->robust_list;
2417         else {
2418                 struct task_struct *p;
2419
2420                 ret = -ESRCH;
2421                 rcu_read_lock();
2422                 p = find_task_by_vpid(pid);
2423                 if (!p)
2424                         goto err_unlock;
2425                 ret = -EPERM;
2426                 pcred = __task_cred(p);
2427                 if (cred->euid != pcred->euid &&
2428                     cred->euid != pcred->uid &&
2429                     !capable(CAP_SYS_PTRACE))
2430                         goto err_unlock;
2431                 head = p->robust_list;
2432                 rcu_read_unlock();
2433         }
2434
2435         if (put_user(sizeof(*head), len_ptr))
2436                 return -EFAULT;
2437         return put_user(head, head_ptr);
2438
2439 err_unlock:
2440         rcu_read_unlock();
2441
2442         return ret;
2443 }
2444
2445 /*
2446  * Process a futex-list entry, check whether it's owned by the
2447  * dying task, and do notification if so:
2448  */
2449 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2450 {
2451         u32 uval, nval, mval;
2452
2453 retry:
2454         if (get_user(uval, uaddr))
2455                 return -1;
2456
2457         if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2458                 /*
2459                  * Ok, this dying thread is truly holding a futex
2460                  * of interest. Set the OWNER_DIED bit atomically
2461                  * via cmpxchg, and if the value had FUTEX_WAITERS
2462                  * set, wake up a waiter (if any). (We have to do a
2463                  * futex_wake() even if OWNER_DIED is already set -
2464                  * to handle the rare but possible case of recursive
2465                  * thread-death.) The rest of the cleanup is done in
2466                  * userspace.
2467                  */
2468                 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2469                 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
2470
2471                 if (nval == -EFAULT)
2472                         return -1;
2473
2474                 if (nval != uval)
2475                         goto retry;
2476
2477                 /*
2478                  * Wake robust non-PI futexes here. The wakeup of
2479                  * PI futexes happens in exit_pi_state():
2480                  */
2481                 if (!pi && (uval & FUTEX_WAITERS))
2482                         futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2483         }
2484         return 0;
2485 }
2486
2487 /*
2488  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2489  */
2490 static inline int fetch_robust_entry(struct robust_list __user **entry,
2491                                      struct robust_list __user * __user *head,
2492                                      int *pi)
2493 {
2494         unsigned long uentry;
2495
2496         if (get_user(uentry, (unsigned long __user *)head))
2497                 return -EFAULT;
2498
2499         *entry = (void __user *)(uentry & ~1UL);
2500         *pi = uentry & 1;
2501
2502         return 0;
2503 }
2504
2505 /*
2506  * Walk curr->robust_list (very carefully, it's a userspace list!)
2507  * and mark any locks found there dead, and notify any waiters.
2508  *
2509  * We silently return on any sign of list-walking problem.
2510  */
2511 void exit_robust_list(struct task_struct *curr)
2512 {
2513         struct robust_list_head __user *head = curr->robust_list;
2514         struct robust_list __user *entry, *next_entry, *pending;
2515         unsigned int limit = ROBUST_LIST_LIMIT, pi, next_pi, pip;
2516         unsigned long futex_offset;
2517         int rc;
2518
2519         if (!futex_cmpxchg_enabled)
2520                 return;
2521
2522         /*
2523          * Fetch the list head (which was registered earlier, via
2524          * sys_set_robust_list()):
2525          */
2526         if (fetch_robust_entry(&entry, &head->list.next, &pi))
2527                 return;
2528         /*
2529          * Fetch the relative futex offset:
2530          */
2531         if (get_user(futex_offset, &head->futex_offset))
2532                 return;
2533         /*
2534          * Fetch any possibly pending lock-add first, and handle it
2535          * if it exists:
2536          */
2537         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2538                 return;
2539
2540         next_entry = NULL;      /* avoid warning with gcc */
2541         while (entry != &head->list) {
2542                 /*
2543                  * Fetch the next entry in the list before calling
2544                  * handle_futex_death:
2545                  */
2546                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2547                 /*
2548                  * A pending lock might already be on the list, so
2549                  * don't process it twice:
2550                  */
2551                 if (entry != pending)
2552                         if (handle_futex_death((void __user *)entry + futex_offset,
2553                                                 curr, pi))
2554                                 return;
2555                 if (rc)
2556                         return;
2557                 entry = next_entry;
2558                 pi = next_pi;
2559                 /*
2560                  * Avoid excessively long or circular lists:
2561                  */
2562                 if (!--limit)
2563                         break;
2564
2565                 cond_resched();
2566         }
2567
2568         if (pending)
2569                 handle_futex_death((void __user *)pending + futex_offset,
2570                                    curr, pip);
2571 }
2572
2573 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2574                 u32 __user *uaddr2, u32 val2, u32 val3)
2575 {
2576         int clockrt, ret = -ENOSYS;
2577         int cmd = op & FUTEX_CMD_MASK;
2578         int fshared = 0;
2579
2580         if (!(op & FUTEX_PRIVATE_FLAG))
2581                 fshared = 1;
2582
2583         clockrt = op & FUTEX_CLOCK_REALTIME;
2584         if (clockrt && cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2585                 return -ENOSYS;
2586
2587         switch (cmd) {
2588         case FUTEX_WAIT:
2589                 val3 = FUTEX_BITSET_MATCH_ANY;
2590         case FUTEX_WAIT_BITSET:
2591                 ret = futex_wait(uaddr, fshared, val, timeout, val3, clockrt);
2592                 break;
2593         case FUTEX_WAKE:
2594                 val3 = FUTEX_BITSET_MATCH_ANY;
2595         case FUTEX_WAKE_BITSET:
2596                 ret = futex_wake(uaddr, fshared, val, val3);
2597                 break;
2598         case FUTEX_REQUEUE:
2599                 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL, 0);
2600                 break;
2601         case FUTEX_CMP_REQUEUE:
2602                 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3,
2603                                     0);
2604                 break;
2605         case FUTEX_WAKE_OP:
2606                 ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
2607                 break;
2608         case FUTEX_LOCK_PI:
2609                 if (futex_cmpxchg_enabled)
2610                         ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
2611                 break;
2612         case FUTEX_UNLOCK_PI:
2613                 if (futex_cmpxchg_enabled)
2614                         ret = futex_unlock_pi(uaddr, fshared);
2615                 break;
2616         case FUTEX_TRYLOCK_PI:
2617                 if (futex_cmpxchg_enabled)
2618                         ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
2619                 break;
2620         case FUTEX_WAIT_REQUEUE_PI:
2621                 val3 = FUTEX_BITSET_MATCH_ANY;
2622                 ret = futex_wait_requeue_pi(uaddr, fshared, val, timeout, val3,
2623                                             clockrt, uaddr2);
2624                 break;
2625         case FUTEX_CMP_REQUEUE_PI:
2626                 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3,
2627                                     1);
2628                 break;
2629         default:
2630                 ret = -ENOSYS;
2631         }
2632         return ret;
2633 }
2634
2635
2636 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2637                 struct timespec __user *, utime, u32 __user *, uaddr2,
2638                 u32, val3)
2639 {
2640         struct timespec ts;
2641         ktime_t t, *tp = NULL;
2642         u32 val2 = 0;
2643         int cmd = op & FUTEX_CMD_MASK;
2644
2645         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2646                       cmd == FUTEX_WAIT_BITSET ||
2647                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
2648                 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2649                         return -EFAULT;
2650                 if (!timespec_valid(&ts))
2651                         return -EINVAL;
2652
2653                 t = timespec_to_ktime(ts);
2654                 if (cmd == FUTEX_WAIT)
2655                         t = ktime_add_safe(ktime_get(), t);
2656                 tp = &t;
2657         }
2658         /*
2659          * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2660          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2661          */
2662         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2663             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2664                 val2 = (u32) (unsigned long) utime;
2665
2666         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2667 }
2668
2669 static int __init futex_init(void)
2670 {
2671         u32 curval;
2672         int i;
2673
2674         /*
2675          * This will fail and we want it. Some arch implementations do
2676          * runtime detection of the futex_atomic_cmpxchg_inatomic()
2677          * functionality. We want to know that before we call in any
2678          * of the complex code paths. Also we want to prevent
2679          * registration of robust lists in that case. NULL is
2680          * guaranteed to fault and we get -EFAULT on functional
2681          * implementation, the non functional ones will return
2682          * -ENOSYS.
2683          */
2684         curval = cmpxchg_futex_value_locked(NULL, 0, 0);
2685         if (curval == -EFAULT)
2686                 futex_cmpxchg_enabled = 1;
2687
2688         for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2689                 plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
2690                 spin_lock_init(&futex_queues[i].lock);
2691         }
2692
2693         return 0;
2694 }
2695 __initcall(futex_init);