]> git.kernelconcepts.de Git - karo-tx-linux.git/blob - kernel/kprobes.c
Merge tag 'rpmsg-v4.13' of git://github.com/andersson/remoteproc
[karo-tx-linux.git] / kernel / kprobes.c
1 /*
2  *  Kernel Probes (KProbes)
3  *  kernel/kprobes.c
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18  *
19  * Copyright (C) IBM Corporation, 2002, 2004
20  *
21  * 2002-Oct     Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22  *              Probes initial implementation (includes suggestions from
23  *              Rusty Russell).
24  * 2004-Aug     Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25  *              hlists and exceptions notifier as suggested by Andi Kleen.
26  * 2004-July    Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27  *              interface to access function arguments.
28  * 2004-Sep     Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29  *              exceptions notifier to be first on the priority list.
30  * 2005-May     Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31  *              <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32  *              <prasanna@in.ibm.com> added function-return probes.
33  */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/export.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/sysctl.h>
46 #include <linux/kdebug.h>
47 #include <linux/memory.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 #include <linux/jump_label.h>
51
52 #include <asm/sections.h>
53 #include <asm/cacheflush.h>
54 #include <asm/errno.h>
55 #include <linux/uaccess.h>
56
57 #define KPROBE_HASH_BITS 6
58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
59
60
61 static int kprobes_initialized;
62 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
63 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
64
65 /* NOTE: change this value only with kprobe_mutex held */
66 static bool kprobes_all_disarmed;
67
68 /* This protects kprobe_table and optimizing_list */
69 static DEFINE_MUTEX(kprobe_mutex);
70 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
71 static struct {
72         raw_spinlock_t lock ____cacheline_aligned_in_smp;
73 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
74
75 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
76                                         unsigned int __unused)
77 {
78         return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
79 }
80
81 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
82 {
83         return &(kretprobe_table_locks[hash].lock);
84 }
85
86 /* Blacklist -- list of struct kprobe_blacklist_entry */
87 static LIST_HEAD(kprobe_blacklist);
88
89 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
90 /*
91  * kprobe->ainsn.insn points to the copy of the instruction to be
92  * single-stepped. x86_64, POWER4 and above have no-exec support and
93  * stepping on the instruction on a vmalloced/kmalloced/data page
94  * is a recipe for disaster
95  */
96 struct kprobe_insn_page {
97         struct list_head list;
98         kprobe_opcode_t *insns;         /* Page of instruction slots */
99         struct kprobe_insn_cache *cache;
100         int nused;
101         int ngarbage;
102         char slot_used[];
103 };
104
105 #define KPROBE_INSN_PAGE_SIZE(slots)                    \
106         (offsetof(struct kprobe_insn_page, slot_used) + \
107          (sizeof(char) * (slots)))
108
109 static int slots_per_page(struct kprobe_insn_cache *c)
110 {
111         return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
112 }
113
114 enum kprobe_slot_state {
115         SLOT_CLEAN = 0,
116         SLOT_DIRTY = 1,
117         SLOT_USED = 2,
118 };
119
120 static void *alloc_insn_page(void)
121 {
122         return module_alloc(PAGE_SIZE);
123 }
124
125 void __weak free_insn_page(void *page)
126 {
127         module_memfree(page);
128 }
129
130 struct kprobe_insn_cache kprobe_insn_slots = {
131         .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
132         .alloc = alloc_insn_page,
133         .free = free_insn_page,
134         .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
135         .insn_size = MAX_INSN_SIZE,
136         .nr_garbage = 0,
137 };
138 static int collect_garbage_slots(struct kprobe_insn_cache *c);
139
140 /**
141  * __get_insn_slot() - Find a slot on an executable page for an instruction.
142  * We allocate an executable page if there's no room on existing ones.
143  */
144 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
145 {
146         struct kprobe_insn_page *kip;
147         kprobe_opcode_t *slot = NULL;
148
149         /* Since the slot array is not protected by rcu, we need a mutex */
150         mutex_lock(&c->mutex);
151  retry:
152         rcu_read_lock();
153         list_for_each_entry_rcu(kip, &c->pages, list) {
154                 if (kip->nused < slots_per_page(c)) {
155                         int i;
156                         for (i = 0; i < slots_per_page(c); i++) {
157                                 if (kip->slot_used[i] == SLOT_CLEAN) {
158                                         kip->slot_used[i] = SLOT_USED;
159                                         kip->nused++;
160                                         slot = kip->insns + (i * c->insn_size);
161                                         rcu_read_unlock();
162                                         goto out;
163                                 }
164                         }
165                         /* kip->nused is broken. Fix it. */
166                         kip->nused = slots_per_page(c);
167                         WARN_ON(1);
168                 }
169         }
170         rcu_read_unlock();
171
172         /* If there are any garbage slots, collect it and try again. */
173         if (c->nr_garbage && collect_garbage_slots(c) == 0)
174                 goto retry;
175
176         /* All out of space.  Need to allocate a new page. */
177         kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
178         if (!kip)
179                 goto out;
180
181         /*
182          * Use module_alloc so this page is within +/- 2GB of where the
183          * kernel image and loaded module images reside. This is required
184          * so x86_64 can correctly handle the %rip-relative fixups.
185          */
186         kip->insns = c->alloc();
187         if (!kip->insns) {
188                 kfree(kip);
189                 goto out;
190         }
191         INIT_LIST_HEAD(&kip->list);
192         memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
193         kip->slot_used[0] = SLOT_USED;
194         kip->nused = 1;
195         kip->ngarbage = 0;
196         kip->cache = c;
197         list_add_rcu(&kip->list, &c->pages);
198         slot = kip->insns;
199 out:
200         mutex_unlock(&c->mutex);
201         return slot;
202 }
203
204 /* Return 1 if all garbages are collected, otherwise 0. */
205 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
206 {
207         kip->slot_used[idx] = SLOT_CLEAN;
208         kip->nused--;
209         if (kip->nused == 0) {
210                 /*
211                  * Page is no longer in use.  Free it unless
212                  * it's the last one.  We keep the last one
213                  * so as not to have to set it up again the
214                  * next time somebody inserts a probe.
215                  */
216                 if (!list_is_singular(&kip->list)) {
217                         list_del_rcu(&kip->list);
218                         synchronize_rcu();
219                         kip->cache->free(kip->insns);
220                         kfree(kip);
221                 }
222                 return 1;
223         }
224         return 0;
225 }
226
227 static int collect_garbage_slots(struct kprobe_insn_cache *c)
228 {
229         struct kprobe_insn_page *kip, *next;
230
231         /* Ensure no-one is interrupted on the garbages */
232         synchronize_sched();
233
234         list_for_each_entry_safe(kip, next, &c->pages, list) {
235                 int i;
236                 if (kip->ngarbage == 0)
237                         continue;
238                 kip->ngarbage = 0;      /* we will collect all garbages */
239                 for (i = 0; i < slots_per_page(c); i++) {
240                         if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
241                                 break;
242                 }
243         }
244         c->nr_garbage = 0;
245         return 0;
246 }
247
248 void __free_insn_slot(struct kprobe_insn_cache *c,
249                       kprobe_opcode_t *slot, int dirty)
250 {
251         struct kprobe_insn_page *kip;
252         long idx;
253
254         mutex_lock(&c->mutex);
255         rcu_read_lock();
256         list_for_each_entry_rcu(kip, &c->pages, list) {
257                 idx = ((long)slot - (long)kip->insns) /
258                         (c->insn_size * sizeof(kprobe_opcode_t));
259                 if (idx >= 0 && idx < slots_per_page(c))
260                         goto out;
261         }
262         /* Could not find this slot. */
263         WARN_ON(1);
264         kip = NULL;
265 out:
266         rcu_read_unlock();
267         /* Mark and sweep: this may sleep */
268         if (kip) {
269                 /* Check double free */
270                 WARN_ON(kip->slot_used[idx] != SLOT_USED);
271                 if (dirty) {
272                         kip->slot_used[idx] = SLOT_DIRTY;
273                         kip->ngarbage++;
274                         if (++c->nr_garbage > slots_per_page(c))
275                                 collect_garbage_slots(c);
276                 } else {
277                         collect_one_slot(kip, idx);
278                 }
279         }
280         mutex_unlock(&c->mutex);
281 }
282
283 /*
284  * Check given address is on the page of kprobe instruction slots.
285  * This will be used for checking whether the address on a stack
286  * is on a text area or not.
287  */
288 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
289 {
290         struct kprobe_insn_page *kip;
291         bool ret = false;
292
293         rcu_read_lock();
294         list_for_each_entry_rcu(kip, &c->pages, list) {
295                 if (addr >= (unsigned long)kip->insns &&
296                     addr < (unsigned long)kip->insns + PAGE_SIZE) {
297                         ret = true;
298                         break;
299                 }
300         }
301         rcu_read_unlock();
302
303         return ret;
304 }
305
306 #ifdef CONFIG_OPTPROBES
307 /* For optimized_kprobe buffer */
308 struct kprobe_insn_cache kprobe_optinsn_slots = {
309         .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
310         .alloc = alloc_insn_page,
311         .free = free_insn_page,
312         .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
313         /* .insn_size is initialized later */
314         .nr_garbage = 0,
315 };
316 #endif
317 #endif
318
319 /* We have preemption disabled.. so it is safe to use __ versions */
320 static inline void set_kprobe_instance(struct kprobe *kp)
321 {
322         __this_cpu_write(kprobe_instance, kp);
323 }
324
325 static inline void reset_kprobe_instance(void)
326 {
327         __this_cpu_write(kprobe_instance, NULL);
328 }
329
330 /*
331  * This routine is called either:
332  *      - under the kprobe_mutex - during kprobe_[un]register()
333  *                              OR
334  *      - with preemption disabled - from arch/xxx/kernel/kprobes.c
335  */
336 struct kprobe *get_kprobe(void *addr)
337 {
338         struct hlist_head *head;
339         struct kprobe *p;
340
341         head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
342         hlist_for_each_entry_rcu(p, head, hlist) {
343                 if (p->addr == addr)
344                         return p;
345         }
346
347         return NULL;
348 }
349 NOKPROBE_SYMBOL(get_kprobe);
350
351 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
352
353 /* Return true if the kprobe is an aggregator */
354 static inline int kprobe_aggrprobe(struct kprobe *p)
355 {
356         return p->pre_handler == aggr_pre_handler;
357 }
358
359 /* Return true(!0) if the kprobe is unused */
360 static inline int kprobe_unused(struct kprobe *p)
361 {
362         return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
363                list_empty(&p->list);
364 }
365
366 /*
367  * Keep all fields in the kprobe consistent
368  */
369 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
370 {
371         memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
372         memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
373 }
374
375 #ifdef CONFIG_OPTPROBES
376 /* NOTE: change this value only with kprobe_mutex held */
377 static bool kprobes_allow_optimization;
378
379 /*
380  * Call all pre_handler on the list, but ignores its return value.
381  * This must be called from arch-dep optimized caller.
382  */
383 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
384 {
385         struct kprobe *kp;
386
387         list_for_each_entry_rcu(kp, &p->list, list) {
388                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
389                         set_kprobe_instance(kp);
390                         kp->pre_handler(kp, regs);
391                 }
392                 reset_kprobe_instance();
393         }
394 }
395 NOKPROBE_SYMBOL(opt_pre_handler);
396
397 /* Free optimized instructions and optimized_kprobe */
398 static void free_aggr_kprobe(struct kprobe *p)
399 {
400         struct optimized_kprobe *op;
401
402         op = container_of(p, struct optimized_kprobe, kp);
403         arch_remove_optimized_kprobe(op);
404         arch_remove_kprobe(p);
405         kfree(op);
406 }
407
408 /* Return true(!0) if the kprobe is ready for optimization. */
409 static inline int kprobe_optready(struct kprobe *p)
410 {
411         struct optimized_kprobe *op;
412
413         if (kprobe_aggrprobe(p)) {
414                 op = container_of(p, struct optimized_kprobe, kp);
415                 return arch_prepared_optinsn(&op->optinsn);
416         }
417
418         return 0;
419 }
420
421 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
422 static inline int kprobe_disarmed(struct kprobe *p)
423 {
424         struct optimized_kprobe *op;
425
426         /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
427         if (!kprobe_aggrprobe(p))
428                 return kprobe_disabled(p);
429
430         op = container_of(p, struct optimized_kprobe, kp);
431
432         return kprobe_disabled(p) && list_empty(&op->list);
433 }
434
435 /* Return true(!0) if the probe is queued on (un)optimizing lists */
436 static int kprobe_queued(struct kprobe *p)
437 {
438         struct optimized_kprobe *op;
439
440         if (kprobe_aggrprobe(p)) {
441                 op = container_of(p, struct optimized_kprobe, kp);
442                 if (!list_empty(&op->list))
443                         return 1;
444         }
445         return 0;
446 }
447
448 /*
449  * Return an optimized kprobe whose optimizing code replaces
450  * instructions including addr (exclude breakpoint).
451  */
452 static struct kprobe *get_optimized_kprobe(unsigned long addr)
453 {
454         int i;
455         struct kprobe *p = NULL;
456         struct optimized_kprobe *op;
457
458         /* Don't check i == 0, since that is a breakpoint case. */
459         for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
460                 p = get_kprobe((void *)(addr - i));
461
462         if (p && kprobe_optready(p)) {
463                 op = container_of(p, struct optimized_kprobe, kp);
464                 if (arch_within_optimized_kprobe(op, addr))
465                         return p;
466         }
467
468         return NULL;
469 }
470
471 /* Optimization staging list, protected by kprobe_mutex */
472 static LIST_HEAD(optimizing_list);
473 static LIST_HEAD(unoptimizing_list);
474 static LIST_HEAD(freeing_list);
475
476 static void kprobe_optimizer(struct work_struct *work);
477 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
478 #define OPTIMIZE_DELAY 5
479
480 /*
481  * Optimize (replace a breakpoint with a jump) kprobes listed on
482  * optimizing_list.
483  */
484 static void do_optimize_kprobes(void)
485 {
486         /*
487          * The optimization/unoptimization refers online_cpus via
488          * stop_machine() and cpu-hotplug modifies online_cpus.
489          * And same time, text_mutex will be held in cpu-hotplug and here.
490          * This combination can cause a deadlock (cpu-hotplug try to lock
491          * text_mutex but stop_machine can not be done because online_cpus
492          * has been changed)
493          * To avoid this deadlock, caller must have locked cpu hotplug
494          * for preventing cpu-hotplug outside of text_mutex locking.
495          */
496         lockdep_assert_cpus_held();
497
498         /* Optimization never be done when disarmed */
499         if (kprobes_all_disarmed || !kprobes_allow_optimization ||
500             list_empty(&optimizing_list))
501                 return;
502
503         mutex_lock(&text_mutex);
504         arch_optimize_kprobes(&optimizing_list);
505         mutex_unlock(&text_mutex);
506 }
507
508 /*
509  * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
510  * if need) kprobes listed on unoptimizing_list.
511  */
512 static void do_unoptimize_kprobes(void)
513 {
514         struct optimized_kprobe *op, *tmp;
515
516         /* See comment in do_optimize_kprobes() */
517         lockdep_assert_cpus_held();
518
519         /* Unoptimization must be done anytime */
520         if (list_empty(&unoptimizing_list))
521                 return;
522
523         mutex_lock(&text_mutex);
524         arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
525         /* Loop free_list for disarming */
526         list_for_each_entry_safe(op, tmp, &freeing_list, list) {
527                 /* Disarm probes if marked disabled */
528                 if (kprobe_disabled(&op->kp))
529                         arch_disarm_kprobe(&op->kp);
530                 if (kprobe_unused(&op->kp)) {
531                         /*
532                          * Remove unused probes from hash list. After waiting
533                          * for synchronization, these probes are reclaimed.
534                          * (reclaiming is done by do_free_cleaned_kprobes.)
535                          */
536                         hlist_del_rcu(&op->kp.hlist);
537                 } else
538                         list_del_init(&op->list);
539         }
540         mutex_unlock(&text_mutex);
541 }
542
543 /* Reclaim all kprobes on the free_list */
544 static void do_free_cleaned_kprobes(void)
545 {
546         struct optimized_kprobe *op, *tmp;
547
548         list_for_each_entry_safe(op, tmp, &freeing_list, list) {
549                 BUG_ON(!kprobe_unused(&op->kp));
550                 list_del_init(&op->list);
551                 free_aggr_kprobe(&op->kp);
552         }
553 }
554
555 /* Start optimizer after OPTIMIZE_DELAY passed */
556 static void kick_kprobe_optimizer(void)
557 {
558         schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
559 }
560
561 /* Kprobe jump optimizer */
562 static void kprobe_optimizer(struct work_struct *work)
563 {
564         mutex_lock(&kprobe_mutex);
565         cpus_read_lock();
566         /* Lock modules while optimizing kprobes */
567         mutex_lock(&module_mutex);
568
569         /*
570          * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
571          * kprobes before waiting for quiesence period.
572          */
573         do_unoptimize_kprobes();
574
575         /*
576          * Step 2: Wait for quiesence period to ensure all running interrupts
577          * are done. Because optprobe may modify multiple instructions
578          * there is a chance that Nth instruction is interrupted. In that
579          * case, running interrupt can return to 2nd-Nth byte of jump
580          * instruction. This wait is for avoiding it.
581          */
582         synchronize_sched();
583
584         /* Step 3: Optimize kprobes after quiesence period */
585         do_optimize_kprobes();
586
587         /* Step 4: Free cleaned kprobes after quiesence period */
588         do_free_cleaned_kprobes();
589
590         mutex_unlock(&module_mutex);
591         cpus_read_unlock();
592         mutex_unlock(&kprobe_mutex);
593
594         /* Step 5: Kick optimizer again if needed */
595         if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
596                 kick_kprobe_optimizer();
597 }
598
599 /* Wait for completing optimization and unoptimization */
600 void wait_for_kprobe_optimizer(void)
601 {
602         mutex_lock(&kprobe_mutex);
603
604         while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
605                 mutex_unlock(&kprobe_mutex);
606
607                 /* this will also make optimizing_work execute immmediately */
608                 flush_delayed_work(&optimizing_work);
609                 /* @optimizing_work might not have been queued yet, relax */
610                 cpu_relax();
611
612                 mutex_lock(&kprobe_mutex);
613         }
614
615         mutex_unlock(&kprobe_mutex);
616 }
617
618 /* Optimize kprobe if p is ready to be optimized */
619 static void optimize_kprobe(struct kprobe *p)
620 {
621         struct optimized_kprobe *op;
622
623         /* Check if the kprobe is disabled or not ready for optimization. */
624         if (!kprobe_optready(p) || !kprobes_allow_optimization ||
625             (kprobe_disabled(p) || kprobes_all_disarmed))
626                 return;
627
628         /* Both of break_handler and post_handler are not supported. */
629         if (p->break_handler || p->post_handler)
630                 return;
631
632         op = container_of(p, struct optimized_kprobe, kp);
633
634         /* Check there is no other kprobes at the optimized instructions */
635         if (arch_check_optimized_kprobe(op) < 0)
636                 return;
637
638         /* Check if it is already optimized. */
639         if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
640                 return;
641         op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
642
643         if (!list_empty(&op->list))
644                 /* This is under unoptimizing. Just dequeue the probe */
645                 list_del_init(&op->list);
646         else {
647                 list_add(&op->list, &optimizing_list);
648                 kick_kprobe_optimizer();
649         }
650 }
651
652 /* Short cut to direct unoptimizing */
653 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
654 {
655         lockdep_assert_cpus_held();
656         arch_unoptimize_kprobe(op);
657         if (kprobe_disabled(&op->kp))
658                 arch_disarm_kprobe(&op->kp);
659 }
660
661 /* Unoptimize a kprobe if p is optimized */
662 static void unoptimize_kprobe(struct kprobe *p, bool force)
663 {
664         struct optimized_kprobe *op;
665
666         if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
667                 return; /* This is not an optprobe nor optimized */
668
669         op = container_of(p, struct optimized_kprobe, kp);
670         if (!kprobe_optimized(p)) {
671                 /* Unoptimized or unoptimizing case */
672                 if (force && !list_empty(&op->list)) {
673                         /*
674                          * Only if this is unoptimizing kprobe and forced,
675                          * forcibly unoptimize it. (No need to unoptimize
676                          * unoptimized kprobe again :)
677                          */
678                         list_del_init(&op->list);
679                         force_unoptimize_kprobe(op);
680                 }
681                 return;
682         }
683
684         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
685         if (!list_empty(&op->list)) {
686                 /* Dequeue from the optimization queue */
687                 list_del_init(&op->list);
688                 return;
689         }
690         /* Optimized kprobe case */
691         if (force)
692                 /* Forcibly update the code: this is a special case */
693                 force_unoptimize_kprobe(op);
694         else {
695                 list_add(&op->list, &unoptimizing_list);
696                 kick_kprobe_optimizer();
697         }
698 }
699
700 /* Cancel unoptimizing for reusing */
701 static void reuse_unused_kprobe(struct kprobe *ap)
702 {
703         struct optimized_kprobe *op;
704
705         BUG_ON(!kprobe_unused(ap));
706         /*
707          * Unused kprobe MUST be on the way of delayed unoptimizing (means
708          * there is still a relative jump) and disabled.
709          */
710         op = container_of(ap, struct optimized_kprobe, kp);
711         if (unlikely(list_empty(&op->list)))
712                 printk(KERN_WARNING "Warning: found a stray unused "
713                         "aggrprobe@%p\n", ap->addr);
714         /* Enable the probe again */
715         ap->flags &= ~KPROBE_FLAG_DISABLED;
716         /* Optimize it again (remove from op->list) */
717         BUG_ON(!kprobe_optready(ap));
718         optimize_kprobe(ap);
719 }
720
721 /* Remove optimized instructions */
722 static void kill_optimized_kprobe(struct kprobe *p)
723 {
724         struct optimized_kprobe *op;
725
726         op = container_of(p, struct optimized_kprobe, kp);
727         if (!list_empty(&op->list))
728                 /* Dequeue from the (un)optimization queue */
729                 list_del_init(&op->list);
730         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
731
732         if (kprobe_unused(p)) {
733                 /* Enqueue if it is unused */
734                 list_add(&op->list, &freeing_list);
735                 /*
736                  * Remove unused probes from the hash list. After waiting
737                  * for synchronization, this probe is reclaimed.
738                  * (reclaiming is done by do_free_cleaned_kprobes().)
739                  */
740                 hlist_del_rcu(&op->kp.hlist);
741         }
742
743         /* Don't touch the code, because it is already freed. */
744         arch_remove_optimized_kprobe(op);
745 }
746
747 static inline
748 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
749 {
750         if (!kprobe_ftrace(p))
751                 arch_prepare_optimized_kprobe(op, p);
752 }
753
754 /* Try to prepare optimized instructions */
755 static void prepare_optimized_kprobe(struct kprobe *p)
756 {
757         struct optimized_kprobe *op;
758
759         op = container_of(p, struct optimized_kprobe, kp);
760         __prepare_optimized_kprobe(op, p);
761 }
762
763 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
764 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
765 {
766         struct optimized_kprobe *op;
767
768         op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
769         if (!op)
770                 return NULL;
771
772         INIT_LIST_HEAD(&op->list);
773         op->kp.addr = p->addr;
774         __prepare_optimized_kprobe(op, p);
775
776         return &op->kp;
777 }
778
779 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
780
781 /*
782  * Prepare an optimized_kprobe and optimize it
783  * NOTE: p must be a normal registered kprobe
784  */
785 static void try_to_optimize_kprobe(struct kprobe *p)
786 {
787         struct kprobe *ap;
788         struct optimized_kprobe *op;
789
790         /* Impossible to optimize ftrace-based kprobe */
791         if (kprobe_ftrace(p))
792                 return;
793
794         /* For preparing optimization, jump_label_text_reserved() is called */
795         cpus_read_lock();
796         jump_label_lock();
797         mutex_lock(&text_mutex);
798
799         ap = alloc_aggr_kprobe(p);
800         if (!ap)
801                 goto out;
802
803         op = container_of(ap, struct optimized_kprobe, kp);
804         if (!arch_prepared_optinsn(&op->optinsn)) {
805                 /* If failed to setup optimizing, fallback to kprobe */
806                 arch_remove_optimized_kprobe(op);
807                 kfree(op);
808                 goto out;
809         }
810
811         init_aggr_kprobe(ap, p);
812         optimize_kprobe(ap);    /* This just kicks optimizer thread */
813
814 out:
815         mutex_unlock(&text_mutex);
816         jump_label_unlock();
817         cpus_read_unlock();
818 }
819
820 #ifdef CONFIG_SYSCTL
821 static void optimize_all_kprobes(void)
822 {
823         struct hlist_head *head;
824         struct kprobe *p;
825         unsigned int i;
826
827         mutex_lock(&kprobe_mutex);
828         /* If optimization is already allowed, just return */
829         if (kprobes_allow_optimization)
830                 goto out;
831
832         cpus_read_lock();
833         kprobes_allow_optimization = true;
834         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
835                 head = &kprobe_table[i];
836                 hlist_for_each_entry_rcu(p, head, hlist)
837                         if (!kprobe_disabled(p))
838                                 optimize_kprobe(p);
839         }
840         cpus_read_unlock();
841         printk(KERN_INFO "Kprobes globally optimized\n");
842 out:
843         mutex_unlock(&kprobe_mutex);
844 }
845
846 static void unoptimize_all_kprobes(void)
847 {
848         struct hlist_head *head;
849         struct kprobe *p;
850         unsigned int i;
851
852         mutex_lock(&kprobe_mutex);
853         /* If optimization is already prohibited, just return */
854         if (!kprobes_allow_optimization) {
855                 mutex_unlock(&kprobe_mutex);
856                 return;
857         }
858
859         cpus_read_lock();
860         kprobes_allow_optimization = false;
861         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
862                 head = &kprobe_table[i];
863                 hlist_for_each_entry_rcu(p, head, hlist) {
864                         if (!kprobe_disabled(p))
865                                 unoptimize_kprobe(p, false);
866                 }
867         }
868         cpus_read_unlock();
869         mutex_unlock(&kprobe_mutex);
870
871         /* Wait for unoptimizing completion */
872         wait_for_kprobe_optimizer();
873         printk(KERN_INFO "Kprobes globally unoptimized\n");
874 }
875
876 static DEFINE_MUTEX(kprobe_sysctl_mutex);
877 int sysctl_kprobes_optimization;
878 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
879                                       void __user *buffer, size_t *length,
880                                       loff_t *ppos)
881 {
882         int ret;
883
884         mutex_lock(&kprobe_sysctl_mutex);
885         sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
886         ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
887
888         if (sysctl_kprobes_optimization)
889                 optimize_all_kprobes();
890         else
891                 unoptimize_all_kprobes();
892         mutex_unlock(&kprobe_sysctl_mutex);
893
894         return ret;
895 }
896 #endif /* CONFIG_SYSCTL */
897
898 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
899 static void __arm_kprobe(struct kprobe *p)
900 {
901         struct kprobe *_p;
902
903         /* Check collision with other optimized kprobes */
904         _p = get_optimized_kprobe((unsigned long)p->addr);
905         if (unlikely(_p))
906                 /* Fallback to unoptimized kprobe */
907                 unoptimize_kprobe(_p, true);
908
909         arch_arm_kprobe(p);
910         optimize_kprobe(p);     /* Try to optimize (add kprobe to a list) */
911 }
912
913 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
914 static void __disarm_kprobe(struct kprobe *p, bool reopt)
915 {
916         struct kprobe *_p;
917
918         /* Try to unoptimize */
919         unoptimize_kprobe(p, kprobes_all_disarmed);
920
921         if (!kprobe_queued(p)) {
922                 arch_disarm_kprobe(p);
923                 /* If another kprobe was blocked, optimize it. */
924                 _p = get_optimized_kprobe((unsigned long)p->addr);
925                 if (unlikely(_p) && reopt)
926                         optimize_kprobe(_p);
927         }
928         /* TODO: reoptimize others after unoptimized this probe */
929 }
930
931 #else /* !CONFIG_OPTPROBES */
932
933 #define optimize_kprobe(p)                      do {} while (0)
934 #define unoptimize_kprobe(p, f)                 do {} while (0)
935 #define kill_optimized_kprobe(p)                do {} while (0)
936 #define prepare_optimized_kprobe(p)             do {} while (0)
937 #define try_to_optimize_kprobe(p)               do {} while (0)
938 #define __arm_kprobe(p)                         arch_arm_kprobe(p)
939 #define __disarm_kprobe(p, o)                   arch_disarm_kprobe(p)
940 #define kprobe_disarmed(p)                      kprobe_disabled(p)
941 #define wait_for_kprobe_optimizer()             do {} while (0)
942
943 /* There should be no unused kprobes can be reused without optimization */
944 static void reuse_unused_kprobe(struct kprobe *ap)
945 {
946         printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
947         BUG_ON(kprobe_unused(ap));
948 }
949
950 static void free_aggr_kprobe(struct kprobe *p)
951 {
952         arch_remove_kprobe(p);
953         kfree(p);
954 }
955
956 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
957 {
958         return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
959 }
960 #endif /* CONFIG_OPTPROBES */
961
962 #ifdef CONFIG_KPROBES_ON_FTRACE
963 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
964         .func = kprobe_ftrace_handler,
965         .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
966 };
967 static int kprobe_ftrace_enabled;
968
969 /* Must ensure p->addr is really on ftrace */
970 static int prepare_kprobe(struct kprobe *p)
971 {
972         if (!kprobe_ftrace(p))
973                 return arch_prepare_kprobe(p);
974
975         return arch_prepare_kprobe_ftrace(p);
976 }
977
978 /* Caller must lock kprobe_mutex */
979 static void arm_kprobe_ftrace(struct kprobe *p)
980 {
981         int ret;
982
983         ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
984                                    (unsigned long)p->addr, 0, 0);
985         WARN(ret < 0, "Failed to arm kprobe-ftrace at %p (%d)\n", p->addr, ret);
986         kprobe_ftrace_enabled++;
987         if (kprobe_ftrace_enabled == 1) {
988                 ret = register_ftrace_function(&kprobe_ftrace_ops);
989                 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
990         }
991 }
992
993 /* Caller must lock kprobe_mutex */
994 static void disarm_kprobe_ftrace(struct kprobe *p)
995 {
996         int ret;
997
998         kprobe_ftrace_enabled--;
999         if (kprobe_ftrace_enabled == 0) {
1000                 ret = unregister_ftrace_function(&kprobe_ftrace_ops);
1001                 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
1002         }
1003         ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
1004                            (unsigned long)p->addr, 1, 0);
1005         WARN(ret < 0, "Failed to disarm kprobe-ftrace at %p (%d)\n", p->addr, ret);
1006 }
1007 #else   /* !CONFIG_KPROBES_ON_FTRACE */
1008 #define prepare_kprobe(p)       arch_prepare_kprobe(p)
1009 #define arm_kprobe_ftrace(p)    do {} while (0)
1010 #define disarm_kprobe_ftrace(p) do {} while (0)
1011 #endif
1012
1013 /* Arm a kprobe with text_mutex */
1014 static void arm_kprobe(struct kprobe *kp)
1015 {
1016         if (unlikely(kprobe_ftrace(kp))) {
1017                 arm_kprobe_ftrace(kp);
1018                 return;
1019         }
1020         cpus_read_lock();
1021         mutex_lock(&text_mutex);
1022         __arm_kprobe(kp);
1023         mutex_unlock(&text_mutex);
1024         cpus_read_unlock();
1025 }
1026
1027 /* Disarm a kprobe with text_mutex */
1028 static void disarm_kprobe(struct kprobe *kp, bool reopt)
1029 {
1030         if (unlikely(kprobe_ftrace(kp))) {
1031                 disarm_kprobe_ftrace(kp);
1032                 return;
1033         }
1034
1035         cpus_read_lock();
1036         mutex_lock(&text_mutex);
1037         __disarm_kprobe(kp, reopt);
1038         mutex_unlock(&text_mutex);
1039         cpus_read_unlock();
1040 }
1041
1042 /*
1043  * Aggregate handlers for multiple kprobes support - these handlers
1044  * take care of invoking the individual kprobe handlers on p->list
1045  */
1046 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1047 {
1048         struct kprobe *kp;
1049
1050         list_for_each_entry_rcu(kp, &p->list, list) {
1051                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1052                         set_kprobe_instance(kp);
1053                         if (kp->pre_handler(kp, regs))
1054                                 return 1;
1055                 }
1056                 reset_kprobe_instance();
1057         }
1058         return 0;
1059 }
1060 NOKPROBE_SYMBOL(aggr_pre_handler);
1061
1062 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1063                               unsigned long flags)
1064 {
1065         struct kprobe *kp;
1066
1067         list_for_each_entry_rcu(kp, &p->list, list) {
1068                 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1069                         set_kprobe_instance(kp);
1070                         kp->post_handler(kp, regs, flags);
1071                         reset_kprobe_instance();
1072                 }
1073         }
1074 }
1075 NOKPROBE_SYMBOL(aggr_post_handler);
1076
1077 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1078                               int trapnr)
1079 {
1080         struct kprobe *cur = __this_cpu_read(kprobe_instance);
1081
1082         /*
1083          * if we faulted "during" the execution of a user specified
1084          * probe handler, invoke just that probe's fault handler
1085          */
1086         if (cur && cur->fault_handler) {
1087                 if (cur->fault_handler(cur, regs, trapnr))
1088                         return 1;
1089         }
1090         return 0;
1091 }
1092 NOKPROBE_SYMBOL(aggr_fault_handler);
1093
1094 static int aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
1095 {
1096         struct kprobe *cur = __this_cpu_read(kprobe_instance);
1097         int ret = 0;
1098
1099         if (cur && cur->break_handler) {
1100                 if (cur->break_handler(cur, regs))
1101                         ret = 1;
1102         }
1103         reset_kprobe_instance();
1104         return ret;
1105 }
1106 NOKPROBE_SYMBOL(aggr_break_handler);
1107
1108 /* Walks the list and increments nmissed count for multiprobe case */
1109 void kprobes_inc_nmissed_count(struct kprobe *p)
1110 {
1111         struct kprobe *kp;
1112         if (!kprobe_aggrprobe(p)) {
1113                 p->nmissed++;
1114         } else {
1115                 list_for_each_entry_rcu(kp, &p->list, list)
1116                         kp->nmissed++;
1117         }
1118         return;
1119 }
1120 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1121
1122 void recycle_rp_inst(struct kretprobe_instance *ri,
1123                      struct hlist_head *head)
1124 {
1125         struct kretprobe *rp = ri->rp;
1126
1127         /* remove rp inst off the rprobe_inst_table */
1128         hlist_del(&ri->hlist);
1129         INIT_HLIST_NODE(&ri->hlist);
1130         if (likely(rp)) {
1131                 raw_spin_lock(&rp->lock);
1132                 hlist_add_head(&ri->hlist, &rp->free_instances);
1133                 raw_spin_unlock(&rp->lock);
1134         } else
1135                 /* Unregistering */
1136                 hlist_add_head(&ri->hlist, head);
1137 }
1138 NOKPROBE_SYMBOL(recycle_rp_inst);
1139
1140 void kretprobe_hash_lock(struct task_struct *tsk,
1141                          struct hlist_head **head, unsigned long *flags)
1142 __acquires(hlist_lock)
1143 {
1144         unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1145         raw_spinlock_t *hlist_lock;
1146
1147         *head = &kretprobe_inst_table[hash];
1148         hlist_lock = kretprobe_table_lock_ptr(hash);
1149         raw_spin_lock_irqsave(hlist_lock, *flags);
1150 }
1151 NOKPROBE_SYMBOL(kretprobe_hash_lock);
1152
1153 static void kretprobe_table_lock(unsigned long hash,
1154                                  unsigned long *flags)
1155 __acquires(hlist_lock)
1156 {
1157         raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1158         raw_spin_lock_irqsave(hlist_lock, *flags);
1159 }
1160 NOKPROBE_SYMBOL(kretprobe_table_lock);
1161
1162 void kretprobe_hash_unlock(struct task_struct *tsk,
1163                            unsigned long *flags)
1164 __releases(hlist_lock)
1165 {
1166         unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1167         raw_spinlock_t *hlist_lock;
1168
1169         hlist_lock = kretprobe_table_lock_ptr(hash);
1170         raw_spin_unlock_irqrestore(hlist_lock, *flags);
1171 }
1172 NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1173
1174 static void kretprobe_table_unlock(unsigned long hash,
1175                                    unsigned long *flags)
1176 __releases(hlist_lock)
1177 {
1178         raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1179         raw_spin_unlock_irqrestore(hlist_lock, *flags);
1180 }
1181 NOKPROBE_SYMBOL(kretprobe_table_unlock);
1182
1183 /*
1184  * This function is called from finish_task_switch when task tk becomes dead,
1185  * so that we can recycle any function-return probe instances associated
1186  * with this task. These left over instances represent probed functions
1187  * that have been called but will never return.
1188  */
1189 void kprobe_flush_task(struct task_struct *tk)
1190 {
1191         struct kretprobe_instance *ri;
1192         struct hlist_head *head, empty_rp;
1193         struct hlist_node *tmp;
1194         unsigned long hash, flags = 0;
1195
1196         if (unlikely(!kprobes_initialized))
1197                 /* Early boot.  kretprobe_table_locks not yet initialized. */
1198                 return;
1199
1200         INIT_HLIST_HEAD(&empty_rp);
1201         hash = hash_ptr(tk, KPROBE_HASH_BITS);
1202         head = &kretprobe_inst_table[hash];
1203         kretprobe_table_lock(hash, &flags);
1204         hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1205                 if (ri->task == tk)
1206                         recycle_rp_inst(ri, &empty_rp);
1207         }
1208         kretprobe_table_unlock(hash, &flags);
1209         hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1210                 hlist_del(&ri->hlist);
1211                 kfree(ri);
1212         }
1213 }
1214 NOKPROBE_SYMBOL(kprobe_flush_task);
1215
1216 static inline void free_rp_inst(struct kretprobe *rp)
1217 {
1218         struct kretprobe_instance *ri;
1219         struct hlist_node *next;
1220
1221         hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1222                 hlist_del(&ri->hlist);
1223                 kfree(ri);
1224         }
1225 }
1226
1227 static void cleanup_rp_inst(struct kretprobe *rp)
1228 {
1229         unsigned long flags, hash;
1230         struct kretprobe_instance *ri;
1231         struct hlist_node *next;
1232         struct hlist_head *head;
1233
1234         /* No race here */
1235         for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1236                 kretprobe_table_lock(hash, &flags);
1237                 head = &kretprobe_inst_table[hash];
1238                 hlist_for_each_entry_safe(ri, next, head, hlist) {
1239                         if (ri->rp == rp)
1240                                 ri->rp = NULL;
1241                 }
1242                 kretprobe_table_unlock(hash, &flags);
1243         }
1244         free_rp_inst(rp);
1245 }
1246 NOKPROBE_SYMBOL(cleanup_rp_inst);
1247
1248 /*
1249 * Add the new probe to ap->list. Fail if this is the
1250 * second jprobe at the address - two jprobes can't coexist
1251 */
1252 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1253 {
1254         BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1255
1256         if (p->break_handler || p->post_handler)
1257                 unoptimize_kprobe(ap, true);    /* Fall back to normal kprobe */
1258
1259         if (p->break_handler) {
1260                 if (ap->break_handler)
1261                         return -EEXIST;
1262                 list_add_tail_rcu(&p->list, &ap->list);
1263                 ap->break_handler = aggr_break_handler;
1264         } else
1265                 list_add_rcu(&p->list, &ap->list);
1266         if (p->post_handler && !ap->post_handler)
1267                 ap->post_handler = aggr_post_handler;
1268
1269         return 0;
1270 }
1271
1272 /*
1273  * Fill in the required fields of the "manager kprobe". Replace the
1274  * earlier kprobe in the hlist with the manager kprobe
1275  */
1276 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1277 {
1278         /* Copy p's insn slot to ap */
1279         copy_kprobe(p, ap);
1280         flush_insn_slot(ap);
1281         ap->addr = p->addr;
1282         ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1283         ap->pre_handler = aggr_pre_handler;
1284         ap->fault_handler = aggr_fault_handler;
1285         /* We don't care the kprobe which has gone. */
1286         if (p->post_handler && !kprobe_gone(p))
1287                 ap->post_handler = aggr_post_handler;
1288         if (p->break_handler && !kprobe_gone(p))
1289                 ap->break_handler = aggr_break_handler;
1290
1291         INIT_LIST_HEAD(&ap->list);
1292         INIT_HLIST_NODE(&ap->hlist);
1293
1294         list_add_rcu(&p->list, &ap->list);
1295         hlist_replace_rcu(&p->hlist, &ap->hlist);
1296 }
1297
1298 /*
1299  * This is the second or subsequent kprobe at the address - handle
1300  * the intricacies
1301  */
1302 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1303 {
1304         int ret = 0;
1305         struct kprobe *ap = orig_p;
1306
1307         cpus_read_lock();
1308
1309         /* For preparing optimization, jump_label_text_reserved() is called */
1310         jump_label_lock();
1311         mutex_lock(&text_mutex);
1312
1313         if (!kprobe_aggrprobe(orig_p)) {
1314                 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1315                 ap = alloc_aggr_kprobe(orig_p);
1316                 if (!ap) {
1317                         ret = -ENOMEM;
1318                         goto out;
1319                 }
1320                 init_aggr_kprobe(ap, orig_p);
1321         } else if (kprobe_unused(ap))
1322                 /* This probe is going to die. Rescue it */
1323                 reuse_unused_kprobe(ap);
1324
1325         if (kprobe_gone(ap)) {
1326                 /*
1327                  * Attempting to insert new probe at the same location that
1328                  * had a probe in the module vaddr area which already
1329                  * freed. So, the instruction slot has already been
1330                  * released. We need a new slot for the new probe.
1331                  */
1332                 ret = arch_prepare_kprobe(ap);
1333                 if (ret)
1334                         /*
1335                          * Even if fail to allocate new slot, don't need to
1336                          * free aggr_probe. It will be used next time, or
1337                          * freed by unregister_kprobe.
1338                          */
1339                         goto out;
1340
1341                 /* Prepare optimized instructions if possible. */
1342                 prepare_optimized_kprobe(ap);
1343
1344                 /*
1345                  * Clear gone flag to prevent allocating new slot again, and
1346                  * set disabled flag because it is not armed yet.
1347                  */
1348                 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1349                             | KPROBE_FLAG_DISABLED;
1350         }
1351
1352         /* Copy ap's insn slot to p */
1353         copy_kprobe(ap, p);
1354         ret = add_new_kprobe(ap, p);
1355
1356 out:
1357         mutex_unlock(&text_mutex);
1358         jump_label_unlock();
1359         cpus_read_unlock();
1360
1361         if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1362                 ap->flags &= ~KPROBE_FLAG_DISABLED;
1363                 if (!kprobes_all_disarmed)
1364                         /* Arm the breakpoint again. */
1365                         arm_kprobe(ap);
1366         }
1367         return ret;
1368 }
1369
1370 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1371 {
1372         /* The __kprobes marked functions and entry code must not be probed */
1373         return addr >= (unsigned long)__kprobes_text_start &&
1374                addr < (unsigned long)__kprobes_text_end;
1375 }
1376
1377 bool within_kprobe_blacklist(unsigned long addr)
1378 {
1379         struct kprobe_blacklist_entry *ent;
1380
1381         if (arch_within_kprobe_blacklist(addr))
1382                 return true;
1383         /*
1384          * If there exists a kprobe_blacklist, verify and
1385          * fail any probe registration in the prohibited area
1386          */
1387         list_for_each_entry(ent, &kprobe_blacklist, list) {
1388                 if (addr >= ent->start_addr && addr < ent->end_addr)
1389                         return true;
1390         }
1391
1392         return false;
1393 }
1394
1395 /*
1396  * If we have a symbol_name argument, look it up and add the offset field
1397  * to it. This way, we can specify a relative address to a symbol.
1398  * This returns encoded errors if it fails to look up symbol or invalid
1399  * combination of parameters.
1400  */
1401 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1402                         const char *symbol_name, unsigned int offset)
1403 {
1404         if ((symbol_name && addr) || (!symbol_name && !addr))
1405                 goto invalid;
1406
1407         if (symbol_name) {
1408                 addr = kprobe_lookup_name(symbol_name, offset);
1409                 if (!addr)
1410                         return ERR_PTR(-ENOENT);
1411         }
1412
1413         addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1414         if (addr)
1415                 return addr;
1416
1417 invalid:
1418         return ERR_PTR(-EINVAL);
1419 }
1420
1421 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1422 {
1423         return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1424 }
1425
1426 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1427 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1428 {
1429         struct kprobe *ap, *list_p;
1430
1431         ap = get_kprobe(p->addr);
1432         if (unlikely(!ap))
1433                 return NULL;
1434
1435         if (p != ap) {
1436                 list_for_each_entry_rcu(list_p, &ap->list, list)
1437                         if (list_p == p)
1438                         /* kprobe p is a valid probe */
1439                                 goto valid;
1440                 return NULL;
1441         }
1442 valid:
1443         return ap;
1444 }
1445
1446 /* Return error if the kprobe is being re-registered */
1447 static inline int check_kprobe_rereg(struct kprobe *p)
1448 {
1449         int ret = 0;
1450
1451         mutex_lock(&kprobe_mutex);
1452         if (__get_valid_kprobe(p))
1453                 ret = -EINVAL;
1454         mutex_unlock(&kprobe_mutex);
1455
1456         return ret;
1457 }
1458
1459 int __weak arch_check_ftrace_location(struct kprobe *p)
1460 {
1461         unsigned long ftrace_addr;
1462
1463         ftrace_addr = ftrace_location((unsigned long)p->addr);
1464         if (ftrace_addr) {
1465 #ifdef CONFIG_KPROBES_ON_FTRACE
1466                 /* Given address is not on the instruction boundary */
1467                 if ((unsigned long)p->addr != ftrace_addr)
1468                         return -EILSEQ;
1469                 p->flags |= KPROBE_FLAG_FTRACE;
1470 #else   /* !CONFIG_KPROBES_ON_FTRACE */
1471                 return -EINVAL;
1472 #endif
1473         }
1474         return 0;
1475 }
1476
1477 static int check_kprobe_address_safe(struct kprobe *p,
1478                                      struct module **probed_mod)
1479 {
1480         int ret;
1481
1482         ret = arch_check_ftrace_location(p);
1483         if (ret)
1484                 return ret;
1485         jump_label_lock();
1486         preempt_disable();
1487
1488         /* Ensure it is not in reserved area nor out of text */
1489         if (!kernel_text_address((unsigned long) p->addr) ||
1490             within_kprobe_blacklist((unsigned long) p->addr) ||
1491             jump_label_text_reserved(p->addr, p->addr)) {
1492                 ret = -EINVAL;
1493                 goto out;
1494         }
1495
1496         /* Check if are we probing a module */
1497         *probed_mod = __module_text_address((unsigned long) p->addr);
1498         if (*probed_mod) {
1499                 /*
1500                  * We must hold a refcount of the probed module while updating
1501                  * its code to prohibit unexpected unloading.
1502                  */
1503                 if (unlikely(!try_module_get(*probed_mod))) {
1504                         ret = -ENOENT;
1505                         goto out;
1506                 }
1507
1508                 /*
1509                  * If the module freed .init.text, we couldn't insert
1510                  * kprobes in there.
1511                  */
1512                 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1513                     (*probed_mod)->state != MODULE_STATE_COMING) {
1514                         module_put(*probed_mod);
1515                         *probed_mod = NULL;
1516                         ret = -ENOENT;
1517                 }
1518         }
1519 out:
1520         preempt_enable();
1521         jump_label_unlock();
1522
1523         return ret;
1524 }
1525
1526 int register_kprobe(struct kprobe *p)
1527 {
1528         int ret;
1529         struct kprobe *old_p;
1530         struct module *probed_mod;
1531         kprobe_opcode_t *addr;
1532
1533         /* Adjust probe address from symbol */
1534         addr = kprobe_addr(p);
1535         if (IS_ERR(addr))
1536                 return PTR_ERR(addr);
1537         p->addr = addr;
1538
1539         ret = check_kprobe_rereg(p);
1540         if (ret)
1541                 return ret;
1542
1543         /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1544         p->flags &= KPROBE_FLAG_DISABLED;
1545         p->nmissed = 0;
1546         INIT_LIST_HEAD(&p->list);
1547
1548         ret = check_kprobe_address_safe(p, &probed_mod);
1549         if (ret)
1550                 return ret;
1551
1552         mutex_lock(&kprobe_mutex);
1553
1554         old_p = get_kprobe(p->addr);
1555         if (old_p) {
1556                 /* Since this may unoptimize old_p, locking text_mutex. */
1557                 ret = register_aggr_kprobe(old_p, p);
1558                 goto out;
1559         }
1560
1561         cpus_read_lock();
1562         /* Prevent text modification */
1563         mutex_lock(&text_mutex);
1564         ret = prepare_kprobe(p);
1565         mutex_unlock(&text_mutex);
1566         cpus_read_unlock();
1567         if (ret)
1568                 goto out;
1569
1570         INIT_HLIST_NODE(&p->hlist);
1571         hlist_add_head_rcu(&p->hlist,
1572                        &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1573
1574         if (!kprobes_all_disarmed && !kprobe_disabled(p))
1575                 arm_kprobe(p);
1576
1577         /* Try to optimize kprobe */
1578         try_to_optimize_kprobe(p);
1579 out:
1580         mutex_unlock(&kprobe_mutex);
1581
1582         if (probed_mod)
1583                 module_put(probed_mod);
1584
1585         return ret;
1586 }
1587 EXPORT_SYMBOL_GPL(register_kprobe);
1588
1589 /* Check if all probes on the aggrprobe are disabled */
1590 static int aggr_kprobe_disabled(struct kprobe *ap)
1591 {
1592         struct kprobe *kp;
1593
1594         list_for_each_entry_rcu(kp, &ap->list, list)
1595                 if (!kprobe_disabled(kp))
1596                         /*
1597                          * There is an active probe on the list.
1598                          * We can't disable this ap.
1599                          */
1600                         return 0;
1601
1602         return 1;
1603 }
1604
1605 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1606 static struct kprobe *__disable_kprobe(struct kprobe *p)
1607 {
1608         struct kprobe *orig_p;
1609
1610         /* Get an original kprobe for return */
1611         orig_p = __get_valid_kprobe(p);
1612         if (unlikely(orig_p == NULL))
1613                 return NULL;
1614
1615         if (!kprobe_disabled(p)) {
1616                 /* Disable probe if it is a child probe */
1617                 if (p != orig_p)
1618                         p->flags |= KPROBE_FLAG_DISABLED;
1619
1620                 /* Try to disarm and disable this/parent probe */
1621                 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1622                         /*
1623                          * If kprobes_all_disarmed is set, orig_p
1624                          * should have already been disarmed, so
1625                          * skip unneed disarming process.
1626                          */
1627                         if (!kprobes_all_disarmed)
1628                                 disarm_kprobe(orig_p, true);
1629                         orig_p->flags |= KPROBE_FLAG_DISABLED;
1630                 }
1631         }
1632
1633         return orig_p;
1634 }
1635
1636 /*
1637  * Unregister a kprobe without a scheduler synchronization.
1638  */
1639 static int __unregister_kprobe_top(struct kprobe *p)
1640 {
1641         struct kprobe *ap, *list_p;
1642
1643         /* Disable kprobe. This will disarm it if needed. */
1644         ap = __disable_kprobe(p);
1645         if (ap == NULL)
1646                 return -EINVAL;
1647
1648         if (ap == p)
1649                 /*
1650                  * This probe is an independent(and non-optimized) kprobe
1651                  * (not an aggrprobe). Remove from the hash list.
1652                  */
1653                 goto disarmed;
1654
1655         /* Following process expects this probe is an aggrprobe */
1656         WARN_ON(!kprobe_aggrprobe(ap));
1657
1658         if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1659                 /*
1660                  * !disarmed could be happen if the probe is under delayed
1661                  * unoptimizing.
1662                  */
1663                 goto disarmed;
1664         else {
1665                 /* If disabling probe has special handlers, update aggrprobe */
1666                 if (p->break_handler && !kprobe_gone(p))
1667                         ap->break_handler = NULL;
1668                 if (p->post_handler && !kprobe_gone(p)) {
1669                         list_for_each_entry_rcu(list_p, &ap->list, list) {
1670                                 if ((list_p != p) && (list_p->post_handler))
1671                                         goto noclean;
1672                         }
1673                         ap->post_handler = NULL;
1674                 }
1675 noclean:
1676                 /*
1677                  * Remove from the aggrprobe: this path will do nothing in
1678                  * __unregister_kprobe_bottom().
1679                  */
1680                 list_del_rcu(&p->list);
1681                 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1682                         /*
1683                          * Try to optimize this probe again, because post
1684                          * handler may have been changed.
1685                          */
1686                         optimize_kprobe(ap);
1687         }
1688         return 0;
1689
1690 disarmed:
1691         BUG_ON(!kprobe_disarmed(ap));
1692         hlist_del_rcu(&ap->hlist);
1693         return 0;
1694 }
1695
1696 static void __unregister_kprobe_bottom(struct kprobe *p)
1697 {
1698         struct kprobe *ap;
1699
1700         if (list_empty(&p->list))
1701                 /* This is an independent kprobe */
1702                 arch_remove_kprobe(p);
1703         else if (list_is_singular(&p->list)) {
1704                 /* This is the last child of an aggrprobe */
1705                 ap = list_entry(p->list.next, struct kprobe, list);
1706                 list_del(&p->list);
1707                 free_aggr_kprobe(ap);
1708         }
1709         /* Otherwise, do nothing. */
1710 }
1711
1712 int register_kprobes(struct kprobe **kps, int num)
1713 {
1714         int i, ret = 0;
1715
1716         if (num <= 0)
1717                 return -EINVAL;
1718         for (i = 0; i < num; i++) {
1719                 ret = register_kprobe(kps[i]);
1720                 if (ret < 0) {
1721                         if (i > 0)
1722                                 unregister_kprobes(kps, i);
1723                         break;
1724                 }
1725         }
1726         return ret;
1727 }
1728 EXPORT_SYMBOL_GPL(register_kprobes);
1729
1730 void unregister_kprobe(struct kprobe *p)
1731 {
1732         unregister_kprobes(&p, 1);
1733 }
1734 EXPORT_SYMBOL_GPL(unregister_kprobe);
1735
1736 void unregister_kprobes(struct kprobe **kps, int num)
1737 {
1738         int i;
1739
1740         if (num <= 0)
1741                 return;
1742         mutex_lock(&kprobe_mutex);
1743         for (i = 0; i < num; i++)
1744                 if (__unregister_kprobe_top(kps[i]) < 0)
1745                         kps[i]->addr = NULL;
1746         mutex_unlock(&kprobe_mutex);
1747
1748         synchronize_sched();
1749         for (i = 0; i < num; i++)
1750                 if (kps[i]->addr)
1751                         __unregister_kprobe_bottom(kps[i]);
1752 }
1753 EXPORT_SYMBOL_GPL(unregister_kprobes);
1754
1755 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1756                                         unsigned long val, void *data)
1757 {
1758         return NOTIFY_DONE;
1759 }
1760 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1761
1762 static struct notifier_block kprobe_exceptions_nb = {
1763         .notifier_call = kprobe_exceptions_notify,
1764         .priority = 0x7fffffff /* we need to be notified first */
1765 };
1766
1767 unsigned long __weak arch_deref_entry_point(void *entry)
1768 {
1769         return (unsigned long)entry;
1770 }
1771
1772 int register_jprobes(struct jprobe **jps, int num)
1773 {
1774         struct jprobe *jp;
1775         int ret = 0, i;
1776
1777         if (num <= 0)
1778                 return -EINVAL;
1779         for (i = 0; i < num; i++) {
1780                 unsigned long addr, offset;
1781                 jp = jps[i];
1782                 addr = arch_deref_entry_point(jp->entry);
1783
1784                 /* Verify probepoint is a function entry point */
1785                 if (kallsyms_lookup_size_offset(addr, NULL, &offset) &&
1786                     offset == 0) {
1787                         jp->kp.pre_handler = setjmp_pre_handler;
1788                         jp->kp.break_handler = longjmp_break_handler;
1789                         ret = register_kprobe(&jp->kp);
1790                 } else
1791                         ret = -EINVAL;
1792
1793                 if (ret < 0) {
1794                         if (i > 0)
1795                                 unregister_jprobes(jps, i);
1796                         break;
1797                 }
1798         }
1799         return ret;
1800 }
1801 EXPORT_SYMBOL_GPL(register_jprobes);
1802
1803 int register_jprobe(struct jprobe *jp)
1804 {
1805         return register_jprobes(&jp, 1);
1806 }
1807 EXPORT_SYMBOL_GPL(register_jprobe);
1808
1809 void unregister_jprobe(struct jprobe *jp)
1810 {
1811         unregister_jprobes(&jp, 1);
1812 }
1813 EXPORT_SYMBOL_GPL(unregister_jprobe);
1814
1815 void unregister_jprobes(struct jprobe **jps, int num)
1816 {
1817         int i;
1818
1819         if (num <= 0)
1820                 return;
1821         mutex_lock(&kprobe_mutex);
1822         for (i = 0; i < num; i++)
1823                 if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1824                         jps[i]->kp.addr = NULL;
1825         mutex_unlock(&kprobe_mutex);
1826
1827         synchronize_sched();
1828         for (i = 0; i < num; i++) {
1829                 if (jps[i]->kp.addr)
1830                         __unregister_kprobe_bottom(&jps[i]->kp);
1831         }
1832 }
1833 EXPORT_SYMBOL_GPL(unregister_jprobes);
1834
1835 #ifdef CONFIG_KRETPROBES
1836 /*
1837  * This kprobe pre_handler is registered with every kretprobe. When probe
1838  * hits it will set up the return probe.
1839  */
1840 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1841 {
1842         struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1843         unsigned long hash, flags = 0;
1844         struct kretprobe_instance *ri;
1845
1846         /*
1847          * To avoid deadlocks, prohibit return probing in NMI contexts,
1848          * just skip the probe and increase the (inexact) 'nmissed'
1849          * statistical counter, so that the user is informed that
1850          * something happened:
1851          */
1852         if (unlikely(in_nmi())) {
1853                 rp->nmissed++;
1854                 return 0;
1855         }
1856
1857         /* TODO: consider to only swap the RA after the last pre_handler fired */
1858         hash = hash_ptr(current, KPROBE_HASH_BITS);
1859         raw_spin_lock_irqsave(&rp->lock, flags);
1860         if (!hlist_empty(&rp->free_instances)) {
1861                 ri = hlist_entry(rp->free_instances.first,
1862                                 struct kretprobe_instance, hlist);
1863                 hlist_del(&ri->hlist);
1864                 raw_spin_unlock_irqrestore(&rp->lock, flags);
1865
1866                 ri->rp = rp;
1867                 ri->task = current;
1868
1869                 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1870                         raw_spin_lock_irqsave(&rp->lock, flags);
1871                         hlist_add_head(&ri->hlist, &rp->free_instances);
1872                         raw_spin_unlock_irqrestore(&rp->lock, flags);
1873                         return 0;
1874                 }
1875
1876                 arch_prepare_kretprobe(ri, regs);
1877
1878                 /* XXX(hch): why is there no hlist_move_head? */
1879                 INIT_HLIST_NODE(&ri->hlist);
1880                 kretprobe_table_lock(hash, &flags);
1881                 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1882                 kretprobe_table_unlock(hash, &flags);
1883         } else {
1884                 rp->nmissed++;
1885                 raw_spin_unlock_irqrestore(&rp->lock, flags);
1886         }
1887         return 0;
1888 }
1889 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1890
1891 bool __weak arch_function_offset_within_entry(unsigned long offset)
1892 {
1893         return !offset;
1894 }
1895
1896 bool function_offset_within_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1897 {
1898         kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1899
1900         if (IS_ERR(kp_addr))
1901                 return false;
1902
1903         if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) ||
1904                                                 !arch_function_offset_within_entry(offset))
1905                 return false;
1906
1907         return true;
1908 }
1909
1910 int register_kretprobe(struct kretprobe *rp)
1911 {
1912         int ret = 0;
1913         struct kretprobe_instance *inst;
1914         int i;
1915         void *addr;
1916
1917         if (!function_offset_within_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset))
1918                 return -EINVAL;
1919
1920         if (kretprobe_blacklist_size) {
1921                 addr = kprobe_addr(&rp->kp);
1922                 if (IS_ERR(addr))
1923                         return PTR_ERR(addr);
1924
1925                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1926                         if (kretprobe_blacklist[i].addr == addr)
1927                                 return -EINVAL;
1928                 }
1929         }
1930
1931         rp->kp.pre_handler = pre_handler_kretprobe;
1932         rp->kp.post_handler = NULL;
1933         rp->kp.fault_handler = NULL;
1934         rp->kp.break_handler = NULL;
1935
1936         /* Pre-allocate memory for max kretprobe instances */
1937         if (rp->maxactive <= 0) {
1938 #ifdef CONFIG_PREEMPT
1939                 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1940 #else
1941                 rp->maxactive = num_possible_cpus();
1942 #endif
1943         }
1944         raw_spin_lock_init(&rp->lock);
1945         INIT_HLIST_HEAD(&rp->free_instances);
1946         for (i = 0; i < rp->maxactive; i++) {
1947                 inst = kmalloc(sizeof(struct kretprobe_instance) +
1948                                rp->data_size, GFP_KERNEL);
1949                 if (inst == NULL) {
1950                         free_rp_inst(rp);
1951                         return -ENOMEM;
1952                 }
1953                 INIT_HLIST_NODE(&inst->hlist);
1954                 hlist_add_head(&inst->hlist, &rp->free_instances);
1955         }
1956
1957         rp->nmissed = 0;
1958         /* Establish function entry probe point */
1959         ret = register_kprobe(&rp->kp);
1960         if (ret != 0)
1961                 free_rp_inst(rp);
1962         return ret;
1963 }
1964 EXPORT_SYMBOL_GPL(register_kretprobe);
1965
1966 int register_kretprobes(struct kretprobe **rps, int num)
1967 {
1968         int ret = 0, i;
1969
1970         if (num <= 0)
1971                 return -EINVAL;
1972         for (i = 0; i < num; i++) {
1973                 ret = register_kretprobe(rps[i]);
1974                 if (ret < 0) {
1975                         if (i > 0)
1976                                 unregister_kretprobes(rps, i);
1977                         break;
1978                 }
1979         }
1980         return ret;
1981 }
1982 EXPORT_SYMBOL_GPL(register_kretprobes);
1983
1984 void unregister_kretprobe(struct kretprobe *rp)
1985 {
1986         unregister_kretprobes(&rp, 1);
1987 }
1988 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1989
1990 void unregister_kretprobes(struct kretprobe **rps, int num)
1991 {
1992         int i;
1993
1994         if (num <= 0)
1995                 return;
1996         mutex_lock(&kprobe_mutex);
1997         for (i = 0; i < num; i++)
1998                 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1999                         rps[i]->kp.addr = NULL;
2000         mutex_unlock(&kprobe_mutex);
2001
2002         synchronize_sched();
2003         for (i = 0; i < num; i++) {
2004                 if (rps[i]->kp.addr) {
2005                         __unregister_kprobe_bottom(&rps[i]->kp);
2006                         cleanup_rp_inst(rps[i]);
2007                 }
2008         }
2009 }
2010 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2011
2012 #else /* CONFIG_KRETPROBES */
2013 int register_kretprobe(struct kretprobe *rp)
2014 {
2015         return -ENOSYS;
2016 }
2017 EXPORT_SYMBOL_GPL(register_kretprobe);
2018
2019 int register_kretprobes(struct kretprobe **rps, int num)
2020 {
2021         return -ENOSYS;
2022 }
2023 EXPORT_SYMBOL_GPL(register_kretprobes);
2024
2025 void unregister_kretprobe(struct kretprobe *rp)
2026 {
2027 }
2028 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2029
2030 void unregister_kretprobes(struct kretprobe **rps, int num)
2031 {
2032 }
2033 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2034
2035 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2036 {
2037         return 0;
2038 }
2039 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2040
2041 #endif /* CONFIG_KRETPROBES */
2042
2043 /* Set the kprobe gone and remove its instruction buffer. */
2044 static void kill_kprobe(struct kprobe *p)
2045 {
2046         struct kprobe *kp;
2047
2048         p->flags |= KPROBE_FLAG_GONE;
2049         if (kprobe_aggrprobe(p)) {
2050                 /*
2051                  * If this is an aggr_kprobe, we have to list all the
2052                  * chained probes and mark them GONE.
2053                  */
2054                 list_for_each_entry_rcu(kp, &p->list, list)
2055                         kp->flags |= KPROBE_FLAG_GONE;
2056                 p->post_handler = NULL;
2057                 p->break_handler = NULL;
2058                 kill_optimized_kprobe(p);
2059         }
2060         /*
2061          * Here, we can remove insn_slot safely, because no thread calls
2062          * the original probed function (which will be freed soon) any more.
2063          */
2064         arch_remove_kprobe(p);
2065 }
2066
2067 /* Disable one kprobe */
2068 int disable_kprobe(struct kprobe *kp)
2069 {
2070         int ret = 0;
2071
2072         mutex_lock(&kprobe_mutex);
2073
2074         /* Disable this kprobe */
2075         if (__disable_kprobe(kp) == NULL)
2076                 ret = -EINVAL;
2077
2078         mutex_unlock(&kprobe_mutex);
2079         return ret;
2080 }
2081 EXPORT_SYMBOL_GPL(disable_kprobe);
2082
2083 /* Enable one kprobe */
2084 int enable_kprobe(struct kprobe *kp)
2085 {
2086         int ret = 0;
2087         struct kprobe *p;
2088
2089         mutex_lock(&kprobe_mutex);
2090
2091         /* Check whether specified probe is valid. */
2092         p = __get_valid_kprobe(kp);
2093         if (unlikely(p == NULL)) {
2094                 ret = -EINVAL;
2095                 goto out;
2096         }
2097
2098         if (kprobe_gone(kp)) {
2099                 /* This kprobe has gone, we couldn't enable it. */
2100                 ret = -EINVAL;
2101                 goto out;
2102         }
2103
2104         if (p != kp)
2105                 kp->flags &= ~KPROBE_FLAG_DISABLED;
2106
2107         if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2108                 p->flags &= ~KPROBE_FLAG_DISABLED;
2109                 arm_kprobe(p);
2110         }
2111 out:
2112         mutex_unlock(&kprobe_mutex);
2113         return ret;
2114 }
2115 EXPORT_SYMBOL_GPL(enable_kprobe);
2116
2117 void dump_kprobe(struct kprobe *kp)
2118 {
2119         printk(KERN_WARNING "Dumping kprobe:\n");
2120         printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
2121                kp->symbol_name, kp->addr, kp->offset);
2122 }
2123 NOKPROBE_SYMBOL(dump_kprobe);
2124
2125 /*
2126  * Lookup and populate the kprobe_blacklist.
2127  *
2128  * Unlike the kretprobe blacklist, we'll need to determine
2129  * the range of addresses that belong to the said functions,
2130  * since a kprobe need not necessarily be at the beginning
2131  * of a function.
2132  */
2133 static int __init populate_kprobe_blacklist(unsigned long *start,
2134                                              unsigned long *end)
2135 {
2136         unsigned long *iter;
2137         struct kprobe_blacklist_entry *ent;
2138         unsigned long entry, offset = 0, size = 0;
2139
2140         for (iter = start; iter < end; iter++) {
2141                 entry = arch_deref_entry_point((void *)*iter);
2142
2143                 if (!kernel_text_address(entry) ||
2144                     !kallsyms_lookup_size_offset(entry, &size, &offset)) {
2145                         pr_err("Failed to find blacklist at %p\n",
2146                                 (void *)entry);
2147                         continue;
2148                 }
2149
2150                 ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2151                 if (!ent)
2152                         return -ENOMEM;
2153                 ent->start_addr = entry;
2154                 ent->end_addr = entry + size;
2155                 INIT_LIST_HEAD(&ent->list);
2156                 list_add_tail(&ent->list, &kprobe_blacklist);
2157         }
2158         return 0;
2159 }
2160
2161 /* Module notifier call back, checking kprobes on the module */
2162 static int kprobes_module_callback(struct notifier_block *nb,
2163                                    unsigned long val, void *data)
2164 {
2165         struct module *mod = data;
2166         struct hlist_head *head;
2167         struct kprobe *p;
2168         unsigned int i;
2169         int checkcore = (val == MODULE_STATE_GOING);
2170
2171         if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2172                 return NOTIFY_DONE;
2173
2174         /*
2175          * When MODULE_STATE_GOING was notified, both of module .text and
2176          * .init.text sections would be freed. When MODULE_STATE_LIVE was
2177          * notified, only .init.text section would be freed. We need to
2178          * disable kprobes which have been inserted in the sections.
2179          */
2180         mutex_lock(&kprobe_mutex);
2181         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2182                 head = &kprobe_table[i];
2183                 hlist_for_each_entry_rcu(p, head, hlist)
2184                         if (within_module_init((unsigned long)p->addr, mod) ||
2185                             (checkcore &&
2186                              within_module_core((unsigned long)p->addr, mod))) {
2187                                 /*
2188                                  * The vaddr this probe is installed will soon
2189                                  * be vfreed buy not synced to disk. Hence,
2190                                  * disarming the breakpoint isn't needed.
2191                                  *
2192                                  * Note, this will also move any optimized probes
2193                                  * that are pending to be removed from their
2194                                  * corresponding lists to the freeing_list and
2195                                  * will not be touched by the delayed
2196                                  * kprobe_optimizer work handler.
2197                                  */
2198                                 kill_kprobe(p);
2199                         }
2200         }
2201         mutex_unlock(&kprobe_mutex);
2202         return NOTIFY_DONE;
2203 }
2204
2205 static struct notifier_block kprobe_module_nb = {
2206         .notifier_call = kprobes_module_callback,
2207         .priority = 0
2208 };
2209
2210 /* Markers of _kprobe_blacklist section */
2211 extern unsigned long __start_kprobe_blacklist[];
2212 extern unsigned long __stop_kprobe_blacklist[];
2213
2214 static int __init init_kprobes(void)
2215 {
2216         int i, err = 0;
2217
2218         /* FIXME allocate the probe table, currently defined statically */
2219         /* initialize all list heads */
2220         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2221                 INIT_HLIST_HEAD(&kprobe_table[i]);
2222                 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2223                 raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2224         }
2225
2226         err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2227                                         __stop_kprobe_blacklist);
2228         if (err) {
2229                 pr_err("kprobes: failed to populate blacklist: %d\n", err);
2230                 pr_err("Please take care of using kprobes.\n");
2231         }
2232
2233         if (kretprobe_blacklist_size) {
2234                 /* lookup the function address from its name */
2235                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2236                         kretprobe_blacklist[i].addr =
2237                                 kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2238                         if (!kretprobe_blacklist[i].addr)
2239                                 printk("kretprobe: lookup failed: %s\n",
2240                                        kretprobe_blacklist[i].name);
2241                 }
2242         }
2243
2244 #if defined(CONFIG_OPTPROBES)
2245 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2246         /* Init kprobe_optinsn_slots */
2247         kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2248 #endif
2249         /* By default, kprobes can be optimized */
2250         kprobes_allow_optimization = true;
2251 #endif
2252
2253         /* By default, kprobes are armed */
2254         kprobes_all_disarmed = false;
2255
2256         err = arch_init_kprobes();
2257         if (!err)
2258                 err = register_die_notifier(&kprobe_exceptions_nb);
2259         if (!err)
2260                 err = register_module_notifier(&kprobe_module_nb);
2261
2262         kprobes_initialized = (err == 0);
2263
2264         if (!err)
2265                 init_test_probes();
2266         return err;
2267 }
2268
2269 #ifdef CONFIG_DEBUG_FS
2270 static void report_probe(struct seq_file *pi, struct kprobe *p,
2271                 const char *sym, int offset, char *modname, struct kprobe *pp)
2272 {
2273         char *kprobe_type;
2274
2275         if (p->pre_handler == pre_handler_kretprobe)
2276                 kprobe_type = "r";
2277         else if (p->pre_handler == setjmp_pre_handler)
2278                 kprobe_type = "j";
2279         else
2280                 kprobe_type = "k";
2281
2282         if (sym)
2283                 seq_printf(pi, "%p  %s  %s+0x%x  %s ",
2284                         p->addr, kprobe_type, sym, offset,
2285                         (modname ? modname : " "));
2286         else
2287                 seq_printf(pi, "%p  %s  %p ",
2288                         p->addr, kprobe_type, p->addr);
2289
2290         if (!pp)
2291                 pp = p;
2292         seq_printf(pi, "%s%s%s%s\n",
2293                 (kprobe_gone(p) ? "[GONE]" : ""),
2294                 ((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2295                 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2296                 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2297 }
2298
2299 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2300 {
2301         return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2302 }
2303
2304 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2305 {
2306         (*pos)++;
2307         if (*pos >= KPROBE_TABLE_SIZE)
2308                 return NULL;
2309         return pos;
2310 }
2311
2312 static void kprobe_seq_stop(struct seq_file *f, void *v)
2313 {
2314         /* Nothing to do */
2315 }
2316
2317 static int show_kprobe_addr(struct seq_file *pi, void *v)
2318 {
2319         struct hlist_head *head;
2320         struct kprobe *p, *kp;
2321         const char *sym = NULL;
2322         unsigned int i = *(loff_t *) v;
2323         unsigned long offset = 0;
2324         char *modname, namebuf[KSYM_NAME_LEN];
2325
2326         head = &kprobe_table[i];
2327         preempt_disable();
2328         hlist_for_each_entry_rcu(p, head, hlist) {
2329                 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2330                                         &offset, &modname, namebuf);
2331                 if (kprobe_aggrprobe(p)) {
2332                         list_for_each_entry_rcu(kp, &p->list, list)
2333                                 report_probe(pi, kp, sym, offset, modname, p);
2334                 } else
2335                         report_probe(pi, p, sym, offset, modname, NULL);
2336         }
2337         preempt_enable();
2338         return 0;
2339 }
2340
2341 static const struct seq_operations kprobes_seq_ops = {
2342         .start = kprobe_seq_start,
2343         .next  = kprobe_seq_next,
2344         .stop  = kprobe_seq_stop,
2345         .show  = show_kprobe_addr
2346 };
2347
2348 static int kprobes_open(struct inode *inode, struct file *filp)
2349 {
2350         return seq_open(filp, &kprobes_seq_ops);
2351 }
2352
2353 static const struct file_operations debugfs_kprobes_operations = {
2354         .open           = kprobes_open,
2355         .read           = seq_read,
2356         .llseek         = seq_lseek,
2357         .release        = seq_release,
2358 };
2359
2360 /* kprobes/blacklist -- shows which functions can not be probed */
2361 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2362 {
2363         return seq_list_start(&kprobe_blacklist, *pos);
2364 }
2365
2366 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2367 {
2368         return seq_list_next(v, &kprobe_blacklist, pos);
2369 }
2370
2371 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2372 {
2373         struct kprobe_blacklist_entry *ent =
2374                 list_entry(v, struct kprobe_blacklist_entry, list);
2375
2376         seq_printf(m, "0x%p-0x%p\t%ps\n", (void *)ent->start_addr,
2377                    (void *)ent->end_addr, (void *)ent->start_addr);
2378         return 0;
2379 }
2380
2381 static const struct seq_operations kprobe_blacklist_seq_ops = {
2382         .start = kprobe_blacklist_seq_start,
2383         .next  = kprobe_blacklist_seq_next,
2384         .stop  = kprobe_seq_stop,       /* Reuse void function */
2385         .show  = kprobe_blacklist_seq_show,
2386 };
2387
2388 static int kprobe_blacklist_open(struct inode *inode, struct file *filp)
2389 {
2390         return seq_open(filp, &kprobe_blacklist_seq_ops);
2391 }
2392
2393 static const struct file_operations debugfs_kprobe_blacklist_ops = {
2394         .open           = kprobe_blacklist_open,
2395         .read           = seq_read,
2396         .llseek         = seq_lseek,
2397         .release        = seq_release,
2398 };
2399
2400 static void arm_all_kprobes(void)
2401 {
2402         struct hlist_head *head;
2403         struct kprobe *p;
2404         unsigned int i;
2405
2406         mutex_lock(&kprobe_mutex);
2407
2408         /* If kprobes are armed, just return */
2409         if (!kprobes_all_disarmed)
2410                 goto already_enabled;
2411
2412         /*
2413          * optimize_kprobe() called by arm_kprobe() checks
2414          * kprobes_all_disarmed, so set kprobes_all_disarmed before
2415          * arm_kprobe.
2416          */
2417         kprobes_all_disarmed = false;
2418         /* Arming kprobes doesn't optimize kprobe itself */
2419         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2420                 head = &kprobe_table[i];
2421                 hlist_for_each_entry_rcu(p, head, hlist)
2422                         if (!kprobe_disabled(p))
2423                                 arm_kprobe(p);
2424         }
2425
2426         printk(KERN_INFO "Kprobes globally enabled\n");
2427
2428 already_enabled:
2429         mutex_unlock(&kprobe_mutex);
2430         return;
2431 }
2432
2433 static void disarm_all_kprobes(void)
2434 {
2435         struct hlist_head *head;
2436         struct kprobe *p;
2437         unsigned int i;
2438
2439         mutex_lock(&kprobe_mutex);
2440
2441         /* If kprobes are already disarmed, just return */
2442         if (kprobes_all_disarmed) {
2443                 mutex_unlock(&kprobe_mutex);
2444                 return;
2445         }
2446
2447         kprobes_all_disarmed = true;
2448         printk(KERN_INFO "Kprobes globally disabled\n");
2449
2450         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2451                 head = &kprobe_table[i];
2452                 hlist_for_each_entry_rcu(p, head, hlist) {
2453                         if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
2454                                 disarm_kprobe(p, false);
2455                 }
2456         }
2457         mutex_unlock(&kprobe_mutex);
2458
2459         /* Wait for disarming all kprobes by optimizer */
2460         wait_for_kprobe_optimizer();
2461 }
2462
2463 /*
2464  * XXX: The debugfs bool file interface doesn't allow for callbacks
2465  * when the bool state is switched. We can reuse that facility when
2466  * available
2467  */
2468 static ssize_t read_enabled_file_bool(struct file *file,
2469                char __user *user_buf, size_t count, loff_t *ppos)
2470 {
2471         char buf[3];
2472
2473         if (!kprobes_all_disarmed)
2474                 buf[0] = '1';
2475         else
2476                 buf[0] = '0';
2477         buf[1] = '\n';
2478         buf[2] = 0x00;
2479         return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2480 }
2481
2482 static ssize_t write_enabled_file_bool(struct file *file,
2483                const char __user *user_buf, size_t count, loff_t *ppos)
2484 {
2485         char buf[32];
2486         size_t buf_size;
2487
2488         buf_size = min(count, (sizeof(buf)-1));
2489         if (copy_from_user(buf, user_buf, buf_size))
2490                 return -EFAULT;
2491
2492         buf[buf_size] = '\0';
2493         switch (buf[0]) {
2494         case 'y':
2495         case 'Y':
2496         case '1':
2497                 arm_all_kprobes();
2498                 break;
2499         case 'n':
2500         case 'N':
2501         case '0':
2502                 disarm_all_kprobes();
2503                 break;
2504         default:
2505                 return -EINVAL;
2506         }
2507
2508         return count;
2509 }
2510
2511 static const struct file_operations fops_kp = {
2512         .read =         read_enabled_file_bool,
2513         .write =        write_enabled_file_bool,
2514         .llseek =       default_llseek,
2515 };
2516
2517 static int __init debugfs_kprobe_init(void)
2518 {
2519         struct dentry *dir, *file;
2520         unsigned int value = 1;
2521
2522         dir = debugfs_create_dir("kprobes", NULL);
2523         if (!dir)
2524                 return -ENOMEM;
2525
2526         file = debugfs_create_file("list", 0444, dir, NULL,
2527                                 &debugfs_kprobes_operations);
2528         if (!file)
2529                 goto error;
2530
2531         file = debugfs_create_file("enabled", 0600, dir,
2532                                         &value, &fops_kp);
2533         if (!file)
2534                 goto error;
2535
2536         file = debugfs_create_file("blacklist", 0444, dir, NULL,
2537                                 &debugfs_kprobe_blacklist_ops);
2538         if (!file)
2539                 goto error;
2540
2541         return 0;
2542
2543 error:
2544         debugfs_remove(dir);
2545         return -ENOMEM;
2546 }
2547
2548 late_initcall(debugfs_kprobe_init);
2549 #endif /* CONFIG_DEBUG_FS */
2550
2551 module_init(init_kprobes);
2552
2553 /* defined in arch/.../kernel/kprobes.c */
2554 EXPORT_SYMBOL_GPL(jprobe_return);